USING COMPLETE MACHINE SIMULATION TO
UNDERSTAND COMPUTER SYSTEM BEHAVIOR

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Stephen Alan Herrod
February 1998

Copyright © 1998
by
Stephen Alan Herrod
All Rights Reserved

| certify that | have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Dr. Mendel Rosenblum, Principal Advisor

| certify that | have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Dr. Anoop Gupta

| certify that | have read this dissertation and that in my opinion it is fully adequate, in

scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Dr. Kunle Olukotun

Approved for the University Committee on Graduate Studies:

Abstract

This dissertation describes complete machine simulation, a novel approach to
understanding the behavior of modern computer systems. Complete machine simulation
differs from existing simulation tools by modeliradl of the hardware found in a typical
computer system. This allows it to help investigators better understand the behavior of
machines running commercial operating systems as well as any application designed for
these operating systems. These include database management systems, web servers, and
other operating system-intensive applications that are important to computer system
research. In contrast, most existing simulation tools model only limited portions of a
computer’s hardware and cannot support the accurate investigation of these workloads. In
addition to extensive workload support, the complete machine simulation approach
permits significant hardware modeling flexibility and provides detailed information
regarding the behavior of this hardware. This combination of features has widespread
applicability, providing benefits to such research domains as hardware design, operating

system development, and application performance tuning.

Although machine simulation is a well-established technique, it has traditionally been
limited to less ambitious use. Complete machine simulation extends the applicability of
traditional machine simulation techniques by addressing two difficult challenges. The first
challenge is to achieve the speed needed to investigate complex, long-running workloads.
To address this challenge, complete machine simulation allows an investigator to
dynamically adjust the characteristics of its hardware simulation. There is an inherent
trade-off between the level of detail that a hardware simulator models and the speed at
which it runs, and complete machine simulation provides users with explicit control over
this trade-off. An investigator can select a high-speed, low-detail simulation setting to
quickly pass through uninteresting portions of a workload’s execution. Once the workload
has reached a more interesting execution state, an investigator can switch to slower, more

detailed simulation to obtain behavioral information.

The second challenge is to efficiently organize low-level hardware simulation data into
information that is more meaningful to an investigation. Complete machine simulation
addresses this challenge by providing mechanisms that allow a user to easily incorporate
higher-level workload knowledge into the data management process. These mechanisms
are efficient and further improve simulation speed by customizing all data collection and

reporting to the specific needs of an investigation.

To realize the benefits of complete machine simulation and to demonstrate effective
solutions to its challenges, this dissertation describes the SimOS complete machine
simulator. The initial version of SImOS models uniprocessor and multiprocessor computer
systems in enough detail to run Silicon Graphics’'s IRIX operating system as well as the
large class of applications designed for this platform. Furthermore, recent versions of
SimOS support additional architectures and operating systems. Our early experiences with
SimOS have been extremely positive. In use for several years, SImOS has enabled several
studies not possible with existing tools and has demonstrated the effectiveness of the

complete machine simulation approach.

Vi

Acknowledgments

| would like to thank several people who have made my time at Stanford both an enjoyable
and rewarding experience. First, | would like to thank my advisor, Mendel Rosenblum, for
his guidance throughout my graduate career. He has been a vocal supporter of SImOS
since its humble beginnings and has made significant contributions throughout its lifetime.
Furthermore, he has motivated me throughout the Ph.D. process and has taught me how to
perform modern computer systems research. | would also like to thank Mendel, Anoop
Gupta and Kunle Olukotun for their participation on my reading committee. Their

comments have greatly improved the quality of this dissertation.

The students in the Hive and Disco operating system groups have been the heaviest users
of SImOS, and have all contributed to its success. A few students have made especially
significant contributions and deserve special mention. Emmett Witchel is largely
responsible for the Embra CPU simulator. He was an early contributor to the SimOS
effort, and his legacy continues long after his departure for colder lands. Ed Bugnion and
Scott Devine also joined the SImOS effort early in its development. They have contributed
heauvily to its design both through substantial coding and through vociferous participation

in extensive arguments over its features and direction.

| would also like to thank the National Science Foundation and the Intel Foundation for
the graduate research fellowships that supported me at Stanford, ARPA for funding this
project in contract DABT63-94-C-0054, and Silicon Graphics for the machines and IRIX

source code with which SImOS was developed.

On a more personal note, the entire FLASH group has helped make my Stanford years
among the most enjoyable of my life. Specific thanks to Robert Bosch, Ed Bugnion, John
Chapin, Scott Devine, Kinshuk Govil, Beth Seamans, Dan Teodosiu, Ben Verghese, Ben
Werther, and the entire softball team for many years of Tressider lunches, quasi-

competitive sports outings, and ice-cold frappuccinos. Special appreciation goes to my

vii

officemates, John Heinlein and Robert Bosch, for putting up with many hours of stories,

jokes, complaints, and gossip.

Thanks also goes to the folks at Rains #14H for improving life away from the computer.
Paul Lemoine, Randall Eike, Ulrich Thonemann, Steve Fleischer, Michael Youssefmir,
and Karl Pfleger have all helped delay my graduation date through coffee, frisbee, DOOM,
rice goop, tennis, golf, C&C, and many nights out on the town. Roommates come and go,

but these friends have remained long after the boxes were packed.

| also thank my parents, Ted and Andrea, and the rest of my family for unwavering
encouragement while | spent time far away from home. Without all of their support,

“vacationing” from Texas would have been much more difficult.

Finally, 1 thank my wife Flavia for being right by my side throughout the long graduate
school process. She is both an inspiration and an ever-faithful companion with whom |

will remain long after “See-mose” is gone.

viii

Table of Contents

Chapter 1. Introduction 1
1.1 The challenge: Understanding computer system behavior. 2
1.2 Techniques for investigating computer system behavior. 3
1.3 Complete machine simulation 5
1.3.1 Benefits 6
1.3.2 Importantfeatures i 8
1.4 SIMOS. .. 9
1.5 Operating system-intensive workloads. 10
1.6 Additional terminology 12
1.7 Organization of this dissertation. 12
Chapter 2. Motivation 15
2.0 HiStOry . o 16
2.2 Benefits for computer systemsresearch., 17
2.21 Hardware design 18
2.2.2 Operating system development 21
2.2.3 Application performancetuning 23
2.3 SUMMALY. . .ot e e e e e 25
Chapter 3. Functional and Flexible Hardware Simulation 27
3.1 Hardware simulationtasks. 28
3.1.1 Providing software-visible functionality 28
3.1.2 Supporting configurable implementation details. 30
3.2 SImOS hardware simulation. 31
3.2.1 Providing software-visible functionality 31
3.2.2 Supporting configurable implementation details. 35
3.3 SUMMIAIY. . . ot e e e e e 37
Chapter 4. Dynamically Adjustable Simulation Speed and Detail 39
4.1 The performance challenge 40
4.2 The solution: Dynamically adjustable simulation speed and detail 41
4.3 Implementation. 42
4.3.1 Simulator execution modes 43
4.3.2 Dynamic simulator execution mode selection................... 45
4.4 SIimOS’s simulator execution modes 46
441 PoOSItioONINg MOAEot 46
4.4.2 Rough characterizationmode. 49
443 Accurate MOde 50
444 PerformanCe. 55
4.5 SUMMAIY. . ottt e e e e e e 59

Chapter 5. Efficient Management of Low-Level Simulation Data 61

5.1 Datamanagementchallenges. 61
5.2 The solution: Investigation-specific data management 63
5.3 SimOS’'simplementation 64
5.4 Event-processing Mechanisms 67
541 ANNOtatiONSo 68
5.4.2 Bucketselectors. 72
543 Addresstables 75
544 Eventfilters 78
5.5 Building higher-level mechanisms. L. 80
55.1 Annotation layering 80
552 TiMINGIrEeS 82
5.6 Data management’s performance impact. 84
5.7 SUMMANY. . . o e e e e e 86
Chapter 6. Experiences 87
6.1 Investigations enabled by SImOS. 87
6.1.1 Characterization of IRIX’s performance 88
6.1.2 Design of the FLASH multiprocessor 91
6.1.3 Hive operating system development 92
6.1.4 Improving the SUIF parallelizing compiler. 94
6.2 Limitations of complete machine simulation. 97
6.2.1 Poorscalability. 97
6.2.2 Non-compatible changes require substantial implementation. 98
6.2.3 Interaction with the non-simulatedworld 99
6.2.4 Substantial implementationcosts. L. 100
6.3 SUMMANY. . . oo 100
Chapter 7. Related Work 103
7.1 Providing complete computer system behavioral information. 103
7.1.1 Trace-drivensimulation............. 104
7.1.2 Hardware COUNTErS e e 105
7.1.3 Functional simulation. 106
7.2 Providing simulation results in atimely manner, 106
7.2.1 Utilizing multiple levels of simulationspeed 106
7.2.2 High-speed machine simulation. 107
7.3 Managing low-level simulationdata 108
7.3.1 Workload-level data classification and reporting 108
7.3.2 Customized data managementoverheads 110
Chapter 8. Conclusions 111
References 113

List of Tables

Table 4.1.
Table 4.2.
Table 5.1.
Table 5.2.

SimOS performance when modeling a uniprocessor
SimOS performance when modeling a multiprocessor
Operating system library detail levels

Event-processing overheads for the compilation workload

Xiii

Xiv

List of Figures

Figure 1.1.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4,
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5.4.
Figure 5.5.
Figure 5.6.
Figure 5.7.
Figure 5.8.
Figure 6.1.
Figure 6.2.

Complete machine simulation 5
SimOS memory system functionality 32
SimOS’s copy-on-write disk simulatonmode 34
Modular hardware simulation 35
The simulation speed-detail trade-off 42
Simulator execution modes 44
Embra’s dynamic binary translation a7
Embra’s subsumption of multiple hardware component simulators 48
Extending Embra’s translations with additional detail 50
Structure of the Mipsy CPU simulator. 51
Modifications required for multiprocessor support. 53
The complete machine simulation data management process 66
Overview of SImOS event-processing mechanisms 68
Processor mode bucketselector 74
Code- and data-driven addresstables 77
Cache misseventfilter 79
Creation of process-related eventsanddata. 81
Tree-based decomposition of a simple application 82
Example timing tree decomposition, 83
lllustration of information generated in rough characterization mode. . . 89
Structure of SUIF-generated applications 96

XV

XVi

Chapter 1
Introduction

This dissertation describes complete machine simulation, a novel approach to helping
researchers understand the behavior of modern computer systems. Complete machine
simulation differs from existing simulation approaches in that it models all of the
hardware typically found in a computer system. As a result, it can boot, run, and
investigate the behavior of machines running a fully functional operating system as well as
any application designed to run on this operating system. This includes database
management systems, web servers, and other operating system-intensive applications that
are important to computer system researchers. In contrast, most existing simulation tools
model only limited portions of a computer’s hardware and cannot enable the same breadth

and quality of investigation available through the use of complete machine simulation.

This dissertation argues that complete machine simulation approach is an effective tool for
computer system investigations. In support of this argument, the work described in this

dissertation makes three primary contributions:

* Demonstration of the significant benefits that complete machine simulation

provides to many types of computer systems research.

Complete machine simulation offers several benefits to computer systems research

including extensive workload support, accurate and flexible machine modeling, and

comprehensive data collection capabilities. Our experiences with complete machine
simulation have shown these benefits to be quite valuable, allowing us to perform

studies not possible with existing tools and techniques.

Demonstration that adjustable levels of simulation speed and detail help

complete machine simulation provide results as quickly as possible.

The biggest challenge facing complete machine simulation’s acceptance is its
performance, and this work demonstrates how adjustable simulation speed and detail
characteristics address this challenge. Specifically, this work recognizes the
importance of three specific simulation execution modes and the ability to dynamically

switch between them during the course of a workload’s execution.

Specification and implementation of mechanisms for addressing complete

machine simulation’s data management challenges.

Another challenge for complete machine simulation is efficient conversion of
hardware-level data into higher level behavioral information, and this work
demonstrates how supporting investigation-specific data management addresses this
challenge. Specifically, this work introduces efficient and flexible mechanisms that
allow an investigator to customize all simulation data classification and reporting to

meet the specific needs of their study.

1.1 The challenge: Understanding computer system behavior

The complexity of modern computer systems presents a challenge to researchers

interested in understanding their behavior. In the continual pursuit of higher performance,

hardware implementations are growing increasingly complex and the effects of individual

architectural features are difficult to ascertain. The close interaction of complex

applications and operating systems with this hardware further complicates efforts to

understand system behavior.

Effective computer system behavioral information is required in several different

investigative domains and takes different forms accordingly. For example, computer

architects need to understand the effects of potential architectural features on the behavior
of important workloads. Detailed hardware performance information regarding these
features is critical for selecting an appropriate architectural design. Similarly, software
engineers are continually striving to improve the performance of applications.
Understanding the run-time behavior of an application, including its interaction with its
supporting hardware and operating system, helps focus the software engineering effort
towards modifications most likely to yield significant improvement. Finally, operating
system designers must continuously provide additional services and improved
performance in their product. Information concerning the operating system’s interaction
with the hardware platform and with its supported applications is essential to both of these
endeavors. The challenge facing all computer system researchers is thus to obtain the
information that best helps them understand increasingly complex computer system
behavior, and the development and use of complete machine simulation is directly

motivated by this challenge.

1.2 Techniques for investigating computer system behavior

Driven by the need for information regarding a computer system’s behavior, researchers
and designers have utilized several different approaches. These techniques and tools, each
of which has strengths and weaknesses, fit into the broad categories of analytic modeling,

hardware prototyping, and software simulation.

Analytic modeling

Analytic models are mathematical approximations of the behavior of complex systems.
These models are often used for analyzing higher-level system issues. For example, an
analytic model might be used to understand a disk drive’s queuing behavior as it satisfies
read requests arriving at probabilistic intervals. When an analytic model can be devised for
a particular investigation, their results can be valuable. However, they have limited
applicability to many computer system investigations. Analytic models typically break
down when looking at detailed hardware and software interactions, requiring too many
simplifying approximations to provide the accurate behavioral information required by

computer architects and software engineers.

Hardware prototyping

Hardware prototyping is a more commonly used technique for understanding computer
system behavior, especially in architectural design investigations. Hardware prototyping
consists of designing and building a hardware component and including mechanisms for
self-observation. The hardware prototype is integrated into an existing computer system
and exercised by driving the system with applications. The applications act as input data
for the prototype’s observing mechanisms, and the resulting data describes the prototype’s

behavior.

Hardware prototypes are good at collecting very low-level, focused behavioral
information and can collect this data at very high speeds, but there are also several
limitations to their use. First, building hardware prototypes is both time-consuming and
expensive, and many investigations can not afford the required time or financial
commitment. More importantly, hardware prototypes have restricted flexibility: it is
difficult to significantly reconfigure hardware, and thus a prototype is restricted to

architectural investigations that fall within its own limited domain.

Software simulation

Because it addresses many of the deficiencies of analytic modeling and hardware
prototyping, software simulation is the most popular method of testing, evaluating, and
designing modern computer systems. Software simulation involves modeling some of the
functionality and behavior of a computer system completely in software and then driving
this model with appropriate input data. For brevity’s sake, software simulation is hereafter

referred to simply as simulation.

Unlike analytic models, simulation can model complex hardware and software
interactions very accurately. Unlike hardware prototyping, simulation is extremely flexible
and capable of modeling a wide domain architectural designs and configurations. Even in
cases where it is possible to build a hardware prototype of a given design, a
comprehensive simulation of the same hardware is both less expensive and less time-
consuming to develop. In addition to flexibly modeling the behavior of hardware,

simulation models also include code to collect information regarding the hardware’s

| Applications |
| Operating System |

Behavioral
Data

Complete Machine Simulator

Host Computer System

Figure 1.1. Complete machine simulation

activity. A simulation model has tremendous visibility into its own behavior and can

potentially provide accurate behavioral information.

Simulation’s flexibility and visibility make it an attractive tool, and it is used in almost
every stage of investigating a computer system; from the evaluation of research ideas, to
the verification of the hardware design, to performance tuning once the system has been
built. However, simulation does have its own weaknesses, the primary of which is speed.
The exact flexibility and visibility that make simulation attractive can also make it several
orders of magnitude slower than a hardware implementation. If simulation cannot provide
behavioral information in a timely manner, its usefulness to researchers and designers is
significantly decreased. To address this problem, existing simulation tools typically model
only limited portions of a computer’s hardware. This limited modeling approach simplifies
the simulator implementation effort and improves the speed at which simulators provide

their data, but also affects the quality and applicability of the simulator’s results.

1.3 Complete machine simulation

As illustrated in Figure 1.1, a complete machine simulator is simply a program that runs
on top of existing host computer systems and models all of the hardware found in a
modern computer system. The use of this program is relatively straightforward. First, the
user specifies the characteristics of the exact “target” machine that the complete machine

simulator should model. These characteristics include processor architecture model,

processor clock speed, cache configuration, disk seek time, memory system bus
bandwidth, and numerous other parameters. The resulting software-based machine can
boot and run an operating system and provides the illusion of being just another computer
system. For example, an investigator can log into the simulated computer system and then
run any applications that have been installed on the simulated computer’s file system.
While a complete machine simulator provides the outward appearance of being a normal
computer system, internally it collects detailed hardware behavioral data only available
through the use of simulation. This data is subsequently used to better understand some

aspect of the computer system'’s behavior.
1.3.1 Benefits

Complete machine simulation differs from existing simulation tools in that it madiets
the hardware found in a typical computer system. This feature provides several benefits for

computer system investigators:
» Extensive workload support

By modeling all of the hardware found in an existing computer system, a complete
machine simulator can support the full execution of an operating system designed for
that computer system. Furthermore, by supporting the execution of an existing
operating system, the complete machine simulator can support the investigation of
virtually any application designed for that operating system. This includes traditional
performance benchmark applications such as those in SPEC, but also more complex,
operating system-intensive applications such as database management systems and
web servers. The latter applications are important to many types of computer system

research, yet are poorly supported by existing tools.
» Accurate and flexible machine modeling

By modeling all of the hardware found in a computer system, complete machine
simulation also provides accurate machine modeling capabilities. One of the strengths
of any software simulation tool is the ability to model the behavior of present and

future hardware designs with significant detail. Complete machine simulation fully

exploits this flexibility and allows an investigator to customize every aspect of the
simulated machine’s behavior to match that of a specific target computer system. The
ability to accurately model both present and future hardware designs enables complete

machine simulation’s use in a variety of architectural investigations.
* Comprehensive data collection

Software simulation provides tremendous visibility into the behavior of the hardware
it models. By modeling all of a computer’s hardware, complete machine simulation
extends this visibility to every aspect of a computer system’s execution. As a result,
complete machine simulation can provide detailed information regarding every aspect
of the modeled computer system’s execution behavior. This includes hardware activity
as well as the behavior of the software that this hardware supports. Each hardware
model can be augmented with code to collect detailed statistics regarding their
behavior during workload execution. Furthermore, this information can be obtained
non-intrusively. The act of observing the simulated computer’s behavior in no way

affects its execution, allowing both detailed and accurate statistics collection.

Because it encompasses more functionality than existing simulation tools, the complete
machine simulation approach is applicable to a broad class of computer system
investigations. Computer architects can evaluate the impact of new hardware designs on
the performance of complex workloads by modifying the configuration of the simulated
hardware components. Operating system programmers can develop their software in an
environment that provides the same interface as the targeted computer platform, while
taking advantage of the visibility offered by a simulation environment. Programmers can
collect detailed information that describes the dynamic execution behavior of complex
applications and use this information to improve their performance. Furthermore, the
ability to use a single tool across all of these domains is a benefit in its own right, reducing
the implementation, training, and deployment costs associated with the use of multiple

investigative tools.

1.3.2 Important features

The idea of simulating all of the hardware in a computer is not new. For example,
computer system designers have long used machine simulation techniques to aid in
architectural validation. However, three important features help complete machine
simulation extend the applicability of machine simulation techniques to more ambitious

use:
* Functional and flexible hardware simulation

One of the most important goals of complete machine simulation is support for the
investigation of important workloads executing on configurable computer hardware.
Complete machine simulation satisfies this goal by supporting both functional and
flexible hardware simulation. Specifically, a complete machine simulator implements
the exact hardware interfaces found on existing machines, allowing it to execute
unmodified operating system and application binaries. While providing this hardware
functionality, complete machine simulation gives a user substantial control over the
specific implementation details of the simulated hardware. As a result, an investigator
can examine a wide variety of workloads as they execute on very specific architectural

configurations.
* Dynamically adjustable simulation speed and detalil

Complete machine simulation can provide extremely detailed information regarding
the behavior of a target computer system, but the benefits of this information are
greatly mitigated if it takes an excessively long amount of time to obtain. To address
this challenge, a complete machine simulation implementation can allow an
investigator to dynamically adjust the characteristics of its hardware simulation. There
is an inherent trade-off between the level of detail that a hardware simulator provides
and the speed at which it provides this detail, and an effective complete machine
simulator provides users with explicit control over this trade-off. An investigator can

select a high-speed, low-detail simulation setting to quickly pass through uninteresting

portions of a workload’s execution. Once the workload has reached a more interesting

execution state, an investigator can switch to slower, more detailed simulation to
obtain accurate and detailed behavioral results. This feature allows users to select the
exact level of detail required at each stage of an investigation, maximizing the speed at

which this data is obtained.
» Efficient management of low-level simulation data

A complete machine simulator has excellent potential for providing an investigator
with detailed computer system behavioral data because it “sees” all of the hardware
activity that occurs during a workload’s execution. This includes the execution of
instructions, MMU exceptions, cache misses, CPU pipeline stalls, and many other
facets of machine behavior. Hardware simulators can be easily augmented with code
to measure this activity, but there are two challenges associated with this approach.
First, hardware data is often at too low of a level to be meaningful to many
investigations. Additionally, this data is generated at a very high rate and efforts to
monitor and organize it can significantly slow down a simulation. To address these
challenges, a complete machine simulator can provide flexible mechanisms for
organizing complete machine simulation’s hardware-level data into more meaningful
software-level information. Furthermore, these mechanisms can be highly efficient,

minimizing the overhead of their data manipulation.

1.4 SimOS

To demonstrate the capabilities and benefits of complete machine simulation, this
dissertation introduces SimOS. The SimOS project started in 1992 with the goal of
building a tool capable of studying the execution behavior of modern workloads.
Recognizing the limitations of our existing tools, we designed SimOS to be a complete
machine simulator. The initial version of SimOS modeled entire uniprocessor and
multiprocessor computer systems that are capable of booting and running IRIX, an
implementation of SVR4 Unix developed by Silicon Graphics. By running the IRIX

operating system, a SimOS-modeled computer system is binary-compatible with

computer systems shipped by Silicon Graphics, and can support the execution of almost

any program designed for that platform. More recent versions of SImOS model DEC
Alpha-based machines in enough detail to boot and run DEC Unix, and efforts to support

additional architectures and operating systems are well underway.

To provide functional and flexible hardware simulation, SImOS takes a modular approach
to machine simulation. SimOS includes well-defined interfaces for the development and
inclusion of multiple CPU, memory system, and I/O device models. Each model provides

the functionality required to execute operating systems and applications, but provides this

functionality while modeling widely varying hardware implementation details.

To provide adjustable simulation speed and detail, SImOS utilizes a combination of
compatible hardware simulation models. These models use high-speed machine emulation
techniques as well as more traditional hardware simulation techniques to support three

important modes of simulator usage.

