A NETWORK-CENTRIC DESIGN FOR
RELATIONSHIP-BASED RIGHTS MANAGEMENT

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

R. Martin Roscheisen
December 1997

[0 Copyright by R. Martin Réscheisen 1998
All Rights Reserved

| certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Terry Winograd (Principal Advisor)
Computer Science Department
Stanford University

| certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold
Computer Science Department
Stanford University

| certify that | have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Carey Heckman
Stanford Law School

Approved for the University Committee on Graduate Studies:

Note: This document is a reformatted version of the thesis submitted to Stanford.

Martin Roscheisen
rmr@cs.stanford.edu

Gates Building 396
Stanford University
Stanford, CA 94305

A NETWORK-CENTRIC DESIGN FOR
RELATIONSHIP-BASED RIGHTS MANAGEMENT

Martin ROscheisen
Computer Science Department
Stanford University

Networked environments such as the Internet provide a new platform for communication
and information access. In this thesis, we address the question of how to articulate and
enforce boundaries of control on top of this platform, while enabling collaboration and
sharing in a peer-to-peer environment.

We develop the concepts and technologies for a new Internet service layer, called FIRM,
that enables structured rights/relationship management. Using a prototype implementa-
tion, RManage, we show how FIRM makes it possible to unify rights/relationship man-
agement from a user-centered perspective and to support full end-to-end integration of
shared control state in network services and users’ client applications.

We present a network-centric architecture for managing control information, which gener-
alizes previous, client/server-based models to a peer-to-peer environment. Principles and
concepts from contract law are used to identify a generic way of representing the shared
structure of different kinds of relationships.

ACKNOWLEDGEMENTS

Ten years ago, Martin Kay agreed to invite me to spend a couple of months with him at Xerox PARC, in the
natural language processing group led at the time by Kris Halvorsen. | consider the completion of thisthesis
in many regards as an outgrowth of thistime that | spent at PARC in 1987/88 right after coming out of high
school, aswell as during subsequent summers as part of their excellent summer internship program.

Once at Stanford, my Ph.D. advisor Terry Winograd enabled me to follow my interest in exploring the possi-
bilities of the new Internet/Web medium that was just emerging. In the first two years, this led to two differ-
ent systems for Web-based collaboration: a system for sharing annotations on arbitrary Web pages, called
ComMentor (with Christian Mogensen; http://pcd.stanford.edu/ComMentor) and a system for collection-
based collaboration, called Grassroots (with Kenichi Kamiya; http://pcd.stanford.edu/Grassroots).

When the time came to choose a subject for my Ph.D. thesis, Terry suggested that | reexamine the classical

topic of access control. Terry anticipated that this issue would emerge as one of the key questions to be
addressed in order to allow the new medium to be able to live up to its true potential. We quickly identified

that issues such as privacy and access control are more about relationships than about information, and that

we need to think about mechanisms to support relationship management. Now that | have completed more

than two years of research and prototyping about how to make such an approach work, it turns out that oth-

ers agree with the basic assumptions that have guided this work. Kevin Kelly is quoted in a recent Time

cover story as saying that “We think that privacy is about information, but it's not—it's about relationships”;
Esther Dyson devotes an entire issu&aéase 1.0 to the question of how one can deal with access control
and privacy in the online domain; etc. | wish Terry would again give me two year’s worth of lead time,
equivalent to about a decade in Internet time—and this time | probably would not use it to get a second
Ph.D. Terry also helped shape this thesis significantly through weekly meetings and through his innovative
teaching program in user-centered software design.

I am further indebted to Hector Garcia-Molina for coalescing a working group around the Stanford Digital
Libraries Project, and to Andreas Paepcke, Scott Hassan and Alan Steremberg for developing a testbed
infrastructure that greatly facilitated my prototyping work.

My fellow Ph.D. students Michelle Baldonado, Steve Cousins, Frankie James, Luis Gravano, Steven Ketch-
pel and Larry Page, as well as the other members of the Stanford Digital Libraries Project, provided contin-
ual feedback from the early concept stage to the final presentation of this thesis.

As members of my reading committee, Gio Wiederhold and Carey Heckman provided numerous comments
about the thesis; this improved the final presentation significantly.

Tim Stanley has helped me explore the legal and economic issues related to my thesis. A side effect of our
discussions is FindLaw (http://www.findlaw.com).

In the context of two seminars, Paul Goldstein helped me crystallize my thinking about the relation between
property systems (such as copyright) and contracts, which encouraged me ultimately to focus on the rela-
tional approach to rights management that characterizes this thesis.

Over the past years, | have received valuable comments contributing to my thesis (given specific parts in
early versions only) from a number of individuals outside of Stanford, including Mark Ackerman, Michel
Bilello, Victoria Bellotti, Lorrie Cranor, Jim Davis, Henry Gladney, Ben Gross, Johannes Klein, Ulrich
Kohl, Carl Lagoze, Susan Owicki, Paul Resnick, Jerry Saltzer, Pamela Samuelson, Dave Solo, Mark Stefik,
Hal Varian, Dan Wallach, Michael Wellman, Mary-Ellen Zurko.

Last but not least, | am grateful to my parents Margret and Fritz for providing a unique formative environ-
ment and support, and to Andrea—not only for being the first environmental geochemist who asked a ques-
tion in a computer science thesis defense that led to significant redesign and rewriting (Chapter 4).

Martin R6scheisen
Palo Alto, November 1997

Vi

WWWW NNNNN PRREPRERPPRERERE R
wWN - A WN R ISLOOO\ICDU‘I-&OOI\)H

w
N

DWW W
~N O O

»
-

4.2
4.3

4.4

A WDN P

Table of Contents

TOWARDS FRICTIONLESS DIGITAL RIGHTS/RELATIONSHIP MANAGEMENT 1
The Problem: Rights/Relationship Management in Networked Environments 1
Current Solutions: Idiosyncratic, Not User-Centered ..., 2
Unifying Rights Management in a User-Centered Way: Example 2
Defining aRights Management ServiceLayero 4
Overall Design ASSUMPLIONS . .. oottt ittt et et et e e e e e e e 6
DS N PrOCESS . . vttt ittt e 8
Taking aRelationship-Based Approacht e e 8
DS N SPACE .« o v ittt e 11
DESIgN GOAIS . .ttt 12
The Solution: Outlineand SUMMAYt e e 12
A CONCEPTUAL MODEL OF RELATIONSHIP MANAGEMENTot ie i e 14
Understanding Agreements/CoNtraCtSoii ittt e 14
The Commpact Model 15
ReEla e WOTK . e 18
ENfOrCamMENt . 18
A NETWORK-CENTRIC ARCHITECTURE FOR MANAGING CONTROL INFORMATION. .. 27
Three Ways of Organizing Control Information i, 27
Three Ways of Embedding Control Objects e 30
Understanding Conventional Control Architectures 31
From Server-Based and Client-Based Control to Network-Centric Control 34
SecUrity IMPliCaliONSt e 37
Linking from Content Objectsto Rights-Management Information 37
Related ArChiteCtUrES e e 38
FIRM: AN INFRASTRUCTURE FOR DIGITAL RELATIONSHIP MANAGEMENT. 40
Object REITICAIONS it e e e 40
E-Persons 41 — Home Providers 43 — Commpacts 44 — Commpact Managers 47 —

Commpact Forms 47 — Forms Providers 49

TransaCtion MOdel o 49
The User’s View: Examples from the RManage Prototype v,
General Users 57 — Offerors 63

Object Interactions: Sample Transaction SCeNariosvvt it 66
User Profiling Contract 66 — Subscription Contract 69

Relaed WOrK .. 72
CONCLUSION . & ettt it e e e e e e e e e e e e e e 75
APPENDIX: SPECIFICATIONOFFIRM L. 79
OVERVIEW.. ittt it et et e e e e e e e e et e e e e e e e 79
THE FIRM COMMON RIGHTS LANGUAGE OBJECT MODEL 81
FIRM' SOBJECT ATTRIBUTE MODELS. . . .ttt it st et et e et et et et e e e e 99
EXAMPLES OF INTERFACE IMPLEMENTATIONS . . o ittt e ettt e e e 103
REFERENCESttt e e 107

Vii

List of Illustrations

1. FIRM defines arights management service layer on top of other Internet protocols.. 5

2. FIRM enables arelationship-based approach to network security. 9

3. Design Space: Systems designed for different types of relationships.. 11

4. Negotiation: Statesand TranSIitioNS..ot e 17

5. Anchor Pointsfor Enforcement.. o 19

6. 1SO Access Control Model: Action-Interrupt Control. 21

7. The Generalized Enforcement Framework 26

8. Lampson AcCess Control MatriX.. . .. v v vv ettt e e e e et 28

9. Readlizations of the Lampson Matrix (Revised).. e 30

10. Authorization Interactions: Decision Facility Requests Attributes.. oL, 31

11. CalerlD Example: Simple Set of Phone-AccessRUIES. oo e 33

12. CallerID Example: ‘A calling B’ Leads to Complex Negotiation. 33
13. Network-Centric Control Architecture. e e i 35

14. CallerlD Example: ‘A calling B’ with commpacts.. 36. ..
15. FIRM Object Reifications e e e e e 41

16. Commpacts as “Smart Contract” Objects. 45 .

17. Transactions in FIRM. e e e 49

18. Negotiation: States and Transitions (Repeated). it 50. .

19. Negotiating a New Relationship. e 55

20. Network Login INteracCtions.t e e e e ——— 58

21. Relationship View in RManage.t i ittt e et mamaans 59

22. E-person Preferences.. e e i ... B

23. Notifier: Uniform View on Events from Different Relationships.. 62
24. Declaring Overrides in RManage/DLITE. e e et 63 .

25. Using Commpact Forms to Offer New Relationships 4.....
26. Customizing and Setting Parametersina ContractDraft. 65......
27. Sample Contract Offer. e e 66

28. Online Privacy Negotiation e e s e 67

29. Transactions Underthe Hood. ittt B8

30. Special Case of Transactionsttt et et i . B8

31. Payment Interactions in FIRM. 69

32. Certification: EXample. e e ——_— 71

33. FIRM Object HierarChy e e e e e e e e rrr—— 83

viii

Towards Frictionless Digital Rights/Relationship Management

1.0

Towards Frictionless Digital Rights/Relationship Management

11

The Problem: Rights/Relationship Management in Networked Environments

Over the past few years, the Internet has evolved from an experimental data network

used by a fairly narrow community of researchers to a general medium with a good
potential for mainstream usage. Every moment now, more of the basic building
blocks—from network routers and connections to the different software layers and ser-
vices—are being put into place, creating an infrastructure that increasingly gives reality
to metaphors such as “information at your fingertips” and “contact anyone anywhere.”

The prospect of having a platform where anyone is able to get information anywhere,
anytime, creates the necessity to address the fundamental question of how to articulate
and enforce boundaries of control on top of this platform, while enabling collaboration
and sharing in a peer-to-peer environment. We call this question one of “rights/relation-
ship management.”

Note that the efficiencies of the online medium do not change the facts that people have
specific privacy preferences, that companies need to control access to their assets, that
authors might want to get compensated or at least know who is in their audience, etc.
However, today’s Internet infrastructure supports such boundaries of control only in a
very limited way.

As an example, consider that currently every registration-based Web service puts up its
own user interface (in the form of a set of Web pages) to allow people to register and to
use their registration to access certain content areas. All these interfaces try to achieve
basically one and the same purpose, but they are all different and—from a user-centered
perspective—offer heterogeneity that contributes to a less satisfactory overall user expe-
rience. There is also an issue of a lack of end-to-end integration. For instance, while the
provider's membership database will be well integrated with the registration function,
users have no corresponding “client”-side integration that helps them manage their rela-
tionships with the providers of the various network services.

As another example, consider that what a Web server currently knows about the person
behind a browser is limited to a few general attributes, such as the browser’s IP address,
the type of software used, etc.; but it is not clear whether the person is an employee
(who might be authorized to access company documents), a student (who might qualify
for a student discount), a US citizen (who might be subject to certain export controls), a
subscriber with a subscription contract, or someone else with different kinds of relation-
ships.

This thesis is about a concrete design that defines the kind of technology that can help
us address this issue of rights/relationship management in heterogeneous, networked
environments. It suggests how the current infrastructure can be augmented by another
software service layer—one for digital rights management—that allows us to talk about
such high-level objects as “contract,” “obligation,” “right,” and “person”—and to deal
with the question of how to provide better end-to-end integration for relationship man-
agement applications and how to lower the usability threshold for access-controlled ser-
vices.

A Network-Centric Design for Relationship-Based Rights Management 1

Towards Frictionless Digital Rights/Relationship Management

1.2

1.3

Current Solutions: Idiosyncratic, Not User-Centered

There aready exist several mechanisms implementing specific forms of digital rights
management, including mechanisms to control access to files and network services,
mechanisms to limit the use of information, mechanisms to select anonymity or pseud-
onymity, etc. For a survey of arecent set of commercial rights-management solutions,
see[96] and [98].

Conceptually, we can think of these mechanisms as falling into three classes, depending
on whether they predominantly manage control information in a “server-based,”
based,” or “third-party based” way:

client-

* Server-based control: Thisisthe traditional model, widely employed for access con-
trol in file systems, Web servers, security firewalls, etc. The “access” of information
is protected by having a server check the control information that it manages along
with the services/information that it provides.

* Client-based control: Client-based control has been in use for many years. For exam-
ple, “demo copies” of commercial software often have usage limitations (such as an
expiration date or limited functionality) built into the code, which can then be freely
distributed. More recently, the work on trusted clients by Stefik [97] has produced a
far more general version of such client-based control for use in consumer content
commerce.

e Third-party based control: The Copyright Clearance Center is an example of control
that is managed by third parties. Other examples include the “license servers” that
are now routine purchase options for commercial software such as FrameMaker,
PhotoShop, etc.

The overall picture is that we have a disparate set of special-purpose solutions, often
implemented in a proprietary way. In networked environments, such heterogeneity eas-
ily translates into interoperability problems and a lack of symmetric end-to-end integra-
tion. Furthermore, by virtue of the fact that each system has a different control interface,
we do not provide users with an interaction model that is uniform from their perspec-
tive. Finally, the lack of a common platform also makes it more difficult, if not impossi-
ble in certain cases, for application developers to introduce new kinds of control
behaviors for the services that they want to make available. The following example
illustrates some of these points in more detail.

Unifying Rights Management in a User-Centered Way: Example

Consider the publisher of an online newsletter who puts a system in place to manage
subscribers and give them preferential access to certain content areas. The user interface
for such a system would typically consist of a set of Web pages designed by the service
provider. In such an interface, users find a way to fill out HTML forms with fields for
their name, address and payment information, and hit some kind of a “subscribe” but-
ton, that will then trigger certain actions at the server side to add the person to the sub-
scriber database, schedule invoices, etc. In other words, the system is designed in a way
that integrates well with the service provider’s backend infrastructure, such as member-
ship databases and payment processing applications. From the provider’s perspective,
this is an obvious approach to take.

