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Pretface

A function is called steerable if transformed versions of the function can be expressed
using linear combinations of a fixed set of basis functions. For example, translated
versions of a sinusoid can always be expressed as linear combinations of a sinusoid and
a cosinusoid of the same frequency. Likewise, rotated versions of the first derivative
of a two-dimensional Gaussian can always be expressed as linear combinations of
the first derivatives of the Gaussian along the x and y axes. Steerability is a very
general and often desirable property. As a result, steerable functions have recently
been applied to an assortment of problems in image processing, computer vision, and
computer graphics. Over the years, a moderate amount of work has been done both in
increasing our understanding of steerable functions as well as in developing algorithms
to construct them. Nevertheless, many of these earlier works usually confine their
investigations to functions that are steerable only under specific transformations.

In this thesis, we propose a framework, based on Lie group theory, for studying
and constructing functions steerable under any smooth transformation group. We ar-
gue that Lie theory is the appropriate mathematical tool for analyzing the properties
of these steerable functions. This position is supported by the fact that all existing
analytical approaches to steerability can be consistently explained within the frame-
work. The framework provides a general technique for identifying and constructing
functions steerable under any transformation group. In particular, the framework was
used to derive a canonical form for all functions steerable under any one-parameter
or any Abelian multi-parameter transformation group.

The design of a suitable set of basis functions given any arbitrary steerable function

is one of the main problems concerning steerable functions. To this end, we have
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developed two very different algorithms. The first algorithm is a symbolic method
that can be implemented in any symbolic package. Typically, the basis functions of
a steerable function are derived by inspection; this algorithm derives the minimal set
of basis functions automatically given an arbitrary steerable function. The second
algorithm addresses two practical considerations: approximate steerability and local
steerability. In practice, functions that need to be steered might not be steerable
with a finite number of basis functions. Moreover, it is often the case that only
a small subset of transformations within the group of transformations needs to be
considered. In response to these two concerns, the second algorithm computes the
optimal set of k& basis functions to steer an arbitrary function under a subset of the
group of transformations.

Lastly, we demonstrate the usefulness of steerable functions in a variety of ap-
plications. In particular, we present five applications that use steerable functions:
(1) continuum approximation in vision modeling (a method of approximating an infi-
nite number of interacting mechanisms in a model), (2) the design of optimal steerable
filters for gradient-based motion estimation, (3) efficient linear re-rendering of syn-
thetic scenes under changes in illumination, (4) the construction of invariants from
steerable filters, and (5) the application of steerable functions to discrete sets of points

and lines.
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Chapter 1
Introduction

The goal of image understanding is to develop methods that are capable of making in-
ferences about the 3D scene from 2D images. These 2D images are typically made up
of samples of irradiant intensity or depth. The first phase of any image understand-
ing system, quite commonly, involves data reduction. The amount of information
available in an image is often unmanageable directly; more importantly, task-specific
information required by subsequent stages in an image understanding system is usu-
ally not explicitly available. As a result, the data reduction phase is responsible for
converting the original data into a more computationally efficient and explicit repre-
sentation, which may not be, and is often not, parsimonious. As far as the rest of the
image understanding system is concerned, however, these new re-represented inputs
are its sole measurements of the 3D scene.

The data reduction phase is often associated with feature detection and extraction.
The most ubiquitous method of feature detection involves linear filtering; this method
has its roots in matched filtering or template matching in 1D signal processing. A
template of the feature to be detected is first constructed and correlated with the
input image. The resulting image of correlation values is then examined for locations
bearing high correlation. For example, if the feature to be detected is an intensity step
edge, the partial derivative of a Gaussian would be an appropriate template. However,
using only one partial derivative, say the partial derivative in the z-direction, is not

enough. In this case, the correlation result only computes the regularized partial



CHAPTER 1. INTRODUCTION 2

derivative of the input image in the z-direction, which only indicates the presence
or absence of a vertical edge. This quantity gives no information about the presence
or absence of a horizontal (or any off-vertical) edge. Furthermore, a detector, using
only this quantity, would be unable to discriminate between the presence of a strong
off-vertical edge and the presence of weak vertical edge.

A brute-force, and often computationally inefficient, method would be to use mul-
tiple templates, each being a partial derivative in a different direction; the template
yielding the maximum response would then be considered as indicating the presence
of an intensity edge in its corresponding orthogonal direction. However, elementary
calculus informs us that the partial derivative along any direction of a two-dimensional
function can always be written as a linear combination of the partial derivatives of the
function along two linearly independent directions. Thus, it would be unnecessary to
use more than two templates since each of the other templates could be written as
a linear combination of the first two basis templates (that are linearly independent).
More importantly, because correlation is a linear operation, the result of correlating
any of the other templates could be expressed as a linear combination of the results
of the basis templates [FA91].

Steerable functions are a special class of functions characterized by a generalization
of the above property. Specifically, a function is said to be steerable it transformed
versions of the function can always be expressed as a linear combination of a fixed,
finite set of basis functions. The weights of the linear combinations are dependent
on the parameters of the transformation.! In the previous example, the function in
question would be the derivative of the Gaussian, and the transformation would be
rotation; as such, two basis functions, corresponding to the partial derivatives along
any two linearly independent directions, are sufficient. Mathematically, G(z,y) =
cos(0)G,(w,y) + sin(0)G, (2, y) where Gy, G, G denote the first partial derivatives
in the #-direction, in the z-direction, and in the y-direction respectively.

Transformations other than rotation are also considered in the definition. For

!Other names have been used to describe functions possessing this property with different re-
strictions. These other definitions will be highlighted when we review the existing work that has
been done in this area.



CHAPTER 1. INTRODUCTION 3

example, a sinusoid is steerable with respect to translation since a translated sinu-
soid is expressible as a linear combination of a fixed sinusoid and cosinusoid. That
is, sin(x + 6x) = cos(6x)sin(x) + sin(dx) cos(x) where the basis functions are sin(x)
and cos(x), and the weighting or steering functions are cos(dx) and sin(dx) respec-
tively. The two previous examples deal with one-parameter transformations; multi-
parameter transformations like a combination of rotation and uniform scaling in the
plane or Euclidean transformation (rotation plus x— and y— translation) are also
included in the definition. One example of a function steerable under Euclidean
transformation is the two-dimensional parabola, (z/a)* 4 (y/b)*, because any trans-
formed replica of it can always be expressed as a linear combination of the monomials
z'y’ up to second degree.

The definition of a steerable function implies exact steerability; that is, the trans-
formed function must be expressible as a linear combination of its basis functions in
analytic form. In practice, steerable functions and their basis functions are almost
always represented in sampled form, and this exact requirement is often relaxed and
some error is tolerated. Thus, it is often sufficient that the function be only approx-
imately steerable; that is, it can be described in terms of a linear combination of
basis functions, allowing for some amount of error. Consequently, one might want
to compute the best k basis functions to steer a given function under some trans-
formation as opposed to finding all the basis functions when a large number or an
infinite number of them might be needed. Although the definition suggests that the
transformation applied to the function can be any transformation within the family
of transformations, for example, any uniform scaling of the function, in practice, a
more local requirement of steerability is often sufficient. Following the same example,
it is possible that only a certain moderate amount of scaling is expected. Thus, in
contrast to the original global definition of steerability, a more local version might be
more useful in practice. These practical subtleties will be dealt with more precisely

in subsequent chapters.
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1.1 Applications of Steerable Functions

In this section, we present several different applications in which steerable functions
have been used as motivation for the study of this special class of functions. These
applications are from a wide variety of areas that include image analysis, motion
estimation, invariant pattern recognition, and computer graphics. In several of these
areas, the use of steerable functions has not traditionally been recognized. We discuss
these examplesin some detail and demonstrate that the steerability property is always

implicitly assumed.

1.1.1 TImage Analysis

Steerable functions have found application in numerous areas, the most popular of
which is in image analysis. In [FA91, Per92, SF95a, Len90b], various methods are
described for detecting local image features, like edges, junctions, and corners, at
different orientations and scales. These methods employ steerable filters, which are
simply linear filters whose kernels are steerable functions. Because correlation is lin-
ear, the outputs of these steerable filters are a linear function of the outputs of its
basis filters. The transformation of the steerable filter yielding the maximum response
is usually determined either analytically or via numerical optimization, and used as
an indication of the presence or absence of the particular structure. Several others
have employed steerable filters within the framework of a multi-resolution pyramid
decomposition [SFAH92, SP94, GBGT94, MP95]. These representations are usually
over-complete and invertible. In one such decomposition [SFAH92], the image is lo-
cally decomposed into multiple, octave-spaced, spatial frequency bands; each of these
bands are then further decomposed using a set of basis filters corresponding to the set
of basis filters of an orientation-steerable filter. If two such pyramids are constructed,
one with even-phased filters and the other with odd-phased filters, then the decom-
position analyzes the local image content into octave-spaced spatial-frequency bands
selective to both orientation and phase. Such local image analysis is useful for a variety
of applications including texture discrimination and segmentation [Sap96, GBGT94]

and human vision modeling [SH98, TH94a].
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1.1.2 Motion Estimation

Steerable filters have also been used to estimate optical flow in image motion se-
quences. Since image motion can be understood as orientation in the spatio-temporal
domain [AB85, WAS5], motion estimation can be implemented using local orienta-
tion estimators in 3D, thus, naturally extending the 2D image analysis techniques
described above [Hee87, HS93]. Although in numerous other motion estimation tech-
niques, the use of steerable filters is not explicitly noted, the requirement that the
motion estimation filter be locally steerable is always implicitly assumed. This can
be readily seen in the following common first-order linearization of the optical flow
constraint: ['tV(z) = I'(e+ Az) ~ I['(x)+ Az VI(x), where I and I't! represent
the images at time ¢ and ¢+ 1 and V' denotes the spatial gradient of image I*. Thus,
a translation of image I' is described as a linear combination of a set of three basis
functions comprising itself and its partial derivatives in the x— and y— directions. In
practice, this constraint is typically implemented using filters. One can show that
an equivalent condition on the filters needs to be satisfied.

Recent research in the design of accurate optical flow algorithms stress the impor-
tance of choosing appropriate basis functions [Sim94]. In particular, [XS95b, XS95a]
suggest the use of moment and hypergeometric filters as basis filters; also, [LHHC94]
describes an accurate optical flow technique using Hermite polynomials. When the
motion estimation filter is quite oscillatory, i.e., it has a narrow pass-band, like a Ga-
bor filter, for instance, then translating it by a small amount gives rise to a function
that can be approximated by a linear combination of an odd-phased and an even-
phased version of it. As a result, translation is also sometimes described as phase
(relative to the dominant frequency of the filter being used, or more accurately, to the
dominant frequency of the signal present within the pass-band). Since these filters are
band-pass in nature, they have an added advantage of being insensitive to illumina-
tion changes between frames. As such, various researchers have promoted the use of

such filters in optical flow estimation algorithms [F1le90, Wen93].> The various basis

?While the phase of a complex band-pass filter is relatively insensitive to illumination changes,
the use of complex phase in estimating motion requires some care when the magnitude of the filter
response is small. This is because the estimate of the phase of the filter response becomes unreliable.
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filters described above have been chosen usually for their computational efficiency or
their relative insensitivity to noise. In [ETHO97], the authors describe a method of
designing a least-squares optimal set of basis filters for measuring optical flow that
takes into consideration the desired size of the filters, the expected image spectrum,
and the distribution of optical flow vectors.

Steerable filters have also been used in generalizations of the basic optical flow
problem. One common direction involves extending the translation motion model
to an affine motion model. In this case, the number of parameters being estimated
is six instead of two. Nevertheless, local steerability of the motion estimation filter
is still required with respect to the affine motion model; the weights in the steering
equation are now a function of the six motion parameters, and typically, more basis
functions are necessary. In [XS95a] and [LHHC94], the authors show that hyperge-
ometric filters and Hermite polynomial filters, respectively, can be used to estimate
the affine motion parameters as well. In [MO93, Man94], the authors show how affine
transformation parameters can be estimated using derivative of Gaussian filters with
possibly elliptical kernels.

The ability to estimate local image distortion is useful to numerous other different
applications in computer vision. For example, Malik and Rosenholtz [MR93, MR94]
describe a method to compute the orientation and curvature of a textured surface from
estimates of the affine transformation of the local power spectrum. Using a similar
technique, the authors in [SC94b, SC94a| describe a technique to compute shape from
estimates of the affine transformation of the local feature density. In [TSG94], Dijkstra
et al. present a method to estimate local shape parameters directly from optical
flow measurements. The stereo problem can also be considered as a one-dimensional
analogue of the optical flow estimation problem. If disparities are kept small, one-
dimensional optical flow techniques could be used. This is usually accomplished by
computing the disparity in a coarse-to-fine manner as demonstrated in [FJ91, XS94].

The authors in [XS94] also used the same filters to estimate shape from focus.

A thorough analysis and solution of the problems involved in estimating motion from local phase
information is presented in [F1e90].
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1.1.3 Invariant Pattern Recognition

Many invariant pattern recognition systems begin by first computing several integrals
over the pattern using different weighting functions; the result of these integrations
are then combined such that they are invariant to some transformation. These invari-
ant quantities could then be used in a classifier system to recognize the input pattern
from a database of stored patterns. The most common of these integral transforms
is the Fourier transform. It is well known that the power spectrum of the Fourier
transform of any pattern is invariant to translations of that pattern. More precisely,
the magnitude of each independent complex exponential in the transform is transla-
tion invariant. This can be explained in a variety of ways. In the context of steerable
filters, consider the complex exponential that could be implemented using the filters
sin(a) and cos(x), which are steerable with respect to each other. Any translation
of the pattern is equivalent to an opposite translation of the filters; however, any
translation of sin(ax + Az) = cos(Ax)sin(x) + sin(Ax) cos(x), and a similar identity
holds for cos(x). Therefore, if the outputs of integrating the pattern with the original
filters were s and ¢, the corresponding outputs with a translated pattern would be
cos(Ax) s+sin(Ax) cand —sin(Ax) s+cos(Ax) ¢ respectively. Thus, the sum of the
square of the outputs of the two filters is translation invariant; that is, independent
of Ax.

The Fourier-Mellin transform can be viewed as a reparameterization of the Fourier
transform such that rotation and scaling correspond to x- and y-translation. As a
result, the magnitude of each complex coefficient of the Fourier-Mellin transform
is independent of rotation and scale. A similar explanation in terms of steerable
filters could also be made in this case; however, the filters and the steering functions
would be different. In [FC88, RSZ91, SRZ92], the authors showed that it is possible
to generalize this Fourier transform technique to other groups of transtformations
provided each of the transformations commute. Instead of forming invariants from
the coefficients of single complex coefficients, it is also possible to form invariants
using pairs of complex coefficients. This was demonstrated in [Sim96] where the

author constructed such invariants over rotation.
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Another important class of invariants found in pattern recognition are the alge-
braic or moment invariants. These are invariants that are formed by taking algebraic
combinations of image moments, which are integrals of the image with polynomials.
The most well-known of these invariants are the seven translation, scale and rota-
tion invariants proposed by Hu [Hu62]. Using a similar technique, Reiss derived the
corresponding affine moment invariants [Rei9l]. In the context of steerable filters,
computing image moments corresponds to integrating with steerable polynomial fil-
ters; in fact, it is easy to show that the polynomials are steerable with respect to
affine transformations, and the set of moments used to construct the invariants form
a complete set of basis functions.

Apart from these rather specific classes of invariants, the method of normalization
is a general method of constructing invariants that is independent of the choice of
linear filters. A pattern recognition system using this technique first derives features
from the input pattern using a set of linear filters or some other choice of feature
extraction mechanism. These features are then used to solve for the transformation
that would put the input pattern into a canonical pose. This transformation is next
applied to the input pattern; template matching of the input pattern in its canonical
position is subsequently used to determine if the input pattern is present in the
database of canonical templates. This technique can be used to derive a wide class
of invariants easily [RSV96]. A theoretical account of the method can be found in
[Ama68, AmaT78]. The authors in [RSV9I6] provide a modern account of the technique
along with several examples.

There are numerous other methods to construct invariants for pattern recognition,
many differ by the choice of linear filters that are used to integrate with the input

pattern. A good review of these invariants can be found in [Rei93, Wo0096].

1.1.4 Computer Graphics

Steerable filters have recently been applied to computer graphics. One application
is in the area of texture mapping. Texture mapping is a method of describing the

surface property (e.g. color) of a model using an image. During rendering, the surface
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property of the model at a point is determined by sampling its texture at the point’s
corresponding texture coordinates. To avoid aliasing, point sampling should not be
used; instead, an area-weighted average should be computed such that the shape
and size of the filter kernel is dependent on the viewing and model geometry (and
thus shift-variant). However, computing these weighted-averages during rendering is
computationally expensive, especially if the size of the filter kernel is large; as a result,
several solutions have been proposed to precompute these averages [Wil83, GH86]
(see [Hec86] for a review). The sampling kernel can be implemented using a steerable
function such that view-dependent transformations of it are expressible using a linear
combination of a fixed set of basis kernels. These basis kernels are applied to the
image texture prior to rendering, and during rendering, a linear combination of the
outputs of the basis kernels is computed. A method applying this technique to a
Gaussian sampling kernel is proposed in [Got94].

In a very different application, steerable functions have been used to efficiently re-
render a synthetic scene subject to illumination changes [NSD94, DKNY95, DAG95,
TSHI7]. With this method, the scene is re-rendered after a change in illumination
by linearly combining a set of basis images. The validity of this approach rests on
a fundamental property of graphical rendering: linearity with respect to light source
intensities. If the intensity distribution of the light source is modeled using a steer-
able function (i.e. a steerable light source), then transformations of that distribution
(e.g. changes in orientation of a radial distribution) can be expressed as a linear
combination of a set of basis intensity distributions. Since an image is linearly re-
lated to the intensity distribution of its illuminant, re-rendering the image with the
same view-point but under a change of illumination (corresponding to a steerable
transformation of the original intensity distribution) amounts to a linear combination
of the basis images, i.e., the images rendered using the basis intensity distributions.
This example demonstrates the wide applicability of steerable functions. Steerable
filters and steerable light sources share one common characteristic: linearity of their
respective operators (convolution and rendering respectively) allows steerability to be
applied to the outputs of these operators. In fact, this extension is not limited to

linear operators; algebraic operators also permit steerability of their outputs.
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Finally, steerable filters have also been used in texture synthesis. In [HB95], a
pyramid of steerable filters was used to analyze a sample of texture, and then to

synthesize that texture in a destination image.

1.2 Survey of Existing Research

In this section, we review most of the existing results on constructing steerable func-
tions. The body of literature can be divided into two categories: the numerical
approach and the analytical approach. The numerical approach treats the problem
as one of numerically computing the optimal set of basis and steering functions for
a given function and family of transformations; optimality is measured using some
function norm, typically the L? norm. Although this method is applicable to almost
any choice of transformations, it tends to be computationally infeasible for trans-
formations that are described by a moderate number of parameters. The analytical
approach studies the problem by first identifying basis functions that are analytically
steerable; for example, sinusoids under translation. The function to be steered is
then approximated with a linear combination of these basis functions, and steered
by steering the basis functions. As a result, the basis and steering functions can be

written in analytic form.

1.2.1 The Numerical Approach

The numerical approach was pioneered by Perona [Per92, Per95]. The primary ap-
plication of steerable functions for this author was its use in filters designed to detect
local image structures like intensity edges and junctions such that the detection was
independent of some transformation; e.g. rotation and scale. Analytically, the set of
all transformed replicas of the function to be steered is treated as a compact linear
operator for which a suitable discrete spectral representation was to be computed;
the author showed that under certain conditions, the operator posseses a discrete

spectrum. This discrete spectral representation provides a set of optimal basis and
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steering functions that could be used to steer the given function. In the case of steer-
ing a function over rotation, the author showed that the basis and steering functions
can be derived analytically when the function to be steered is described by a Fourier
series.

Nevertheless, in practice, the method is almost always implemented numerically
by computing the singular value decomposition of a particular matrix F' such that
F =USVT where S is a diagonal matrix of positive singular values, UTU = I and
VTV = I. This matrix corresponds to a sampled representation of the compact linear
operator described above; sampling is carried out over both the spatial coordinates
(i.e. the steered function’s coordinates) and the transform parameters. Each column
of F' contains a spatially sampled representation of a particular transformed version
of the function to be steered; thus, the columns of F' enumerate all transformed
replicas of the steered function. Likewise, the columns of U contain the orthogonal
basis functions in sampled form, while each column of V' contains a sampled version
of the steering function associated with each basis function. The diagonal entries
in S are typically arranged in decreasing order of magnitude such that s; > s;; for
t < j. Setting the smaller singular values in S to zero effectively selects the first k
basis and steering functions. These k basis and steering functions correspond to an
optimal least-squares set.

There are several variants of this approach. In [SP94], the authors proposed
a method of constructing an optimal set of basis functions that are also spatially
separable. Spatially separable filters are computationally efficient since convolution
with a multi-dimensional separable filter could be implemented as a sequence of one-
dimensional convolutions. The basis functions and their steering functions were com-
puted using iterative minimization. The authors in [GBG194] demonstrated that an
approximate steering equation can be computed for a fixed set of basis functions.
Namely, the basis functions were from an efficient implementation of several orien-
tation sensitive band-pass filters that were applied to each spatial frequency band of
a Laplacian pyramid. Thus, the authors were able to steer the orientation sensitive

band-pass filters over rotation. The obvious requirement here is that the filters be
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complete (or overcomplete). Finally, in [MP95], the basis filters to steer a given func-
tion over a large range of scales (e.g. two octaves) is computed such that the basis
filters can be implemented recursively in a pyramidal framework; that is, the set of
basis filters is divided into subsets such that the filters in each subset are applied
to an increasingly low passed and decimated version of the original image. Since
decimation is involved, the authors also minimize the amount of spatial aliasing in
the system by optimizing over all (necessary) translates of the steered function. The
entire optimization problem is solved iteratively.

The main advantage of this approach is that it is applicable to almost any trans-
formation in practice. The method is the easier of the two approaches to understand
and for many problems, its implementation simply involves computing the singular
value decomposition of a matrix. Its main disadvantage is the computational ineffi-
ciency or infeasibility of using the technique to construct accurate basis functions over
transformations involving more than two parameters. In cases where the transforma-
tions are also groups, this method does not explicitly take advantage of the many
useful theoretical results of transformation groups. Finally, the basis and steering

functions are also typically computed in sampled form.