To provide flexible and efficient data management, SImOS incorporates a Tcl scripting
language interpreter customized to support hardware data classification. SimOS users
create investigation-specific Tcl scripts that interact closely with the hardware simulation

models to control all data recording and classification.

SimOS has been heavily used for several years and has enabled several studies previously
inaccessible to computer system researchers. In addition to describing several of these
studies, this dissertation will introduce several limitations that we have encountered with
the complete machine simulation approach and suggest possible research directions for

addressing them.

1.5 Operating system-intensive workloads

As mentioned above, one of the most important benefits of complete machine simulation
is its support for the investigation @perating system-intensiweorkloads. This term is

used frequently in this dissertation and deserves further description. Operating system-
intensive workloads consist of applications that spend a substantial portion of their

execution time in operating system code. This execution behavior may be due to explicit

10

use of operating system services or to secondary effects such as multiprogrammed process

scheduling or interrupt processing.

Two examples of operating system-intensive applications that are referred to in this
dissertation are database management systems and web servers. Database management
systems are among the most heavily used applications on modern computer systems, and
their execution consists of substantial operating system activity. Database management
systems typically consists of multiple processes, and the scheduling of these processes is
the job of the operating system. Additionally, database management systems often have
significant file system activity, accessing the database tables as well as writing to a commit
log file to indicate the completion of each transaction. The operating system is responsible
for managing much of this activity, scheduling disk requests and responding to interrupts
indicating disk access completion. Finally, database management systems often execute in
a client-server environment where remote applications make requests of the database
management system via a network connection. As a result, significant execution time can
occur in the operating system’s networking code, receiving and replying to these requests.
The impact of this heavy usage of operating system services can be quite significant. For
example, an investigation into the behavior of a typical database transaction processing
workload found that it spends close to 40% of its execution time running operating system

code [Rosenblum95].

Another important application whose execution consists of significant operating system
activity is a web server. Web servers rely quite heavily on an operating system’s
networking services for accepting and responding to HyperText Transport Protocol
(HTTP) requests. Web servers also include significant file system activity accessing
requested web pages and saving the requests to an access log. Furthermore, many web
servers are consist of multiple processes to allow concurrent handling of HTTP requests.
The scheduling of these processes of course has significant impact on the behavior of the
server. Together, these characteristics make the performance of a web server extremely
dependent on the behavior of the operating system. For example, a simple investigation of

the popular Zeus web server [Zeus97] indicates that it spends more than 70% of its total

11

execution time in operating system code when running the Webstone benchmark
[Trent95].

In these and other examples, workload behavior is largely determined by the operating
system activity that occurs during its execution. As such, tools that can not include
operating system effects are often unable to provide the information needed to properly

understand the behavior of this important class of workload.

1.6 Additional terminology

Discussion of a simulator that runs on one computer system and models a completely
different computer system can be confusing. To help reduce this confusion, this section
provides an early introduction to the terminology used throughout this dissertation. When
discussing the use of complete machine simulation, tbst computer systens the
hardware and operating system supporting the execution of the simulation tool. In
discussing the complete machine simulator itself, tdrget machinas a collection of
simulated hardware components configured to model a particular computer
implementation. The operating system running on top of this target machinetargfe¢

operating systeniThese two components combine to formtdrget computer system

In discussing specific investigations that utilize complete machine simulation, an
applicationis a single instance of a user-level program. The temnkloadrefers to one
or more applications and includes all of the operating system activity that occurs during
their execution. A single execution of the simulator is referred to asxperimentand an

investigationconsists of one or more related experiments.

1.7 Organization of this dissertation

The rest of this dissertation is organized as follows:

» Chapter 2 provides further motivation for the use of complete machine simulation by

describing how it benefits several fields of computer systems research.

12

Chapter 3 describes the need for functional and flexible hardware simulation and how

SimOS’s modular simulation approach satisfies this need.

Chapter 4 describes the challenge of quickly obtaining simulation results and how

adjustable levels of simulation speed and detail can address this challenge.

Chapter 5 describes the data management challenges facing complete machine
simulation and the SimOS mechanisms for efficiently organizing hardware-level data

into information customized to the needs of an investigation.

Chapter 6 discusses our experiences with SimOS. In addition to describing how
several different investigations benefited from the use of SimOS, this chapter describes
limitations that we have encountered with SImOS and the complete machine

simulation approach.

Chapters 7 and 8 conclude the dissertation with a survey of related work and a

summary of this research’s contributions.

13

14

Chapter 2
Motivation

The previous chapter provides an overview of complete machine simulation and briefly
introduces three of its benefits: extensive workload support, flexible and accurate
architectural modeling, and comprehensive data collection. This chapter provides more
concrete motivation for the development and use of complete machine simulation by
describing how these benefits apply to modern computer systems research. The first part
of this chapter describes the original needs that sparked the development of a new
investigative approach. The SimOS implementation of complete machine simulation
addressed these original needs and proved advantageous to other types of research as well.
The second part of this chapter further motivates the development and use of complete
machine simulation by describing its applicability to three diverse fields of computer
systems research: hardware design, operating system development, and application
performance tuning. SImOS provides unique benefits to each field, enabling several
studies not possible with existing tools and techniques. Furthermore, the fact that a single
tool can address such a wide variety of research needs is a benefit in its own right.
Computer researchers typically utilize several different tools, each designed to address
specific investigative needs. By addressing several needs with a single tool, complete
machine simulation can reduce a research group’s tool implementation, training, and

deployment costs

15

2.1 History

The development of the SImOS complete machine simulator began in 1992 to fill a void in
our existing tool set. One of our research group’s original goals was a thorough
investigation of the cache and memory system behavior of modern workloads. At that
time, the best available tool for this task was Tango Lite [Goldschmidt93]. Tango Lite is an
execution-driven simulation environment designed to model the behavior of parallel
programs. Tango Lite obtains memory system behavioral information by rewriting an
application’s assembly code, instrumenting load and store instructions with calls to a
configurable memory system simulator. The instrumented application is compiled and
executed on an existing computer system. At run-time, the instrumented application
passes memory reference addresses to the user-defined memory system, allowing the
determination of cache hit rates, memory sharing patterns, and other aspects of the

application’s memory system behavior.

While Tango Lite is an effective tool for investigating scientific applications such as those
found in SPLASH [Wo0095], several factors limit its usefulness for studying other
important workloads. First, Tango Lite requires access to an application’s source code to
make it utilize a special macro package [Boyle87] and to instrument its memory
references. However, many applications, especially those in the commercial sector, are
only available in binary form. Even if Tango Lite could instrument application binaries, it
would still suffer from its design as aser-levelsimulator. User-level simulators can
investigate the behavior of an application itself, but ignore all operating system activity
that normally occurs during the application’s execution. For example, user-level
simulators implement “perfect” system calls where kernel functionality is provided
without actually running operating system code. Similarly, operating system activity such
as virtual address translations, exceptions, and device interrupts is either omitted or

somehow “faked” by the simulator.

Furthermore, user-level simulators typically model only a single application process at a
time and can not include the effects of operating system process scheduling. The omission

of operating system activity is often acceptable in the investigation of scientific

16

applications as they typically make very few system calls and their execution requires
minimal operating system activity. However, applications such as database management
systems and web servers have significant operating system activity, and the inability to
include this activity compromises the accuracy and applicability of user-level simulation

tools.

These limitations directly motivated the development of the SimOS complete machine
simulator. The initial goals were to support application investigations without access to
their source code, to observe all of the application’s operating system activity, and to
support the investigation of multiprogrammed and other operating system-intensive
workloads. Simulating all of the hardware found in a computer system seemed to be a
feasible approach as it could certainly model highly configurable memory systems and
could also support the execution of a complete operating system. Supporting the execution
of an operating system would in turn allow it to support the execution of any type of
workload designed to run on this operating system. Furthermore, software simulation
would allow us to observe and measure all of the workload’s user-level and operating
system-level activity. During the development of this complete machine simulator, we
began to recognize the benefits that such an approach could provide to other types of
computer systems research as well. To fully explore these benefits, the development of
complete machine simulation became a research project in its own right, with active

exploration of its capabilities continuing to this day.

2.2 Benefits for computer systems research

While complete machine simulation was initially developed to investigate the memory
system behavior of modern workloads, it has proven to be advantageous to other domains
of research as well. This section provides further motivation for the development and use
of complete machine simulation by describing how its benefits apply to three diverse fields
of computer system research: hardware design, operating system development, and
application performance tuning. To better convey the significance of these benefits, this

section also describes how complete machine simulation improves upon the most common

17

investigative techniques used in each field, enabling studies that existing investigative

tools and techniques have difficulty supporting.
2.2.1 Hardware design

One important domain of computer systems research is hardware design. The goal of this
type of research is to design and implement the highest performance computer hardware
within a set of constraints. These constraints include monetary cost, time deadlines, chip
or board space, power consumption, and many other factors. Hardware design thus
requires a continual trade-off between an implementation’s cost and performance to
develop the best possible product given a set of constraints. To evaluate the performance
side of this trade-off, designers attempt to predict the behavior of their proposed hardware
in support of important applications. For example, researchers typically model the
behavior of a specific hardware design in software and then drive this model with data
from existing workloads. The behavior of the modeled hardware design is taken to be
representative of the behavior of an actual hardware implementation and helps predict its
effectiveness. Furthermore, when a hardware design does not provide the expected or

desired level of performance, simulation can provide data that helps determine why.

Complete machine simulation is a particularly effective tool for hardware design,
providing significant benefits to the performance evaluation effort. First, complete
machine simulation’s extensive workload support allows a researcher to evaluate a
hardware design under a variety of applications. This includes traditional benchmark
applications such as those in SPEC [SPEC97] as well as more complex, operating system-
intensive applications such as database management systems and web servers.
Furthermore, the substantial operating system activity that occurs during the latter class of
applications is included in the simulation, providing additional input data for the
evaluation. As a result, hardware designs can be evaluated in the context of the exact
workloads that the final hardware implementation will be required to support, ultimately

leading to a higher performance product.

Second, complete machine simulation’s flexible machine modeling capability enables its

use in the evaluation of almost any hardware design. Complete machine simulation

18

models all of the hardware found in a computer system and allows a designer to customize
the behavior of any of this simulated hardware to match a proposed design. For example, a
designer can easily incorporate a new processor pipeline, cache configuration, memory
system design, or disk model into the simulated machine and evaluate its performance.
Furthermore, an investigator can evaluate the proposed designs in the context of an entire
computer system. Computer hardware components are never used in isolation, and the
effects of hardware’s behavior propagates throughout the system. For example, in a real
computer system, a new processor cache implementation would cause different load and
store instruction activity, affecting the behavior of the processor pipeline and the rest of
the memory system. Additionally, the effects of new hardware would normally propagate
up to the application and operating system, ultimately changing the behavior of the
workload. While traditional simulation tools evaluate a hardware component in isolation,
complete machine simulation evaluates the hardware component as it interacts with the
rest of the complete computer system. As a result, complete machine simulation can

provide more accurate performance predictions than traditional tools.

Architects have traditionally employed trace-driven simulation to evaluate proposed
architectural designs. Trace-driven simulation consists of two phases, trace collection and
trace processing. In the trace collection phase, researchers use software or hardware
techniques to monitor the behavior of a computer system and collect a “trace” of workload
activity. Trace collection involves running the workload of interest on a system modified
to record events such as instruction execution or memory references. The trace can be
collected either by using software instrumentation as in ATOM [Eustace95], Epoxie
[Borg89], FastCache [Lebeck95], and Paradyn [Miller95], or by using a hardware monitor
such as in BACH [Grimsrud93], DASH [Torrellas92, Chapin95a], and MONSTER
[Nagle92]. The trace is typically saved to non-volatile storage and provides input to some
type of hardware simulator. The results of this trace processing phase are taken to

approximate the behavior of the modeled hardware in its execution of the traced workload.

The widespread use of trace-driven simulation in the evaluation of hardware designs
attests to its speed, flexibility, and ease of implementation. However, there are several

limitations to its effectiveness. First, most software-based trace collection tools are unable

19

to capture the activity that occurs during operating system execution. Because operating
system activity is omitted from most traces, hardware design evaluation is often based
entirely on the user-level portion of applications. Additionally, trace-driven simulation of
isolated hardware components omits the important interactions that normally occur
between a hardware component and the rest of the computer system. As mentioned above,
hardware components are never used in isolation, and the effects of hardware’s behavior
normally propagates throughout the system. Because trace-based simulation separates the
collection of hardware events from the modeling of new hardware component behavior,
these interactions do not occur, and the predicted real-life behavior of new hardware

designs is compromised.

Computer architects also employ user-level simulation tools such as Tango Lite to evaluate
their hardware designs. These simulators generate data regarding an application’s user-
level execution behavior on the modeled hardware and can thus provide some
performance predications. However, the hardware design evaluation effort again suffers
due to the omission of operating system activity. Furthermore, user-level simulators are
unable to support many operating system-intensive applications or multiprogrammed
workloads. As a result, important applications are again absent from the evaluation of a

hardware design.

In both cases, the difficulty of obtaining useful data regarding operating-system intensive
workloads has led to a heavy reliance on benchmark applications with minimal operating
system activity such as the applications that comprise the SPEC benchmarks. Designing
hardware to effectively support the execution of these benchmarks provides an important
marketing story, but does not necessarily translate into performance gains for more
commonly used workloads. Database management systems and web servers are extremely
important applications, yet the simulation tools used to evaluate hardware designs are
typically unable to capture a significant portion of their execution behavior. As a result,
many hardware design decisions are made without complete information regarding

significant execution activity that the hardware is required to support.

20

2.2.2 Operating system development

Another important field of computer systems research is operating system development. In
this domain, operating system programmers are required to provide improved
functionality and port their code to new platforms while simultaneously minimizing the
performance overhead of the operating system’s execution. In a commercial environment,
this development process is further complicated by very strict time constraints. Operating
system development typically involves a repeated cycle of modifying the operating system
source code and then running the resulting kernel on existing hardware to evaluate its

correctness, functionality, and performance.

Complete machine simulation provides several benefits to the operating system
development process. First and foremost, complete machine simulation provides a
platform for operating system development long before the targeted hardware is present.
The task of porting an operating system to new machines is often delayed by the lack of an
actual hardware platform for code testing and tuning. Complete machine simulation’s

flexible and accurate machine modeling capabilities allows an investigator to model a non-
existent machine and provide the operating system with the exact same hardware
interfaces that will be found on the completed machine. The ability to enable operating

system porting efforts to proceed concurrently with hardware design and implementation

can dramatically speed up the overall time to completion of a new computer platform.

Second, complete machine simulation provides better operating system debugging support
than hardware. For example, simulation can provide completely repeatable workload
execution. This deterministic execution is particularly beneficial to operating system
debugging where bugs are often difficult to reproduce. Additionally, complete machine
simulation is easily extended to interact with and improve upon existing debugging tools.
As described in Chapter 6, complete machine simulation allows a developer to apply
normal debugging techniques such as breakpoints and single-stepping to all operating
system code, including exception handlers and other timing-critical sections of code

whose execution is typically difficult to examine.

21

Finally, complete machine simulation provides substantially more visibility into operating
system behavior than possible with real hardware. Coupled with flexible data collection
and reporting capabilities, this feature helps developers to understand and improve the
performance of their operating system code. Complete machine simulation can provide
detailed information regarding an operating system’s performance as it supports a wide
variety of important workloads. This performance information can include simple
profiling information such as heavily executed procedures, but also more detailed
behavioral statistics. For example, it can include the cache misses that occur during the
operating system’s execution and attribute these misses to the responsible procedures or
data structures. This detailed information helps focus performance tuning efforts on the

most troublesome areas of the operating system.

Operating system development has long been hindered by the lack of tools capable of
aiding the porting effort or providing detailed behavioral information. The few simulation
tools that are capable of investigating operating system behavior suffer from several
limitations. Advances in software instrumentation techniques have enabled the trace-
driven simulation of some operating systems [Chen93] [Perl97]. However, software
instrumentation results in an operating system that is both larger and longer running than
in its original form. As described in [Chen93], the resulting time- and memory-dilation

affects the accuracy of the trace and thus of any derived performance data.

Hardware monitoring mechanisms can also collect traces of operating system activity.
While less intrusive than software instrumentation, the monitors only provide information
about the limited types of hardware activity that they observe. For example, in
[Chapin95a], the hardware-based trace collection mechanism only captures memory
reference activity occurring on the system bus, limiting the trace’s use to investigations of
an operating system’s memory system performance. As a result of the limited applicability
of simulation tools to operating system development, kernel programmers often resort to
modifying the operating system code to observe its own behavior. Operating systems are
often littered with code to count the invocations of particular procedures or to measure the
performance of locks and semaphores. The information collected by this inserted code can

help indicate some simple operating system performance problems, but does not provide

22

more comprehensive hardware-level performance data such as cache or processor pipeline
behavior. Furthermore, the code maodification technique only applies to examining
operating system performance on existing machines, and does not necessarily help

indicate where performance problems will arise on future platforms.
2.2.3 Application performance tuning

A third important type of computer systems research is application performance tuning. In
this domain, programmers attempt to discover and eliminate performance problems with
the sole goal of speeding up an application’s execution. To determine and implement the
most effective code modifications, a programmer requires detailed information regarding

the application’s behavior.

The complete machine simulation approach also provides benefits to this type of research.
Complete machine simulation’s extensive workload support allows its use in the
investigation of almost any application. This includes complex, multi-process applications
such as CAD tools, database management systems, and web servers. Additionally,
complete machine simulation’s comprehensive data reporting provides detailed
information regarding every aspect of the application’s behavior. For example, it can
report a variety of hardware-related performance problems that occur during the
application’s execution such as mispredicted branches, cache misses, and processor
pipeline stalls. These problems can be responsible for substantial application performance
loss, and knowledge of their occurrence is essential to eliminating them. For example, if a
programmer discovers that a specific data structure is experiencing significant cache
misses, they can often restructure it to improve its cache locality and improve the
application’s performance. Complete machine simulation also reports operating
system-related performance problems such as excessive page faults, expensive system call
invocations, and poor process scheduling. These problems can be responsible for a
substantial portion of an application’s execution time and knowledge of their occurrence

can often help reduce their impact.

One of the most common techniques for obtaining application performance information is

the use of profiling tools. Profiling tools use a variety of techniques to determine where an

23

application spends most of its execution time. These profiling tool typically use a
computer system’s hardware timer to periodically sample the CPU’s program counter.
This information provides a statistical indication of the most heavily executed sections of
application code. This basic information can help focus an application tuner’s attention on
the most important application procedures or loops. However, profiling tools only indicate
where an application spends most of its execution time, and does not indicate the specific
source of performance problems. Many recent CPU’s incorporate counters that track
various processor events as they occur during an application’s execution. These counters
are integrated directly onto the CPU, and track events such as mispredicted branches or
data cache misses at high speeds and with minimal application perturbation. This
additional information improves upon traditional program counter-based profiling,
incorporating basic memory system and processor pipeline behavioral data into the

reported data.

For even more detailed performance information, investigators sometimes employ user-
level simulators. As mentioned above, these tools provide information about an
application’s behavior, but omit the operating system activity that would normally occur
during its execution. From an application’s standpoint, the execution environment
modeled in user-level simulators is a significant improvement over actual computer
systems. For example, system calls occur instantaneously, having no impact on the
application’s execution time. Additionally, the application is always actively “scheduled”
and is fully resident in memory. As a result, the application does not face any of the
performance problems associated with execution in multiprogrammed systems.
Furthermore, operating system code is never executed, allowing the application to avoid
competition for the processor’s limited instruction and data cache space. Unfortunately,
this execution environment is not representative of existing computer systems, and these
performance “benefits” impact the quality of data that user-level simulators can provide.
As a result, the behavior of many important applications tends to be less well understood,

hindering efforts to improve their performance.

24

2.3 Summary

The complete machine simulation approach was originally adopted to satisfy very specific
investigative needs, but its flexible hardware modeling capability and ability to observe a
computer’s operating system behavior has proven useful to other fields of computer
systems research as well. This chapter has described several specific benefits that
complete machine simulation provides for the fields of hardware design, operating system
development, and application performance tuning. Chapter 6 revisits complete machine

simulation’s benefits and describes several specific investigations that they have enabled.

25

26

Chapter 3
Functional and Flexible
Hardware Simulation

The previous chapters introduce complete machine simulation and the benefits that it
provides to several fields of computer systems research. This is the first of three chapters
that describe the implementation features that allow complete machine simulation to

provide these benefits.

The most important goal of complete machine simulation is to support the investigation of
a large class of workloads as they execute on highly configurable computer hardware. This
chapter describes how complete machine simulation’s functional and flexible hardware
simulation approach helps achieve this goal. The first part of this chapter describes the two
primary components of complete machine simulation’s hardware simulation approach;
providing software-visible functionality and supporting configurable implementation
details. The second part of this chapter describes how SimOS satisfies these hardware
simulation requirements. SIimOS takes a modular approach to simulating a computer,
allowing the development and inclusion of multiple CPU, memory system, and I/O device
simulators. Each of these simulated components provides the basic functionality required
to execute operating systems and applications, but provides this functionality while

modeling widely varying hardware implementation details.

27

3.1 Hardware simulation tasks

Complete machine simulation differs from most simulation approaches in that it models
all of the hardware typically found in a computer system. More specifically, complete
machine simulation models computer hardware in enough detail to support the execution
and investigation of operating systems and application programs. This section describes
the two primary components of this simulation task; providing software-visible hardware

functionality and supporting configurable hardware implementation details.
3.1.1 Providing software-visible functionality

One goal of complete machine simulation is to support the investigatiammwiodified
operating systems and application programs. This goal is quite important as it allows the
investigation of a much wider range of workload than is possible with many existing tools.
For example, most operating systems and commercial software packages are shipped in a
binary format without any publicly available source code. As a result, simulation tools that
recompile or instrument an application’s source code are unable to examine their behavior.
As described in the previous chapter, supporting unmodified workload binaries also allows
complete machine simulation to avoid the time- and space-dilation effects that accompany

instrumentation-based tools.

To satisfy this goal, a complete machine simulation must be compatible with the hardware
that the workload normally runs on. Specifically, a complete machine simulator must
export the same hardware interfaces that are normally visible to the workload binaries and
provide the hardware functionality expected by interactions with this interface. The rest of
this section describes these expected interfaces and the corresponding hardware

functionality that a complete machine simulator must provide.

CPU functionality

Operating systems and applications expect significant functionality from a computer’s
CPU, the most fundamental of which is the proper execution of instructions. This includes
normal user-level instructions as well as those that are only accessible in “privileged”

processor modes. Additionally, operating systems expect a memory management unit

28

(MMU) that relocates every virtual address to a location in physical memory or generates
an exception if the reference is not permitted (e.g. a page fault). The operating system also
expects the CPU to inform it of other exceptional events such as arithmetic overflow, the
use of privileged instructions in user mode, or the occurrence of external device interrupts.
Furthermore, multiprocessor workloads expect all of this functionality to be replicated,

allowing the parallel execution of several independent instruction streams.

Memory system functionality

Operating systems and applications also expect their underlying hardware to provide some
type of memory system that coordinates communication between the CPU, main memory,
and other devices. For example, the memory system must read and write the contents of
main memory in response to certain CPU instructions. Additionally, the memory system
must provide an I/O address space to enable communication between the CPU and I/O
devices. The I/0O address space allows software, typically operating system device drivers,
to access the registers that control and query 1/0O devices. The memory system must also
transfer data between devices and main memory in response to device register accesses,
and the specific method of data transfer often depends on the device itself. For example,
programmed /O devices expect the memory system to move data to or from the device a
single byte at a time. Other devices support direct memory access (DMA), where the CPU
informs the 1/O device of a location in main memory and an amount of data to transfer.
The device transfers data directly to or from memory, interrupting the CPU to indicate its
completion. Regardless of the implementation, the memory system must manage this data

transfer to ensure that main memory always reflects the proper machine state.

