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Abstract

This dissertation describes complete machine simulation, a novel approac

understanding the behavior of modern computer systems. Complete machine simu

differs from existing simulation tools by modelingall of the hardware found in a typica

computer system. This allows it to help investigators better understand the behav

machines running commercial operating systems as well as any application design

these operating systems. These include database management systems, web serv

other operating system-intensive applications that are important to computer sy

research. In contrast, most existing simulation tools model only limited portions

computer’s hardware and cannot support the accurate investigation of these workloa

addition to extensive workload support, the complete machine simulation appr

permits significant hardware modeling flexibility and provides detailed informat

regarding the behavior of this hardware. This combination of features has widesp

applicability, providing benefits to such research domains as hardware design, ope

system development, and application performance tuning.

Although machine simulation is a well-established technique, it has traditionally b

limited to less ambitious use. Complete machine simulation extends the applicabili

traditional machine simulation techniques by addressing two difficult challenges. The

challenge is to achieve the speed needed to investigate complex, long-running work

To address this challenge, complete machine simulation allows an investigato

dynamically adjust the characteristics of its hardware simulation. There is an inh

trade-off between the level of detail that a hardware simulator models and the spe

which it runs, and complete machine simulation provides users with explicit control

this trade-off. An investigator can select a high-speed, low-detail simulation settin

quickly pass through uninteresting portions of a workload’s execution. Once the work

has reached a more interesting execution state, an investigator can switch to slower

detailed simulation to obtain behavioral information.
v
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The second challenge is to efficiently organize low-level hardware simulation data

information that is more meaningful to an investigation. Complete machine simula

addresses this challenge by providing mechanisms that allow a user to easily incorp

higher-level workload knowledge into the data management process. These mecha

are efficient and further improve simulation speed by customizing all data collection

reporting to the specific needs of an investigation.

To realize the benefits of complete machine simulation and to demonstrate effe

solutions to its challenges, this dissertation describes the SimOS complete ma

simulator. The initial version of SimOS models uniprocessor and multiprocessor com

systems in enough detail to run Silicon Graphics’s IRIX operating system as well a

large class of applications designed for this platform. Furthermore, recent versio

SimOS support additional architectures and operating systems. Our early experience

SimOS have been extremely positive. In use for several years, SimOS has enabled s

studies not possible with existing tools and has demonstrated the effectiveness

complete machine simulation approach.
vi
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Chapter 1

Introduction

This dissertation describes complete machine simulation, a novel approach to he

researchers understand the behavior of modern computer systems. Complete m

simulation differs from existing simulation approaches in that it models all of

hardware typically found in a computer system. As a result, it can boot, run,

investigate the behavior of machines running a fully functional operating system as w

any application designed to run on this operating system. This includes data

management systems, web servers, and other operating system-intensive applicatio

are important to computer system researchers. In contrast, most existing simulation

model only limited portions of a computer’s hardware and cannot enable the same br

and quality of investigation available through the use of complete machine simulatio

This dissertation argues that complete machine simulation approach is an effective to

computer system investigations. In support of this argument, the work described in

dissertation makes three primary contributions:

• Demonstration of the significant benefits that complete machine simulation

provides to many types of computer systems research.

Complete machine simulation offers several benefits to computer systems res

including extensive workload support, accurate and flexible machine modeling,
1
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comprehensive data collection capabilities. Our experiences with complete ma

simulation have shown these benefits to be quite valuable, allowing us to per

studies not possible with existing tools and techniques.

• Demonstration that adjustable levels of simulation speed and detail help

complete machine simulation provide results as quickly as possible.

The biggest challenge facing complete machine simulation’s acceptance i

performance, and this work demonstrates how adjustable simulation speed and

characteristics address this challenge. Specifically, this work recognizes

importance of three specific simulation execution modes and the ability to dynami

switch between them during the course of a workload’s execution.

• Specification and implementation of mechanisms for addressing complete

machine simulation’s data management challenges.

Another challenge for complete machine simulation is efficient conversion

hardware-level data into higher level behavioral information, and this w

demonstrates how supporting investigation-specific data management address

challenge. Specifically, this work introduces efficient and flexible mechanisms

allow an investigator to customize all simulation data classification and reportin

meet the specific needs of their study.

1.1 The challenge: Understanding computer system behavior

The complexity of modern computer systems presents a challenge to resea

interested in understanding their behavior. In the continual pursuit of higher performa

hardware implementations are growing increasingly complex and the effects of indiv

architectural features are difficult to ascertain. The close interaction of com

applications and operating systems with this hardware further complicates effor

understand system behavior.

Effective computer system behavioral information is required in several diffe

investigative domains and takes different forms accordingly. For example, comp
2
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architects need to understand the effects of potential architectural features on the be

of important workloads. Detailed hardware performance information regarding t

features is critical for selecting an appropriate architectural design. Similarly, softw

engineers are continually striving to improve the performance of applicatio

Understanding the run-time behavior of an application, including its interaction with

supporting hardware and operating system, helps focus the software engineering

towards modifications most likely to yield significant improvement. Finally, operat

system designers must continuously provide additional services and impr

performance in their product. Information concerning the operating system’s intera

with the hardware platform and with its supported applications is essential to both of t

endeavors. The challenge facing all computer system researchers is thus to obta

information that best helps them understand increasingly complex computer sy

behavior, and the development and use of complete machine simulation is dir

motivated by this challenge.

1.2 Techniques for investigating computer system behavior

Driven by the need for information regarding a computer system’s behavior, resear

and designers have utilized several different approaches. These techniques and too

of which has strengths and weaknesses, fit into the broad categories of analytic mod

hardware prototyping, and software simulation.

Analytic modeling

Analytic models are mathematical approximations of the behavior of complex syst

These models are often used for analyzing higher-level system issues. For examp

analytic model might be used to understand a disk drive’s queuing behavior as it sa

read requests arriving at probabilistic intervals. When an analytic model can be devis

a particular investigation, their results can be valuable. However, they have lim

applicability to many computer system investigations. Analytic models typically br

down when looking at detailed hardware and software interactions, requiring too m

simplifying approximations to provide the accurate behavioral information required

computer architects and software engineers.
3
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Hardware prototyping

Hardware prototyping is a more commonly used technique for understanding com

system behavior, especially in architectural design investigations. Hardware prototy

consists of designing and building a hardware component and including mechanism

self-observation. The hardware prototype is integrated into an existing computer sy

and exercised by driving the system with applications. The applications act as input

for the prototype’s observing mechanisms, and the resulting data describes the proto

behavior.

Hardware prototypes are good at collecting very low-level, focused behav

information and can collect this data at very high speeds, but there are also se

limitations to their use. First, building hardware prototypes is both time-consuming

expensive, and many investigations can not afford the required time or fina

commitment. More importantly, hardware prototypes have restricted flexibility: it

difficult to significantly reconfigure hardware, and thus a prototype is restricted

architectural investigations that fall within its own limited domain.

Software simulation

Because it addresses many of the deficiencies of analytic modeling and hard

prototyping, software simulation is the most popular method of testing, evaluating,

designing modern computer systems. Software simulation involves modeling some

functionality and behavior of a computer system completely in software and then dr

this model with appropriate input data. For brevity’s sake, software simulation is here

referred to simply as simulation.

Unlike analytic models, simulation can model complex hardware and softw

interactions very accurately. Unlike hardware prototyping, simulation is extremely flex

and capable of modeling a wide domain architectural designs and configurations. Ev

cases where it is possible to build a hardware prototype of a given desig

comprehensive simulation of the same hardware is both less expensive and less

consuming to develop. In addition to flexibly modeling the behavior of hardwa

simulation models also include code to collect information regarding the hardwa
4
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activity. A simulation model has tremendous visibility into its own behavior and c

potentially provide accurate behavioral information.

Simulation’s flexibility and visibility make it an attractive tool, and it is used in almo

every stage of investigating a computer system; from the evaluation of research ide

the verification of the hardware design, to performance tuning once the system has

built. However, simulation does have its own weaknesses, the primary of which is sp

The exact flexibility and visibility that make simulation attractive can also make it sev

orders of magnitude slower than a hardware implementation. If simulation cannot pro

behavioral information in a timely manner, its usefulness to researchers and design

significantly decreased. To address this problem, existing simulation tools typically m

only limited portions of a computer’s hardware. This limited modeling approach simpl

the simulator implementation effort and improves the speed at which simulators pro

their data, but also affects the quality and applicability of the simulator’s results.

1.3 Complete machine simulation

As illustrated in Figure 1.1, a complete machine simulator is simply a program that

on top of existing host computer systems and models all of the hardware found

modern computer system. The use of this program is relatively straightforward. Firs

user specifies the characteristics of the exact “target” machine that the complete ma

simulator should model. These characteristics include processor architecture m

Figure 1.1.  Complete machine simulation

 Host Computer System

Operating System

Behavioral
Data

Configuration
Specification

 Complete Machine Simulator

Applications

Machine
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processor clock speed, cache configuration, disk seek time, memory system

bandwidth, and numerous other parameters. The resulting software-based machin

boot and run an operating system and provides the illusion of being just another com

system. For example, an investigator can log into the simulated computer system an

run any applications that have been installed on the simulated computer’s file sy

While a complete machine simulator provides the outward appearance of being a n

computer system, internally it collects detailed hardware behavioral data only avai

through the use of simulation. This data is subsequently used to better understand

aspect of the computer system’s behavior.

1.3.1 Benefits

Complete machine simulation differs from existing simulation tools in that it modelsall of

the hardware found in a typical computer system. This feature provides several benefi

computer system investigators:

• Extensive workload support

By modeling all of the hardware found in an existing computer system, a comp

machine simulator can support the full execution of an operating system designe

that computer system. Furthermore, by supporting the execution of an exi

operating system, the complete machine simulator can support the investigati

virtually any application designed for that operating system. This includes traditi

performance benchmark applications such as those in SPEC, but also more com

operating system-intensive applications such as database management syste

web servers. The latter applications are important to many types of computer sy

research, yet are poorly supported by existing tools.

• Accurate and flexible machine modeling

By modeling all of the hardware found in a computer system, complete mac

simulation also provides accurate machine modeling capabilities. One of the stre

of any software simulation tool is the ability to model the behavior of present

future hardware designs with significant detail. Complete machine simulation f
6
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exploits this flexibility and allows an investigator to customize every aspect of

simulated machine’s behavior to match that of a specific target computer system

ability to accurately model both present and future hardware designs enables com

machine simulation’s use in a variety of architectural investigations.

• Comprehensive data collection

Software simulation provides tremendous visibility into the behavior of the hardw

it models. By modeling all of a computer’s hardware, complete machine simula

extends this visibility to every aspect of a computer system’s execution. As a re

complete machine simulation can provide detailed information regarding every a

of the modeled computer system’s execution behavior. This includes hardware ac

as well as the behavior of the software that this hardware supports. Each hard

model can be augmented with code to collect detailed statistics regarding

behavior during workload execution. Furthermore, this information can be obta

non-intrusively. The act of observing the simulated computer’s behavior in no

affects its execution, allowing both detailed and accurate statistics collection.

Because it encompasses more functionality than existing simulation tools, the com

machine simulation approach is applicable to a broad class of computer sy

investigations. Computer architects can evaluate the impact of new hardware desig

the performance of complex workloads by modifying the configuration of the simula

hardware components. Operating system programmers can develop their software

environment that provides the same interface as the targeted computer platform,

taking advantage of the visibility offered by a simulation environment. Programmers

collect detailed information that describes the dynamic execution behavior of com

applications and use this information to improve their performance. Furthermore

ability to use a single tool across all of these domains is a benefit in its own right, redu

the implementation, training, and deployment costs associated with the use of mu

investigative tools.
7



ple,

aid in

hine

ious

the

are.

and

ents

cute

are

r the

gator

tural

ding

are

ress

an

here

ides

hine

can

sting

sting
1.3.2 Important features

The idea of simulating all of the hardware in a computer is not new. For exam

computer system designers have long used machine simulation techniques to

architectural validation. However, three important features help complete mac

simulation extend the applicability of machine simulation techniques to more ambit

use:

• Functional and flexible hardware simulation

One of the most important goals of complete machine simulation is support for

investigation of important workloads executing on configurable computer hardw

Complete machine simulation satisfies this goal by supporting both functional

flexible hardware simulation. Specifically, a complete machine simulator implem

the exact hardware interfaces found on existing machines, allowing it to exe

unmodified operating system and application binaries. While providing this hardw

functionality, complete machine simulation gives a user substantial control ove

specific implementation details of the simulated hardware. As a result, an investi

can examine a wide variety of workloads as they execute on very specific architec

configurations.

• Dynamically adjustable simulation speed and detail

Complete machine simulation can provide extremely detailed information regar

the behavior of a target computer system, but the benefits of this information

greatly mitigated if it takes an excessively long amount of time to obtain. To add

this challenge, a complete machine simulation implementation can allow

investigator to dynamically adjust the characteristics of its hardware simulation. T

is an inherent trade-off between the level of detail that a hardware simulator prov

and the speed at which it provides this detail, and an effective complete mac

simulator provides users with explicit control over this trade-off. An investigator

select a high-speed, low-detail simulation setting to quickly pass through unintere

portions of a workload’s execution. Once the workload has reached a more intere
8
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execution state, an investigator can switch to slower, more detailed simulatio

obtain accurate and detailed behavioral results. This feature allows users to sele

exact level of detail required at each stage of an investigation, maximizing the spe

which this data is obtained.

• Efficient management of low-level simulation data

A complete machine simulator has excellent potential for providing an investig

with detailed computer system behavioral data because it “sees” all of the hard

activity that occurs during a workload’s execution. This includes the execution

instructions, MMU exceptions, cache misses, CPU pipeline stalls, and many o

facets of machine behavior. Hardware simulators can be easily augmented with

to measure this activity, but there are two challenges associated with this appr

First, hardware data is often at too low of a level to be meaningful to m

investigations. Additionally, this data is generated at a very high rate and effor

monitor and organize it can significantly slow down a simulation. To address th

challenges, a complete machine simulator can provide flexible mechanisms

organizing complete machine simulation’s hardware-level data into more meanin

software-level information. Furthermore, these mechanisms can be highly effic

minimizing the overhead of their data manipulation.

1.4 SimOS

To demonstrate the capabilities and benefits of complete machine simulation,

dissertation introduces SimOS. The SimOS project started in 1992 with the go

building a tool capable of studying the execution behavior of modern workloa

Recognizing the limitations of our existing tools, we designed SimOS to be a com

machine simulator. The initial version of SimOS modeled entire uniprocessor

multiprocessor computer systems that are capable of booting and running IRIX

implementation of SVR4 Unix developed by Silicon Graphics. By running the IR

operating system, a SimOS-modeled computer system is binary-compatible

computer systems shipped by Silicon Graphics, and can support the execution of a
9
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any program designed for that platform. More recent versions of SimOS model D

Alpha-based machines in enough detail to boot and run DEC Unix, and efforts to su

additional architectures and operating systems are well underway.

To provide functional and flexible hardware simulation, SimOS takes a modular appr

to machine simulation. SimOS includes well-defined interfaces for the developmen

inclusion of multiple CPU, memory system, and I/O device models. Each model prov

the functionality required to execute operating systems and applications, but provide

functionality while modeling widely varying hardware implementation details.

To provide adjustable simulation speed and detail, SimOS utilizes a combinatio

compatible hardware simulation models. These models use high-speed machine em

techniques as well as more traditional hardware simulation techniques to support

important modes of simulator usage.

To provide flexible and efficient data management, SimOS incorporates a Tcl scri

language interpreter customized to support hardware data classification. SimOS

create investigation-specific Tcl scripts that interact closely with the hardware simula

models to control all data recording and classification.

SimOS has been heavily used for several years and has enabled several studies pre

inaccessible to computer system researchers. In addition to describing several of

studies, this dissertation will introduce several limitations that we have encountered

the complete machine simulation approach and suggest possible research directio

addressing them.

1.5 Operating system-intensive workloads

As mentioned above, one of the most important benefits of complete machine simu

is its support for the investigation ofoperating system-intensiveworkloads. This term is

used frequently in this dissertation and deserves further description. Operating sy

intensive workloads consist of applications that spend a substantial portion of

execution time in operating system code. This execution behavior may be due to ex
10
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use of operating system services or to secondary effects such as multiprogrammed p

scheduling or interrupt processing.

Two examples of operating system-intensive applications that are referred to in

dissertation are database management systems and web servers. Database man

systems are among the most heavily used applications on modern computer system

their execution consists of substantial operating system activity. Database manag

systems typically consists of multiple processes, and the scheduling of these proce

the job of the operating system. Additionally, database management systems often

significant file system activity, accessing the database tables as well as writing to a co

log file to indicate the completion of each transaction. The operating system is respon

for managing much of this activity, scheduling disk requests and responding to inter

indicating disk access completion. Finally, database management systems often exe

a client-server environment where remote applications make requests of the dat

management system via a network connection. As a result, significant execution tim

occur in the operating system’s networking code, receiving and replying to these req

The impact of this heavy usage of operating system services can be quite significan

example, an investigation into the behavior of a typical database transaction proce

workload found that it spends close to 40% of its execution time running operating sy

code [Rosenblum95].

Another important application whose execution consists of significant operating sy

activity is a web server. Web servers rely quite heavily on an operating syst

networking services for accepting and responding to HyperText Transport Pro

(HTTP) requests. Web servers also include significant file system activity acce

requested web pages and saving the requests to an access log. Furthermore, ma

servers are consist of multiple processes to allow concurrent handling of HTTP requ

The scheduling of these processes of course has significant impact on the behavior

server. Together, these characteristics make the performance of a web server ext

dependent on the behavior of the operating system. For example, a simple investiga

the popular Zeus web server [Zeus97] indicates that it spends more than 70% of its
11
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execution time in operating system code when running the Webstone bench

[Trent95].

In these and other examples, workload behavior is largely determined by the ope

system activity that occurs during its execution. As such, tools that can not inc

operating system effects are often unable to provide the information needed to pro

understand the behavior of this important class of workload.

1.6 Additional terminology

Discussion of a simulator that runs on one computer system and models a comp

different computer system can be confusing. To help reduce this confusion, this se

provides an early introduction to the terminology used throughout this dissertation. W

discussing the use of complete machine simulation, thehost computer systemis the

hardware and operating system supporting the execution of the simulation too

discussing the complete machine simulator itself, thetarget machineis a collection of

simulated hardware components configured to model a particular comp

implementation. The operating system running on top of this target machine is thetarget

operating system. These two components combine to form thetarget computer system.

In discussing specific investigations that utilize complete machine simulation,

application is a single instance of a user-level program. The termworkloadrefers to one

or more applications and includes all of the operating system activity that occurs du

their execution. A single execution of the simulator is referred to as anexperiment, and an

investigation consists of one or more related experiments.

1.7 Organization of this dissertation

The rest of this dissertation is organized as follows:

• Chapter 2 provides further motivation for the use of complete machine simulatio

describing how it benefits several fields of computer systems research.
12
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• Chapter 3 describes the need for functional and flexible hardware simulation and

SimOS’s modular simulation approach satisfies this need.

• Chapter 4 describes the challenge of quickly obtaining simulation results and

adjustable levels of simulation speed and detail can address this challenge.

• Chapter 5 describes the data management challenges facing complete ma

simulation and the SimOS mechanisms for efficiently organizing hardware-level

into information customized to the needs of an investigation.

• Chapter 6 discusses our experiences with SimOS. In addition to describing

several different investigations benefited from the use of SimOS, this chapter desc

limitations that we have encountered with SimOS and the complete mac

simulation approach.