1.2.2 The Analytical Approach

The analytical approach precedes the numerical approach and was popularized by
Freeman and Adelson [FA91]. The authors were primarily concerned with steering
a filter over orientation. They provided an analytical form for functions that were
capable of being steered over orientation; this form essentially requires that the polar
representation of the steered function have a finite angular decomposition in terms
of complex exponentials. They also showed that polynomials windowed by radially
symmetric functions were steerable over orientation. Because the basis functions were
derived analytically, the steering functions were also obtained in analytic form.

The results of Freeman and Adelson were extended by Simoncelli et al. in [SFAH92]

where the authors investigated the possibility of analytically steering a function over
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translation, rotation, or scaling. They also explored the issue of simultaneously steer-
ing a function over several domains. They concluded that it was not possible to jointly
steer over translation and scaling unless one of the domains, for example translation,
was fully sampled (i.e. not subsampled). In the case of steering a function over scale,
the authors described a method for steering purely symmetric or anti-symmetric funec-
tions. The method considered scaling as translation in a suitably warped spatial do-
main. The ideal spatial warping is logarithmic; however, to cope with the singularity
at the origin, the authors used a modified logarithmic warp that intersected with the
origin and was linear about it. This was possible because the steerability property is
independent of the particular choice of spatial warping. However, this meant that, at
fine scales, the functions were not scaled copies of one another. Finally, to consider
scaling only over a small interval, the authors assumed that the function to be steered
has a radially periodic extension.

A framework based on tensor invariance to derive the functional form of functions
steerable under n-D rotation is presented in [Bei94]. The author observed that in
order for a function to be steerable under rotation, it has to be invariant under
simultaneous rotation of both its basis and steering functions; that is, rotating the
basis function and rotating the steering function by the same amount should leave
the steered function unchanged. This is an observation based on the fact that the
origin of the rotation parameter is arbitrary, or more accurately, dependent on the
orientation of the basis functions. It follows then that the steered function must be
expressible as a function of such invariants. The set of all such invariants was derived
by the author using Cartesian tensor calculus.

Actually, analytical steerability has been investigated by several other authors
under the notion of filter adaptivity ([And92, Hag92]; see [GK95] for a review). In
particular, Andersson [And92] proposed a robust method of estimating local orien-
tation in 2D and 3D using a particular set of orientation and phase adaptive filters.
Haglund [Hag92] described a phase-based representation of images using orientation
adaptive filters; he also demonstrated the use of orientation adaptive filters in sev-
eral applications, including image enhancement, optical flow estimation and disparity

estimation from stereo pairs.
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Much of the earlier analytical work on steerable filters examined the construction
of suitable basis filters under particular transformations like translation, rotation, or
scaling. These transformations were special because under well-known reparameter-
izations, they could be treated as translations in the new domain for which Fourier
analysis provided a well-understood theoretical framework. In [Mic95a, Mic95b], the
authors applied the mathematical theory of Lie transformation groups to show that
a function is steerable under a group of transformations (i.e. a family of transforma-
tions that also possesses algebraic group properties) only if its basis functions form
an invariant subspace with respect to the infinitesimal generator of the group, which
is the differential operator obtained by computing the derivative of the transform
at the identity. In particular, the complex exponentials form an invariant subspace
under the infinitesimal generator of translation and thus, provide a basis for steering
functions under translation.

The authors point out that any one-parameter transformation group can be repa-
rameterized to resemble the group of translations for which the complex exponentials
(in the new domain) are appropriate as basis functions. The case of steering over
scale is treated in greater detail where the authors proposed an alternative method to
the one suggested by Simoncelli et al. [SFAH92]. Unlike the latter, the new method
does not involve modifying the logarithmic warp near the origin. Instead, the authors
argue that the projection of the steered function onto the complex exponentials in
logarithmic space is not singular due to the presence of a non-identity measure that
cancels the singularity; furthermore, the singularity at zero of the complex exponen-
tials in logarithmic space can be dealt with by defining the value at zero to be zero
for all the basis functions except one, which can be chosen arbitrarily.

The main advantage of the analytical approach is that the basis and steering
functions are derived in analytic form. The availability of the steering function in an-
alytic form allows steering to be carried out analytically; this is necessary for certain
applications like motion estimation and the computation of invariants as will be de-
scribed in Chapter 6. Another advantage of this approach is that its computational
complexity is often independent of the number of parameters required to describe

the transformation. In the case of group transformations, Lie group theory provides
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the most appropriate mathematical tool to understanding steerability. The obvious
disadvantage is the restriction of the analysis to group transformations. Fortunately,
this restriction is not too severe for applications in image processing and computer

vision as many commonly used transformations are group transformations.

1.3 Contributions of this Thesis

In this thesis, we establish a framework based on Lie theory that facilitates the
analysis and promotes the understanding of steerable functions. We argue that Lie
theory is the appropriate mathematical tool for discussing steerable functions under
smooth transformation groups. This position is supported by the fact that all existing
analytical approaches to steerability can be consistently explained using Lie theory
(because they involve smooth transformation groups).

The framework is useful as it describes the nonlinear® steerability property in
terms of first order, linear differential operators. In doing so, it provides a gen-
eral technique for constructing steerable functions under any transformation group.
Furthermore, the linearity of the differential operators implies that the wealth of
concepts and techniques from linear algebra can be applied to analyzing steerable
functions. In particular, the Jordan decomposition of square matrices is used to de-
rive a complete classification of all functions steerable under any one-parameter or
any multi-parameter Abelian transformation group.

In addition to classifying the functions steerable under different transformation
groups, the framework is also used to design two very different algorithms for con-
structing basis functions to steer a given function. The first algorithm is a compu-
tational, symbolic method of deriving the basis functions of an arbitrary analytically
steerable function. It could be implemented in any symbolic package (like Maple

or Mathematica) and used to automatically derive the set of basis functions for a

3Steerability is nonlinear because the group transformation that is applied to the coordinates of
a function could be arbitrarily nonlinear (e.g. projective transformation). Steerability is, however,
linear in terms of the function being transformed because transforming the sum of two functions is
equivalent to the sum of two independently transformed functions.
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given steerable function. The second algorithm addresses two problems: approxi-
mate steerability and local steerability. In practice, functions that need to be steered
might not be analytically steerable; that is, steerable with a finite number of basis
functions. Thus, the problem becomes one of finding the best set of k& basis functions.
Although Lie transformation groups are common in many applications, one can often
assume that only a small amount of transformation (e.g. a small amount of transla-
tion or scaling) is ever applied or encountered. Therefore, it would be unnecessary
to design functions steerable over the entire family of transformations. The second
method addresses these two practical concerns by combining the Lie group-theoretic
approach of the framework and the numerical singular value decomposition technique.
The result is an algorithm that computes the best set of k basis functions to steer
a given function under a subset of the group of transformations. Unlike the vanilla
SVD approach, this technique is more computationally efficient for multi-parameter
transformations.

Finally, we demonstrate that steerable functions are useful in a variety of appli-
cations. In particular, we describe the use of steerable functions in five applications:
(1) approximating an infinite number of interacting mechanisms in a model of early
human visual processing (continuum approximation), (2) the design of optimal steer-
able filters for gradient-based motion estimation, (3) efficient linear re-rendering of
synthetic scenes under changes in illumination, (4) the construction of invariants from
steerable filters, and (5) the application of steerable functions to discrete sets of points
and lines.

The rest of the thesis is organized into five chapters. In Chapter 2, we provide an
introduction to the Lie theory of transformation groups and introduce the definition
of a steerable function that will be used in the rest of this work. Chapter 3 eluci-
dates the mathematical framework surrounding steerable functions and proposes a
canonical decomposition of all functions steerable under any one-parameter or multi-
parameter Abelian transformation groups. Chapter 4 presents a symbolic algorithm
for deriving the basis functions of any steerable function. Chapter 5 describes an
efficient numerical method for computing the optimal k basis functions to steer any

given function under a subset of the group of transformations. In Chapter 6, the use
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of steerable functions in five different applications is presented. Finally, the thesis is

concluded in Chapter 7.

1.4 Lie Theory in Related Areas

Before concluding this chapter, we describe the application of Lie theory in several
areas related to image processing and computer vision. Lie theory is concerned with
the study of topological groups that can be given an analytical structure such that
the group composition and inversion are analytic. One important class of such groups
in computer vision and image processing is the class of smooth spatial (coordinate)
transformation groups; for example, translation, rotation, scaling, and shearing. The
theory provides a mathematical framework within which to study such groups and
their action (for example, the coordinate transformation of functions). Issues such
as the equivalence of translation and scaling (up to a change of parameterization)
are easily resolved within the framework. The nonlinear effect of the coordinate
transformations on functions is more easily explained using the theory.

Although Lie theory has only recently been introduced to the study of steerable
functions, it has been applied to several other areas in computer vision and im-
age processing. S. Amari was one of the earliest to recognize the relevance of Lie
theory to invariant feature detection [Ama68, Ama78, Ama87]. R. Lenz in numer-
ous publications [Len89b, Len89a, Len90a, Len91, Len94, LHI7] and in his book on
the application of group theoretical methods in image processing [Len90b] provide a
comprehensive introduction to the theory with examples of applications to feature
extraction, motion analysis, and other applications. The use of Lie theory in motion
analysis had also been investigated by R. Fagleson [FEag92a, Fag92b]. In a recent work
by K. Nordberg [Nor94], the author proposed a representation, using Lie theory, for
signals that are transformed by operator groups.

Lie theory has also been used in constructing nonlinear curve and surface evo-
lution equations that are invariant under the group of special affine transforma-
tions [Sap93]. This is accomplished by choosing an affine-invariant parameterization

of the curve (the affine arc length) and describing the evolution of the curve using
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only differential affine-invariant quantities like the affine-invariant normal vector and
the affine-invariant curvature. Similar methods were used by the authors in [OST96]
to construct an affine-invariant edge detector and an affine-invariant active contour.
A good collection of early works on the subject can be found in [Rom94]. [Gug63]
provides a good explanation of differential invariants using Lie theory. In a different
application, T. Moons et al. use Lie theory to construct semi-differential invariants,
which are invariants made up of a combination of points and derivatives [MPGO95].
Other approaches to constructing invariants are described in [Me92].

Finally, similarities between the Lie theory of transformation groups and aspects
of the human visual system have also been suggested by W. C. Hoffman and oth-
ers [Hof66a, Hof66b, Hof70, Dod83, PJ39].



Chapter 2

Concepts and Mathematical

Preliminaries

In this chapter, we describe the properties of Lie groups, both as transformation
groups and as matrix groups. We then introduce the Lie algebra associated with a
Lie group. This Lie algebra is related to the original group via an exponential map
that is bijective under certain conditions. This close association between Lie groups
and Lie algebras allows properties of a nonlinear Lie group to be identified with
properties of its linear Lie algebra. Finally, we provide a definition of steerability
in conjunction with Lie transformation groups. We also show that polynomials of
steerable functions are steerable. The mathematical treatment of Lie groups and Lie
algebras in this chapter is rudimentary; only the necessary concepts are presented.
For a more detailed exposition of Lie theory, please refer to the numerous books on

the subject [Coh11, BK89, CSM95, Her66, SW73, Kir76, Kna86, Tal68, Olv95].

19
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2.1 Lie Groups

Lie groups are often encountered as transformation groups, that is, as families of
transformations acting on a signal. Common examples in image processing and com-
puter vision include: translations, scalings, rotations, affine, and projective transfor-
mations of images, lines or points. In this work, we consider, primarily, the fam-
ilies of transformation groups acting on real-valued, two-dimensional images. We
assume that these images are non-zero only within a bounded region and denote
them by s(x,y) : R* — R. We describe each family of transformations by operators
{g(71,...,7)} where 7, € R are parameters of the transformation. The restriction
of the range of s to R is arbitrary; most of the properties to be presented will also
apply to C (complex-valued images).

For example, consider the family of one-dimensional translations of an image in
the z-direction:

8(2,9) = g1, (1) s(2,y) = s(x — 7,y)
where 7 denotes the amount of translation. In words, the operator ¢, (7) acts on the
original image s(x,y) to yield a new translated image $(2,9) = s(x — 7,y).

A family of transformations {g(71,...,7%)} parameterized by 74, ..., 7 over some
predefined range is a Lie group if: (1) it satisfies the group conditions of closure under
composition, associativity, inverse and the existence of an identity, and (2) the maps
for inverse and composition are smooth (infinitely differentiable). Thus, the family of
translations forms a Lie group: First, every translation operator g;, (7) has an inverse,
namely, g, (¢(7)) where «(7) = —7. Since «(0) = 0, ¢, (0) is the identity operator.’
Second, composition of two operators can be described by a third operator which
also belongs to the same family, i.e. g;,(74)g:, (70) = 91, (p(7a, 7)) Where p(7,,7) =
7o + 7. In addition, composition is associative, that is to say, ¢, (74)(gs, (76) e, (7c)) =
(912 (Ta) g2, (1)) 91, (7c); as such, p(7q, p(7,7:)) = p(p(7a,7),7:). Finally, both the
inverse map, «(7), and the composition map, p(7,, 7) are smooth. In abstract mathe-

matical terms, a Lie group is a smooth manifold that has a smooth map satisfying the

'We will typically parameterize the group such that 7 = 0 corresponds to the identity operator;
this is always possible since every element of the group has an inverse.
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group properties described above; in the previous example, the manifold corresponds
to the parameter space 7 and the smooth map is the composition map p. The dimen-
sion of the parameter space of a Lie transformation group may be different from the
dimension of the image space upon which it acts. Here, the family of translations in
the x-direction forms a one-parameter Lie group (7 € R) while the space upon which
it acts is two-dimensional ((z,y) € R?).

Another familiar family of transformations that is also a Lie group is the group
of rotations in the plane g¢,(7) such that $(&,9) = ¢.(7) s(x,y) = s(xcost —
ysint,xsint + ycos7). It is straightforward to check that the necessary conditions,
verified in the previous example, are also satisfied here. The family of transforma-
tions defined by ¢4, ., (71, 72) s(2,y) = s(x — 7,y — 73) is a two-parameter Lie group
of - and y-translations in the plane. Alternatively, the family of rotation and -
translation, ¢, (71, 72) s(x,y) = s(x cos 7y —ysin 7y + 79, & sin 71 + y cos 71 ), is another
two-parameter Lie transformation group.

A subgroup of a group is a subset of the original group such that, together with
the composition map, is a group over the subset alone. This subset therefore has to
include the identity element. For example, in the group of z- and y-translations, the
set of all z-translations with a fixed y-translation is a one-parameter subgroup since
any composition of transformations from the subset yields a transformation also in
that subset. Likewise, the set of rotations about the origin, is a subgroup of the group
of rotations and z-translations. However, the set of rotations together with a fixed,
non-zero z-translation is not a subgroup. It can be shown that any multi-parameter
group can be decomposed into a collection of one-parameter subgroups where each of
the one-parameter subgroup is formed by fixing all but one of the parameters to the
value corresponding to the identity element. This is a useful way of understanding
multi-parameter groups.

A group is called Abelian (or commutative) if all pairs of elements from the group
commute; that is, ¢(74)g(7s) = g9(75)g(7a) for all 74, T, or equivalently, p(7a, ) =
p(Tb, To). It can be shown that all one-parameter groups (or subgroups) are Abelian;
examples of these include the group of one-dimensional translation or the group of

rotation. Two subgroups are said to commute if all pairs of elements from each
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subgroup commute; that is, ¢.(7a)9(76) = g5(76)ga(7a) for all 74, 7, where g,, g
are two different subgroups. As a result, a multi-parameter group is Abelian if and
only if it is made up of one-parameter subgroups that commute. The group of z-
and y-translations is Abelian, for instance, since translating first by - and then by
y- is the same the other way around. Conversely, the group of rotations and x-
translations is not commutative since changing the order of appying the two one-
parameter transformations produces different results.

Lie groups are not restricted to transformation groups. In fact, one of the most
popular examples of Lie groups are matrix groups, the most common of which is the
group of invertible n x n complex or real matrices known as the general linear group,
G L(n,C) or GL(n,R), respectively. These matrices form a group with matrix mul-
tiplication as the composition map and the identity matrix as the identity element.
One common subgroup of the general linear group is the orthogonal group O(n, C)
or O(n, R), which consists of orthogonal matrices where orthogonality is defined with
respect to some appropriate inner-product. Matrix multiplication preserves the or-
thogonality property of the matrices; thus, matrices belonging to O(n, C) or O(n,R)
form a subgroup of the respective general linear group. A closely related subgroup
is the special orthogonal group SO(n,C) or SO(n,R), which is made up of orthog-
onal matrices with determinants equal to one. These subgroups are popular because
while the group O(3,R) is related to the group of 3D rotations and reflections about
the origin, the group SO(3, R) is related to the group of pure 3D rotations. Besides
matrix groups, another common group is the additive group in either R™ or S™.2
The elements of the group are elements in R™ or S™ while the composition map is
addition; in the case of 5™, addition is performed modulo 27. When n equals one, we
get the additive group over the reals R and the additive group over the circle S.

Similarities between two groups can be made precise through the use of a map-
ping between elements of the two group known as a homomorphism. A homomor-
phism is a mapping from the one group to another that commutes with composition
of the two groups. That is, a homomorphism is a map © : ¢ — H such that
O(g192) = O(g1)O(g2) where G, H are two groups ¢1,92 € G, and O(¢1),0(g2) € H.

257 is defined as S x ... x S where S is a topological space equivalent to a unit circle.



CHAPTER 2. CONCEPTS AND MATHEMATICAL PRELIMINARIES 23

Derivative

~

Group Transformation Tangent Space
9(1) fix.y) = f(x', y’) span{L_1,L_2, .., L_k}

Non-linear ‘,,"" “““\\ Linear
Tt

Exponential Map

Figure 1: The relationship between the Lie group and its tangent space (Lie algebra)
is due to the exponential map, which maps an element in the tangent space onto an
element of the group in the neighborhood of the identity.

A homomorphism that is bijective is known as an isomorphism. Groups that can be
related via an isomorphism are said to be isomorphic to each other, and have identical
algebraic properties. For example, n-parameter Abelian groups are isomorphic only
to other n-parameter Abelian groups. The Abelian property is preserved across iso-
morphisms. Another example of a pair of isomorphic groups is the group of rotations

in 3D with the group of matrices SO(3,R).

2.2 Lie Algebras

Lie groups are rich in structure and many properties of the group can be discerned
by studying its corresponding Lie algebra. The close relationship between Lie groups
and Lie algebras allows properties of a group to be associated one-to-one, in many

cases, with properties of the algebra.

2.2.1 Tangent Space

The Lie algebra associated with a group is defined on a vector space known as the
tangent space of the group that is spanned by a set of infinitesimal generators of the
group. Each infinitesimal generator corresponds to the total derivative of the group
action with respect to one of its parameters, evaluated at the identity. Conversely, the

tangent space generates a group via the exponential map that is similar to the original
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group. The generated group and the original group are equivalent when the original
group is simply connected. This fundamental relationship between Lie groups and
Lie algebras is depicted in Figure 1, and forms the basis of the connection between

Lie groups and Lie algebras.

One-parameter Transformation Groups. For a one-parameter transformation

group parameterized by 7 and acting on an image s(x,y), the infinitesimal trans-

formation of the group about the identity (7 = 0) is defined using Leibnitz’s chain
Jdr 0  Jy 0 d .

:(%%+E%+%ﬂo&

The differential operator on the right hand side of the equation is the infinitesimal

rule:

d

L) =2

T dr

7=0

7=0

generator of the transformation and is denoted by L, i.e.

TN "
drdx Oty  It)| __,

The partial derivative with respect to 7 is zero when the group does not affect the
signal in ways other than through a coordinate transformation.

The set of elements G = {7L | 7 € R} forms the one-dimensional tangent space
of the group where L can be thought of as a one-dimensional basis vector. There is
a strong connection between the tangent space and the Lie group from which it was
derived. Namely, each element g(7) of the group can be generated by an element in

the tangent space, 7L € G, via the exponential map:®

g(7) s(x,y) =" s(x,y) (2)

L represents the series ex-

where 7 is the parameter of the group. The notation e’
pansion el =T+ 7L+ %7’2[/2 + -+, which is an infinite sum of differential opera-
tors [Cohl1]. This is a rather surprising result since the operator ¢(7) can transform

the image in highly nonlinear ways while G is simply a linear vector space.

3To be precise, this is only true for group elements sufficiently close to the identity element so
that their Taylor expansions converge, and for elements within the connected component contain-
ing the 1dentity. We will typically consider simply connected transformation groups for which the
exponential map is bijective.
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‘ Group ‘ Transformation ‘ Generator
z-translation 9., (T) fla,y) = fle — 1,9) Ly, = _aa_x
x—scaling gsm(T) f($, y) = f(6_7$, y) Lsm = _f%
z-projective 9o (T) flz,y) = fla/(1+ 72),7) L, = —96288—1,
y-translation gt,(7) f(z,y) = f(z,y —7) Ly, = _%
y_scahng gsy(T) f($, y) = f(xv e_Ty) Lsy = _@/@
yprojective | g,,(r) flr,y) = Flz.y/(1+ 7)) Ly = 4?8
Rotation 9. (1) fz,y) = f(zcosT —ysinT,asinT + ycosT) | L, = —yaa—x—|— aa_y
Uniform scaling | ¢s(7) f(z,y) = fle "x, e Ty) Ly=-22 - yaa_y

Table 1: Several examples of one-parameter transformation groups and their infini-
tesimal generators.

Recall the group of translations in the x-direction presented earlier. The derivative

of the transformation about the identity is

ds J
hd -
dr| _, Ox
and hence its generator is L; = —88—90. Using the exponential map suggested in
Equation 2, we find that
gu(r)s = el

_ ) 1.2 8%
= (=7t t)s

o095 1,29 4
= S Tal,—l-.T s +

which is exactly the Taylor expansion of s(x — 7,y) about 7 = 0. Further examples
of one-parameter transformation groups and their generators are given in Table 1.
The infinitesimal generators of the general linear group G'L(n,R) or GL(n,C) of
matrices is defined in a similar way. Each infinitesimal generator, in this case, is an
arbitrary (possibly singular) n x n matrix. For example, the one-parameter subgroup

of 2 x 2 rotation matrices:

sin(7)  cos(T)

A(r) = ( cos(t) —sin(r) )
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has the following matrix as its infinitesimal generator:

(0 -1
o \1 0 )

Applying the exponential map to the matrix B (multiplied by the scalar 7) yields

d
B=—A
dr (7)

the matrix A(7). In this case, exponentiating the infinitesimal generator, which is a
matrix, involves computing a power series in terms of the matrix:

1
GTB:I—I-TB—I-ETQBQ—I-...:A(T),

where B® refers to the result of multiplying the matrix B by itself i times.