A Network-Centric Design for Relationship-Based Rights Management 2

Towards Frictionless Digital Rights/Relationship Management

However, from a user-centered perspective, we are exposed to lots of different inter-
faces for the various servicesthat all try to achieve basically the same purpose. The cur-
rent situation on the Web is essentially like a corresponding (theoretical) situation for
persona computer applications in which every developer of a PC application designs
their own way of scrolling awindow and of copying and pasting text segments. This can
easily lead to confusion. Note that even if two Web registration interfaces look and
behave similarly, we cannot be sure whether their underlying terms and conditions are
similar. For instance, two identical interfaces for different services can easily have
widely differing privacy policies regarding the use of user-provided personal informa-
tion. Thereisin general no structured way by which one can get hold of such additional
properties.

A second set of issues relates to the asymmetric way in which integration is provided

with each of the participants’ systems. Interestingly, while a provider’s membership
database will be well integrated with the subscription function, there is almost no sup-
port available for having corresponding integration available on the user’s side, which is
also called the “client” side. Given that a contract/relationship is fundamentally a sym-
metric arrangement, one would expect that there ought to be about an equal number of
useful actions that can be triggered on the client side. For instance, it would be useful
for subscribers to list their current subscriptions in a contract portfolio, to allow them to
schedule how to live up to a payment obligation from this listing, to provide an easy
way to examine the state of a relationship, to terminate it, etc.

In fact, the program by which users participate is called a “client” application—a term
that does not necessarily suggest a design with the kinds of peer-to-peer symmetries that
characterizes many Web-based interactions today. We still call them “client applica-
tions” because client-server has been the traditional metaphor and because the current
infrastructure is limited in a way that does not allow full end-to-end integration that
would give these client applications a richer and more structured set of affordances. For
example, consider that while a publisher can easily manage a subscription relationship
by accessing a membership database directly, users would probably have to use a toll-
free phone number for requests to cancel the subscription; for invoicing purposes, the
postal system probably would have to be used; etc.

To summarize, a currently fairly typical solution to Web services is characterized by

* lowinternal integration: There are disparate interaction channels to manage one and
the same relationship;

* |low external integration: An authorized outside party (e.g., the subscriber with a cli-
ent application) has no structured way to access information about the state of arela-
tionship other than through a (non-programmatic) Web interface or through one of
the Internet-external channels; and

* user interface heterogeneity: Every content site that offers subscriptions has its own
interface to accomplish one and the same type of transaction. In many cases, such
heterogeneity will signify inconsistency. For instance, at some sites, clicking on
“subscribe” signifies the actual acceptance of a legal agreement, while at others this
only leads to another dialogue that then describes the actual offer.

In this thesis, we propose a solution to these issues that makes user interfaces uniform
from a user-centered perspective and that enables full end-to-end integration. If we had

A Network-Centric Design for Relationship-Based Rights Management 3

Towards Frictionless Digital Rights/Relationship Management

1.4

to deal only with a small number of user interface providers, we could use a proxy-
based solution with a proxy for each of these providers, which would then map the idio-
syncratic interaction models into a more uniform framework. However, given the fact
that there is a very large number of interface devel opers, thisis not a realistic approach.
The approach to take then will have to be based on augmenting the Internet infrastruc-
ture with an appropriate network service layer and by making available toolkits that
make it easy for application developersto follow certain guidelines.

In other words, by having an infrastructure that “opens up” proprietary rights-manage-
ment solutions, we obtain a structured way of talking about control information, such as
access rights and contracts, across different applications and services. This suggests a
shared format for rights-management interactions that can propel better user interfaces
in the same way that the Macintosh Human Interface Guidelines [243] and the associ-
ated toolbox that came with the Macintosh OS were able to enforce interface standards
across applications from different developers, and made the Macintosh easy to use for
less sophisticated computer users. For instance, by introducing a development platform
that made it easy for developers to standardize the look and feel of scroll bars in their
applications, the Macintosh was able to provide a better user experience than other sys-
tems.

A toolkit in conjunction with the APIs/protocols of the FIRM service layer proposed
and prototyped in this thesis would have a number of benefits: Application developers
could rapidly implement the desired control behavior by using components provided by
the rights-management toolkit. Moreover, the resulting solution will have higher
degrees of internal and external integration. Since the rights management service layer
provides for standard types of affordances with respect to contracts (accepting, termi-
nating, etc.), it is easier to provide a more comprehensive interface that also deals with
cases that are otherwise often left out, such as means for cancelling a contract, returning
goods, etc.

Furthermore, interested third parties can make use of the service layer to interface with
the appropriate rights-management structures directly. For example, someone could eas-
ily develop a next-generation Quicken-type application that provides affordances for
managing contracts and the rights and obligations that result from them. Such an appli-
cation could provide an interface for cancelling contracts that one signed up with differ-
ent providers. It could also directly deal with electronic invoices from different
contracts. Ultimately, this enables us to shift the perspective from provider-centered
user interactions, where users interact with Web forms put up by every publisher, etc., to
a user-centered view, where users interact with a relationship manager application that
has direct access to the relationship held with a publisher. The RManage system that we
shall describe in this thesis is a prototype “relationship manager” application based on
our FIRM rights management service layer, that gives a first glimpse of such an inter-
face.

Defining a Rights Management Service Layer

Architectually, we achieve the kind of unification of services and protocols necessary
for networked rights management by defining a network software service layer that is
built on top of other network protocols to provide object definitions and services for
managing rights and obligations.

A Network-Centric Design for Relationship-Based Rights Management 4

Towards Frictionless Digital Rights/Relationship Management

Three Classes of Usages

Objects provided by a rights management service layer essentially have three major
classes of usage:

* Authorizing/Controlling Actions: There is a way to determine whether a particular
action is acceptable or required under a given set of rights and obligations. It is pos-
sible to execute a generic set of transactions on each object, such asfulfilling an obli-
gation.

* Inspection by Humans: There is an interface through which people can obtain infor-
mation about the state of a certain rights relationship, the nature of outstanding obli-
gations, the terms and conditions for contingency cases such as return of goods, etc.
Furthermore, there is a clear mapping between computational objects and their inter-
pretation within alegal context.

* Use by “Agents”:Certain client programs (“agents”) can interface with rights-man-
agement objects in a structured way. For example, a program might search for the
“best” offer for something by interfacing with the state information that specific
rights objects make available, such as terms and conditions about pricing, return of
goods, etc.

Our Solution: The FIRM Rights Management Service Layer

The rights management service layer proposed in this thesis is called the Stanford
Framework for Interoperable Rights Management (FIRM). FIRM is one of the protocols
of the Stanford “Infobus,” a prototype infrastructure developed as part of the Stanford
Digital Libraries Project that is designed to provide a way of extending the Internet pro-
tocols to higher-level information management protocol. For a survey of the architec-
ture and the five service layers of the Stanford Infobus, cf. [253].

FIGURE 1. FIRM defines a rights management service layer on top of other Internet protocols.
Web browser FIRM-enabled
Clients

Objects for Persons,
Java Contracts, Obligations,
client W

Rights Management (FIRM)

Payment (SET, ...) |Trust Management |Security g::“”'i'g;k
Object Transfer (HTTP, IIOP/CORBA, DCOM) Layers

Data Communication (IP with TCP, UDP, RPC)

FIRM makes use of a number of other services such as a standard attribute service [242]
as well as services provided by the Stanford Infobus for managing items and collections,
and for managing metadata. The FIRM architecture, however, is general and in no way
dependent on the specific protocols implemented as part of the Stanford Infobus; it is
also possible to use FIRM as an add-on to conventional Web servers, e.g., to use the

A Network-Centric Design for Relationship-Based Rights Management 5

Towards Frictionless Digital Rights/Relationship Management

15

W3C'’s P3P privacy vocabulary [219] instead of the one used in the Stanford prototype,
etc.

Related Service Layers: Security and Trust Management

Rights management is a higher-level service layer that builds on the availability of a set
of other network layers. In addition to the basic network layers in the capacity of the
Internet Protocol (IP), the basic Web object transfer protocol (HTTP), and various dis-
tributed object protocols (IIOP/CORBA, DCOM), this includes layers that provide ser-
vices for security and digital trust management:

e Security is concerned with the problem of assuring the authenticity and integrity of
information. Fortunately, an array of protocols are now widely available, such as
security service layersfrom Intel [223], Microsoft [224] as well as security standards
and security toolkits, such as SSL [228], SHTTP [229] and the Java security library
[230]. At the security level, we can therefore use best-of-a-kind solutions “out of the
box” for our purposes.

¢ Trust management addresses the question of how to represent people’s trust prefer-
ences about issues such as whether a piece of code (an “applet”) is trusted to execute
on a certain machine. Examples include AuthentiCode [231], signed applets [232];
PolicyMaker [135], Referee [142].

Our approach to rights management keeps both security and trust management, as well
as a whole set of more basic services, orthogonal to the services of a rights management
layer. This keeps the rights management service layer “thin” and simple. Of course, spe-
cific implementations will have to make use of security services, and they will also have
to incorporate various forms of trust management—both at the service implementation
level and at the user interface level.

For example, as we shall see later, our digital rights management service layer provides
for digital contract objects that are interpreted at specialized “control object manager”
servers. Security mechanisms ensure that only authorized people can modify the state of
a specific digital contract. Furthermore, trust management would be used to allow peo-
ple to decide whether a specific server is trusted to manage a certain digital contract.

Overall Design Assumptions

In the design of FIRM, we have taken into account several basic properties of current
networked environments such as the Internet. These include heterogeneity of trust, mul-
tiplicity of enforcement choices, and multiplicity of implementation mechanisms.

Heterogeneity of Trust

Differences in levels of trust in different areas of the computing infrastructure are prev-
alent in networked environments such as the Internet. Even machines on the same Local
Area Network within an organization carry different trust levels. These differences
might be small, but they are still significant enough to lead to different practices and
architectures. For example, to enforce licensing requirements it would be conceivable
(and advantageous) to manage individual licenses for commercially licensed software
directly at the machine where the software is used. However, the predominantly estab-
lished practice is to have a license server run on another machine: a server that is often

A Network-Centric Design for Relationship-Based Rights Management 6

Towards Frictionless Digital Rights/Relationship Management

on the same local network, but that is administratively not as easily accessible to users
as their own workstations.

We assume that such differences in levels of trust will continue to persist in networked
environments. For general use, we cannot expect to have one homogeneous trusted
computing base. [This assumption may well be inappropriate for specific other domains
such as a new product line of video players from Sony, a network of copier services by
Xerox, etc.]

Multiplicity of Enforcement Choices

M echanisms for enforcing boundaries of control include, but are not limited to, enforce-
ment by technical locks, enforcement by police, prevention, fail-safe design, monitor-
ing, reputation-based and “panoptic” control (see page 18).

Often it is more effective to use enforcement means other than technical locks. This is
especially the case in contexts where social mechanisms are already in place that can be
leveraged in enforcement. For example, software piracy is illegal independent of
whether or not the software is specially protected, and the threat of audits in combina-
tion with appropriate systems of policing has minimized software piracy in businesses
in the United States quite effectively. Monitoring is another type of enforcement that
addresses some concerns quite effectively. For example, rather than controlling the use
of an individual document in great detail, a publisher might just want to be assured that
no excessive copying is taking place.

Our assumption is that the current multitude of enforcement choices needs to be sup-
ported in a rights-management service layer. That is, we would like to provide a pro-
grammable framework for different kinds of mechanisms.

Multiplicity of Mechanisms

At a system level, we assume that designers of rights-management solutions will con-
tinue to make different design trade-offs to best deal with the specific usages at which
their application is targeted. Any more general system is likely to end up being less effi-

cient for specific uses. A part of this assumption is the fact that we have legacy systems
that now need to be tied into a larger infrastructure without requiring them to be rede-

signed from the bottom up.

FIRM is therefore based on the assumption that the rights systems landscape in a net-
worked environment of autonomous resources such as the Internet will continue to be
heterogeneous. There is not going to be one single rights system that covers all usages
and domains universally.

In other words, the assumption is that we will continue to have rights systems

* inlegacy systems (e.g. thefile accessrightsin Unix, Windows NT, etc.; the payment
obligation processing in Dialog, Uncover, etc.; the PhotoShop group license server),

» from different vendors (InfoSafe, Xerox, InterTrust, ...),

» for different domains (e.g. for privacy, for parental control, etc.), and

» for use with different devices (printers, PCs, etc.) and with different media (hard
disks, DVDs, etc.).

A Network-Centric Design for Relationship-Based Rights Management 7

Towards Frictionless Digital Rights/Relationship Management

1.6

1.7

But at the same time, we would like to achieve more uniformity and away for different
kinds of applications to interoperate.

Design Process

At the heart of coming up with an appropriate design for our service layer is a process of
reification of existing objects and usages in the cyberworld: We enrich the technical
infrastructure by objects that recreate, in the cyberworld, aspects of existing objects in

the way we know them. For example, we can have a digital contract object to represent

the terms and conditions of a certain contractual relationship. We could design such an

object in a way that it affords a “terminate” action—to reify the fact that contracts can
generally be cancelled. Furthermore, we can additionally choose to reify certain prac-
tices. For instance, we can reify the practice that contracts are often based on standard
templates that people only customize and fill out—leading to a design where digital
contracts systematically be instantiated from contract-forms objects, a user interface
where contracts can be drafted by “taking” such forms and manipulating them, and an
underlying institutional infrastructure where we have “forms designers” as an indepen-
dent entity.

This thesis describes an initial design for what these objects are, how they behave, and
how they are grounded in the heterogeneous set of mechanisms that currently character-
ize the technical landscape. It is a specific design, demonstrated in a prototype infra-
structure, that embeds our assumptions on which usages are of primary interest, and
which ones are not as important. The main assumption along these lines, as we shall
explain in the next section, is that we support relationship-based interactions.

Taking a Relationship-Based Approach

The conceptual core that we use to realize architectural unification in our FIRM service
layer lies in the relationship-based perspective that we uniformly apply. Our basic
approach is to shift the perspective from (information) objects to the participants’ rela-
tionships.

Rather than thinking primarily in terms of a traditional “information access” model
where users access information/property (and we then conceive of ways of protecting
this information from being accessed in certain cases), we apply a communication
model to think of the relationships that providers and consumers of information might
usefully want to engage in. We then deal with issues such as privacy, security, access
control, etc. as the ancillary of successfully managed relationships.

In our view, events such as privacy intrusions, security breaches, unauthorized access,
etc., are primarily surface forms of an underlying process that points to unsuccessfully
managed relationships between the relevant communication participants. Consequen-
tially, our hypothesis is that by providing support for a social mechanism of coordinated
expectation through relationship management, we can deal with many of these issues
more effectively than if we look at these events in isolation. The following example
from a specific domain illustrates our relationship-based perspective.

Example: Relationship-Based Network Security

The traditional metaphor that underlies much of network security is basically a “castle
model.” Security firewalls are a well-known instance that implements this model: they

A Network-Centric Design for Relationship-Based Rights Management 8

Towards Frictionless Digital Rights/Relationship Management

construct a “wall” around an organization with access limited to certain controlled entry
points that serve to protect the inside (employees, etc.) from the outside (attackers, etc.).

FIGURE 2.

Network Security: FIRM enables a relationship-based approach to network security.

Traditional Company Relationships in the 90’s

Manufacturing

Organizational Boundary Contractors Partner

....................
o

o

" Employees % Clients

Clients

0 o
.......................

y Janitor Distributor
Castle Mode/ N
of Security ’b\' 4 Perspective Shift to
d «&\ Relationship-based Security
Firewall .
Outside
VA Commpacts

Even in conventional environments, this idealization creates anomalies that lead to
lower levels of usability and security. For example, one of the outside persons might not
be an attacker, but might in fact be the company’s CEO trying to catch up with his e-
mail while waiting for a connecting flight at an airport, or it might be a telecommuter, a
supply-chain partner, etc. On the other hand, persons inside the firewall boundary might
include individuals who have relatively weak forms of relationships with the organiza-
tion, such as contractors, summer interns, etc. For these cases, the castle model only
provides minimal control.