• Chapters 7 and 8 conclude the dissertation with a survey of related work a

summary of this research’s contributions.
13
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Chapter 2

Motivation

The previous chapter provides an overview of complete machine simulation and b

introduces three of its benefits: extensive workload support, flexible and acc

architectural modeling, and comprehensive data collection. This chapter provides

concrete motivation for the development and use of complete machine simulatio

describing how these benefits apply to modern computer systems research. The fir

of this chapter describes the original needs that sparked the development of a

investigative approach. The SimOS implementation of complete machine simul

addressed these original needs and proved advantageous to other types of research

The second part of this chapter further motivates the development and use of com

machine simulation by describing its applicability to three diverse fields of comp

systems research: hardware design, operating system development, and appl

performance tuning. SimOS provides unique benefits to each field, enabling se

studies not possible with existing tools and techniques. Furthermore, the fact that a

tool can address such a wide variety of research needs is a benefit in its own

Computer researchers typically utilize several different tools, each designed to ad

specific investigative needs. By addressing several needs with a single tool, com

machine simulation can reduce a research group’s tool implementation, training

deployment costs
15
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2.1 History

The development of the SimOS complete machine simulator began in 1992 to fill a vo

our existing tool set. One of our research group’s original goals was a thoro

investigation of the cache and memory system behavior of modern workloads. At

time, the best available tool for this task was Tango Lite [Goldschmidt93]. Tango Lite i

execution-driven simulation environment designed to model the behavior of par

programs. Tango Lite obtains memory system behavioral information by rewriting

application’s assembly code, instrumenting load and store instructions with calls

configurable memory system simulator. The instrumented application is compiled

executed on an existing computer system. At run-time, the instrumented applic

passes memory reference addresses to the user-defined memory system, allow

determination of cache hit rates, memory sharing patterns, and other aspects

application’s memory system behavior.

While Tango Lite is an effective tool for investigating scientific applications such as th

found in SPLASH [Woo95], several factors limit its usefulness for studying ot

important workloads. First, Tango Lite requires access to an application’s source co

make it utilize a special macro package [Boyle87] and to instrument its mem

references. However, many applications, especially those in the commercial secto

only available in binary form. Even if Tango Lite could instrument application binaries

would still suffer from its design as auser-levelsimulator. User-level simulators can

investigate the behavior of an application itself, but ignore all operating system act

that normally occurs during the application’s execution. For example, user-l

simulators implement “perfect” system calls where kernel functionality is provid

without actually running operating system code. Similarly, operating system activity s

as virtual address translations, exceptions, and device interrupts is either omitt

somehow “faked” by the simulator.

Furthermore, user-level simulators typically model only a single application process

time and can not include the effects of operating system process scheduling. The om

of operating system activity is often acceptable in the investigation of scien
16
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applications as they typically make very few system calls and their execution req

minimal operating system activity. However, applications such as database manag

systems and web servers have significant operating system activity, and the inabi

include this activity compromises the accuracy and applicability of user-level simula

tools.

These limitations directly motivated the development of the SimOS complete mac

simulator. The initial goals were to support application investigations without acces

their source code, to observe all of the application’s operating system activity, an

support the investigation of multiprogrammed and other operating system-inten

workloads. Simulating all of the hardware found in a computer system seemed to

feasible approach as it could certainly model highly configurable memory systems

could also support the execution of a complete operating system. Supporting the exe

of an operating system would in turn allow it to support the execution of any type

workload designed to run on this operating system. Furthermore, software simul

would allow us to observe and measure all of the workload’s user-level and oper

system-level activity. During the development of this complete machine simulator

began to recognize the benefits that such an approach could provide to other typ

computer systems research as well. To fully explore these benefits, the developm

complete machine simulation became a research project in its own right, with a

exploration of its capabilities continuing to this day.

2.2 Benefits for computer systems research

While complete machine simulation was initially developed to investigate the mem

system behavior of modern workloads, it has proven to be advantageous to other do

of research as well. This section provides further motivation for the development an

of complete machine simulation by describing how its benefits apply to three diverse fi

of computer system research: hardware design, operating system developmen

application performance tuning. To better convey the significance of these benefits

section also describes how complete machine simulation improves upon the most co
17
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investigative techniques used in each field, enabling studies that existing investig

tools and techniques have difficulty supporting.

2.2.1 Hardware design

One important domain of computer systems research is hardware design. The goal

type of research is to design and implement the highest performance computer har

within a set of constraints. These constraints include monetary cost, time deadlines

or board space, power consumption, and many other factors. Hardware design

requires a continual trade-off between an implementation’s cost and performan

develop the best possible product given a set of constraints. To evaluate the perform

side of this trade-off, designers attempt to predict the behavior of their proposed hard

in support of important applications. For example, researchers typically model

behavior of a specific hardware design in software and then drive this model with

from existing workloads. The behavior of the modeled hardware design is taken t

representative of the behavior of an actual hardware implementation and helps pred

effectiveness. Furthermore, when a hardware design does not provide the expec

desired level of performance, simulation can provide data that helps determine why.

Complete machine simulation is a particularly effective tool for hardware des

providing significant benefits to the performance evaluation effort. First, comp

machine simulation’s extensive workload support allows a researcher to evalua

hardware design under a variety of applications. This includes traditional bench

applications such as those in SPEC [SPEC97] as well as more complex, operating sy

intensive applications such as database management systems and web s

Furthermore, the substantial operating system activity that occurs during the latter cla

applications is included in the simulation, providing additional input data for

evaluation. As a result, hardware designs can be evaluated in the context of the

workloads that the final hardware implementation will be required to support, ultima

leading to a higher performance product.

Second, complete machine simulation’s flexible machine modeling capability enable

use in the evaluation of almost any hardware design. Complete machine simu
18
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models all of the hardware found in a computer system and allows a designer to cust

the behavior of any of this simulated hardware to match a proposed design. For exam

designer can easily incorporate a new processor pipeline, cache configuration, me

system design, or disk model into the simulated machine and evaluate its perform

Furthermore, an investigator can evaluate the proposed designs in the context of an

computer system. Computer hardware components are never used in isolation, a

effects of hardware’s behavior propagates throughout the system. For example, in

computer system, a new processor cache implementation would cause different loa

store instruction activity, affecting the behavior of the processor pipeline and the re

the memory system. Additionally, the effects of new hardware would normally propa

up to the application and operating system, ultimately changing the behavior o

workload. While traditional simulation tools evaluate a hardware component in isola

complete machine simulation evaluates the hardware component as it interacts wi

rest of the complete computer system. As a result, complete machine simulation

provide more accurate performance predictions than traditional tools.

Architects have traditionally employed trace-driven simulation to evaluate propo

architectural designs. Trace-driven simulation consists of two phases, trace collectio

trace processing. In the trace collection phase, researchers use software or ha

techniques to monitor the behavior of a computer system and collect a “trace” of work

activity. Trace collection involves running the workload of interest on a system mod

to record events such as instruction execution or memory references. The trace c

collected either by using software instrumentation as in ATOM [Eustace95], Ep

[Borg89], FastCache [Lebeck95], and Paradyn [Miller95], or by using a hardware mo

such as in BACH [Grimsrud93], DASH [Torrellas92, Chapin95a], and MONST

[Nagle92]. The trace is typically saved to non-volatile storage and provides input to s

type of hardware simulator. The results of this trace processing phase are tak

approximate the behavior of the modeled hardware in its execution of the traced work

The widespread use of trace-driven simulation in the evaluation of hardware de

attests to its speed, flexibility, and ease of implementation. However, there are se

limitations to its effectiveness. First, most software-based trace collection tools are u
19
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to capture the activity that occurs during operating system execution. Because ope

system activity is omitted from most traces, hardware design evaluation is often b

entirely on the user-level portion of applications. Additionally, trace-driven simulation

isolated hardware components omits the important interactions that normally o

between a hardware component and the rest of the computer system. As mentioned

hardware components are never used in isolation, and the effects of hardware’s be

normally propagates throughout the system. Because trace-based simulation separa

collection of hardware events from the modeling of new hardware component beha

these interactions do not occur, and the predicted real-life behavior of new hard

designs is compromised.

Computer architects also employ user-level simulation tools such as Tango Lite to eva

their hardware designs. These simulators generate data regarding an application’s

level execution behavior on the modeled hardware and can thus provide s

performance predications. However, the hardware design evaluation effort again s

due to the omission of operating system activity. Furthermore, user-level simulator

unable to support many operating system-intensive applications or multiprogram

workloads. As a result, important applications are again absent from the evaluation

hardware design.

In both cases, the difficulty of obtaining useful data regarding operating-system inte

workloads has led to a heavy reliance on benchmark applications with minimal oper

system activity such as the applications that comprise the SPEC benchmarks. Des

hardware to effectively support the execution of these benchmarks provides an imp

marketing story, but does not necessarily translate into performance gains for

commonly used workloads. Database management systems and web servers are ex

important applications, yet the simulation tools used to evaluate hardware design

typically unable to capture a significant portion of their execution behavior. As a re

many hardware design decisions are made without complete information rega

significant execution activity that the hardware is required to support.
20
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2.2.2 Operating system development

Another important field of computer systems research is operating system developme

this domain, operating system programmers are required to provide impr

functionality and port their code to new platforms while simultaneously minimizing

performance overhead of the operating system’s execution. In a commercial environ

this development process is further complicated by very strict time constraints. Oper

system development typically involves a repeated cycle of modifying the operating sy

source code and then running the resulting kernel on existing hardware to evalua

correctness, functionality, and performance.

Complete machine simulation provides several benefits to the operating sy

development process. First and foremost, complete machine simulation provid

platform for operating system development long before the targeted hardware is pr

The task of porting an operating system to new machines is often delayed by the lack

actual hardware platform for code testing and tuning. Complete machine simulat

flexible and accurate machine modeling capabilities allows an investigator to model a

existent machine and provide the operating system with the exact same hard

interfaces that will be found on the completed machine. The ability to enable oper

system porting efforts to proceed concurrently with hardware design and implement

can dramatically speed up the overall time to completion of a new computer platform

Second, complete machine simulation provides better operating system debugging s

than hardware. For example, simulation can provide completely repeatable work

execution. This deterministic execution is particularly beneficial to operating sys

debugging where bugs are often difficult to reproduce. Additionally, complete mac

simulation is easily extended to interact with and improve upon existing debugging t

As described in Chapter 6, complete machine simulation allows a developer to a

normal debugging techniques such as breakpoints and single-stepping to all ope

system code, including exception handlers and other timing-critical sections of

whose execution is typically difficult to examine.
21
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Finally, complete machine simulation provides substantially more visibility into opera

system behavior than possible with real hardware. Coupled with flexible data colle

and reporting capabilities, this feature helps developers to understand and improv

performance of their operating system code. Complete machine simulation can pr

detailed information regarding an operating system’s performance as it supports a

variety of important workloads. This performance information can include sim

profiling information such as heavily executed procedures, but also more det

behavioral statistics. For example, it can include the cache misses that occur durin

operating system’s execution and attribute these misses to the responsible proced

data structures. This detailed information helps focus performance tuning efforts o

most troublesome areas of the operating system.

Operating system development has long been hindered by the lack of tools capa

aiding the porting effort or providing detailed behavioral information. The few simulat

tools that are capable of investigating operating system behavior suffer from se

limitations. Advances in software instrumentation techniques have enabled the t

driven simulation of some operating systems [Chen93] [Perl97]. However, softw

instrumentation results in an operating system that is both larger and longer running

in its original form. As described in [Chen93], the resulting time- and memory-dilat

affects the accuracy of the trace and thus of any derived performance data.

Hardware monitoring mechanisms can also collect traces of operating system ac

While less intrusive than software instrumentation, the monitors only provide informa

about the limited types of hardware activity that they observe. For example

[Chapin95a], the hardware-based trace collection mechanism only captures me

reference activity occurring on the system bus, limiting the trace’s use to investigatio

an operating system’s memory system performance. As a result of the limited applica

of simulation tools to operating system development, kernel programmers often res

modifying the operating system code to observe its own behavior. Operating system

often littered with code to count the invocations of particular procedures or to measur

performance of locks and semaphores. The information collected by this inserted cod

help indicate some simple operating system performance problems, but does not p
22
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more comprehensive hardware-level performance data such as cache or processor p

behavior. Furthermore, the code modification technique only applies to exami

operating system performance on existing machines, and does not necessarily

indicate where performance problems will arise on future platforms.

2.2.3 Application performance tuning

A third important type of computer systems research is application performance tunin

this domain, programmers attempt to discover and eliminate performance problems

the sole goal of speeding up an application’s execution. To determine and impleme

most effective code modifications, a programmer requires detailed information rega

the application’s behavior.

The complete machine simulation approach also provides benefits to this type of res

Complete machine simulation’s extensive workload support allows its use in

investigation of almost any application. This includes complex, multi-process applica

such as CAD tools, database management systems, and web servers. Additi

complete machine simulation’s comprehensive data reporting provides det

information regarding every aspect of the application’s behavior. For example, it

report a variety of hardware-related performance problems that occur during

application’s execution such as mispredicted branches, cache misses, and pro

pipeline stalls. These problems can be responsible for substantial application perform

loss, and knowledge of their occurrence is essential to eliminating them. For exampl

programmer discovers that a specific data structure is experiencing significant c

misses, they can often restructure it to improve its cache locality and improve

application’s performance. Complete machine simulation also reports oper

system-related performance problems such as excessive page faults, expensive sys

invocations, and poor process scheduling. These problems can be responsible

substantial portion of an application’s execution time and knowledge of their occurr

can often help reduce their impact.

One of the most common techniques for obtaining application performance informati

the use of profiling tools. Profiling tools use a variety of techniques to determine whe
23
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application spends most of its execution time. These profiling tool typically us

computer system’s hardware timer to periodically sample the CPU’s program cou

This information provides a statistical indication of the most heavily executed section

application code. This basic information can help focus an application tuner’s attentio

the most important application procedures or loops. However, profiling tools only indi

where an application spends most of its execution time, and does not indicate the sp

source of performance problems. Many recent CPU’s incorporate counters that

various processor events as they occur during an application’s execution. These co

are integrated directly onto the CPU, and track events such as mispredicted branc

data cache misses at high speeds and with minimal application perturbation.

additional information improves upon traditional program counter-based profil

incorporating basic memory system and processor pipeline behavioral data int

reported data.

For even more detailed performance information, investigators sometimes employ

level simulators. As mentioned above, these tools provide information abou

application’s behavior, but omit the operating system activity that would normally oc

during its execution. From an application’s standpoint, the execution environm

modeled in user-level simulators is a significant improvement over actual comp

systems. For example, system calls occur instantaneously, having no impact o

application’s execution time. Additionally, the application is always actively “schedul

and is fully resident in memory. As a result, the application does not face any of

performance problems associated with execution in multiprogrammed syst

Furthermore, operating system code is never executed, allowing the application to

competition for the processor’s limited instruction and data cache space. Unfortun

this execution environment is not representative of existing computer systems, and

performance “benefits” impact the quality of data that user-level simulators can pro

As a result, the behavior of many important applications tends to be less well unders

hindering efforts to improve their performance.
24
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2.3 Summary

The complete machine simulation approach was originally adopted to satisfy very sp

investigative needs, but its flexible hardware modeling capability and ability to obser

computer’s operating system behavior has proven useful to other fields of com

systems research as well. This chapter has described several specific benefi

complete machine simulation provides for the fields of hardware design, operating sy

development, and application performance tuning. Chapter 6 revisits complete ma

simulation’s benefits and describes several specific investigations that they have ena
25
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Chapter 3

Functional and Flexible
Hardware Simulation

The previous chapters introduce complete machine simulation and the benefits t

provides to several fields of computer systems research. This is the first of three ch

that describe the implementation features that allow complete machine simulatio

provide these benefits.

The most important goal of complete machine simulation is to support the investigatio

a large class of workloads as they execute on highly configurable computer hardware

chapter describes how complete machine simulation’s functional and flexible hard

simulation approach helps achieve this goal. The first part of this chapter describes th

primary components of complete machine simulation’s hardware simulation appro

providing software-visible functionality and supporting configurable implementat

details. The second part of this chapter describes how SimOS satisfies these ha

simulation requirements. SimOS takes a modular approach to simulating a com

allowing the development and inclusion of multiple CPU, memory system, and I/O de

simulators. Each of these simulated components provides the basic functionality req

to execute operating systems and applications, but provides this functionality w

modeling widely varying hardware implementation details.
27
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3.1 Hardware simulation tasks

Complete machine simulation differs from most simulation approaches in that it mo

all of the hardware typically found in a computer system. More specifically, comp

machine simulation models computer hardware in enough detail to support the exec

and investigation of operating systems and application programs. This section des

the two primary components of this simulation task; providing software-visible hardw

functionality and supporting configurable hardware implementation details.

3.1.1 Providing software-visible functionality

One goal of complete machine simulation is to support the investigation ofunmodified

operating systems and application programs. This goal is quite important as it allow

investigation of a much wider range of workload than is possible with many existing to

For example, most operating systems and commercial software packages are shipp

binary format without any publicly available source code. As a result, simulation tools

recompile or instrument an application’s source code are unable to examine their beh

As described in the previous chapter, supporting unmodified workload binaries also a

complete machine simulation to avoid the time- and space-dilation effects that accom

instrumentation-based tools.

To satisfy this goal, a complete machine simulation must be compatible with the hard

that the workload normally runs on. Specifically, a complete machine simulator m

export the same hardware interfaces that are normally visible to the workload binarie

provide the hardware functionality expected by interactions with this interface. The re

this section describes these expected interfaces and the corresponding ha

functionality that a complete machine simulator must provide.

CPU functionality

Operating systems and applications expect significant functionality from a compu

CPU, the most fundamental of which is the proper execution of instructions. This incl

normal user-level instructions as well as those that are only accessible in “privile

processor modes. Additionally, operating systems expect a memory managemen
28
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(MMU) that relocates every virtual address to a location in physical memory or gene

an exception if the reference is not permitted (e.g. a page fault). The operating system

expects the CPU to inform it of other exceptional events such as arithmetic overflow

use of privileged instructions in user mode, or the occurrence of external device interr

Furthermore, multiprocessor workloads expect all of this functionality to be replica

allowing the parallel execution of several independent instruction streams.

Memory system functionality

Operating systems and applications also expect their underlying hardware to provide

type of memory system that coordinates communication between the CPU, main me

and other devices. For example, the memory system must read and write the conte

main memory in response to certain CPU instructions. Additionally, the memory sys

must provide an I/O address space to enable communication between the CPU a

devices. The I/O address space allows software, typically operating system device d

to access the registers that control and query I/O devices. The memory system mu

transfer data between devices and main memory in response to device register ac

and the specific method of data transfer often depends on the device itself. For exa

programmed I/O devices expect the memory system to move data to or from the de

single byte at a time. Other devices support direct memory access (DMA), where the

informs the I/O device of a location in main memory and an amount of data to tran

The device transfers data directly to or from memory, interrupting the CPU to indicat

completion. Regardless of the implementation, the memory system must manage th

transfer to ensure that main memory always reflects the proper machine state.

I/O device functionality

In addition to coordinating communication with I/O devices, a complete mach

simulator must provide the functionality of the I/O devices themselves. These de

include at least a timer that interrupts the CPU at regular intervals, a storage device

contains the operating system and application files, and a console for interaction wi

user. Some workloads may expect additional I/O device functionality, such as that

networking card or graphics chip. Whether writing data to a SCSI disk, receiving ty
29
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commands from the system console, or communicating with another computer

network, workloads require significant utility from a computer’s I/O devices, a

complete machine simulation must provide the expected functionality.