Multi-parameter Transformation Groups. The situation with multi-parameter
Lie groups is analogous. The infinitesimal generators of a multi-parameter group
are the differential operators {L; | 7 = 1...k} corresponding to derivatives of the
transformation at the identity with respect to each parameter 7; in turn, i.e.
ds
dr;

=1; 3
T:O

I 8:1:g+8yg+8
Y\ 0n 0z 9n 0y 0t )|r_p

The k generators provide a basis for the k-dimensional tangent space G = {r L1+ - -+

where

Telg|T1, ..., 7 € R}.* As before, there is a correspondence between a k-parameter

Lie group and its k-dimensional tangent space in the form of the exponential map:

g(T1, ..., 7)) s(x,y) = exp {;TZLZ} s(x,y). (3)

Although the exponential map provides a correspondence between every operator
in the Lie group and every element in its tangent space (barring the considerations
raised earlier for one-parameter groups), the parameterization of the group generated

by the exponential map may be different from that of the original group. Hence,

*Loosely speaking, the linear independence of the k generators is assured if the k-parameter group
from which it was derived cannot be replaced by another with fewer parameters [Cohl11].
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the exponential map generates a group similar to the original group up to a change
of parameterization. For example, consider the two parameterizations of the two-

parameter affine group acting solely on the = coordinate:

Gi(11,72) s(x,y) = s(e™x —7,y),

92(7—17 7—2) S(l‘, y) = 8(67—1 (l‘ o T2)7 y)‘
Both yield the same generators:

D s
X

0

dx
Hence, the exponential map will generate the same group for both. In fact, using
Equation 3, we obtain the group parameterized as follows:

g'(m1,72) s(x,y) = s(e™x — :—1(671 —1)).

This is not a problem as we are often interested in the group of transformations and
not the particular parameterization of it. Furthermore, we can easily reparameterized
the generated group using the original parameterization.

As exponentiating long sums of differential operators can become rather cumber-

some, another more useful map, proposed by Lie himself, is the following:

g(71, .. 1) s(x,y) = (H eT"L") s(x,y) = el el s(x,y). (4)

i=1

The ordering of the individual exponential maps is arbitrary but that is not to say
that different orderings give rise to the same parameterization of the group. Actually,
the choice of ordering determines the parameterization of the group generated by
the composition of exponential maps. This is easily demonstrated with the previous
example:

enl2enlt g(zy) = s(e™x —7,y),

enbienle g(zy) = s(e™(x — 1), y).

With multi-parameter groups, if we vary a single parameter 7; and keep the others

fixed, we get a one-parameter group of transformations {g¢;(7;)} that is a subgroup of

the original k-parameter group. Hence, by varying each of the k different parameters
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separately, we can construct k different one-parameter subgroups. When two one-
parameter subgroups commute, exponentiating their respective generators can be

L L L L

done in either order, i.e. €™ TilitT L

el = elitelti = e 5. This is not true of
non-commuting subgroups. The two-parameter group of the previous example is not
Abelian.  Hence, as demonstrated earlier, enlieml2 o emleenln oL enlitnla - (Qp
the other hand, for the one-parameter transformation groups listed in Table 1, the
pairs, {ge,, 9t, }, 19t 95, 1> 19,5 950 > 19505 95, 15 {90, 95}, ete., are commutative.

The infinitesimal generators of multi-parameter subgroups of the general linear
group G L(n,R) or G'L(n,C) are general n x n matrices corresponding to the partial

derivatives of the group, evaluated at the identity. For example, the two-parameter

aon=(7 1)

have the following matrices as its infinitesimal generators:

subgroup of 2 x 2 matrices:

d 1
BT1 = —A(Tl,TQ) = (
dTl =0

o O

|

01
BT2 = i14(7'1,7'2) = .
dT2 =0 0 0

Linear combinations of the above infinitesimal generators (weighted by 71, 72 respec-

tively) can be exponentiated to yield a group of matrices. As discussed above, whether
the original matrix group is obtained depends on the choice of exponentiation method.

The particular method of exponentiating that derives the original matrix subgroup

A(71,72) is:
1 0
er2BrienBr 2 ‘ = A(1, 7).
0 1 0 1

2.2.2 Vector Fields

The elements of the tangent spaces of transformation groups can also be viewed as

vector fields where the spatial partial derivatives provide a local coordinate frame. For
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The vector field representing the infinitesimal generator of the one-

parameter group of rotations in the plane, the infinitesimal generator being L, =

Figure 2:

X Translation

a

2
dx

-y

Figure 3: The vector fields associated with the infinitesimal generators of the two-

9
dy”

parameter group of translations in the plane, the infinitesimal generators being L;, =
and Ly,

2
dx
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X Translation Y Translation Composite
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Figure 4: The vector field associated with the element (7'088—1, + 7'1%) of the tangent
space of the two-parameter group of translations in the plane. The vector field is
shown as a linear combination of the vector fields associated with the infinitesimal
generators.

example, the infinitesimal generator of the one-parameter group of rotations in the
plane, L, = —yaa—x —I—:zjaa—y, can be regarded as a vector field over z,y. Figure 2 plots the
vector field such that the vectors correspond to (—y,x). Likewise, the infinitesimal
generators of a multi-parameter group each has its respective vector field. The vector
fields for the two-parameter group of translations in the plane is shown in Figure 3.
Any element of the tangent space can also be represented by a vector field via linear
combinations of the vector fields associated with the infinitesimal generators that span

the tangent space. This is depicted in Figure 4 for the group of z- and y-translations.

2.2.3 Lie Bracket

The tangent space is made into an algebra by the introduction of a multiplication
known as the Lie bracket. The simplest way of defining the Lie bracket is as the com-
mutator of pairs of elements of the tangent space. That is, the Lie bracket denoted
by [la, ] where [,, 1, € G is defined as [l,, ] = [0, — [;,. This is not the most general
definition of the Lie bracket but it suffices for the cases of transformation groups
and matrix groups. In the case of transformation groups, [ € G is a linear combina-
tion of the infinitesimal generators {Lq,---, L} and is thus a differential operator.
Composition of two operators [, is defined to be the composition of differential op-
erators. As for matrix groups, the elements of the tangent space corresponds to a

linear combination of the n x n matrices {By, -+, B,} and composition is simply
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matrix multiplication.

Consider the group of z-translations and a-scalings whose infinitesimal generators

are L, = _88_1’ and L, = —:1;88—1,. The Lie bracket of the two generators is
I:Lt.r7 LS.r] = Lt.rLS.r - LS.rLt.r

0 1
Likewise, the generators of a matrix representation of the group are B;, = ( )
00

10
and B, =
00

) . The Lie bracket of these two matrix generators are

I:Bta:7 Bsa:] = Bta: Bsa: - Bsa: Bta:
(oo 0 -1
~\oo 0 0

0 —1
— :_Btm-

It can be shown that the Lie bracket between any two elements from the tangent
space is an element also in the tangent space. Therefore, the Lie bracket is a bilinear
map from the tangent space onto itself. Furthermore, it is easy to see that the
Lie bracket is anti-symmetric such that [l,,{,] = —[{},[,] and the Lie bracket of two
identical elements is zero. However, the Lie bracket is not associative; i.e. [l,, [l;, l.]] #
[[la, 5], 1] Instead, it satisfies a different property known as the Jacobi identity:
o D 1] 4 [ [l 2]+ L [ ] = 0.
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Since the Lie bracket is bilinear, it can be characterized by its results over pairs
of the infinitesimal generators that span the tangent space. Consider, for example,
the tangent space spanned by two generators Ly, Ly. Let al.y +blLy and ¢lL1 4+ dLy be
two elements of the tangent space. Thus, their Lie bracket is [aLq+ bLq, cLq+dL;y] =
ac [Ly, L1] 4 ad [L1, Lz] + be [La, L1] + bd [ Ly, Ly] which simplifies to (ad — be) [L1, Lo]
because [L1, L1] = [Lq, L2] = 0 and [Ly, L1] = —[L1, La].

The Lie bracket is useful in that properties of the Lie bracket with respect to a
given Lie algebra can be used to deduce properties of the generated group; conversely,
properties of a Lie group induces properties in its Lie algebra. For example, it can be
shown that a multi-parameter Lie group is Abelian if and only if the Lie bracket is zero
for any pair of elements from its tangent space. Correspondingly, this implies that
[L:, L;] = 0 for any pair of infinitesimal generators. As a result, one immediately sees
that all one-parameter groups are commutative since [L, L] = 0. Another example is
the fact that a subgroup of a Lie group defines a specific subalgebra within the original
Lie algebra. A subalgebra H is a subspace of the tangent space of the Lie algebra G
that is invariant with respect to the Lie bracket; this means that [L;, L;] € H for
all L;;L; € H € G. This is trivially true for all one-parameter subgroups since
[L;, L;] = 0.

In the same way, homomorphisms between Lie groups relate groups with similar
properties, homomorphisms between Lie algebra relate the algebras with similar prop-
erties. A homomorphism © : G — H is a linear map from the Lie algebra G to the
Lie algebra H such that the Lie bracket is preserved; i.e., O([l1,l5]) = [O(l1), O(l3)]
where [4,1l5 € G. Note that the Lie bracket on the left hand side of the equation is the
Lie bracket defined on G while the Lie bracket on the right hand side of the equation
refers to the Lie bracket defined on H. An isomorphism between two Lie algebras
is a homomorphism that is also bijective. Since homomorphisms of Lie algebras are
linear mappings, this implies that isomorphisms only occur between Lie algebras of
the same dimension. Homomorphic (isomorphic) Lie groups have Lie algebras that
are homomorphic (isomorphic); conversely, homomorphic Lie algebras generate Lie

groups that are homomorphic. Therefore, Lie algebras that are isomorphic with each
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other are essentially equivalent and generate groups that are equivalent, up to a repa-
rameterization. Homomorphisms between Lie algebras are generally easier to study
since they are linear maps while homomorphisms between Lie groups are typically

nonlinear.

2.3 Steerable Functions

In this section, we present the definition of steerability that will be used in the rest
of this work. We discuss the natural extension of steerability of a single function
to steerability of an entire function space, which we describe as being equivariant.
Finally, we show how equivariant function spaces can be combined to construct larger

function spaces that are also equivariant.

2.3.1 Definition

The original definition of steerability was proposed by Freeman and Adelson [FA91] for
the special case of rotation. Simoncelli et al. [SFAH92] extended this definition to in-
clude translation and scaling, and coined the term “joint-shiftability.” Perona [Per95]
used the term “deformable” to refer to functions steerable under arbitrary compact
transformations, not necessarily having the group properties. We retain the term
steerability in our definition but generalize its definition to encompass any transfor-

mation group.

Definition 1 (Steerability) : A function f(x,y): R* — C is steerable under a
k-parameter Lie transformation group G if any transformation g(7) € G of f can be

written as a linear combination of a fized, finite set of basis functions {¢;(x,y)}:

n

9(7) fla.y) =D ai(T) dilz,y) = a’ (1)8(z,y)

=1

The vector 7 parameterizes the family of transformations in the group . Vector
a is a vector of the functions «; such that a = (ay,...,a,). Likewise, vector @

contains the functions ¢; such that ® = (¢4,...,¢,). The functions «; are known as
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the steering functions of f associated with the basis {¢;} and depend solely on the
transform parameters. Without loss of generality, we assume that n is the minimum
number of basis functions required and these basis functions are linearly independent.
Clearly, the set of basis functions required to steer a given function is not unique;
any (non-singular) linear transformation of the set of basis functions could also be
used. For example, the first z-derivative of a 2D Gaussian G, is steerable under the
one-parameter group of rotations with the basis set {G7, G} such that ¢(0)G), =
cos(0)G, + sin(0)G,. Rotation is represented by the operator g(#) where ¢ is the
angle of rotation. The functions cos(8),sin(#) are the steering functions while the
functions G, G}, are the basis functions.

If a function f is steerable with a set of basis functions ®, then each of the basis
functions ¢; are themselves steerable with the same basis functions. This is true since
each basis function can be rewritten as a linear combination of transformed replicas

of f (chosen to be linearly independent):
of(r) | ol
b= : :
o (%) g(mh)f
Thus, transforming a basis function is equivalent to linearly combining the set of
transformed replicas of f, which are themselves steerable.
Since steerability of the given function f implies steerability of its basis functions

¢; as well, it is more natural to express steerability in terms of a function space, i.e.

in terms of the space spanned by the basis functions {¢;}.

Definition 2 (Equivariant Function Space) :

An n-dimensional function space F =span{¢1,...,d,} is equivariant wunder a k-
parameter Lie transformation group G if every ¢; is steerable with respect to the basis
{b1,...,¢n}, t.e., there is an n X n matriz function A(7), called the interpolation

matrix, such that:
g(T)®(x,y) = A(T)®(x,y) fordl g(T) e

This equation is called the interpolation equation.
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Following the previous example of the first z-derivative of a 2D Gaussian, the two-
T
dimensional function space spanned by ¢ = (Ggg, G;) is equivariant with the inter-
cos(f) sin(h)
—sin(f) cos(9) '
The term “equivariance” was originally proposed by Wilson and Knutsson [WKS88].

polation matrix A(9) = (

From the definition, it follows that an equivariant function space is a function space
that is invariant under the associated transformation group. More generally, any

function f € F, such that f =3 ¢;¢; = ¢ ® is steerable by steering the basis of F:
g(T)f = g(T)c' & = " A(T)0.

As a result, any function f is steerable under a k-parameter transformation group
if and only if it belongs to some function space that is equivariant under the same
transformation group.

For example, consider the function space Fy = span{cos#,sin @} under the one-
parameter group of rotations: ¢,(7)f(0) = f(6 — 7). It is easy to verify the following

two identities:

cos( —7) = cosTcosf 4+ sinTsinb,

sin(f — 1) = —sin7cos + cos7sinf.

Thus, rotated versions of any basis function in Fy can always be expressed as linear
combinations of the basis functions. Hence, any f € Fj is steerable under the rotation
group.

The interpolation matrix is an n X n matrix whose entries are functions of the
group parameters 7. In fact, the set of all matrices { A(7)} is a subgroup of GL(n,R).
This is because A(T12) = A(71)A(72) where A(T12), A(71), A(T2) are the interpo-
lation matrices corresponding to the transformation ¢(712),g(71), g(72) respectively,
and ¢(712) = g(71)g(72). Thus, the subgroup of matrices {A(7)} is a homomorphism
of the group of transformations denoted by {¢g(7)}. This is exploited in the next
chapter where the infinitesimal generator of the transformation group is related to

the infinitesimal generator of the interpolation matrix group.
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2.3.2 Construction of Equivariant Function Spaces

Equivariant function spaces under the same transformation group can be combined
to construct larger functions spaces that are also equivariant under the same trans-
formation group. Omne approach computes the new equivariant function space as
the direct sum of two equivariant function spaces. If ®; and ¥, contain the ba-
sis functions of two distinct equivariant function spaces, then the function space
spanned by all the basis functions together is also equivariant. For example, if
®; = (sin(x),cos(z))’ and ®, = (sin(2x),cos(2z))?, then the space spanned by
Oy & ¢y = (sin(x), cos(x),sin(2x), cos(2x)) is also equivariant. Since the vector sum
of two equivariant function spaces is equivariant, this implies that the sum of two
steerable functions is also steerable.

A second approach computes the new equivariant function space as the tensor
product of two equivariant function spaces. The transformation group is applied to
the tensor product space by applying the transformation to each component of the
tensor simultaneously. The basis functions of the tensor product space are equivariant.
The multi-linear tensor product space can be converted into a linear space using
the set of basis functions formed by taking the Kronecker product of the original
basis functions from the two equivariant function spaces spaces (i.e. the pairwise
products of functions from ®; and ®,). This linearized space is also equivariant.
Using the same example as above, the linearized tensor product space spanned by
¢1 @ Py = (sin(a)sin(2z), sin(x) cos(2x), cos(x) sin(2x), cos(x) cos(2x)) is equivariant.
Since the tensor product of two equivariant function spaces is equivariant, this implies
that the product of two steerable functions is also steerable.

Using these two approaches, any polynomial of equivariant function spaces (or of
a single equivariant function space) is equivariant where addition and multiplication
is vector sum and tensor product respectively. Similarly, any polynomial of steerable

functions is also steerable.



Chapter 3
Canonical Decomposition

Designing basis functions that can steer an arbitrary function under a given trans-
formation group is the main problem concerning steerable functions. Once the basis
functions are chosen, its steering functions can be computed numerically or even an-
alytically as will be evident later in this chapter. From the last chapter, is is clear
that the problem of designing suitable basis functions is equivalent to identifying an
appropriate equivariant function space, namely, the lowest-dimensional one that con-
tains the orbit (i.e. all transformed replicas) of the steered function. For example,
when steering the first derivative of a Gaussian under rotation, the lowest-dimensional
equivariant function space is the two-dimensional space spanned by the first deriva-
tives of the Gaussian in two linearly independent directions. Note that this minimal
equivariant function space may not be finite dimensional for an arbitrary function;
the definition of a steerable function defines precisely those functions that have finite-
dimensional equivariant function spaces as being steerable.

In this chapter, a general mathematical recipe for constructing equivariant func-
tion spaces under any Lie transformation group is presented. The method involves
solving a system of linear, first order partial differential equations, the partial deriva-
tives being taken over the spatial variables. In the case of one-parameter transforma-
tion groups or multi-parameter Abelian transformation groups, we describe a canon-

ical decomposition of all equivariant function spaces. This decomposition provides a

37
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7~ A

Closure under Closure under
Group Transformation Group Generators

0\
g(1) = A(T) @ V,,,,"“‘““o Li®=B;®

Figure 5: Closure of the equivariant function space with respect to the group transfor-
mation is equivalent to closure of the function space with respect to the infinitesimal
generators of the group.

canonical functional form for all equivariant function spaces under these transforma-
tion groups. For the general case of non-Abelian transformation groups, a catalog of
equivariant function spaces for several common subgroups of the affine transformation
group is provided.

The material presented in this chapter can be found in [HOT98]; an early version

of it is described in [HOT96].

3.1 Construction of Equivariant Function Spaces

Equivariant function spaces are defined as function spaces that are closed under some
transformation group. Since a coordinate transformation of an arbitrary function
is a nonlinear operation, the closure condition is nonlinear. Fortunately, because
we are dealing with Lie transformation groups, the closure of a function space under
elements of the transformation group ¢(7) can be reformulated, more simply, in terms
of the group generators {L1,..., Li}. Specifically, closure of a function space under a
transformation group is equivalent to closure of the function space under the action
of the infinitesimal generators of the group. This relationship is depicted in Figure 5.
This approach is an extension of the seminal work of S. Amari [Ama68, AmaT78]
who originally proposed it in the context of invariant feature detection in pattern

recognition.
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Theorem 1 (Interpolation Equation) :

The function space F = span{d1,---,d,} is equivariant under the transformation
group G if and only if F is closed under the action of each generator L; of G. That
is, g(7)® = A(7)® if and only if there is a set of n X n matrices {By, ..., Bg} such
that:

L;i®=B;® forall 1=1,....k

In particular, the interpolation matriz can be written as follows:

A(T) = eTkBk . --eTlBl )
The matrices B; are the infinitesimal generator of the matriz group A(T).

Proof 1: Let Ci)(:zj, y) = g(7)®(x,y), the transformed vector of basis functions. Since

g(7) is a Lie group, it follows from the exponential map in Equation 4 that

O(r) = enhi...embr @

I+nli+-) U+l +--)@

I+nli+--) - U+mBr+---)®

= (]‘|'7'1L1-I-"-)---(]—I—Tk_lLk_1_|_...)erkBk(I)
(It mlote) e Br (I +m1lpr+--0) @
(I + 7Ly +---)-- ¢+ Bk ¢mi-iBr—1 ¢

_ .»B nB
— ek k...el 1@7

in which the substitution (L;)"® = (B;)"® is used repeatedly. It can easily be
verified that L; ® = B; ® implies (L;)™® = (B;)™® via the linearity of the differential
operator L;. The order in which the generators L; are applied is arbitrary. However,
as pointed out in Section 2.2.1, the order will determine the parameterization of the
generated group.  Conversely, if b = enwBr ... nbBa &, taking derivatives with
respect to 7; (about 7 = 0) on both sides of the equation yields the system of
equations L; ® = B; . O

Theorem 1 provides a recipe for verifying whether a space spanned by a set of

functions {¢;} is equivariant, and if it is, derives the interpolation matrix A(7).
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1. Derive the generators Lq,..., L of the given transformation group
9(7):

2. Verify for each generator L; that
L, ®=B;9
where B; is some n X n matrix.

3. If so, the function space F = span{¢y,---, ¢} is equivariant and
the interpolation equation is simply

g(T)® = A(7) @
where the interpolation matrix is

A(r) = eTkBk e eTlBl.

Figure 6: Recipe for verifying that the function space of span(®) is equivariant. If
so, the interpolation matrix A(7) is also derived.

Figure 6 summarizes the procedure. Unfortunately, the construction of all possible n-
dimensional equivariant function spaces is not as methodical in general, and has to be
done by inspection. For one-parameter and multi-parameter Abelian transformation
groups, however, the construction is straightforward and will be treated extensively

in the next section.

3.2 Function Spaces for One-Parameter Groups

In this section, we attend to the construction of all possible equivariant function
spaces with respect to any one-parameter transformation group. First, we provide
examples of several such equivariant function spaces. After that, we show that any
one-parameter group can be re-parameterized to appear as a group of translations in

the new parameterization. Finally, we propose a canonical decomposition of all the
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function spaces equivariant under the translation group (and correspondingly under

any one-parameter group that has been appropriately re-parameterized).

3.2.1 The Translation Group

Consider the group of one-dimensional translations in the z-direction: f(:i',g)) =
gt (1) flz,y) = f(x + 7,y) whose generator L, = 88—1,. An n-dimensional function
space @ is equivariant with respect to g, (7) if L, ® = aa_xq) = B® for a given n x n

matrix B. The general solution to this ordinary differential equation is
®(z,y) = B 0(0) (5)

where ®(0) is the value of ® at © = 0. Actually, the product of ®(x,y) with any
function solely in y leaves it equivariant; thus, without loss of generality, we refer to
O (x,y) only as ®(x). Since ®(0) can be arbitrary chosen, any element in the column
space of B s a possible solution. We will denote this by ®(x) € R(eBx) where R
refers to the column space of the matrix B, Regardless of the choice of ®(0), the
interpolation equation is the same, i.e. = eBro.