Such initial anomalies become more critical in the context of organizations that have a
number of outside partners that are tightly integrated into the “inside,” as with many
organizations today, especially with “virtual companies,” which have a smaller core
company whose assets are not as much kept in a mainframe in the headquarters build-
ing, but are determined by the quality of the relationships a company has with its vari-
ous partners.

Continuing to apply a castle model of security to such an environment leads on the one
hand to a multitude of smaller security segments (“logical firewalls”); on the other hand,

it creates the need to connect these various segments by “tunnels,” such as the “extra-
nets” that have recently received substantial attention as one way to implement such
tunnels. While such an approach is certainly able to fix a good number of immediate
problems, it clearly does not grasp the underlying dynamics of the situation: the fact that

A Network-Centric Design for Relationship-Based Rights Management 9

Towards Frictionless Digital Rights/Relationship Management

genuine security needs to be relationship-based.! In other words, the question is how to
realize collaborative extranets that are managed on a peer-to-peer basis.

By providing an infrastructure such as FIRM that radically reduces the transaction costs

of managing one-to-one relationships, FIRM-based systems such as RManage effec-

tively make it possible to implement a security architecture that allows us to shift the
perspective entirely into arelationship view: Relationships (linesin Figure 2) are nego-

tiated between communication participants (small balls in Figure 2), and encapsul ated

in communication pacts (“commpacts”) whose externalization can in principle then
reside anywhere on the network (small boxes in Figure 2). Security is then obtained as
the ancillary of successfully managed relationships, rather than by imposing property-
based boundaries.

Other Examples

Relationship-based security is by no means limited to the problems that motivate the use
of firewalls. Much of what falls into the domain of contracting is subject to relationship-
based interactions. If a subdivision of a company wants to establish a new relationship
with an external supplier that includes sharing a significant amount of information
(indeed possibly even more than the same subdivision shares on a need-to-know basis
with any other group in its own organization), then we have arelationship issue that cuts
across organizational boundaries.

We need to support the kind of “trusted sharability” that has been described as being the
most significant impediment currently limiting the adoption of otherwise preferred
organizational forms (cf. [46] on virtual companies). Similar issues come up in privacy-
related areas, such as making health records available in a controlled way as part of the
highly structured relationships that now characterize the health-care industry after its
transformation from a largely invoice-based, service-for-fee cottage industry to one
based on prenegotiated contracts with Health Maintenance Organizations and Integrated
Delivery Systems [91]. Flexible records management requires managing dynamic but
structured relationships: that is, relationships that are not static to predefined organiza-
tional boundaries, but that also have more structure and context than have been consid-
ered in current models for simple exchange transactions. (See [29] for a perspective on
how to understand corresponding “relationship marketing.”)

Trusted sharability can have quite light-weight appearances. For example, consider
finding information about the current weather. Curiously, the interactive experience that
one currently gets on the Web is in some regard worse than what one gets by just tuning
into conventional broadcast TV in that, in the TV case, one at least obtains directly the
weather one cares about—without first having to go through a number of steps by which
one narrows down one’s geographical location. Having a structured, controlled way by
which servers can automatically obtain a user’s ZIP code for defined purposes would
allow the underlying “one-to-one infrastructure” to actually cash in on its promise and
provide actual “one-to-one content.” The same holds of course for many other exam-
ples, including having a consensual and controlled way of allowing publishers of adver-

. Note that the word “relationship” is used in many different ways in different contexts (“customer
relationships”, etc.). In this thesis, we use the expression in a fairly general sense, designating a
pattern of interaction between communication participants that is based on structured, mutual
expectations. For instance, a tacit understanding between two persons would qualify as a relation-
ship in our usage here.

A Network-Centric Design for Relationship-Based Rights Management 10

Towards Frictionless Digital Rights/Relationship Management

1.8

tising-based Web sites to collect certain basic forms of demographic information for
their advertisers, etc. (See the P3P work for further usages [219].)

Design Space

One way to understand the design space is to consider relationships along two dimen-
sions:

* their dynamics, or how relationships are formed and compl eted,

* their complexity, or how much information one would need to characterize arelation-
ship.

FIGURE 3.

Design Space: Systems designed for different types of relationships.

Complexity
Relationship Simple Structured
§ Static firewalls e.g. Lotus Notes
g
£ most “e-commerce”
> .
a Dynamic technologies X

Different technol ogies address different corners of this space. In particular, security fire-

walls are both simple (one is either “in” or “out”) and fairly static (their boundaries only
change as a result of reorganizations or acquisitions). Most “e-commerce” technologies
currently address mostly fairly simple—although possibly quite dynamic—relation-
ships. For example, purchasing an online image by using a micropayment mechanism is
a relatively simple exchange transaction, but there might be many of them in a relatively
short time period. Micropayment mechanisms can of course be used for fulfillment
tasks that come up in a relational context such as subscriptions, but the mechanism itself
does not support this context.

At the other end of the complexity spectrum, we have systems such as Lotus Notes that
deal with more structured relationships. After all, the target customers of such systems
have been enterprises that want to make their internal processes more efficient, as a first
step before addressing the question of how to improve their interactions with outside
parties.

Of course, both systems that were initially designed for usages in the static/structured
and in the dynamic/simple corner tend to have efforts on the way to extend their capa-
bilities to the dynamic/structured corner—the position in the design space with which
we are primarily concerned. Also, while trying to accommodate both structured and
dynamic relationships, we would clearly like to arrive at a design that also supports less
dynamic and less structured relationships just as effectively with the same mechanisms.

A Network-Centric Design for Relationship-Based Rights Management 11

Towards Frictionless Digital Rights/Relationship Management

1.9

1.10

Design Goals
The goals of our design are therefore to address the following questions:

e What is the overall conceptual framework that gives us a structured way to think
about relationships and how they relate to performing actions?

* What is a corresponding system architecture for managing control information that
we can use to apply this framework in the context of a networked environment such
asthe Internet?

e At asystems level, how do we deal with domain extensibility and interoperability
given the wide range of possible relationships and mechanisms? Specifically, what is
the specification for a corresponding rights management service layer?

¢ Finaly, what components are needed to make the system easy to use?

The Solution: Outline and Summary

L et us summarize key aspects of the design that we proposein thisthesis asasolution to
the above goals.

A Conceptual Framework for Relationship Management: Commpacts

We articulate a communication model that situates actions in the context of previously
negotiated relationships. Relationships serve as social reference points that constitute a
baseline with respect to which communication participants perform and evaluate
actions. In our model, every action is therefore performed with respect to a “communi-
cation pact” (short: “commpact”) that encapsulates the boundary conditions of a social
relationship. Possible externalizations of commpacts include but are not limited to legal
contracts and informal conventions. We also outline how this model offers a relation-
ship-based generalization of speech act theory.

An Architecture for Managing Control Information: Network-Centric

We develop an architecture for managing first-class control objects (commpacts) in a
way that reflects the basic notions of our conceptual framework. This architecture
allows commpacts to reside in principle anywhere on the network (which is why we call

it a “network-centric” architecture), allowing them to provide control in principle to any
other network object. This accommodates a wide range of usage scenarios, and general-
izes previous, client/server-centered models of access control to a peer-to-peer environ-
ment.

A Structured Way of Representing Relationships: Reifying of Contract Law

At the next level of detail, we examine the question of exactly how rights relationships
are structured and articulated. We rely heavily on contract law as the body of principles
and concepts that describe the shared structure of different rights relationships. We
describe the objects and protocols that define the core of our service layer. By separating
generic from domain-specific elements, we ensure that the architecture is extensible to
arbitrary domains and rights relationships.

A Demonstration Prototype: The RManage Relationship Manager

Finally, we describe a relationship manager application, called RManage, that is enabled
by the FIRM service layer. RManage unifies rights/relationship management from a

A Network-Centric Design for Relationship-Based Rights Management 12

Towards Frictionless Digital Rights/Relationship Management

user-centered perspective, and it supports full end-to-end integration of shared control
state in network services and users’ client applications.

RManage augments services such as Web servers with a component that allows these
services to make use of the FIRM infrastructure. RManage also provides implementa-
tions of the person and contract objects that FIRM assumes. (See also Figure 1).

The RManage implementation is based on distributed objects in Java and Python, using
the CORBA implementation: Xerox PARC'’s ILU system [246]. RManage can be used
either with a plain Web browser or integrated into DLITE [249], a Java/CORBA-based
direct-manipulation user interface developed as part of the Stanford Digital Libraries
project. RManage implements FIRM as one of the five service layers of the Stanford
Infobus [253].

RManage enables services to make available information governed by FIRM-compati-
ble digital contracts. The sample contracts currently available include various forms of
subscriptions, site licenses, and pay-per-view contracts, each with different forms of
search rights, approval rights, notification obligations, and payment obligations. These
digital contracts are “smart contracts” in that they integrate behavior related to what the
contract is about, including authorization, payment, privacy protection, etc. For exam-
ple, RManage provides fulfilment processing for a range of payment obligations by

making use of the UPAI payment application interface [251]. This interface was also

prototyped as part of the Stanford project; it provides an abstraction layer to integrate
native payment protocols from a variety of providers such as First Virtual, DigiCash,

VISA, etc.

Services that are currently using digital contracts as part of our experimental Infobus
testbed include our Infobus proxies to the Dialog databases and to a document summa-
rizer at Xerox PARC (running behind the company'’s firewall). Web-based services that
have been augmented by FIRM plug-ins include a Web site with weather information;
sample contracts deal here mainly with the controlled use of personal information.

Finally, RManage provides users with a uniform interface to the relationships that they
have with the various providers of FIRM-compatible network services.

A Network-Centric Design for Relationship-Based Rights Management 13

A Conceptual Model of Relationship Management

2.0

A Conceptual Model of Relationship Management

21

In this chapter, we articulate a framework for relationship management. We explore the
notion of an agreement, abstract it into a conceptual model, and address the question of
enforcement. This prepares the ground for going to the next levelsin Chapters 3 and 4,
where we will define a computational architecture and specify a corresponding network
service layer.

Understanding Agreements/Contracts

Agreements/contracts are fundamentally a socially coordinated construct employed to

frame relationships, give them structure, and set common expectations. [9][10][41]

While simple exchange transactions in “spot market” environments have historically
been dealt with quite effectively by simple property claims, such as in barter-based soci-
eties, contracts and contract law began to develop significantly in environments where
relationships had to be clarified. They became ubiquitous in modern legal frameworks
that conceptualize the existence of a contract even for simple kinds of exchange transac-
tions.

Let us summarize here a few points that are essential for understanding what agree-
ments are about at a general level.

* Agreements are a set of enforceable promises between two or more parties. They
provide the context necessary to characterize relationships, even if they are of
longer-term nature; they encapsulate boundary conditions of relationships, and they
create social reference points to which people can refer back at any later point, to call
into presence what they had coordinated themselves about, as part of a social mecha-
nism of coordinated expectation. See MacNeil [4][6][5] for more material along the
lines of the kind of relational perspective that we assume here, and [7][8] for critical
reviews that qualify this approach.

* Agreements can be enforced through a variety of means, not necessarily through the
legal system only. In fact, legal enforcement is secondary in many regards to other
forms of enforcement, and we do not rely on it as one of the primary mechanisms of
interest here.X In Section 2.4, we will examine the issue of enforcement in further
detail.

* Agreements provide a conceptual separation—and thus flexibility—between coordi-
nation activity (negotiation; agreeing on what to do) and fulfillment activity (perfor-
mance; actually doing it). For example, in a purchase transaction, the act of
coordinating oneself around the expectation that one party will pay and the other will
deliver is separated from the actual fulfillment of these obligations. In other words,
we have obligations as first-class objects of a language that allows us to articulate
how to constrain actions and their sequencing. For instance, we can require that a
payment obligation be fulfilled before an access right can be exercised, or vice versa.
In fact, obligations are objects that can also be transferred, traded, etc.

1. There are at least two reasons for this. For one, the reality in the United States is that courts are
basically already busy with criminal cases, leaving them virtually no room for contract matters.
Secondly, there is a wide range of present and historical examples that show how contracts have
been successfully used as a coordination mechanism, even in the absence of any legal enforce-
ment. See Ellickson [47][48] and Greif [38][39][40].

A Network-Centric Design for Relationship-Based Rights Management 14

A Conceptual Model of Relationship Management

* Agreements can be about objects, but they also uniformly extend to purely relational
forms that are not about any objects. Agreements can easily “quantify” over multiple
objects. For example, a subscription agreement can be about a whole series of items;
there needs to be only one such agreement pointing to the objects about which it is.
The same could be achieved in a property-based model only via extensive replica-
tion. Indeed, agreements can express constraints about objects which do not yet
exist. For example, subscription agreements are usually about issues which still need
to come into existence; nevertheless, we can already talk about these rights and obli-
gations of future objects, pay for them, etc.

* Agreements provide a uniform way for adding reservations and special clauses,
including warranties, guarantees, terms and conditions, etc.; this includes various
forms of “strings attached” such as usage conditions. Note that the conventional sub-
ject-object model of access control created a gulf which led to the need to separate
out “access” and other kinds of usage control. A relationship-based (contract) model
lends itself to uniformly extend to usage control issues and to obligations and liabili-
ties along with access rights.

* Agreements are, at least in principle, peer-to-peer, not supplicant-granter. The con-
ceptual shift towards centering access/action control around relationships and
towards a communication model instead of the requester-granter metaphor rephrases
the old access-control question of “Do | grant this?” to the new questions of “Based
on which relationship are we talking to each other?” and “How can we collaborate
across organizational boundaries and communicate clearly to everyone what the
mutual expectations are?” It recasts the access control question from that of a unilat-
eral decision to a matter of agreeing on boundary conditions of a relationship. In
other words, we recast security and access control as an issue of relationship man-
agement and collaboration.

2.2 The Commpact Model

Our framework is based on a communication model in which actors perform actions and
communicate with each other about the world. Communication acts take place between
actors within the context of the boundary conditions of the previously negotiated social
relationship between them. These boundary conditions do not necessarily have to have
been explicitly articulated anywhere; they could be just in the form of a tacit under-
standing, for example. However, we postulate that there always exists an agreement on
the boundary conditions of the communication relationship—thus only making it possi-
ble for effective communication to take place—and if this agreement is imperfect or if it
could be more specific, then there will be negotiation communication to the effect of
finding a better agreement.

At the risk of providing a bad metaphor, we can compare this situation to that of a radio
receiver that is being tuned into the right frequency to be able to receive signals from a
sender—only that we have a more peer-to-peer situation here where both the sender and
the receiver have a part in adjusting their behavior in order to find a common ground for
communication, in a way that is negotiated in the same medium in which all of the rest
of the communication takes place as well.