3.1.2 Supporting configurable implementation details

In addition to supporting the functional execution of a workload, a complete mac

simulator must also enable a detailed investigation of the workload’s execution beha

Specifically, it should provide information about a workload’s behavior as it executes

specific computer configuration. To provide this information, a complete mach

simulator must model specific hardware implementation details while providing hardw

functionality. Furthermore, a complete machine simulation must support hig

configurable implementation details to provide this information across a wide rang

potential computer configurations.

The distinction between hardware functionality and hardware implementation de

deserves discussion. Hardware functionality relates to a basic architectural specifi

and is not specific to any single machine implementation. In contrast, hard

implementation details do not affect the functional execution of a workload, but determ

how the hardware behaves and how quickly it completes this execution. For example,

functionality consists of applying the an instruction’s behavior to its registers and to m

memory according to a well-defined architectural specification. In contrast, C

implementation details determine how long it takes to execute these instructions

includes effects such as the processor’s pipeline, clock rate, and branch prediction sc

As another example, memory system functionality consists of coordina

communication between the CPU, main memory, and I/O devices, but implement

details determine the latency of this communication. In the case of memory refere

latency includes the effects of caches, bus speed, arbitration protocols, queuing d

and even DRAM characteristics. These implementation details do not provide

functionality that is required for workload execution, but play a determining role in

workload’s execution behavior. As a final example, disk drive functionality sim

consists of reading or writing data as requested. In contrast, disk drive implement
30
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details assign latencies to this activity and require a simulator to model factors su

SCSI controller delays, disk head seek time, and disk block transfer time. In each

hardware implementation details are not necessary for the functional execution

operating system and application programs, but are essential to understand

workload’s behavior on a specific computer configuration.

3.2 SimOS hardware simulation

This section describes the SimOS approach to satisfying complete machine simula

hardware simulation requirements. The first part of this section describes the hard

functionality that SimOS provides and some of the more interesting aspects o

implementation. The second part of this section describes SimOS’s modular approa

hardware simulation and how this modularity supports highly configurable hardw

implementation details.

3.2.1 Providing software-visible functionality

SimOS models the hardware of modern computer systems in enough detail to boot a

IRIX, the Silicon Graphics, Inc. implementation of Unix System V Release 4. In fac

SimOS-modeled machine is binary-compatible with actual machines shipped by Si

Graphics, allowing it to execute the wide assortment of commercial applications des

for this platform. To support the execution of IRIX and its applications, SimOS provi

the same hardware functionality that is visible to software on real Silicon Grap

machines. The rest of this section describes SimOS’s hardware functionality and the

interesting aspects of its implementation.

CPU functionality

SimOS supports execution of the MIPS-IV instruction set, including arithmetic, floa

point, and privileged “co-processor 0” instructions. SimOS also provides the vir

address to physical address translations that occur in a processor’s memory manag

unit (MMU). For the MIPS architecture this means implementing the associative loo

of the translation look-aside buffer (TLB), including raising the relevant exceptions if

translation fails. SimOS also takes exceptions on events such as arithmetic overflo
31
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use of privileged instructions in user mode, or the occurrence of external proce

interrupts. SimOS can also simulate multiple CPU’s simultaneously to enable

execution of multiprocessor workloads.

Memory system functionality

As illustrated in Figure 3.1, SimOS manages the communication between CPU’s,

memory, and I/O devices similarly to a normal memory controller. Communica

between the CPU and main memory is straightforward. SimOS maintains the conte

the target machine’s memory by allocating memory in its own address space.

allocated memory is sized according to the amount of main memory “installed” on

target machine, and simulating the functionality of loads and stores to main mem

simply involves reading and writing this allocated memory. Communication betw

CPU’s and I/O devices is slightly more complicated. The Silicon Graphics/IRIX platfo

utilizes memory-mapped I/O where device registers are mapped into a portion o

physical address space. This allows IRIX device drivers to use normal CPU read and

instructions to access device registers. SimOS uses a hash table called adevice registryto

communicate device register accesses to the appropriate I/O device simulator ro

SimOS provides the expected I/O device functionality by mapping an appropriate d

simulator routine at every location in this I/O address space that IRIX device dri

utilize. In response to these device driver requests, the simulated I/O devices pr

varied functionality, interrupting the processor as appropriate. As on a real machine
32
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address space references that do not correspond to “installed” I/O devices result

error exceptions.

I/O device functionality

In addition to coordinating communication between the CPU, main memory, and

devices, SimOS provides the functionality of the I/O devices themselves.

implementation of this device functionality is particularly interesting as it often requ

SimOS to act as a gateway between the simulated machine and the non-simulated

This interaction takes many forms, but in each case SimOS exploits the functionality

host platform to provide the expected functionality. For example, SimOS provides

functionality of a console device by communicating with a real terminal on the h

machine. SimOS outputs console writes to the terminal and translates typing a

terminal into console input. This allows a user to interact with the simulated machine

as if it were a normal hardware-based machine.

As a second example, SimOS provides ethernet functionality by multiplexing

simulated machine’s network activity with that of the host machine. Ethernet packets

from the SimOS-modeled machine are forwarded through the host machine’s etherne

return packets are routed back to the simulated machine. Furthermore, we have alloc

range of IP addresses for SimOS-modeled machines, allowing them to act as nodes

internet and enabling a wide range of network communication possibilities. For exam

we have configured SimOS-modeled machines as NFS clients and servers to ea

transfer of large files between SimOS and hardware-based machines. Similarly, Si

Figure 3.1.  SimOS memory system functionality
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modeled machines can communicate over the X-windows protocol to display

program output on a remote machine’s display. We have even configure

SimOS-modeled machine as a web server that provides the SimOS user-guide web

to the internet community.

As a final example, SimOS uses the host machine’s filesystem to provide the functio

of a hard disk, maintaining the disk’s contents in a file on the host machine. Reads

writes to the simulated disk become reads and writes of this file, and DMA trans

simply require copying data from the file into the portion of the simulator’s address s

representing the target machine’s main memory. To create a new disk that can be mo

by a SimOS-modeled machine, a user simply creates the appropriate disk image in

on the host machine.

SimOS’s implementation of disk functionality is particularly interesting because of

support for sharing filesystem images among several users. The disk images requ

boot an operating system and execute complex applications can occupy several gig

of space on the host machine’s filesystem, making it desirable to share them a

investigations. However, sharing disk images can be troublesome because work

typically modify files during their execution. If a workload’s modifications were saved

the host machine’s filesystem, it could affect any future investigations that share the

image. Furthermore, sharing the disk image file among multiple concurrent simula

can result in file consistency problems.
34
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To avoid these problems, SimOS supports acopy-on-write disk simulation mode.

Illustrated in Figure 3.2, the copy-on-write mode allows multiple instances of SimO

run concurrently by maintaining all target machine disk modifications in memory ra

than to the shared disk image file. Subsequent target machine disk reads obtain th

recent filesystem data by checking the list of modified disk blocks first, only accessin

original disk image for blocks that have not yet been written. In this example, the

instance of SimOS returns “ccc” in response to the read of disk block 3 while the se

instance returns “ghi”. The copy-on-write mechanism allows any number of investiga

to share a single disk image file, easing the process of workload creation and avo

excessive host filesystem space requirements.

3.2.2 Supporting configurable implementation details

In addition to providing the hardware functionality required to execute operating sys

and application software, SimOS supports significant flexibility in the modeling

hardware implementation details. Illustrated in Figure 3.3, SimOS takes a mod

approach to machine simulation, encouraging the development and inclusion of mu

CPU, memory system, and I/O device implementations. While each simulated hard

component must provide the functionality expected by the operating system

Figure 3.2.  SimOS’s copy-on-write disk simulation mode

Shared

SimOS #1
Block # Data

1

2

3

. . .

n

aaa

ccc

xxx

bbb

Block # Data

2 def

Modified

. . .

Disk Blocks

Disk Simulator
SimOS #2

Block # Data

3 ghi

Modified

. . .

Disk Blocks

Disk Simulator

DiskWrite(2, “def”);
val1 = DiskRead(2);

DiskWrite(3, “ghi”);
val1 = DiskRead(2);

val2 = DiskRead(3); val2 = DiskRead(3)

Disk Image

. . .

. . .

. . .

 SimOS Instance #1  SimOS Instance #2
35



nt

, an

hen

new

onent

OS

these

, the

stem

g with

nes the

m has

ple

tailed

ation

evice

lators.
application software, it can provide this functionality while modeling radically differe

implementation details. To simulate a very specific architectural implementation

investigator can either configure existing hardware component models or, w

implementation detail changes are more significant, create and include completely

models. The next chapter describes several specific examples of hardware comp

models exhibiting a range of implementation details.

To support the development and inclusion of modular hardware simulators, Sim

provides well-defined interfaces between each major hardware component, and

interfaces are similar to those found in existing computer systems. For example

interface between a CPU and memory system model is similar to that of modern sy

buses. The CPU model submits load and store requests to the memory system, alon

the physical address that should be accessed. The memory system model determi

latency of this request, eventually returning the requested data. The memory syste

tremendous flexibility in determining this memory request latency. For example, a sim

memory system model could use a constant latency for each request while a more de

model could determine the latency by simulating multiple levels of caches, bus arbitr

protocols, and other implementation details.

As described above, memory system interface with I/O device models through the d

registry, where accesses to device registers are forwarded to specific I/O device simu

Figure 3.3.  Modular hardware simulation
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As a result, IRIX device drivers determine the exact interface for developing new

device models. Each I/O device model must provide the expected functional respon

the device driver’s device register accesses, but it can provide this functionality

varying implementation details. Additionally, we have written new device drivers for IR

that provide significant I/O device modeling flexibility. For example, we have writte

fairly generic disk device driver for IRIX that communicates through the use of S

commands and disk status queries. Each disk model implementation must provid

appropriate response to each command and query, but has significant flexibili

determining the latency and behavior of the disk in providing these responses. We

also written fairly generic device drivers for communication with ethernet and con

hardware, allowing SimOS to flexibly model implementation details for these I/O dev

as well. In addition to providing increased flexibility, creating SimOS-customized de

drivers eased the I/O device modeling effort by allowing us to avoid supporting man

the very esoteric hardware details built into shipping device drivers and to concentra

modeling more basic device functionality.

The ability to develop and incorporate multiple implementations of each comp

hardware component provides significant machine modeling flexibility and allows

investigator to create an entire simulated machine simply by selecting from a lis

existing component models. If the existing models do not fulfill the particular needs o

investigation, the investigator can develop additional components and easily incorp

them into the SimOS infrastructure. SimOS’s modular hardware simulation appr

provides other important benefits as well. As described in the next chapter, the abil

model the same hardware functionality with different amounts of implementation det

essential to high-speed simulation.

3.3 Summary

The most important goal of complete machine simulation is to support the investigatio

a large class of workloads as they execute on highly configurable computer hardwa

achieve this goal, complete machine simulation must provide all of the hardw

functionality that is visible to workloads and support highly configurable hardw
37
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implementation details. The SimOS implementation of complete machine simula

demonstrates how a modular hardware simulation approach satisfies these require

SimOS provides well-defined interfaces for the development and inclusion of mul

hardware component models. Each model provides the functionality required to ex

operating system and application code, but can provide this functionality while mode

the hardware implementation details of interest to a particular investigation.
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Chapter 4

Dynamically Adjustable
Simulation Speed and
Detail

Another important characteristic of complete machine simulation is its ability to prov

appropriately detailed information regarding a computer system’s hardware and sof

behavior. However, the benefits of this information are significantly reduced if it take

excessively long time to obtain. This chapter describes how complete machine simu

can efficiently provide simulation results. The first part of this chapter describes

challenge of quickly obtaining simulation data and how the ability to dynamically ad

the level of simulation speed and detail addresses this challenge. The second part

chapter describes how complete machine simulation can implement dynami

adjustable simulation speed and detail. The SimOS implementation of complete ma

simulation provides three general simulator execution modes exhibiting specific sp

detail trade-offs, and allows a user to switch between them during the course

workload’s execution. The final part of this chapter describes SimOS’s use of high-s

machine emulation technology and more traditional simulation techniques to imple

each simulator execution mode.
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4.1 The performance challenge

Every type of computer system investigation benefits from obtaining behavioral da

quickly as possible. For example, hardware design requires examining several pot

configurations and determining which implementation features provide the most be

The faster that a simulator can provide the required performance data, the larger the

space that an investigator can evaluate within a given time frame. As a result, f

simulation tools can help lead to better hardware designs. Similarly, fast turnaround

is an essential part of application performance tuning. When attempting to improve

performance of an application, a programmer typically makes one or more algorit

changes and then obtains data regarding the performance impact of these change

process is repeated as many times as possible within the available time period. The

times that this feedback cycle can be iterated, the better that the end applic

performance will be.

The use of complete machine simulation would appear to be at odds with the go

obtaining data as quickly as possible. Detailed simulation of a computer is inherently

as it attempts to accurately model the behavior of hardware components complet

software. As an example, an RTL model of a CPU provides cycle-accurate perform

detail, but is only capable of simulating the execution of a few hundred cycles e

second. As a result, modeling the execution of a single instruction on a particular t

machine can require many millions of instructions on the host machine. The resu

simulation slowdowncauses significant delays in obtaining the desired behavio

information for an entire workload. Even significantly less detailed hardware mo

impose restrictive slowdowns. For example, the Mipsy CPU simulator described b

models few processor details, yet still executes a machine’s instructions more tha

times slower than a hardware implementation would.

This information delay is worsened by the fact that complete machine simulatio

designed to investigate workloads that are typically long-running even on a non-simu

computer. For example, Chapter 6 describes an investigation of a Sybase database

running a transaction processing workload. This workload requires execution of ove
40
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billion instructions just to boot the operating system and initialize the database serve

client programs. Investigation of even the most basic workloads often requires a

boot of the operating system, a process that takes IRIX over a half billion instructions

combination of longer running workloads and slower “hardware” can result

prohibitively long simulation times. For example, just the preparation of the datab

workload mentioned above would require several days of execution time on the M

CPU simulator, and more detailed simulation would take even longer. Such a

commitment is a significant hindrance to any computer system investigation.

performance challenge facing complete machine simulation is thus to support both th

and detailed investigation of long-running workloads.

4.2 The solution: Dynamically adjustable simulation speed and detail

Most performance investigations do not require extremely accurate and det

information across the entire execution of a workload, and this provides an opportun

obtaining simulation results quickly. Preparing a complex workload for investiga

usually requires simulating large amounts of “uninteresting” sections of execution su

booting the operating system, reading applications and their data in from a disk

initializing the workload for investigation. In these cases, only the proper functionalit

the simulated platform is required, and detailed timing information within these sectio

typically ignored. Once the workload has reached a more interesting section of exec

detailed behavioral information becomes desirable. This trait oflocalized interest in detail

is characteristic of most investigations and provides an excellent opportunity

simulation speed gains.

In all simulation tools, there is an inherent compromise between the amount of detai

is modeled and the speed at which the simulator executes. Thisspeed-detail trade-off,

illustrated in Figure 4.1, is particularly relevant for complete machine simulation. At

end of the spectrum is an extremely detailed but extremely slow hardware simul

model. For example, RTL and other gate-level simulators model a hardw

implementation with a great deal of accuracy, but provide hardware functionality at a

slow speed. At the other end of the spectrum is a simulation model that provides on
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hardware detail required to support workload execution. This class of simulator

quickly support the required functionality, but is not faithful to any specific hardw

implementation. Between these extremes lie a number of intermediate simulator mo

each providing varying levels of speed and detail.

Localized interest in detail and the ability to provide hardware functionality at differ

levels of simulation speed and detail are the foundation of providing effective behav

information as quickly as possible. Our approach is to allow an investigator to chang

speed and detail characteristics of the complete machine simulator during the cou

workload execution. For example, the simulated machine could be run in a high-s

low-detail mode to quickly execute through the operating system boot and o

uninteresting portions of a workload. When the workload reaches a more intere

section, the investigator can switch the simulator into a slower but more detailed mod

collecting data. This dynamic adjustment capability allows complete machine simula

users to select the exact level of detail required at each stage of an investig

maximizing the speed at which useful data is obtained. The end result of

customization is effective computer system behavioral information that is obtaine

quickly as possible.

Simulation Detail
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S
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Figure 4.1.  The simulation speed-detail trade-off
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4.3 Implementation

Completely adjustable control over complete machine simulation’s speed and d

characteristics is an attractive concept, but difficult to implement. To provide sim

utility, complete machine simulation uses its modular hardware interfaces to c

multiple machine implementations, each occupying specific points on the speed-

curve. This section describes the specific points on the speed-detail curve that we

found to be most valuable and how complete machine simulation allows an investiga

switch between them during the course of workload execution.

4.3.1 Simulator execution modes

As described in the previous chapter, a complete machine simulator combines s

individual hardware component models to form a simulated computer. Furthermore,

hardware component can have multiple implementations each making different s

detail trade-offs. These components determine the simulated machine’s final spee

detail characteristics. A number of hardware component model combinations are pos

but only certain combinations are practical. For example, connecting an extre

detailed CPU model to a very simple and low-detail memory system model would re

the overall accuracy of behavioral information. Furthermore, any gains in speed t

achieved through the use of the faster memory system model will likely be overshad

by a significantly slower CPU model. Consequently, certain groupings of hardw

models exhibiting similar speed and detail characteristics are more effective than o

We call these groupingssimulator execution modesand have found three general modes

be particularly useful:positioning mode, rough characterization mode, and accurate

mode.

Positioning mode

There are several times during the course of a workload’s execution when only

functionality of a system is required. For example, preparing a complex workload

investigation usually requires simulating large amounts of uninteresting execution su

booting the operating system, reading data from a disk, and initializing the workl
43



n have

in a

stem.

ore

nto the

ty of

e the

il or

plex

for

d’s

d

ine

load

tall.
Furthermore, issues such as memory fragmentation and file system buffer caches ca

a large effect on the workload’s execution. Many of these effects are not present

freshly booted operating systems; they only appear after prolonged use of the sy

Realistic studies require executing past these “cold start” effects and into a m

representative steady state for detailed investigation. We group these requirements i

category of workload positioning, and provide apositioning modeto address them. In

positioning mode, complete machine simulation provides the very basic functionali

the target platform as quickly as possible. The only requirement is to correctly execut

workload, and an investigator has little interest in the simulated system’s deta

faithfulness to any existing implementation,

Rough characterization mode

The speed of positioning mode is essential for the setup and initialization of com

workloads, but the lack of hardware implementation details makes it unsuitable

obtaining any useful behavioral information. To gain more insight into a workloa

behavior, we provide arough characterization modethat maintains high simulation spee

yet provides timing estimates that approximate the behavior of the machine. This mode is

particularly useful for performing a high-level characterization of workloads to determ

first-order bottlenecks. For example, it provides enough detail to determine if a work

is paging, I/O bound on a disk, or suffering large amounts of memory system s

Figure 4.2.  Simulator execution modes
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Rough Characterization Mode
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Additionally, rough characterization mode is fast enough that it can provide

information over relatively long periods of workload execution time.

Accurate mode

One of the most important features of complete machine simulation is the ability to m

a computer configuration with significant accuracy and provide very detailed informa

regarding its behavior. This information is essential to almost every type of comp

system investigation, and complete machine simulation provides anaccurate modeto

obtain it. However, the detailed behavioral information provided by the accurate m

results in speeds that are far too slow to execute most workloads in their entirety.