In the following examples, we present different choices for the matrix B and derive

the corresponding equivariant function spaces. We show that several commonly used

steerable functions are the result of particular choices of the matrix B.

Example 1 : Consider the simplest case where B is a 1 x 1 matrix, i.e. B = [}]
where X is a scalar value (which may be complex). From Equation 5, the space of
equivariant functions is: ®(x) = ae'”, where a is some scalar value (the value at ®(0)),
while the interpolation equation is = e, Proving equivariance is straightforward
since @ = ae?+7) = M = MO, When ) is purely imaginary, the functions are
complex exponentials. In phase-based motion estimation, the parameter 7 is regarded
as the difference in phase. Fleet and Jepson [FJ91] proposed an accurate method of
measuring disparity by estimating the difference in phase between two (windowed)

complex exponentials.
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Ay 0
B = .
0 A

In this case, the solution to Equation 5 implies that

o(z) € R(eB7) =R [( ezx eix )]

and the interpolation equation is

R AlT 0
b—cBo—|° d.
0 eAQT

Simoncelli et al. [SFAH92] proposed a criterion for shiftability in position that decom-

Example 2 : Now, let

poses the filter into a set of complex exponentials (using Fourier decomposition). In
this example, it would correspond to having B being a diagonal matrix with distinct

and purely imaginary \’s.

Example 3 : Let

010
B=|0 01
000

In this case, the equivariant functions and the interpolation equation are

1 =z %:1;2 1 7 %7’2
d(x) € R(eBx) =R 01 =z and d = eTB =101 7 P
00 1 0 0

This example produces the kernels of moment filters which are used in many appli-

cations involving invariant feature detection [Hu62] and motion estimation [XS95b].

3.2.2 The Rotation Group

Another commonly encountered one-parameter transformation group is the group of

rotations in the plane:

g:-(7) f(z,y) = f(zcosT +ysinT, —xsin7T + ycosT)
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where 7 represents the amount of rotation. The generator of the rotation group
is: L, = yaa—x — :zjaa—y. It is easy to see that if we represent the function f(x,y) in
polar coordinates (r,6), then rotation becomes similar to translation: ¢,(7)f(r,0) =
f(r,0 + 7). In these coordinates, the generator is L, = %. Therefore, as before,
an n-dimensional vector of functions ®(r, 6) is equivariant with respect to g,(7) if it
satisfies the equation
Lo = oo = B®
! 00

where B is an n X n matrix. The general solution to the above equation is simply
o(0) = eBo(0)

where ®(0) is the value of ®(#) at # = 0. Since ®(0) is arbitrarily chosen, ®(9) &
R(eBe).

Example 4 : In this example, we show that a vector of functions is equivariant with
respect to rotation and derive its interpolation matrix. Let ®(x,y) be a 2D-vector
containing the spatial derivatives of a Gaussian G = exp(—(z?+y?)/2) = exp(—r?/2)

in the x- and y- directions:

ai —z —7 cos 0
O(x,y) = G = G = G

8 .

3y —y —rsinf

Applying the generator L, = % to ®, we obtain

rsin O 0 —1
L, &= G = ®=DB0ao.
—rcosf 1 0

Thus, the elements of ®(x,y) span an equivariant function space whose interpolation

function is

(i):eTBq):(COST —SiHT)(I)

SINT COST

This is an example of the steerable filters suggested in Freeman and Adelson [FA91].
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3.2.3 Canonical Coordinates of One-Parameter Transforma-

tion Groups

The construction of equivariant function spaces depends on the existence of a solution
to the system of partial differential equations L® = B®. It was shown that for
translations and planar rotations, solutions exist for any given matrix B. In this
section, we show that solutions exist for any one-parameter transformation group.
The simplest way to show this is via a re-parameterization of the current coordinates
into some canonical coordinates where solutions are known to exist. For any one-
parameter transformation group ¢(7), there exists a change of coordinates such that
the group resembles a translation in the new parameterization [Cohl1]. Hence, given
a function f(x,y), one can determine a change of coordinates f(n(x,y),¢(x,y)) such

that
g(7) f(n, &) = fn+7,6).

Segman et al. [SRZ92] used this re-parameterization to construct invariant kernels for
pattern recognition. Ferraro and Caelli [FC94] used this method in a similar context
and suggested its relevance to biological vision.

Since the group operation is the same as one-dimensional translation, the equivari-

ant condition with respect to the canonical coordinates is also the same:

0
Lye ®(n,¢) = 6—77@(7775) = B ®(7,{).

Therefore, its equivariant function spaces also resemble the equivariant function

spaces for translation (up to a change of coordinates).

Example 5 : In Section 3.2.2, polar coordinates were used for the group of rotations
in the plane. It is easy to show that polar coordinates are the canonical coordinates

for this group. Recall the change of coordinates from Cartesian to polar:
n = arctan(y/x) =0 ; (=+[a2+y>=r.

Rotating a function f(x,y) in Cartesian coordinates is the same as translating the

function in polar coordinates: ¢.(7) f(n,&) = f(n + 7,&) where 7 € [0, 27).
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Example 6 : Consider next the one-parameter group of scaling in the = direction,
ie. g5, (1) flx,y) = f(e7a,y) where e ensures that the scaling constant is always
positive. The canonical coordinates of this transformation group are obtained by the
coordinate changes:

n=In(z) and §¢=y.

In this case,

9. (1) F(1,€) = fIn(e7x), &) = f(In(z) +In(e7), &) = f(n + 7, )
which is a translation in the new coordinate system. Suppose now that

010 1 57
B=]10 01 where eB” =10
0 00 0 1

o = 3

Thus, the equivariant function space is spanned by the functions in ®(n) € R(eB”),
like in Example 3 of Section 3.2.1. In this case, however, the function space is in
n coordinates. After a change of coordinates, the function space in = coordinates is

spanned by the functions in

1 lnx %(ln :1;)2
b(z)eR 0 1 Inz
0 0 1

3.2.4 Canonical Decomposition of One-Parameter Equivari-

ant Spaces

For any one-parameter transformation group, the n-vector of equivariant functions @
depends on the apriori choice of the n x n matrix B. However, the same function
space, span(®) = span{¢y,- -, ¢,}, may be generated by different matrices B. The
following theorem provides an equivalence condition among the various matrices B

that generate the same equivariant function space.

Theorem 2 : Let &,V be two n-vectors of equivariant functions (with respect to the

same k-parameter transformation group) and By, B! are such that L; ® = B; ® and
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span( ®) = span(W¥)

g P=A(1) ¢ | e | g(T) P =A(T) ¥

! ! !

LiP=B® | | | jW=B Y

Bi, B’i Similar
B,= PBjP !

Figure 7: Two equivariant function spaces span the same function space if and only
if their corresponding B; matrices are similar.

L; @ = B;' U where L; and B;, B! are the infinitesimal generators of the transfor-

mation and interpolation matriz groups A(T), A'(T) respectively, then
=PV iff B;=PBP!
for all 1 <1 <k and some non-singular n x n matriz P.
Proof 2 : It ® = P VU, then substituting into L; ®, we get
L,®=L,(PV)=PB!V = (PB!P~')PU

and since P U = @, it follows that PB;P~' = B;. Conversely, if B; = PB/P~1,
then
Bi(P7'®)=P'B;® =L, (P '0);

thus, L; @ = B;' & where ® = P~! ®. Since ¥ is uniquely determined by the set
B, (given ¥(0)), ¥ = &' = P~! ®. O.

Thus, two equivariant function spaces under the same k-parameter transformation
group span the same function space if and only if the infinitesimal generators B;, B of
their respective interpolation matrix groups are simulataneously similar for 1 < < k.
This relationship is depicted in Figure 7. In particular, two vectors of functions, ®

and W, which are equivariant with respect to the same one-parameter transformation
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group, span the same function space if and only if all their corresponding matrices
B, B’ are similar. Hence, it suffices to examine all matrices B that are unique up
to a similarity transformation. The Jordan decomposition is useful to this end since
any two matrices that are similar share the same Jordan form [Str88].

With the Jordan decomposition, any n x n matrix B can be rewritten as PJ P!

such that P is a non-singular n x n matrix and J is a block-diagonal matrix of the

form
J1
Ji
Each block J; is a upper bidiagonal matrix with a single eigenvalue \; and one eigen-
vector:
A1
Ji =
1
Ai

The matrix J 1s called the Jordan form of B and J; are its Jordan blocks. A
special case of the Jordan decomposition occurs when the matrix B is normal, i.e.
BBH = BH B where BH is the complex conjugate of the transpose of B. In this
case, the Jordan decomposition yields a diagonal matrix J; hence, each J; is simply
a 1 x 1 matrix containing the eigenvalue \;.

Let &5, ®; be vectors of equivariant functions with respect to the translation
group having corresponding matrices B, J such that J is the Jordan form of B, i.e.
B = PJP~'. From Theorem 2, then &5 = P ®;. In other words, the function
spaces spanned by ®p and ®; are identical. Furthermore,

Jlx

c
P;(x) € R(eJx) =R
Jyo

€

J

Since e”* is block diagonal, the function space spanned by ®; can be decoupled into

a direct sum of function spaces spanned by each Jordan block:

b;(z) € R(ed?) = R(eT17) @ R(eT2") & - & R(eTo).
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Moreover, each R(eJix) is a solution to L; ® = J; ® and thus by itself equivariant

under translation. Finally, from the identity [Str88],

Ao Ao 1.2 Mz

oL e

€ 2

Te

Ao Ao

Te

Jiz €
Ao

it follows that any equivariant function space spanned by ®;(x) can be represented

by a direct sum of the equivariant function basis @5 of the form:

€

(I)J,' — (e/\,'ac7e/\ixx Air .2, e/\il’xni—l)T

Y T Y Y

where n; is the dimension of the Jordan block J; and ); is its eigenvalue. Note that
if the matrix B is real, its eigenvalues appear in conjugate pairs; i.e., if one of the
eigenvalues \ is complex, its conjugate X is also an eigenvalue of B. In this case, the

equivariant spaces will appear in pairs:

(I)Ji @ (I)Ji _ (e/\ix7 e e/\,'xxn,'—l)T @ (e:\ix7 . e:\il’xn,‘—l)T‘
When A is zero, the equivariant space is spanned by the first n; monomials (moments).
Alternatively, when n; is one and A is purely imaginary, the space is spanned by the
complex exponentials, which are also the Fourier basis functions. Since any one-
parameter transformation group can be put into its canonical coordinates (where the
group operation becomes a translation in these new coordinates), the decomposition of
equivariant function spaces for translation applies directly to all other one-parameter
transformation groups as well (after re-parameterization). Table 2 is a summary of

several common one-parameter groups and their equivariant function spaces.

Example 7 :  The following functions span an equivariant function space under the

group of translations g, (7):
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since

0 —k
L, =B ® where B = .
E 0

The interpolation equation associated with ® is:

. k —sin(k
b = eBTCI) where eBT = cos(kr) sin(kr)
sin(kt)  cos(kt)

A different way to represent span(®) is by using functions generated by the Jordan

form of B:
_ k0 1
J=PBP = where P =
0 —ik 1 —z

By Theorem 2, it can verified that

eikl’
®; =Poy = . .
etk

where ®; are two of the Fourier basis functions. The new interpolation equation in

R kT 0
b=clo=|° e
0 e—ZkT

Example 8 : The following functions span an equivariant function space under

g, (T):

this case is:

_ (i3 3 2 ‘2 T
¢ = (sin” x, cos” x, 3 cos” x sin &, 3 sin” x cos

since
00 0 1
00 —1 0
L, ®=B® where B =
3 0 -2
-3 0 2 0
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Transformation Group

Equivariant
Function Space

9e.(7) f(x,y) = f(z — 7,y)

9. (7) fl,y) = fle7Ta,y)

(7)) () = f(x/(1 4 72),y)

90,(7) f@,y) = f(w,y —7)

9s,(7) fl,y) = [, e7Ty)

99, (7) [, y) = [, y/(1+ 7y))

g-(7) f(a,y) = f(xcosT —ysinT,xsinT + ycos 7)
9s(1) fla,y) = fle 7z, e7Ty)

{h(y)are)

{h(y)z*(Inz)"}
{h(y)arers}
{h(x)yre?}
{h(2)y(Iny)”}
{h(x)y~Peslv}
{h(r)e™’}
{~(0)r(Inr)"}

30

Table 2: Several examples of one-parameter transformation groups and their equivari-
ant function spaces. The parameter k is any integer while the parameter « is any
complex number. The function A is any arbitrary function. The variables r, 8 refer
to polar coordinates. The set notation describes a set of functions indexed by p for

0<p<k.

A different way to represent span(®) is with the basis functions determined by

the Jordan form of B:

J=PBP = . where
—3t

and hence span(®;) is determined by

span(R(eJx)) = span (em, e_m, e?’m, 6_3”5)

The interpolation equation in this case is:

gi, (T)Py = eJTCI)J =

—_ = =

. 1 1.
7 3 3
1 1
7 3 3
— —1 7
1 —1 7
T
D;.
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3.3 Function Spaces for Multi-Parameter Groups

With one-parameter transformation groups (in their canonical coordinates), various
equivariant function spaces can be constructed by choosing different B matrices;
solutions to the system of partial differential equations L® = B® exist for arbitrary
choices of B. Unfortunately, there is no systematic way to construct general n-
dimensional equivariant spaces for multi-parameter groups. Unlike one-parameter
groups, arbitrary choices of B; for multi-parameter groups will often not yield solvable
systems of differential equations. For Abelian multi-parameter groups, i.e. groups
made up of one-parameter subgroups that commute, however, a categorization of the
equivariant spaces similar to that for one-parameter groups can be carried out. In the
following, the categorization of equivariant spaces for Abelian multi-parameter groups
is presented. After that, a technique for handling non-Abelian multi-parameter groups

is suggested.

Abelian Multi-Parameter Groups When the multi-parameter transformation
group is Abelian, there exists a re-parameterization of the group so that the group
action is equivalent to independent translations in the new parameterization [Cohl1,
SRZ92, FC94]. Formally, for any two-parameter Abelian group, there exists a re-
parameterization of the function f(n(x,y),£(x,y)) so that

g(m1,72) f(n,8) = fn + 1, {+ 72).

Segman et al. in [SRZ92] describe a constructive way of determining this canoni-
cal re-parameterization. In the new parameterization, the equivariant space for the
two-parameter group is simply the product of the equivariant spaces for each one-

parameter translation group:

span(® (1), ) = span( "™ ) @ span( £’e” )

for 0 < p <m and 0 < ¢ < [. Note that multi-parameter groups acting on a two-
dimensional image with more than two parameters are necessarily not Abelian as

there are only two independent translations in an image.
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Example 9 : Consider the group of rotation and uniform scaling made up of the
two one-parameter subgroups ¢,(71) and gs(72) from Table 2. The generators for
these groups are L, = —xaa—y + yaa—l, and L, = :1;88—1, + yaa—y respectively. Recall that
two one-parameter groups are Abelian if their generators commute; i.e., [L,, L] =
L, Ly — LyL, = 0. It is easy to verify that this equality holds in our case. The

re-parameterization that makes g,(71) and g;(73) act as translations on the image is:

n(x,y) = arctan(y/z) =20

{(z,y) = In(va?+y?)=In(r)

Thus, the equivariant spaces for rotation and scaling are:
span( r’(Inr)? ) @ span( e’ ) for 0<p<m and ¢€Z.

The slight differences between the equivariant function spaces for rotation and scaling
is due to the topology of the two transformation groups: rotation is topologically

equivalent to a S while scaling is topologically equivalent to R.

Non-Abelian Multi-Parameter Groups For multi-parameter transformation groups
that are not Abelian, there are no re-parameterizations such that the group behaves
like the group of independent translations in the new parameterization. One way
to approach the problem is to start with the largest Abelian subgroup of the multi-
parameter transformation group. The rest of the subgroups impose constraints on this
initial equivariant function space by way of the differential equations: L;® = B;®.
Thus, the equivariant function space for the multi-parameter transformation group
can be constructed by successively constraining the equivariant function space of the

largest Abelian subgroup.

Example 10 : Consider the multi-parameter transformation group made up of
translations in the z and y directions together with the group of rotations, i.e. g;,,¢gs,
and g, respectively. The largest Abelian subgroup is the two-parameter group of
translations in the x and y directions. The equivariant function space for this group

is: span(®) = span(zPy?e®*+P¥) for 0 < p < m and 0 < ¢ < I. The group of rotations



CHAPTER 3. CANONICAL DECOMPOSITION 53

yields the additional constraint that L,® = B,® where L, = —xaa—y + yaa—l,. By
observation, we can rule out the exponentials e***¥ since applying L, to each term
introduces a monomial factor each time; repeated applications of the infinitesimal
generator will not terminate since the monomials of different degrees are independent;
thus @ = = 0. Applying L, to the monomial 2Py?, however, raises the power in one
variable and decreases the power in the other. Successive applications will result in one
of the variables being reduced to zero. Hence, {2Py?} is an equivariant function space
under this group where 0 < p+¢ < m for some m. Note that this is not the only finite
dimensional equivariant function space for this transformation group. Proceeding by
first identifying the equivariant function space for rotation and then enforcing the
constraints imposed by the infinitesimal generators of # and y translations L; and
Ly, will produce the family of Bessel functions [Len90b].

Thus far, equivariant function spaces have been constructed in two steps: (1)
matrices B; are selected, (2) equivariant functions spaces are derived by solving the
corresponding system of partial differential equations. Unfortunately, only for one-
parameter transformation groups are we guaranteed to find a solution. For multi-
parameter transformation groups, arbitrary choices of B; will not always yield a
solution. Alternatively, we could begin by selecting an interpolation matrix A(7)
and then derive its infinitesimal generators B; and corresponding system of partial
differential equations. The equivariant function space that is the solution to this
system of partial differential equations can then be combined with itself via vector

sums and tensor products to produce larger equivariant function spaces.

Example 11 : Consider the two-parameter group of translations and scalings in

the z-direction:
9(7—1, T?) S(l’, y) = S(e_Tlx — T2, y)
We select the following interpolation matrix A for this group:

e !

ATy, 7m2) = ( 0 _1T2 ) )
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‘ Groups (# parameters) ‘ Equivariant Function Space ‘

x, y-translation (2) {aPylex ) for 0 < p<m and 0< ¢ <.
x,y-scaling (2) {z°y"(Inx)?(Iny)?} for 0<p<m and 0<q <1
Rotation {ro(lnr)Pe*}  for 0 < p < m.

Uniform-scaling (2)

x, y-translation {aPy?} for 0 < p+4 ¢ <m.

Rotation (3)

x, y-translation {2Py?} for0<p<m and 0<¢q <.

x,y-scaling (4)

x, y-translation {zPy?} for 0 < p+4 ¢ <m.
x, y-scaling
Rotation (5)

Table 3: Several examples of multi-parameter groups and their equivariant measuring
spaces. The parameters p,q,m,[,k € Z and o, 3 € C.

Note that composition of two transformations g(7¢,7¢) g(7{, 73) resembles the multi-

plication of the two corresponding interpolation matrices A(70, 70) A(7f, 75):

a a a —Tb a
9(7'1677'26) 9(7'177'2) :9(7'1 ‘|‘7'1bv€ 1Ty ‘|‘sz)

and
A(rh, 7)) A(rf 1) = A(rf + 1herg + 7).

This is not a mere coincidence; in fact, all interpolation matrices are related to their
transformation groups in a similar way. More precisely, the group of interpolation
matrices is homomorphic to the transformation group; likewise, their respective Lie
algebras are also homomorphic to each other. From the interpolation matrix A(7)

the infinitesimal generators can be derived:
0 -1 0
B, = Z—A(r) = ;
I =0 0 0

—1
T, =0 0 0
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Subsequently, the vector of functions ¢ are the solutions of the following system of

partial differential equations:

Li® = —2-® = B9,
Ly® = —2£0 = B;9.

The solution to these equations is ®(z) = h(y)(z, 1)T where & is an arbitrary functions
solely in y. Setting h(y) = 1 for simplicity, the linearized tensor product space of
", ®'(z) where ®'(z) = ®(x) @ -+ @ ®(x) multiplied 7 times is spanned by the
functions {2} for 0 < p < n.
Table 3 is a summary of several common multi-parameter groups and their equivari-

ant function spaces derived in similar ways.

3.4 Summary

We conclude with a summary of the results presented in this chapter.

1. Determining the basis functions for a steerable function under a given transfor-
mation group is equivalent to finding the lowest-dimensional equivariant func-
tion space containing the orbit of the steered function. Steerable functions are

precisely those functions with finite dimensional equivariant spaces.

2. A function space is closed under a transformation group if and only if it is
closed under each of the group’s infinitesimal generators. This implies that the
functions of an equivariant function space have to satisfy a system of linear, first
order partial differential equations. Solving these differential equations results

in a function space that is closed under the group transformation.

3. The steering function corresponding to a set of basis functions can be obtained
analytically by exponentiating a series of matrices B; that are the infinitesimal

generators of the group of interpolation matrices A(7).

4. Two equivariant function spaces under the same group span the same func-
tion space if and only if the infinitesimal generators B;, B; of their group of

interpolation matrices A(7), A’(7) are simultaneously similar B; = PB{P~!.
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5. The function spaces equivariant under any Abelian multi-parameter group are
made up of products of monomials and complex exponentials when expressed

in canonical coordinates.



Chapter 4
Generator Trees

Once the equivariant function spaces for a given transformation group has been deter-
mined, selecting the minimal set of basis functions for a particular steerable function
involves choosing the equivariant function space with the smallest dimension that con-
tains the orbit of that function. This is often done by inspection. Typically, finding
any equivariant function space that contains the orbit of the given function is rela-
tively easy; one simply decomposes the function into a polynomial of simpler steerable
functions for whom minimal equivariant function spaces have already been identified.
However, determining the minimal equivariant function space is more complicated.

In this chapter, we investigate further the properties of the infinitesimal generators
of a transformation group. We propose two graph-theoretic structures: in the case of
one-parameter transformation groups, the structure is an ordered list or chain; in the
case of multi-parameter transformation groups, the structure is a k-ary tree where k
is equal to the number of parameters in the group. The nodes of both structures are
differential operators constructed via repeated applications of the various infinitesimal
generators of the group. Hence, the chain of differential operators is described as a
generator chain while the tree of differential operators is described as a generator
tree. These structures are derived from properties of the transformation group and
are independent of the function that is to be steered.