There are two distinct processes of communication going on: a.) negotiation of the
boundary conditions of a social relationship, and b.) performance within the context of

A Network-Centric Design for Relationship-Based Rights Management 15

A Conceptual Model of Relationship Management

221

the agreed-upon boundary conditions of such arelationship. As amatter of terminology,

we shall refer to this set of conditions that frame a relationship as a “communication
pact” (or “commpact” for short). We introduce this new word so that we have a way of
clearly referring to the meaning in the context of our conceptual model and, later, of our
computational reification. In other words, commpacts encapsulate the boundary condi-
tions of the relationship of two or more communication participants—in a way that is
able to prove a social reference point for coordination activity.

Note that commpacts can have different forms of externalizations. For example, a major
subset of commpacts has an externalization in the legal world in the form of legal con-

tracts. Other commpacts have quite different externalizations and associated enforce-
ment means. Anonymous ftp on the Internet, for instance, is a commpact that says that
people who identify themselves with their e-mail address can access the public directo-
ries of a file archive provided by the offeror of the commpact.

In the remainder of this section, we examine more closely the basic dynamics of models
of negotiation and performance, which we will then further refine into a specification in
Section 5 and in the Appendix:

* The negotiation model is that subjects negotiate the mutually agreed-upon boundary
conditions of their relationship, and then encapsulate them in asocial reference point
that we call acommpact.

* The performance model isthat every action is conducted with respect to a commpact
chosen by the performer. This designated commpact establishes the baseline with
respect to which actions are then interpreted and eval uated.

In practice, negotiation and performance often occur in parallel. Moreover, the step of
designating a commpact is often largely implicit, and default rules are used to make this
designation step efficient. For example, external circumstances such as the environment

in which an action takes place (e.g., office vs. home) will often make clear which
commpact applies by default—unless explicit other (e.g., linguistic) cues are used to
introduce a different applicable commpact.

Negotiation Mode: Establishing Mutual Assent About a Commpact

A commpact is a set of promises that is agreed upon as a result of a negotiation accord-
ing to a general protocol that does not depend itself on the content or the domain of the
specific promises. This protocol effectively mirrors the concepts and principles applied
in contract law [1][2]. It is fundamentally based on an extension of the speech act model
in Winograd & Flores [240].

The basic actions are that of issuing an offer, negotiating it, and accepting or rejecting it,
or revoking it (by the party who issued it). Successfully formed, “effective” agreements
can also be terminated and renegotiated, in which case a new offer takes the place of the
previous offer, and a new negotiation is started. Figure 4 shows a finite-state diagram
that defines the sequences in a hegotiation process leading to successful contract forma-
tion.

A Network-Centric Design for Relationship-Based Rights Management 16

A Conceptual Model of Relationship Management

222

Performance Mode: Making Use of an Established Commpact

The “normal” mode is that an actor would like to perform an action based on a previ-
ously established relationship. For example, a browser might want to access a search
engine based on a licensing agreement that a user had set up.

FIGURE 4.

Negotiation: States and Transitions.

B: Accept

A,B: Terminate

Y

A: Take -
Form — Draft A,B: Renegotiate Etif\f/(:,-c-—> min-
ted

B: Revoke
Offer %ept

As mentioned above, in such a case, the actor would request the execution of an action
while designating the commpact with respect to which the action is supposed to be per-
formed. This commpact would then serve as the mandate (technically: the “authoriza-
tion monitor”) for the given action, if the commpact is legitimate: A right in the
commpact would beexercised to be able to perform a corresponding action. For
instance, in our search engine example, in order to execute a search, we would exercise
the search right of the licensing commpact.

In other words, at the performance level, we are now dealing with the issue of identify-
ing rights that we can exercise in order to “authorize” a certain action, or identifying
obligations that require certain actions to be performed. As an example, consider that a
purchase agreement would generally contain a payment obligation as well as a delivery
obligation and other terms and conditions. This payment obligation can be fulfilled in
any of a variety of ways: by paying in cash, by sending a check in the mail, by doing an
online transaction, etc. The exact, domain-dependent way in which this is date is
part of the rights management service layer (FIRM) that we define in the this thesis; it is
left to implementation-specific mechanisms. Commpacts only talk at the level of
whether or not a certain obligation has been declared to be fulfiled. FIRM provides
APIs that allow us to talk about rights objects and their transactions; the way in which
such transactions are performed is left to specific implementations.

As an example of the kinds of constraints that can be expressed at the rights level, con-
sider that someone might want to require “prepayment” for a certain document access.
The way to articulate this in our model would be to posit a commpact containing an
access right and a payment obligation such that there exists a promissory condition for
being able to exercise the access right that says that the payment obligation had been
declared to be fulfilled.

A Network-Centric Design for Relationship-Based Rights Management 17

A Conceptual Model of Relationship Management

2.3

2.4

Related Work

In the linguistics community (philosophy of language), speech act theory (cf. Searle

[238], Austin [239]) pioneered the idea that there exists a set of generic “speech acts”
that describe an expression’s underlying action at a level independent of the linguistic
form that realizes it. According to this framework, people communicate by issuing
speech acts through which they “request,” “declare,” or “promise” something to some-
one—to name just three.

Winograd & Flores [240] took this approach further by noting that speech acts do not
occur in isolation, but as part of patterns of sequences of acts that define a “conversation
for action” (cf. Figure 5.1 in [240]). Like speech act theory, this model takes individual
promises into the domain of first-level actions rather than separating the negotiation of a
complete set of mutual promises into a distinct process. The drawback of this was that
even simple purchase transactions cannot be covered in a natural way. Consider a situa-
tion where a buyer agrees with a seller to pay for a good in exchange for the seller deliv-
ering it. These are two interlinked promises: a payment obligation and a delivery
obligation. However, the model in [240] does not have a mechanism to express such
linkage. Another point is that the model in [240] is geared towards an organizational
context, where actions always already have one default commpact, say, in the form of
the employment relationship. In such contexts, it is plausible to have a model like [240],
which uses issuing a ‘request’ as one of the possible, initial actions. The commpact
model makes this explicit and provides us with a more general framework to model
such actions.

The commpact model articulated in this chapter addresses this issue by providing a
more powerful framework that leverages the kinds of conceptualizations that have
guided work in contract law [1][2]. The idea is to conceptually separate the two distinct
processes of negotiation and performance: A complete set of mutual promises is negoti-
ated in a process that is distinct from the process by which any of the agreed-upon
promises can then be fulfilled. By applying concepts and principles from the legal
domain, we also make sure that actions and states are computationally reified in a way
that provides a clear mapping to the way in which social behavior is considered to be
structured by the legal framework.

Enforcement

In this section, we examine the question of how to enforce terms and conditions articu-
lated in commpacts. Our main point will be that enforcement is a global property that
depends on a range of dimensions that can be taken into design considerations.

We will first lay out the types of enforcement paradigms that play a role in general. We
then examine how this compares to the models of enforcement that are typically applied
in the design of software applications. As a prototypical example, we describe the ISO
Access Control Framework [94], which formulates an abstract control model based on
the idea of interrupting “unauthorized” actions to keep them from completing. We then
use a number of examples to point out how this is too constrained a model to be able to
deal with a range of practical situations. This leads us then to shift to a different frame-
work that opens the space for toolkit-based design of application-specific solutions.

A Network-Centric Design for Relationship-Based Rights Management 18

A Conceptual Model of Relationship Management

241

Types of Enforcement: A Top-Down Perspective

Figure 5 gives an overview of the general types of mechanisms that can be used to
enforce policies at various time stages of an action that is supposed to be controlled in
some form. Table 1 then summarizes this with two examples.

Enforcement starts with the general environment. For instance, if the environment has a
balanced wealth distribution and there are no enemities, then people might not even

think of doing certain actions such as shooting someone or manevolently deleting some-

one else’s files. In the “real world,” we have many ways in which this type of enforce-
ment is included, from “good neighborhoods” to open-doors offices in protected
buildings, etc. In computer systems, this has not typically been part of the security
thinking, although we increasingly see instances of designs that explicitly exploit prop-
erties of the environment to reduce the control overhead necessary within certain units
of a certain environmeritNote that an unconducive environment does not rule out the
possibility of certain actions to happen accidentally. This is why it is useful to comple-
ment this approach by applying in addition elements of the ‘remedy’ model, discussed
below.

FIGURE 5.

Anchor Points for Enforcement.

begin end

I action ._I
| |

time

Create Disable Interrupt Remedy/ Sanction
Unconducive Tools/ Revert
Environment Affordances

Next to creating an unconducive environment, one of the obviously most effective

means of keeping an action from happening is to remove the affordances/tools for this

action. Thisis the gun control model that is based on the fact that the absence of guns
necessarily implies the absence of gun shots. The problem with this model liesin cir-
cumstances where a similar affordance is required in another context to which the affor-

dance that we want to disable applies equally—and the nature of the affordance
underspecifies the contexts in which it is applicable. For instance, guns can also be used
for self-defence, and it is not easy to separate these two usages at the time of the acqui-
sition of the instrument. Note that the disable class of enforcement also extends to issues
through time. For example, consider a merchant who does not hand over sold merchan-

. There is an interesting historical example of a shared computer system that exclusively relied an

unconducive environment and reputation-based control for enforcement: The MIT ITS system
(Incompatible Time-sharing System), an influential but highly idiosyncratic operating system

written for PDP-6s and PDP-10s at MIT, was used from the 1960s to 1982 at the MIT Al Lab,

without any technical access control to files. Even the ‘HALT’ instruction could be executed by
any user at any time. The absence of control was generally considered a blessing since it meant
less overhead. The fact that all users of the system shared one room provided a social context.

A Network-Centric Design for Relationship-Based Rights Management 19

A Conceptual Model of Relationship Management

dise until payment for it has been secured; this transaction protocol removes an affor-
dance for failing to pay for purchased goods.

Interrupting an initiated action if it is not supposed to happen, is another enforcement

method. This is the “bullet-proof vest” case. This action-interrupt model is also the
enforcement model that is commonly used in computing systems, in the form articulated
by the ISO access control framework, for example. The action-interrupt model assumes
that an action is to be enforced that already started to happen but that a policy might turn
out to declare unauthorized, such as a user making use of a delete key to delete a file
that then turns out not to be deleteable—a breakdown that then needs to be communi-
cated specially by involving the user in some extraneous dialogue, etc.

TABLE 1.

Example\Type

Enforcement Types: Examples and Paradigms.

Environment Disable Interrupt Remedy Sanction Deter

Crime, e.g.
“getting shot”

wealth distri- gun control bullet-proof
bution, etc. vest

hospital prison police

Unauthorized
file deletion

notification
of owner

loss of
reputation

no “delete” check
functionality

friendly atmo-
sphere, etc.

backups &
predefined undo
rights

Enforcement
Paradigms

242

Influencing Design of ISO Access
Environment/ Affordances Control
Culture Model

Design for Cost
Fail-Safe/ Structure Identifica-
Recover- Design tion and
ability Visibility

Design for

The ‘remedy’ approach is based on instituting means that support one’s ability of recov-
ering previous state. For instance, rather than executing ‘delete file’ requests by actually
deleting the object in the file system, we could have a design that always just moves
such files into the “background,” much like current systems that do incremental back-
ups, but user-conceptually more integrated. Then files can be recovered and we do not
have to worry as much about strictly limiting ‘delete’ actions to authorized users only.

Finally, enforcement can make use models that sanction or deter specific actions. Both
means require appropriate mechanisms that allow for identification and authentication
of a performer. In particular, an efficient form of enforcement that has been widely dis-
cussed in the economics literature is that of reputation-based community enforcement.
This type of enforcement combines internal evaluation of members with the threat of
being expelled from the community (cf. generally [41]). Reputation-based enforcement
is a social mechanism that can be enabled by appropriate design at the technical level.
Enabling mechanisms for this type of enforcement include having adequate means for
identification and visibility. Interestingly, once we have these enabling mechanisms in
place, we can shift some of the enforcement burden from authorization to authentica-
tion, where authentication is used to trigger a identity-based feedback mechanism that
then removes the need for the system itself to enforce specific authorization policies.
The examples in Section 2.4.3 will illustrate this.

Example: Action-Interrupt Control in the ISO Framework

Let us examine how enforcement of authorization policies is conventionally dealt with
in current computing/communication systems. The ISO Access Control Framework is a
representative model; it places enforcement of access control in the context of an

A Network-Centric Design for Relationship-Based Rights Management 20

A Conceptual Model of Relationship Management

abstract technical system, and introduces relevant terminology (cf. Figure 6): Every
operation is intercepted by an “Access Control Enforcement Facility” (AEF), which
asks an “Access Control Decision Facility” (ADF) for a decision about whether this
action is authorized. If so, the operation is performed on the target object; otherwise the
AEF generates a failure exception. The reference monitor including both ADF and AEF
is part of a (secure) “trusted computing base”. The access-control decision facility itself
is generally conceived to be based on a system of access-control rules in which specific
policies are expressed (e.g., LaPadula [179]).

Note that the ISO framework is based on an action-interrupt model. From a usability
perspective, the questions arise

» why a performer was led to believe in the first place that a certain action could be
executed, if this action is evidently “illegal” (therefore creating the need to interrupt
it to keep it from completing), and

» why no undo facility had ben put in place that would allow the uninterrupted com-
pletion of the action.

In other words, we arrive at the point where we want to shift the perspective from
enforcement as rule processing to enforcement as tool-supported design of an interac-
tion.

FIGURE 6. ISO Access Control Model: Action-Interrupt Control.

CONTEXT

v

Reference M onitor

Access Control
Decision Facility
(ADF)

*Request +Decision Target

Object
Operation Access Control OK
Enforcement

Facility (AEF)

User

Fail

2.4.3 Shifting from Enforcement as Rule Processing to Enforcement as a Design Issue

Several examples demonstrate how technical systems can leverage forms of enforce-
ment other than simple action-interrupt control. These examples identify the need for a
design approach to enforcement that involves the design of the whole system, rather
than only the authoring of rules for an ADF. In particular, they show that for many prac-

A Network-Centric Design for Relationship-Based Rights Management 21

A Conceptual Model of Relationship Management

tical policies there exists no set of rules, decidable at action time, that would adequately
enforce policies that people intend to have in place.

Rather than focusing on researching better ways of representing authorization rules, as
done in a whole series of work; cf. [114][115][116][128][129], we therefore shift the
emphasis to application-specific design. Going along with this, our interest shifts to the
question of having toolkits that allow application developers to rapidly implement
appropriate enforcement solutions. The commpact model constitutes a unifying core
that can provide the basis for such atoolkit.

Example: University Course Material on the Web

Consider the following access control problem: A university professor uses the Web to
make available material related to a class she is teaching; this includes the weekly
assignments as well as their solutions. At the policy level, she has three primary con-
cerns in mind regarding the access control for this material:

¢ Access should essentially be open to anyone interested. Two exceptions are however
that

* students in her current class should not see any of the subsequent weeks’ solutions,
and

¢ those students who will take the same class in future years also should not have
access to any of the solutions—since there might be some reuse of assignments.

Note that such an access control policy is precise, although it is not obvious how to
articulate and enforce it given current systems. In particular, current models would not
consider parts of it even decidable, at least not at access request time, since one does not
know which students will take the class in future; in terms of a framework such as the
ISO model, the policies therefore appear ill-defined.

However, here is an outline of a commpact implementation that would achieve the
desired effect in a practical way. It leverages the fact that the students at her university
are already bound by the student honor code. To be able to access the course material,
the “communication pact” would require accessors to authenticate themselves not only
minimally, but also by their full name. Note that this is not a privacy-critical application

and it helps the professor to track where her efforts went. Such information would then
be logged by the commpact in an appropriate form. At times, the resulting log can be
matched against event masks in order to detect “interesting events,” including, for
instance, whether there is any overlap between students in class and accesses. If so, the
professor will be notified by this event in an appropriate Way.