4.3.2 Dynamic simulator execution mode selection

The existence of different simulation execution modes provides little utility if they can

be effectively utilized. As mentioned in Section 4.2, they key to quickly obtain

simulation data is the ability todynamicallyadjust the speed-detail characteristics of t

simulator. To provide this ability, complete machine simulation must include some m

of switching between simulation modes during workload execution. The key to provi

this capability is transferable hardware state.

Different models of a hardware component can provide a variety of statistics

implementation details, but all must provide the same basic hardware functionality

provide this functionality, there is a common hardware state that each model

maintain. For example, all CPU models must keep track of the current value of

registers, regardless of the clock speed or pipeline that they simulate. Similarly, mod

main memory and disks must always maintain their correct contents so that reads re

the proper data. In addition to maintaining this core hardware state, we require

hardware model to support the exchange of this core state with other models of the

hardware component. As a result, an investigator can switch between simulator exe

modes at any point during a workload’s execution. For example, in a study involvin

database transaction processing workload, an investigator could use the positioning

to quickly boot up the operating system and warm up the contents of the file cache.

completion of this workload positioning, simulated time could be temporarily suspen
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while the core state of the CPU, memory, and I/O device models is transferred int

rough characterization mode hardware models. Once this transfer is complete, exe

of the transaction processing workload resumes, only with more detailed modelin

system behavior. If even more detailed information regarding the workload’s executi

desired at a later point, complete machine simulation can again transfer hardware

this time from the rough characterization mode hardware models into those of the acc

mode.

Together these dynamically selectable simulator execution modes provide work

execution control similar to that found on a VCR. Positioning mode is similar to fa

forward, allowing a user to quickly pass over sections of a workload’s execution that

find less interesting. Rough characterization mode is similar to the normal play mode

VCR, presenting a decent view of the workload’s execution without an extraordinary

commitment. Finally, the most accurate modes are best compared to slow-m

playback. They provide a very detailed view of computer system behavior, but at o

prohibitively slow speeds.

4.4 SimOS’s simulator execution modes

SimOS provides clear interfaces between each of the major hardware components

simulated computer system, allowing it to incorporate different models of each hard

component. While each of the models provide the basic hardware functionality req

by IRIX and its applications, they differ significantly in the type and amount of detail t

they provide. As a result, they also differ in the type of statistics that they can collect

the speed at which they support a workload’s execution. This section describes

SimOS models these hardware components to provide each simulator execution mo

4.4.1 Positioning mode

The goal of positioning mode is to provide the hardware functionality required to

workloads and to provide this functionality as fast as possible. As such, SimO

positioning mode models very few timing and implementation details and can provid

investigator with only minimal workload behavioral information. As described in
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previous chapter, supporting operating system and application program execution re

a complete machine simulator to implement the required hardware interfaces. In prov

the expected functionality, a few components play a determining role in the overall s

of the simulated machine. The CPU, cache, and memory system account for the b

simulation costs, and SimOS includes the Embra hardware simulator [Witchel96

minimize this cost. Illustrated in Figure 4.3, Embra uses the dynamic binary transla

approach pioneered by the Shade system [Cmelik94]. Dynamic binary translators co

blocks of instructions into code sequences that implement the effects of the ori

instructions on the simulated machine state. The translated code is then executed d

on the host machine. Using translation caching and other optimizations, Embra

execute uniprocessor workloads with a slowdown of less than a factor of ten, orde

magnitude faster than conventional simulation techniques.

Embra extends the techniques of Shade to support the functionality required in com

machine simulation. These extensions include modeling the effects of the mem

management unit (MMU), privileged instructions, and the trap architecture of

lw r3,10(r1)

add r4,r3,r2

load  tmp1,simRegs[1]

load  tmp1,simRegs[2]
load  tmp2,simRegs[3]
add   tmp3,tmp1,tmp2
store tmp3,simRegs[4]

load  tmp2,(tmp1+10)

store tmp2,simRegs[3]

MMU Instr-Address Translation

Dynamically-generated
Translation

Original

Instructions
Workload

MMU Data-Address Translation

<Continue for rest of basic block>

Update cycle count

Check for interrupts

Figure 4.3.  Embra’s dynamic binary translation
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machine. The approach used in Embra is to handle all of these extensions with add

code incorporated into the translations. For example, Embra augments the minimal b

translation with code that implements the associative lookup done by the MMU on e

memory reference. Embra also extends the techniques of Shade to efficiently sim

multiprocessors. Embra connects emitted code translations from each simulated CP

very coarse granularity, emulating several hundred instructions for one simu

processor before switching to the next simulated processor’s execution. The simu

processors’ notions of time are poorly synchronized, but this is acceptable in positio

mode where speed is far more important than accuracy and detail.

In addition to its use of binary translation, Embra improves the speed of provid

hardware functionality by avoiding the typical SimOS approach of clean hardware m

interfaces. As depicted in Figure 4.4, Embra subsumes the functionality of mul

hardware components. For example, rather than invoking a separate memory s

model in order to satisfy a memory reference, Embra incorporates the functionality

simple memory system directly into its binary translations. This allows Embra to avoid

overheads caused by the use of flexible software module interfaces. Because I/O

activity is much less frequent than CPU and memory system activity, Embra continu

use the modular I/O device interface without significant performance impact.

CPU Simulation

Cache Simulation

Memory System
Simulation

I/O Device
Simulation

Embra

I/O Device
Simulation

Integrated CPU, Cache, and
Memory System Simulation

Figure 4.4.  Embra’s subsumption of multiple hardware component simulators
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As an additional optimization, SimOS’s positioning mode uses Embra configure

model only the hardware components of the system that are necessary to correctly e

the workload. No attempt is made to model hardware features that are invisible t

software. For example, a processor’s pipeline and cache hierarchy play a significant r

the performance of a workload, but do not provide any direct functional utility. To av

the overhead of simulating these hardware features, Embra models no processor p

behavior and references to memory succeed instantaneously. Similarly, positioning

avoids any detailed I/O device simulation. For example, the disk model is configure

satisfy all requests immediately. In addition to avoiding the performance impac

simulating the disk, this optimization helps speed through uninteresting sections

workload’s execution. Normally, accesses to a disk result in large delays, and a user

process is descheduled during the latency. During this delay, the operating system

schedules another user-level process or executes in an “idle” loop, waiting for the

access to complete. By omitting disk access latency, SimOS’s positioning mode avoid

portion of a workload’s execution time that is spent in the idle loop. As a result, it redu

the time it takes to reach a more interesting portion of a workload.

The initial implementation of SimOS contained an additional high-speed position

mode based on direct execution of the operating system and the applications on th

platform. The direct-execution approach, described in [Rosenblum95], supported

high speed machine emulation, but was removed in 1996 in favor of the binary transl

approach. Binary translation was chosen because it is more amenable to func

extension and cross-platform support than the direct execution approach.

4.4.2 Rough characterization mode

Rough characterization mode is designed to be a compromise between the accura

positioning modes. As such, it must provide very high-level behavioral information,

provide this information as quickly as possible. SimOS’s rough characterization m

extends the functionality of positioning mode by tracking instruction execution ti

approximating cache activity, and modeling basic I/O device behavior.
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SimOS implements a rough characterization mode through extensions to Embr

shown in Figure 4.5, dynamic binary translation is flexible enough to customize em

translations for more detailed modeling of the target machine. For example, Em

augments its translations to check whether memory accesses hit in a fixed-latency, u

instruction and data cache similar to the second-level cache of many machines. Thi

provides an investigator with a high-level understanding of the memory system beh

of a workload. In pursuit of speed, these cache-modeling augmentations are h

optimized to make the common case of cache hits as fast as possible. Additionally, E

augments its translations to track the execution of instructions, providing basic work

profile information.

To approximate the I/O behavior of a workload, rough characterization mode interf

with simple, fixed-latency device models. For example, the rough characterization m

disk model charges a fixed latency for each request that a workload makes. This allo

to estimate the impact of I/O activity in a workload while avoiding the simulati

overhead required to model the seek, rotation, and transfer time of a more detailed m

Figure 4.5.  Extending Embra’s translations with additional detail

lw r3,10(r1)

add r4,r3,r2

load  tmp1,simRegs[1]

load  tmp1,simRegs[2]
load  tmp2,simRegs[3]
add   tmp3,tmp1,tmp2
store tmp3,simRegs[4]

load  tmp2,(tmp1+10)

store tmp2,simRegs[3]

MMU Instr Address
Translation

MMU Data Address
Translation

Dynamically-generated
Translation

Original

Instructions
Workload

Translation
Augmentations

ICache Simulation

DCache Simulation

Instr. Execution
Tracking
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4.4.3 Accurate mode

Accurate mode is what people typically think of when discussing simulation.

mentioned above, the goal of this mode is to model a specific machine’s hardware

significant accuracy and detail and provide behavioral information regarding its execu

The development of SimOS’s accurate mode hardware component models is la

driven by the information needs of particular investigations, leading to the existenc

several different implementations. This section describes examples of each har

component implementation.

CPU Models

SimOS contains accurate mode implementations of two very different processor mo

The first, called Mipsy, models a simple, single-issue pipeline similar to that found in

MIPS R4600. As depicted in Figure 4.6, Mipsy simulates basic CPU functionality

timing details using a straightforward fetch-decode-execute loop. Each cycle, M

checks if any devices have requested processor interrupts, and then attempts to

ReadMem(vAddr, type);Main Loop:
While (TRUE) {

cycle++;
HandleInterrupts();
inst = ReadMem(PC, INST);
...
switch(opcode(inst)) {
case ADD:

reg3 = reg1 + reg2;
case BEQ:

if (reg1 = reg2)
newPC = targetAddr;

case LD:
va = ComputeAddr(inst);
reg3 = ReadMem(va, DATA);
...

case ...:
...

}
if (newPC) PC = newPC;
else PC = PC + 4;

}

pAddr = Translate (vAddr);

if (type == INST)
d=ReadICache(pAddr,...);

else
d=ReadDCache(pAddr, ...);

return d;

Translate(vAddr);

if (inTLB(vAddr, &pAddr)) {
if (valid)

return pAddr;
else

EXCEPTION(INVALID);
} else {

EXCEPTION(TLB_MISS);
}

Figure 4.6.  Structure of the Mipsy CPU simulator.
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single instruction. Mipsy parses each instruction into its opcode and arguments and

applies the instructions intended effects to simulated processor registers. Instructio

data virtual addresses are translated into physical addresses using a simulated TL

the relevant exceptions are raised should a translation fail. To avoid the speed c

modeling the complexities of modern processor pipelines, Mipsy charges a fixed la

for each instruction. As such, it is not an effective model for detailed proces

investigations. However, it can provide less detailed, but still valuable information suc

TLB activity, instruction counts, and, as described below, detailed uniprocessor

multiprocessor memory system behavior.

SimOS includes a second processor implementation called MXS. The version of

used in SimOS is based a user-level processor model described in [Bennett96],

extended to support privileged instructions, MMU execution, and exceptions. MXS

the same high-level loop-based execution as Mipsy, but models a much more compl

processor and with significantly more detail. MXS models a superscalar, dynamic

scheduled processor similar to the MIPS R10000 [MIPS95], complete with reg

renaming, branch prediction, speculative execution, and precise interrupts. MXS is h

configurable, allowing a user to specify instruction window size, execution u

configurations, branch prediction tables and schemes, and numerous other pro

parameters. Furthermore, MXS collects detailed processor behavior statistics su

branch prediction success rate, register renaming effectiveness, and executio

utilization. This information is particularly relevant to CPU, memory system, a

compiler design where very low-level processor pipeline behavior has signifi

performance ramifications. This information does come at a cost though. As describ

Section 4.4.4, the extra complexity and detail modeled by MXS results in simula

speed that is more than an order of magnitude slower than Mipsy.

To support multiprocessor simulation, both Mipsy and MXS encapsulate all hardw

state into a single data structure and then replicate this data structure for each sim

CPU. As a result, each access to per-CPU hardware state requires an additional le

indirection. As illustrated in Figure 4.7, a modified main execution loop iterates thro

the list of hardware state pointers each cycle, allowing the simulated processors’ no
52
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of time to remain synchronized. This is a particularly important requirement for accu

modeling of cache and memory system implementations where the interleavin

memory references can have a significant impact on computer system behavior.

Cache models

Using the interfaces described in the previous chapter, Mipsy and MXS attach

completely configurable cache model. One commonly used cache simulator mod

blocking cache with separate first level instruction and data caches and a unified s

level unified cache. Each level in the cache model has configurable capacity, miss pe

associativity, and line size. Every instruction fetch and data access passes throug

cache, and detailed statistics are collected regarding the caches’ perform

Furthermore, each cache reference can cause the processor to stall for a config

number of cycles to model the access latencies in modern cache hierarchies. This t

implementation is referred to as a blocking cache because execution is blocked un

cache miss is resolved.

MXS uses the same interface to attach to a non-blocking cache model. Non-blo

caches allow execution to continue even though a cache miss has occurred, and

essential component of speculative execution. Like the blocking cache model, the

blocking cache model is completely configurable and collects detailed behavioral stat

including the miss rate, the cause of cache misses, and line utilization. [Wilso

describes an additional non-blocking cache implementation which provides the a

Main Loop:
while (TRUE) {

if (P >= CPUState[NumCPUs]) {
P = CPUState[0];
cycle++

} else {
P = P++;

}
// Execute cycle for CPU “P”
...
P->PC = P->PC + 4;

}

CPUState[NumCPUs]
Register Reg[NumRegs];
TLBEntry TLB[NumTLBEntries];
Register PC;
// MXS only
BranchInfo BPTable[NumBPEntries];
...
// Per-CPU processor statistics
Stat instructionCount;
Stat exceptionCount;

Figure 4.7.  Modifications required for multiprocessor support.
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utility, but provides additional accuracy and investigation capabilities through

modeling of cache port contention.

Memory system models

When a cache miss occurs, the memory reference passes through another co

interface to reach the memory system simulation models. Once a reference is o

uniprocessor memory bus or multiprocessor interconnect, several different action

widely-varying latencies can occur, and SimOS includes memory system simulato

model this activity. SimOS has been used in several multiprocessor investigations, le

to the development of several interchangeable memory system models. One me

system implementation models a split-transaction, out-of-order completion memory

In its multiprocessor configuration, cache coherence is provided by a cache sno

mechanism with an invalidation-based protocol. This model includes advanced me

system features such as cache-to-cache transfers and reference merging, and m

detailed statistics regarding the behavior of these and other features.

Many recent shared-memory multiprocessor implementations locate a portion of the

system memory with each processing node. A side-effect of this configuration is tha

latency to access memory on a remote processing node can be significantly highe

accessing local memory. Thisnon-uniform memory access(or NUMA) can have a

significant effect on the performance of multiprocessor workloads. To support

investigation of this class of machine as well as the workloads that they support, Si

includes a memory system implementation that models a directory-based, cache-co

NUMA memory system. Furthermore, this model is highly configurable and can pro

detailed information regarding cache coherence protocol activity, interconnection net

performance, queuing delays, and other important memory system behavior.

A final example of a SimOS accurate mode memory system implementation is a c

accurate model of the FLASH multiprocessor memory system called FLASH

[Kuskin94]. FLASH is a MIPS R10000-based shared-memory multiprocessor design

scale to thousands of processors. The combination of the MXS CPU model

FLASHLite allows SimOS to model the FLASH multiprocessor with significant accura
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provides very detailed performance information, and, as described in Chapter 6

enabled several important investigations.

I/O device models

The timing and implementation characteristics of some I/O devices can have a signi

impact on the execution behavior of a workload. For example, database transa

processing workloads have significant disk activity, and the particular timing traits o

disk affect workload behavior. When a process requests a file access, the operating s

forwards this request to the disk and then deschedules the process. Once the di

satisfied the request, it interrupts the CPU to indicates its completion, and the ope

system can subsequently reschedule the process to continue its execution. Th

between the disk request and the processor interrupt varies according to the par

disk’s implementation. To provide realistic disk request latencies, SimOS includ

validated simulator of an HP 97560 disk drive [Kotz94]. This model includes is hig

configurable and models latency-determining characteristics such as disk head po

and rotational delay.

Similarly, a web server workload has significant network activity, and SimOS include

accurate mode ethernet chip and network model to support and measure this activ

mentioned in the previous chapter, SimOS allows multiple simulated machines to co

and communicate with each other through normal networking protocols. When prov

this communication capability, the ethernet chip and network model imposes configu

peak bandwidth restrictions, DMA delays, and network transfer latencies. As a result

model can provide realistic networking delays, improving the accuracy of workl

behavioral information.

4.4.4 Performance

The previous sections describe SimOS’s implementation of accurate, positioning

rough characterization simulator execution modes. To better demonstrate the tra

between speed and detail, this section examines the performance of each simulation

as they model uniprocessor and multiprocessor computer systems.
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Table 4.1 compares the time required to run several workloads on a hardware-

uniprocessor machine to the time required to run the same workloads on each of Sim

simulator execution modes. We run SimOS on a Silicon Graphics Indy worksta

equipped with a 133 MHz R4600 CPU and 96 megabytes of memory. Each simu

execution mode is configured to match the Indy configuration as closely as possible

still exploiting the benefits of the mode. For example, the positioning mode has

latency memory and disk access latencies while the Mipsy-based accurate mode h

levels of caches and uses the detailed disk model. The native execution numbers a

wall-clock time it takes to execute each workload directly on the Indy, while

simulation numbers are the time required to execute the same workloads on top

SimOS-modeled machine. We divide the simulation wall-clock time by the na

execution time to compute the slowdown.

The workloads used in the performance comparison are:

• SPEC benchmarks - The 056.ear and 026.compress programs are taken from the

benchmark suite [SPEC97]. While these applications do not effectively demons

Table 4.1. SimOS performance when modeling a uniprocessor

Native
Execution

Positioning
Mode

Rough Char.
Mode

Accurate Mode
(Mipsy)

Accurate Mode
(MXS)

Workload Wall-clock
Wall-clock
(Slowdown)

Wall-clock
(Slowdown)

Wall-clock
(Slowdown)

Wall-clock
(Slowdown)

056.ear 7 sec.
2:57 min.

(25x)
5:21 min.

(46x)
43:28 min.

(326x)
294:14 min.

(2,522x)

026.compress 7 sec.
2:25 min.

(21x)
5:45 min.

(49x)
24:43 min.

(212x)
211:26 min.

(1,812x)

Java 13 sec.
4:20 min.

(20x)
9:44 min.

(45x)
47:50 min.

(221x)
697:40 min

(3,220x)

Compilation 19 sec.
8:16 min.

(26x)
11:54 min.

(38x)
110:53 min.

(350x)
1342:05 min.

(4,237x)
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the capabilities of complete machine simulation, they have been widely studied

provide a reference point for comparing SimOS’s performance to other simulator

• Java - This workload is taken from a java benchmark measured in [Romer96]

consists of the compilation and execution of DES encryption code. The work

converts the DES Java source code into bytecode format and then executes it w

aid of a just-in-time compiler.

• Compilation - This workload is taken from the compile stage of the Modified Andr

Benchmark [Ousterhout90] and demonstrates SimOS’s ability to investigate m

operating system-intensive workloads. The workload consists of agcc compilation of

17 files followed by the creation of a library archive containing the object files.