We show that for one-parameter transformation groups, the minimal n-dimensional

equivariant function space of any steerable function is spanned by the set of functions

57
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obtained by applying the first n differential operators in the generator chain to the
steered function. Likewise, for k-parameter transformation groups, the minimal n-
dimensional equivariant function space of any steerable function is spanned by the
set of functions obtained by applying n differential operators to the steered function;
these n differential operators correspond to all the nodes in a subtree of the k-ary
generator tree such that the subtree and the generator tree share a common root.
Applying the differential operators of the remaining nodes in the generator chain or
tree to the steered function produces functions that are linearly dependent on the
basis functions. These two results lead to a computationally efficient procedure for
computing the minimal set of basis functions for any given steerable function. The
computational complexity of the procedure is linear with respect to the actual mini-
mal number of basis functions required, even in the case of multi-parameter groups.!
We describe the results of a symbolic version of the procedure as well as a numerical
implementation of it.

The material presented in this chapter can be found in [THO98¢]; an early version

of it is described in [THO9T].

4.1 Generator Chains

In this section, we consider one-parameter transformation groups and introduce the
generator chain associated with any one-parameter group. Before doing so, however,
we recall that a function is steerable with a minimum of n basis functions provided
there exists an n-dimensional equivariant function space containing the orbit of that
function. The choice of basis functions for that equivariant function space is not
unique; any (non-singular) linear transformation of a chosen set of basis functions
could also be used. Furthermore, if the function can be steered with m > n other
basis functions, then m—n of them are necessarily linearly dependent on the remaining

n basis functions, and all choices of n basis functions span the same function space.

!The linear complexity refers to the number of nodes in either the generator chain or tree that
needs to be visited. At each node, a test for linear dependence on the current basis set needs to
be performed. Thus, a naive implementation would have quadratic complexity with respect to the
number of inner-products necessary.
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Thus, the minimal equivariant function space for any steerable function is unique.

We formalize this notion in the following theorem.

Theorem 3 (Minimality of Basis Functions) : Let ® = (é1,---,¢,)" be the
minimum set of independent basis functions required to steer a function f under a
Lie transformation group GG. Then, any other steerable basis W = (1, -+, )T of f

with respect to G has exactly n linearly independent functions.

Proof 3:
Assume that m is the minimum number of linearly independent functions in ¥ to
steer f. Therefore, it is possible to find m transformed replicas of f that are linearly

independent (otherwise m is not minimal):
g(v))/f Br(r")

g(r™)J Bl(rm)

where ﬁT(T) is composed of the steering functions associated with ¥ and 71,..., 7™

are particular choices of steering parameters. Since the m transformed replicas are
linearly independent, B is a non-singular matrix. These m transformed replicas of f

can also be constructed using the n basis functions of ®:
g(m)f al(r)
: = : ®=A0=DBV.
g(r™)J ot (77)

Since B is invertible it is possible to express ¥ as a linear combination of ®:
U =B1Ad.

Now, if ¥ includes m > n functions, it is obvious from the above equation that m —n
of them are linearly dependent. This contradicts the minimality assumption of m.
On the other hand, if m < n, then n is not minimal. Thus, it must be true that

m = n and all the n functions in ¥ are linearly independent. a
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We now describe a method of constructing a basis for a given steerable function
f under a transformation G. From Theorem 3, this basis can be related to any other
steerable basis of f via a linear transformation. Associated with each one-parameter
transformation group G is its generator L. As shown in Chapter 2, the generator
L is a differential operator corresponding to an infinitesimal transformation about
the identity. Applying L to a function f results in a new function Lf; likewise,
applying L a second time to the previous result yields another function which we
denote by L*f = L(Lf). Alternatively, we could also regard L* (or L’, j > 0) as a
new differential operator that is applied to f. The set of all such differential operators

is collected into a sequence in the following definition.

Definition 3 (Generator Chain) : A generator chain C(L) is an ordered sequence
of differential operators corresponding to repeated applications of the given generator
L;i

;e

C(L)y=(I, L, L, I*, ..))

where I corresponds to zero applications of the generator.

The result of applying C(L) to a function f is defined to be the ordered sequence

of functions:
C(L) f=(f, Lf, L*f, L*f, cl)

Using the exponential map given in Equation 4, the series formed by summing all

the functions in the sequence is exactly the same as transforming f by an element

g(1) € Gt o
o(r) f = explrl) [ =35 (L) (6)

Thus, the set of functions C(L) f provides a basis with which f can be steered. From
Theorem 3 it follows that this basis is redundant if n functions are required to steer
f; only n of the functions in C(L) f are linearly independent. It turns out that these
n functions are necessarily the first n functions of the chain. The minimality of the

generator chain is formalized in the following theorem:.
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Theorem 4 (Minimality of Generator Chain) : Let [ be a steerable function
under a one-parameter Lie transformation group G such that transformations of f
by any element g € G can be written as a linear combination of (no less than) n
basis functions. Let L denote the infinitesimal generator of GG. The application of the
generator chain C(L) to [ results in an ordered sequence of functions such that the
elements i > n of the sequence, corresponding to LU=V f  are linearly dependent on
the first n elements. Furthermore, the first n functions of the sequence are linearly

independent.

Proof 4: Let the (m + 1)St function in the sequence be the first linearly dependent
function. That is, L™ f can be written as a linear combination of the first m linearly
independent functions. As a result, all subsequent functions in the sequence L’ f where
J > m are necessarily linearly dependent on the first m functions as well. This can be
proven by strong induction where j = m 4+ 1 is the base case. let I™f = Y75  a;l' f.
then,
= ) = (SR ailt f)
mel g oL f
= am "+ TG @l f

but since [™ is linearly dependent on the first m functions, [™*! f can also be expressed
as a linear combination of these functions. the proof of the inductive case is similar.
As a result, Equation 6 implies that transformations of f can be written as a linear
combination of the first m functions in C(L) f. Because f is steerable with n basis
functions (by assumption), it follows from Theorem 3 that m must equal n. O

This theorem suggests the following procedure to compute a set of basis functions
to steer an arbitrary function f. The generator L is applied to f repeatedly and
each time, the linear dependence of the new function upon the previously computed
functions is checked. If it is linearly dependent, then the set of all functions computed
prior to this one is sufficient to steer f. It the function f is steerable with n basis
functions, then the procedure will terminate after n+ 1 iterations. Figure 8 describes

the procedure in pseudo-code. The procedure is applied to the following two examples.
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/* Compute the basis functions needed to */

/* steer f under a one-parameter group. */

next f = f;

basis_set = {};

while (next_f not linearly dependent on basis_set) {
basis_set = basis_set U {next_f}
next f = [ next f;

}

return( basis_set );

Figure 8: Procedure for computing the basis functions to steer an arbitrary function
f under a one-parameter group.

Example 12 : Let f(z,y) = —2« e~ 1) and @ be the group of rotations in the

plane. The generator of G is L = :zjaa—y — yaa—l,, and

Lof — —2$ e—(x2-l—y2) — f : Llf — 2y e—(x2+y2)7

and L2f = 2z ¢~ &+¥) = _f. Therefore, f is steerable under (¢ with two basis
functions; i.e., the derivative of a Gaussian in any direction can be expressed as a

linear combination of two functions.

Example 13 : Let f(x) = (cosz + 1)* and G be the group of x-translation:
g,(7) f(x) = f(x — 7). The generator of G is L = —2, and

ErS)

L°f = (cosx+1)%

L'f = 2(cosx + 1) sin @ = sin 2z + 2sin «,
L*f = —2cos2x —2cosz,

L*f = —4sin2z —2sinz,

L'f = 8cos2zx 4 2cosz,

and L°f = 16sin2x 4 2sinx = —4L'f — 5L°f. Therefore, f is steerable under G
with the five basis functions, {L°f,..., L*f}. The particular choice of basis functions
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is not unique; in this example, the function f is also steerable with the following five

basis functions, {1,sin z, cos z, sin 2z, cos 2z }.

4.2 Generator Trees

In this section, we consider multi-parameter transformation groups. Let the set of
differential operators, {Li,..., Ly}, be the k generators of the k-parameter trans-
formation group (. In the context of multi-parameter transformation groups, the
generator chain is no longer a chain since more than one generator may be applied;
instead, we have a tree of differential operators. Nodes in the tree correspond to all

possible compositions of the generators.

Definition 4 (Generator Tree) : A generator tree 7 (Lq,..., Ly) is a k-ary tree of
differential operators corresponding to repeated applications of the generators Ly, ..., Ly.
FEach node of the tree has k children, which correspond to applying each of the Ly, dif-
ferent generators. Level | of the tree contains k' nodes, each of which represents the

different permutations of applying L1, ..., L, repeatedly for a total of | times.

For example,

I
T(Ly,..., L) = 4/ \\L

Ly

VNN

LDy Lol oo Lily

LyLylLy ... LipLily

Similar to generator chains, applying 7 (L1, ..., Lx) to a function f results in a k-ary
tree where each node corresponds to the function obtained by applying the generators
to f. Furthermore, using the exponential map given in Equation 4, transforming f by

an element ¢g(7,...,7;) € (G can be calculated by a linear combination of functions
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in the tree 7(Lq,..., L) f:

sl
R e (HZ Z—;Li) / ™)

Thus, the set of functions obtained by applying 7 (L1, ..., L) to a function f provides
a basis with which to steer f. Similar to the case with generator chains, this basis is
redundant if only n functions are required to steer f. It turns out that the n functions
needed to steer f necessarily form a subtree of 7(Ly,..., L) f with the same root.
This property generalizes the minimality property of generator chains associated with

one-parameter groups.

Theorem 5 (Minimality of Generator Tree:) Let f be a steerable function un-
der a k-parameter Lie transformation group G such that transformations of f by any
element g € G can be written as a linear combination of (no less than) n basis func-
tions. Let Lq,..., Ly denote the generators of GG. The application of the generator
tree T(La,...,Lg) to [ results in a k-ary tree of functions such that there exists a
subtree T'(L1,..., L) [ (with the same root) satisfying the following two conditions:
(1) all functions within the subtree are linearly independent of one another, and (2) all
functions in the original tree but not in the subtree are linearly dependent on functions

within the subtree.

Proof 5 : Let 7'(Lq,...,L;) [ be a subtree of T(Lq,..., L) f (with the same
root) such that: (1) all the functions within the subtree are linearly independent,
and (2) all the functions that are immediate children of the subtree (as part of the
original tree) are linearly dependent on the functions within the subtree. Then, all the
descendents of the immediate children are also linearly dependent on the functions
within the subtree. This can be proven in a way similar to that for generator chains in
Theorem 4. The strong induction, in this case, is on subtrees. Also, from Theorem 3
it follows that the total number of linearly independent functions in the original tree
is necessarily n since f is steerable. As a result of the former property, the size of the
subtree must be n as well. O

Unlike the situation with generator chains, this minimal subtree is not unique.

That is, there may be two subtrees of the same size (and with the same root as
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/* Compute the basis functions needed to */
/* steer f under a k-parameter group. */
next set = { [ };
basisset ={ f };
while (next_set is not empty) {
next_set’ = {};
for each (next_f € next_set) {
for each (L € {Ly,..., Li}) {
next f' = L next_f;
if (next_f’ not linearly-dependent
on basis_set) {
next_set’ = next_set’ U {next_f'};
basis_set = basis_set U {next_f'};

}
}
next_set = next_set’;
}
}

return( basis_set );

Figure 9: Procedure for computing the basis functions to steer an arbitrary function f
under a k-parameter group. The nodes in the generator tree are tested in a breadth-
first manner.

the original tree) that could be used to steer f. However, since f is steerable, the
functions in these two trees necessarily span the same space.

This theorem also suggests a procedure for computing the basis functions needed
to steer an arbitrary function f. FEach of the generators {Ly,..., L.} is applied to f
repeatedly. Each new function is then checked to determine if it is linearly dependent
on all the previously computed functions. If it is linearly dependent, then one need
not further apply any generators to this function. If the function f is steerable with

n basis functions under a k-parameter group, then the procedure will terminate after
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testing at most nk + 1 functions.? Figure 9 describes the procedure in pseudo-code.

The procedure is applied to the following two examples.

Example 14 : Let f(z) = 2 and G be the group of one-dimensional scaling and

translations: ¢g(m,72) f(2) = f(e @ —73). The generators of G are L, = —xaa—x and
L., = —88—90. It can be seen that:

f=a* L. f=-2x Lzlf:2

are the first three functions that span the entire generator tree 7(L,,, L.,). Thus,

any other node in the generator tree is linearly dependent on these functions.

Example 15 : Let f(x,y) = sinzsiny and G be the group of translation along
the x and y dimensions: ¢(71,72) f(2) = f(x — 71,y — 72). The generators of GG are

L. = _88_1’ and L, = —aa—y:
sin  sin
T(L,, L) f = / \i
—cosxsiny —sinzcosy
COS T COS Y

Since translation in the x and y dimensions are commutative, their generators com-
mute as well; i.e., L, L., = L., L; . Thus, the left child of the node with —sinz cosy
is automatically pruned since it will be the same as the right child of the node with

cos z cosy. Therefore, f is steerable under (¢ with four basis functions.

ZA k-ary tree with one node has k& immediate children. Each addition of a new node increases
the number of immediate children by k& — 1; adding n — 1 nodes results in a total number of (n —
D(k—1)+k = n(k—1)+1 immediate children in the tree. Thus, a k-ary tree with n nodes (internal
nodes as well as leaves) has exactly n(k — 1)+ 1 immediate children. The number of times the linear
dependence test is invoked i1s equal to the sum of the number of basis functions required and the
number of immediate children in the resultant k-ary generator tree. Therefore, the total number of
times the test is applied is n 4+ n(k —1)+1=nk + 1.
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4.3 Simulations

In this section, we present two applications of the theory described in the previous sec-
tion. The first application is an implementation of the procedure described in Section
4.2 for steering polynomials. The second application is a numerical implementation

of the same procedure for approximately steering any sampled function.

4.3.1 Steering Polynomials

The procedure described in Section 4.2 was implemented in MATLAB to automat-
ically determine the basis functions needed to steer an arbitrary two-dimensional
polynomial under any subgroup of the two-dimensional affine transformation. In
Chapter 3, we saw that such polynomials can be steered, with a finite number of
basis functions, under any subgroup of the affine group. Thus, the procedure is
guaranteed to terminate after a finite number of iterations.

In the procedure, the linear independence of a polynomial with respect to the
current basis set needs to be determine. This is done by representing each polynomial
in terms of the basis of monomials {1, x,y, 2%, xy,y?, ...}. Specifically, let the matrix
B be an m x n matrix of coefficients and m be the n x 1 vector of monomials such
that Bm yields an m x 1 vector corresponding to the m basis polynomials. Similarly,
expressing the new polynomial in the monomial basis results in a 1 X n vector b of
coefficients. Since the monomials are linearly independent, the new polynomial is
linearly dependent on the basis set if and only if b is in the row space of B. The
generators for each one-parameter subgroup (e.g. w-translation, y-translation, etc.)
are implemented as operations on the coefficients of the polynomial representation.
This is possible since applying any generator to a polynomial always results in another
polynomial.

The cubic polynomial 2 + 3z%y + 32y® + y° (mpoly2) is used in the following
examples. The basis functions needed to steer the function under different multi-

parameter groups are computed automatically.

1. In this example, basis functions to steer the polynomial under the group of
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uniform scaling and rotation are computed. The generators are L, = —x%—yaa—y
and L, = :zjaa—y — yaa—x respectively.

poly2mat = steer_poly2(mypoly2, ’lscale’, ’lrot’)

2?4327y 4 3xy® + ¢,

32° 4 32y — 3zy® — 3y°,

32 — 152y — 15zy? + 3y°,
—152% — 392%y + 392y + 15y°.

2. In this example, basis functions to steer the polynomial under the group of

translations in the = and y directions are computed. The generators are L, =

—88—1, and L, = _aa_y respectively.

poly2mat = steer_poly2(mypoly2, ’ltransx’, ’ltransy’)

x® 4+ 32y + 3ay® + v,
—32% — 6ay — 3y?,

b6x + 6y,

—6.

3. In this example, basis functions to steer the polynomial under the group of

translations in the x and y directions and rotation are computed. The generators

are [, = —2 L, =

— 5,

5 _ 0 .8 :
—3g and L, = Ta — Y5 respectively.

poly2mat = steer_poly2(mypoly2, ’ltransx’, ’ltransy’, ’lrot’)
—152° — 392%y + 39zy* 4 159°,
32 — 152y — 15zy* + 3y°,
3z° + 32%y — 3zy* — 3y°,
2% + 322y + 3xy® + 9°,
—32? — 6zy — 3y,
—62% + 692,
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b6x + 6y,
6x — 6y,
24xy,
—6.

Clearly, the basis comprising of all the monomials in x,y up to powers of three,
a total of ten, is sufficient to steer the cubic polynomial. However, as can be seen
in the examples above, fewer than ten are actually needed in some situations. The
procedure selectively retains only those necessary by removing those that are linearly

dependent (with respect to the infinitesimal generators of the group).

4.3.2 Numerical Simulations

A numerical version of the procedure was also implemented. The program auto-
matically computes a set of basis functions that can be used to steer a given two-
dimensional function. The derivatives in the generators were approximated using
numerical derivatives. The linear dependence of a function on the current set of basis
functions is verified by projecting the function onto an orthogonalized version of the
basis set and measuring the relative magnitude of the residual. The set of orthogonal
basis functions can be efficiently computed by using the Gram-Schmidt technique
iteratively.

Since the procedure is not guaranteed to terminate for arbitrary functions as an
infinite number of basis functions might be required, the check for linear dependence
was replaced by a numerical condition that the residual between the function and
its projection is below some threshold. Furthermore, the maximum depth of the
generator tree was also used as a termination criteria since higher-order numerical
derivatives are less accurate. As a result, the steering of the given function with the
basis set is only accurate to within some range of transform parameters as we shall
see.

Figure 10 shows the four basis functions that could be used to steer (under ro-

tation) the function (12 — 82%)exp[—(x* 4+ y*)], which is the third derivative of a
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Figure 10: Basis functions that steer (122 — 82”) exp[—(2* + y?)], the third derivative
of a Gaussian, under rotation. The leftmost image is the third derlvatlve of a Gaussian

that was used as input to the procedure.

Figure 11: Orthogonal basis functions that steer (12z —8z?) exp[—(z*+y?)], the third
derivative of a Gaussian, under rotation. The leftmost image is the thlrd derlvatlve
of a Gaussian that was used as input to the procedure.

Gaussian. The leftmost image is the function that was used as input to the procedure;
i.e., the function to be steered. The spatial extent of each image ranges from —5 to
5 units both horizontally and vertically. Figure 11 shows images of four orthogonal
basis functions that could also be used to steer the function. These basis functions
were computed by the Gram-Schmidt component of the procedure.

Unlike the third derivative of a Gaussian, the function sin(z)exp[—(2? + y?)]
cannot be perfectly steered under rotation. Figure 12 shows images of the four basis
functions returned by the procedure. The maximum tree-depth was set at 6 and the
maximum relative squared error of the residual was 5%. The relative squared error
of using these basis functions to steer the function under any rotation was always less
than 0.1%. Figure 13 shows images of four orthogonal basis functions that could also
be used to steer the function.

Figure 14 shows the 22 basis functions that were computed to steer the function

(42? — 2) exp[—(2? + y*)] under any x,y translation and rotation. Again, the steering
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Figure 12: Basis functions that steer sin(z)exp[—(z? + y?)] under rotation. The
leftmost image is the function that was used as input to the procedure.

Figure 13: Orthogonal basis functions that steer sin(z) exp[—(z*+y?)] under rotation.
The leftmost image is the function that was used as mput to the procedure.

is only approximate since the function cannot be steered with a finite number of basis
functions. The maximum tree-depth of the procedure was set at 3 and the maximum
relative squared error of the residual was 10%. Figure 15 shows the corresponding 22
orthogonal basis functions. Figure 16 (left) plots the relative squared errors of steering
the function using this basis for a range of translations. The approximation is very
good about the origin (zero translation) and worsens when the translations are large.
Figure 16 (right) plots the relative squared errors of steering a translated version of
the function over all rotation angles. The errors in steering the untranslated function
are negligible since the second derivative of a Gaussian can be perfectly steered with

three basis functions under orientation.

4.4 Discussion

The proposed method for computing basis functions to steer a given function essen-

tially computes the Taylor expansion of the function with respect to the transform
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parameters. The expansion is evaluated at the origin of the transform parameters.
Several simplifications arise because the transform is a Lie transformation group. The
principal one being that the Taylor expansion can be written solely in terms of the
first order derivatives, namely, the generators. Equation 6 of Section 4.1 and Equa-
tion 7 of Section 4.2 describe the Taylor expansion in terms of the generator(s) for
one-parameter and multi-parameter groups respectively. Since higher order deriva-
tives can be determined from these generators, properties involving the higher order
derivatives can be proven. These properties are precisely those that were used to
show the minimality of generator chains and generator trees.

As a result of this close connection with Taylor expansions, the errors incurred
in approximately steering a function increases with the deviation of the transform
parameters from the origin. This happens when the function to be steered cannot
be steered by a finite number of basis functions. This can be seen from the numer-
ical implementation of the procedure in Section 4.3. This may be acceptable for
some applications where only a limited range of steering is required. For example,
Manmatha [Man94] uses a similar approach to estimate the affine transformation of
points, lines and image intensities. However, if the function needs to be steered over
a larger range of parameters, then either more basis functions could be computed
by increasing the maximum tree-depth or by applying the Taylor expansion about
another location other than the origin. The basis functions computed by this method,
in fact, minimizes the approximation error about the particular transform parameter.
Instead, if the criterion is to minimize the average error over a range of transform
parameters, then fewer basis functions are required. In the next chapter, an efficient
method of computing the basis functions that minimizes this approximation error is
described.

If the function to be steered is obtained from a space of functions that is steerable,
then the function can be steered with a finite number of basis functions. Consequently,
an analytic version of the procedure could be applied to determine the smallest basis
set required. The example for polynomials is illustrated in Section 4.3. As shown

in that section, while each monomial could be used as a basis function to steer the
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given polynomial, often fewer basis functions are sufficient because of various lin-
ear dependencies. A similar algorithm could also be implemented for sinusoids over

translation/rotation or spherical harmonics over 3D rotation.

4.5 Summary

We conclude this chapter with a summary of the results presented.

1. Any function steerable with n basis functions under some transformation group

can be associated with a unique n-dimensional equivariant function space.

2. For one-parameter transformation groups, any function steerable with n basis
functions can be steered using the n functions obtained by applying to the
steered function the differential operators of the first n nodes in the generator

chain of the group.