I/O device functionality

In addition to coordinating communication with 1/O devices, a complete machine

simulator must provide the functionality of the I/O devices themselves. These devices
include at least a timer that interrupts the CPU at regular intervals, a storage device which
contains the operating system and application files, and a console for interaction with the
user. Some workloads may expect additional 1/0 device functionality, such as that of a

networking card or graphics chip. Whether writing data to a SCSI disk, receiving typed

29

commands from the system console, or communicating with another computer over
network, workloads require significant utility from a computer’s 1/0O devices, and

complete machine simulation must provide the expected functionality.
3.1.2 Supporting configurable implementation details

In addition to supporting the functional execution of a workload, a complete machine
simulator must also enable a detailed investigation of the workload’s execution behavior.
Specifically, it should provide information about a workload’s behavior as it executes on a
specific computer configuration. To provide this information, a complete machine

simulator must model specific hardware implementation details while providing hardware
functionality. Furthermore, a complete machine simulation must support highly

configurable implementation details to provide this information across a wide range of

potential computer configurations.

The distinction between hardware functionality and hardware implementation details
deserves discussion. Hardware functionality relates to a basic architectural specification
and is not specific to any single machine implementation. In contrast, hardware
implementation details do not affect the functional execution of a workload, but determine
how the hardware behaves and how quickly it completes this execution. For example, CPU
functionality consists of applying the an instruction’s behavior to its registers and to main
memory according to a well-defined architectural specification. In contrast, CPU
implementation details determine how long it takes to execute these instructions and

includes effects such as the processor’s pipeline, clock rate, and branch prediction scheme.

As another example, memory system functionality consists of coordinating
communication between the CPU, main memory, and 1/O devices, but implementation
details determine the latency of this communication. In the case of memory references,
latency includes the effects of caches, bus speed, arbitration protocols, queuing delays,
and even DRAM characteristics. These implementation details do not provide any
functionality that is required for workload execution, but play a determining role in the
workload’s execution behavior. As a final example, disk drive functionality simply

consists of reading or writing data as requested. In contrast, disk drive implementation

30

details assign latencies to this activity and require a simulator to model factors such as
SCSiI controller delays, disk head seek time, and disk block transfer time. In each case,
hardware implementation details are not necessary for the functional execution of an
operating system and application programs, but are essential to understanding a

workload’s behavior on a specific computer configuration.

3.2 SimOS hardware simulation

This section describes the SImOS approach to satisfying complete machine simulation’s
hardware simulation requirements. The first part of this section describes the hardware
functionality that SimOS provides and some of the more interesting aspects of its
implementation. The second part of this section describes SImOS’s modular approach to
hardware simulation and how this modularity supports highly configurable hardware

implementation details.
3.2.1 Providing software-visible functionality

SimOS models the hardware of modern computer systems in enough detail to boot and run
IRIX, the Silicon Graphics, Inc. implementation of Unix System V Release 4. In fact, a
SimOS-modeled machine is binary-compatible with actual machines shipped by Silicon
Graphics, allowing it to execute the wide assortment of commercial applications designed
for this platform. To support the execution of IRIX and its applications, SimOS provides
the same hardware functionality that is visible to software on real Silicon Graphics
machines. The rest of this section describes SimOS’s hardware functionality and the more

interesting aspects of its implementation.

CPU functionality

SimOS supports execution of the MIPS-IV instruction set, including arithmetic, floating
point, and privileged “co-processor 0” instructions. SimOS also provides the virtual
address to physical address translations that occur in a processor's memory management
unit (MMU). For the MIPS architecture this means implementing the associative lookup
of the translation look-aside buffer (TLB), including raising the relevant exceptions if the

translation fails. SImOS also takes exceptions on events such as arithmetic overflow, the

31

use of privileged instructions in user mode, or the occurrence of external processor
interrupts. SIMOS can also simulate multiple CPU’s simultaneously to enable the

execution of multiprocessor workloads.

Memory system functionality

As illustrated in Figure 3.1, SimOS manages the communication between CPU’s, main
memory, and 1/O devices similarly to a normal memory controller. Communication
between the CPU and main memory is straightforward. SImOS maintains the contents of
the target machine’s memory by allocating memory in its own address space. This
allocated memory is sized according to the amount of main memory “installed” on the
target machine, and simulating the functionality of loads and stores to main memory
simply involves reading and writing this allocated memory. Communication between
CPU's and I/0O devices is slightly more complicated. The Silicon Graphics/IRIX platform
utilizes memory-mapped 1/0O where device registers are mapped into a portion of the
physical address space. This allows IRIX device drivers to use normal CPU read and write
instructions to access device registers. SimOS uses a hash table adladeregistryto
communicate device register accesses to the appropriate 1/0O device simulator routine.
SimOS provides the expected 1/0O device functionality by mapping an appropriate device
simulator routine at every location in this I/O address space that IRIX device drivers
utilize. In response to these device driver requests, the simulated 1/O devices provide

varied functionality, interrupting the processor as appropriate. As on a real machine, 1/0

32

. CFU / Device Redist \ SCSI Device
Simulation w‘ads/Stores evice Registry / Simulation
SCSI RANGE ,
: : Ethernet Device
main memory? ETHERNET RANGE - __ Simulation

Console Device
Yes CONSOLE RANGE @
(o]

v S

“Main Memory”
(space) KUNDEFINED RANGE/ > Egnst tEoRgFPUR)

Figure 3.1. SImOS memory system functionality

address space references that do not correspond to “installed” I/O devices result in bus

error exceptions.

I/O device functionality

In addition to coordinating communication between the CPU, main memory, and I/O
devices, SImOS provides the functionality of the 1/0O devices themselves. The
implementation of this device functionality is particularly interesting as it often requires
SimOS to act as a gateway between the simulated machine and the non-simulated world.
This interaction takes many forms, but in each case SimOS exploits the functionality of its
host platform to provide the expected functionality. For example, SImOS provides the
functionality of a console device by communicating with a real terminal on the host
machine. SimOS outputs console writes to the terminal and translates typing at the
terminal into console input. This allows a user to interact with the simulated machine just

as if it were a normal hardware-based machine.

As a second example, SImOS provides ethernet functionality by multiplexing the
simulated machine’s network activity with that of the host machine. Ethernet packets sent
from the SImOS-modeled machine are forwarded through the host machine’s ethernet, and
return packets are routed back to the simulated machine. Furthermore, we have allocated a
range of IP addresses for SimOS-modeled machines, allowing them to act as nodes on the
internet and enabling a wide range of network communication possibilities. For example,
we have configured SimOS-modeled machines as NFS clients and servers to ease the

transfer of large files between SimOS and hardware-based machines. Similarly, SImOS-

33

modeled machines can communicate over the X-windows protocol to display their
program output on a remote machine’s display. We have even configured a
SimOS-modeled machine as a web server that provides the SimOS user-guide web pages

to the internet community.

As a final example, SImOS uses the host machine’s filesystem to provide the functionality
of a hard disk, maintaining the disk’s contents in a file on the host machine. Reads and
writes to the simulated disk become reads and writes of this file, and DMA transfers
simply require copying data from the file into the portion of the simulator’s address space
representing the target machine’s main memory. To create a new disk that can be mounted
by a SimOS-modeled machine, a user simply creates the appropriate disk image in a file

on the host machine.

SimOS’s implementation of disk functionality is particularly interesting because of its
support for sharing filesystem images among several users. The disk images required to
boot an operating system and execute complex applications can occupy several gigabytes
of space on the host machine’s filesystem, making it desirable to share them among
investigations. However, sharing disk images can be troublesome because workloads
typically modify files during their execution. If a workload’s modifications were saved to
the host machine’s filesystem, it could affect any future investigations that share the disk
image. Furthermore, sharing the disk image file among multiple concurrent simulations

can result in file consistency problems.

34

To avoid these problems, SImOS supportsc@y-on-write disk simulation mode.
lllustrated in Figure 3.2, the copy-on-write mode allows multiple instances of SimOS to
run concurrently by maintaining all target machine disk modifications in memory rather
than to the shared disk image file. Subsequent target machine disk reads obtain the most
recent filesystem data by checking the list of modified disk blocks first, only accessing the
original disk image for blocks that have not yet been written. In this example, the first
instance of SIMOS returns “ccc” in response to the read of disk block 3 while the second
instance returns “ghi”. The copy-on-write mechanism allows any number of investigations
to share a single disk image file, easing the process of workload creation and avoiding

excessive host filesystem space requirements.
3.2.2 Supporting configurable implementation details

In addition to providing the hardware functionality required to execute operating system
and application software, SimOS supports significant flexibility in the modeling of

hardware implementation details. Illustrated in Figure 3.3, SIimOS takes a modular
approach to machine simulation, encouraging the development and inclusion of multiple
CPU, memory system, and I/O device implementations. While each simulated hardware

component must provide the functionality expected by the operating system and

SimOS Instance #1 SimOS Instance #2
DiskWrite(2, “def”); DiskWrite(3, “ghi”);
vall = DiskRead(2); 3 vall = DiskRead(2);
val2 = DiskRead(3); val2 = DiskRead(3
®) Shared ®)
Disk Image
Block # Data
SimOS #1 1 aaa SimOS #2
Disk Simulator Disk Simulator
Modified & 2 bbb Modified
Disk Blocks | ———— N Disk Blocks
3 cce
Block # Data Block # Data
2 def o o § 3 ghi
n XXX

Figure 3.2. SImOS’s copy-on-write disk simulation mode

35

I Operating System and Application Software I

I Software-Visible Hardware Functionality I

SimOS Modular Hardware Simulation
1/0 Device Models

CPU Memory System Console || SCSI Disk]|

Models Models -
I Timer || Ethernet

T—

Figure 3.3. Modular hardware simulation

application software, it can provide this functionality while modeling radically different
implementation details. To simulate a very specific architectural implementation, an
investigator can either configure existing hardware component models or, when
implementation detail changes are more significant, create and include completely new
models. The next chapter describes several specific examples of hardware component

models exhibiting a range of implementation details.

To support the development and inclusion of modular hardware simulators, SImOS
provides well-defined interfaces between each major hardware component, and these
interfaces are similar to those found in existing computer systems. For example, the
interface between a CPU and memory system model is similar to that of modern system
buses. The CPU model submits load and store requests to the memory system, along with
the physical address that should be accessed. The memory system model determines the
latency of this request, eventually returning the requested data. The memory system has
tremendous flexibility in determining this memory request latency. For example, a simple
memory system model could use a constant latency for each request while a more detailed
model could determine the latency by simulating multiple levels of caches, bus arbitration

protocols, and other implementation details.

As described above, memory system interface with 1/O device models through the device

registry, where accesses to device registers are forwarded to specific I/O device simulators.

36

As a result, IRIX device drivers determine the exact interface for developing new 1/O
device models. Each I/O device model must provide the expected functional response to
the device driver’'s device register accesses, but it can provide this functionality with
varying implementation details. Additionally, we have written new device drivers for IRIX
that provide significant 1/0O device modeling flexibility. For example, we have written a
fairly generic disk device driver for IRIX that communicates through the use of SCSI
commands and disk status queries. Each disk model implementation must provide the
appropriate response to each command and query, but has significant flexibility in
determining the latency and behavior of the disk in providing these responses. We have
also written fairly generic device drivers for communication with ethernet and console
hardware, allowing SimOS to flexibly model implementation details for these I/O devices
as well. In addition to providing increased flexibility, creating SIimOS-customized device
drivers eased the I/O device modeling effort by allowing us to avoid supporting many of
the very esoteric hardware details built into shipping device drivers and to concentrate on

modeling more basic device functionality.

The ability to develop and incorporate multiple implementations of each computer
hardware component provides significant machine modeling flexibility and allows an
investigator to create an entire simulated machine simply by selecting from a list of
existing component models. If the existing models do not fulfill the particular needs of the
investigation, the investigator can develop additional components and easily incorporate
them into the SImOS infrastructure. SimOS’s modular hardware simulation approach
provides other important benefits as well. As described in the next chapter, the ability to
model the same hardware functionality with different amounts of implementation detail is

essential to high-speed simulation.

3.3 Summary

The most important goal of complete machine simulation is to support the investigation of
a large class of workloads as they execute on highly configurable computer hardware. To
achieve this goal, complete machine simulation must provide all of the hardware

functionality that is visible to workloads and support highly configurable hardware

37

implementation details. The SIimOS implementation of complete machine simulation
demonstrates how a modular hardware simulation approach satisfies these requirements.
SimOS provides well-defined interfaces for the development and inclusion of multiple
hardware component models. Each model provides the functionality required to execute
operating system and application code, but can provide this functionality while modeling

the hardware implementation details of interest to a particular investigation.

38

Chapter 4

Dynamically Adjustable
Simulation Speed and
Detall

Another important characteristic of complete machine simulation is its ability to provide
appropriately detailed information regarding a computer system’s hardware and software
behavior. However, the benefits of this information are significantly reduced if it takes an
excessively long time to obtain. This chapter describes how complete machine simulation
can efficiently provide simulation results. The first part of this chapter describes the
challenge of quickly obtaining simulation data and how the ability to dynamically adjust
the level of simulation speed and detail addresses this challenge. The second part of this
chapter describes how complete machine simulation can implement dynamically
adjustable simulation speed and detail. The SIimOS implementation of complete machine
simulation provides three general simulator execution modes exhibiting specific speed-
detail trade-offs, and allows a user to switch between them during the course of a
workload’s execution. The final part of this chapter describes SimOS'’s use of high-speed
machine emulation technology and more traditional simulation techniques to implement

each simulator execution mode.

39

4.1 The performance challenge

Every type of computer system investigation benefits from obtaining behavioral data as
quickly as possible. For example, hardware design requires examining several potential
configurations and determining which implementation features provide the most benefit.
The faster that a simulator can provide the required performance data, the larger the design
space that an investigator can evaluate within a given time frame. As a result, faster
simulation tools can help lead to better hardware designs. Similarly, fast turnaround time
is an essential part of application performance tuning. When attempting to improve the
performance of an application, a programmer typically makes one or more algorithmic
changes and then obtains data regarding the performance impact of these changes. This
process is repeated as many times as possible within the available time period. The more
times that this feedback cycle can be iterated, the better that the end application

performance will be.

The use of complete machine simulation would appear to be at odds with the goal of
obtaining data as quickly as possible. Detailed simulation of a computer is inherently slow
as it attempts to accurately model the behavior of hardware components completely in
software. As an example, an RTL model of a CPU provides cycle-accurate performance
detail, but is only capable of simulating the execution of a few hundred cycles every

second. As a result, modeling the execution of a single instruction on a particular target
machine can require many millions of instructions on the host machine. The resulting
simulation slowdowncauses significant delays in obtaining the desired behavioral

information for an entire workload. Even significantly less detailed hardware models

impose restrictive slowdowns. For example, the Mipsy CPU simulator described below
models few processor details, yet still executes a machine’s instructions more than 200

times slower than a hardware implementation would.

This information delay is worsened by the fact that complete machine simulation is
designed to investigate workloads that are typically long-running even on a non-simulated
computer. For example, Chapter 6 describes an investigation of a Sybase database server

running a transaction processing workload. This workload requires execution of over 20

40

billion instructions just to boot the operating system and initialize the database server and
client programs. Investigation of even the most basic workloads often requires a clean
boot of the operating system, a process that takes IRIX over a half billion instructions. The
combination of longer running workloads and slower “hardware” can result in
prohibitively long simulation times. For example, just the preparation of the database
workload mentioned above would require several days of execution time on the Mipsy
CPU simulator, and more detailed simulation would take even longer. Such a time
commitment is a significant hindrance to any computer system investigation. The
performance challenge facing complete machine simulation is thus to support both the fast

and detailed investigation of long-running workloads.

4.2 The solution: Dynamically adjustable simulation speed and detalil

Most performance investigations do not require extremely accurate and detailed
information across the entire execution of a workload, and this provides an opportunity to
obtaining simulation results quickly. Preparing a complex workload for investigation
usually requires simulating large amounts of “uninteresting” sections of execution such as
booting the operating system, reading applications and their data in from a disk, and
initializing the workload for investigation. In these cases, only the proper functionality of
the simulated platform is required, and detailed timing information within these sections is
typically ignored. Once the workload has reached a more interesting section of execution,
detailed behavioral information becomes desirable. This tradiaailized interest in detail

is characteristic of most investigations and provides an excellent opportunity for

simulation speed gains.

In all simulation tools, there is an inherent compromise between the amount of detail that
is modeled and the speed at which the simulator executes.speisd-detail trade-qff
illustrated in Figure 4.1, is particularly relevant for complete machine simulation. At one
end of the spectrum is an extremely detailed but extremely slow hardware simulation
model. For example, RTL and other gate-level simulators model a hardware
implementation with a great deal of accuracy, but provide hardware functionality at a very

slow speed. At the other end of the spectrum is a simulation model that provides only the

41

High -

Simulation Speed

Low

—
Low . . . High
Simulation Detall d

Figure 4.1. The simulation speed-detail trade-off

hardware detail required to support workload execution. This class of simulator can
quickly support the required functionality, but is not faithful to any specific hardware
implementation. Between these extremes lie a number of intermediate simulator models,

each providing varying levels of speed and detail.

Localized interest in detail and the ability to provide hardware functionality at different
levels of simulation speed and detail are the foundation of providing effective behavioral
information as quickly as possible. Our approach is to allow an investigator to change the
speed and detail characteristics of the complete machine simulator during the course of
workload execution. For example, the simulated machine could be run in a high-speed,
low-detail mode to quickly execute through the operating system boot and other
uninteresting portions of a workload. When the workload reaches a more interesting
section, the investigator can switch the simulator into a slower but more detailed mode for
collecting data. This dynamic adjustment capability allows complete machine simulation
users to select the exact level of detail required at each stage of an investigation,
maximizing the speed at which useful data is obtained. The end result of this
customization is effective computer system behavioral information that is obtained as

quickly as possible.

42

4.3 Implementation

Completely adjustable control over complete machine simulation’s speed and detalil
characteristics is an attractive concept, but difficult to implement. To provide similar
utility, complete machine simulation uses its modular hardware interfaces to create
multiple machine implementations, each occupying specific points on the speed-detail
curve. This section describes the specific points on the speed-detail curve that we have
found to be most valuable and how complete machine simulation allows an investigator to

switch between them during the course of workload execution.
4.3.1 Simulator execution modes

As described in the previous chapter, a complete machine simulator combines several
individual hardware component models to form a simulated computer. Furthermore, each
hardware component can have multiple implementations each making different speed-
detail trade-offs. These components determine the simulated machine’s final speed and
detail characteristics. A number of hardware component model combinations are possible,
but only certain combinations are practical. For example, connecting an extremely
detailed CPU model to a very simple and low-detail memory system model would reduce
the overall accuracy of behavioral information. Furthermore, any gains in speed to be
achieved through the use of the faster memory system model will likely be overshadowed
by a significantly slower CPU model. Consequently, certain groupings of hardware
models exhibiting similar speed and detail characteristics are more effective than others.
We call these groupinggmulator execution modesd have found three general modes to

be particularly usefulpositioning moderough characterization modeand accurate

mode

Positioning mode

There are several times during the course of a workload’s execution when only the
functionality of a system is required. For example, preparing a complex workload for
investigation usually requires simulating large amounts of uninteresting execution such as

booting the operating system, reading data from a disk, and initializing the workload.

43

&

High

Positioning Mode

Rough Characterization Mode

Accurate Mode

Simulation Speed

Low

[l ! »
Lo . . . High
W Simulation Detail 9

Figure 4.2. Simulator execution modes

Furthermore, issues such as memory fragmentation and file system buffer caches can have
a large effect on the workload’s execution. Many of these effects are not present in a
freshly booted operating systems; they only appear after prolonged use of the system.
Realistic studies require executing past these “cold start” effects and into a more
representative steady state for detailed investigation. We group these requirements into the
category of workload positioning, and providepasitioning moddo address them. In
positioning mode, complete machine simulation provides the very basic functionality of
the target platform as quickly as possible. The only requirement is to correctly execute the
workload, and an investigator has little interest in the simulated system’s detail or

faithfulness to any existing implementation,

Rough characterization mode

The speed of positioning mode is essential for the setup and initialization of complex
workloads, but the lack of hardware implementation details makes it unsuitable for
obtaining any useful behavioral information. To gain more insight into a workload’s
behavior, we provide sough characterization modat maintains high simulation speed
yet provides timing estimates that approximate the behavior of the madthnisemode is
particularly useful for performing a high-level characterization of workloads to determine
first-order bottlenecks. For example, it provides enough detail to determine if a workload

is paging, I/O bound on a disk, or suffering large amounts of memory system stall.

44

Additionally, rough characterization mode is fast enough that it can provide this

information over relatively long periods of workload execution time.

Accurate mode

One of the most important features of complete machine simulation is the ability to model
a computer configuration with significant accuracy and provide very detailed information
regarding its behavior. This information is essential to almost every type of computer
system investigation, and complete machine simulation provideacanrate modeo

obtain it. However, the detailed behavioral information provided by the accurate mode

results in speeds that are far too slow to execute most workloads in their entirety.
4.3.2 Dynamic simulator execution mode selection

The existence of different simulation execution modes provides little utility if they can not
be effectively utilized. As mentioned in Section 4.2, they key to quickly obtaining
simulation data is the ability tdynamicallyadjust the speed-detail characteristics of the
simulator. To provide this ability, complete machine simulation must include some means
of switching between simulation modes during workload execution. The key to providing

this capability is transferable hardware state.

Different models of a hardware component can provide a variety of statistics and
implementation details, but all must provide the same basic hardware functionality. To
provide this functionality, there is a common hardware state that each model must
maintain. For example, all CPU models must keep track of the current value of their
registers, regardless of the clock speed or pipeline that they simulate. Similarly, models of
main memory and disks must always maintain their correct contents so that reads receive
the proper data. In addition to maintaining this core hardware state, we require each
hardware model to support the exchange of this core state with other models of the same
hardware component. As a result, an investigator can switch between simulator execution
modes at any point during a workload’s execution. For example, in a study involving a
database transaction processing workload, an investigator could use the positioning mode
to quickly boot up the operating system and warm up the contents of the file cache. Upon

completion of this workload positioning, simulated time could be temporarily suspended

45

while the core state of the CPU, memory, and I/O device models is transferred into the
rough characterization mode hardware models. Once this transfer is complete, execution
of the transaction processing workload resumes, only with more detailed modeling of
system behavior. If even more detailed information regarding the workload’s execution is
desired at a later point, complete machine simulation can again transfer hardware state,
this time from the rough characterization mode hardware models into those of the accurate

mode.

Together these dynamically selectable simulator execution modes provide workload
execution control similar to that found on a VCR. Positioning mode is similar to fast-

forward, allowing a user to quickly pass over sections of a workload’s execution that they
find less interesting. Rough characterization mode is similar to the normal play mode of a
VCR, presenting a decent view of the workload’s execution without an extraordinary time
commitment. Finally, the most accurate modes are best compared to slow-motion
playback. They provide a very detailed view of computer system behavior, but at often

prohibitively slow speeds.