The trade-off between speed and detail is obvious. Embra’s high-speed binary trans

techniques allows positioning mode to execute a workload only 20 to 30 times slower

the native hardware1. The rough characterization mode is also quite fast, generating b

cache behavior information at only 40 to 50 times slowdown. The Mipsy-based acc

simulator execution mode causes several hundred times slowdown, but is able to c

quite detailed processor, memory system, and I/O device behavior. Note that the w

differing slowdowns between the different workloads are due to the different hardw

simulation requirements of each workload. For example,056.ear is a floating point-

intensive application, and it takes Mipsy much longer to simulate floating p

instructions than to simulate integer instructions. Similarly, applications with higher ca

miss rates require more simulation time to model this cache behavior. Finally, the M

based accurate simulator execution mode results in several thousand times slow

Note that in this example, MXS models a more complex processor than the Indy’s M

R4600.

The large slowdown resulting from the use of the most detailed MXS-based simula

can be quite prohibitive, even when applied to only the most interesting portions

workload. To help provide detailed simulation across extended workload execu

1. This is substantially slower than the performance reported in [Witchel96] and is due to
several source code modifications designed to make Embra more maintainable.
57



imOS

ls of

stical

of the

pling

the

the

f the

hines.

lenge

s of

tly on

is a

load
SimOS extends the notion of dynamically selectable simulator execution modes. S

supports a sampling capability that automatically switches between different leve

simulation detail at user-specified intervals. Sampling enables the use of stati

analysis to estimate the behavior of the most detailed models during the execution

workload. For example, two recent architectural investigations used SimOS’s sam

support to simulate ten out of every hundred workload cycles in MXS, running

remainder in Mipsy [Nayfeh96] [Wilson96]. The resulting information estimates

behavior of the workload on a dynamically-scheduled processor, but at a fraction o

cost of total MXS-based simulation.

Simulating multiprocessors

Table 4.2 presents performance numbers for the simulation of multiprocessor mac

For these simulations, we run the workloads and SimOS on a Silicon Graphics Chal

multiprocessor equipped with four 150 MHz R4400 CPU’s and 256 megabyte

memory. The slowdown numbers again compare the execution of the workload direc

the hardware to the same execution on the SimOS-modeled machine.

The workloads used in this performance comparison are:

• Raytrace - This workload is taken from the SPLASH suite of applications and

parallel implementation of a widely used graphics rendering algorithm. The work

is compiled as suggested in the distribution and executed as:

raytrace -m40 -p4 inputs/teapot.env

Table 4.2. SimOS performance when modeling a multiprocessor

Native
Execution

Positioning
Mode

Rough Char.
Mode

Accurate Mode
(Mipsy)

Accurate Mode
(MXS)

Workload Wall-clock
Wall-clock
(Slowdown)

Wall-clock
(Slowdown)

Wall-clock
(Slowdown)

Wall-clock
(Slowdown)

Raytrace 5 sec.
5:50 min.

(70x)
20:53 min.

(246x)
153:36 min.

(1,841x)
42:22:05
(30,505x)

Database 7 sec.
11:20 min.

(97x)
42:03 min.

(360X)
295:04 min.

(2,528x)
68:15:00
(35,100x)
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• Database - This workload consists of a parallelized Informix database se

supporting a transaction processing workload similar to TPC-B [Gray93].

workload contains four processes that make up the parallel database server p

client programs that repeatedly submit transactions to the database.

The trade-off between speed and detail becomes even more pronounced

multiprocessor simulation. In each simulation mode, SimOS models all four proces

within a single host platform process, causing simulation slowdown to scale linearly

the number of CPU’s being modeled. The accurate mode slowdowns when supportin

database workload are larger than when supporting the raytrace workload due t

overhead of simulating many more cache misses and modeling significantly more

activity. In either case, the inability to simulate large number of processors in a tim

manner is a significant problem, and limits SimOS’s applicability to relatively sm

machine sizes. This important limitation is revisited in Chapter 6.

4.5 Summary

The challenge that has most limited the use of complete machine simulation is the ti

takes to generate detailed statistics. Complete machine simulation addresses this ch

by including multiple implementations of each hardware component, each makin

trade-off between the detail that it provides and speed at which it provides this detail

SimOS implementation of complete machine simulation demonstrates that it is possi

implement three important simulator execution modes that provide a wide variet

simulation speed and detail characteristics. Furthermore, complete machine simu

provides investigators with explicit control over the use of these simulator execu

modes, allowing them to select the simulation characteristics most appropriate fo

changing needs of a workload investigation.
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Chapter 5

Efficient Management of
Low-Level Simulation Data

The previous chapter describes how dynamically adjustable speed and

characteristics address complete machine simulation’s performance challenge. Ho

the ultimate goal of complete machine simulation is to help an investigator unders

some aspect of a computer system’s behavior. This chapter describes how eff

simulation data management can provide the information necessary to achieve

understanding. The first part of this chapter describes the data management chal

facing complete machine simulation and how investigation-specific data manage

addresses these challenges. The second part of this chapter describes how

implements investigation-specific data management. SimOS separates the

management process into event generation and event processing stages and p

efficient mechanisms for flexibly controlling all event classification and reporting.

5.1 Data management challenges

Complete machine simulation provides an opportunity to obtain very detailed comp

system behavioral information. Complete machine simulation’s hardware models ca

heavily instrumented to observe their own behavior, and can thus report all of the
61
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level hardware activity that occurs during a workload’s execution. For example, a det

CPU model such as MXS can count mispredicted branches, pipeline stalls, or TLB m

Similarly, cache models can calculate miss rates and the amount of stall time that

cache misses cause during a workload’s execution. In fact, the combined activi

complete machine simulation’s hardware models completely defines the compu

execution and is thus the source of all behavioral information. However, when study

complex system, transforming this hardware data into useful behavioral informa

presents two problems. First, a complete machine simulator’s hardware models ge

very low-level data that is not particularly useful in its raw form. Second, this low-le

data is generated at an extremely high rate, and attempts to organize it into

meaningful information can have a significant impact on simulation speed.

Low-level data

Hardware models produce data that is often at too low of a level for many investigat

This problem arises because the hardware of a computer system works at a differen

of abstraction than most software. For example, most hardware caches deal with ph

addresses, and a cache model can easily count the number of misses that occur to d

ranges of the physical address space. However, applications work with code and

defined by virtual addresses and are unaware of any physical address translation.

useful to an application programmer, the physical address-based cache miss data m

transformed into virtual address-based data and mapped to the specific applicatio

structures responsible for these cache misses. Similarly, the hardware of a com

system has no notion of operating system abstractions such as processes an

scheduling. Even if the cache model could transform miss data into virtual address-

information, it must be further classified by process ID number to distinguish the beha

of different applications in a multiprogrammed workload.

Even in the evaluation of low-level architectural designs, unorganized data can c

problems. For example, many workloads spend a substantial portion of their exec

time in an “idle” mode waiting for I/O requests to be satisfied. This idle mode is typic

implemented as a very tight loop where the operating system repeatedly check

processes that are ready to run, and has excellent pipeline and cache behavior. How
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high-performance idle loop is not particularly valuable and its unrepresentative beh

can obscure the true value of a new hardware design. A workload’s cache miss ra

average cycles per instruction (CPI) will be a more useful metric if the hardware act

occurring during the operating system’s idle loop is filtered out. Just as with applica

data structures and operating system processes, the hardware models have no con

an idle mode, making this process challenging.

High-speed data generation

The challenge of organizing low-level hardware data into more meaningful comp

system behavioral information is compounded by the importance of simulation sp

Accurate mode hardware simulators observe tremendous detail during the cour

workload execution, and can potentially produce volumes of data every second. Unle

organization and classification of this data is highly efficient, the performance of

simulation will suffer. As discussed in the previous chapter, speed is essential to

effectiveness of complete machine simulation, and any approach to data manag

must therefore minimize its performance impact.

Complete machine simulation’s data management challenge is thus to organize low

hardware data into more meaningful computer system behavioral information, an

perform this organization as efficiently as possible.

5.2 The solution: Investigation-specific data management

Complete machine simulation addresses these challenges by allowing users to cus

all data collection and reporting to meet the specific needs of their investigat

Specifically, complete machine simulation allows a user to incorporate knowledge o

workload under investigation and to specify exactly what information about

workload’s execution is desired.

To organize low-level hardware data into more meaningful computer system behav

information, complete machine simulation allows an investigator to provide higher-l

knowledge of a workload’s composition. As an example, a CPU model does not hav

concept of operating system processes, but an investigator knows that new proces
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created by certain system calls and are scheduled by specific operating system proc

An investigator can inform the complete machine simulator of these process-re

events, allowing the CPU model to attribute pipeline stalls according to the processe

cause them. Similarly, a cache model has no concept of an application’s data struc

but an investigator knows the virtual address range where important or intere

structures reside. An investigator can inform the complete machine simulator of impo

address ranges, allowing the cache model to count the data cache misses that o

these specific data structures. In either case, the addition of higher-level work

knowledge customizes the data management process to a particular workload to

more meaningful behavioral information.

To provide high-performance data management, complete machine simulation allow

investigator to specify exactly what behavioral information their investigation requi

For example, a hardware designer might specify that they are only interested in evalu

the behavior of a new cache configuration. The complete machine simulator can

much of the overhead of classifying and reporting other hardware data such as pro

pipeline or I/O device activity. Similarly, an investigator can specify that they are o

interested in the behavior of a single process in a multiprogrammed workload, allo

the complete machine simulator to avoid the overhead of detailed data classific

throughout the workload’s entire execution. Just as user-selectable speed and

characteristics allows complete machine simulation to minimize hardware simula

time, specification of an investigation’s information needs allows it to minimize d

management time.

5.3 SimOS’s implementation

The combination of two important implementation features allow the Sim

implementation of complete machine simulation to support the customization of

management to the specific needs of an investigation. First, SimOS separates th

management process into separate event generation and processing stages, allowin

to customize the classification and reporting of data without modifying the hardw

simulators themselves. Second, SimOS provides mechanisms for controlling the
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processing stage, enabling the incorporation of workload-specific knowledge and

implementation of efficient classification and reporting functionality. This sect

describes these implementation features and how they support investigation-specifi

management.

The data management process of any simulation tool used for computer system beh

investigation requires transforming simulator data into some form of useful informa

for reporting. This transformation might be as simple as converting memory refer

counts into a cache miss rate or as complex as assigning pipeline stalls to the appli

basic blocks that cause them. In either case, the transformation process can be red

hardware event generation and hardware event processing stages. In theevent generation

stage, the simulation tool generates events corresponding to the activity that occurs

a workload’s execution. These events might include the execution of instructions, M

exceptions, cache misses, I/O device interrupts, or any other activity that the simu

observes. In theevent processingstage, these events are filtered and classified into high

level information regarding the computer system’s behavior and reported to the user

The simulation data management process is not always implemented as two se

stages. Many simulation tools combine the event generation and processing stages

single step. For example, application transformation tools such as ATOM [Eustac

EEL [Larus95], and Etch [Romer97] provide investigation-specific behavioral informa

by combining simulation, event processing, and reporting into a single execu

program. In order to examine a new application or a different aspect of an applicat

execution behavior, the simulation tool is recompiled to incorporate the new investiga

specific data management chores. While this is may be an acceptable approach fo

tools, it does not work as well for complete machine simulation. The initial version

SimOS combined the generation of hardware events with investigation-specific e

processing. For example, information about the IRIX idle loop and important applica

procedures was compiled directly into SimOS’s hardware models, allowing them

collect and present their hardware statistics according to these higher-level concep

obtain different types of behavioral information or investigate new operating systems

applications, an investigator would sprinkle code throughout each of the hardware m
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implementations and recompile the simulator. However, modification of comp

machine simulation’s hardware models required significant knowledge, time, and e

and ended up dissuading many users from substantial customization of the

management process. Furthermore, investigation-specific data management cod

often added, but rarely deleted from the hardware models. As a result, significant

processing was always active, providing information that was never used.

To address these problems, subsequent versions of SimOS completely diss

investigation-specific event processing from the hardware models. As illustrate

Figure 5.1, SimOS’s hardware models are responsible solely for generating hard

events, and remain completely free of any investigation-specific information. As a re

they do not need to be modified or even recompiled to support an investigation of a

workload or satisfy different data processing requirements. The hardware events gen

by the hardware models provide input to SimOS’s event-processing stage where th

filtered, classified, and transformed into investigation-specific behavioral information

The second form of input is a investigation-specific Tcl script that specifies and con

the event-processing stage. We selected the Tcl scripting language as the event-pro

control language because it provides a simple, consistent syntax and is easy to int

with compiled languages [Ousterhout94]. This Tcl script utilizes several SimOS-prov

mechanisms to incorporate higher-level workload knowledge into the data manage

process and to specify what behavioral information should be collected and reported

allows SimOS’s data management process to be easily customized to satisfy the s

Figure 5.1.  The complete machine simulation data management process

 Event-Processing
Mechanisms

Event-Generating

Hardware

SimOS

Events

Investigation-specific
Tcl script

Investigation-specific
Behavioral Information

Hardware
Models
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information needs of an investigation. The next section describes the SimOS e

processing mechanisms in detail and demonstrates how they efficiently pro

customized computer system behavioral information.

5.4 Event-processing mechanisms

Given the design decision of dissociated hardware event generation and processin

only run-time input to the SimOS’s event-processing mechanisms are hardware e

The goal of each of the mechanisms is to efficiently process these low-level hard

events into some form of higher-level information beneficial to an investigation. SimO

event-processing mechanisms use hardware events in two capacities. First, ha

events are the fundamental unit of performance, and SimOS’s event-proce

mechanisms count and classify these events to generate information. For example, a

of mispredicted branches that occur during a workload’s execution can help

architectural investigator determine the effectiveness of a branch prediction sch

Similarly, a count of data cache misses can help an investigator understand the bas

reference locality that exists in a workload. Second, hardware events act as “hook

allowing an investigator to incorporate workload-specific knowledge into the classifica

of hardware events. For example, an investigator could indicate that virtual add

0x80004000 is the entry point to the operating system’s idle loop. A hardware e

indicating the execution of the instruction at this virtual address could trigger SimO

classify future cache miss events as occurring in idle mode.

In addition to providing event counting and classification functionality, SimOS’s eve

processing mechanisms must be easy to use. If the investigation-specific Tcl scrip

difficult to write, investigators will be discouraged from realizing the most benefic

behavioral information. Additionally, each event-processing mechanism must b

efficient as possible. Even when satisfying just the specific information needs o

investigation, inefficient event processing can have a significant impact on com

machine simulation’s performance.
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Figure 5.2 provides an overview of the SimOS event-processing architecture. The r

this section describes each of the bold-faced mechanisms and how they provide dif

event-processing functionality while remaining easy to use and highly efficient.

5.4.1 Annotations

Annotationsare one of SimOS’s most heavily used mechanisms. Annotations are

scripts that an investigator attaches to the occurrence of specific events. Whenev

specified event occurs, the annotation script is interpreted to provide the specified e

processing or simulation control functionality. The general format of annota

specification is:

annotation set < annotation-triggering event > {
<annotation script >

}

To provide the greatest flexibility, SimOS allows annotations to be triggered with any

of hardware event. Among the most heavily used triggering events are:

• Reaching a particular program counter address.Program counter annotationsare

among the most commonly used and are invoked whenever a processor execu

instruction at a specified virtual address. These annotations can be used to indica

PC/Data Reference

Figure 5.2.  Overview of SimOS event-processing mechanisms

Annotations
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Bucket
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Tables
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the CPU has reached the entrance to or exit from interesting sections of oper

system and application code.

• Referencing a particular data address.Data reference annotationsare invoked

whenever a specific virtual address is read or written. Data reference annotation

provide a watchpoint-like functionality that is particularly useful in operating syst

debugging. If a particular data structure is found to be corrupted, a data refer

annotation could determine when, where, and why the data structure was impro

written.

• Occurrence of an exception or interrupt. Trap-based annotationsmay be set to

trigger whenever an exception or external interrupt occurs in the target machine. T

annotations can be set on specific types of traps such as system call exceptions

misses, or disk interrupts, and are useful for tracking transitions from user to ke

processor modes.

• Execution of a particular opcode. Opcode annotationsmay be set for particular

instruction types or classes of opcodes. For example, in the MIPS architecture, anrfe

(return from exception) oreret (exception return) instruction is used to return th

processor to user mode after taking an exception. Annotations triggered by

instructions could be used to track transitions from the processor’s kernel mode

to user mode.

• Reaching a particular cycle count.Cycle annotationsare triggered when the targe

platform has executed for a specified number of cycles. Cycle annotations

particularly useful for repeated event processing activity such as sampling of mac

state or periodic statistical output.

There are of course many other hardware events that may be desirable for trigg

annotations, and their utility depends on the needs of a particular investigation

example, research into ethernet behavior may benefit from such annotation-trigg

events as packet arrival or network collisions.

When an annotation-triggering event occurs, the associated annotation script is inter

to provide some specific utility. In their most basic capacity, annotation scripts can be
69
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to count the occurrence of particular events. For example, the following trap-b

annotation is counts the number of interrupts that occur during a workload’s executio

annotation set exception INTERRUPT {
incr interruptCount

}

Similarly, a data reference annotation assigned to an application data structure could

the number of times that this structure is read or written.

Simple counts of annotated hardware events provide valuable information, but anno

scripts can provide much greater capabilities. We extend the capabilities of anno

scripts by giving them access to the entire state of any hardware models in the simu

machine. This state includes the processor registers and caches, TLB entries, I/O d

processor caches, and main memory. Annotation scripts can exploit this access to

understand the state of the target machine. For example, by reading data structures

target machine’s operating system, an annotation can discover the ID of the curr

running process. This information can be subsequently used to classify hardware e

according to the process that causes them.

The previous examples describe annotation scripts in a passive capacity, only being

to count events or query the state of the target machine. However, annotation scrip

valuable in an active role as well. Tcl makes it simple to attach script command

internal simulator procedures to control aspects of the simulation environment.

example, users write annotations to switch between the different SimOS simu

execution modes. To switch from the Embra CPU model to the MXS CPU model

investigator includes the Tcl commandcpuEnter MXS in an annotation script. As a

result, it is easy to switch between modes at a particular machine cycle, upon entr

particular application procedure, or upon access to a specified data structure. As des

in the next section, active annotation scripts are also used to control more advanced

processing mechanisms.

An important goal of the event-processing mechanisms is their ease of use, and S

attempts to simplify the specification of annotation-triggering events and annota

scripts. For example, annotations support the symbolic specification of all mem
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addresses. The embedded Tcl interpreter includes knowledge of object file symbol

composition, allowing program counter and data reference events to be specified

higher level of abstraction. For example, to trigger a program counter annotation a

start of a sorting application’s main procedure, an investigator can specify:

annotation set pc SortingApp::main:START

rather than the less meaningful:

annotation set pc 0x00412de0

Annotation scripts also have access to symbol table information and all referenc

memory locations can be made symbolically. As a result, Tcl-based references to

structures are as simple as interactions with a source-level debugger. The follo

example demonstrates how symbolic specification makes the data collection proc

simple as possible. In this example, an investigator wants to know the final value o

position field in the inputData data structure whenever a particular procedu

executes:

annotation set pc SortingApp::SortElement:END {
console “The position is

[symbol read SortingApp:inputData.position]\n”
}

Each time theSortElement procedure finishes, theconsole command will output

the desired value for the investigator to view. Thesymbol command tells the Tcl

interpreter to parse the specified symbol table to determine the appropriate address t

As future examples will demonstrate, symbolic reference to the contents of main me

allow annotation scripts to be extremely powerful. Not only does symbolic reference

the burden of annotation specification, it also increases their portability. When

application or operating system is recompiled, the addresses of its text and data se

change. Symbolically-specified annotation events continue to follow their semantic i

while address-specified annotation events would require rewriting.