3. For k-parameter transformation groups, any function steerable with n basis
functions can be steered using the n functions obtained by applying to the
steered function the differential operators corresponding to all the n nodes of

some subtree sharing the same root as the generator tree of the group.

4. The procedure to compute the minimal n basis functions of a steerable function

is linear in n.
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Figure 14: The 22 basis functions that steer (4z? — 2)exp[—(2? + y?)] under z,y—
translation and rotation. The image at the top left is the function that was used as

input to the procedure.
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Figure 15: The 22 orthogonal basis functions that steer (4z* — 2)exp[—(z? + y?)]
under x,y— translation and rotation. The image at the top left is the function that

was used as input to the procedure.
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Figure 16: Graph (a): Relative squared errors of the steered approximations to the
actual functions over a range of z-translations. The graph describing the errors with
respect to the y-translations is virtually identical. Graph (b): Relative squared errors
of the steered approximations to the actual functions over the entire range of rotation
angles. The actual function has been translated by 0.5 units in both the = and y
dimensions; i.e., (4(z — 0.5)* — 2)exp[—((z — 0.5)* + (y — 0.5)%)]. The percentage

errors for an untranslated function are negligible.



Chapter 5
Cascade Basis Reduction

In earlier chapters, we investigated functions that were perfectly steerable; that is,
functions that could be expressed (in analytic form) as linear combinations of a fixed
set of basis functions when transformed under some transformation group. However,
as was pointed out earlier, not all functions are perfectly steerable. In practice, the
recipe for approximately steering such a non-steerable function is to first approxi-
mate it using an equivariant function space and then steer the approximation. Such
a method is empirically effective; however, typically a moderate number of basis
functions is required.

An alternative approach to designing basis functions that can be used to steer a
given function is the singular value decomposition method proposed by Perona [Per95].
As described in Chapter 1, the technique computes the optimal (in a least-squares
sense) set of basis functions to steer a given function under an arbitrary (compact)
transformation. Unlike the Lie group-theoretic method involving equivariant function
spaces, this method is not restricted to Lie transformation groups. This restriction,
fortunately, is not too severe as many useful transformations are Lie transforma-
tion groups. Because it computes the least-squares optimal set of basis functions,
this method typically requires fewer basis functions than the previous method when
steering a function over a transformation group. The main drawback of the SVD
method, however, is that its computational complexity increases exponentially with

the number of transform parameters. Hence, using this method even for groups with

77



CHAPTER 5. CASCADE BASIS REDUCTION 78

a moderate number of parameters, like the four-parameter group of linear image
transformations, is infeasible.

Besides commonly requiring more basis functions, the main shortcoming of the
Lie group-theoretic approach is that the steerability property is enforced globally;
that is, a function is designed to be steered by any transformation in the group. For
non-compact groups (like translation and scaling), the basis functions spanning their
equivariant function spaces have infinite support. If the function to be steered has
compact-support, then a large number of basis functions are needed to approximate
it accurately. In practice, it is reasonable to assume that only transformations over a
limited range of parameters can be expected. The SVD method proposed by Perona
can be used when the number of transform parameters is less than or equal to two;
however, for larger number of parameters, the method is computationally intractable.

In this chapter, we present a new method of computing the optimal least-squares
set of basis functions to steer a given function within a limited range of transform pa-
rameters that is computationally efficient for larger numbers of transform parameters.
The efficiency of the method is demonstrated by the design of a set of basis functions
to steer a Gabor function under the four-parameter linear transformation group. The
method combines the Lie group-theoretic and the singular value decomposition ap-
proaches in such a way that their respective strengths complement each other. The
hybrid method comprises two steps. First, the Lie group-theoretic approach is used to
compute the basis functions to steer the given function locally, i.e., within a compact
range of transform parameters. Since these basis functions (equivariant functions) are
already known to be steerable under the given transformation group, the computa-
tional complexity of this step is independent of the number of transform parameters.
In the second step, the singular value decomposition technique is used to determine
the optimal least-squares set of basis functions and thereby reduce the current num-
ber of basis functions. The computational complexity of this second stage is shown to
be only dependent on the number of basis functions used in the first stage. Since the
original group-theoretic basis functions (and their steering functions) are available
in analytic form, the least-squares optimal set of basis functions (and their steering

functions) can also be derived in analytic form.
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The material presented in this chapter can be found in [THO98a]; an early version

of it is described in [THO98b].

5.1 Local Steerability

In this section, we introduce the concept of local steerability to allow functions to be
steered under compact subsets of the family of transformations. We also show that
a compactly-supported function can be steered locally with a set of equivariant basis
functions by approximating it with these basis functions over an appropriate compact

domain.

Definition 5 (Local Steerability) : A function f: R™ — C islocally steerable
under a k-parameter Lie transformation group G if any transformation T'(g) of [ by

any element g € G' C G can be written as a linear combination of a fized, finite set

of basis functions f; : R™ +— C:
T(g) f=2_ailg) fi (8)

We will also assume that the region over which ¢ € G’ is compact in some parameter-
ization. Also, this subset G’ need not be a subgroup of GG. If G’ were a subgroup of
(7, then the function f would simply be globally steerable under the new subgroup.
As with the definition of global steerability, we will, in practice, also consider the case
where the local steerability property holds only in approximation.

If a function f is locally steerable with a set of basis functions f;, then arbitrary
linear combinations of f; (or even the basis functions themselves) are not necessarily
locally steerable. Unlike the situation with global steerability, the function f is only
steerable within a local range of parameter space; thus, each basis function f; is only
locally steerable within a different, possibly smaller, range of parameter space. Hence,
the property of local steerability cannot be associated with function spaces but has
to be discussed with respect to the particular function.

A compactly supported function is a function that is non-zero only over some
compact region of its domain, and zero everywhere else. A non-compact transforma-

tion group refers to a group whose parameter space is non-compact. For example,
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the group of translations is non-compact since its parameter space is R while the
group of rotations whose parameter space is S! is compact. For compactly-supported
functions, there are no finite-dimensional function spaces that can be used to glob-
ally steer these functions under a non-compact transformation group. The simple
example of steering a (single-period) raised cosine' under translation is illustrative of
this point: in order to steer a raised cosine under all possible translations, an infinite
number of raised cosines are needed.

Fortunately, if only local steerability is desired, then a finite number of functions
might be sufficient to steer a compactly-supported function. The function to be
steered is first approximated using an appropriate equivariant function space. This
approximation is then steered by steering the basis functions spanning the space.
Since only local steerability is desired, the domain over which the function is approx-
imated need only be a subset of its actual domain; the size of this subset depends on
the range of parameter space over which local steerability is expected.

Intuitively, we need to approximate the function over a large enough subset of its
domain so that all transformed replicas of it will also be adequately approximated.
For example, consider the problem of steering a one-dimensional raised cosine under
translation. The raised cosine is compactly-supported over the interval [—1,1]. The
range of translations over which it is to be steered is [—1,1]. Thus, the union of
the support of all possible translated raised cosines is [—2,2]. We refer to this inter-
val as the integration region as this would be the (fixed) interval of integration for
a corresponding steerable filter. Clearly, the original raised cosine needs to be well
approximated over this interval [—2,2]. Unfortunately, approximating it over this
interval is not enough. When the raised cosine is translated to the left by —1, for
example, the interval [2, 3] (the right tail) of the original raised cosine’s domain enters
the integration interval. If the original raised cosine is poorly approximated in this
region, then the interval [1,2] of this translated raised cosine will be poorly approx-
imated as well. The same holds when the raised cosine is translated to the right by
1. Hence, the original raised cosine needs to be well approximated over the interval

[—3,3]. We refer to this interval as the approzimation region. The integration region

!The definition of a raised cosine adopted in this paper is (cos(wz) + 1)/2.
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Figure 17: The support of the raised cosine is within the interval [—1,1]. If the
function is to be steered in translation over the range [—1,1], then the integration
region corresponding to a steerable filter would be [—2,2]. The interval over which
the raised cosine needs to be approximated, i.e. the approximation region is [—3, 3].

is a subset of the approximation region; the compact support of the original function
is, in turn, a subset of the integration region. Figure 17 illustrates the approximation
and integration regions for a one-dimensional raised cosine steered under translation.
The integration and approximation regions can be defined mathematically. Let
Ry be the compact support of the steered function outside of which is zero identically.
The integration region is therefore:
Rine = U T(g) Ry
gEG!
where GG’ is the subset of G over which the function is to be locally steered. The
application of the group operator ¢ to the region R; produces the corresponding
region T'(g) Ry of the transformed function. The approximation region is defined in
terms of the inverse of the group operator:

Rapprox — U T(g_l) Rint

geG’
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where T'(¢7') T'(g) = I, the identity map, for all g € G.

5.2 Cascade Basis Reduction

The number of equivariant basis functions required to approximate the steerable
function over the approximation region is not least-squares optimal. While these
basis functions span the space of all transformations of the original function, not all
possible linear combinations of these basis functions give rise to transformed replicas
of the original function. In fact, very few will; that is, only those belonging to a k-
dimensional manifold within that function space, where k is the number of parameters
required to describe the transformation. In this section, we describe a method which
finds an ordered set of functions such that the first n elements of this set span the
optimal least-squares function space that best contains this manifold and thus can be

used to steer f.

5.2.1 Singular Value Decomposition

Perona [Per95] showed that this problem could be solved numerically by computing
the singular value decomposition (SVD) of a particular matrix F whose column
vectors are transformed replicas of a discretely sampled version of the function f.
Thus, each column in F' corresponds to a specific sample of the parameter space over
which the function is to be steered and each row in F' corresponds to a specific sample
of the function’s domain. The SVD decomposes the matrix F' into a product of three

matrices:
F=| T(g)f - T(g9,)f |=UrSr Ve =UrWp

where s, indexes over samples of the parameter space, Up'Up = I, Vp'V =1,
and Sp is a diagonal matrix of non-negative singular values, in decreasing order of

magnitude. It can be shown that the first n columns of Ufp represents the optimal
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least-squares set of basis functions (of size n) needed to steer f. The first n rows of
the matrix Wy tabulate the weights of the linear combination needed to steer f.
The SVD of matrix F' could also be computed by first computing the eigenvalues
and eigenvectors of F? = FTF. Denoting the eigenvalues and eigenvectors of F?
by Spz and Vpz respectively, the SVD of F is: Sp = SFz%, Vr = Vpz, and
Urp = FVFS# where S# is the pseudo-inverse of Sp. Assuming that s; and s,
samples of the domain and parameter space respectively are taken, if s, < s4, then it
is computationally more efficient to compute the SVD of F' in this manner as the size
of FTF is smaller than the size of F. Conversely, if s4 < s, then a similar method
using FFT could be derived. Thus, the computational complexity of computing the
SVD of F is upper-bounded by the smaller of the row and column dimensions of F'.
For one or two-parameter groups, sy often exceeds s, and s, is also manageably small.
As a result, the SVD of F could be computed from the eigenvalues and eigenvectors
of FTF. Unfortunately, s, increases exponentially with the number of parameters.
For example, with a four parameter group and a discretization of only ten samples
per dimension, the number of columns would be 10*. Computing the eigenvalues and

eigenvectors of a square matrix this size is computationally infeasible.

5.2.2 Basis Reduction

Alternatively, the matrix F' could be written as a product of a s4 x m matrix B and
an m x s, matrix H such that columns of B are a set of m appropriately chosen,
discretely sampled, basis functions (not necessarily orthogonal) and the columns of
H contain the weights needed to reconstruct each column T'(¢;)f in F. Typically, if
appropriate basis functions are chosen, then m < s; and m < s,. Thus, although the
dimensionality of matrix F' (sq X s,) is quite large, its rank is only m which is much
smaller than s; and s,. When the matrix F' can be decomposed into the product
of B and H, the SVD of F can be computed economically by a sequence of two
singular value decompositions, each of which involves computing the eigenvalues and

eigenvectors of a square matrix whose size is equal to m. From the decomposition of
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F', we have

F = BH

= (UgSpVs')H

= UgH’

= Up (U SuVu'")

= (UgUgy/) Sur V'

Ur Sr V.

Thus, the SVD of F is such that Up = UgUpgs, Sp = Sy, and Vp = Vg.. Two

singular value decompositions need to be computed: one at (a) involving B and a

second at (b) involving H’. These decompositions could be obtained by computing
the eigenvalues and eigenvectors of BT B and HH? respectively. Each of these
matrix products are square matrices of size m. If the basis functions are orthonormal,
then BTB = 1. Thus, Up = BUg, Sy = Sy and Vg = Vg. That is, only the SVD
of H needs to be computed. Alternatively, if the steering functions are orthonormal,

then HH” = I and only the SVD of B needs to be computed.

5.2.3 Basis Reduction using Equivariant Function Spaces

In the previous section, we saw that the optimal least-squares set of n basis functions
to steer a function f under any k-parameter transformation group could be efficiently
computed if an appropriate set of basis functions B were available. These basis
functions have to be chosen so that they span the column space of F'; i.e., these basis
functions must be sufficient to locally steer the function f within the local parameter
space of the k-parameter group.

In Section 5.1, we saw how equivariant functions could be used to steer a function f
under a limited range of transformations. Essentially, the function f is approximated
with linear combinations of the globally steerable equivariant functions By, (within
some appropriate domain of approximation). Steering the function f then amounts

to steering the equivariant functions:

T(g) f ~ BgobA(g) € (9)
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where ¢ is a vector of weights that approximate f with By, i.e. f ~ Bgone. The
matrix A(g) is the matrix of steering functions used to steer each equivariant function.
Thus, these equivariant functions are suitable candidates for the basis functions of
B such that B = By, and H = [(A(g1) ¢)---(A(gs) ¢)]. The columns of H
correspond to a discrete sampling of a local range of the parameter space. Likewise,
the rows of B correspond to a discrete sampling of the domain of the globally steerable
basis functions. The SVD of B and H (and thus of F') are then computed from the

eigenvalues and eigenvectors of BT B and HH' respectively.

5.2.4 Analytic Form of Basis and Steering Functions

Since the globally steerable basis functions and their corresponding steering functions
are in analytic form, the new basis and steering functions computed from the SVD
of F' can also be described in analytic form. To obtain an analytic description of the
new basis functions, we simply write them in terms of the globally steerable functions
in the columns of B. Observe that B = UgSgVg! and Ur = UgUpy:. Thus, Up =
B(VBngH/). However, each column of B is simply a sampled version of a basis

function. Therefore, the vector of the new basis functions (described analytically) is:
— # T
up(z,y) = (VBSEUn:)" b(z,y) (10)

where b(x,y) is the vector of original basis functions (described analytically). Like-
wise, to obtain an analytic description of the new steering functions Wp = SpVp!,
we simply write them in terms of the original steering functions in the columns of
H. Since H = SgV'H, H = Uy S/ V', and SpVe! = Sy V', we have
Wp = SpVp! = (UH/TSBVBT)H. Again, each column of the matrix H is simply
a sampled version of the steering function. Therefore, the vector of new steering

functions (described analytically) is:
wr(g) = (Un" SgVs") h(g) (11)

where h(g) is the vector of original steering functions (described analytically); i.e.,

h(g) = A(g) ¢. Denoting A = Uy SgVg", we can write the overall analytic steering
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Figure 18: (a) Reconstructions of translated replicas of the original function using 10
basis functions. (b) Basis functions corresponding to the three largest singular values
computed using the cascade basis reduction method.

equation as
T(g) f(a,y) = (b(a,y)" A*) (A A(g) c). (12)
This equation is essentially the same as Equation 9. To compute the optimal least

squares set of n basis functions, only the first n columns of Ugs in A (and corre-

spondingly, in A#) are retained; the rest are set to zero.

5.3 Results

5.3.1 Comparison with Conventional SVD

In this experiment, a one-dimensional Gaussian function (exp(—((z+Ax)/a)?/2),0 =
0.1) was steered in translation over the parameter range —0.5 < Az < 0.5. The
domain of the function was discretized using 128 evenly-spaced samples from [—1, 1].
The parameter range was also discretized using 128 evenly-spaced samples. Thus,
using the conventional SVD method, the singular value decomposition of a 128 x 128
matrix was computed.

For the cascade basis reduction method, the sinusoids (and co-sinusoids) with in-
teger frequencies over the domain [—1, 1] were used as the equivariant functions (see

Table 2 of Chapter 2). A total of 21 were required to approximate the Gaussian over
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Figure 19: Graph (a) plots the analytic form of the basis function with the largest
singular value. The asterisks represent the corresponding discretely sampled basis
function computed using the conventional SVD method. Graph (b) plots the analytic
form of the steering function for the basis function with the largest singular value. The
asterisks represent the corresponding discretely sampled steering function computed
using the conventional SVD method.

this interval (one DC component, and 10 pairs of sinusoids and co-sinusoids of in-
creasing integral frequencies). The SVD of the matrix F' was then computed via two
consecutive SVD’s, each of which involve only a 21 x 21 matrix. In both methods, we
selected the optimal 10 basis functions and used them to steer the Gaussian. The ba-
sis functions derived using both methods are virtually identical. Figure 18 (a) shows
translated replicas of the steered function constructed using the 10 basis functions.
Figure 18 (b) shows the first three basis functions obtained using the cascade basis
reduction method. Figure 19 (a) plots the analytically derived first basis function.
The asterisks denote the numerically computed basis function obtained using the con-
ventional SVD technique. The analytically derived basis function obtained using the
cascade basis reduction method interpolate the numerically computed sample points
very well. Figure 19 (b) plots the analytically derived steering function corresponding

to the first basis function.
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5.3.2 Steering a Gabor Function under General Linear Trans-

formation

In this experiment, a two-dimensional odd-phase Gabor function (sin(z/a,)exp(—((z /o, )*+
(y/c,)?)/2), o = o, = 0.2) was steered over a range of linear transformations (combi-
nations of rotations, independent scalings along each axis, and skew-transformations).
The domain was sampled uniformly over [—1, 1] x[—1, 1] with 64 x 64 samples. The lin-
ear transformation was parameterized in a unique way: A = R(63) Sg(s5) Sy(s,) R(61)
where R(61), R(63) are rotation matrices and S, Sy represent pure scaling in the -
and y- directions respectively. Thus, we are disallowing reflections. The validity
of this parameterization can be understood in terms of the singular value decom-
position of A. The range of parameter space over which the Gabor function was
steered was: 01,0, € [0,27) and s,,s, € [1,5/3]. The Legendre polynomials over
the interval [—1,1] x [—1, 1] were used as the equivariant basis functions to approxi-
mate the Gabor function (see Chapter 3 for a catalog of equivariant function spaces
for different multi-parameter transformations). A total of 231 Legendre polynomi-
als were used. This set included all products of one-dimensional Legendre poly-
nomials whose total degree was less than or equal to 20; i.e., Uy<i<oo P;,{y where
P = {PFPh|dy +d,=d,d, >0,d, >0}

The results of using the cascade basis reduction method to compute the basis
functions are shown in Figure 21. The singular values of the SVD decrease rather
rapidly such that a total of 11 basis functions were found to be sufficient to steer
the odd-phase Gabor function (see Figures 20 (a) and (b)). These 11 basis functions
accounts for 99.9% of the total squared norm in the approximation. Figure 21 (a)
shows the first ten of these eleven basis functions. Figure 21 (b) shows replicas of the
Gabor function steered to various linear transformations. The mean squared error
involved in steering the Gabor as compared to the actually transforming the Gabor
itself over the range of transformed parameters was 0.17% (expressed with respect to
the squared norm of the transformed Gabor in each case). The maximum absolute
error with respect to the maximum absolute value of the transformed Gabor in each

case was 4.82%. A total of 22,500 samples of the parameter space were used in this
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Figure 20: Graph (a) plots the magnitude of the singular values for each singular
vector. Each singular vector corresponds to a single basis function. A total of 231
singular vectors were present but only the largest 30 of them are plotted. Graph (b)
plots the cummulative sum of the squared magnitudes of the singular values. The
squared magnitudes of the singular values have been normalized so that their sum
equals one.

experiment. Since the domain was sampled with 64 x 64 = 4096 samples, applying
the conventional method would have required computing the SVD of a 4096 x 4096
matrix! The cascade basis reduction method, however, required the calculation of the
SVD of two 231 x 231 matrices.

Figure 22 shows the results of using the cascade basis reduction method to design a
set of basis functions for an even-phased Gabor function, (cos(z/c,)exp(—((x/c,)* +
(y/c,)?)/2), 0. = o, = 0.2). Figure 22 (a) shows the eight basis functions that
account for 99.9% of the total squared error. Figure 22 (b) shows replicas of the

Gabor function steered to various linear transformations.

5.4 Summary

We conclude this chapter with a summary of its highlights.

1. A definition of local steerability was proposed. With global steerability, the

basis functions are themselves steerable. However, the basis functions of a
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(i)

Figure 21: (a) Ten out of the eleven basis functions (99.9% total squared norm)
computed to steer the odd-phase Gabor under any local linear transformation. The
basis functions are arranged in descending order of the magnitudes of their singular
values from left to right and from top to bottom. (b) Image (i) shows a reconstruction
of the original function. Image (ii) shows a reconstruction of the function rotated by
60 degrees. Image (iii) shows a reconstruction of the function scaled along the x-axis.
Image (iv) shows a reconstruction of the function scaled along the y-axis. Image (v)
shows a reconstruction of the function skewed along the z-axis and uniformly scaled.
All of these functions were reconstructed using the 11 basis functions.
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Figure 22: (a) Eight basis functions (99.9% total squared norm) computed to steer
the even-phase Gabor under any local linear transformation. The basis functions are
arranged in descending order of the magnitudes of their singular values from left to
right and from top to bottom. (b) Images (i) through (v) show reconstructions of the
original function under various linear transformations. See the caption of Figure 21

(iif)
(b)

for further description.
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locally steerable function are not locally steerable within the same range of

transform parameters.

2. The integration and approximation regions of a locally steered function were
defined. The integration region is the region of support within which locally
steering the function with a set of basis functions is valid. The approximation
region is the enlarged region of support over which the function to be steered

needs to be approximated.

3. A cascade basis reduction method was proposed where the locally steered func-
tion is first approximated using an appropriate equivariant function space and
then a series of two singular value decompositions are carried out to compute
the optimal least-squares set of basis functions to steer the given function. The
two singular value decompositions are performed on n X n matrices where n is

the number of basis functions spanning the equivariant function space.

4. The basis and steering functions of the locally steered function were derived in

analytic form.

5. Two sets of basis functions to steer an odd-phased and an even-phased Gabor
function over a limited range of the four-parameter group of linear transforma-

tions were designed.