4.4 SimOS’s simulator execution modes

SimOS provides clear interfaces between each of the major hardware components in the
simulated computer system, allowing it to incorporate different models of each hardware
component. While each of the models provide the basic hardware functionality required
by IRIX and its applications, they differ significantly in the type and amount of detail that
they provide. As a result, they also differ in the type of statistics that they can collect and
the speed at which they support a workload’s execution. This section describes how

SimOS models these hardware components to provide each simulator execution mode.
4.4.1 Positioning mode

The goal of positioning mode is to provide the hardware functionality required to run
workloads and to provide this functionality as fast as possible. As such, SImOS’s
positioning mode models very few timing and implementation details and can provide an

investigator with only minimal workload behavioral information. As described in the

46

Dynamically-generated
Translation

MMU Instr-Address Translation

Original load tmpl,simRegs[2]
Workload load tmp2,simRegs[3]
Instructions add tmp3,tmpl,tmp2

store tmp3,simRegs[4]

kel r4,r;3,r2 MMU Data-Address Translation
Iw r3,10(r1) load tmpl,simRegs[1]

: load tmp2,(tmp1+10)
store tmp2,simRegs[3]

<Continue for rest of basic block>

Check for interrupts

Update cycle count

Figure 4.3. Embra’s dynamic binary translation

previous chapter, supporting operating system and application program execution requires
a complete machine simulator to implement the required hardware interfaces. In providing
the expected functionality, a few components play a determining role in the overall speed
of the simulated machine. The CPU, cache, and memory system account for the bulk of
simulation costs, and SImOS includes the Embra hardware simulator [Witchel96] to
minimize this cost. lllustrated in Figure 4.3, Embra uses the dynamic binary translation
approach pioneered by the Shade system [Cmelik94]. Dynamic binary translators convert
blocks of instructions into code sequences that implement the effects of the original
instructions on the simulated machine state. The translated code is then executed directly
on the host machine. Using translation caching and other optimizations, Embra can
execute uniprocessor workloads with a slowdown of less than a factor of ten, orders of

magnitude faster than conventional simulation techniques.

Embra extends the techniques of Shade to support the functionality required in complete
machine simulation. These extensions include modeling the effects of the memory-

management unit (MMU), privileged instructions, and the trap architecture of the

47

CPU Simulation
Embra

Cache Simulatio Integrated CPU, Cache, and
Memory System Simulation

Memory System
Simulation

¢ ? I/0O Device
I/0 Device | Simulation
Simulation

Figure 4.4. Embra’s subsumption of multiple hardware component simulators

machine. The approach used in Embra is to handle all of these extensions with additional
code incorporated into the translations. For example, Embra augments the minimal binary
translation with code that implements the associative lookup done by the MMU on every
memory reference. Embra also extends the techniques of Shade to efficiently simulate
multiprocessors. Embra connects emitted code translations from each simulated CPU at a
very coarse granularity, emulating several hundred instructions for one simulated
processor before switching to the next simulated processor’'s execution. The simulated
processors’ notions of time are poorly synchronized, but this is acceptable in positioning

mode where speed is far more important than accuracy and detail.

In addition to its use of binary translation, Embra improves the speed of providing
hardware functionality by avoiding the typical SImOS approach of clean hardware model
interfaces. As depicted in Figure 4.4, Embra subsumes the functionality of multiple
hardware components. For example, rather than invoking a separate memory system
model in order to satisfy a memory reference, Embra incorporates the functionality of a
simple memory system directly into its binary translations. This allows Embra to avoid the
overheads caused by the use of flexible software module interfaces. Because I/O device
activity is much less frequent than CPU and memory system activity, Embra continues to

use the modular 1/0 device interface without significant performance impact.

48

As an additional optimization, SimOS’s positioning mode uses Embra configured to
model only the hardware components of the system that are necessary to correctly execute
the workload. No attempt is made to model hardware features that are invisible to the
software. For example, a processor’s pipeline and cache hierarchy play a significant role in
the performance of a workload, but do not provide any direct functional utility. To avoid
the overhead of simulating these hardware features, Embra models no processor pipeline
behavior and references to memory succeed instantaneously. Similarly, positioning mode
avoids any detailed I/O device simulation. For example, the disk model is configured to
satisfy all requests immediately. In addition to avoiding the performance impact of
simulating the disk, this optimization helps speed through uninteresting sections of a
workload’s execution. Normally, accesses to a disk result in large delays, and a user-level
process is descheduled during the latency. During this delay, the operating system either
schedules another user-level process or executes in an “idle” loop, waiting for the disk
access to complete. By omitting disk access latency, SImOS’s positioning mode avoids the
portion of a workload’s execution time that is spent in the idle loop. As a result, it reduces

the time it takes to reach a more interesting portion of a workload.

The initial implementation of SImOS contained an additional high-speed positioning
mode based on direct execution of the operating system and the applications on the host
platform. The direct-execution approach, described in [Rosenblum95], supported very
high speed machine emulation, but was removed in 1996 in favor of the binary translation
approach. Binary translation was chosen because it is more amenable to functional

extension and cross-platform support than the direct execution approach.
4.4.2 Rough characterization mode

Rough characterization mode is designed to be a compromise between the accurate and
positioning modes. As such, it must provide very high-level behavioral information, but
provide this information as quickly as possible. SImOS’s rough characterization mode
extends the functionality of positioning mode by tracking instruction execution time,

approximating cache activity, and modeling basic 1/0 device behavior.

49

Dynamically-generated Translation
Translation Augmentations

MMU Instr Address |) -
Translation ICache Simulation

Original
Workload
Instructions load tmpl,simRegs[2]
load tmp2,simRegs|3]
: add tmp3,tmpl,tmp2
add r4.13.r2 store tmp3,simRegs[4]

Iw r3,10(r1) I::> MMU Data Address DCache Simulation
: Translation

load tmpl,simRegs[1]
load tmp2,(tmpl+10)

store tmp2,simRegs[3] / Instr. 'Fé%?(lijrgign

Figure 4.5. Extending Embra’s translations with additional detail

SimOS implements a rough characterization mode through extensions to Embra. As
shown in Figure 4.5, dynamic binary translation is flexible enough to customize emitted
translations for more detailed modeling of the target machine. For example, Embra
augments its translations to check whether memory accesses hit in a fixed-latency, unified
instruction and data cache similar to the second-level cache of many machines. This data
provides an investigator with a high-level understanding of the memory system behavior
of a workload. In pursuit of speed, these cache-modeling augmentations are highly
optimized to make the common case of cache hits as fast as possible. Additionally, Embra
augments its translations to track the execution of instructions, providing basic workload

profile information.

To approximate the 1/0O behavior of a workload, rough characterization mode interfaces
with simple, fixed-latency device models. For example, the rough characterization mode
disk model charges a fixed latency for each request that a workload makes. This allows it
to estimate the impact of 1/0O activity in a workload while avoiding the simulation

overhead required to model the seek, rotation, and transfer time of a more detailed model.

50

Main Loop: ReadMem(vAddr, type);

While (TRUE) {
cycle++: pAddr = Translate (vAddr);
Handlelnterrupts(); . .
inst= ReadMen(PC, INST); if (type == INST)
d=ReadICache(pAddr,...);
switch(opcode(inst)) { else
case ADD: d=ReadDCache(pAddr, ...);
reg3 = regl + reg2; return d;
case BEQ:
if (regl = reg2)
case LDheWPC = targetAddr; Translate(vAddr);
va = ComputeAddr(inst); if inTLB(VAddr, &pAddr)) {
reg3 = ReadMenfva, DATA); if (valid)
return pAddr;
case else
EXCEPTION(INVALID);
_} }else {
if (newPC) PC = newPC; EXCEPTION(TLB_MISS);
else PC=PC +4; }
}

Figure 4.6. Structure of the Mipsy CPU simulator.

4.4.3 Accurate mode

Accurate mode is what people typically think of when discussing simulation. As
mentioned above, the goal of this mode is to model a specific machine’s hardware with
significant accuracy and detail and provide behavioral information regarding its execution.
The development of SImOS’s accurate mode hardware component models is largely
driven by the information needs of particular investigations, leading to the existence of
several different implementations. This section describes examples of each hardware

component implementation.

CPU Models

SimOS contains accurate mode implementations of two very different processor models.
The first, called Mipsy, models a simple, single-issue pipeline similar to that found in the
MIPS R4600. As depicted in Figure 4.6, Mipsy simulates basic CPU functionality and
timing details using a straightforward fetch-decode-execute loop. Each cycle, Mipsy

checks if any devices have requested processor interrupts, and then attempts to fetch a

51

single instruction. Mipsy parses each instruction into its opcode and arguments and then
applies the instructions intended effects to simulated processor registers. Instruction and
data virtual addresses are translated into physical addresses using a simulated TLB, and
the relevant exceptions are raised should a translation fail. To avoid the speed cost of
modeling the complexities of modern processor pipelines, Mipsy charges a fixed latency
for each instruction. As such, it is not an effective model for detailed processor
investigations. However, it can provide less detailed, but still valuable information such as
TLB activity, instruction counts, and, as described below, detailed uniprocessor and

multiprocessor memory system behavior.

SimOS includes a second processor implementation called MXS. The version of MXS
used in SImOS is based a user-level processor model described in [Bennett96], and is
extended to support privileged instructions, MMU execution, and exceptions. MXS uses
the same high-level loop-based execution as Mipsy, but models a much more complicated
processor and with significantly more detail. MXS models a superscalar, dynamically-
scheduled processor similar to the MIPS R10000 [MIPS95], complete with register
renaming, branch prediction, speculative execution, and precise interrupts. MXS is highly
configurable, allowing a user to specify instruction window size, execution unit
configurations, branch prediction tables and schemes, and numerous other processor
parameters. Furthermore, MXS collects detailed processor behavior statistics such as
branch prediction success rate, register renaming effectiveness, and execution unit
utilization. This information is particularly relevant to CPU, memory system, and
compiler design where very low-level processor pipeline behavior has significant
performance ramifications. This information does come at a cost though. As described in
Section 4.4.4, the extra complexity and detail modeled by MXS results in simulation

speed that is more than an order of magnitude slower than Mipsy.

To support multiprocessor simulation, both Mipsy and MXS encapsulate all hardware
state into a single data structure and then replicate this data structure for each simulated
CPU. As a result, each access to per-CPU hardware state requires an additional level of
indirection. As illustrated in Figure 4.7, a modified main execution loop iterates through

the list of hardware state pointers each cycle, allowing the simulated processors’ notions

52

Main Loop: CPUState[NumCPUs]

while (TRUE) { Register Reg[NumRegs];
if (P >= CPUState[NumCPUSs]) { TLBEntry TLB[NumTLBERNtries];
P = CPUStatel[0]; Register PC;
cycle++ /I MXS only
}else { Branchinfo BPTable[NumBPEntries];
P =P++;
} /I Per-CPU processor statistics
I/l Execute cycle for CPU “P” Stat instructionCount;
Stat exceptionCount;
P->PC = P->PC + 4;
}

Figure 4.7. Modifications required for multiprocessor support.

of time to remain synchronized. This is a particularly important requirement for accurate
modeling of cache and memory system implementations where the interleaving of

memory references can have a significant impact on computer system behavior.

Cache models

Using the interfaces described in the previous chapter, Mipsy and MXS attach to a
completely configurable cache model. One commonly used cache simulator models a
blocking cache with separate first level instruction and data caches and a unified second
level unified cache. Each level in the cache model has configurable capacity, miss penalty,
associativity, and line size. Every instruction fetch and data access passes through this
cache, and detailed statistics are collected regarding the caches’ performance.
Furthermore, each cache reference can cause the processor to stall for a configurable
number of cycles to model the access latencies in modern cache hierarchies. This type of
implementation is referred to as a blocking cache because execution is blocked until the

cache miss is resolved.

MXS uses the same interface to attach to a non-blocking cache model. Non-blocking
caches allow execution to continue even though a cache miss has occurred, and are an
essential component of speculative execution. Like the blocking cache model, the non-
blocking cache model is completely configurable and collects detailed behavioral statistics
including the miss rate, the cause of cache misses, and line utilization. [Wilson96]

describes an additional non-blocking cache implementation which provides the above

53

utility, but provides additional accuracy and investigation capabilities through the

modeling of cache port contention.

Memory system models

When a cache miss occurs, the memory reference passes through another common
interface to reach the memory system simulation models. Once a reference is on the
uniprocessor memory bus or multiprocessor interconnect, several different actions and
widely-varying latencies can occur, and SimOS includes memory system simulators to
model this activity. SimOS has been used in several multiprocessor investigations, leading
to the development of several interchangeable memory system models. One memory
system implementation models a split-transaction, out-of-order completion memory bus.
In its multiprocessor configuration, cache coherence is provided by a cache snooping
mechanism with an invalidation-based protocol. This model includes advanced memory
system features such as cache-to-cache transfers and reference merging, and maintains

detailed statistics regarding the behavior of these and other features.

Many recent shared-memory multiprocessor implementations locate a portion of the total
system memory with each processing node. A side-effect of this configuration is that the
latency to access memory on a remote processing node can be significantly higher than
accessing local memory. Thison-uniform memory acceg®r NUMA) can have a
significant effect on the performance of multiprocessor workloads. To support the
investigation of this class of machine as well as the workloads that they support, SImOS
includes a memory system implementation that models a directory-based, cache-coherent
NUMA memory system. Furthermore, this model is highly configurable and can provide
detailed information regarding cache coherence protocol activity, interconnection network

performance, queuing delays, and other important memory system behavior.

A final example of a SImOS accurate mode memory system implementation is a cycle-
accurate model of the FLASH multiprocessor memory system called FLASHLite

[Kuskin94]. FLASH is a MIPS R10000-based shared-memory multiprocessor designed to
scale to thousands of processors. The combination of the MXS CPU model with

FLASHLite allows SimOS to model the FLASH multiprocessor with significant accuracy,

54

provides very detailed performance information, and, as described in Chapter 6, has

enabled several important investigations.

I/O device models

The timing and implementation characteristics of some 1/O devices can have a significant
impact on the execution behavior of a workload. For example, database transaction
processing workloads have significant disk activity, and the particular timing traits of the
disk affect workload behavior. When a process requests a file access, the operating system
forwards this request to the disk and then deschedules the process. Once the disk has
satisfied the request, it interrupts the CPU to indicates its completion, and the operating
system can subsequently reschedule the process to continue its execution. The time
between the disk request and the processor interrupt varies according to the particular
disk’s implementation. To provide realistic disk request latencies, SImOS includes a
validated simulator of an HP 97560 disk drive [Kotz94]. This model includes is highly
configurable and models latency-determining characteristics such as disk head position

and rotational delay.

Similarly, a web server workload has significant network activity, and SimOS includes an
accurate mode ethernet chip and network model to support and measure this activity. As
mentioned in the previous chapter, SImOS allows multiple simulated machines to coexist
and communicate with each other through normal networking protocols. When providing
this communication capability, the ethernet chip and network model imposes configurable
peak bandwidth restrictions, DMA delays, and network transfer latencies. As a result, this
model can provide realistic networking delays, improving the accuracy of workload

behavioral information.
4.4 .4 Performance

The previous sections describe SimOS’s implementation of accurate, positioning, and
rough characterization simulator execution modes. To better demonstrate the trade-off
between speed and detalil, this section examines the performance of each simulation mode

as they model uniprocessor and multiprocessor computer systems.

55

Simulating uniprocessors

Table 4.1 compares the time required to run several workloads on a hardware-based
uniprocessor machine to the time required to run the same workloads on each of SimOS’s
simulator execution modes. We run SimOS on a Silicon Graphics Indy workstation
equipped with a 133 MHz R4600 CPU and 96 megabytes of memory. Each simulator
execution mode is configured to match the Indy configuration as closely as possible while
still exploiting the benefits of the mode. For example, the positioning mode has zero
latency memory and disk access latencies while the Mipsy-based accurate mode has two
levels of caches and uses the detailed disk model. The native execution numbers are the
wall-clock time it takes to execute each workload directly on the Indy, while the
simulation numbers are the time required to execute the same workloads on top of a
SimOS-modeled machine. We divide the simulation wall-clock time by the native

execution time to compute the slowdown.

Table 4.1. SImOS performance when modeling a uniprocessor

Native Positioning | Rough Char.| Accurate Mode | Accurate Mode
Execution Mode Mode (Mipsy) (MXS)
Wall-clock Wall-clock Wall-clock Wall-clock
Workload Wall-clock (Slowdown) | (Slowdown) | (Slowdown) (Slowdown)
056.¢ear 7 sec 2:57 min. 5:21 min. 43:28 min. 294:14 min.
' ’ (25x) (46x) (326x) (2,522x)
026.COMDress 7 sec 2:25 min. 5:45 min. 24:43 min. 211:26 min.
) P ’ (21x) (49x) (212x) (1,812x)
Java 13 sec 4:20 min. 9:44 min. 47:50 min. 697:40 min
' (20x) (45x) (221x) (3,220x)
Compilation 19 sec 8:16 min. 11:54 min. 110:53 min. 1342:05 min.
P ' (26x) (38x) (350x) (4,237x)

The workloads used in the performance comparison are:

» SPEC benchmarks - The 056.ear and 026.compress programs are taken from the SPEC

benchmark suite [SPEC97]. While these applications do not effectively demonstrate

56

the capabilities of complete machine simulation, they have been widely studied and

provide a reference point for comparing SimOS’s performance to other simulators.

» Java - This workload is taken from a java benchmark measured in [Romer96] and
consists of the compilation and execution of DES encryption code. The workload
converts the DES Java source code into bytecode format and then executes it with the

aid of a just-in-time compiler.

» Compilation - This workload is taken from the compile stage of the Modified Andrew
Benchmark [Ousterhout90] and demonstrates SimOS’s ability to investigate more
operating system-intensive workloads. The workload consistgaf @ompilation of

17 files followed by the creation of a library archive containing the object files.

The trade-off between speed and detail is obvious. Embra’s high-speed binary translation
techniques allows positioning mode to execute a workload only 20 to 30 times slower than
the native hardware The rough characterization mode is also quite fast, generating basic
cache behavior information at only 40 to 50 times slowdown. The Mipsy-based accurate
simulator execution mode causes several hundred times slowdown, but is able to collect
quite detailed processor, memory system, and I/O device behavior. Note that the widely
differing slowdowns between the different workloads are due to the different hardware
simulation requirements of each workload. For exampés,ear is a floating point-
intensive application, and it takes Mipsy much longer to simulate floating point
instructions than to simulate integer instructions. Similarly, applications with higher cache
miss rates require more simulation time to model this cache behavior. Finally, the MXS-
based accurate simulator execution mode results in several thousand times slowdown.
Note that in this example, MXS models a more complex processor than the Indy’s MIPS
R4600.

The large slowdown resulting from the use of the most detailed MXS-based simulation
can be quite prohibitive, even when applied to only the most interesting portions of a

workload. To help provide detailed simulation across extended workload execution,

1. This is substantially slower than the performance reported in [Witchel96] and is due to
several source code modifications designed to make Embra more maintainable.

57

SimOS extends the notion of dynamically selectable simulator execution modes. SimOS
supports a sampling capability that automatically switches between different levels of
simulation detail at user-specified intervals. Sampling enables the use of statistical
analysis to estimate the behavior of the most detailed models during the execution of the
workload. For example, two recent architectural investigations used SimOS’s sampling
support to simulate ten out of every hundred workload cycles in MXS, running the

remainder in Mipsy [Nayfeh96] [Wilson96]. The resulting information estimates the

behavior of the workload on a dynamically-scheduled processor, but at a fraction of the

cost of total MXS-based simulation.

Simulating multiprocessors

Table 4.2 presents performance numbers for the simulation of multiprocessor machines.
For these simulations, we run the workloads and SimOS on a Silicon Graphics Challenge
multiprocessor equipped with four 150 MHz R4400 CPU’s and 256 megabytes of

memory. The slowdown numbers again compare the execution of the workload directly on

the hardware to the same execution on the SimOS-modeled machine.

Table 4.2. SImOS performance when modeling a multiprocessor

Native Positioning | Rough Char.| Accurate Mode| Accurate Mode
Execution Mode Mode (Mipsy) (MXS)

Wall-clock Wall-clock Wall-clock Wall-clock

Workload Wall-clock (Slowdown) | (Slowdown) | (Slowdown) (Slowdown)
Ravirace 5 sec 5:50 min. 20:53 min. 153:36 min. 42:22:05
yt : (70) (246%) (1,841x) (30,505x)
Database 7 sec 11:20 min. | 42:03 min. 295:04 min. 68:15:00
' (97x) (360X) (2,528x) (35,100x)

The workloads used in this performance comparison are:

* Raytrace - This workload is taken from the SPLASH suite of applications and is a

parallel implementation of a widely used graphics rendering algorithm. The workload

is compiled as suggested in the distribution and executed as:

raytrace -m40 -p4 inputs/teapot.env

58

» Database - This workload consists of a parallelized Informix database server
supporting a transaction processing workload similar to TPC-B [Gray93]. The
workload contains four processes that make up the parallel database server plus 10

client programs that repeatedly submit transactions to the database.

The trade-off between speed and detail becomes even more pronounced for
multiprocessor simulation. In each simulation mode, SimOS models all four processors
within a single host platform process, causing simulation slowdown to scale linearly with
the number of CPU’s being modeled. The accurate mode slowdowns when supporting the
database workload are larger than when supporting the raytrace workload due to the
overhead of simulating many more cache misses and modeling significantly more disk
activity. In either case, the inability to simulate large number of processors in a timely
manner is a significant problem, and limits SimOS’s applicability to relatively small

machine sizes. This important limitation is revisited in Chapter 6.

4.5 Summary

The challenge that has most limited the use of complete machine simulation is the time it
takes to generate detailed statistics. Complete machine simulation addresses this challenge
by including multiple implementations of each hardware component, each making an
trade-off between the detail that it provides and speed at which it provides this detail. The
SimOS implementation of complete machine simulation demonstrates that it is possible to
implement three important simulator execution modes that provide a wide variety of
simulation speed and detail characteristics. Furthermore, complete machine simulation
provides investigators with explicit control over the use of these simulator execution
modes, allowing them to select the simulation characteristics most appropriate for the

changing needs of a workload investigation.

59

60

Chapter 5
Efficient Management of
Low-Level Simulation Data

The previous chapter describes how dynamically adjustable speed and detalil
characteristics address complete machine simulation’s performance challenge. However,
the ultimate goal of complete machine simulation is to help an investigator understand
some aspect of a computer system’s behavior. This chapter describes how effective
simulation data management can provide the information necessary to achieve this
understanding. The first part of this chapter describes the data management challenges
facing complete machine simulation and how investigation-specific data management
addresses these challenges. The second part of this chapter describes how SimOS
implements investigation-specific data management. SimOS separates the data
management process into event generation and event processing stages and provides

efficient mechanisms for flexibly controlling all event classification and reporting.

5.1 Data management challenges

Complete machine simulation provides an opportunity to obtain very detailed computer
system behavioral information. Complete machine simulation’s hardware models can be

heavily instrumented to observe their own behavior, and can thus report all of the low-

61

level hardware activity that occurs during a workload'’s execution. For example, a detailed
CPU model such as MXS can count mispredicted branches, pipeline stalls, or TLB misses.
Similarly, cache models can calculate miss rates and the amount of stall time that these
cache misses cause during a workload’s execution. In fact, the combined activity of
complete machine simulation’s hardware models completely defines the computer's
execution and is thus the source of all behavioral information. However, when studying a
complex system, transforming this hardware data into useful behavioral information
presents two problems. First, a complete machine simulator’s hardware models generate
very low-level data that is not particularly useful in its raw form. Second, this low-level
data is generated at an extremely high rate, and attempts to organize it into more

meaningful information can have a significant impact on simulation speed.