Because annotations are such heavily used mechanisms, their implementation mus

efficient as possible. SimOS implements annotations by incorporating simple trigg
71
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code into each of its hardware models. The interface between the hardware models a

annotation handler is simply:

ExecuteAnnotations(<EventType>, <value>);

For example, each SimOS CPU model must invoke:

ExecuteAnnotations(TrapType, INTERRUPT)

each time a device interrupt occurs to invoke any trap-based annotations assign

interrupts. Note that the hardware models simply trigger annotations and hav

knowledge of the annotation scripts themselves. TheExecuteAnnotations function

is highly optimized, using hashing techniques to handle the common case, event

trigger no annotations, as quickly as possible. With the goal of providing the hig

possible simulation speed, the Embra CPU model uses additional techniques to p

efficient annotation support. If Embra were forced to call theExecuteAnnotations

function for every single instruction, its performance would suffer. Consequently, Em

queries the annotation subsystem before the translation of each workload basic blo

see if any of the basic block’s program counter values should trigger annotations. If s

annotation is invoked directly from the translated code. However they are impleme

the overhead of using annotations is directly proportional to the number that are ins

and the complexity of their scripts. As such, a user must only pay the annota

performance cost required to satisfy their investigation’s specific information needs.

5.4.2 Bucket selectors

As described above, hardware events act as the fundamental unit of machine perfor

as well as the hooks for incorporating workload-specific information into the ev

processing stage. Counting hardware events such as executed instructions, cache

TLB misses, a complete machine simulator can provide an investigator with a b

understanding of their workload’s execution. However, event counts aggregated ov

entire workload’s execution are not as useful as they could be. Additional utility coul

provided by maintaining multiple counters of each hardware event type where

counter corresponds to some meaningful portion of a workload. For example

application writer might desire a count of the number of instructions and cache misse

occur during each of an application’s procedures. These counts could be used as
72
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information, focussing performance tuning on the most time-critical procedures in

application. A large number of cache misses in a procedure would indicate that its la

data or instruction cache locality needs attention.

Similarly, an architectural investigation might want to track the number of missed bra

predictions to determine the effectiveness of a branch prediction scheme. These c

may be more meaningful if they are categorized as occurring in either the idle loo

during normal operating system and application execution. It is possible to use

annotation mechanism to count and classify all hardware events. However, it w

require setting annotations on every single event and determining how to categorize

of these events within the annotation script. Not only would this require an investigat

write an extremely large number of annotations, the run-time performance of

simulation environment would suffer. SimOS provides a mechanism calledbucket

selectorsto make this common event counting and categorization both easy to use

highly efficient. The goal of a bucket selector is to decompose a workload’s total exec

time into smaller, more meaningful components and then to customize all data colle

to these components.

Bucket selectors requires two types of user input. First, the investigator chooses w

events are of interest by specifying the contents of abucket. A bucket is simply a user-

specified collection of events that should be counted. For example, an investigator

specify that a bucket should include counts of instruction execution, TLB misses,

cache misses. Whenever one of these hardware events occurs, the corresponding

counter is incremented. While every possible hardware event count could be maintain

each bucket, the ability to select particular counts of interest reduces the perform

impact to just what is required for an investigation’s information needs.

The second phase of bucket selector creation is the specification of execution pha

components. These components might be application procedures, user-level proces

even more abstract concepts such as individual database transaction or web

requests. Buckets are assigned to these execution components, and at any given tim

a single bucket is active. Aselectoris simply an indication of which bucket is currently
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active. Annotations control selectors, and once an annotation has set the selector to

to a particular bucket, all specified hardware events will be automatically funneled

that bucket until the selector is changed again, signaling the entry into a new pha

execution.

Figure 5.3 illustrates typical usage of the bucket selector mechanism. In this exam

workload’s execution time is decomposed into processing user-level code, proce

kernel-level code, and spinning in the kernel idle loop. The left side of the figure show

Tcl source used to implement the processor tracking functionality. The script implem

the state machine illustrated in the top right portion of the figure. The state mac

controls the setting of a selector, as depicted in the bottom right side of the figure

readability, the code has been simplified to omit bucket and selector initialization.

script places annotations on exceptions, on the return-from-exception opcode, and

start and end of the operating system idle procedure. These annotations set the “m

selector in order to direct event counts into the bucket corresponding to the current m

Figure 5.3.  Processor mode bucket selector

# Save current state on stack when an exception occurs
annotation set exception {

stackPush “stateStack” $currentState
set currentState kernel
selector set modes kernel

}

# Restore saved state when the processor executes
# the “return from exception” opcode
annotation set inst rfe {

set currentState [stackPop “stateStack”]
selector set modes $currentState

}

# Transition to the idle mode when the PC hits the idle loop
annotation set pc kernel:idle:START {

set currentState idle
selector set modes idle

}

# Return to the kernel mode at the end of the loop
annotation set pc kernel:idle:END {

set currentState kernel
selector set modes kernel

}

user

idle

kernel

user

kernel

idle

Selector

Events

Buckets
74



ch

itions

ame

essing

while

sed.

ent of

ecific

e and

th a

. For

r with

it to

ction

g of

ge the

y at

ting

roach.

ctions,

rize

ence.

mber
To provide additional utility, SimOS allows multiple selectors to coexist with ea

funneling events to its own set of buckets. As a result, several execution decompos

can be generated simultaneously and provide different high-level views of the s

workload execution. For example, an investigation into a database transaction proc

may benefit by categorizing events based on the active database server procedure

simultaneously categorizing events based on the particular transaction being proces

The bucket selector mechanism has proven to be an extremely effective compon

SimOS’s data management process. In addition to encouraging investigation-sp

categorization of hardware events, the bucket selector mechanism is simple to us

lends itself to an efficient implementation. SimOS implements bucket selector wi

single level of indirection in the normal event counting code of each hardware model

example, a simulated cache model typically counts the number of misses that occu

code similar to:

if (InCache(reference) == FALSE) cacheMisses++

SimOS adds a level of indirection to this cache miss counting code:

if (InCache(reference) == FALSE) (*cacheMisses)++;

The bucket selector has complete control over the setting of this pointer, allowing

funnel cache miss counts to the appropriate bucket. The impact of this level of indire

is relatively minor, requiring a single additional memory reference for the incrementin

each hardware event counter. Furthermore, annotations are only required to chan

currently active bucket, making their overhead directly proportional to the granularit

which an investigator decomposes a workload.

5.4.3 Address tables

Automatic hardware event categorization is an effective technique for collec

performance data, but the bucket selector mechanism is not always the best app

While bucket selectors are good at assigning events to higher-level execution abstra

more precise data is often desirable. Specifically, it is often informative to catego

events based on the individual line of code or data structure responsible for its occurr

Categorizing hardware events at this fine granularity would require a tremendous nu
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of annotations to properly control bucket selection. SimOS provides anaddress table

mechanism to address this information-gathering challenge.

An address table is designed to efficiently attribute hardware events to the parti

instructions or data references responsible for their occurrence. Categorizing data

miss events by the referenced address can show exactly which data structure

exhibiting poor cache locality. Similarly, categorizing pipeline stalls by program cou

address shows which portion of code may benefit from better compiler instruc

scheduling. Address tables are a special case of bucket selectors where the active bu

determined by the address of the event rather than by explicit user interaction. Ad

table specification consists of two phases. As with bucket selectors, the first phase re

the specification of hardware events that should be counted. An address table can c

of many thousands of buckets, and tracking only the hardware events of interes

greatly reduce the mechanism’s memory requirements.

The second phase of specification requires a declaration of the address ranges

tracked and the granularity at which these ranges should be decomposed. Granu

range in size from individual memory words up to entire pages; each unit of

collection is assigned a bucket. Furthermore, address tables can be eithercode-drivenor

data-driven. Code-driven address tables categorize hardware events based on the c

program counter address and are used to understand the behavioral characteristic

application’s source code. Data-driven address tables track hardware events only

load and store instructions and categorize the events according to the data address

read or written.

Figure 5.4 illustrates how a code-driven address table can help determine the beha

characteristics of a workload. The goal of this simple example is to determine

particular lines of code that are exhibiting performance problems. Specifically, the s

creates an code-driven address table to count the number of TLB and instruction

misses that occur for each 128-byte long cache line in the sorting application’s

address space (0x00400000 through 0x00410000) and for each 4-kilobyte page

dynamically loaded “C” library’s text address space (0x60000000 through 0x6000200
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It also creates a data-driven address table to count the data cache misses that occu

sorting application’s data segment (0x10000000 through 0x10004000).

During the execution of this workload, the selected hardware events are categorize

the specified address ranges, resulting in the tabular event count data. Using the

files’ symbol table information, these data collection units are mapped back to con

understood by the user. For code-driven address tables, event counts are mapped to

or lines of source code that led to the events, while for data-driven address tables,

counts are mapped to the symbolic name of the responsible data structures. The end

is an accurate determination of the causes of system behavior presented at a le

abstraction that is useful to the investigator. The combination of code-driven and

driven address table information provides more useful information than either on

isolation. In the above example, data cache miss events are counted simultaneously

the code-driven and data-driven address tables. These orthogonal views can be

Data-collection unit Symbolic
name

Icache
misses

TLB
misses

Dcache
misses

0x00400000-0x00400080 main(): line 21 56 53 10

0x00400080-0x00400100 main(): line 23 122 67 88

. . . . . . . . . . . . . . .

0x10000000-0x10000080 sortStruct.value Not kept Not kept 356

. . . . . . . . . . . . . . .

0x60000000-0x60001000 printf(): lines 22-234 223 10 Not kept

. . . . . . . . . . . . . . .

# Create address tables for the sorting application and the
# “C” library. The last parameter is the data collection unit size.
addressTable code “sortCode” 0x00400000 0x0041000 0x80
addressTable data “sortData” 0x10000000 0x10004000 0x80
addressTable code “libcCode” 0x60000000 0x60002000 0x1000

# Specify which hardware events the address tables should count
addressTable bucket “sortCode” {instCacheMisses dataCacheMisses tlbMisses}
addressTable bucket “sortData” {dataCacheMisses}
addressTable bucket “libc” {instCacheMissEvents tlbMissEvents}

Figure 5.4.  Code- and data-driven address tables
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referenced to determine what source code is responsible for misses to specific

structures.

Address tables classify a tremendous quantity of low-level hardware events, an

efficient implementation is essential. Like the bucket-selector mechanisms, address

exploit the level of indirection present in the hardware models’ event counts. Howeve

setting of the pointer is automatically determined by the current PC or data refer

address rather than by an annotation script. To determine the correct bucket as quic

possible, each address table maintains a hash table indexed by PC or data ref

address and optimized to the user-selected bucket granularity sizes.

5.4.4 Event filters

The previous sections describe how annotations, bucket selectors, and address tab

efficiently attribute hardware events to components of a workload. However, t

hardware events are often at too low of a level to make simple counts particularly us

An example of this is the occurrence of cache miss events on shared-me

multiprocessors. Knowing that some piece of code or portion of a data structure su

cache misses does not necessarily tell the programmer if and how these cache miss

be avoided. In order to eliminate these cache misses, it is helpful to know whattypeof

cache misses occurred. It is often useful to raise the abstraction level of hardware e

andevent filters address this need.

An event filter is implemented as a state machine that takes hardware events as

builds up additional knowledge about these events, and outputs new higher-level e

Event filters are attached directly to the hardware event stream and use state mach

convert the original events into new, more descriptive events. The new events can be

to trigger annotations or can be counted and categorized using bucket selector

address tables. Figure 5.5 illustrates how an event filter is used to classify the cache m

that occur in a shared-memory multiprocessor. In this example, a cache miss can be

classified as a “cold” miss, an “invalidation” miss, or a “replacement” miss [Dubois93]

provide this classification, SimOS instantiates a state machine for each cache line
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portion of main memory and for each processor. At any point in time, the specific po

of main memory is either in a processor’s cache or not. In the pictured state machine

lines represent cache misses and the normal lines represent transitions that occur

when the line is knocked out of the processor’s cache or when the cache line is invali

in the maintenance of cache coherence. In this example, the referenced cache line is

“replaced” state, and so this cache miss will be classified as a “replacement miss e

and output for further processing.

The cache event filter is typically used in conjunction with address tables to asso

different types of cache misses with particular pieces of code or data struct

information that is valuable to application performance tuning. For example, cold mi

are usually unavoidable, whereas replacement misses can often be eliminate

restructuring data structures. Additionally, excessive invalidation misses may indicate

better control of the inter-processor communication is needed. Armed with

information, developers can reduce the number of application cache misses

substantially improve the performance of a workload.

Event filters are useful for improving the level of abstraction provided by other hardw

events as well. For example, a state machine could track the state of a CPU’s exe

units, creating new events that indicate why pipeline stalls occur. In whatever architec

domain they are used, event filters are a simple technique for improving the inform

content of hardware-level events. As with the other mechanisms, the overhead of

Cold

Invalidated Replaced

CACHED

Knocked out

Invalidated

Figure 5.5.  Cache miss event filter

(initial status)

by another CPU

of cache

Replacement
miss event

Cache
Events

New
Cache-related

Events

CPU #3

State machine
for line 2334 on
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filters is proportional to their use and complexity, allowing an investigator to pay only

the desired level of information collection.

5.5 Building higher-level mechanisms

The previous section described a number of mechanisms providing relatively disp

event-processing functionality. In practice, these mechanisms are often more val

when used cooperatively. This section describes how the core event-proce

mechanisms can be combined to provide more advanced data management functio

5.5.1 Annotation layering

Software layering is an essential tool in the creation and maintenance of large sof

systems. By creating abstractions and interfaces upon which higher levels of softwar

rely, implementation details can be hidden from the programmer, easing the burd

software creation. Similarly, a thorough understanding of a computer platform can re

extensive use of annotations, and software layering is an essential component o

usage. Previous examples demonstrate annotations triggered by hardware e

However, to support software layering, it must be possible create new annota

triggering events that have a higher-level meaning than individual hardware ev

provide.

The process of creating new annotation-triggering events is straightforward. At the lo

layer are annotation scripts triggered by hardware events. These scripts can acces

component of the target platform’s state to determine if it is desirable to generate the

user-defined event. When this new event type occurs, higher-level annotation s

triggered by this new type will be interpreted. These scripts can perform some for

data collection or could generate even higher-level annotation-triggering events.

Figure 5.6 illustrates a typical use of user-defined annotation-triggering events. A gro

program counter annotations are set throughout the operating system’s process c

switching code to track the currently scheduled process. These annotations are set

process management system calls, in the context-switching code, and at the beginn
80
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the kernel idle loop. Tcl variables maintain the current process ID (PID) and pro

name. In this example,u is a variable in the operating system that gives access to

process table entry of the current process. This set of process-tracking annotati

packaged as a library. While the library doesn’t directly generate any performance d

is used by higher-level annotations to attribute events to specific processes.

annotations can rely on the newprocess switchInandprocess switchOutevents and can

use thePID and PROCESSvariables to better understand and classify performan

information. This annotation layering capability has led us to create a collection of us

annotation libraries that build up knowledge regarding the activity of the operating sys

the standard “C” library, and a number of other commonly investigated workl

components. These libraries provide new annotation-triggering events as well as h

level information for other libraries or scripts to easily incorporate and build upon.

Figure 5.6.  Creation of process-related events and data

# Define a new annotation type for process-related events
annotation type process {switchOut switchIn}

# Program Counter (PC) annotation at the end of the
# exec system call (the PID doesn’t change)
annotation set pc kernel:exece:END {

# On an exec, the name of the process changes
set PROCESS [symbol read kernel:u.u_comm]

}

# PC annotation at the end of the context-switching code
annotation set pc kernel:resume:END {

# Execute the higher-level event
annotation exec process switchOut
# Update executable name and pid
set PID [symbol read kernel:u.u_procp->pid]
set PROCESS [symbol read kernel:u.u_ucomm]
# Execute the higher-level event
annotation exec process switchIn

}

# Annotation at the beginning of the idle loop
annotation set pc kernel:idle:START {

# Execute the higher-level event
annotation exec process switchOut
set PID -1
set PROCESS “Idle”
# Execute the higher-level event
annotation exec process switchIn

}
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5.5.2 Timing trees

One of the advantages of complete machine simulation is the ability to investi

multiprogrammed workloads with all of their associated operating system acti

However, operating system-intensive workloads can be quite difficult to underst

Process scheduling, expensive system call usage, and virtual address translat

contribute to applications’ behavior, requiring more elaborate data collection

presentation.Timing treeshelp satisfy this need, providing an easy-to-use mechanism

understanding complex multiprogrammed and operating system-intensive workloads

As illustrated in Figure 5.7, programs are composed of nested routines, and it is

useful to visualize a program’s composition as a tree. More complex applications le

deeper and wider trees, but the decomposition is still meaningful. The timing

mechanism extends this type of tree-based decomposition to multiprogram

workloads and easily and efficiently incorporates their use into the data manage

process. The timing tree mechanism creates a single system-wide tree with a first

node for each process in the system. Whenever a new process is created, a n

automatically added to the system tree. Using annotations set in the operating sys

process scheduler, timing trees track the currently executing process, and for each

level process, timing trees maintain a stack that tracks the process’s current rout

phase. This information in turn controls a bucket selector that collects both hardwar

higher-level events and assigns them to the active phase.

main

Sort

read printf

Figure 5.7.  Tree-based decomposition of a simple application

main(){
Sort();
PrintResults();

}
Sort() {

read();
printf();

}
PrintResults() {

printf();
write();

}

PrintResults

printf write
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Figure 5.8 helps illustrate the composition of a timing tree. To specify the structure

timing tree, an investigator indicates what events should be counted along with the st

and ending points of interesting execution phases. The timing tree mechanism

annotations and bucket selectors to do the rest. Upon entry into a new phase, the c

process’s active-phase stack and selector is updated. In the example, the sys

currently in the sync phase of the read system call. The bucket selector will thus attr

all instruction, data cache miss, and TLB miss events to this particular node. Timing

also provide a “time descheduled” bucket for each process. A process can be desch

Bucket Bucket

Bucket Bucket

Bucket

main

PrintResultsSort

read

Time

CLOCK INT

Hardware

Bucket

printf

Bucket

sync

Figure 5.8.  Example timing tree decomposition

Descheduled

# Use the timing tree library
source “timingTrees.tcl”

# Tell the timing tree what to count for each node
timingTree count { instructions, dataCacheMisses, tlbMisses }
# Indicate the “phases” to assign counts to
timingTree start “Sort” pc SortingApp:Sort::START
timingTree end “Sort” pc SortingApp:Sort::End
timingTree start “fork” pc libc:read::START
timingTree end “fork” pc libc:read::END
...

PID 5 PID 74

SYSTEM TREE

PID 74 - “SortingApp”

main
Sort
read

Bucket
Selector

Active-Phase
Stack

Events

Process-scheduler
Annotations

Bucket

sync

sync

Hardware
Events
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at any time, and this extra node allows us to track the effects of operating sy

scheduling policies on the application’s behavior.

When event processing is complete, the resulting timing tree data can be fle

manipulated and examined to infer many different types of behavioral information.

example, tree branches can be easily collapsed, expanded, or isolated to answe

specific questions regarding workload behavior. In this example, it might be usef

compare the data cache behavior of synchronization acting on behalf ofread from that

occurring during clock interrupt or even during another process’sread  usage.

Timing trees demonstrate how several basic event processing mechanisms c

effectively layered to form new, more sophisticated mechanisms. Additionally, t

simplify the specification of a commonly-used execution decomposition, help

customize event-processing to the specific needs of an investigation.