Chapter 6
Applications

In this chapter, we describe five applications of steerable function. In the first applica-
tion, steerable filters are used to model hypothetical orientation-sensitive mechanisms
in a model of human spatial pattern detection. Because the outputs of a steerable
filter can be synthesized arbitrarily, the model is able to compute the collective re-
sponse of an infinite number of these hypothetical orientation-sensitive units. In the
second application, two techniques for designing filters for gradient-based motion es-
timation are described. These techniques are rooted in the observation that such
motion estimation filters have to be approximately steerable. The third application
shows the use of steerable functions to represent the emitted radiance distribution of
a computer graphics model of a light source. This means that the radiance distribu-
tion of the light source is steerable. Due to the linearity of the rendering operation,
re-rendering of scenes under steered illumination changes can thus be efficiently com-
puted as linear combinations of a collection of basis images. The fourth application
details the construction of invariants within equivariant function spaces and describes
the relevance of equivariant function spaces to invariant feature detection. Finally,
the fifth application points out that the use of steerable functions is not limited to
the continuous case. It describes the use of steerable functions over sets of points and

lines.

93
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Figure 23: Overview of the human spatial pattern detection model. The model
consists of three major components: a retinal component, a cortical component and
a decision mechanism. The model simulates a discrimination task; the output of the
model is a number representing the discriminability between the two input images.

6.1 Continuum Approximation in Modeling Vision

In this section, we describe the use of steerable functions in a mechanistic model of
human spatial pattern detection. The part of the model that uses steerable functions
will be presented in detail; the rest of the model will only be briefly mentioned.
Details of the model can be found in [TH94b, TH94a, TH95].

The model takes as input two spatial patterns and outputs a single number rep-
resenting the predicted visual discriminability between the two input images. In a
psychophysical experiment, these two patterns would be the patterns presented to a
human subject whose task then is to determine if they are visibly different; the goal
of the model is to predict the human observer’s performance. In a more applied set-
ting like image compression, the two images would correspond to the original image
and a lossy-compressed replica; the model would then be used to determine if the
compression errors are visible, and possibly tune the compression algorithm for the
particular image.

The model consists of three major components: a retinal component, a cortical
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Figure 24: Schematic of contrast normalization in the cortical component of the
model. Contrast normalization involves: (1) computing energy responses as the sum
of the squared responses of a quadrature pair of linear responses, and (2) divisive nor-
malization, that is, dividing each energy response by a sum of other energy responses.

component, and a decision mechanism (Figure 23). Each of the patterns is processed
through the retinal and cortical components of the model. The retinal component
controls the model’s sensitivity to changes in the average light level. The cortical
component controls the model’s sensitivity to spatial patterns of different spatial
frequencies and orientations. The final component of the model, the decision mecha-
nism, then compares the outputs of the cortical component for the two patterns. In
particular, the decision mechanism computes d’, a measure of discriminability com-
monly used in signal detection theory. Under certain assumptions, d’ is related to the
probability of correctly detecting when the two patterns are different. For example,
a d’ =1 would imply that the detection mechanism is correct 84% of the time.
Steerable filters are used in the cortical component of the model to model the re-
ceptor fields of hypothetical cortical mechanisms involved with early visual processing.
Within any local region of the visual field, there is a large number of such mecha-

nisms sensitive to different spatial frequency, phase, and orientation. The steerable



CHAPTER 6. APPLICATIONS 96

filters used in the model are thus also localized in spatial frequency, phase, and ori-
entation. These steerable filters are designed to be steerable over orientation; their
phase and spatial frequency selectivity are achieved through the use of a pair of multi-
resolution pyramids that are in quadrature-phase [SF95b]. The multiplicity of cortical
mechanisms tuned to different orientations is modeled by steering the outputs of the
steerable filters to different orientations.

The linear outputs of the steerable filters are normalized by a method known
as contrast normalization [AGI91, Hee92b, Hee92a, Hee93, FBI4], which is depicted
in Figure 24. A simplified version of contrast normalization involves squaring the
output of the linear filter, and dividing the result by the sum of squared outputs
of all filters tuned to different orientations together with a semi-saturation constant.
The resulting contrast normalized output is a value bounded between zero and some

constant. Mathematically,

(0(4:))*
¥ e (000,)) + o2

0(0;) = (13)
where j indexes over the orientation tunings of all mechanisms, and O(6;) = (fy,, I)
is the output of the steerable filter f tuned to orientation f;. Because f is steerable,
it follows by linearity that its output is also steerable; that is, O(6;) can be written
as a linear combination of the outputs of a fixed set of M basis filters: O(6;) =
Y711 @i (0:)0(0;).

The discriminability value computed by the model is a function of the discrim-
inability of individual mechanisms. In particular, the overall discriminability between
all orientation sensitive mechanisms is computed from the differences of their normal-

ized outputs:
,_ L& A 2
' = =2 (O1(0:) = O:(6:)) (14)
=1

where O1(0;), O2(0;) represent the normalized outputs of a steerable filter applied to
the two input patterns respectively; the filter is steered to a variety of orientations 6;.

If the number of different orientation-selective mechanisms N is small, Equation 14
can be computed efficiently. Since each O(8;) represents the output of a single cortical

unit and it is likely that there are a large number of these cortical units, N is expected
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to be extremely large. As N grows larger and larger, the sum in the equation can be
considered as computing a Riemann sum, which converges to the Reimann integral

of the expression within the sum. That is,
& = [(0:(0) - 0:(0))d0 (15)

as N — oo. Here, we assume that the distribution of orientation-selective mechanisms
is uniform. In general, a non-uniform distribution could be used, in which case the
integral becomes a weighted integral. This technique of approximating a (convergent)
discrete sum of a large number of terms with its Riemann integral is known in the
neural computation community as a continuum approzimation [HKPI1].

The continuum approximation of Equation 14 can be computed in closed form

because the normalized outputs O;(f), O4(f) are steerable. In particular,

(o)
OO E To(0)ds 5 o2 (16)

where the denominator, after applying the continuum approximation, is independent
of # and can be computed in terms of the outputs of the basis filters O(6;) directly as
f(zjj\il a;(¢)0(0;))*df + o*. Thus, Equation 15 can be expressed in terms of O(f):

J o~ f(m(ol(e)f—m(Oz(@z)?)?d@ (17)

= J(51(Z75 05 (0)01(0;))* — k252, @;(0)02(0;))%)*d0

where x; = k/([(0;(¢))*d¢ + o?) and O;(8;) are the outputs of the basis filters. The
steering functions «;(f) are expressible in analytic form and their integrals can be
derived in closed form. As a result, the discriminability d can be computed directly
from the outputs of the basis filters O;(6;). The actual computations in the model
are more complicated than what has been presented, involving quadrature pairs of
steerable filters and multiple contrast normalization units. By assuming an infinite
number of orientation-selective mechanisms, the model is rotation invariant since the
discriminability value is computed independent of . The model is also approximately
translation invariant because of the use of quadrature pairs.

Nevertheless, by assuming an infinite number of orientation-selective mechanisms,

the model is not only translation invariant, but also rotation invariant.
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Figure 25: Summary of model’s fits to contrast masking data with maskers of different
orientations. Empirical data from Foley and Boynton [Fol94, FB94] is represented by
filled circles while the model’s predictions are described by the solid lines.

Figure 25 plots the model’s predictions to the results of a set of contrast masking
experiments. The filled circles represent experimental measurements obtained by
Foley and Boynton [Fol94, FB94]; the solid lines represent the model’s predictions.
During the experiment, the human subject was presented two spatial patterns, one
followed by the other. One of the patterns was a full-field sinusoidal grating; the other
was a small (oriented) Gabor pattern superimposed on a similar full-field sinusoidal
grating. The order of presentation was randomized and the contrast (or equivalently,
the amplitude) of the Gabor patch was varied. The object of the experiment was
to determine the detection threshold (minimum contrast) of the Gabor patch for it
to be discernable. FEach graph in the figure plots the detection thresholds of the
Gabor patch for sinusoidal gratings of different contrasts. The different graphs in the
figure correspond to different relative orientations between the Gabor pattern and the
sinusoidal grating.

Figure 26 demonstrates the predictions of the model on a real image. The original

image of Finstein was distorted in two ways, one of which produced more visible
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Figure 26: (Top) Original Einstein image. (Middle-left) Image was distorted so as to
minimize perceptual distortion (RMSE = 9.01, peak-SNR = 29.04 dB). (Middle-right)
Image was distorted so as to maximize perceptual distortion (RMSE = 8.50, peak-
SNR = 29.54 dB). While the left image looks generally less distorted than the right
image, it has a larger root mean squared error. (Bottom-left) Perceptual distortion
measured from the minimally distorted image. Darker regions correspond to areas
of lower perceptual distortion while brighter regions indicate areas of greater percep-
tual distortion. (Bottom-right) Perceptual distortion measured from the maximally
distorted image.
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errors than the other. The root mean squared error (RMSE) between the more
visibly distorted image and the original image is less than the RMSE between the
less visibly distorted image and the original. This demonstrates that RMSE is a poor
measure of perceptual distortion. The model’s predictions are shown below each of
the distorted images in Figure 26. Brighter regions in the model’s output correspond
to areas that have more visible distortions; darker regions correspond to areas with
less noticeable distortions. The model accurately predicts regions of the image where
the errors are more noticeable, for example, the region around the tie or the vertical
structure in the background at the bottom-left of the image. In the image where the
artifacts are less visible, the orientation of the artifacts are similar to the orientation
of the signal (the local image content); thus, the artifacts are masked more effectively
by the signal. In the more visibly distorted image, on the other hand, the orientation
of the artifacts is very different from the orientation of the signal; thus, masking is
less effective and the artifacts are more visible. The visibility of these artifacts is
well predicted by the model because of its contrast normalization component which

accounts for contrast masking.

6.2 Optimal Filters for Motion Estimation

Gradient based motion estimation techniques compute the local optical flow from the
outputs of a set of filters. The brightness constancy assumption between two images,
I(x) = Ii(« + 7), provides the constraint equation between the filter outputs, which

is given below for the one-dimensional case:
(h, L) = (b, 1) + 7 (g, I) + O(7) (18)

where h is typically a pre-filter that smoothes the images and ¢ is a filter that measures
the first derivative of the image. The parameter 7 measures the amount of translation
between the two images [; and [I,. The above equation was obtained by computing
the Taylor expansion of [y with respect to 7 keeping only terms up to first order.
Simoncelli [Sim94] and others have advised that the filters h and ¢ should be well-
matched; that is, the filter ¢ should be the first derivative of the filter h. For digital
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Figure 27: Continuous profiles h(x), g1(x), g2(x) of the optimal set of 5-tap filters
such that ¢1(x) = ai (2) and ga(x) = -2 h(x). The continuous profiles are created

z ox
by interpolating the digital filters using a narrow Gaussian interpolant. The optimal

digital filters are b = (0.0167, 0.1847, 0.3738, 0.1847, 0.0167)7, g, = (0.0602, 0.2675,
0.0000, -0.2675, -0.0602)T, and g» = (0.2959, 0.3366, -0.4893, 0.3366, 0.2959)7 .

filters, this requirement is stated with respect to some choice of interpolant.

Since Iy(x) = (x4 7), we can eliminate references to I and rewrite Equation 18:

(h(x = 7), Ii(2)) = (h(x), (2)) = 7 ((=g(x)), Li(2)) + O(7%) (19)

where the relationship (h(z), [1(x 4+ 7)) = (h(x — 7), [1(x)) was used to apply the
translation to the filter & instead of the image.! The double negation in the equation
was used so that the negative translation of ~ by 7 on the left hand side resulted in a
negative sign in front of 7 on the right hand side. With Equation 18 in this form, it is
clear that the function A is an approximately steerable function with basis functions

h and —g and steering functions 1 (the constant function) and 7.

Tn the infinitesimal case, where the temporal difference between the two frames tends to zero,
the equation becomes the more familiar gradient constraint for motion. Specifically, I; — 71, = 0
where the temporal derivative of I, I & (h(x — 1), I(x)) — (h(x), I(x)) and the spatial derivative of

I Iy & {g(x), I(2)).
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Thus, the suggestion that the function g be the first derivative of & can be un-

derstood in terms of steerable functions, namely that ¢ = L h where L = 88_1’ is the

infinitesimal generator for translation. This is a more general requirement since it

is applicable to any transformation group. For example, if instead of translation,

9
dx

of multi-parameter groups, the requirement is generalized to involve all the filters.

scaling is to be measured, then . = x= and ¢ should be equal to :1;88—1, h. In the case
For example, if both translation and scaling are to be measured, then three filters
h, g1, g2 are needed with the requirement that ¢; = L1 h and g, = Ly h such that
L, = 88_1’ is the infinitesimal generator for translation and L, = :1;88—1, is the infinitesimal
generator for scaling. Figure 27 plots the continuous profiles of the optimal set of
b-tap Lie derivative filters satisfying this relationship (so called because the infinites-
imal generators of transformation groups are also known as Lie derivatives). These
filters minimize the squared error of the two constraints (g1 = L1 h and g = Ly h)
over all triples of 5-tap filters (for a given choice of interpolant); the minimization
is solved by computing the eigenvector corresponding to the smallest eigenvalue of a
particular positive-definite matrix in a scheme similar to the one proposed in [Sim94]
for ordinary derivative filters.

Equation 19 could be generalized by relaxing the requirement that the steerable
filter be one of the basis filters; that is,

(m(z +7), Li(x)) = (h(2), i(2)) + 7 {g(x), h(2)) + O(7%) (20)

where m, h, g are arbitrary filters satisfying the above equation. Allowing m and & be
different filters implies that the pre-smoothing applied to the two images could likewise
be different. We can also express the equality constraint as an error functional:
D
E(m,h,g) = / (m(z+ 1) — h(x) — 7g(x), Li(z))* dr. (21)

7=—D

Thus, the filters m, h, ¢ minimizing this error functional represent, in a certain sense,

the optimal first-order motion estimation filters over the range of translations, 7 =

-D...D?

2First-order refers to the first order Taylor expansion in the equation.
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In practice, several modifications to this error functional is required. Since m =
h = g = 0 satisfies this equation exactly, additional constraints on m, h, g are required
to produce non-trivial results (e.g., < m,m >=1). In the energy functional, the filters
are specified as continuous functions; in practice, the optimal set of digital filters
satisfying this equation is sought instead. As a result, some suitable interpolant is
typically assumed. Given this interpolant, it can be shown that the optimal set of
digital filters, minimizing this modified energy functional, can be computed as the
eigenvector corresponding to the smallest eigenvalue of a particular positive-definite
matrix.

Unlike in the minimization problem to compute Lie derivative filters, the image
I is included in the minimization. This allows one to design optimal filters over
a collection of images or more practically, over images bearing certain properties,
for example, a decaying power spectrum with a certain exponential decay constant.
Alternatively, we can remove the dependence over the choice of images by computing
the inner-product with respect to the first term: ||m(z + 7) — h(z) — 7g(2)]||.

Two important features distinguish this method from other methods of designing
optimal filters. First, by allowing the filter m to differ from the filter 2 (that is,
the pre-smoothing filters applied to the two images may be different), the estimated
motion when there is no motion could be small but non-zero. However, this relaxation
results in a reduction in error for the larger non-zero translations such that the filters
are optimal in a least-squares sense. Second, and more importantly, the distribution
of translation could be explicitly specified. Although Equation 21 integrates over
translations from 7 = —D to 7 = D, any arbitrary distribution of motion could be
used. Thus, the motion estimation filters could be designed to be optimal with respect
to a particular class of motion. Further details of this technique are elaborated in Elad
et al. [ETHO97] where comparisons with other filters are described and evaluation of
the optimal filters performance in estimating optical flow are compared with those of

popular filters.
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6.3 Steerable Light Sources

In computer graphics, images of a synthetic scene rendered from a common view-
point are linear with respect to the radiance distributions of the light sources. In
other words, given two images of a scene rendered under two different light sources,
an image of the scene illuminated by a linear combination of the two basis light sources
is simply a linear combination of the two basis images. Thus, a complex scene can
be efficiently re-rendered under a change of illumination if the radiance distribution
of the new illuminant can be expressed as a linear combination of the radiance dis-
tributions of the basis light sources. This simple approach is general as it depends
only on the linearity of the rendering operation; it is independent of scene complexity
(geometry and surface reflectances) and rendering complexity (shadows and complex
inter-reflections). This approach was introduced by Nimeroff et al. [NSD94] to re-
render outdoor scenes under illumination changes; it has subsequently been used to
efficiently re-render interior scenes [DKNY95] and also applied to theatrical lighting
design [DAGI5].

The linearity of the rendering operation with respect to the scene’s illuminant
suggests the use of steerable functions to describe the radiance distribution of the
illuminant. In this section, we describe several extensions to the results of [NSD94].
We elucidate a design methodology for: (1) directional spot lights whose directions
of foci and angular radiance distributions can be continuously varied, (2) area light
sources whose positions and spatial radiance distributions can be continuously varied,
and (3) light sources that are a combination of the first two types (i.e., directional
area lights whose directions of foci and positions can all be changed). In addition, we
describe a general method for reducing the number of basis images that is applicable
to any of the above cases. Details of the method can be found in [TSH97].

Any light source can be fully described by the spatial and angular distribution of its
emitted radiance. We write this function as L(@,w) where & specifies the position and
w specifies the angular direction. For example, an isotropic point light source centered
at location ¢ would be described by the distribution Lyomi(®,w) = 8(@ — o) where

6(x’) =1 when &' = 0 and zero otherwise. A parameterized light source is a family
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of light source distributions denoted by {L(@,w;p)}. A parameterized light source is
said to be steerable in its parameters p if its radiance distribution can be written as
a linear combination of a finite set of basis lights, where the weights involved in the
linear combination are functions solely of the parameter vector p. Mathematically,
{L(z,w;p)} is steerable if

L(a:,w;p) = Zai(p) Li(wvw) (22)

where «; are the steering functions and [L; are the radiance distributions of the ba-
sis lights. In particular, we will restrict ourselves to the case where the family of
light source distributions are generated by a Lie transformation group, in which case
L(@,w;p) is a steerable function.

Let R denote the linear rendering operator of a given model scene from a fixed
viewpoint. This operator takes as input the radiance distribution of the light source
L and produces an image [ = R(L(«,w)). Combining this notation with Equation 22

gives an expression describing the re-rendering process:

R(L(z.w:p)) = R(T, ailp) Li(x,w))
= ¥V, ai(p) R(Li(x,w)) (23)
= YL ailp) I

where L;(x,w) are the basis lights and I; are the basis images. That is, an image of
the model scene with the new light source L(&,w;p) can be re-rendered by linearly
combining the basis images.

A directional spot light is a point light source whose emitted angular radiance dis-
tribution is anisotropic. Typically, spot lights are rotationally symmetric about their
directions of foci; thus, their radiance distributions can be described as: Lepot(®, w;p) =
6(¢ — o) f(w - p) where p is a unit vector parameterizing the direction of focus of
the spot light, and @y denotes the origin of the spot light. In particular, we use
flw-p) = (1 +w-p)" in our examples where (N + 1)? basis lights (and correspond-

ingly, basis images) are required. f(w - p) can be expanded as follows:

flw-p) = 1+w-p)7



CHAPTER 6. APPLICATIONS 106

= (14 ppws + pywy, + prZ)N

= Y Y alup) (@lwel)
n=0

§,5,k>0.

where the weighting coefficients are:

o

k

z

indicate that the total number of basis light sources is S 577 Z?:_él = (N +

L)(N + 2)(N + 3)/6. Fortunately, the actual number of basis lights required is less
k

z

and the functions w;w/w? are the basis functions. The above expansions seems to

because the basis light source distributions w;wiw are not linearly independent. The
linear dependence is evident when one considers w,,w,,w, as components of a unit
vector, i.e., w? + wz +w? = 1. The actual number of basis functions required is only
(N + 1)?, the number of spherical harmonics up to degree N.

zw]wk

wwiw?, asampled basis set comprising

Instead of the monomial basis light sources w
the desired spot light aimed in different directions was used. In particular, unit vectors
pi, for 1 <7 < (N41)2, distributed on the sphere were randomly selected and used to
construct the corresponding basis lights: L(@g,w;p;) = (1+w-p;)". Since each new
(directional spot) basis light can be expressed as a linear combination of the monomial
basis lights, the new sampled basis set can be used in place of the monomial basis
set.

Figure 28 shows images of a model scene illuminated by spot lights of degree
N = 5. Observe that in Figure 28 (a), the reflection of the white wall in the sphere
is brighter then the reflection of the red wall. This is because the white wall is being
illuminated by the spot light; thus, linear re-rendering captures all ray interactions.

The radiance distribution of an area light source is a four-dimensional function:
two dimensions specify the angular distribution and two dimensions specify the spatial
distribution. For the purpose of steering over position, we assume that the function
is separable in its angular and spatial dimensions: Laea(®,w;p) = fo(® — p) fo(w)

where p is now a two-dimensional vector parameterizing the position of the light
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(a) (b)

Figure 28: Images of a scene illuminated by a directional spot light. The angular
radiance distribution of the light source is a fifth degree polynomial. Fach of the
images were re-rendered by linearly combining a set of 12 basis images. The left and
middle images show the scene re-rendered with the spot light pointed in different
directions. The right image shows the scene re-rendered with two spot lights in the
same position, but pointing in different directions.

()

Figure 29: Images of a chess piece illuminated by an area light source. The left image
shows the scene re-rendered with the area light source positioned to the front and left
of the object. The middle image is a re-rendering of the scene with a broader area
light source. The right image shows the object illuminated by three primary colored
lights. A total of 20 basis images were used to re-render all three images.
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source. For example, when the area light source is defined over a plane, « is the two-
dimensional coordinates on the plane, and p parameterizes the origin of the coordinate
system. Since the function f, is not involved in the steering, it can be arbitrarily
complex. Figure 29 shows a chess piece illuminated by an area light source with a
raised-cosine spatial radiance distribution (in each dimension). A two-dimensional
raised-cosine can be approximated by its Fourier decomposition, i.e., by a linear
combination of sinusoids and cosinusoids of different frequencies. Since sinusoids and
cosinusoids are steerable over translation, the raised-cosine approximation can also
be steered by steering its Fourier basis functions.

Figure 30 shows an example of steering both in position and direction. The light
source was separable in its angular and spatial dimension; the spatial distribution was
made up of raised cosines, and the angular distribution was composed of polynomials
of degree N = 3. The basis functions of this light source are the pairwise products
of the basis functions of the spatial and the angular basis functions. Likewise, the
weighting functions are the pairwise products of the spatial and the angular weighting
functions. Notice that the shadow is unchanged when the direction of the light is
steered (left and middle images), but the shadow changes when the light’s position is
shifted (right image).