Low-level data

Hardware models produce data that is often at too low of a level for many investigations.
This problem arises because the hardware of a computer system works at a different level
of abstraction than most software. For example, most hardware caches deal with physical
addresses, and a cache model can easily count the number of misses that occur to different
ranges of the physical address space. However, applications work with code and data
defined by virtual addresses and are unaware of any physical address translation. To be
useful to an application programmer, the physical address-based cache miss data must be
transformed into virtual address-based data and mapped to the specific application data
structures responsible for these cache misses. Similarly, the hardware of a computer
system has no notion of operating system abstractions such as processes and their
scheduling. Even if the cache model could transform miss data into virtual address-based
information, it must be further classified by process ID number to distinguish the behavior

of different applications in a multiprogrammed workload.

Even in the evaluation of low-level architectural designs, unorganized data can cause
problems. For example, many workloads spend a substantial portion of their execution
time in an “idle” mode waiting for I/O requests to be satisfied. This idle mode is typically

implemented as a very tight loop where the operating system repeatedly checks for

processes that are ready to run, and has excellent pipeline and cache behavior. However, a

62

high-performance idle loop is not particularly valuable and its unrepresentative behavior
can obscure the true value of a new hardware design. A workload’s cache miss rate or
average cycles per instruction (CPI) will be a more useful metric if the hardware activity
occurring during the operating system’s idle loop is filtered out. Just as with application
data structures and operating system processes, the hardware models have no concept of

an idle mode, making this process challenging.

High-speed data generation

The challenge of organizing low-level hardware data into more meaningful computer
system behavioral information is compounded by the importance of simulation speed.
Accurate mode hardware simulators observe tremendous detail during the course of
workload execution, and can potentially produce volumes of data every second. Unless the
organization and classification of this data is highly efficient, the performance of the
simulation will suffer. As discussed in the previous chapter, speed is essential to the
effectiveness of complete machine simulation, and any approach to data management

must therefore minimize its performance impact.

Complete machine simulation’s data management challenge is thus to organize low-level
hardware data into more meaningful computer system behavioral information, and to

perform this organization as efficiently as possible.

5.2 The solution: Investigation-specific data management

Complete machine simulation addresses these challenges by allowing users to customize
all data collection and reporting to meet the specific needs of their investigations.
Specifically, complete machine simulation allows a user to incorporate knowledge of the
workload under investigation and to specify exactly what information about this

workload’s execution is desired.

To organize low-level hardware data into more meaningful computer system behavioral
information, complete machine simulation allows an investigator to provide higher-level
knowledge of a workload’s composition. As an example, a CPU model does not have any

concept of operating system processes, but an investigator knows that new processes are

63

created by certain system calls and are scheduled by specific operating system procedures.
An investigator can inform the complete machine simulator of these process-related
events, allowing the CPU model to attribute pipeline stalls according to the processes that
cause them. Similarly, a cache model has no concept of an application’s data structures,
but an investigator knows the virtual address range where important or interesting
structures reside. An investigator can inform the complete machine simulator of important
address ranges, allowing the cache model to count the data cache misses that occur to
these specific data structures. In either case, the addition of higher-level workload
knowledge customizes the data management process to a particular workload to obtain

more meaningful behavioral information.

To provide high-performance data management, complete machine simulation allows an
investigator to specify exactly what behavioral information their investigation requires.
For example, a hardware designer might specify that they are only interested in evaluating
the behavior of a new cache configuration. The complete machine simulator can avoid
much of the overhead of classifying and reporting other hardware data such as processor
pipeline or 1/O device activity. Similarly, an investigator can specify that they are only
interested in the behavior of a single process in a multiprogrammed workload, allowing
the complete machine simulator to avoid the overhead of detailed data classification
throughout the workload’s entire execution. Just as user-selectable speed and detail
characteristics allows complete machine simulation to minimize hardware simulation
time, specification of an investigation’s information needs allows it to minimize data

management time.

5.3 SimOS’s implementation

The combination of two important implementation features allow the SimOS
implementation of complete machine simulation to support the customization of data
management to the specific needs of an investigation. First, SImOS separates the data
management process into separate event generation and processing stages, allowing users
to customize the classification and reporting of data without modifying the hardware

simulators themselves. Second, SimOS provides mechanisms for controlling the event

64

processing stage, enabling the incorporation of workload-specific knowledge and the
implementation of efficient classification and reporting functionality. This section
describes these implementation features and how they support investigation-specific data

management.

The data management process of any simulation tool used for computer system behavioral
investigation requires transforming simulator data into some form of useful information
for reporting. This transformation might be as simple as converting memory reference
counts into a cache miss rate or as complex as assigning pipeline stalls to the application
basic blocks that cause them. In either case, the transformation process can be reduced to
hardware event generation and hardware event processing stagesevenhgeneration

stage, the simulation tool generates events corresponding to the activity that occurs during
a workload’s execution. These events might include the execution of instructions, MMU
exceptions, cache misses, I/0O device interrupts, or any other activity that the simulator
observes. In thevent processingtage, these events are filtered and classified into higher-

level information regarding the computer system’s behavior and reported to the user.

The simulation data management process is not always implemented as two separate
stages. Many simulation tools combine the event generation and processing stages into a
single step. For example, application transformation tools such as ATOM [Eustace95],
EEL [Larus95], and Etch [Romer97] provide investigation-specific behavioral information

by combining simulation, event processing, and reporting into a single executable
program. In order to examine a new application or a different aspect of an application’s
execution behavior, the simulation tool is recompiled to incorporate the new investigation-
specific data management chores. While this is may be an acceptable approach for some
tools, it does not work as well for complete machine simulation. The initial version of
SimOS combined the generation of hardware events with investigation-specific event
processing. For example, information about the IRIX idle loop and important application
procedures was compiled directly into SimOS’s hardware models, allowing them to
collect and present their hardware statistics according to these higher-level concepts. To
obtain different types of behavioral information or investigate new operating systems and

applications, an investigator would sprinkle code throughout each of the hardware model

65

SimOS

e
Event-Generating Event-P i Investigation-specific

Hardware vent-Processing Y g pecil
Models Hardware Mechanisms Behavioral Information

Events
N
Investigation-specific ‘
Tcl script

Figure 5.1. The complete machine simulation data management process

implementations and recompile the simulator. However, modification of complete
machine simulation’s hardware models required significant knowledge, time, and effort,
and ended up dissuading many users from substantial customization of the data
management process. Furthermore, investigation-specific data management code was
often added, but rarely deleted from the hardware models. As a result, significant event

processing was always active, providing information that was never used.

To address these problems, subsequent versions of SIimOS completely dissociate
investigation-specific event processing from the hardware models. As illustrated in
Figure 5.1, SimOS’s hardware models are responsible solely for generating hardware
events, and remain completely free of any investigation-specific information. As a result,
they do not need to be modified or even recompiled to support an investigation of a new
workload or satisfy different data processing requirements. The hardware events generated
by the hardware models provide input to SImOS’s event-processing stage where they are

filtered, classified, and transformed into investigation-specific behavioral information.

The second form of input is a investigation-specific Tcl script that specifies and controls
the event-processing stage. We selected the Tcl scripting language as the event-processing
control language because it provides a simple, consistent syntax and is easy to integrate
with compiled languages [Ousterhout94]. This Tcl script utilizes several SImOS-provided
mechanisms to incorporate higher-level workload knowledge into the data management
process and to specify what behavioral information should be collected and reported. This

allows SimOS’s data management process to be easily customized to satisfy the specific

66

information needs of an investigation. The next section describes the SImOS event-
processing mechanisms in detail and demonstrates how they efficiently provide

customized computer system behavioral information.

5.4 Event-processing mechanisms

Given the design decision of dissociated hardware event generation and processing, the
only run-time input to the SImOS’s event-processing mechanisms are hardware events.
The goal of each of the mechanisms is to efficiently process these low-level hardware
events into some form of higher-level information beneficial to an investigation. SImOS’s
event-processing mechanisms use hardware events in two capacities. First, hardware
events are the fundamental unit of performance, and SimOS’s event-processing
mechanisms count and classify these events to generate information. For example, a count
of mispredicted branches that occur during a workload’s execution can help an
architectural investigator determine the effectiveness of a branch prediction scheme.
Similarly, a count of data cache misses can help an investigator understand the basic data
reference locality that exists in a workload. Second, hardware events act as “hooks” for
allowing an investigator to incorporate workload-specific knowledge into the classification

of hardware events. For example, an investigator could indicate that virtual address
0x80004000 is the entry point to the operating system’s idle loop. A hardware event
indicating the execution of the instruction at this virtual address could trigger SimOS to

classify future cache miss events as occurring in idle mode.

In addition to providing event counting and classification functionality, SImOS’s event-
processing mechanisms must be easy to use. If the investigation-specific Tcl scripts are
difficult to write, investigators will be discouraged from realizing the most beneficial
behavioral information. Additionally, each event-processing mechanism must be as
efficient as possible. Even when satisfying just the specific information needs of an
investigation, inefficient event processing can have a significant impact on complete

machine simulation’s performance.

67

PC/Data Reference
Address

—

Address
Tables

Hardware Event
Events Filters

Bucket
Selectors

Annotations

Investigation-specific Investigation-specific

Tcl script Behavioral Information

Figure 5.2. Overview of SImOS event-processing mechanisms

Figure 5.2 provides an overview of the SimOS event-processing architecture. The rest of
this section describes each of the bold-faced mechanisms and how they provide different

event-processing functionality while remaining easy to use and highly efficient.

5.4.1 Annotations

Annotationsare one of SimOS’s most heavily used mechanisms. Annotations are Tcl
scripts that an investigator attaches to the occurrence of specific events. Whenever the
specified event occurs, the annotation script is interpreted to provide the specified event-
processing or simulation control functionality. The general format of annotation
specification is:

annotation set < annotation-triggering event > {
<annotation script >
}

To provide the greatest flexibility, SimOS allows annotations to be triggered with any type
of hardware event. Among the most heavily used triggering events are:
* Reaching a particular program counter address.Program counter annotatiorsre

among the most commonly used and are invoked whenever a processor executes an

instruction at a specified virtual address. These annotations can be used to indicate that

68

the CPU has reached the entrance to or exit from interesting sections of operating
system and application code.

* Referencing a particular data address.Data reference annotationare invoked
whenever a specific virtual address is read or written. Data reference annotations can
provide a watchpoint-like functionality that is particularly useful in operating system
debugging. If a particular data structure is found to be corrupted, a data reference
annotation could determine when, where, and why the data structure was improperly
written.

» Occurrence of an exception or interrupt. Trap-based annotationsiay be set to
trigger whenever an exception or external interrupt occurs in the target machine. These
annotations can be set on specific types of traps such as system call exceptions, TLB
misses, or disk interrupts, and are useful for tracking transitions from user to kernel
processor modes.

» [Execution of a particular opcode Opcode annotationsnay be set for particular
instruction types or classes of opcodes. For example, in the MIPS architectuie, an
(return from exception) oeret (exception return) instruction is used to return the
processor to user mode after taking an exception. Annotations triggered by these
instructions could be used to track transitions from the processor’s kernel mode back
to user mode.

* Reaching a particular cycle count.Cycle annotationsre triggered when the target
platform has executed for a specified number of cycles. Cycle annotations are
particularly useful for repeated event processing activity such as sampling of machine

state or periodic statistical output.

There are of course many other hardware events that may be desirable for triggering
annotations, and their utility depends on the needs of a particular investigation. For
example, research into ethernet behavior may benefit from such annotation-triggering

events as packet arrival or network collisions.

When an annotation-triggering event occurs, the associated annotation script is interpreted

to provide some specific utility. In their most basic capacity, annotation scripts can be used

69

to count the occurrence of particular events. For example, the following trap-based
annotation is counts the number of interrupts that occur during a workload’s execution:

annotation set exception INTERRUPT {
incr interruptCount
}

Similarly, a data reference annotation assigned to an application data structure could count

the number of times that this structure is read or written.

Simple counts of annotated hardware events provide valuable information, but annotation
scripts can provide much greater capabilities. We extend the capabilities of annotation
scripts by giving them access to the entire state of any hardware models in the simulated
machine. This state includes the processor registers and caches, TLB entries, I/O devices,
processor caches, and main memory. Annotation scripts can exploit this access to better
understand the state of the target machine. For example, by reading data structures in the
target machine’s operating system, an annotation can discover the ID of the currently
running process. This information can be subsequently used to classify hardware events

according to the process that causes them.

The previous examples describe annotation scripts in a passive capacity, only being used
to count events or query the state of the target machine. However, annotation scripts are
valuable in an active role as well. Tcl makes it simple to attach script commands to
internal simulator procedures to control aspects of the simulation environment. For
example, users write annotations to switch between the different SimOS simulator
execution modes. To switch from the Embra CPU model to the MXS CPU model, an
investigator includes the Tcl commarguEnter MXS in an annotation script. As a
result, it is easy to switch between modes at a particular machine cycle, upon entry to a
particular application procedure, or upon access to a specified data structure. As described
in the next section, active annotation scripts are also used to control more advanced event-

processing mechanisms.

An important goal of the event-processing mechanisms is their ease of use, and SIimOS
attempts to simplify the specification of annotation-triggering events and annotation

scripts. For example, annotations support the symbolic specification of all memory

70

addresses. The embedded Tcl interpreter includes knowledge of object file symbol table
composition, allowing program counter and data reference events to be specified at a
higher level of abstraction. For example, to trigger a program counter annotation at the
start of a sorting application’s main procedure, an investigator can specify:

annotation set pc SortingApp::main:START

rather than the less meaningful:

annotation set pc 0x00412de0

Annotation scripts also have access to symbol table information and all references to
memory locations can be made symbolically. As a result, Tcl-based references to data
structures are as simple as interactions with a source-level debugger. The following
example demonstrates how symbolic specification makes the data collection process as
simple as possible. In this example, an investigator wants to know the final value of the
position field in the inputData data structure whenever a particular procedure
executes:

annotation set pc SortingApp::SortElement:END {
console “The position is
[symbol read SortingApp:inputData.position]\n”

}

Each time theSortElement procedure finishes, theonsole command will output

the desired value for the investigator to view. Tegmbol command tells the Tcl
interpreter to parse the specified symbol table to determine the appropriate address to read.
As future examples will demonstrate, symbolic reference to the contents of main memory
allow annotation scripts to be extremely powerful. Not only does symbolic reference ease
the burden of annotation specification, it also increases their portability. When an
application or operating system is recompiled, the addresses of its text and data sections
change. Symbolically-specified annotation events continue to follow their semantic intent

while address-specified annotation events would require rewriting.

Because annotations are such heavily used mechanisms, their implementation must be as

efficient as possible. SImOS implements annotations by incorporating simple triggering

71

code into each of its hardware models. The interface between the hardware models and the
annotation handler is simply:

ExecuteAnnotations(<EventType>, <value>);

For example, each SimOS CPU model must invoke:
ExecuteAnnotations(TrapType, INTERRUPT)

each time a device interrupt occurs to invoke any trap-based annotations assigned to
interrupts. Note that the hardware models simply trigger annotations and have no
knowledge of the annotation scripts themselves. EkecuteAnnotations function

is highly optimized, using hashing techniques to handle the common case, events that
trigger no annotations, as quickly as possible. With the goal of providing the highest
possible simulation speed, the Embra CPU model uses additional techniques to provide
efficient annotation support. If Embra were forced to call ExecuteAnnotations

function for every single instruction, its performance would suffer. Consequently, Embra
gueries the annotation subsystem before the translation of each workload basic block to
see if any of the basic block’s program counter values should trigger annotations. If so, the
annotation is invoked directly from the translated code. However they are implemented,
the overhead of using annotations is directly proportional to the number that are installed
and the complexity of their scripts. As such, a user must only pay the annotation

performance cost required to satisfy their investigation’s specific information needs.
5.4.2 Bucket selectors

As described above, hardware events act as the fundamental unit of machine performance
as well as the hooks for incorporating workload-specific information into the event-
processing stage. Counting hardware events such as executed instructions, cache hits, or
TLB misses, a complete machine simulator can provide an investigator with a better
understanding of their workload’s execution. However, event counts aggregated over the
entire workload’s execution are not as useful as they could be. Additional utility could be
provided by maintaining multiple counters of each hardware event type where each
counter corresponds to some meaningful portion of a workload. For example, an
application writer might desire a count of the number of instructions and cache misses that

occur during each of an application’s procedures. These counts could be used as profile

72

information, focussing performance tuning on the most time-critical procedures in the
application. A large number of cache misses in a procedure would indicate that its lack of

data or instruction cache locality needs attention.

Similarly, an architectural investigation might want to track the number of missed branch
predictions to determine the effectiveness of a branch prediction scheme. These counts
may be more meaningful if they are categorized as occurring in either the idle loop or
during normal operating system and application execution. It is possible to use the
annotation mechanism to count and classify all hardware events. However, it would
require setting annotations on every single event and determining how to categorize each
of these events within the annotation script. Not only would this require an investigator to
write an extremely large number of annotations, the run-time performance of the
simulation environment would suffer. SImOS provides a mechanism cdliedket
selectorsto make this common event counting and categorization both easy to use and
highly efficient. The goal of a bucket selector is to decompose a workload’s total execution
time into smaller, more meaningful components and then to customize all data collection

to these components.

Bucket selectors requires two types of user input. First, the investigator chooses which
events are of interest by specifying the contents btieket A bucket is simply a user-
specified collection of events that should be counted. For example, an investigator might
specify that a bucket should include counts of instruction execution, TLB misses, and
cache misses. Whenever one of these hardware events occurs, the corresponding bucket
counter is incremented. While every possible hardware event count could be maintained in
each bucket, the ability to select particular counts of interest reduces the performance

impact to just what is required for an investigation’s information needs.

The second phase of bucket selector creation is the specification of execution phases or
components. These components might be application procedures, user-level processes, or
even more abstract concepts such as individual database transaction or web server
requests. Buckets are assigned to these execution components, and at any given time, only

a single bucket is active. Aelectoris simply an indication of which bucket is currently

73

Save current state on stack when an exception occurs / \
annotation set exception { < user >
stackPush “stateStack” $currentState
set currentState kernel
selector set modes kernel

} (kerneD

Restore saved state when the processor executes
the “return from exception” opcode

annotation set inst rfe { dLI
set currentState [stackPop “stateStack”] K 1ale /
selector set modes $currentState
} Buckets
Transition to the idle mode when the PC hits the idle loop | user
annotation set pc kernel:idle:START { /

set currentState idle
selector set modes idle

}

Return to the kernel mode at the end of the loop
annotation set pc kernel:idle:END {
set currentState kernel

selector set modes kernel
} Selector

Figure 5.3. Processor mode bucket selector

active. Annotations control selectors, and once an annotation has set the selector to point
to a particular bucket, all specified hardware events will be automatically funneled into
that bucket until the selector is changed again, signaling the entry into a new phase of

execution.

Figure 5.3 illustrates typical usage of the bucket selector mechanism. In this example, a
workload’s execution time is decomposed into processing user-level code, processing
kernel-level code, and spinning in the kernel idle loop. The left side of the figure shows the
Tcl source used to implement the processor tracking functionality. The script implements
the state machine illustrated in the top right portion of the figure. The state machine
controls the setting of a selector, as depicted in the bottom right side of the figure. For
readability, the code has been simplified to omit bucket and selector initialization. The
script places annotations on exceptions, on the return-from-exception opcode, and at the
start and end of the operating system idle procedure. These annotations set the “modes”

selector in order to direct event counts into the bucket corresponding to the current mode.

74

To provide additional utility, SImOS allows multiple selectors to coexist with each
funneling events to its own set of buckets. As a result, several execution decompositions
can be generated simultaneously and provide different high-level views of the same
workload execution. For example, an investigation into a database transaction processing
may benefit by categorizing events based on the active database server procedure while

simultaneously categorizing events based on the particular transaction being processed.

The bucket selector mechanism has proven to be an extremely effective component of
SimOS’s data management process. In addition to encouraging investigation-specific
categorization of hardware events, the bucket selector mechanism is simple to use and
lends itself to an efficient implementation. SImOS implements bucket selector with a
single level of indirection in the normal event counting code of each hardware model. For
example, a simulated cache model typically counts the number of misses that occur with
code similar to:

if (InCache(reference) == FALSE) cacheMisses++

SimOS adds a level of indirection to this cache miss counting code:

if (InCache(reference) == FALSE) (*cacheMisses)++;

The bucket selector has complete control over the setting of this pointer, allowing it to
funnel cache miss counts to the appropriate bucket. The impact of this level of indirection
is relatively minor, requiring a single additional memory reference for the incrementing of
each hardware event counter. Furthermore, annotations are only required to change the
currently active bucket, making their overhead directly proportional to the granularity at

which an investigator decomposes a workload.
5.4.3 Address tables

Automatic hardware event categorization is an effective technique for collecting
performance data, but the bucket selector mechanism is not always the best approach.
While bucket selectors are good at assigning events to higher-level execution abstractions,
more precise data is often desirable. Specifically, it is often informative to categorize
events based on the individual line of code or data structure responsible for its occurrence.

Categorizing hardware events at this fine granularity would require a tremendous number

75

of annotations to properly control bucket selection. SImOS provideadainess table

mechanism to address this information-gathering challenge.

An address table is designed to efficiently attribute hardware events to the particular
instructions or data references responsible for their occurrence. Categorizing data cache
miss events by the referenced address can show exactly which data structures are
exhibiting poor cache locality. Similarly, categorizing pipeline stalls by program counter
address shows which portion of code may benefit from better compiler instruction
scheduling. Address tables are a special case of bucket selectors where the active bucket is
determined by the address of the event rather than by explicit user interaction. Address
table specification consists of two phases. As with bucket selectors, the first phase requires
the specification of hardware events that should be counted. An address table can consist
of many thousands of buckets, and tracking only the hardware events of interest can

greatly reduce the mechanism’s memory requirements.

The second phase of specification requires a declaration of the address ranges to be
tracked and the granularity at which these ranges should be decomposed. Granularities
range in size from individual memory words up to entire pages; each unit of data
collection is assigned a bucket. Furthermore, address tables can becefledrivenor
data-driven Code-driven address tables categorize hardware events based on the current
program counter address and are used to understand the behavioral characteristics of an
application’s source code. Data-driven address tables track hardware events only during
load and store instructions and categorize the events according to the data address that is

read or written.

Figure 5.4 illustrates how a code-driven address table can help determine the behavioral
characteristics of a workload. The goal of this simple example is to determine the
particular lines of code that are exhibiting performance problems. Specifically, the script
creates an code-driven address table to count the number of TLB and instruction cache
misses that occur for each 128-byte long cache line in the sorting application’s text
address space (0x00400000 through 0x00410000) and for each 4-kilobyte page of the
dynamically loaded “C” library’s text address space (0x60000000 through 0x600020000).