5.6 Data management’s performance impact

The previous section introduces a number of different mechanisms and how

efficiently coerce and classify hardware-level data into higher-level behavi

information. This section examines the performance impact of these mechanisms a

in a typical SimOS investigation.

A number of our investigations involve tracking operating system behavior during

course of a workload’s execution. Recognizing this common need, we have crea

Table 5.1. Operating system library detail levels

Detail Level Information Provided

0 Nothing (library is not used)

1 Tracks the name and ID of the currently scheduled user process

2 Level 1 + Bucket selector that classifies hardware events according 
the current system mode (kernel, user, or idle)

3 Level 2 + Timing tree that classifies hardware events by the system se
vice (system call or exception handler) that they occur during.
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reusable library of annotations, bucket selectors, and timing trees that provide ope

system data. However, these investigations often require radically different amoun

operating system information, and capturing unneeded behavioral data results in exc

simulation slowdown. To address this problem, the library is parameterized by an in

“detail level” that determines the amount of information that it should collect. Table

summarizes the library’s levels of detail. Increasing the detail level provides m

operating system information, but the heavier use of event-processing mechanisms

in higher performance overheads.

Table 5.2 illustrates the performance overhead of each detail level while simulating

uniprocessor compilation workload described in the previous chapter. This workload

significant operating system activity and thus heavily exercises the library.

performance overhead is computed by comparing the simulation time at each detai

to the simulation time of the zero detail level case. For example, the positioning mode

8% slower when using the operating system behavior tracking library at detail level th

than when not using the library at all.

There are two important trends in these overheads. First, within a single simu

execution mode, the performance overhead of event processing can vary

significantly. More detailed levels (higher numbers) require significantly larger run-t

overheads to classify hardware events to higher-level concepts such as execution

and system services. This trend makes explicit the substantial speed-detail trade-o

can be made within complete machine simulation’s data management task. The s

trend is seen when comparing the overhead of a single detail level across sim

Table 5.2. Event-processing overheads for the compilation workload

Detail Level
Positioning

Mode
Rough Char.

Mode
Accurate Mode

(Mipsy)
Accurate Mode

(MXS)

1 8% 5% 1% <1%

2 304% 231% 10% <1%

3 428% 284% 13% 2%
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execution modes. The computation required to support a set number of annota

bucket-selectors, and timing trees is largely constant, regardless of the simulator exe

mode. However, the very high speeds achieved by the positioning and ro

characterization modes make this constant overhead quite significant. In contrast, ac

simulation mode’s slower speeds allow it to amortize this event-processing overhead

a longer period of time, helping minimize its performance impact. Furthermore,

highest detail levels are almost never used in positioning and rough characteriz

modes as the accuracy of their results are limited by the accuracy of the simulator

itself. In practice, users never employ the library in positioning mode, and only use

first detail level with rough characterization mode. To collect more detailed behav

information, combine the higher detail levels with accurate mode simulation.

The existence of higher-level libraries is essential to the simple specification and u

detailed event-processing. However, even when efficiently implemented, detailed e

processing can have a large impact on complete machine simulation’s performance

as with adjustable simulator speed and detail characteristics, adjustable event proc

and data management allows an investigator to minimize the simulation time requir

meet the specific information needs of their study.

5.7 Summary

Complete machine simulation provides an excellent opportunity for helping investiga

better understand the behavior of a computer system. However, effectively exploiting

opportunity requires organizing low-level hardware data into higher-level behav

information and performing this organization as quickly as possible. To address

challenges, complete machine simulation encourages the customization of its

management process to the specific needs of an investigation. This chapter has de

how SimOS provides this customization capability through decoupled event gener

and processing and with several efficient event-processing mechanisms. As demon

in the next chapter, this data management approach has proven to be extremely eff

efficiently providing useful behavioral information for a variety of investigation needs
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Chapter 6

Experiences

The previous chapters describe SimOS and the techniques it uses to address the sp

data management challenges facing complete machine simulation. This chapter des

several of our experiences using SimOS, providing further insight into the effectivene

the complete machine simulation approach. A tool is only as good as the investiga

that it enables, and by this measure SimOS is quite successful. The first part of this ch

describes several SimOS-led investigations and how they have benefited from its

However, we have also found several limitations with SimOS and the complete mac

simulation approach. The second part of this chapter describes the most important o

limitations.

6.1 Investigations enabled by SimOS

Because of its extensive workload support and architectural modeling flexibility, SimO

an effective tool for a variety of investigations. Furthermore, SimOS’s ability to prov

both timely, accurate, and customized behavioral data make it an attractive alternat

many existing simulation tools. As a result, SimOS has enabled investigations in m

different domains of computer systems research. Recent studies include the investi

of new architectural designs [Bowman97] [Heinrich94] [Nayfeh96] [Olukotun9

[Wilson96], the development of new operating systems [Chapin95b] [Bugnion97], and
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performance evaluation of applications [Bugnion96] and operating syst

[Rosenblum95] [Teodosiu97] [Verghese97]. This section introduces several of t

investigations and how complete machine simulation provided benefits for them.

6.1.1 Characterization of IRIX’s performance

One of the earliest investigations utilizing SimOS was a performance characterizati

the IRIX operating system executing on both current and future architectural platfo

This goal of this characterization was to help focus IRIX performance tuning efforts

those areas most likely to cause performance problems in the near future. SimOS

critical to this investigation for three reasons. First, the investigation required rea

workloads that stressed the operating system in significant ways; toy applications

micro-benchmarks do not drive the operating system realistically, and thus cannot pr

an accurate picture of overall operating system performance. Second, the IRIX ope

system is large, complex, and multithreaded. The investigation required flexible

characterization mechanisms to help make sense of the wealth of behavioral inform

available. In fact, many of the data collection mechanisms of SimOS were develop

direct response to the needs of this study. Third, the goal of the study was to analyz

behavior of the operating system on machines that are likely to appear several years

future. The flexibility of complete machine simulation allowed us to model hardw

platforms well before they were commercially available.

SimOS extensive workload support was essential for observing operating system be

in a realistic setting. To stress the operating system in realistic ways, we picked work

that are traditionally run on high-performance workstations and shared-mem

multiprocessors: a commercial database workload, a compilation workload, an

engineering simulation workload. SimOS’s adjustable speed and detail characte

enabled the timely preparation and examination of these workloads. First, we use

SimOS positioning to quickly execute past the uninteresting portions of the worklo

This included booting the operating system and running through the initialization ph

of the applications. To obtain useful information, we ensured that the system had run

enough to get past the cold start effects due to the operating system boot. Ju
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initialization of the database workload took several billion instructions, for example,

detailed simulation of this initialization would have taken days of simulation time.

Once the workloads were initialized to an interesting point, we used SimOS’scheckpoint

facility to transfer the entire machine state from the simulation models into a set of

Just as a simulated machine’s hardware state can be transferred between di

simulator execution modes, it can also be transferred to the host machine’s file sy

SimOS allows an investigator to take a checkpoint of the target machine’s state a

point during a workload’s execution. The checkpoint can be subsequently restored

simulation models to continue execution from the exact point at which the checkpoint

taken. A single checkpoint can be restored in multiple different hardware configura

and characterization modes, and provides a common workload starting poin

architectural comparisons.

Each checkpoint was first restored into SimOS’s rough characterization mode to ob

high-level characterization of each workload. The rough characterization m

simulations employed the processor mode bucket selector described in Chapte

decompose each workload’s execution into simple, informative components. Illustrat

Figure 6.1 for the database transaction processing workload, the data obtained in

characterization mode helped determine that the workloads were correctly positione

had sufficient operating system activity to warrant further investigation. Furthermore
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Figure 6.1.  Illustration of information generated in rough characterization mode
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data showed that the database and engineering workloads’ behavior was fairly regul

that examination of a limited portion of the total workload execution time would like

represent its overall behavior. This was essential to reducing them time required for

detailed observation. To obtain the more detailed information, each checkpoint

restored into the SimOS accurate modes, configured to model several different ma

configurations. SimOS’s architectural modeling flexibility allowed us to create en

machines representative of those shipped in 1994 as well as those likely to ship in

and 1998.

As described in Chapter 5, SimOS provides mechanisms that encourage a u

customize all simulation data to the specific needs of their investigation. For example

allow a user decompose the execution of a workload into smaller components and

customize all data collection to this decomposition. For this investigation, it was usef

decompose operating system execution according to the particular services t

provides. These services include system calls, virtual-memory fault proces

exceptions, and interrupt processing. Many of the services share the same subroutin

have common execution paths, so a more traditional, procedure-based decompo

would have been less effective. SimOS’s timing tree mechanism simplified the gener

of this service decomposition. Specification of just over ninety timing tree start and

points completely isolated the activity of each of the operating system’s services.

timing tree automatically handles the more difficult aspects of operating sys

decomposition such as nested interrupts and descheduled processes. With the he

cache miss event filter, the timing tree provided very detailed information regarding

behavior of each operating system service.

The ability to decompose the operating system’s aggregate execution time into

meaningful components was critical to this investigation, allowing a performa

comparison of the operating system services across different workloads, numb

processors, and generations of hardware. This comparison uncovered sign

differences in the performance improvements of different services across archite

trends. This comparison, combined with the specific cache and processor behavior o
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service, helped to focus our performance tuning efforts on the portions of IRIX most li

to cause problems in the near future.

SimOS’s configurable hardware models, support for realistic workloads, multiple leve

speed, and customizeable data management all played a crucial role in enablin

operating system investigation. The end result of the study was a better understand

the impact of architectural trends on IRIX’s behavior well as a better appreciation fo

capabilities of SimOS. Complete details regarding this investigation and its use of Si

are available in [Rosenblum95].

6.1.2 Design of the FLASH multiprocessor

SimOS has been heavily used to aid the design of the Stanford FLASH multiproce

[Kuskin94]. The goal of the FLASH project is to build a shared-memory multiproces

capable of scaling to thousands of MIPS R10000-based processing nodes. To a

development of FLASH, the architecture team created FLASHLite, a detailed soft

simulation model of the proposed memory system. FLASHLite was originally designe

be a component of TangoLite, a user-level, execution-driven simulation

[Goldschmidt93], but development of SimOS provided an opportunity for the architec

group to extend the utility and effectiveness of FLASHLite. SimOS’s interface for add

new memory system models minimized the integration effort, and the FLASH de

effort was soon realizing several of the benefits of complete machine simulation.

First, SimOS extended the number and type of workloads that could be used to ev

various FLASH design options. TangoLite is able to capture the user-level mem

behavior of applications such as those that comprise the SPLASH [Woo95]. T

scientific applications have little or no explicit operating system activity and can thu

easily examined by user-level simulation tools. However, the FLASH multiprocess

intended to perform well as a general-purpose compute server as well as in supp

scientific applications. The use of SimOS extends the evaluation of FLASH design op

to include database transaction processing, parallel compilations, and

multiprogrammed workloads that the FLASH machine must efficiently support. Th

operating system-intensive workloads often exhibit different memory system activity
91
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the SPLASH applications, and have influenced several design decisions. For exa

[Heinrich94] found that operating system-intensive workloads exercise the FLA

protocol processor differently than SPLASH workloads, and led to modifications of

protocol processor’s data cache organization. Utilization of a wide variety of workl

also benefits the design verification effort. The irregular memory reference activit

many operating system-intensive workloads stresses FLASH’s cache coherence pro

differently than the SPLASH applications and helped detect and eliminate se

deadlock situations in the cache coherence protocols.

Second, SimOS enabled evaluation of the FLASH memory system design options

context of a complete machine design. For example, the FLASH memory system

maintain cache coherence between processor caches, but it must also support

coherent DMA by the disk controller and other system devices. User-level simulators

as TangoLite omit I/O device behavior and are thus incapable of evaluating this asp

memory system design. Similarly, a multiprocessor memory system interacts closely

a machine’s CPU’s and caches in supporting memory prefetching, bus error notifica

and inter-processor interrupts. SimOS and FLASHLite model all of these interactions

the full behavioral effects of a proposed FLASH design propagate throughout

simulated system. As a result, the designers were able to obtain accurate inform

regarding the real-life impact of architectural decisions.

The combination of SimOS and FLASHLite has proven to be an effective source of

for the design of the FLASH multiprocessor as well as for early research into

effectiveness of the FLASH architectural approach [Heinrich94] [Heinlein97a].

addition to its use in FLASH’s architectural design and evaluation, SimOS has a

related compiler and operating system development efforts. These efforts are the s

of the next two case studies.

6.1.3 Hive operating system development

SimOS has also proven to be an effective tool for operating system developmen

example, SimOS was heavily used in the design and development of Hive, an ope

system designed to improve the reliability and scalability of large general-purpose sh
92
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memory multiprocessors [Chapin95b]. Hive is targeted to run on the FLA

multiprocessor, and provides scalability and reliability improvements through a n

kernel architecture. Rather than running as a single shared-memory program that ma

all the machine’s resources, Hive partitions the machine and runs an internal distri

system of multiple kernels called cells. This multicellular kernel design improves

scalability because few kernel resources are shared by processes running on differen

and also improves reliability because a hardware or software fault damages only on

rather than the whole system. SimOS provided utility throughout the design

implementation of Hive in a variety of ways. First and foremost, SimOS provide

platform for operating system development. The Hive project began early in the de

phase of the FLASH multiprocessor. As a result, Hive development had to begin in

absence of its intended hardware platform. The combination of SimOS and FLASH

provided early access to the FLASH “hardware” and thus provided a platform for H

development. Furthermore, early access to potential architectural designs allowed H

influence FLASH design decisions. For example, Hive’s early efforts at provid

reliability suggested that a hardware mechanism for selectively prohibiting rem

memory writes across cells would provide significant benefits. This hardware “firew

mechanism was easily evaluated using SimOS and FLASHLite, and its value

recognized early enough that this feature could be included in the final FLASH desig

In addition to providing early access to a hardware platform, SimOS provides exce

operating system debugging capabilities. SimOS includes an interface for the

debugger [Stallman92] that supports examination of the simulated machine. The deb

attaches to SimOS and can set breakpoints, single step through instructions,

execution backtraces, and read and write the machine’s memory. While these capab

are typical of most application debugging environments, SimOS supports their

anywhere in the operating system, including the lowest-level exception and inte

handlers. Debugging efforts are further improved by SimOS’s deterministic execu

Many operating system problems are classified asHeisenbugsbecause observation often

causes them to behave differently or even disappear. SimOS ensures that operating
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behavior is completely repeatable, allowing problems to be more easily examined

eliminated.

SimOS also played a significant role in testing and evaluating Hive’s reliability. Hiv

designed to minimize the impact of hardware and software faults by detecting when

occur, limiting the spreading of their effects, and then recovering any affected c

SimOS aided the implementation of this fault containment approach in two impor

ways. First, annotation scripts were extended with commands for initiating a wide va

of hardware and software faults. For example, these scripts can alter the contents o

memory, corrupt interconnection network routing tables, or even disable entire portio

the machine. Initiation of similar faults on real hardware is significantly more difficul

not impossible. Additionally, SimOS’s data management mechanisms provided exc

visibility into Hive’s recognition of and reaction to these faults. When a fault was

properly contained, program counter-based annotations placed throughout the

helped determine why.

In summary, SimOS was an essential tool in the development of Hive, enablin

complete design and implementation well before its targeted hardware platform

available. Additional information regarding Hive and its use of SimOS is available

[Chapin97].

6.1.4 Improving the SUIF parallelizing compiler

SimOS was also heavily utilized in a recent investigation of automatically-parallel

applications generated by the SUIF compiler [Wilson94]. The SUIF comp

automatically transforms an application designed for uniprocessor execution into on

can exploit multiprocessor hardware. The SUIF group became interested in Si

because many automatically-parallelized SPEC95fp applications were not achievin

expected performance improvements, and existing tools were unable to identify

reason. The goal in using SimOS was to discover the sources of the applica

performance problems and to suggest compiler modifications that would help elim

them.
94



mple.

and

at no

cause

ines,

n the

the

fast

less

IX.

egin.

95fp

rough

ioral

quite

the

r of

rvals

time

o this

. As

. The

reads

eads

re of

on is

ation
Because SimOS can run the IRIX operating system, workload preparation was si

Researchers compiled SUIF applications to run on a Silicon Graphics workstations

copied the executables and their input files onto the simulated machine’s disk. Note th

modifications to the applications were necessary to run on SimOS. Furthermore, be

SimOS’s accurate simulation mode closely models existing Silicon Graphics mach

the SUIF group could be confident that application performance gains exhibited o

simulated machine would translate into performance gains on the actual hardware.

SimOS’s support for multiple levels of simulation speed is essential to investigating

long-running, SUIF-generated applications. SimOS’s positioning mode enables

initialization and positioning of the parallelized SPEC applications. This process takes

than ten minutes of simulation time for each application, including the booting of IR

Once the applications are in an interesting position, more detailed investigation can b

To avoid excessive simulation time due to the long execution times of the SPEC

benchmarks, several minutes on today’s fastest non-simulated machines, SimOS’s

characterization mode was initially used to observe the application’s basic behav

characteristics. The resulting data illustrated that each application’s behavior was

regular, exhibiting very similar behavior in repeating intervals. This allowed

researchers to limit examination with the accurate modes to a small numbe

representative intervals. The information obtained during these slowly simulated inte

was extrapolated to apply to the entire execution, further decreasing the simulation

required for this investigation.

SimOS’s customizeable data management mechanisms were also essential t

investigation, identifying several performance problems and suggesting solutions

depicted in Figure 6.2, a SUIF-generated application has a master/slave structure

master thread coordinates the application’s execution, determining when slave th

should help execute parallelized loops. At the end of each iteration, the thr

synchronize at a barrier to maintain loop ordering constraints. The regular structu

SUIF applications provides an obvious approach to decomposition. Each applicati

decomposed into its sequential execution, parallelized execution, and synchroniz
95
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time. SimOS bucket selectors separated “useful” execution time from compiler-a

administration and synchronization overheads. Additional annotations decomp

synchronization time into the time spent executing barrier code and time spent waiti

this barrier when slave execution times were unbalanced. The resulting data suggest

the fine granularity of parallelism exploited by the SUIF compiler was resulting in la

overheads due to the barrier codes. This information led to the development of a new

barrier mechanism more optimized for sporadic thread arrival.

SimOS provided more specific performance information through the use of two c

miss classification event filters. The first filter categorizes multiprocessor invalida

cache misses according to the true or false sharing types defined in [Dubois93]. Usin

filter, SimOS reported a striking behavior incfft2, one of the NASA7 benchmarks. SimOS

reported that 84% of all cache misses on the primary matrix used in the computation

due to false sharing. This suggested that if the compiler were to align all shared

structures on cache line boundaries, these false sharing cache misses could be com

eliminated. Additional cache miss information was generated via the cache

classification filter described in Chapter 5. This information generated by this fi

indicated that conflict misses were a problem for several applications in the SPEC

benchmark. Using higher-level annotations triggered by data cache misses, S

collected information about the physical addresses of frequently used cache lines

data suggested that the operating system’s page mapping policy resulted in an inef

Figure 6.2.  Structure of SUIF-generated applications
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utilization of the processor caches during parallel execution. This information directly

to the development of a new operating system page-mapping algorithm that signific

improves the performance of compiler-parallelized applications. The ability of SimO

precisely locate and classify cache misses was instrumental to the development

algorithm. The modifications suggested by SimOS have led the SUIF compiler to gen

significantly better performing code. One of the most tangible results of these Sim

suggested compiler improvements was the highest SPEC95fp ratio reported to date

detailed information on this investigation is available in [Bugnion96].