In other words, one of the requirements for our toolkit is that we have a way of commu-
nicating with the user of a certain application in a direct (application-specific) way. Note
that this kind of communication channel is not even part of the overall ISO architecture.

A computational commpact object would have to be able to contain interface communi-
cation that would be able to make clear to a user that if planning to take the class (or
considering the possibility), then it is inadvisable to look at the pages. Then, if a student

. Of course, astudent can alwaysfind afriend who makes available his or her account to get around
the system. Note that thisis like having a highly secure terminal |ogin mechanism and then leav-
ing the terminal itself physically unsecured.

A Network-Centric Design for Relationship-Based Rights Management 22

A Conceptual Model of Relationship Management

The main thing this bill
doesisto put everybody
on noticethat if they are
handling sensitive
patient data, they have a
responsibility to that
data. If they do not hold
to those responsihilities,
there are sanctions that
come into play.

D.E. Detmer !

decidesto look at acertain page and to go ahead a year later to take the same class, then
this event would show up on the professor’s notifier and the case would have to be dealt
with on an individual basis.

Example: Privacy of Medical Records

Our second example is directly taken from a proﬁoﬂ;ﬂit was considered for some

time as a legislative measure. This proposal articulates access control policies for health
records, and, interestingly, the way in which this is done relies on a system of creating
awareness of responsibility and on making actions visible to stakeholders—rather than
depending on “technical locks” to prevent access. Notification plays an essential role as
a means to this end. For example, the framework provides for an obligation that law
enforcement agencies would have to notify people within 30 days that they had seen
their records.

Notification as an obligation takes on a function of “panoﬁt'u:ﬂntrol. Such notifica-

tion allows for the “pure” access control to be expressed more liberally (e.g., “any doc-
tor can see the medical record”), thus reducing the need for explicit approval while still
making sure that the concerned parties are aware of what is happening to information in
which they have a stake.

An application of the commpact framework would deal with such a situation quite natu-
rally. The terms and conditions of the various relationships would be represented in a set
of commpacts between the different parties. Then the authorization functions that con-
trol access to certain kinds of information would make user aware of the ramifications
of a certain access rather than necessarily preventing access, and implementations of
objects such as notification obligations could automatically deal with the fulfillment
part, say, by sending appropriate messages to the relevant stakeholders.

Example: Differential Pricing via Monitoring

A publisher would like to generate revenue from the content of its Web site. Standard
possibilities include advertising (which we will not consider here) or subscriptions
(which are likely to drive away many users and reduce traffic significantly).

Commpacts allow other forms of access control mechanisms to be implemented—in a
form that allows material to be priced according to people’s willingness to pay (differ-
ential pricing). In particular, consider the following monitoring-based implementation:
Two commpacts are offered for the Web site. One of them is a “free occasional brows-
ing” commpact that does not carry any payment obligations. This is the default
commpact that users will transparently pick via their “e-persons” (cf. Chapter 5) to
access the site without the need for any registration or sign-up procedure.

. US Medical Records Confidentiality Act, sponsored by Senator Robert Bennett and Patrick

Leahy, “intended to establish uniform Federal rules for the use and disclosure of health informa-
tion, specifying who may see health records and under what circumstaredev York Times,
Nov 15, 1995, Al (“Medical Records Are on Sale in the Marketplace”).

. A panopticon is a general-purpose architecture of visibilities, articulated first in Bentham [49],

that is most widely known for its suggested application to prison design. A carefully constructed
set of visibilities is used to keep people from doing certain things. In a panopticon, every action of
the controlled actor is fully visible to a controller, and the fact that this visibility exists is made
clear to the actor. However, it is kept invisible to the actor whether any controller is actually exer-
cising the existing visibility, to observe any specific actions.

A Network-Centric Design for Relationship-Based Rights Management 23

A Conceptual Model of Relationship Management

The only function of this commpact is to assign people alocal pseudonym, to monitor

their accesses, and to cause an exception in case these accesses surpass a certain fre-

quency threshold, in which case the user is taken to be a “serious” one. Serious users
will then be asked to agree to the other commpact, which might include a monthly pay-
ment obligation, for example.

Note that by using such a “loosely” enforced form of access control, we get the best of
all worlds: People can freely get to know the services of a certain site, spread the word
to others, link it up, etc. On the other hand, people who repeatedly care about certain
services will be asked for remuneration.

Example: Shared Space of an Online Community

Online communities exhibit social boundary elements that are becoming increasingly
relevant for mainstream networked environments. Such communities often share some
“space,” and appropriate means of access/action control for this shared resource are an
issue for which the conventional techniques do not yet provide a good solution.

In this final example, we examine a typical problem in such communities: the problem
of managing access to the (Internet-accessible) shared information of this community
such as member profiles and interests. Several solutions are possible, each trying to find
a better practical trade-off between ease of access for the “right” people, ease of keeping
the information up-to-date, and security.

Conventional access control: An access control design in a conventional mindset would
ask the question of who would get read/write rights to a certain profile. This leads to
essentially two models, both of which turn out to be not entirely satisfactory. In the first
one, elected administrators could do all the editing of the database. This is clearly puts
an unnecessary load on a few people, causing overhead that will discourage updating.

The other obvious model is that of fine-grained access control based on per-user identi-
fication of accesses and corresponding item-level restrictions on editing. This will often
turn out to be socially impractical for two reasons, one technical and one representa-
tional. The technical reason is that the infrastructure requirements for authentication are
currently large, and there are currently only few situations where one can assume that
everyone has, say, a public-key credential.

The more interesting other reason applies equally in the context of full availability of a
widely adopted authentication facility with comprehensive functionality: The basic
problems lies in the fact that there is usually a large amount of informal communication
among the members of a community, resulting in “friends” helping each other out in
editing their entries, etc. (e.g., people without Web access, people already on vacation
calling back someone to turn off the mail, etc. In other words, the barrier to usability
seems not to lie here in the adoption of better existing technologies, or in the fact that it
is hard to make certain technologies a widely used standard, but the barrier is in the
inadequate reflection of the underlying social dynamics in such formal models.

Note that the latter is conventionally treated under the label of “delegation,” a mecha-
nism whose necessity arises in the context of having introduced per-user authentication
and user-based access control; delegation then essentially tries to “undo” some of the
fine-grained parcellation which per-user authentication generated. An effective delega-
tion mechanism would have to make explicit the hidden structure of social relationships
corresponding to such vague notion as being “friends” with respect to editing a profile

A Network-Centric Design for Relationship-Based Rights Management 24

A Conceptual Model of Relationship Management

entry at agiven time, etc. Note that we do not claim that it is not possible to devise a suf-
ficiently flexible delegation mechanism for simple tasks; we are concerned with itsrela-
tive cost compared to the model described below, including the cost/likelihood of its
standard availability.

Panoptic control: We can apply a model of “panoptic” control that leverages the already
existing reputation-based community control. The idea is to register stakeholders for
every information item (e.g., a member’s profile), and to introduce a system of visibili-
ties (both push and pull) that will make it unlikely that anyone will create harmful mod-
ifications. Such visibilities can be in the form of making clear that there will be e-mail
notifications for certain actions, or in the form of a publicly visible enriched log file that
provides details about any modifications. Note that the point is not necessarily that any-
one would want to look at such information, but the possibility together with the ability
to get back to such information often creates reasonable enforcement of an action. Note
that apart from such visibility creation, the community database can then essentially be
left open for anyone (in the community) to edit it in any way—thus giving the flexibility
that members can update profiles for their friends, etc.

Obviously, this setup is still vulnerable in terms of data integrity with respect to inten-
tional or accidental deletions of entries. This can be dealt with by replication of previous
state and detailed change logs (the ‘remedy’ model). In other words, a practical access-
control solution in the case of maintaining a community database consists of a combina-
tion of group membership certification and a network of visibilities that make changes
visible and assign responsibility to whoever performs the changes.

A Network-Centric Design for Relationship-Based Rights Management 25

A Conceptual Model of Relationship Management

24.4

A Generalized Enforcement Framework

Aswe shall describe in more detail in the following two chapters, one of the main addi-
tions that we incorporate into the overall control model is to integrate users and their
representations more fully into the access negotiation.

FIGURE 7.

The Generalized Enforcement Framework: Integrating Application-Specific User
Interactions into the Control Framework.

CONTEXT
Reference Monitor
Access Control Access Control
User Dialogue Decision Facility
Protocol (AUDP) (ADF)
uest +Decision Target
*Req Object
Operation Access Control OK
Enfor cement

Facility (AEF)

In particular, we augment the SO model by an Access-Control User Dialogue Protocol
that allows control objects such as commpacts to conduct a dialogue with users or their
representations. We implement application-specific ways of exercising enforcement that
appropriately reflects the circumstances of a given domain, notifying users in a user
interface, etc. Figure 7 shows this revised model.

A Network-Centric Design for Relationship-Based Rights Management 26

A Network-Centric Architecture for Managing Control Information

3.0

A Network-Centric Architecture
for Managing Control Information

3.1

In the previous chapter, we have seen the notion of a commpact as a relationship object.

In this section, we define an architecture that allows us to manage these objectsin prin-

ciple anywhere on the network, and we explain how this “network-centric” architecture
is a natural generalization of previous architectures.

First, we will survey the three abstract ways in which control information can be orga-
nized: in a subject-centered way, an object-centered way, or a relationship-centered way.
We then consider the different ways in which these structures can be distributed in a
computational environment—as capabilities, access-control lists, or commpacts. The
boundary conditions and design constraints are somewhat different in time-sharing
environments (for which the conventional control architectures were originally
designed); in client-server environments (to which they can be adapted); and in today’s
networked environments. In the latter, we have to deal with a multiplicity of authorities
that are often at least theoretically peer-to-peer, and we also have varying degrees of
trust. This creates a need for flexibly allocating control objects in a networked environ-
ment. We show how the network-centric architecture enables these usages. We use Cal-
lerID negotiations as an example usage scenario to demonstrate how communication-
based transactions are more naturally dealt with by a communication-based control
architecture than in conventional, client/server-based control architectures.

Three Ways of Organizing Control Information:
Subject-based, Object-based, or Relationship-based

Control information can be organized into information structures in three abstract ways.
Two of these—subject-centered and object-centered—are well-known from the “Lamp-
son matrix” [100] that originally introduced ways of organizing control information in
time-sharing environments. We revisit both of these possibilities and also lay out a third
logical possibility: a relationship-centered way.

The Lampson Matrix

Let us revisit the conventional textbook description of the fundamentals of access con-
trol: Since the seminal paper of Lampson [100], it has been commonplace to view the
protection problem as a large global access control matrix, where the human-organiza-
tional objects (“subjects”; matrix rows) stand in some authorization relation (“rights”;
matrix entries) with information objects (“objects”; matrix columns). Cf. Figure 8. For
convenience, it is also common to additionally have “groups” of people included on the
subject axis, and, similarly, to have collections of objects, defined by properties, on the
object axis.

A Network-Centric Design for Relationship-Based Rights Management 27

A Network-Centric Architecture for Managing Control Information

FIGURE 8. Lampson Access Control Matrix.

Objects
01 02 O3 04 ..

S| r
S2 r
S3 w

Subjects

Underlying Assumptions

Some of the implicit assumptions behind this Lampson matrix are the following. Note
that we are not challenging the mathematical validity and usefulness of the matrix, but
we want to identify sources of potential problems given the cost structure of obtaining
information in networked environments.

e Subject-Object World: The assumption is that we have notions of “subject” and
“object,” that is to say, for instance, that the quality of “subjecthood” comes into
being uniformly and independently of the actual interaction. We detail some ramifi-
cations of this below (cf. also Sandhu [111][112]). Note also that what is considered
“object” here, is of course really something provided by another subject, the
“owner,” that is, the real person who is liable and responsible for it. A communica-
tion-based model would place this owner on the same level as the requesting subject.
In the conceptualization of the access control matrix, owners only show up indi-
rectly.

* |Interaction-Independent Objects: Note that an “object” might come into existence
only as part of an interaction. For example, cgi-bin scripts of Web servers can syn-
thesize any number of objects at interaction time, without the stipulation that they
necessarily exist prior to this interaction. It is possible to conceive a mathematical
matrix which covers all these objects, even if this might stretch the idea of a (finite)
matrix quite a bit. But this abstraction does not fully reflect the underlying real-world
dynamics, and it will not be surprising then if it might not capture certain cases very
well.

* |Interaction-Independent Subjects: A similar issue holds for subjects. Clearly, we
know that there are people and groups of people in the world. However, the qualities
which makes them “subject” or “group” in a given context are assumed in the matrix
model to be ontologically prior to the interaction between “subject” and “object.”
This is generally far from clear. In particular, it depends on the following assump-
tion.

* Open-Cards Assumption: This is the assumption that at the point of the access con-
trol decision, all of the information that is critical for the decision is laid out “on the
table.” Note that this is a plausible assumption in environments, such as in time-shar-
ing systems, where the system can take on a “Gods-eye” view. It is clearly not the
case in peer-to-peer communication environments where two parties might only
incrementally reveal properties that they hold, for instance, for privacy reasons. In

A Network-Centric Design for Relationship-Based Rights Management 28

A Network-Centric Architecture for Managing Control Information

fact, aswe will later see, for communication-based usagesin the general case of con-
tent-dependent and user-dependent access control we easily run into the trouble of

high negotiation cost—a fact that is partly the result of the assumption of uniform
subjecthood in the Lampson matrix, which is not realized in the underlying real-
world dynamics.

Abstractions that do not fully grasp the underlying dynamics often create artificial
“exceptions,” that is, certain cases do not fit smoothly into the framework. The notion of
a “role” of a person is one example of such an exception, which arises from the fact that
subjecthood is treated as ontologically prior to the interaction by which it might only
come into being. “Roles” are then invented to try to fix this problem by discretizing sub-
jecthood.

Subject-Object Conceptualizations

Having laid out the Lampson matrix, text books would then usually note that this global
matrix is impractical to implement directly, and that there are two ways of realizing the
abstract formulation, which correspond to the two fundamental conceptualizations that
have been investigated in much detail over the past 25 years:

1. (by column) Object-Centered Realization: For each object, specify which subjects
have which access rights to it.

2. (by row) Subject-Centered Realization: For each subject, specify which objects it
can access with which rights.

Subject-Subject Conceptualization

Shifting to a communication model and making explicit the fact that rights are always
granted by owners of objects, we see that a third logical possibility for realizing the
Lampson matrix is along the lines of the relationships between the owner of an object
and the holder of a right about this object (cf. Figure 9):

3. (by rights relationship) Relationship-Centered Realization: For each relationship
between object owners and interested users (“licensees”), specify which rights each
party holds about the objects covered by this relationship.

In other words, we introduce an explicit third entity, a relationship object, as shown in
Figure 9. In the object-centered (ACLs) approach, there are three control objects; in the
subject-centered (capabilities) approach, we get three control objects; and in the rela-
tionship-centered (commpacts) approach, we have two control objects in this example
(one for each relationshiﬁ).

So far we have only considered the abstract organizations of control information into
objects; we have not yet examined the orthogonal question where to place such objects.