76

Create address tables for the sorting application and the

“C” library. The last parameter is the data collection unit size.
addressTable code “sortCode” 0x00400000 0x0041000 0x80
addressTable data “sortData” 0x10000000 0x10004000 0x80
addressTable code “libcCode” 0x60000000 0x60002000 0x1000

Specify which hardware events the address tables should count
addressTable bucket “sortCode” {instCacheMisses dataCacheMisses tlbMisses}
addressTable bucket “sortData” {dataCacheMisses}

addressTable bucket “libc” {instCacheMissEvents tlbMissEvents}

'

. . Symbolic Icache TLB Dcache
Data-collection unit . . .
name misses misses misses
0x00400000-0x00400080 main(): line 21 56 53 10
0x00400080-0x00400100 main(): line 23 122 67 88
0x10000000-0x10000080 sortStruct.value Not kept Not kept 356
0x60000000-0x60001000 printf(): lines 22-284 223 10 Not kept

Figure 5.4. Code- and data-driven address tables

It also creates a data-driven address table to count the data cache misses that occur in the
sorting application’s data segment (0x10000000 through 0x10004000).

During the execution of this workload, the selected hardware events are categorized into
the specified address ranges, resulting in the tabular event count data. Using the object
files’ symbol table information, these data collection units are mapped back to concepts
understood by the user. For code-driven address tables, event counts are mapped to the line
or lines of source code that led to the events, while for data-driven address tables, event
counts are mapped to the symbolic name of the responsible data structures. The end result
is an accurate determination of the causes of system behavior presented at a level of
abstraction that is useful to the investigator. The combination of code-driven and data-
driven address table information provides more useful information than either one in
isolation. In the above example, data cache miss events are counted simultaneously in both

the code-driven and data-driven address tables. These orthogonal views can be cross-

7

referenced to determine what source code is responsible for misses to specific data

structures.

Address tables classify a tremendous quantity of low-level hardware events, and an
efficient implementation is essential. Like the bucket-selector mechanisms, address tables
exploit the level of indirection present in the hardware models’ event counts. However, the
setting of the pointer is automatically determined by the current PC or data reference
address rather than by an annotation script. To determine the correct bucket as quickly as
possible, each address table maintains a hash table indexed by PC or data reference

address and optimized to the user-selected bucket granularity sizes.
5.4.4 Event filters

The previous sections describe how annotations, bucket selectors, and address tables can
efficiently attribute hardware events to components of a workload. However, these
hardware events are often at too low of a level to make simple counts particularly useful.
An example of this is the occurrence of cache miss events on shared-memory
multiprocessors. Knowing that some piece of code or portion of a data structure suffers
cache misses does not necessarily tell the programmer if and how these cache misses can
be avoided. In order to eliminate these cache misses, it is helpful to knowtyef

cache misses occurred. It is often useful to raise the abstraction level of hardware events,

andevent filtersaddress this need.

An event filter is implemented as a state machine that takes hardware events as input,

builds up additional knowledge about these events, and outputs new higher-level events.

Event filters are attached directly to the hardware event stream and use state machines to
convert the original events into new, more descriptive events. The new events can be used
to trigger annotations or can be counted and categorized using bucket selectors and
address tables. Figure 5.5 illustrates how an event filter is used to classify the cache misses
that occur in a shared-memory multiprocessor. In this example, a cache miss can be either
classified as a “cold” miss, an “invalidation” miss, or a “replacement” miss [Dubois93]. To

provide this classification, SImOS instantiates a state machine for each cache line-sized

78

State machine|
for line 2334 on

Cold

CPU #3 (initial status)
New
E\?ecr?ti —> —p|Cache-related
Events
Invalidated CACHED Replacement
by another CP miss event

Knocked dyt
of cache

Invalidated

Figure 5.5. Cache miss event filter

portion of main memory and for each processor. At any point in time, the specific portion

of main memory is either in a processor’s cache or not. In the pictured state machine, bold
lines represent cache misses and the normal lines represent transitions that occur either
when the line is knocked out of the processor’s cache or when the cache line is invalidated
in the maintenance of cache coherence. In this example, the referenced cache line is in the
“replaced” state, and so this cache miss will be classified as a “replacement miss event”

and output for further processing.

The cache event filter is typically used in conjunction with address tables to associate
different types of cache misses with particular pieces of code or data structures,
information that is valuable to application performance tuning. For example, cold misses
are usually unavoidable, whereas replacement misses can often be eliminated by
restructuring data structures. Additionally, excessive invalidation misses may indicate that
better control of the inter-processor communication is needed. Armed with this

information, developers can reduce the number of application cache misses and

substantially improve the performance of a workload.

Event filters are useful for improving the level of abstraction provided by other hardware
events as well. For example, a state machine could track the state of a CPU’s execution
units, creating new events that indicate why pipeline stalls occur. In whatever architectural
domain they are used, event filters are a simple technique for improving the information

content of hardware-level events. As with the other mechanisms, the overhead of event

79

filters is proportional to their use and complexity, allowing an investigator to pay only for

the desired level of information collection.

5.5 Building higher-level mechanisms

The previous section described a number of mechanisms providing relatively disparate
event-processing functionality. In practice, these mechanisms are often more valuable
when used cooperatively. This section describes how the core event-processing

mechanisms can be combined to provide more advanced data management functionality.
5.5.1 Annotation layering

Software layering is an essential tool in the creation and maintenance of large software
systems. By creating abstractions and interfaces upon which higher levels of software can
rely, implementation details can be hidden from the programmer, easing the burden of
software creation. Similarly, a thorough understanding of a computer platform can require
extensive use of annotations, and software layering is an essential component of this
usage. Previous examples demonstrate annotations triggered by hardware events.
However, to support software layering, it must be possible create new annotation-
triggering events that have a higher-level meaning than individual hardware events

provide.

The process of creating new annotation-triggering events is straightforward. At the lowest
layer are annotation scripts triggered by hardware events. These scripts can access some
component of the target platform’s state to determine if it is desirable to generate the new
user-defined event. When this new event type occurs, higher-level annotation scripts
triggered by this new type will be interpreted. These scripts can perform some form of

data collection or could generate even higher-level annotation-triggering events.

Figure 5.6 illustrates a typical use of user-defined annotation-triggering events. A group of
program counter annotations are set throughout the operating system’s process context-
switching code to track the currently scheduled process. These annotations are set on the

process management system calls, in the context-switching code, and at the beginning of

80

Define a new annotation type for process-related events
annotation type process {switchOut switchin}

Program Counter (PC) annotation at the end of the
exec system call (the PID doesn’t change)
annotation set pc kernel:exece:END {
On an exec, the name of the process changes
set PROCESS [symbol read kernel:u.u_comm]

}

PC annotation at the end of the context-switching code
annotation set pc kernel:resume:END {

Execute the higher-level event

annotation exec process switchOut

Update executable name and pid

set PID [symbol read kernel:u.u_procp->pid]

set PROCESS [symbol read kernel:u.u_ucomm]

Execute the higher-level event

annotation exec process switchin

}

Annotation at the beginning of the idle loop
annotation set pc kernel:idle:START {
Execute the higher-level event
annotation exec process switchOut
set PID -1
set PROCESS “Idle”
Execute the higher-level event
annotation exec process switchin

Figure 5.6. Creation of process-related events and data

the kernel idle loop. Tcl variables maintain the current process ID (PID) and process
name. In this exampley is a variable in the operating system that gives access to the
process table entry of the current process. This set of process-tracking annotations is
packaged as a library. While the library doesn’t directly generate any performance data, it
is used by higher-level annotations to attribute events to specific processes. New
annotations can rely on the ngwocess switchlrand process switchOugvents and can

use thePID and PROCESSvariables to better understand and classify performance
information. This annotation layering capability has led us to create a collection of useful
annotation libraries that build up knowledge regarding the activity of the operating system,
the standard “C” library, and a number of other commonly investigated workload
components. These libraries provide new annotation-triggering events as well as higher-

level information for other libraries or scripts to easily incorporate and build upon.

81

main(){
Sort();
PrintResults();

}
Sort() {

read();
printf();

@ <printf> (printf)

Figure 5.7. Tree-based decomposition of a simple application

PrintResults() {

printf();
write();

5.5.2 Timing trees

One of the advantages of complete machine simulation is the ability to investigate
multiprogrammed workloads with all of their associated operating system activity.
However, operating system-intensive workloads can be quite difficult to understand.
Process scheduling, expensive system call usage, and virtual address translation all
contribute to applications’ behavior, requiring more elaborate data collection and
presentationTiming treeshelp satisfy this need, providing an easy-to-use mechanism for

understanding complex multiprogrammed and operating system-intensive workloads.

As illustrated in Figure 5.7, programs are composed of nested routines, and it is often
useful to visualize a program’s composition as a tree. More complex applications lead to
deeper and wider trees, but the decomposition is still meaningful. The timing tree
mechanism extends this type of tree-based decomposition to multiprogramming
workloads and easily and efficiently incorporates their use into the data management
process. The timing tree mechanism creates a single system-wide tree with a first level
node for each process in the system. Whenever a new process is created, a node is
automatically added to the system tree. Using annotations set in the operating system’s
process scheduler, timing trees track the currently executing process, and for each user-
level process, timing trees maintain a stack that tracks the process’s current routine or
phase. This information in turn controls a bucket selector that collects both hardware and

higher-level events and assigns them to the active phase.

82

Use the timing tree library
source “timingTrees.tcl”

Tell the timing tree what to count for each node

timingTree count { instructions, dataCacheMisses, tlbMisses }
Indicate the “phases” to assign counts to

timingTree start “Sort” pc SortingApp:Sort::START
timingTree end “Sort” pc SortingApp:Sort::End

timingTree start “fork” pc libc:read::START

timingTree end “fork” pc libc:read::END

Process-scheduler

Annotations SYSTEM TREE

y

PID5 PID 74

main

PID 74 - “SortingApp”

Hardware ‘@

Sort PrintResults

o lector

Events Selecto
sync
read |/ |/
Sort read CLOCK IN printf
main [Bucket] Bucket

Active-Phase|

Stack

Time
Descheduled

Y
sync sync
| Bucket | Bucket

Figure 5.8. Example timing tree decomposition

Figure 5.8 helps illustrate the composition of a timing tree. To specify the structure of a
timing tree, an investigator indicates what events should be counted along with the starting
and ending points of interesting execution phases. The timing tree mechanism uses
annotations and bucket selectors to do the rest. Upon entry into a new phase, the current
process’s active-phase stack and selector is updated. In the example, the system is
currently in the sync phase of the read system call. The bucket selector will thus attribute
all instruction, data cache miss, and TLB miss events to this particular node. Timing trees

also provide a “time descheduled” bucket for each process. A process can be descheduled

83

at any time, and this extra node allows us to track the effects of operating system

scheduling policies on the application’s behavior.

When event processing is complete, the resulting timing tree data can be flexibly
manipulated and examined to infer many different types of behavioral information. For
example, tree branches can be easily collapsed, expanded, or isolated to answer very
specific questions regarding workload behavior. In this example, it might be useful to
compare the data cache behavior of synchronization acting on behaldaf from that

occurring during clock interrupt or even during another procesat usage.

Timing trees demonstrate how several basic event processing mechanisms can be
effectively layered to form new, more sophisticated mechanisms. Additionally, they
simplify the specification of a commonly-used execution decomposition, helping

customize event-processing to the specific needs of an investigation.

5.6 Data management’s performance impact

The previous section introduces a number of different mechanisms and how they
efficiently coerce and classify hardware-level data into higher-level behavioral
information. This section examines the performance impact of these mechanisms as used

in a typical SimOS investigation.

Table 5.1. Operating system library detail levels

Detail Level Information Provided
0 Nothing (library is not used)
1 Tracks the name and ID of the currently scheduled user process
2 Level 1 + Bucket selector that classifies hardware events accordifg to

the current system mode (kernel, user, or idle)

3 Level 2 + Timing tree that classifies hardware events by the systenj ser-
vice (system call or exception handler) that they occur during.

A number of our investigations involve tracking operating system behavior during the

course of a workload’s execution. Recognizing this common need, we have created a

84

reusable library of annotations, bucket selectors, and timing trees that provide operating
system data. However, these investigations often require radically different amounts of
operating system information, and capturing unneeded behavioral data results in excessive
simulation slowdown. To address this problem, the library is parameterized by an integer
“detail level” that determines the amount of information that it should collect. Table 5.1
summarizes the library’s levels of detail. Increasing the detail level provides more
operating system information, but the heavier use of event-processing mechanisms results

in higher performance overheads.

Table 5.2 illustrates the performance overhead of each detail level while simulating the
uniprocessor compilation workload described in the previous chapter. This workload has
significant operating system activity and thus heavily exercises the library. The

performance overhead is computed by comparing the simulation time at each detail level
to the simulation time of the zero detail level case. For example, the positioning mode runs
8% slower when using the operating system behavior tracking library at detail level than 1

than when not using the library at all.

Table 5.2. Event-processing overheads for the compilation workload

Detail Level Positioning | Rough Char. Accurz_ite Mode| Accurate Mode
Mode Mode (Mipsy) (MXS)
1 8% 5% 1% <1%
2 304% 231% 10% <1%
3 428% 284% 13% 2%

There are two important trends in these overheads. First, within a single simulator
execution mode, the performance overhead of event processing can vary quite
significantly. More detailed levels (higher numbers) require significantly larger run-time
overheads to classify hardware events to higher-level concepts such as execution modes
and system services. This trend makes explicit the substantial speed-detail trade-off that
can be made within complete machine simulation’s data management task. The second

trend is seen when comparing the overhead of a single detail level across simulator

85

execution modes. The computation required to support a set number of annotations,
bucket-selectors, and timing trees is largely constant, regardless of the simulator execution
mode. However, the very high speeds achieved by the positioning and rough
characterization modes make this constant overhead quite significant. In contrast, accurate
simulation mode’s slower speeds allow it to amortize this event-processing overhead over
a longer period of time, helping minimize its performance impact. Furthermore, the
highest detail levels are almost never used in positioning and rough characterization
modes as the accuracy of their results are limited by the accuracy of the simulator mode
itself. In practice, users never employ the library in positioning mode, and only use the
first detail level with rough characterization mode. To collect more detailed behavioral

information, combine the higher detail levels with accurate mode simulation.

The existence of higher-level libraries is essential to the simple specification and use of
detailed event-processing. However, even when efficiently implemented, detailed event-
processing can have a large impact on complete machine simulation’s performance. Just
as with adjustable simulator speed and detail characteristics, adjustable event processing
and data management allows an investigator to minimize the simulation time required to

meet the specific information needs of their study.

5.7 Summary

Complete machine simulation provides an excellent opportunity for helping investigators
better understand the behavior of a computer system. However, effectively exploiting this
opportunity requires organizing low-level hardware data into higher-level behavioral
information and performing this organization as quickly as possible. To address these
challenges, complete machine simulation encourages the customization of its data
management process to the specific needs of an investigation. This chapter has described
how SimOS provides this customization capability through decoupled event generation
and processing and with several efficient event-processing mechanisms. As demonstrated
in the next chapter, this data management approach has proven to be extremely effective,

efficiently providing useful behavioral information for a variety of investigation needs.

86

Chapter 6
Experiences

The previous chapters describe SImOS and the techniques it uses to address the speed and
data management challenges facing complete machine simulation. This chapter describes
several of our experiences using SimOS, providing further insight into the effectiveness of
the complete machine simulation approach. A tool is only as good as the investigations
that it enables, and by this measure SimOS is quite successful. The first part of this chapter
describes several SImOS-led investigations and how they have benefited from its use.
However, we have also found several limitations with SImOS and the complete machine
simulation approach. The second part of this chapter describes the most important of these

limitations.

6.1 Investigations enabled by SImOS

Because of its extensive workload support and architectural modeling flexibility, SimOS is
an effective tool for a variety of investigations. Furthermore, SimOS’s ability to provide
both timely, accurate, and customized behavioral data make it an attractive alternative to
many existing simulation tools. As a result, SImOS has enabled investigations in many
different domains of computer systems research. Recent studies include the investigation
of new architectural designs [Bowman97] [Heinrich94] [Nayfeh96] [Olukotun96]
[Wilson96], the development of new operating systems [Chapin95b] [Bugnion97], and the

87

performance evaluation of applications [Bugnion96] and operating systems
[Rosenblum95] [Teodosiu97] [Verghese97]. This section introduces several of these

investigations and how complete machine simulation provided benefits for them.
6.1.1 Characterization of IRIX’s performance

One of the earliest investigations utilizing SimOS was a performance characterization of
the IRIX operating system executing on both current and future architectural platforms.
This goal of this characterization was to help focus IRIX performance tuning efforts on
those areas most likely to cause performance problems in the near future. SImOS was
critical to this investigation for three reasons. First, the investigation required realistic
workloads that stressed the operating system in significant ways; toy applications and
micro-benchmarks do not drive the operating system realistically, and thus cannot provide
an accurate picture of overall operating system performance. Second, the IRIX operating
system is large, complex, and multithreaded. The investigation required flexible data
characterization mechanisms to help make sense of the wealth of behavioral information
available. In fact, many of the data collection mechanisms of SImOS were developed in
direct response to the needs of this study. Third, the goal of the study was to analyze the
behavior of the operating system on machines that are likely to appear several years in the
future. The flexibility of complete machine simulation allowed us to model hardware

platforms well before they were commercially available.

SimOS extensive workload support was essential for observing operating system behavior
in a realistic setting. To stress the operating system in realistic ways, we picked workloads
that are traditionally run on high-performance workstations and shared-memory

multiprocessors: a commercial database workload, a compilation workload, and an
engineering simulation workload. SImOS’s adjustable speed and detail characteristics
enabled the timely preparation and examination of these workloads. First, we used the
SimOS positioning to quickly execute past the uninteresting portions of the workloads.

This included booting the operating system and running through the initialization phases
of the applications. To obtain useful information, we ensured that the system had run long

enough to get past the cold start effects due to the operating system boot. Just the

88

Idle
Database User Stall
100 1 T T T T T User
Kernel Stall
Kernel

Percent of Execution Time

Time (seconds)

Figure 6.1. lllustration of information generated in rough characterization mode.

initialization of the database workload took several billion instructions, for example, and

detailed simulation of this initialization would have taken days of simulation time.

Once the workloads were initialized to an interesting point, we used Singb8&kpoint

facility to transfer the entire machine state from the simulation models into a set of files.
Just as a simulated machine’s hardware state can be transferred between different
simulator execution modes, it can also be transferred to the host machine’s file system.
SimOS allows an investigator to take a checkpoint of the target machine’s state at any
point during a workload’s execution. The checkpoint can be subsequently restored into
simulation models to continue execution from the exact point at which the checkpoint was
taken. A single checkpoint can be restored in multiple different hardware configurations
and characterization modes, and provides a common workload starting point for

architectural comparisons.

Each checkpoint was first restored into SimOS’s rough characterization mode to obtain a
high-level characterization of each workload. The rough characterization mode
simulations employed the processor mode bucket selector described in Chapter 5 to
decompose each workload’s execution into simple, informative components. Illustrated in
Figure 6.1 for the database transaction processing workload, the data obtained in rough
characterization mode helped determine that the workloads were correctly positioned and

had sufficient operating system activity to warrant further investigation. Furthermore, this

89

data showed that the database and engineering workloads’ behavior was fairly regular and
that examination of a limited portion of the total workload execution time would likely
represent its overall behavior. This was essential to reducing them time required for more
detailed observation. To obtain the more detailed information, each checkpoint was
restored into the SImOS accurate modes, configured to model several different machine
configurations. SimOS'’s architectural modeling flexibility allowed us to create entire
machines representative of those shipped in 1994 as well as those likely to ship in 1996
and 1998.

As described in Chapter 5, SimOS provides mechanisms that encourage a user to
customize all simulation data to the specific needs of their investigation. For example, they
allow a user decompose the execution of a workload into smaller components and then
customize all data collection to this decomposition. For this investigation, it was useful to
decompose operating system execution according to the particular services that it
provides. These services include system calls, virtual-memory fault processing,
exceptions, and interrupt processing. Many of the services share the same subroutines and
have common execution paths, so a more traditional, procedure-based decomposition
would have been less effective. SImOS’s timing tree mechanism simplified the generation
of this service decomposition. Specification of just over ninety timing tree start and end
points completely isolated the activity of each of the operating system’s services. The
timing tree automatically handles the more difficult aspects of operating system
decomposition such as nested interrupts and descheduled processes. With the help of a
cache miss event filter, the timing tree provided very detailed information regarding the

behavior of each operating system service.

The ability to decompose the operating system’s aggregate execution time into more
meaningful components was critical to this investigation, allowing a performance

comparison of the operating system services across different workloads, number of
processors, and generations of hardware. This comparison uncovered significant
differences in the performance improvements of different services across architectural

trends. This comparison, combined with the specific cache and processor behavior of each

90

service, helped to focus our performance tuning efforts on the portions of IRIX most likely

to cause problems in the near future.

SimOS'’s configurable hardware models, support for realistic workloads, multiple levels of
speed, and customizeable data management all played a crucial role in enabling this
operating system investigation. The end result of the study was a better understanding of
the impact of architectural trends on IRIX’s behavior well as a better appreciation for the
capabilities of SImOS. Complete details regarding this investigation and its use of SimOS

are available in [Rosenblum95].
6.1.2 Design of the FLASH multiprocessor

SimOS has been heavily used to aid the design of the Stanford FLASH multiprocessor
[Kuskin94]. The goal of the FLASH project is to build a shared-memory multiprocessor
capable of scaling to thousands of MIPS R10000-based processing nodes. To aid the
development of FLASH, the architecture team created FLASHLite, a detailed software
simulation model of the proposed memory system. FLASHLite was originally designed to
be a component of TangoLite, a user-level, execution-driven simulation tool
[Goldschmidt93], but development of SimOS provided an opportunity for the architecture
group to extend the utility and effectiveness of FLASHLite. SimOS’s interface for adding
new memory system models minimized the integration effort, and the FLASH design

effort was soon realizing several of the benefits of complete machine simulation.

First, SimOS extended the number and type of workloads that could be used to evaluate
various FLASH design options. TangolLite is able to capture the user-level memory
behavior of applications such as those that comprise the SPLASH [W0095]. These
scientific applications have little or no explicit operating system activity and can thus be
easily examined by user-level simulation tools. However, the FLASH multiprocessor is
intended to perform well as a general-purpose compute server as well as in support of
scientific applications. The use of SImOS extends the evaluation of FLASH design options
to include database transaction processing, parallel compilations, and other
multiprogrammed workloads that the FLASH machine must efficiently support. These

operating system-intensive workloads often exhibit different memory system activity than

91

the SPLASH applications, and have influenced several design decisions. For example,
[Heinrich94] found that operating system-intensive workloads exercise the FLASH
protocol processor differently than SPLASH workloads, and led to modifications of the
protocol processor’s data cache organization. Utilization of a wide variety of workload
also benefits the design verification effort. The irregular memory reference activity of
many operating system-intensive workloads stresses FLASH's cache coherence protocols
differently than the SPLASH applications and helped detect and eliminate several

deadlock situations in the cache coherence protocols.

Second, SImOS enabled evaluation of the FLASH memory system design options in the
context of a complete machine design. For example, the FLASH memory system must
maintain cache coherence between processor caches, but it must also support cache-
coherent DMA by the disk controller and other system devices. User-level simulators such
as TangoLite omit I/O device behavior and are thus incapable of evaluating this aspect of
memory system design. Similarly, a multiprocessor memory system interacts closely with

a machine’s CPU’s and caches in supporting memory prefetching, bus error notification,
and inter-processor interrupts. SimOS and FLASHLite model all of these interactions, and
the full behavioral effects of a proposed FLASH design propagate throughout the
simulated system. As a result, the designers were able to obtain accurate information

regarding the real-life impact of architectural decisions.