6.2 Limitations of complete machine simulation

SimOS has provided significant benefit to a number of investigations. However, ther

several limitations that we have encountered with SimOS and with the complete ma

simulation in general. This section describes the most restrictive of these limitations

suggests some potential techniques for reducing their impact.

6.2.1 Poor scalability

SimOS’s most restrictive limitation is its poor performance when simulating la

numbers of processors. This problem applies to simulation of multiprocessors as w

distributed systems, and is an inherent limitation of the complete machine simul

approach. This limitation stems from the fundamental hardware emulation task th

complete machine simulator must perform. A complete machine simulator must al

model at least enough hardware functionality to support the execution of oper

systems and application programs. As such, there is a minimal amount of simulation

that must be performed for each processor or machine. Furthermore, this compu

requirement scales at least linearly with the number of processors being simu

hindering the examination of large multiprocessors and distributed systems. In con

analytic models or tools that model software execution at a more abstract level can

avoid this linear performance degradation.

One way to improve performance is to spread the simulation computation across mu

host processors. As reported in [Witchel96], we have had some initial success w
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parallel Embra-based SimOS positioning mode. Embra can run as multiple pa

processes where each process simulates a disjoint set of target machine CPU’s, en

high-speed multiprocessor emulation. However, this approach has limited simul

accuracy. The processors in a shared-memory multiprocessors interact extr

frequently. Inter-processor communication takes place within the memory system, an

activity that occurs on the memory bus can affect the timing and behavior of

interaction. To accurately model these interactions requires the simulated proce

notions of time to be closely synchronized, limiting the speedup available via par

execution.

Simulation of distributed systems provides a better opportunity for exploiting

multiprocessor host or even multiple host machines. Interaction between a distrib

system’s machines occurs via ethernet or other networking technologies. Becaus

interaction occurs much less frequently than in shared-memory multiprocessors, th

additional opportunity for performance gains through the use of parallel simulation g

However, accurately modeling network activity such as ethernet collisions still requ

substantial synchronization, limiting the potential performance improvement.

combination of significant resource requirements and need for a centralized notion o

means that an accurate complete machine simulation will always have perform

scaling problems. Even if the above parallel execution opportunities were fully reali

the complete machine simulation would only scale to tens or possibly hundred

processors. This may be acceptable for studying small systems, but not for investig

large-scale multiprocessors or internet-style networks with thousands of nodes.

6.2.2 Non-compatible changes require substantial implementation

The ability to support the execution of applications with all of their associated opera

system activity is one of complete machine simulation’s biggest advantages, but it

places significant responsibility on the simulated hardware components. In contra

application-level and trace-driven simulators, SimOS’s simulated hardware must fulfi

of the operating system’s functional requirements while correctly interacting with the

of the simulated hardware. As a result, radical architectural changes require substa
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more implementation in a complete machine simulation environment than in many o

tools. For example, instruction set alterations and other “non-compatible” architec

changes are difficult to evaluate unless an entire workload is modified or recompile

utilize them. It is far simpler to apply such modifications to simple, isolated applicati

or micro-benchmarks than to more complex workloads including a complete oper

system. As a result, we have found the complete machine simulation approach to be

suited to the latter phases of architectural design. Simpler trace-based tools are often

useful for high-level exploration of a wide design space. Once the basic design param

have been determined, complete machine simulation is effective at evaluating

specific configuration details.

6.2.3 Interaction with the non-simulated world

Even when running in positioning mode, a SimOS-modeled computer is significa

slower than a hardware implementation. As a result, non-simulated objects that in

with the simulated machine appear to be substantially faster than they should be

example, a human interacting with a simulated machine’s console would appear to

several hundred times faster than normal. This problem is worsened when simu

operating systems and applications that utilize graphical user interfaces. Proper gra

responsiveness is required, but difficult to provide under positioning mode and virtu

impossible to provide in more detailed simulation modes. Furthermore, interaction

humans is non-deterministic, compromising SimOS’s ability to provide repeat

workload executions. There has been some progress dealing with these problems th

the use of pre-recorded interaction scripts. SimOS allows investigators to write Tcl sc

that recognize the console’s output and emulate a human response. These scripts p

more appropriately timed interactions and enable repeatable workload execu

However, they do require advanced knowledge of what interaction should occur and

not yet been applied to the non-textual interactions of a graphical user interface.

Similar problems occur when a SimOS-modeled computer communicates with

simulated computers. Client-server applications such as database engines and web

require interaction among networked machines, and SimOS provides the req
99
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communication capability. However, a SimOS machine is substantially slower than a

machine, resulting in network time-outs, poorly timed interaction, and unrepresent

communication patterns. Additionally, non-simulated machines are not under Sim

control, and their non-deterministic network interactions result in non-repeat

workload execution. To help address these problems, SimOS can model mu

machines simultaneously. Just as it interleaves the execution of a multiprocessor’s C

SimOS can interleave the execution of different machines’ CPU’s. All communicatio

this simulated distributed system occurs through normal network protocols and t

across a simulated LAN. This SimOS configuration better coordinates the mach

notions of time and provides deterministic execution of network-based worklo

Unfortunately, there is significant overhead to this approach and workload slowdow

proportional to the number of simulated machines.

6.2.4 Substantial implementation costs

Another limitation of the complete machine simulation approach that should no

overlooked is its substantial implementation cost. Complete machine simula

encompass significantly more functionality than most existing simulation tools, resu

in substantial programming, debugging, and code maintenance costs. As an examp

current version of SimOS consists of several hundred thousand lines of “C” code an

required several man-years of implementation effort. However, complete mac

simulation’s improved data accuracy and applicability warrant this cost. Additiona

complete machine simulation provides computer system behavioral information th

currently available only through the use of multiple orthogonal tools. This ability to us

single tool for several different research needs can ultimately reduce a research g

long-term tool implementation, training, and deployment costs.

6.3 Summary

In summary, our initial experiences with SimOS have been extremely positive. SimOS

enabled several investigations that were impossible with existing simulation tools

provides valuable infrastructure for many types of computer systems rese
100
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Furthermore, a public distribution of SimOS is leading to further adoption of the comp

machine simulation approach in both academic and commercial research. Hopefull

increased usage will lead to many more successful investigations as well as to add

techniques for coping with complete machine simulation’s limitations.
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Chapter 7

Related Work

This chapter compares complete machine simulation to other popular tools and techn

used to investigate computer system behavior. This chapter focuses on the three

important features of complete machine simulation; providing complete computer sy

behavioral information, providing behavioral information in a timely manner, and effic

converting low-level hardware data into higher-level workload information.

7.1 Providing complete computer system behavioral information

Several studies have recognized the importance of system-level behavior, empha

that it needs significantly more attention in hardware design and performa

investigations [Agarwal88] [Anderson91] [Chapin95a] [Ousterhout90]. However, tools

investigating computer system behavior have traditionally been able to observe on

user-level portion of a workload’s execution. To address this deficiency, a numbe

researchers have focussed on the development of new techniques and too

investigating complete computer system behavior. This section describes several of

techniques and tools and compares them to the complete machine simulation appro
103
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7.1.1 Trace-driven simulation

Trace-driven simulation is by far the most common technique for computer sys

investigation. Trace-driven simulation tools use software instrumentation and hard

monitoring to collect “traces” of an existing system’s dynamic execution behavior,

these traces provide input for hardware simulators. Software instrumentation has

been used to trace user-level programs, but recent advances have enabled its

investigating operating systems as well. For example, the Epoxie tool describe

[Chen94] can rewrite object files at link time to record a trace of instruction and mem

references. Epoxie addresses many of the challenges of rewriting kernel code an

record the complete memory system behavior of a workload. Similarly, the Patch

system described in [Perl97] rewrites binary executable images, “patching” them

code that generates complete address traces in a very compact format. PatchW

extremely fast and has supported investigations of the Windows NT operating sy

Other software instrumentation approaches capable of operating system tracing in

[Maynard94] and [Wall87].

Hardware-based trace collection is a more popular technique for collecting traces a

an workload’s entire execution. One of the earliest examples of a hardware-based

collection tool capable of operating system investigation is the ATUM syst

[Agarwal86]. In ATUM, the microcode of a VAX 8200 processor was modified to reco

the addresses of a workload’s memory references. However, reloadable microcode

longer popular, leading to the development of several new hardware-based trace coll

techniques. For example, the Monster [Nagle92] and BACH [Grimsrud93] syst

capture signals from modern CPUs to collect instruction and data address traces. A

popular approach utilizes memory bus-monitoring hardware [Chapin95a] [Torrella

[Vashaw92]. This hardware collects a trace of all memory bus traffic that occurs dur

workload’s execution. In each case, the traces include all operating system and use

activity, providing hardware simulators with the opportunity to investigate comp

computer system behavior.
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As described in Chapter 2, trace-driven simulation is often faster and easier to imple

than complete machine simulation. However, complete machine simulation’s exte

workload support, non-intrusive observation, and ability to propagate hardware ef

throughout the system provides more accurate behavioral information. To realize

advantages of both simulation approaches, complete machine simulation supp

trace-generation mode. Simple annotations save the desired trace information to a fi

provide input for the numerous trace-driven hardware simulators that already exist.

7.1.2 Hardware counters

A recent trend in CPU design is the inclusion of hardware to count the occurrenc

processor-related events. These hardware counters exist in most modern proc

including the Intel Pentium [Mathisen94], IBM Power2 [Welbon94], DEC Alph

[Digital95], HP PA-8000 [Hunt95], and MIPS R10000 [Zagha96], and can track s

processor events as cache and TLB misses, branch prediction behavior, and pipeline

Furthermore, the counters are integrated directly onto a processor, providing resu

very high speeds and with minimal intrusiveness. Hardware counters are often a

active, providing detailed information regarding all of a workload’s execution behav

[Chen95] provides an excellent example of the investigative opportunities that t

counters enable. In this research, the investigators utilized the Intel Pentium’s count

examine the performance characteristics of personal computer operating systems.

There are however some limitations to the effectiveness of hardware counters. Firs

foremost, these counters are not extensible; their data is restricted to just those even

were built into the hardware. Furthermore, hardware counters provide det

information regarding a workload behavior on existing processors, but are less effect

predicting the workload’s behavior on future hardware. Despite these limitations,

speed and visibility available with on-chip counters makes them a promising too

computer system investigation.
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7.1.3 Functional simulation

Also called instruction-level or program-driven simulation, functional simulators

software programs that fetch, decode, and execute processor instructions, applyi

results of each instruction to a conceptual target machine. Functional simulation

traditionally been applied to tasks without strict speed requirements such as hard

validation or the preservation of historical software [Burnet96]. Functional simulatio

also commonly used to investigate just the user-level behavior of applications. Po

examples of theseuser-level functional simulators are MINT [Veenstra94], PAINT

[Stoller96], Shade [Cmelik94], and Talisman [Bedichek95].

More recent research has extended functional simulators to the investigation

workload’s user- and kernel-level behavior. For example, [Anderson94]

[Poursepanj94] describe PowerPC instruction-set simulators capable of exec

commercial operating system and application code. Similarly, SimICS [Magnussen95

functional simulator capable of investigating SPARC-based applications and oper

systems.

Complete machine simulation builds upon these and other simulation efforts in an att

to extend the applicability and usefulness of functional simulation to additional field

computer systems research.

7.2 Providing simulation results in a timely manner

Speed is always a limiting factor in the effective simulation of computer hardware,

this section compares complete machine simulation’s techniques for providing tim

simulation results to related research efforts. Specifically, this section examines the

multiple levels of simulation speed and techniques for providing high-speed mac

simulation.

7.2.1 Utilizing multiple levels of simulation speed

One of the earliest tools to exploit the inherent trade-off between simulation speed

simulation detail was the Proteus system [Brewer92], an execution-driven, user-
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simulator that models MIMD multiprocessor systems. Proteus was designed with mo

interfaces that support the inclusion of interchangeable hardware component mode

compile-time users choose the model of each component that provides an appro

level of speed and detail. Complete machine simulation extends Proteus’s use of mu

levels of simulation speed by allowingdynamicselection of simulation components an

by extending its applicability beyond user-level simulation.

[Argade94] presents another interesting example of using multiple levels of simula

speed and detail. This system uses a combined hardware and software approach to

simulation data as quickly as possible. Their approach uses real hardware for high-

workload positioning. Once the workload is in an interesting state, the system can sa

hardware’s state to disk. Just like SimOS’s checkpoints, the hardware state provide

input to simulation models for more detailed system examination.

7.2.2 High-speed machine simulation

Critical to the success of complete machine simulation is the availability of high-sp

simulation modes that can be used for workload positioning. Several other resear

have recognized the importance of high-speed machine simulation and developed m

for providing it. For example, Talisman [Bedichek95] uses a technique called thre

code to perform very high-speed multicomputer simulation. Talisman is an impres

simulation environments, modeling full processor behavior and achieving timing accu

relative to a hardware prototype. While Talisman models a processor’s supervisor mo

does not support an operating system; it runs a subset of Intel’s NX message pa

library. As another example, Shade [Cmelik94] is a cross-architectural, instruction

simulator that can investigate the user-level behavior of most any SPARC applica

Shade uses dynamic translation of binary code as well as sophisticated code ca

techniques to achieve very high simulation speeds. As described earlier, Embra uses

of the techniques pioneered by Shade, extending them to support a full operating s

execution as well as multiprocessor workloads. Research into high-speed simu

techniques is becoming increasingly popular. In addition to its applicability to comp

system behavioral investigation, high-speed machine simulation techniques are
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widely applied to the domain of cross-platform application support [Hookway

[Insignia97] [Sun97].

As mentioned in the previous chapter, we are investigating the use of a multiprocesso

machine to speed up the simulation of multiprocessor target machine behavior. S

research projects have applied this approach to the investigation of user-level me

system behavior. For example, the Cerebus Multiprocessor Simulator [Brooks88] wa

of the first parallel implementations of a multiprocessor simulator and was use

investigate the behavior of parallel algorithms on configurable memory systems. Simi

Tango Lite supports a parallel execution mode where each target processor is model

single thread of execution that can run concurrently with other threads. The thr

communicate with each other at the memory system level to allow the investigatio

program behavior and cache coherence protocols. As another interesting examp

Wisconsin Wind Tunnel [Reinhardt93] uses the memory ECC bits on a Think

Machines CM-5 to quickly estimate the cache behavior of large parallel progra

Regardless of the implementation, it is clear that parallel simulator execution is ess

to the timely investigation of large multiprocessors and distributed systems. Future Si

implementations will build upon these existing tools to more fully apply parallelization

the complete machine simulation approach.

7.3 Managing low-level simulation data

Every computer simulation tool faces the challenge of converting hardware-l

simulator data into more useful behavioral information. This section compares Sim

approach of investigation-specific data management to related simulation

management efforts. Specifically, it examines the conversion of low-level hardware

into higher level workload information and the use of investigation-specific d

management to reduce the overhead of this conversion.

7.3.1 Workload-level data classification and reporting

SimOS classifies low-level hardware data into higher level information that is more us

to an investigator. Numerous tools have recognized this need and implemented dif
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forms of data mapping functionality. For example, gprof [Graham83] is an execu

profiling tool that assigns processor time to an application’s procedures. Gprof instrum

an application’s procedures to generate a procedure call graph at run time and

program counter sampling to provide a statistical estimate of where an application sp

its time. Furthermore, this information is categorized by procedure and offers a high

view of where a program may be best optimized.

Memspy [Martonosi92] is another tool that converts low-level hardware data

application-oriented information. Like gprof, Memspy uses software instrumentatio

indicate the entry and exit point to all of an application’s procedures. At run-time,

additional code helps create a tree-based decomposition of the application’s exe

activity. Additionally, each application uses modified calls tomalloc() and free() to

track which ranges of memory correspond to different data structures. Memspy use

higher-level workload knowledge to charge all cache misses to the responsible proce

and data structures. FLASHPoint [Martonosi96] provides similar data classifica

relying on a programmable memory system controller to charge cache misses t

responsible procedures and data structures. The application-oriented inform

generated by these tools helps an investigator understand and improve the memory

behavior of an application and inspired the creation of SimOS’s address tables and t

trees.

Researchers have also focussed on mapping low-level hardware data to higher

workload information in trace-based simulations. The typical approach is to expli

alter a workload to incorporate higher-level workload information into the trace.

example, the hardware monitor used in [Chapin95a] and [Torrellas92] could only ca

memory references that reached the memory bus. To provide knowledge of workload

concepts, the operating system was heavily modified to output uncached refer

indicating the entry and exit points to important procedure. This additional informa

allowed cache and memory system behavior to be categorized by the respo

operating system procedure.
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7.3.2 Customized data management overheads

In addition to providing workload-level behavioral information, a simulation’s da

management must be as efficient as possible. Complete machine simulation’s appro

minimizing the overhead of data management is similar to code annotation tools su

ATOM [Srivastava94], EEL [Larus95], ETCH [Romer97], MINT++ [Veenstra97], an

TracePoint [TracePoint97]. These tools provide flexible interfaces that enable use

annotate an application’s individual instructions, basic blocks, and data references. J

in SimOS, these annotations can count and classify events as well as query machine

Furthermore, if no annotation is inserted at a given location, these tools do not ad

code, allowing the minimal degree of data management overhead for a parti

application and investigation.

Paradyn [Miller95] provides another interesting example of the interaction between

collection and simulation speed. Paradyn is an execution-driven performance mea

tool designed for the investigation of parallel and distributed programs. Para

dynamically instruments an application to collect various types of performance d

During the execution of an application, Paradyn recognizes troublesome sections o

and directs the event generation mechanism (a code annotator) to produce more d

events for processing. This allows Paradyn provide the minimal level of data proce

needed to properly investigate an application’s execution behavior, minimizing the

required to perform this investigation.
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Chapter 8

Conclusions

The research described in this dissertation attempts to help investigators better unde

the behavior of increasingly complex computer systems. This dissertation argues

complete machine simulation is an effective approach for gathering the informa

needed for this understanding. In support of this argument, the work described in

dissertation makes three primary contributions:

• Demonstration of the significant benefits that complete machine simulation

provides to many types of computer systems research.

Complete machine simulation offers several benefits to computer systems res

including extensive workload support, accurate machine modeling,

comprehensive data collection. Our experiences with the SimOS implementatio

complete machine simulator have shown these benefits to be quite valuable, en

several studies not possible with existing tools and techniques.

• Demonstration that adjustable levels of simulation speed and detail help

complete machine simulation provide timely data.

The biggest challenge facing complete machine simulation’s acceptance i

performance, and this work demonstrates how adjustable simulation speed and
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characteristics address this challenge. In implementing the SimOS versio

adjustable simulation characteristics, this work recognizes the importance of

general simulation execution modes and the ability to dynamically switch betw

them during the course of a workload’s execution.

• Specification and implementation of efficient and flexible mechanisms for

addressing complete machine simulation’s data management challenges.

The other major challenge for complete machine simulation is efficient conversio

hardware-level data into higher level computer system behavioral information, and

work demonstrates how supporting investigation-specific data management add

this challenge. Specifically, this work introduces efficient and flexible mechanisms

allow an investigator to customize all simulation data classification and reportin

meet the specific needs of their study.

Complete machine simulation has fundamentally changed the way that we per

computer systems research at Stanford University: architectural evaluations are d

with more representative workloads, operating system design occurs on a more fle

and forgiving platform, and application performance tuning efforts incorporate all rele

behavioral information. Furthermore, we are extending SimOS to support several

architectures and operating systems and are freely distributing the SimOS source

The goals of this public distribution are to enable new computer system investigation

to encourage complete machine simulation’s acceptance as a critical compone

modern computer systems research.
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