. The example happens to create fewer objects for the relationship-based realization of this typi-
cally sparse matrix than for the other ones. We do not wish to claim that thisis necessarily a gen-
era property of thisrealization though. In general, the relationship-based form will have asmaller
number of control objectsif alot of objects are governed by afew relationships.

A Network-Centric Design for Relationship-Based Rights Management 29

A Network-Centric Architecture for Managing Control Information

FIGURE 9. Realizations of the Lampson Matrix (Revised): Organizations and Uses.

S3 Sl .. Owners Organization Use As

/N /N _
01 02 03 04 . Objects 01: (S1, 1)
03: (S3, w) ACLs
Si| T 04: (S2. 1)
S2 r -
S1: (r, 01 o
> " S2: Ef, 043 Capabilities
\ S3: (w, O3)
Sbjects Commpacts

<S1,S3>: (r, S1, 01), (w; S3, 03)
<S1,S2>: (r; S2, 0O4)

3.2 Three Ways of Embedding Control Objects

Information can be placed and used in a network at three different types of locations:
clients, servers, or anywhere else on the network. Depending on how we distribute con-
trol information, we therefore obtain different models of control management. The
object-based realization lends itself efficiently to use as server-based access-control lists
(ACLSs), the subject-based organization as client-based capabilities, and the relation-
ship-based organization as commpacts. Note that commpacts are the only structure that
is symmetric and that is therefore not bound to a specific location.

In the time-sharing environments for which the earliest designs were developed, imple-
menters had homogeneous control over the security and trustworthiness of the different
parts of the system. It was therefore possible to easily associate capabilities with
requesters or ACL s with the accessed objects.

In client/server environments, this architecture generalizes in a fairly straightforward

way; the only difference is now that control information associated with subjects cannot

be trusted quite as much, and we therefore need to authenticate the asserted capabilities
properly, say, by using public-key tokens. Note that thisis an authentication of the capa-

bility information itself, apart from the authentication of the subject, which we also

already have in time-sharing environments of course. Also note that a combination of

the ACLs and capabilities, a “lock-key” mechanism, is often used in practice: At first,
ACLs are used to determine rights; then these rights are then “compiled” into an access
capability. However, this is really mostly an implementation optimization.

Once we move to a networked environment, we have additional boundary conditions for
a control design:

e multiplicity of authorities and trust levels: Thereisamultiplicity of social authorities
that have a stake in the representation of various control structures, and many differ-
ent trust preferences need to be accommodated.

* peer-to-peer nature: The participants in the environment are peer-to-peer rather than
“supplicant-granter”; at least there is such an equality conceptually even if differ-
ences in bargaining power do clearly exist in practice.

A Network-Centric Design for Relationship-Based Rights Management 30

A Network-Centric Architecture for Managing Control Information

3.3

In such an environment, the issue of where to place control information becomes more

critical. In particular, a symmetric control structure such as commpacts—which would
have been unneeded overhead both in time-sharing environments and in client-server
environments—become a useful representation. Commpacts allow us to place control
information where it fits given the trust preferences of the relevant stakeholders.

Understanding Conventional Control Architectures

In this section, we lay out how conventional control architectures that stem from a cli-
ent-server world are ill-suited for peer-to-peer networked access control. We demon-
strate how the negotiation cost can easily get high in such conventional architectures for
usages that are inherently subject-subject communication applications.

FIGURE 10.

Authorization Interactions: Decision Facility Requests Attributes.

Reference Monitor

Access Control
Decision Facility
ADF

CONTEXT

Request Y Decision

OK| | AccessControl
r == -| Enforcement
Facility (AEF)

Check with User

: ReferenceMonitor |} ' .
v p Access Control . Check with Target
"""""""""" B | Decision Facility |" 7™ =~~~ "~

User ADF v
Operation xRequeSl%Dwson Tar get

Access Control |, |OK Obj ect
Enforcement

Facility (AEF)
Fail

Let us reconsider the general access control architecture defined in the ISO framework
as discussed in Section 2.4. As we noted there, the basic model is to have a reference
monitor consisting of an enforcement and a decision module that make sure that only
authorized actions can go through without interruption. The authorization decision is
based on evaluating a set of access-control rules that will in turn depend on properties of
the system context (e.g., the time), the target object, and the requester. An example for
such a general policy which we might want to accommodate could be “Approve all
requests from US citizens for documents which have not been modified since last
week.”

Requests from the target’s trusted reference monitor to the user for confirmation of user
attributes (“Check with User” in Figure 10) would be intercepted by access control
again—this time by the user’s trusted reference monitor. Note that, in a distributed set-
ting, each participant has their own authority to determine by which rules they wish to
participate in the system, and different users’ trust preferences will therefore generally
not extend to the same reference monitors.

In this general case, the reference monitor takes on more of the role of a “negotiator”
between client and target. Although simplifications are possible in the case where cer-

A Network-Centric Design for Relationship-Based Rights Management 31

A Network-Centric Architecture for Managing Control Information

tain entities are fully trusted, in general, the rule interactions within a given reference
monitor and those between different reference monitors (user-trusted, target-trusted) are

less than obvious, and the negotiation costs can easily get high. Not only do the access

rules within one system have to be appropriate, but they also have to work together in

the right “incremental revelation” schedule with those of the rules protecting other
objects.

For example, in the nationality-based policy mentioned above, the requester has to
understand that when claiming access with respect to this policy, then the otherwise pri-
vate nationality attribute must be revealed to the target’s reference monitor. Such inter-
actions can become complex and difficult to understand, and Moffet and Sloman [113]

conclude that such general, application-independent access control will therefore not be
practical.

Example: Negotiation Cost for Simple CallerID Interactions

Let us consider as a simple demonstration example a set of rules by which people might
want to determine under which circumstances others can call them on the phone. The
privacy implications of such access rules have been extensively debated under the name
“CallerID". In this case, much can be resolved by going to a general access-control sys-
tem which enables participants to articulate the conditions under which they are willing
to participate in a communication exchange.

Consider the two communication participants Tom and Lisa, each of whom expresses
preferences in a set of access-control rules (cf. the Datalog-like pseudocode in
Figure 11). Each person has a set of attributes sucimas| D, andcal | Type, which

are communicated only when the correspondiegeal access predicate allows it. The
phone bell is accessed here by the funatiemect _cal | , which determines whether

or not the call will be connected. A notation Ahame is used to access the name
attribute ofA; if this is executed by someone other thathenA is asked to reveal this
attribute® Specifically, r eveal is a special predicate about a personal information
attribute; if there is a rule which makes it true, then the corresponding attribute is
returned.

. There is a certain body of work in distributed logic programming etc. which is looking into how
to transform rule systems in order to minimize communication overhead (e.g., Wolfson and Sil-
berschatz [233], Saraswat et al. [234]). However, these works generally do not consider con-
straints pertaining to boundaries of authority/ownership and privacy of the locally owned rules,
that is, limitations as to which processors can be trusted for what.

A Network-Centric Design for Relationship-Based Rights Management 32

A Network-Centric Architecture for Managing Control Information

FIGURE 11. CallerID Example: Simple Set of Phone-Access Rules.
Person A: Tom Person B: Lisa
name="Tom’. name='Lisa’.
ID="72355". callType="private’.
reveal(name) I F reveal(name) | F isFriend(A).
B.callType="private’.
reveal(callType).
reveal(ID). connect_call I F
NOT block_call AND good_call.
block_call IF
Context.time="evening’ AND
(A.ID="6953' OR NOT A.ID).
good_call | FisFriend(A).
isFriend(A) | F A.name="Tom'.
Figure 12, shown below, lays out the temporal sequence (top-down) of the authorization
interactions when A calls B in the evening. Notice the brittleness of the system: With the
distributed rule authorities, bugs can easily be introduced by one party by not suffi-
ciently considering the possible dynamics which might result from unexpected interac-
tions with the unknown policies at other sites. Indeed, in the general case, not even the
possibility of deadlocks can be ruled out. Not only is the negotiation cost high, but also
the usability of such a systemislikely to be low.
FIGURE 12. CallerID Example: ‘A calling B’ Leads to Complex Negotiation.

Please connect _cal | .

- time ?
Pleasereveal |D. 4%
OK. ID='72355’
» not block caIIV
A - Please reveal name . B Aname=Tom' > CON-
Please reveal callType . text

Y

OK. callType="private’
¢ ype="p

OK. name="Tom'. A.name="To V
L isFriend(Ay
OK. connect_call. good_call
- — connect_call

The underlying reason for this is of course that we have here a coordination problem
which needs a language shared among the participants; if such a language provides
high-level primitives, then the lower-level transactions which account for much of the
negotiation cost can be avoided. Note that A does not know a priori what B wants to
know, and vice versa. Moreover, privacy considerations dictate that only as much infor-
mation as needed to |lead to success should be released.

A Network-Centric Design for Relationship-Based Rights Management 33

A Network-Centric Architecture for Managing Control Information

3.4

The conceptualization which we will suggest as an access control framework is targeted
at avoiding this negotiation complexity by bridging the gap between requester and tar-
get with an intermediate concept, which encapsul ates interdependent access control pol-
icies. This would reduce negotiation cost and might enable general access control
policies.

From Server-Based and Client-Based Control to Network-Centric Control
In this section, we describe a control framework that
* puts control information as first-class objects onto the network,

* encapsulates interdependencies on a per-relationship basis, using a (peer-to-peer)
communication model rather than a client-server model,

First-Class Control Objects

Thefirst step is that rather than attaching control information to controlled information,
the model is that we encapsulate control information into first-class control objects that
designate the objects that they control (by using a constraint). In this way, we keep inde-
pendent two dimensions that are orthogonal: the question of which controls apply and
the question of which objects control is applied to.> Encapsulating related control infor-
mation helps us to factor out unintended rule interactions and supersede some of the
negotiation cost problem, as we saw it in the previous section.

Introducing a Network API for Control Requests

The next step is then to allow the control objects to reside in principle anywhere on the
network—which is obviously why we call it a “network-centric” design. Figure 13
depicts the new control architecture. Effectively, the Access-Control Decision Facility is
moved onto the network, and there is a standard API introduced for requests to it.

Relationship-Based Control

The third step is to organize the policies contained in the Access-Control Decision
Facility in a relationship-based way, and distribute the control information in a way that
reflects the trust and usage pattern that characterize a given relationship. We want to
reconceptualize control information along the lines of relationships. Relationship
objects (commpacts) are then the baseline with respect to which authorization is done,
and we can place them in locations with matching trust expectations. Figure 13 illus-
trates how commpact objects have an interface that includes authorization functions that
are typically performed by an Access-Control Decision Facility.

Commpacts are then effectively a network-centric variant of an ADF. Actions are autho-
rized by using the commpact that the actor designated as the baseline with respect to
which a certain action is to be performed. The choice of the appropriate commpact will
usually be determined by preference rules in a way that is transparent to the user. The
number of commpacts that a person can have is unlimited in principle, although specific
implementations will have resource limitations, of course. There is one commpact for
every relationship.

. Note that, strictly speaking, it is therefore incorrect to say that “rights langatges control

information to objects”"—since they just need to set it in relation with each other. Attachment is
primarily a matter of the delivery mechanism (NNTP, etc.), not a matter of the control design.

A Network-Centric Design for Relationship-Based Rights Management 34

A Network-Centric Architecture for Managing Control Information

FIGURE 13. Network-Centric Control Architecture.

Reference Monitor Access Contr ol CONTEXT
Decision Facility

Request§Decision

OK Access Control ¢

r--t-| Enforcement [® =--"--"-"-""""\""-"“=}x\"“"°"°"°"°"°-°-= '

' Facility (AEF v

. « Fail -

v . eferenceMonitor |)

.................... o - |CEpEpEpEp—
User v
Operation Reques Wecision Tar get

Access Control | [OK Object
Enforcement
Facility (AEF)

Network-Centric Architecture

With commpacts residing in principle anywhere on the network, we need an architec-

ture for managing them. We call the object managers that manage commpact objects

simply “commpact managers.” Commpact managers are servers that manage commpact
objects. In other words, the idea is to have a set of professionally managed services that
deal with control information in a secure and reliable way.

In the network-centric architecture, commpacts stand i rarelationship with the
objects (and services) that they control. Trust management is used to determine which
objects accept control by which commpacts. For example, a specific network service
might only trust authorizations from a certain commpact manager. Furthermore, a con-
straint determines which objects a certain commpact controls.

The network-centric design generalizes the other models of organizing control informa-
tion: the client-centered, possession-based capabilities model and the server-centered
model. While commpacts can be co-located with the information they control (at a
server), they do not have to be so; for instance, they might as well just reside with a third
party, such as a rights clearing house. However, we can still consider it as the default
case that commpacts will in fact actually just reside with the server of the controlled
object, as in conventional access control. The main point in the network-centric archi-
tecture is that we have the protocols and APIs that give us structured access to relation-
ship state, independent of the location of this information. This provides the basis for
achieving the kind of end-to-end integration between client applications and network
services that we have been targeting. It also gives us the flexibility to independently
instantiate and modify commpacts and the objects that they control. For example, a pub-
lisher could provide a pay-per-view contract, and at some later point in addition a sub-
scription agreement for the same online content.

In other words, in the network-centric architecture, we augment network services by a
network-based authorization facility that functions much in the same way as authoriza-

A Network-Centric Design for Relationship-Based Rights Management 35

A Network-Centric Architecture for Managing Control Information

tion is currently done, but that also provides a principled way of exchanging, managing,
and interacting with such control information.

CallerID Example Revisited

Communication-based usage scenarios can be easily dealt with in a commpact control
architecture. Here is how the CallerID interactions in Figure 14 would look in the com-
muni cation agreement framework.

FIGURE 14.

CallerID Example: ‘A calling B’ with commpacts.

Please

connect _cal | _
to B under > FriendCall Commpact]

FriendCall Commpact Authorized? | D calType
4 Name

' Yes.
Commpact
A B Manager

Connect.

We have to distinguish two cases:

* Normal Case: The two parties are aready in arelationship; a commpact exists. The
commpact is referenced by the caller (possibly transparently to the calling person),
and used to authorize the action.

* Negotiation Case: No previously negotiated commpact exists. In this case, a hew
commpact that contains the shared control information for this relationship would be
negotiated between the two parties, possibly automatically by using preferences
articulated by the two participants.

Note that a number of special cases which have been raised as objections against the
introduction of Calling-Number identification can be readily dealt with. For example, it
was pointed out in the debates surrounding the CallerID issue that

* certain people like psychiatrists might want to call patients without revealing their
number. This points to the necessity of a blocking feature for some circumstances.

* if someone calls 911 in case of emergency, then the blocking feature, which might
have been enabled, should be ineffective since otherwise the caller cannot be located.

In the commpact model, each of these types of behaviors would basically get a different
commpact. Next to the commpacts mentioned above, there might simply be an Ener -
gencyCal | Commpact for callsto 911, and an Pat i ent Cal | Cormpact for cases such
as the one mentioned above.

A Network-Centric Design for Relationship-Based Rights Management 36

A Network-Centric Architecture for Managing Control Information

3.5

3.6

Security Implications

Having commpacts reside on the network, managed by specialized commpact manager

servers, clearly has a number of security implications, at least in the general case. Asa

first issue, since it is a “network-centric” design, we obviously depend on the availabil-
ity of the network. Without reliable network access, this architecture will not live up to
its full potential. For usages that we have targeted, the assumption of network access is
something that we are willing to take.