The combination of SImOS and FLASHLIite has proven to be an effective source of data
for the design of the FLASH multiprocessor as well as for early research into the
effectiveness of the FLASH architectural approach [Heinrich94] [Heinlein97a]. In
addition to its use in FLASH’s architectural design and evaluation, SimOS has aided
related compiler and operating system development efforts. These efforts are the subject

of the next two case studies.
6.1.3 Hive operating system development

SimOS has also proven to be an effective tool for operating system development. For
example, SImOS was heavily used in the design and development of Hive, an operating

system designed to improve the reliability and scalability of large general-purpose shared-

92

memory multiprocessors [Chapin95b]. Hive is targeted to run on the FLASH
multiprocessor, and provides scalability and reliability improvements through a novel
kernel architecture. Rather than running as a single shared-memory program that manages
all the machine’s resources, Hive partitions the machine and runs an internal distributed
system of multiple kernels calledelis. This multicellular kernel design improves
scalability because few kernel resources are shared by processes running on different cells,
and also improves reliability because a hardware or software fault damages only one cell
rather than the whole system. SimOS provided utility throughout the design and
implementation of Hive in a variety of ways. First and foremost, SImOS provided a
platform for operating system development. The Hive project began early in the design
phase of the FLASH multiprocessor. As a result, Hive development had to begin in the
absence of its intended hardware platform. The combination of SImOS and FLASHLite
provided early access to the FLASH “hardware” and thus provided a platform for Hive
development. Furthermore, early access to potential architectural designs allowed Hive to
influence FLASH design decisions. For example, Hive's early efforts at providing
reliability suggested that a hardware mechanism for selectively prohibiting remote
memory writes across cells would provide significant benefits. This hardware “firewall”
mechanism was easily evaluated using SimOS and FLASHLite, and its value was

recognized early enough that this feature could be included in the final FLASH design.

In addition to providing early access to a hardware platform, SimOS provides excellent
operating system debugging capabilities. SImOS includes an interface for the gdb
debugger [Stallman92] that supports examination of the simulated machine. The debugger
attaches to SIimOS and can set breakpoints, single step through instructions, obtain
execution backtraces, and read and write the machine’s memory. While these capabilities
are typical of most application debugging environments, SImOS supports their use
anywhere in the operating system, including the lowest-level exception and interrupt
handlers. Debugging efforts are further improved by SimOS’s deterministic execution.
Many operating system problems are classifietHasenbugdecause observation often

causes them to behave differently or even disappear. SImOS ensures that operating system

93

behavior is completely repeatable, allowing problems to be more easily examined and

eliminated.

SimOS also played a significant role in testing and evaluating Hive’s reliability. Hive is
designed to minimize the impact of hardware and software faults by detecting when they
occur, limiting the spreading of their effects, and then recovering any affected cells.
SimOS aided the implementation of this fault containment approach in two important
ways. First, annotation scripts were extended with commands for initiating a wide variety
of hardware and software faults. For example, these scripts can alter the contents of main
memory, corrupt interconnection network routing tables, or even disable entire portions of
the machine. Initiation of similar faults on real hardware is significantly more difficult if
not impossible. Additionally, SimOS’s data management mechanisms provided excellent
visibility into Hive’s recognition of and reaction to these faults. When a fault was not
properly contained, program counter-based annotations placed throughout the kernel

helped determine why.

In summary, SimOS was an essential tool in the development of Hive, enabling its
complete design and implementation well before its targeted hardware platform was
available. Additional information regarding Hive and its use of SimOS is available in
[Chapin97].

6.1.4 Improving the SUIF parallelizing compiler

SimOS was also heavily utilized in a recent investigation of automatically-parallelized

applications generated by the SUIF compiler [Wilson94]. The SUIF compiler

automatically transforms an application designed for uniprocessor execution into one that
can exploit multiprocessor hardware. The SUIF group became interested in SimOS
because many automatically-parallelized SPEC95fp applications were not achieving the
expected performance improvements, and existing tools were unable to identify the
reason. The goal in using SImOS was to discover the sources of the application’s
performance problems and to suggest compiler modifications that would help eliminate

them.

94

Because SimOS can run the IRIX operating system, workload preparation was simple.
Researchers compiled SUIF applications to run on a Silicon Graphics workstations and
copied the executables and their input files onto the simulated machine’s disk. Note that no
modifications to the applications were necessary to run on SimOS. Furthermore, because
SimOS’s accurate simulation mode closely models existing Silicon Graphics machines,
the SUIF group could be confident that application performance gains exhibited on the

simulated machine would translate into performance gains on the actual hardware.

SimOS’s support for multiple levels of simulation speed is essential to investigating the
long-running, SUIF-generated applications. SimOS’s positioning mode enables fast
initialization and positioning of the parallelized SPEC applications. This process takes less
than ten minutes of simulation time for each application, including the booting of IRIX.
Once the applications are in an interesting position, more detailed investigation can begin.
To avoid excessive simulation time due to the long execution times of the SPEC95fp
benchmarks, several minutes on today’s fastest non-simulated machines, SimOS’s rough
characterization mode was initially used to observe the application’s basic behavioral
characteristics. The resulting data illustrated that each application’s behavior was quite
regular, exhibiting very similar behavior in repeating intervals. This allowed the
researchers to limit examination with the accurate modes to a small number of
representative intervals. The information obtained during these slowly simulated intervals
was extrapolated to apply to the entire execution, further decreasing the simulation time

required for this investigation.

SimOS’s customizeable data management mechanisms were also essential to this
investigation, identifying several performance problems and suggesting solutions. As
depicted in Figure 6.2, a SUIF-generated application has a master/slave structure. The
master thread coordinates the application’s execution, determining when slave threads
should help execute parallelized loops. At the end of each iteration, the threads
synchronize at a barrier to maintain loop ordering constraints. The regular structure of
SUIF applications provides an obvious approach to decomposition. Each application is

decomposed into its sequential execution, parallelized execution, and synchronization

95

. Sequential execution

Parallelized execution

v L
Slave Threads Synchronization/
Load Imbalance
v v v

Master Thread

Figure 6.2. Structure of SUIF-generated applications

time. SImOS bucket selectors separated “useful” execution time from compiler-added
administration and synchronization overheads. Additional annotations decomposed
synchronization time into the time spent executing barrier code and time spent waiting at
this barrier when slave execution times were unbalanced. The resulting data suggested that
the fine granularity of parallelism exploited by the SUIF compiler was resulting in large
overheads due to the barrier codes. This information led to the development of a new SUIF

barrier mechanism more optimized for sporadic thread arrival.

SimOS provided more specific performance information through the use of two cache
miss classification event filters. The first filter categorizes multiprocessor invalidation
cache misses according to the true or false sharing types defined in [Dubois93]. Using this
filter, SImOS reported a striking behaviorgfft2, one of the NASA7 benchmarks. SimOS
reported that 84% of all cache misses on the primary matrix used in the computation were
due to false sharing. This suggested that if the compiler were to align all shared data
structures on cache line boundaries, these false sharing cache misses could be completely
eliminated. Additional cache miss information was generated via the cache miss
classification filter described in Chapter 5. This information generated by this filter
indicated that conflict misses were a problem for several applications in the SPEC95fp
benchmark. Using higher-level annotations triggered by data cache misses, SimOS
collected information about the physical addresses of frequently used cache lines. This

data suggested that the operating system’s page mapping policy resulted in an inefficient

96

utilization of the processor caches during parallel execution. This information directly led
to the development of a new operating system page-mapping algorithm that significantly
improves the performance of compiler-parallelized applications. The ability of SImOS to
precisely locate and classify cache misses was instrumental to the development of the
algorithm. The modifications suggested by SimOS have led the SUIF compiler to generate
significantly better performing code. One of the most tangible results of these SImOS-
suggested compiler improvements was the highest SPEC95fp ratio reported to date. More

detailed information on this investigation is available in [Bugnion96].

6.2 Limitations of complete machine simulation

SimOS has provided significant benefit to a number of investigations. However, there are
several limitations that we have encountered with SImOS and with the complete machine
simulation in general. This section describes the most restrictive of these limitations and

suggests some potential techniques for reducing their impact.
6.2.1 Poor scalability

SimOS’s most restrictive limitation is its poor performance when simulating large

numbers of processors. This problem applies to simulation of multiprocessors as well as
distributed systems, and is an inherent limitation of the complete machine simulation
approach. This limitation stems from the fundamental hardware emulation task that a
complete machine simulator must perform. A complete machine simulator must always
model at least enough hardware functionality to support the execution of operating
systems and application programs. As such, there is a minimal amount of simulation work
that must be performed for each processor or machine. Furthermore, this computation
requirement scales at least linearly with the number of processors being simulated,
hindering the examination of large multiprocessors and distributed systems. In contrast,
analytic models or tools that model software execution at a more abstract level can often

avoid this linear performance degradation.

One way to improve performance is to spread the simulation computation across multiple

host processors. As reported in [Witchel96], we have had some initial success with a

97

parallel Embra-based SimOS positioning mode. Embra can run as multiple parallel
processes where each process simulates a disjoint set of target machine CPU’s, enabling
high-speed multiprocessor emulation. However, this approach has limited simulation
accuracy. The processors in a shared-memory multiprocessors interact extremely
frequently. Inter-processor communication takes place within the memory system, and any
activity that occurs on the memory bus can affect the timing and behavior of this
interaction. To accurately model these interactions requires the simulated processors’
notions of time to be closely synchronized, limiting the speedup available via parallel

execution.

Simulation of distributed systems provides a better opportunity for exploiting a
multiprocessor host or even multiple host machines. Interaction between a distributed
system’s machines occurs via ethernet or other networking technologies. Because this
interaction occurs much less frequently than in shared-memory multiprocessors, there is
additional opportunity for performance gains through the use of parallel simulation gains.
However, accurately modeling network activity such as ethernet collisions still requires
substantial synchronization, limiting the potential performance improvement. The
combination of significant resource requirements and need for a centralized notion of time
means that an accurate complete machine simulation will always have performance
scaling problems. Even if the above parallel execution opportunities were fully realized,
the complete machine simulation would only scale to tens or possibly hundreds of
processors. This may be acceptable for studying small systems, but not for investigating

large-scale multiprocessors or internet-style networks with thousands of nodes.
6.2.2 Non-compatible changes require substantial implementation

The ability to support the execution of applications with all of their associated operating
system activity is one of complete machine simulation’s biggest advantages, but it also
places significant responsibility on the simulated hardware components. In contrast to
application-level and trace-driven simulators, SimOS’s simulated hardware must fulfill all
of the operating system’s functional requirements while correctly interacting with the rest

of the simulated hardware. As a result, radical architectural changes require substantially

98

more implementation in a complete machine simulation environment than in many other
tools. For example, instruction set alterations and other “non-compatible” architectural
changes are difficult to evaluate unless an entire workload is modified or recompiled to
utilize them. It is far simpler to apply such modifications to simple, isolated applications
or micro-benchmarks than to more complex workloads including a complete operating
system. As a result, we have found the complete machine simulation approach to be better
suited to the latter phases of architectural design. Simpler trace-based tools are often more
useful for high-level exploration of a wide design space. Once the basic design parameters
have been determined, complete machine simulation is effective at evaluating more

specific configuration details.
6.2.3 Interaction with the non-simulated world

Even when running in positioning mode, a SimOS-modeled computer is significantly
slower than a hardware implementation. As a result, non-simulated objects that interact
with the simulated machine appear to be substantially faster than they should be. For
example, a human interacting with a simulated machine’s console would appear to type
several hundred times faster than normal. This problem is worsened when simulating
operating systems and applications that utilize graphical user interfaces. Proper graphical
responsiveness is required, but difficult to provide under positioning mode and virtually
impossible to provide in more detailed simulation modes. Furthermore, interaction with
humans is non-deterministic, compromising SimOS’s ability to provide repeatable
workload executions. There has been some progress dealing with these problems through
the use of pre-recorded interaction scripts. SImOS allows investigators to write Tcl scripts
that recognize the console’s output and emulate a human response. These scripts provide
more appropriately timed interactions and enable repeatable workload execution.
However, they do require advanced knowledge of what interaction should occur and have

not yet been applied to the non-textual interactions of a graphical user interface.

Similar problems occur when a SimOS-modeled computer communicates with non-
simulated computers. Client-server applications such as database engines and web servers

require interaction among networked machines, and SimOS provides the required

99

communication capability. However, a SimOS machine is substantially slower than a real
machine, resulting in network time-outs, poorly timed interaction, and unrepresentative
communication patterns. Additionally, non-simulated machines are not under SimOS’s
control, and their non-deterministic network interactions result in non-repeatable

workload execution. To help address these problems, SImOS can model multiple
machines simultaneously. Just as it interleaves the execution of a multiprocessor’'s CPU'’s,
SimOS can interleave the execution of different machines’ CPU’s. All communication in

this simulated distributed system occurs through normal network protocols and travel
across a simulated LAN. This SimOS configuration better coordinates the machines’
notions of time and provides deterministic execution of network-based workloads.

Unfortunately, there is significant overhead to this approach and workload slowdown is

proportional to the number of simulated machines.
6.2.4 Substantial implementation costs

Another limitation of the complete machine simulation approach that should not be
overlooked is its substantial implementation cost. Complete machine simulators
encompass significantly more functionality than most existing simulation tools, resulting
in substantial programming, debugging, and code maintenance costs. As an example, the
current version of SImOS consists of several hundred thousand lines of “C” code and has
required several man-years of implementation effort. However, complete machine
simulation’s improved data accuracy and applicability warrant this cost. Additionally,
complete machine simulation provides computer system behavioral information that is
currently available only through the use of multiple orthogonal tools. This ability to use a
single tool for several different research needs can ultimately reduce a research group’s

long-term tool implementation, training, and deployment costs.

6.3 Summary

In summary, our initial experiences with SImOS have been extremely positive. SImOS has
enabled several investigations that were impossible with existing simulation tools and

provides valuable infrastructure for many types of computer systems research.

100

Furthermore, a public distribution of SImOS is leading to further adoption of the complete
machine simulation approach in both academic and commercial research. Hopefully this
increased usage will lead to many more successful investigations as well as to additional

techniques for coping with complete machine simulation’s limitations.

101

102

Chapter 7
Related Work

This chapter compares complete machine simulation to other popular tools and techniques
used to investigate computer system behavior. This chapter focuses on the three most
important features of complete machine simulation; providing complete computer system
behavioral information, providing behavioral information in a timely manner, and efficient

converting low-level hardware data into higher-level workload information.

7.1 Providing complete computer system behavioral information

Several studies have recognized the importance of system-level behavior, emphasizing
that it needs significantly more attention in hardware design and performance
investigations [Agarwal88] [Anderson91] [Chapin95a] [Ousterhout90]. However, tools for
investigating computer system behavior have traditionally been able to observe only the
user-level portion of a workload’s execution. To address this deficiency, a number of
researchers have focussed on the development of new techniques and tools for
investigating complete computer system behavior. This section describes several of these

technigues and tools and compares them to the complete machine simulation approach.

103

7.1.1 Trace-driven simulation

Trace-driven simulation is by far the most common technique for computer system
investigation. Trace-driven simulation tools use software instrumentation and hardware
monitoring to collect “traces” of an existing system’s dynamic execution behavior, and
these traces provide input for hardware simulators. Software instrumentation has long
been used to trace user-level programs, but recent advances have enabled its use in
investigating operating systems as well. For example, the Epoxie tool described in
[Chen94] can rewrite object files at link time to record a trace of instruction and memory
references. Epoxie addresses many of the challenges of rewriting kernel code and can
record the complete memory system behavior of a workload. Similarly, the PatchWrx
system described in [Perl97] rewrites binary executable images, “patching” them with
code that generates complete address traces in a very compact format. PatchWrx is
extremely fast and has supported investigations of the Windows NT operating system.
Other software instrumentation approaches capable of operating system tracing include
[Maynard94] and [Wall87].

Hardware-based trace collection is a more popular technique for collecting traces across
an workload’s entire execution. One of the earliest examples of a hardware-based trace
collection tool capable of operating system investigation is the ATUM system
[Agarwal86]. In ATUM, the microcode of a VAX 8200 processor was modified to record
the addresses of a workload’s memory references. However, reloadable microcode is no
longer popular, leading to the development of several new hardware-based trace collection
techniques. For example, the Monster [Nagle92] and BACH [Grimsrud93] systems
capture signals from modern CPUs to collect instruction and data address traces. Another
popular approach utilizes memory bus-monitoring hardware [Chapin95a] [Torrellas92]
[Vashaw92]. This hardware collects a trace of all memory bus traffic that occurs during a
workload’s execution. In each case, the traces include all operating system and user-level
activity, providing hardware simulators with the opportunity to investigate complete

computer system behavior.

104

As described in Chapter 2, trace-driven simulation is often faster and easier to implement
than complete machine simulation. However, complete machine simulation’s extensive
workload support, non-intrusive observation, and ability to propagate hardware effects
throughout the system provides more accurate behavioral information. To realize the
advantages of both simulation approaches, complete machine simulation supports a
trace-generation mode. Simple annotations save the desired trace information to a file and

provide input for the numerous trace-driven hardware simulators that already exist.
7.1.2 Hardware counters

A recent trend in CPU design is the inclusion of hardware to count the occurrence of
processor-related events. These hardware counters exist in most modern processors
including the Intel Pentium [Mathisen94], IBM Power2 [Welbon94], DEC Alpha
[Digital95], HP PA-8000 [Hunt95], and MIPS R10000 [Zagha96], and can track such
processor events as cache and TLB misses, branch prediction behavior, and pipeline stalls.
Furthermore, the counters are integrated directly onto a processor, providing results at
very high speeds and with minimal intrusiveness. Hardware counters are often always
active, providing detailed information regarding all of a workload’s execution behavior.
[Chen95] provides an excellent example of the investigative opportunities that these
counters enable. In this research, the investigators utilized the Intel Pentium’s counters to

examine the performance characteristics of personal computer operating systems.

There are however some limitations to the effectiveness of hardware counters. First and
foremost, these counters are not extensible; their data is restricted to just those events that
were built into the hardware. Furthermore, hardware counters provide detailed
information regarding a workload behavior on existing processors, but are less effective at
predicting the workload’s behavior on future hardware. Despite these limitations, the
speed and visibility available with on-chip counters makes them a promising tool for

computer system investigation.

105

7.1.3 Functional simulation

Also called instruction-level or program-driven simulation, functional simulators are
software programs that fetch, decode, and execute processor instructions, applying the
results of each instruction to a conceptual target machine. Functional simulation has
traditionally been applied to tasks without strict speed requirements such as hardware
validation or the preservation of historical software [Burnet96]. Functional simulation is
also commonly used to investigate just the user-level behavior of applications. Popular
examples of thesaiser-level functional simulators are MINT [Veenstra94], PAINT
[Stoller96], Shade [Cmelik94], and Talisman [Bedichek95].

More recent research has extended functional simulators to the investigation of a
workload’s user- and kernel-level behavior. For example, [Anderson94] and
[Poursepanj94] describe PowerPC instruction-set simulators capable of executing
commercial operating system and application code. Similarly, SImICS [Magnussen95] is a
functional simulator capable of investigating SPARC-based applications and operating

systems.

Complete machine simulation builds upon these and other simulation efforts in an attempt
to extend the applicability and usefulness of functional simulation to additional fields of

computer systems research.

7.2 Providing simulation results in a timely manner

Speed is always a limiting factor in the effective simulation of computer hardware, and
this section compares complete machine simulation’s techniques for providing timely
simulation results to related research efforts. Specifically, this section examines the use of
multiple levels of simulation speed and techniques for providing high-speed machine

simulation.
7.2.1 Utilizing multiple levels of simulation speed

One of the earliest tools to exploit the inherent trade-off between simulation speed and

simulation detail was the Proteus system [Brewer92], an execution-driven, user-level

106

simulator that models MIMD multiprocessor systems. Proteus was designed with modular
interfaces that support the inclusion of interchangeable hardware component models. At
compile-time users choose the model of each component that provides an appropriate
level of speed and detail. Complete machine simulation extends Proteus’s use of multiple
levels of simulation speed by allowirdynamicselection of simulation components and

by extending its applicability beyond user-level simulation.

[Argade94] presents another interesting example of using multiple levels of simulation
speed and detail. This system uses a combined hardware and software approach to obtain
simulation data as quickly as possible. Their approach uses real hardware for high-speed
workload positioning. Once the workload is in an interesting state, the system can save the
hardware’s state to disk. Just like SImOS’s checkpoints, the hardware state provides the

input to simulation models for more detailed system examination.
7.2.2 High-speed machine simulation

Critical to the success of complete machine simulation is the availability of high-speed
simulation modes that can be used for workload positioning. Several other researchers
have recognized the importance of high-speed machine simulation and developed methods
for providing it. For example, Talisman [Bedichek95] uses a technique called threaded
code to perform very high-speed multicomputer simulation. Talisman is an impressive
simulation environments, modeling full processor behavior and achieving timing accuracy
relative to a hardware prototype. While Talisman models a processor’s supervisor mode, it
does not support an operating system; it runs a subset of Intel's NX message passing
library. As another example, Shade [Cmelik94] is a cross-architectural, instruction set
simulator that can investigate the user-level behavior of most any SPARC application.
Shade uses dynamic translation of binary code as well as sophisticated code caching
techniques to achieve very high simulation speeds. As described earlier, Embra uses many
of the techniques pioneered by Shade, extending them to support a full operating system
execution as well as multiprocessor workloads. Research into high-speed simulation
techniques is becoming increasingly popular. In addition to its applicability to computer

system behavioral investigation, high-speed machine simulation techniques are being

107

widely applied to the domain of cross-platform application support [Hookway97]
[Insignia97] [Sun97].

As mentioned in the previous chapter, we are investigating the use of a multiprocessor host
machine to speed up the simulation of multiprocessor target machine behavior. Several
research projects have applied this approach to the investigation of user-level memory
system behavior. For example, the Cerebus Multiprocessor Simulator [Brooks88] was one
of the first parallel implementations of a multiprocessor simulator and was used to
investigate the behavior of parallel algorithms on configurable memory systems. Similarly,
Tango Lite supports a parallel execution mode where each target processor is modeled as a
single thread of execution that can run concurrently with other threads. The threads
communicate with each other at the memory system level to allow the investigation of
program behavior and cache coherence protocols. As another interesting example, the
Wisconsin Wind Tunnel [Reinhardt93] uses the memory ECC bits on a Thinking
Machines CM-5 to quickly estimate the cache behavior of large parallel programs.
Regardless of the implementation, it is clear that parallel simulator execution is essential
to the timely investigation of large multiprocessors and distributed systems. Future SimOS
implementations will build upon these existing tools to more fully apply parallelization to

the complete machine simulation approach.

7.3 Managing low-level simulation data

Every computer simulation tool faces the challenge of converting hardware-level
simulator data into more useful behavioral information. This section compares SimOS’s
approach of investigation-specific data management to related simulation data
management efforts. Specifically, it examines the conversion of low-level hardware data
into higher level workload information and the use of investigation-specific data

management to reduce the overhead of this conversion.
7.3.1 Workload-level data classification and reporting

SimOS classifies low-level hardware data into higher level information that is more useful

to an investigator. Numerous tools have recognized this need and implemented different

108

forms of data mapping functionality. For example, gprof [Graham83] is an execution
profiling tool that assigns processor time to an application’s procedures. Gprof instruments
an application’s procedures to generate a procedure call graph at run time and uses
program counter sampling to provide a statistical estimate of where an application spends
its time. Furthermore, this information is categorized by procedure and offers a high level

view of where a program may be best optimized.