The time required to re-render an image is proportional to the number of basis
images. Principal component analysis can be used to compute a reduced set of basis
images best approximating the original set. Specifically, the first k& principal compo-
nents are the best (in a least-squares sense) k basis images approximating the original
basis set. Due to the number of pixels in each basis image, it is infeasible to com-
pute the principal components using techniques like the singular value decomposition
directly. Details of how to compute the principal components of the original set of
basis images are described in [TSH97]. All the images in Figures 28, 29, and 30 were
computed with reduced basis sets (that accounted for 90% of the total variance).
The reduction in the number of basis images is significant. The images in Figure 28
were rendered with 12 principal component basis images instead of the 36 original
basis images. The images in Figure 29 were re-rendered with 20 principal components

instead of the 81 original basis images. For Figure 30, there were 400 original basis
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images, but only 50 principal components were used.

The appeal of the linear re-rendering approach lies in its efficiency: only linear
combinations of the basis images are required, independent of scene and initial render-
ing complexity. Unfortunately, re-rendering scenes illuminated by light sources with
narrow angular or spatial distributions requires a large number of basis images. For-
tunately, existing ray-tracing rendering techniques are particularly efficient for such
narrow light sources (and conversely, inefficient when the radiance distribution of the
light sources are broad). This observation suggests a hybrid scheme: the original
light source distribution is decomposed into the sum of two components: a smooth,
steerable component and a narrow, compactly supported second component. Since
the first component is smooth, only a small number of basis images are required to
re-render the scene using the linear re-rendering method. The contribution of the sec-
ond component can be efficiently rendered using ray-tracing rendering techniques for
each new light source position. The two resulting images are then pixelwise summed
together to produce the final image. This hybrid approach would be useful for re-
rendering scenes illuminated by skylight since the distribution of skylight comprises
the sum of a widespread slowly varying component and a strong, narrow component
(the sun). Since the scene illuminated by the narrow component of the light source
has to be rendered using conventional techniques for each new light source position,
this method cannot be used for interactive lighting design without adequate hardware
acceleration. Nevertheless, its efficiency is likely to be useful in off-line renderings of

animations involving illumination changes.

6.4 Invariants from Equivariant Function Spaces

Image invariants are quantities computed from the image that are invariant under
certain transformations. For example, the magnitude of the local image gradient is a
rotation invariant. The magnitude of the local image gradient measures the presence
of an intensity edge in the image and is invariant to rotation of that edge; that is, the
magnitude is independent of the orientation of the intensity edge. Image invariants

are useful for feature detection, recognition, and matching because they represent the
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properties of an image that are intrinsic and not artifacts of some transformation. A
face recognition algorithm, for instance, should rely on features that are insensitive to
moderate changes in pose and illumination; otherwise, the algorithm will, incorrectly,
distinguish two instances of the same face with different pose as being different.

Such image invariants can be computed directly from an image via an integral
transform like the Fourier transform (for translational invariance), the Fourier-Mellin
transform (for rotation and scale invariance), or a generalized version of these trans-
forms (for an arbitrary Abelian two-parameter transformation group) [FC88, RSZ91,
SRZ92]. Alternatively, special invariants like the moment invariants can be con-
structed using nonlinear functions of the image moments [Hu62, Rei91]; these invari-
ants are typically determined by inspection, with the exception of [RSV96] where
the authors present a method of deriving them using the normalization method. As
pointed out in Section 1.1.3 of Chapter 1, the kernels of the integral transforms and
the polynomials used to compute image moments are steerable functions under their
respective transformation groups. Sets of these functions used to compute the various
invariants span specific equivariant function spaces. In this section, we present sev-
eral methods for constructing invariants from arbitrary equivariant function spaces.
We demonstrate that since these equivariant function spaces are finite-dimensional,
techniques for computing invariants over points can be applied.

We consider an n-dimensional function space equivariant under a given transfor-
mation group to be an n-dimensional equivariant measurement space. A vector of n
basis functions ¢; of the function space can be viewed as a vector of n measurement
kernels; these kernels, applied as inner-products with an image such that f; = (¢;, ),
measure certain features in the image. For example, if ¢; correspond to the first
partial derivatives of a Gaussian, the features f; measure the local (regularized) par-
tial derivatives of the image. Since the function space is equivariant, the features
of a transformed image can be computed in terms of the original vector of features.

Mathematically, we write
f=Ar)f (24)

where f is an n-dimensional vector (fi,..., f.)? representing the original feature
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set and f denote the feature vector of the transformed image. The vector 7 de-
scribes the k-parameter transformation group and A(7) is the n x n interpolation
matrix of the measurement kernels. Again, if f = (f;, f,) measure the first partial
derivatives of the image (at the origin) and the image undergoes rotation, the trans-

formed feature set f = (fl,, fy) is related to the original by a 2 x 2 rotation matrix

0 in(é
A(r) = cos(6)  sin(0) . Equation 24 can easily be derived from the interpo-
—sin(f) cos(9)

lation equation of the measurement kernels. Thus, the vector space of features is
also closed with respect to the same group of transformations; that is, the features
corresponding to the transformed image can be computed from the features derived
from the original image. We refer to the feature space as an equivariant feature space.

Each point f in an n-dimensional equivariant feature space represents a vector of
n measurements, which are the inner-products of the n measurement kernels with a
particular image. Transforming the image under a k-parameter group traces out a
k-dimensional manifold from the original point, and is known as the orbit of f. This
manifold is described parametrically by the interpolation equation, and is constructed
by applying the interpolation matrix A(7) to the original point f for all values of .
In the case of one-parameter groups, the orbits are one-dimensional space curves in
an n-dimensional space.

With the equivariant feature space consisting of the first order partial derivatives
of the image in the x- and y-directions, the original 2-vector of measurements traces
out a circular orbit as the image being measured is rotated. That is, rotating the
image causes the feature vector f to rotate in feature space as well. This is true
since the transformed feature vector f is computed by pre-multiplying the original
feature vector f by a 2 x 2 rotation matrix A(7). Thus, the orbit or the set of
feature vectors measured from all rotated versions of a single image is a circle in
feature space. Figure 31 plots these orbits, which have been computed by setting
h(f1, f2) = f{ + f3 to different values. Each circle represents the orbit corresponding
to the feature vectors of a possibly different family of rotated images. Two rotated
versions of the same image will have feature vectors residing on the same circle; on

the other hand, two feature vectors on the same circle may not correspond to rotated
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(a) (b) (<)

Figure 30: Images of a single polygon illuminated by an area light source that has
an anisotropic angular distribution. The left image shows a re-rendering with the

light source pointing downwards, and positioned to the rear and left of the object.
The middle image shows a re-rendering with the light source in the same position as
before but pointing in a different direction. The right image is a re-rendering with
the light source centered at a different position. A total of 50 basis images were used
to re-render all three images. These basis images were computed using the singular
value decomposition; the actual number of basis images required was 400.

nnnnnnn t curves (h=[0.05:0.1:1.5))
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Figure 31: Orbits of a two-dimensional function space equivariant under a one-
parameter transformation group. Each curve (circle) is an orbit representing some

fixed value of the invariant h(fy, fo) = f + /5.
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versions of the same image. More importantly, however, two feature vectors not on
the same circle, thus having different values for the invariant h, are necessarily not
computed from rotated versions of the same image. Thus, the discriminative power
of this invariant is one-dimensional.

In general, an n-dimensional equivariant feature space under a k-parameter trans-
formation group possesses k-dimensional orbits and admits n—k& invariants. Thus, the
dimension of the equivariant feature space n must be strictly larger than the number
of parameters describing the transformation group for the feature space to possess
any invariants. Figure 32 plots the orbits of a different three-dimensional feature
space equivariant under a one-parameter group; thus, its orbits are one-dimensional
and it contains a two-dimensional family of invariants.

Since two feature vectors derived from transformed versions of the same image
must reside on the same k-dimensional orbit manifold, functions of features that
are constant over each orbit are invariant under the transformation. Formally, an
invariant is a function h such that h(}) = h(f) = const for any two vectors fand f
such that j‘ is the feature vector measured from the transformed image. In general,
deriving functions that are invariant over arbitrary families of manifolds is difficult.
However, the orbit manifolds in an equivariant feature space are far from arbitrary.
This is because they are described by the matrix A(7), and the matrix A(7) is a k-
parameter subgroup of the general linear group of invertible matrices. As a result, we
can employ a theorem from Lie theory that states that a function is invariant under
a transformation group if and only it applying any of the infinitesimal generators of
the group to it results in zero identically [OST96]. In our case, this implies that a

function h(}) = h(e™PBr ... enBif) is invariant if and only if

Li h(f) = B;f -Vh =0 (25)
for 1 <7 < kand Vi = (%,---,%)T. L; is an infinitesimal generator of the

transformation group, and the matrix B; is the corresponding infinitesimal generator
of the interpolation matrix A(7). Solving Equation 25 amounts to solving a system
of homogeneous, first order partial differential equations. A good review of different

techniques to solve such equations can be found in [MPGO95].
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The next two examples illustrate how invariants can be derived for different
equivariant feature spaces using Equation 25. First, the infinitesimal generator L
and the matrix B from the corresponding equivariant measurement space are identi-
fied. Second, the partial differential equation with L and B substituted is solved for

h, which is invariant to the given transformation.

Example 16 : Let ®(x) = (cos kx,sin kz)T be a measurement space that is equivari-

ant under translation such that L & = 88_1’ ® = B & where

B:(Z—()’“).

The same matrix B also holds for our previous example of first order partial deriva-

tives. By Equation 25, a function h(fl, fz) is invariant under translation if and only

if

df dfs

Solving the above equation, we get h(fl,fz) = h*(fl2 + f22) for any function h*, in
particular for the identity function as plotted in Figure 31. Hence, we have verified
that the sum of squares of the inner-product of any pair of the Fourier basis functions
with a signal is invariant under translation, and likewise that the magnitude of the
gradient is invariant under rotation.

Example 17 :  Consider the measurement space ®(x) = (ﬁ, z, 1)T that is equivari-

2
ant under translation such that L & = 88_1’ ® = B & where

>
8]

010 fi 17z
B=10 01 and  f=|hHl=lo0o1 5 |Ff=40 7
00 0 f 00 1

By Equation 25, a function h(fl, fz, fg) is invariant under translation if and only if

. . Oh . Oh
Bf -Vh=fy—e+t fs—=0
! f28f1 f38f2
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Since the orbits are one dimensional manifolds in a three dimensional space, there
exists two independent solutions to this equation. These are the functions: hl(}) = fg
and hz(}) = fi — %% Actually, any function h*(hq, hy) is invariant with respect to
translation. It is straightforward to verify that Ay is an invariant:

~ ;2 2 ’
oo = iyt 2 - Uy

2
= fitrht of = M E s o)
= fi— %fc—f
The two invariants hq, hy are plotted in Figure 32.

Another approach to constructing invariants in an equivariant feature space is by
deriving implicit representations of the feature orbits. The interpolation equation
j‘ = A(7) f can be seen as a parametric description of the orbit manifold. An
implicit representation of this manifold is a description of the manifold that is inde-
pendent of the parameters 7 and is represented by a set of independent functions
{hz(}) =0},1 < < n—k whose algebraic variety (the function space spanned by
functions that are polynomial combinations of hy) coincides with the manifold itself.
In particular, hz(}) = h;(f) for each function in the set and for any function in
the variety. Thus, functions in the variety are invariant under any transformation in
the group. Furthermore, any function h*(hl(}), el hz(})) is constant over the orbit
manifold and therefore also invariant.

Constructing implicit representations from parametric representations is the well-
studied subject of elimination theory from which one can find many techniques
(see [WG95a, WG95b] for a short review). One particular general technique for
implicitizing parametric descriptions consisting of multivariate polynomials is the
method of Groebner bases [CLO92]. This method is a generalization of Gaussian
elimination of a linear system of equations. Gaussian elimination can be viewed as a
systematic process of eliminating the free variables in the system of equations; when
all but one of the variables have been eliminated, this trivial equation is solved and
use to solve the other equations (back-substitution). The method of Groebner bases
is a technique of elimination generalized to work with multivariate polynomials. Us-

ing this technique for implicitization amounts to eliminating the parameters 7 from
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the interpolation equation; the resulting equations will only depend on } and f. The
use of Groebner bases to generate invariants in computer vision was also recently
suggested in [WS95].

Numerous techniques for computing invariants from features like points and deriv-
atives have been proposed by researchers in the past [Me92]. Many of these techniques
can be readily applied to constructing invariants on equivariant feature spaces since
these spaces are finite-dimensional. The method used in the first two examples above
is similar to the one used by Moons et al. [MPGO95] to construct invariants on
points and derivatives. Another simple method of constructing polynomial invariants
was recently proposed by Keren [Ker94] in which instead of seeking to determine all
possible invariants, the author describes a procedure for symbolically deriving poly-
nomial invariants of a given polynomial order. The method can also be employed
in this context to derive polynomial invariants over feature vectors } (or even over

prolongations, i.e. multiple feature vectors).

Invariant Feature Detection. Invariant feature or pattern detectors are used to
identify specific patterns like edges and corners in an image independent of some
family of transformations. For example, detecting an image template of a corner
in a larger image, independent of the orientation of the template (i.e. rotation-
independent). Within this framework, invariant feature detectors are computed in a

sequence of stages:

1. A set of equivariant measurement functions is chosen such that they can repre-
sent faithfully the image template via linear combinations. These equivariant
measurement functions are then orthogonalized. The coefficients of the image
template is then computed by projecting the image template onto each of these

orthogonalized measurement functions.

2. A set of possible invariant functions based on the outputs of the orthogonal-
ized measurement functions are derived using the techniques discussed in this
section. These functions yield an invariant feature descriptor when computed

using the projection coefficients of the image template.
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3. Fach overlapping region of the larger image, the size of the image template, is
projected onto the equivariant measurement functions in turn to compute its
projection coefficients. These projection coefficients are then used to compute

the invariant feature descriptor of that region of the image.

4. The invariant feature descriptor of each region in the image is compared to the
invariant feature descriptor of the image template to ascertain the presence of

the image template at that location.

Generating invariant pattern detectors in this manner has the advantage that
one first constructs equivariant measurement spaces pthat are rich enough to fully
characterize a given pattern. This is done prior to the construction of the invariants.
Since the dimension of the feature space is finite and often relatively small, we can
then easily compute all the invariants associated with the given equivariant feature

space.

6.5 Equivariance of Points and Lines

Throughout this thesis, steerable functions have been discussed with reference to
continuous functions. In particular, steerable filters have been applied to images,
which are mathematically represented as continuous functions. The mathematical
framework and its application to motion estimation and invariant feature detection
can be applied to points and lines in a straightforward manner by representing the
points and lines by a sum of delta functions. For example, a set of N points {(x;, y;)}
can be written as an image: s(z,y) = SN, §(x — x5,y — ¥;). As a result, taking the

inner-product of a set of basis filters with this image yields

(@) s = [ | Ple,y) Dbl — iy = yiddedy = V(i w). (26)

The last equality follows from the definition of the delta function. In a similar way,
steerable filters can also be applied to lines (curves); however, proper attention has

to be given when defining the integral over curves. A unified way to understand this
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treatment of points and lines is as distributions; therefore, the steerability of points
and lines is a special case of the steerability of distributions.

Since equivariant feature spaces can be constructed over a set of points or lines,
all the methods described in Section 6.4 on constructing invariants in equivariant
feature spaces can also be used to derive invariants over the set of points or lines. The
important difference between this method of constructing point (or line) invariants is
that correspondence is not required; that is, the invariants derived using this method
are independent of the ordering of the set of points or lines. This is clearly desirable
as correspondence is often difficult to obtain. We note, however, that this is not the
most general way of constructing point invariants that do not require correspondence.
A more general technique involves constructing an equivariant function space over
the finite group of permutations (permutations of the points or lines). Preliminary
investigation of this idea can be found in [LM94] where the authors describe point

invariants based on the cross-ratio that are permutation-invariant.
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{ant curves (n1=[-1:0.1:1] and h2=0.5) Invariant curves (h1=0.5 and h2=[-1:0.1:1])

Figure 32: Orbits of a three-dimensional function space equivariant under a one-
parameter transformation group. The space of invariants is two-dimensional. Each
one-dimensional space curve is an orbit representing some pair of fixed values of the
invariants h1(f1, fa, fs3) = f3 and ho(f1, fo, fs) = f1f3 — Lf;. Each curve in (a) is
specified by hy € [—1,1] and hy = 0.5. Each curve in (b) is specified by hl = 0.5 and
h2 € [—1,1].



Chapter 7
Conclusions

Steerable functions were first introduced to the image processing, computer vision,
and computer graphics communities in the form of steerable filters, a class of linear
filters whose kernels are composed of steerable functions. The obvious advantages that
steerable filters provide in image analysis over traditional filters are computational
efficiency and numerical accuracy, the latter because steerability is fundamentally
an analytic property. In this thesis, it was shown that the steerability property
is more general and far more useful than was described in its original application.
This thesis generalized the steerability property to be a property associated, not
with specific classes of transformations, but with any smooth transformation group.
Smooth transformation groups are common in image processing and computer vision
as they include the groups of 2D and 3D translation, rotation, affine, and projective
transformations. This generalization allowed the powerful techniques of Lie group
theory to be employed in analyzing the steerability property, and led to a formulation
of a mathematical framework in which theoretical questions about steerable functions
with respect to any smooth transformation group could be examined abstractly. This
framework also resulted in a classification of all one-parameter and multi-parameter
steerable functions, and a recipe for constructing and verifying steerable functions.
The design of a suitable set of basis functions given any arbitrary steerable function
is one of the main problems concerning steerable functions. To this end, two very

different algorithms were developed within the framework. The first algorithm is
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a symbolic method that can be implemented in any symbolic package. Typically,
the basis functions of a steerable function are derived by inspection; this algorithm
derives the minimal set of basis functions automatically given an arbitrary steerable
function. The second algorithm addresses two practical considerations: approximate
steerability and local steerability. In practice, functions that need to be steered might
not be steerable with a finite number of basis functions. Moreover, it is often the case
that only a small subset of transformations within the group of transformations needs
to be considered. In response to these two concerns, the second algorithm computes
the optimal set of k basis functions to steer an arbitrary function under a subset of
the group of transformations.

As alluded to earlier, the usefulness of the steerability property extends beyond
steerable filters. By distinguishing, beyond the application, the property that makes
steerable filters so attractive, this thesis identified numerous applications in image
processing, computer vision, and computer graphics that either explicitly or implicitly
takes advantage of the property of steerability. In particular, it presented five new
applications that could benefit from the use of steerable functions: (1) continuum
approximation in vision modeling (a method of approximating an infinite number of
interacting mechanisms in a model), (2) the design of optimal steerable filters for
gradient-based motion estimation, (3) efficient linear re-rendering of synthetic scenes
under changes in illumination, (4) the construction of invariants from steerable filters,
and (5) the application of steerable functions to discrete sets of points and lines.

The wide applicability of the property of steerability implies that the mathemat-
ical framework proposed in this thesis provides a common language with which to
discuss the problems in these different fields. In particular, the problems involved
with designing steerable filters, designing motion estimation filters, and constructing
invariant feature detectors all have at their core the notion of steerability. These
problems have traditionally been pursued separately; their joint exploration, within
the context of steerability, opens up interesting possibilities. For example, the design
of accurate motion estimation filters typically involves the design of accurate deriva-
tive filters, without regard to the fact that the intended use of these filters is motion

estimation and not derivative estimation. In contrast, the design of optimal steerable
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filters has been the focus of numerous bodies of research (and is also dealt with in
this thesis). Recent research, presented partially in this thesis, has begun to employ
the techniques used to compute optimal steerable filters, to compute optimal filters
for motion estimation.

The close connection between constructing invariant feature detectors and design-
ing accurate motion estimation filters also suggests the possibility of designing motion
estimation filters that are simultaneously invariant to other transformations. One use-
ful application of this is the design of optical flow (translational) filters that are also
invariant to rotation and/or scaling. The techniques for designing least-squares op-
timal steerable functions could also be used to design invariant motion estimation
filters such that their invariance and motion estimation accuracy are least-squares
optimal within a given desired operating range.

In the construction of invariant feature detectors, one deals with the issues of
completeness and invariance of the underlying representation. Trivial representations
that are completely invariant can easily be constructed but provide little discrimi-
native power; i.e., all the features to be differentiated are indistinguishable within
the representation. For example, a filter with a kernel that is identically zero is per-
fectly invariant but is completely useless. The connection between steerable filters
and invariant features suggests a strategy whereby a suitable suite of steerable filters
are first designed such that they provide an adequate representation for the different
features, following which invariants based on the outputs of these steerable filters are
derived. These invariants do not have to hold over the entire group of transformations
but can be local since the steerability property of the filters could be local. Unlike
differential invariants which are also local about some operating point, these invari-
ants are local within some operating range, with respect to some optimality criterion
like the average least-squares error.

Two important and possibly promising areas of research is the application of
steerability to sets of points and lines, and the issue of robustness. Although the
property of steerability has been discussed in this thesis with regards to continuous
functions, it is also applicable to discrete sets of points and lines. This implies a

possible association between steerability and traditional problems of recognition and
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pose estimation from sets of point and line features. This association is important
as 1t could suggest novel algorithms in both areas, for example, the possibility of
least-squares optimal local algorithms in recognition and the use of alignment or
geometric-hashing techniques in developing motion estimation filters and invariant
features. The issue of robustness is of practical importance particularly in the area
of motion estimation and invariant feature detection. While the sensitivity of the
outputs of steerable filters with respect to the transformation group for which they
were designed can be accounted, their sensitivity in unexpected situations is unclear.
For example, it is not known the amount of error that would be introduced in the
output of a motion estimation steerable filter in the presence of multiple motions (at
a depth discontinuity, for example). Similarly, the robustness of an invariant feature
detector undergoing some other transformation than it was designed for is unclear.
In conclusion, the mathematical framework presented in this thesis provides both
an analytical framework with which to understand the property of steerability as well
as a common framework to discuss problems in different areas that are connected by
their common assumption of steerability. With regards to the former, it is demon-
strated that Lie group theory is the appropriate mathematical tool for understanding
the properties of functions that are steerable under smooth transformation groups.
This position is supported by the fact that all existing analytical approaches to steer-
ability can be consistently explained within the framework. A common framework
with which to investigate problems from different areas, namely steerable filter design,
motion estimation and invariant feature detection, facilitates the transfer of results
between these different areas more readily and opens up numerous possibilities for

the integration of the various techniques.
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