Once we get beyond the network availability issue, we have a twofold situation: If com-
mpacts are just used to provide structured access to control information (via the APIs/
protocols that they define), and if they are managed exclusively in a server-side way,
then no additional security considerations are implied beyond what we already have in
current systems. For instance, if we run a commpact manager within the same immedi-
ate trusted computing base (e.g. the same machine) as the network service that we wish
to access-control, and if we tightly control who can instantiate new commpacts with this
commpact manager (e.g. no outside person), then we have no new security implications.

As soon as a service uses a commpact for authorization that is not located within the
same immediate trusted computing base as the service itself, we need a mechanism to
determine whether this outside commpact is trusted: that is, whether this commpact
belongs to our dynamically extended trusted computing base. In particular, we have to
assure that no “bogus” commpact is used to authorize actions that we care about. Sev-
eral mechanisms exist to dynamically extend a trusted computing base for such pur-
poses. Parts of the system in Stefik [97] are about exactly this question, using a protocol
that extends existing communication protocols by a prologue exchange where commu-
nicating systems make sure that they trust each other by demonstrating public-key cre-
dentials to each other.

For our specific purposes, the following scheme can be used by a service that wants to
determine whether it can trust an authorization from a commpact that a requester wants
to use for the service. Every service has one or more providers (“owners”) that have the
right to give others access to it. Network services maintain a list of their providers. The
problem is then for the service to determine whether a given commpact was agreed to
by one of its providers. Since services know their providers, standard cryptographic
means can be used to make sure that we are not dealing with an invalid commpact: Ser-
vices only trust a commpact’s authorization if the commpact can provide a cryptograph-
ically signed token that shows that (one of) the service’s provider(s) agreed to this
commpact. The commpact itself would get hold of this token during negotiation.

Note, however, that the scheme in the previous paragraph is only necessary if we cannot
establish the presence of a trusted computing base through simpler means, such as using
the fact that a service is run as part of an Intranet, that it is run on the trusted commpact
manager of a partnering organization, etc.

Linking from Content Objects to Rights-Management Information

As we have seen in the previous sections, commpacts are managed independently of the
objects that they control. Network services maintain a list of their providers such that
they can determine which commpacts they can trust for authorization purposes. How-
ever, commpacts can control not only network services, such as a Web search engine,
but also content objects, such as the issues of a subscription-based online newsletter.

A Network-Centric Design for Relationship-Based Rights Management 37

A Network-Centric Architecture for Managing Control Information

3.7

For content objects, several delivery mechanisms exist, including SMTP, NNTPR, and
HTTP; and avariety of packaging formats are used, including MIME and its subtypes as
well as various content container technol ogies [96][93][143][145]. The question is how
the interface between content objects and commpacts is defined. Specifically, the ques-
tion is how content objects can link to their provider(s). As discussed in the previous
section, all the other aspects are just the same for content objects as for general services.

Commpacts complement secure content container technologies in that they use them as

one of the access-control enforcement facilities from which authorization requests

might originate. Content containers provide a mechanism by which accesses can be
interrupted to make sure that the request is authorized—in our case from a requester-
designated commpact.

In order to make the commpact scheme work for content objects delivered by standard
delivery protocols, we need to point to the provider(s) of a content object as part of its
metadata in its header or in its content container. Note that we do not need anything else,
since commpacts are independently managed.

Incidentally, the Dublin Core attribute model [270], for instance, already defines a meta-
data standard for documents in which rights-management information is intentionally
kept outside the scope of the standard, except for a pointer to rights management infor-
mation?® This fits well with the commpact model in that we can use this rights-manage-
ment attribute to provide a reference to the content object’s provider (owner). For e-mail
and newsgroup articles, we can use document header information such as

X-Provider: martin@persons. St anford. EDU

for the same purpose. Using a name server, an object name can be resolved to find a cor-
responding object handle for the provider’s “e-person” representation (cf. Chapter 4 for
further details). From there, we can then request the set of commpacts that are available
for the object. In a distributed object implementation, the name server of this object sys-
tem would be used.

Alternatively, we could also directly include a list of offers as part of the metadata:

X-Ofers: [PayPerVi ewli cense-34@.i censes. St anf ord. EDU

Such a list would point to corresponding commpact offer objects, that can be found at
some commpact managetr.

In summary, the impact of the commpact framework on existing content delivery and
packaging mechanisms is minimal. Existing mechanisms meld well with the use of
commpacts.

Related Architectures

Relationship-based control is not the same as what we called client/capabilities-based
control. [95] Capabilities are opague tokens that reference a relationship context that
itself might still be predominantly defined el sewhere: While the client might possess the

1. The Dublin Core defines a basic set of attributes for documents, such as ‘title’ and ‘author’.

A Network-Centric Design for Relationship-Based Rights Management 38

A Network-Centric Architecture for Managing Control Information

token, the interpretation context within which this token is meaningful is usualy on the
server.

From a user’s view, capabilities usually appear as the familiar “tickets"—with the same
set of associated problems: when they are lost, they are gone; trying to revoke any of
them guarantees to be a major enterprise, etc. Unlike full-fledged contracts, tickets only
provide limited information about the context within which their use came about—
which is why they are used almost exclusively in situations that are either characterized
by low stakes and a strong imbalance of trust/bargaining power (e.g., Joe Individual vs.
National Railway Operations) or low stakes and immediate fulfillment (e.g., movie the-
ater tickets). For such special cases, tickets are a low-cost variant of externalizing con-
tract information. Some technical systems (e.g. [96]) take this as a reason to only reify
tickets and abstain from reifying contracts themselves. While certainly a plausible trade-
off for many applications, this limits the affordances available for users. For example,
while they might be able to purchase a ticket and use it to gain access to online content,
there would be no structured ways of cancelling the contract and returning the ticket, or
just obtaining information about such things as which warranties a good has.

Client-based access control as implemented by SmartCards has been known to have
advantages in cases where a policy requires various forms of strings attached, say, in the
form of client-side actions that need to be controlled, such as limiting the time of usage.
In such cases, we need to make sure that the client has the control information at hand at
any point of time—even after an initially positive access authorization.

A Network-Centric Design for Relationship-Based Rights Management 39

FIRM: An Infrastructure for Digital Relationship Management

4.0

FIRM: An Infrastructure for
Digital Relationship Management

4.1

In this chapter, we take the next step towards an implementation model and describe the
kinds of objects and transactions that we can use to realize the commpact framework. In
particular, we will describe the Stanford Framework for |nteroperable Rights Manage-
ment (FIRM).

FIRM defines a relationship-based rights management service layer on top of existing
Internet protocols, supporting a host of usages including, but not limited to, digital con-
tracting, privacy negotiations, and network security. These usages can be enabled in an
incremental, bottom-up way since FIRM is designed to be able to evolve naturally from
services present in the current Internet. In particular, FIRM implies an institutional con-

text that does not require the development of any new institutions such as a “Digital
Property Trust” (Stefik [97]) or a centralized authority to enable the management of
property rights (IBM [143][144]). FIRM’s centrality properties are only at the level of
organizations (via services such as “home providers” and “forms designers,” as we
define them in this chapter) rather than at the level of the complete networked environ-
ment, where we only assume the adoption of a generic interface standard.

FIRM has been prototyped as part of the Stanford Digital Libraries Project in a system
called RManage, a prototype relationship manager application. In this chapter, we will
draw on examples of RManage to illustrate the FIRM network service layer.

Sections 4.1 and 4.2 describe FIRM’s object reifications and its transaction model,
respectively. This is followed by a survey of the kinds of user interface affordances that
a FIRM implementation can provide. In particular, we will draw on examples from the
RManage prototype implementation for this purpose. In Section 4.4, we will then give a
sample transaction scenario that describes how the various objects can interact. Finally,
in Section 4.5, we will describe related work. Further explanations of FIRM including a
formal object-request interface specification can be found in the appendix of this thesis.

Object Reifications

In this section, we describe how we computationally reify objects including persons,
and roles of persons, agreements, agreement forms, promises, and constraints, as well as
the object managers that manage each of the reified objects. The latter include online
“home providers,” “forms providers,” and “relationship managers.” The following is a
summary of some of the major object reifications in FIRM. See also Figure 15.

E-Person: An e-person is a software agent that is a persistent online representation of a
person, or of one of its roles. E-persons have a structured request interface that allows
clients to request approval, negotiate access conditions, access personal context infor-
mation, etc.

Home Provider: A home provider is the network service that manages e-person objects
and makes sure that they are constantly available for network requests.

Commpact: A commpact is the computational object that is the digital representation
of an agreement between two or more parties, be it a legal contract or a more light-
weight “communication pact” (e.g., one related to privacy). It is a “smart contract” in

A Network-Centric Design for Relationship-Based Rights Management 40

FIRM: An Infrastructure for Digital Relationship Management

that it is based on code that can generate descriptions about its current state, enforce
some of the terms and conditions, etc.

Commpact Manager: A commpact manager is the network service that keeps, man-
ages, and interprets commpact objects that have been assigned to it.

Commpact Form: A commpact form is the basic template of a commpact. Commpact
forms are the “stationery” that people can customize, fill out, and then offer.

Commpact Forms Provider: A forms provider is the server that makes available a col-
lection of commpact forms.

The basic scheme is that form designers develop standard digital contract forms. These
are object implementations that can describe their state, that can automatically enforce
at least some of the policies, etc. These forms are then made available as “stationery”
that anyone can take, customize, and instantiate. People are represented online in the
form of an e-person. An e-person is hosted by a home provider; it has its various con-
tractual relationships (commpacts) managed by any of a number of commpact manag-
ers. The latter can reside anywhere on the network, whether at a server (conventional
access control), at a client (usage control), or with a third party (e.g., a rights clearing
house).

Note that some of the terms either are new words or they are phrases used with a special
intended meaning; we introduce new words such as ‘commpact’ and ‘e-person’ to dis-
tinguish between real-world objects, such as a legal contract or a real person, and their
electronic representation (the digital objects).

FIGURE 15.

41.1

FIRM Object Reifications: Commpacts and commpact manager, e-persons and home
provider, forms and forms provider.

Martin's
Commpact Web server

Manager
Simple
Tim's Tim’s Grztlapnlt.iiacg:lse
.\ Stanford)private
e_Jeef:sson e-person<e-persol
- | Forms Provider |

|Home Provider|

Book

Reifying (Roles of) Persons: “E-Persons”

E-Person: An e-person is a software agent that is the persistent online representation of
(arole of) a person with a structured request interface. When acting online, users are
identified by a (possibly opaque) handle to their e-person, allowing any communication
clients to talk back to this structured representation. E-persons make it possible to have
certain kinds of transactions take place on behalf of a user without that this user neces-
sarily needs to beinvolved in it directly. Users can set up default preferences that deter-
mine the actions that the e-person might automatically execute. This includes

A Network-Centric Design for Relationship-Based Rights Management 41

FIRM: An Infrastructure for Digital Relationship Management

negotiating access conditions, for example. A Unix account can be seen as a current
form of a limited version of an e-person.

E-persons are a way of conceptually separating out the reality of a physical person and
the image created by its online behavior. An e-person essentially can be seen as a more
structured generalization of existing variants of this concept, including controlled ways
of getting hold of personal information, requesting (automatic) approvals, leaving
behind notifications, automatically setting up certain standard relationships such as
accounts with content providers, etc.

An e-person has generic (access-controlled) interfaces for information push (e.g.,
receiving e-mail, other notifications, etc.) and information pull (e.g., requests for per-

sonal information, polling for preferences, etc.). Every e-person is also assumed to have

a “notifier,” that is an inbox that provides a uniform way of seeing “what's new” in a
way that accommodates a structured set of actions and that also equally extends to infor-
mation push and pull. E-persons can enter relationships with other e-persons by agree-
ing on commpacts.

One and the same person can have multiple e-persons; for instance, a certain individual
might have one e-person for private and one for business. If a physical person has more
than one e-person, one of them can be designated to be the person’s super-e-person, that
is, the e-person from which the others “inherit” basic properties of the person, in a class-
less inheritance scheme. Inheritance means in this case that one object will proxy
requests to another object for a defined set of its properties.

Example: Bob has access to three e-persons, one for him as a private person, one for
him in his role as treasurer of an organization, and one for him as a partner of his firm.
His firm agrees to be home provider for all three of them, but, for the private one, it
grants only limited disk space and for the treasurer one it has disclaimers about any lia-
bilities that might result from it. Bob designated his private e-person to be his super-e-
person. His birth date is therefore stored with his private e-person, but in principle avail-
able to the others via inheritance.

E-Persons as User Agents, Enabling a Network Login

The two main functions of an e-person are to act as an agent and to enable a network
login. E-persons represent users online and act on their behalf for certain standard inter-
actions. For instance, e-persons allows users to access information by providing the
appropriate passwords that might be necessary for a service, or possibly even by regis-
tering users automatically or by accepting certain contract offers automatically—if this

is within the space of what user-defined preference rules endorse. This allows us to
reduce the transaction costs inherent in a contracting scheme and to keep as many inter-
actions as possible out of the face of the human user.

People have a way of authenticating themselves (the programs they use) with respect to
one or more of their e-persons. The authentication step itself can be conducted using any
of a variety of schemes, including Kerberos authentication [207] or Unix-style password
comparisons [171]; but we assume that as a result of such an authentication, clients will
obtain an authentication token that can be presented to any server such that the server

A Network-Centric Design for Relationship-Based Rights Management 42

FIRM: An Infrastructure for Digital Relationship Management

41.2

can use it to confirm the requester’s identifyhis token can just be the name of the
user’s chosen e-person and the network address of the client program, both signed cryp-
tographically by the e-person’s home provider. Any server can use the home provider’s
public key to make sure that the program that sent a request from a certain network
address is in fact associated with the e-person with which it claims to be associated.

Once authenticated bynaetwork login, the conceptual assumption is that an e-person is
identified by its epersID for every action that it (or one of its user’s programs) performs.
Being identified by an epersID is much like being in a room with other people without
knowing their name or any other attributes; one can “address” others and try to find out
more about them as part of a negotiation, but by default nothing will be known about an
identity. In this sense, an epersID can provide a quasi-anonymous identification if the
user chooses as a policy to deny inquiries for further personal information.

Note that various limited forms of an e-person currently already exist, albeit disparate
and not uniform. For example, a standard Unix account can be seen as a preliminary
form of an e-person, limited to a simple information push interface (adding e-mail mes-
sages to its mailbox) and an information pull interface in the form of a Web home page
or a directory server entry. Note that the notifier in this example takes on the form of a
disparate set of units, including a user’'s mail inbox, a news inbox for unread news-
groups, as well as a variety of notification events in applications such as calendar pro-
grams. The epersID for an account would be simply that person’s e-mail address. (See
the Grassroots system [279] for a more extensive use of the notion of a notifier.)

In the RManage prototype, e-persons are CORBA objects with the request interface
given in the Appendix. User’s client applications convey the string binding handle (or a
name that can be resolved by a naming service) of their person object to any server that
a user might be talking to; this handle is part of a public-key token that is signed by the
e-person’s home provider. Augmented servers can then use this information to authenti-
cate the requester—that is, verify that a request from a certain network address is indeed
from the e-person object whose handle was provided—and talk back to the requester’s
representation about further details. New client programs can directly submit the eper-
sID token; for Web browsers, HTTP cookies are used to send along this information
with every request. EpersID tokens have an expiration time; they are initialized at net-
work login time.