Memspy [Martonosi92] is another tool that converts low-level hardware data into
application-oriented information. Like gprof, Memspy uses software instrumentation to
indicate the entry and exit point to all of an application’s procedures. At run-time, this
additional code helps create a tree-based decomposition of the application’s execution
activity. Additionally, each application uses modified callsntalloc() andfree() to

track which ranges of memory correspond to different data structures. Memspy uses this
higher-level workload knowledge to charge all cache misses to the responsible procedures
and data structures. FLASHPoint [Martonosi96] provides similar data classification,
relying on a programmable memory system controller to charge cache misses to the
responsible procedures and data structures. The application-oriented information
generated by these tools helps an investigator understand and improve the memory system
behavior of an application and inspired the creation of SImOS’s address tables and timing

trees.

Researchers have also focussed on mapping low-level hardware data to higher level
workload information in trace-based simulations. The typical approach is to explicitly
alter a workload to incorporate higher-level workload information into the trace. For
example, the hardware monitor used in [Chapin95a] and [Torrellas92] could only capture
memory references that reached the memory bus. To provide knowledge of workload-level
concepts, the operating system was heavily modified to output uncached references
indicating the entry and exit points to important procedure. This additional information
allowed cache and memory system behavior to be categorized by the responsible

operating system procedure.

109

7.3.2 Customized data management overheads

In addition to providing workload-level behavioral information, a simulation’s data
management must be as efficient as possible. Complete machine simulation’s approach to
minimizing the overhead of data management is similar to code annotation tools such as
ATOM [Srivastava94], EEL [Larus95], ETCH [Romer97], MINT++ [Veenstra97], and
TracePoint [TracePoint97]. These tools provide flexible interfaces that enable users to
annotate an application’s individual instructions, basic blocks, and data references. Just as
in SImMOS, these annotations can count and classify events as well as query machine state.
Furthermore, if no annotation is inserted at a given location, these tools do not add any
code, allowing the minimal degree of data management overhead for a particular

application and investigation.

Paradyn [Miller95] provides another interesting example of the interaction between data
collection and simulation speed. Paradyn is an execution-driven performance measuring
tool designed for the investigation of parallel and distributed programs. Paradyn
dynamically instruments an application to collect various types of performance data.
During the execution of an application, Paradyn recognizes troublesome sections of code
and directs the event generation mechanism (a code annotator) to produce more detailed
events for processing. This allows Paradyn provide the minimal level of data processing
needed to properly investigate an application’s execution behavior, minimizing the time

required to perform this investigation.

110

Chapter 8
Conclusions

The research described in this dissertation attempts to help investigators better understand
the behavior of increasingly complex computer systems. This dissertation argues that
complete machine simulation is an effective approach for gathering the information
needed for this understanding. In support of this argument, the work described in this

dissertation makes three primary contributions:

» Demonstration of the significant benefits that complete machine simulation

provides to many types of computer systems research.

Complete machine simulation offers several benefits to computer systems research
including extensive workload support, accurate machine modeling, and

comprehensive data collection. Our experiences with the SimOS implementation of
complete machine simulator have shown these benefits to be quite valuable, enabling

several studies not possible with existing tools and techniques.

* Demonstration that adjustable levels of simulation speed and detail help

complete machine simulation provide timely data.

The biggest challenge facing complete machine simulation’s acceptance is its

performance, and this work demonstrates how adjustable simulation speed and detail

111

characteristics address this challenge. In implementing the SimOS version of
adjustable simulation characteristics, this work recognizes the importance of three
general simulation execution modes and the ability to dynamically switch between

them during the course of a workload’s execution.

» Specification and implementation of efficient and flexible mechanisms for

addressing complete machine simulation’s data management challenges.

The other major challenge for complete machine simulation is efficient conversion of
hardware-level data into higher level computer system behavioral information, and this
work demonstrates how supporting investigation-specific data management addresses
this challenge. Specifically, this work introduces efficient and flexible mechanisms that
allow an investigator to customize all simulation data classification and reporting to

meet the specific needs of their study.

Complete machine simulation has fundamentally changed the way that we perform

computer systems research at Stanford University: architectural evaluations are driven
with more representative workloads, operating system design occurs on a more flexible
and forgiving platform, and application performance tuning efforts incorporate all relevant

behavioral information. Furthermore, we are extending SimOS to support several new
architectures and operating systems and are freely distributing the SimOS source code.
The goals of this public distribution are to enable new computer system investigations and
to encourage complete machine simulation’s acceptance as a critical component of

modern computer systems research.

112

References

[Agarwal86]

[Agarwal88]

[Anderson91l]

[Anderson94]

[Argade94]

[Bedichek95]

[Bennett96]

[Borg89]

[Bowman97]

A. Agarwal, R. Sites, and M. Horowitz. “ATUM: A new technique for
capturing address traces using microcode.Pinceedings of the 13th
International Symposium on Computer Architecfyme. 119-127, June
1986.

A. Agarwal, J. Hennessy, and M. Horowitz. “Cache performance of
operating system and multiprogramming workloadsACM
Transactions on Computer Systen@4), pp. 393-431, November
1988.

T. Anderson, H. Levy, B. Bershad, and E. Lazowska. “The interaction
of architecture and operating system desiggiGPLAN Noticesvol.
26, no. 4, pp. 108-120, April 1991.

W. Anderson. “An overview of Motorola’s PowerPC simulator family.”
Communications of the ACMol.37, no.6, pp. 64-69, June 1994,

P. Argade, D. Charles, and C. Taylor. “A technique for monitoring run-
time dynamics of an operating system and a microprocessor executing
user applications/SIGPLAN Noticesyol. 29, no. 11, pp. 122-131,
October 1994.

R. Bedichek. “Talisman: Fast and accurate multicomputer simulation.”
Performance Evaluation Revievol. 23, no. 1, pp. 14-24, May 1995.

James Bennett and Mike Flynn. “Latency tolerance for dynamic
processors.” Technical report CSL-TR-96-687, Computer Systems
Laboratory, Stanford University, January 1996.

A. Borg, R Kessler, G. Lazana, and D. Wall. “Long address traces from
RISC machines: Generation and analysi/RL Research Report
89/14 Digital Equipment, 1989.

N. Bowman, N. Caldwell, C. Kozyrakis, C. Romer, and H. Wang.
“Evaluation of existing architectures in IRAM systems.” \IWorkshop

on Mixing Logic and DRAM: Chips that Compute and Rememheare
1997.

113

[Boyle87]

[Brewer92]

[Brooks88]

[Bugnion96]

[Bugnion97]

[Burnet96]

[Chapin95a]

[Chapin95b]

[Chapin97]

[Chen93]

[Chen94]

J. Boyle, R. Butler, T. Disz, B. Blickfeld, E. Lusk, R. Overbeek, J.
Patterson, and R. Stever®®rtable Programs for Parallel Processors
Holt, Rinehart, & Winston, 1987.

E. Brewer, A. Colbrook, C. Dellarocas, and W. Weihl. “PROTEUS: A
high-performance parallel-architecture simulator.Performance
Evaluation Reviewyol. 20, no. 1, pp. 247-248, June 1992.

E. Brooks, T. Axelrod, and G. Darmohray. “The Cerberus
multiprocessor simulator.” Lawrence Livermore National Laboratory
technical report, Preprint UCRL-94914, 1988.

E. Bugnion, J. Anderson, T. Mowry, M. Rosenblum, and M. Lam.
“Compiler-directed page coloring for multiprocessorsSSIGPLAN
Notices vol. 31, no. 9, pp. 244-255, October 1996.

E. Bugnion, S. Devine, and M. Rosenblum. “Disco: Running

commodity operating systems on scalable multiprocessors.” In
Proceedings of The 16th ACM Symposium on Operating Systems
Principles pp. 143-156, October 1997.

M. Burnet and R. Supnik. “Preserving computing’s past: restoration
and simulation.” Digital Technical Journal, vol.8, no.3, pp. 23-38,
1996.

J. Chapin, S. Herrod, M. Rosenblum, and A. Gupta. “Memory system
performance of UNIX on CC-NUMA multiprocessor$erformance
Evaluation Revieywol. 23, no. 1, pp. 1-13, May 1995.

J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teodosiu, and A.

Gupta. “Hive: Fault containment for shared-memory multiprocessors.”

In Proceedings of the 15th ACM Symposium on Operating Systems
Principles pp. 12-25, December 1995.

J. Chapin. “Hive: Operating system fault containment for shared-
memory multiprocessors.” Ph.D. Thesis, Stanford University, January
1997.

J. Chen and B. Bershad. “The impact of operating system structure on
memory system performanceédperating Systems Revieval. 27, no.
5, pp. 120-133, December 1993.

J. Chen, D. Wall, and A. Borg. “Software methods for system address
tracing: implementation and validation.” Digital WRL Research Report
94/6, September 1994.

114

[Chen95]

[Cmelik94]

[Digital9s]

[Dubois93]

J. Chen, Y. Endo, K. Chan, D. Mazieres, A. Dias, M. Selzer and M.
Smith. “The measured performance of personal computer operating
systems.”ACM Transactions on Computer Systend, 14, no. 1, pp.
3-40, February 1996.

R. Cmelik and D. Keppel, “Shade: A fast instruction set simulator for
execution profiling.”Performance Evaluation Reviewol. 22, no. 1,
pp. 128-137, May 1994.

Digital Equipment Corporation. “pfm - The 21064 Performance
Counter Pseudo-Device.” DEC OSF/1 Manual pages, 1995.

M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P.
Stenstrom. “The detection and elimination of useless misses in
multiprocessors.”"Computer Architecture Newsjol. 21, no. 2, pp.
88-97, May 1993.

[Goldschmidt93] S. Goldschmidt. “Simulation of multiprocessors: Accuracy and

[Graham83]

[Gray93]

[Grimsrud93]

[Heinlein97a]

[Heinrich94]

[Herrod97]

performance.” Ph.D. Thesis, Stanford University, June 1993.

S. Graham, P. Kessler, and M. McKusick. “An execution profiler for
modular programs.Software - Practice and Experienceol. 13, pp.
671-685, August 1983.

J. Gray.The Benchmark Handbook for Database and Transaction
Processing Systemilorgan Kaufmann Publishers, 1993.

K. Grimsrud, J. Archibald, M. Ripley, K. Flanagan, and B. Nelson.
“BACH: A hardware monitor for tracing microprocessor-based
systems.” InMicroprocessors and Microsystemgol. 17, no. 8, pp.
443-459, October 1993.

J. Heinlein, R. Bosch, Jr., K. Gharachorloo, M. Rosenblum, and A.
Gupta. “Coherent block data transfer in the FLASH multiprocessor”. In
Proceedings of the 11th International Parallel Processing Sympqgsium
pp. 18-27, April 1997.

M. Heinrich, J. Kuskin, D. Ofelt, J. Heinlein, J. Baxter, J.P. Singh, R.
Simoni, K. Gharachorloo, D. Nakahira, M. Horowitz, A. Gupta, M.
Rosenblum, and J. Hennessy. “The performance impact of flexibility in
the Stanford FLASH multiprocessorSIGPLAN Noticesyol. 29, no.

11, pp. 274-284, October 1994.

S. Herrod, M. Rosenblum, E. Bugnion, S. Devine, R. Bosch, J. Chapin,
K. Govil, D. Teodosiu, E. Witchel, and B. Verghese. “The SIimOS User
Guide.” http://www-flash.stanford.edu/SimOS/userguide/ .

115

[Hookway97]

[Hunt95]

[Insignia97]

[Kotz94]

[Kuskin94]

[Larus95]

[Lebeck95]

[Magnusson95]

[Martonosioz]

[Martonosioe]

[Mathisen94]

[Maynard94]

R. Hookway. “DIGITAL FX!I32 running 32-Bit x86 applications on
Alpha NT.” In Proceedings of IEEE COMPCON 9%pp. 37-42,
February 1997.

D. Hunt. “Advanced performance features of the 64-bit PA 8000.” In
Proceedings of COMPCON'9pp. 123-128, March 1995.

Insignia. SoftPC product informatiap://www.insignia.com

D. Kotz, S. Toh, and S. Radhakrishnan. “A detailed simulation of the
HP 97560 disk drive.” Dartmouth College technical report PCS-TR94-
20, 1994.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.

Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A.
Gupta, M. Rosenblum, and J. Hennessy. “The Stanford FLASH
multiprocessor.” In Proceedings the 21st Annual International

Symposium on Computer Architectysp. 302—313, April 1994.

J. Larus and E. Schnarr. “EEL: machine-independent executable
editing.” In SIGPLAN Noticesvol. 30, no. 6, pp. 291-300, June 1995.

A. Lebeck and D. Wood. “Active memory: A new abstraction for
memory-system simulationPerformance Evaluation Reviewol. 23,
no. 1, pp. 220-230, May 1995.

P. Magnusson and J. Montelius. “Performance debugging and tuning
using an instruction-set simulator.” SICS Technical Report T97:02,
1997.

M. Martonosi, A. Gupta, and T. Anderson. “MemSpy: Analyzing
memory system bottlenecks in program&érformance Evaluation
Reviewyol. 20, no. 1, pp. 1-1dune 1992.

M. Martonosi, D. Ofelt, and M. Heinrich. “Integrating performance
monitoring and communication in parallel computerBérformance
Evaluation Reviewol. 24, no. 1, pp. 138-147, May 1996.

T. Mathisen. “Pentium secret8yte Magazing pp. 191-192, July
1994,

A. Maynard, C. Donnellyy, and B. Olszewski. “Contrasting
characteristics and cache performance of technical and multi-user
commercial workloads.”SIGPLAN Notices,vol. 29, no. 11, pp.
145-156, November 1994.

116

[Miller9s]

[MIPS95]

[Nagle92]

[Nayfeh96]

[Olukotun96]

[Ousterhout90]

[Ousterhout94]

[Perl97]

[Poursepanj94]

[Reinhardt93]

[Romer96]

[Romer97]

B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, R Irvin, K.
Karavanic, K. Kunchithapadam, and T. Newhall. “The Paradyn parallel
performance measurement tools.” IEEE Computer,pp. 37-46,
November 1995.

MIPS Technologies, In&k10000 Microprocessor User’'s Manyand
edition, June 1995.

D. Nagle, R. Uhlig, and T. Mudge. “Monster: a tool for analyzing the
interaction between operating systems and computer architectures.”
Technical Report CSE-TR-147-92, University of Michigan, 1992.

B. Nayfeh, L. Hammond, and K. Olukotun. “Evaluation of design
alternatives for a multiprocessor microprocessorComputer
Architecture Newsyol. 24, no. 2, pp. 67-77, May 1996.

K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. “The
case for a single-chip multiprocessd&8fGPLAN Noticesvol. 31, no.
9, pp. 2-11, October 1996.

J. Ousterhout. “Why aren’t operating systems getting faster as fast as
hardware?”, InProceedings of the Summer 1990 USENIX Conference
pp. 247-256, June 1990.

J. Ousterhout. “Tcl and the Tk Toolkidtddison-Wesley Publishing
CompanyReading, Mass., 1994.

S. Perl and R. Sites. “Studies of Windows NT performance using
dynamic execution traces.” Digital SRC Research Report 146, April
1997.

A. Poursepanj, “The PowerPC performance modeling methodology.” In
Communications of the ACMol. 37, no. 6, pp. 47-55, June 1994.

S. Reinhardt, M. Hill, J. Larus, A. Lebeck, J. Lewis, and D. Wood.
“The Wisconsin Wind Tunnel: Virtual prototyping of parallel
computers.Performance Evaluation Reviewol. 21, no. 1, pp. 48-60,
June 1993.

T. Romer, D. Lee, G. Voelker, A. Wolman, W. Wong, J. Baer, B.
Bershad, and H. Levy. “The structure and performance of interpreters.”
SIGPLAN Noticesvol. 31, no. 9, pp. 150-159, September 1996.

T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B.
Bershad, and B. Chen. “Instrumentation and optimization of

117

[Rosenblum95]

[Rosenblum97]

[SPEC97]

[Srivastava94]

[Stallman92]

[Stoller96]

[Sun97]

[Teodosiu97]

[Torrellas92]

[TracePoint97]

[Trent95]

Win32/Intel executables using Etch.” Proceedings of the USENIX
Windows NT Workshopp. 1-7, August 1997.

M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. “Complete
computer system simulation: The SImOS approatbEZE Parallel &
Distributed Technology: Systems & Applicatiprel. 3, no. 4, pp. 34—
43, Winter 1995.

M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod. “Using the
SimOS machine simulator to study complex computer systefAtN
Transactions on Modeling and Computer Simulatieol. 7, no. 1, pp.
78-103, January 1997.

Standard Performance Evaluation Corporation. The SPEC benchmark
suite.http://www.specbench.org.

A. Srivastava and A. Eustace. “ATOM: A system for building
customized program analysis toolSIGPLAN Noticesvol. 29, no. 6,
pp. 196-205, June 1994.

R. Stallman and R. Pesch. “Using GDB.” Edition 4.04 for GDB version
4.5, March 1992ip://prep.ai.mit.edu/pub/gnu/

L. Stoller, M. Swanson, and R. Kuramkote. “Paint: PA instruction set
interpreter.” Technical Report UUCS-96-009, University of Utah, 1996.

Sun Microsystems. WABI 2.2 Product Information.
http://www.sun.com/solaris/wabi

D. Teodosiu, J. Baxter, K. Govil, J. Chapin, M. Rosenblum, and M.
Horowitz. “Hardware fault containment in scalable shared-memory
multiprocessors."Computer Architecture Newsvol. 25, no. 2, pp.
73-84, May 1997.

J. Torrellas, A. Gupta, and J. Hennessy. “Characterizing the caching
and synchronization performance of a multiprocessor operating
system.” SIGPLAN Noticesvol. 27, no. 9, pp. 162-174, September
1992.

TracePoint Technology Grotimp://www.tracepoint.com
G. Trent and M. Sake. “WebSTONE: The first generation in HTTP

server benchmarking.” Unpublished white paper, February 1995.
http://www.sgi.com/Products/WebFORCE/WebStone/paper.html

118

[Vashaw92]

[Veenstra94]

[Veenstra97]

[Verghese97]

[Wallg7]

[Welbon94]

[Wilson94]

[Wilson96]

[Witchel96]

[Wo0095]

B. Vashaw. “Address trace collection and trace driven simulation of
bus-based, shared-memory multiprocessors.” Ph.D. thesis, Carnegie
Mellon University, 1992.

J. Veenstra. “MINT: a front end for efficient simulation of shared-
memory multiprocessors.” IRroceedings of International Workshop
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systenpp 201-207, January 1994.

J. Veenstra. Personal communication. October 1997.

B. Verghese, A. Gupta, and M. Rosenblum. “Performance isolation and
resource sharing on shared-memory multiprocessors.” Technical
Report: CSL-TR-97-730, Computer Systems Laboratory, Stanford

University, Stanford, CA, July 1997.

D. Wall and M. Powell. “The Mahler experience: using an intermediate
language as the machine description.” Becond International
Symposium on Architectural Support for Programming Languages and
Operating Systemgp. 100-104, October 1987.

E. Welbon, C. Chan-Nui, D Shippy, and D. Hicks. “POWER2
performance monitor.PowerPC and POWER2: Technical Aspects of
the New IBM RISC System/6Qd8M Corporation, SA23-2737, pp.
55-63, 1994.

R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S.
Tjiang, S.-W. Liao, C.-W. Tseng, M. Hall, M. Lam and J. Hennessy.
“SUIF: An infrastructure for research on parallelizing and optimizing
compilers.” ACM SIGPLAN Noticesvol. 29, no. 12, pp. 31-37,
December 1994.

K. Wilson, K. Olukotun, and M. Rosenblum. “Increasing cache port
efficiency for dynamic superscalar microprocessor€bmputer
Architecture Newsvol. 24, no. 2, pp. 147-157, May 1996.

E. Witchel and M. Rosenblum. “Embra: fast and flexible machine
simulation.”Performance Evaluation Reviewol. 24, no. 1, pp. 68-79,
May 1996.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. “The SPLASH-2
programs: Characterization and methodological considerations.” In
Proceedings 22nd Annual International Symposium on Computer
Architecture pp. 24-36, June 1995.

119

[Zagha96] M. Zagha, B. Larson, S. Turner, and M. ltzkowitz. “Performance
analysis using the MIPS R10000 performance counters.” In
Proceedings of Supercomputing ;9%ovember 1996.

[Zeus97] Zeus Server v1.0Bkip:/iwvww.zeus.co.uk/products/zeusl

120

121

	USING COMPLETE MACHINE SIMULATION TO UNDERSTAND COMPUTER SYSTEM BEHAVIOR
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 The challenge: Understanding computer system behavior
	1.2 Techniques for investigating computer system behavior
	1.3 Complete machine simulation
	1.3.1 Benefits
	1.3.2 Important features

	1.4 SimOS
	1.5 Operating system-intensive workloads
	1.6 Additional terminology
	1.7 Organization of this dissertation

	Chapter 2 Motivation
	2.1 History
	2.2 Benefits for computer systems research
	2.2.1 Hardware design
	2.2.2 Operating system development
	2.2.3 Application performance tuning

	2.3 Summary

	Chapter 3 Functional and Flexible Hardware Simulation
	3.1 Hardware simulation tasks
	3.1.1 Providing software-visible functionality
	3.1.2 Supporting configurable implementation details

	3.2 SimOS hardware simulation
	3.2.1 Providing software-visible functionality
	3.2.2 Supporting configurable implementation details

	3.3 Summary

	Chapter 4 Dynamically Adjustable Simulation Speed and Detail
	4.1 The performance challenge
	4.2 The solution: Dynamically adjustable simulation speed and detail
	4.3 Implementation
	4.3.1 Simulator execution modes
	4.3.2 Dynamic simulator execution mode selection

	4.4 SimOS’s simulator execution modes
	4.4.1 Positioning mode
	4.4.2 Rough characterization mode
	4.4.3 Accurate mode
	4.4.4 Performance

	4.5 Summary

	Chapter 5 Efficient Management of Low-Level Simulation Data
	5.1 Data management challenges
	5.2 The solution: Investigation-specific data management
	5.3 SimOS’s implementation
	5.4 Event-processing mechanisms
	5.4.1 Annotations
	5.4.2 Bucket selectors
	5.4.3 Address tables
	5.4.4 Event filters

	5.5 Building higher-level mechanisms
	5.5.1 Annotation layering
	5.5.2 Timing trees

	5.6 Data management’s performance impact
	5.7 Summary

	Chapter 6 Experiences
	6.1 Investigations enabled by SimOS
	6.1.1 Characterization of IRIX’s performance
	6.1.2 Design of the FLASH multiprocessor
	6.1.3 Hive operating system development
	6.1.4 Improving the SUIF parallelizing compiler

	6.2 Limitations of complete machine simulation
	6.2.1 Poor scalability
	6.2.2 Non-compatible changes require substantial implementation
	6.2.3 Interaction with the non-simulated world
	6.2.4 Substantial implementation costs

	6.3 Summary

	Chapter 7 Related Work
	7.1 Providing complete computer system behavioral information
	7.1.1 Trace-driven simulation
	7.1.2 Hardware counters
	7.1.3 Functional simulation

	7.2 Providing simulation results in a timely manner
	7.2.1 Utilizing multiple levels of simulation speed
	7.2.2 High-speed machine simulation

	7.3 Managing low-level simulation data
	7.3.1 Workload-level data classification and reporting
	7.3.2 Customized data management overheads

	Chapter 8 Conclusions
	References