Managing E-Persons: “Home Providers”

Home Provider: A home provider is a network service that manages e-person objects

and makes sure that they are always available for requests. It thus provides an “online
home” for persons (in the form of an e-person). Home providers can be seen as a value-
added extension of current online services and ISPs.

. If the client application is a Web browser, then HT TP cookies can be used to convey this token to

servers. This implementation works well for a limited number of FIRM-enabled services, as in
the RManage prototype. However, at this point, this approach would not work for full-scale use
due to the fact that most browsers currently do not allow HTTP cookies to be accessible to all
servers; cookies are required to be limited to a specific set of servers. Client-side proxies could be
used to get around this problem, but in the case of full-scale use, one probably would want to
incorporate this mechanism more tightly into the HT TP protocol.

A Network-Centric Design for Relationship-Based Rights Management 43

FIRM: An Infrastructure for Digital Relationship Management

4.1.3

E-person objects are persistent representations of persons in the online environment,

even if their users are not “logged on” at a given time. They have to be provided by
some institution that has the resources to keep the person objects reliably running all the
time. We call this object manager a “home provider.”

As mentioned in the previous subsection, by making available the abstraction of an e-
person, home providers can serve as privacy intermediaries for their members and con-
trol access to their personal information and their attention or time. This includes sup-
port in securing proper authentication of their members without requiring global
identities and consumer-side public keys.

Current online services and Internet Service Providers can be seen as examples of pre-
liminary versions of such home providers for consumers on the Internet. Universities
and companies currently provide similar in-house services for students and employees;
each of these can be seen functionally as an instance of a home provider. But the notion
of a home provider also extends to other domains. In the case of electronic trading
(using EDI standards; cf. [161] for an introduction), the “EDI network provider” fulfills
functions that we attribute more generally to a home provider. These include reputation-
based management of membership, authenticating members, and certifying user
attributes. Generally, home providers will have service contracts with their members
that allow them to regulate which kinds of electronic activities are binding under which
terms and conditions, and to which rules their members are committed for interactions
among themselves.

Reifying Relationships/Agreements: “Commpacts”

Commpact: A commpact is the “relationship object” that is the digital representation

of the agreed-upon terms and conditions of the relationship between two or more par-
ties, be it a legal contract or a more light-weight articulation of a “communication
pact.” Commpacts are “smart contracts” in that they have a structured (FIRM) inter-
face, code that implements behavior, state, and a set of textual descriptions. Commpacts
contain a mixture of informal textual descriptions and implementation code. The fact
that both have the same semantics is the responsibility of the designer of the underlying
commpact form.

A “commpact” is the electronic representation of the “communication pact” that encap-
sulates the boundary conditions of a relationship between two or more communication
participants. A major subset of such communication pacts has externalizations in the
legal world in the form of legal contracts. Other commpacts have quite different exter-
nalizations and associated enforcement means, such as social conventions enforced by
community reputation-based enforcement. For example, anonymous ftp on the Internet
is conceptually a commpact that says that anyone who identifies herself with her e-mail
address can access the public directories of the file archive and download material.

Architecturally, commpacts are first-class objects that are managed independently of the

objects about which they provide control behavior. Commpdesignate the objects

about which they are in the form of a constraint about objects. For example, a subscrip-

tion contract for a year’s worth of newspaper issues will be represented by a commpact

containing a constraint that designates all the objects that are by a certain publisher and
that have a publication date in a certain range. (Note that some of these issues might not
even exist yet.)

A Network-Centric Design for Relationship-Based Rights Management 44

FIRM: An Infrastructure for Digital Relationship Management

Commpacts have a structure that is formally specified by the APIs defined by FIRM (cf.

the Appendix). Commpacts authorize actions, enforce prerequisites, and provide a way

to live up to obligations, such as by initiating a payment transfer. The piece of text by

which we generally know legal contracts is just the result of one of the many methods

that can be called on commpact objects—but there are also others, including negotiation
methods (e.g. ‘terminate’), structural messages (‘get me the set of promise objects’),
and, last but not least, authorization interactions (‘exercise this right’). In other words,
commpacts are objects that have a structured request interface (as defined by FIRM),
code that implements their behavior, state, and a set of textual descriptions from which
descriptive information can be generated. Cf. Figure 16.

FIGURE 16.

Commpacts as “Smart Contract” Objects: FIRM Interface + Code + State + Texts.

GetDescription =

P
<

status: valid
count: 4

The following parties

Site License
agree to the conditions

Commpacts have a method by which one can obtain a human-readable description
about them. These descriptions are generated dynamically based on the attributes that
commpact objects are defined to have (by the FIRM specification). For instance, in our
prototype system RManage, such a description is an HTML page that describes the
terms and conditions of a subscription contract with links to descriptions of the terms
and conditions of the access right and the payment obligation that are part of this con-
tract. It is the commpact forms designer who makes sure that the textual descriptions
generated by a commpact object reflect the meaning of the underlying structured repre-
sentation.

Commpacts also contain machine-interpretable code that automates parts of their
behavior. In other words, they not only articulate certain promises, but can also enforce
at least some of the terms and conditions of the agreement.

The extent to which contract policies are implemented depends on the extent to which
corresponding infrastructure is available online. For example, various regulations about

dispute resolution in courts will plausibly just be part of the general terms and condi-

tions of the agreement; however, in the hypothetical case where online infrastructure is
available, say, to automatically register complaints with a court, such behavior can be

taken up into the code implementation of the commpact—rather than merely in the tex-
tual descriptions.

Commpacts can be interpreted at any of a number of trusted interpreters (“commpact
managers”), including interpreters run by (and presumably co-located with) the content
server (conventional “access” control), the client machine (for high interactivity or for

A Network-Centric Design for Relationship-Based Rights Management 45

FIRM: An Infrastructure for Digital Relationship Management

the mobile case), or a third party such as any kinds of “rights clearinghouses” (copyright
clearance centers such as CCC, IVY, etc.).

Reifying Contract Law

FIRM closely follows contract law principles [1][2][3] in defining the structure and
behavior of its objects. A FIRM interface specification is available in CORBA's Inter-
face Definition Language [5], although nothing in FIRM intrinsically relies on the avail-
ability of a CORBA distributed object infrastructure (see the Appendix of this thesis).

At the most elementary levelpmmpacts are just a set of enforceable promises between
two or more partiePromises in turn are either rights or obligatioriRights allow their
holders to do somethingbligations require them to do something. For example, the
obligation to pay a certain fee for a subscription to a newsletter might be one such prom-
ise as part of a subscription contract. This obligation object could keep track of the size
of the outstanding obligation, the past payment history, etc. It might also directly pro-
vide means to initiate an automatic payment transaction, say, just before the due date.

Eachparty participates in an agreement as part of a certain agreemeriRolge are
characterized by a constraint on who can fill the role. There can be two or more roles for
one agreement, and each role except for the ‘offeror’ role can possibly be filled by more
than one party (instance). A commpact has an ‘Aboutltems’ constraint that characterizes
which items the agreement is about. In other words, the control object quantifies over
the objects it controls rather than being attached to these objects.

Promises have components such as a promissory condition (‘ConditionsPrecedent’) that
specifies which conditions need to be in place before the promise becomes effective, a
‘ConditionsSubsequent’, and a constraint that specifies the objects that it is about
(unless the promise is about the same objects as the commpact). Promises can be
waived, transferred, etc.—where transferring an obligation is different from just allow-
ing someone else to fulfill it; in the former but not in the latter case, it becomes embed-
ded into a new contract context.

Each FIRM object has a method by which one can obtain a description about it and a
reference to it. The reference includes a persistent name. It might also include the cur-
rent object address, say, for a distributed object, but a persistent name is always pro-
vided. If applicable, this name can then be resolved into an object address, using the
name server of the object system employed.

Using the Access-Control User Dialogue Protocol (ACUDP), users can directly interact
with commpacts, as well as other FIRM objects, for such purposes as customizing
parameters, accepting offers, etc. In the simplest case, this protocol is just based on
HTTP using the standard HTML forms/URL-encoded parameters convention. Further
detail about this can be found in the Appendix.

Not Everything is Reified: Two Examples

While contract law provides the basic conceptual framework for how to represent
objects, not everything is carried over exactly as it is in law. In particular, in legal frame-
works, we find various provisions that are geared towards making the framework work
more smoothly in the real world, say, by taking into account some of the obvious short-
cuts that are likely to be made by people given the cost.

A Network-Centric Design for Relationship-Based Rights Management 46

FIRM: An Infrastructure for Digital Relationship Management

41.4

415

For example, there is a notion of “silent acceptance,” by which an offer can be accepted
without having to explicitly issue an acceptance—but thus also creating the necessity to
explicitly reject an unwanted offer that might otherwise qualify for silent acceptance.
Another example of such a transaction cost issue is the concept of a “unilateral contract”
(a promise given in exchange for an act, such as “l pay you $100 if you paint my
house”), where a mere fulfillment action would already bind the promising party even if
no separate, explicit acceptance action ever took place.

We have usually chosen not to reify such cases in our digital representation since the
cost of executing an additional protocol action is relatively minor in an electronic infra-
structure relative to the cost of the additional ambiguity that is created by relying on
such short-cuts.

Managing Commpacts for an E-Person: “Commpact Managers”

Commpact Manager: A commpact manager is the digital process that keeps, manages,
and interprets commpact objects that have been deposited with it. Commpact managers
can be co-located with clients, servers (conventional access control), or trusted third
parties (e.g., rights clearing houses). Every e-person has a default commpact manager.

Commpact managers are essentially the network-centric realization of a conventional
authorization reference monitor—using relationships as the unit by which to modularize
this authorization module in a distributed environment. Commpact managers are servers
specialized for security and access control; they are the entities that manage control
information in the same way as we have servers managing content information. Com-
mpact managers essentially act as a “personal relationship managers” for the e-persons
whose relationships they maintain.

Commpacts can in principle reside at any commpact manager on the network. One and
the same commpact can also reside at more than one site. Such replication would basi-
cally correspond to the real-world case where an agreement is distributed in copies to
the agreement parties instead of being deposited with a third party. In particular, replica-
tion to the client-side is useful in case of “usage” rights; replication to a trusted third-
party is useful in certain cases of lacking trust or of the need to access large amounts of
data that cannot be moved elsewhere easily.

Reifying Standard Contract Templates: “Commpact Forms”

Commpact Form: A commpact form is the basic “template” of a commpact. Commpact
forms are much like a standard rental agreement in that they have been carefully
designed by someone once, but then they are readily available as “stationery” to every-
one else; general users can simply take such a form, customize it, fill in some parame-
ters (such as the actual price offered, etc.), and then declare it an offer. Commpact
forms are assumed to be designed by what we call a “commpact forms designer”, and
they are made accessible through “commpact forms providers.”

Commpacts are based on shareable (possibly standard) commpact forms. Forms are
objects themselves. From every commpact, one can obtain its basic form. The notion of
having standard templates of commpacts serves the purpose of keeping things simple
for end-users and dealing with complexity at design time. At the same time, any quali-
fied person can define a new form and make it available to others.

A Network-Centric Design for Relationship-Based Rights Management 47

FIRM: An Infrastructure for Digital Relationship Management

Standard forms make it possible to encapsulate possibly complex behavior at design
time, and they provide a mechanism by which parties other than the ones that are
directly involved in the negotiation of a specific relationship can contribute useful work.
In other words, having a mechanism for forms defines a market for offering services
that make it easier for interested parties to draft offers about certain types of relation-
ships.

Encapsulation is a so significant in terms of the third-party reputation that such bundles
can acquire, and the reputation-based efficiencies that this introduces for end-users. For
instance, general consumers usually find prepackaged choices more usable than micro-
managing a larger number of individual decisions, some of which they might not care
about in detail, others of which they might find themselves not even to be competent to
decide about.

“Commpact Forms Designers”: Developing Shared Commpact Forms

A forms designer isthe original contributor of acommpact form. Such designers should
have domain expertise combined with an ability to provide the corresponding imple-
mentation that is necessary together with various textual descriptionsto make up acom-
plete commpact form.

Defining a new form is analogous to coming up with a new standard rental agreement

form, that is, a task that most people would generally not take on themselves; at best

they would want to customize an existing form. While in principle anyone could define

a new commpact form, we expect that this will be an infrequent case; new forms are

likely to be provided by professionals at trusted proxies, such as home provider admin-
istrators, librarians, security officers, or an informal variety of the kinds of “local devel-
opers” that Nardi [250] finds are so useful in helping people use applications such as
spreadsheets.

It is the forms designer’s authority that guarantees the fact that a commpact’s behavior

corresponds to what its descriptions say, i.e., that the semantics of the textual descrip-
tions and the semantics of the behavior of the associated implementation code are com-
patible. It is then up to the users of such a form to decide whether or not they trust this

implementation, based on the reputation of the forms designer and other third-party

information.

Forms designers do not necessarily need to be forms providers themselves; they do not
even necessarily have to be online. Forms designers are therefore not explicitly reified
(in any specific other form than being referenceable as an e-person). In particular, there
can be a multiplicity of such forms designers in a way that lays open the different points
of view one might have. For instance, one might have forms recommended by the Elec-
tronic Privacy Information Center, forms recommended by the Direct Marketing Asso-
ciation, etc.

Commpact forms can have different degrees of customizability. While some might limit
customization to the option of crossing out a certain obligation or a certain right, others
might allow people to insert different kinds of constraints and add more personal prefer-
ences. Designing a form involves providing an implementation of those basic methods
of a commpact object that one wishes to override. Part of this is providing textual ele-
ments from which textual descriptions can be generated that describe the state of the
commpact.

A Network-Centric Design for Relationship-Based Rights Management 48

FIRM: An Infrastructure for Digital Relationship Management

41.6

4.2

Making Available Commpact Forms: “Forms Providers”

Commpact Forms Provider: A forms provider is the service that actually operates an
online server carrying a collection of commpact forms that is searchable or browsable.

Forms providers are a subclass of commpact managers that specialize in commpacts in
their ‘form’ state. Forms providers will often be the same authority as the designers, but
they are not required to be so.

Transaction Model

FIRM defines a programmable infrastructure for negotiating new relationships and for
authorizing actions based on existing relationships by exercising rights of a previously
negotiated agreement. This protocol mirrors contract law practices.

As indicated in Figure 17, the bulk of the low-level transactions in FIRM are kept away
from users by having a user’s e-person agent execute and respond to FIRM protocol
actions on a user’s behalf. Users only specify the basic preferences that guide these
actions, and the e-person takes care that any complexity remains invisible “under the
hood” unless a certain case is not covered by any default rule. In RManage, for example,
users can use an ‘e-person control panel’ to articulate basic preferences such as which
offers an e-person should automatically accept or which obligations it should automati-
cally fulfill. In this way, many actions can be dealt with automatically without the need
for a user to deal with low-level issues.

FIGURE 17.

Transactions in FIRM.

@
Tom A///VVIRM rights protocol

Note that while the client-server transactions can use conventional protocols (e.g.
HTTP), the FIRM protocol can be based on more sophisticated mechanisms (e.g., a dis-
tributed object infrastructure such as IIOP/Corba [242]). FIRM itself is neutral to the
type of protocol used for this purpose, although the current specification is described in
terms of a distributed object environment.

The FIRM protocol has been designed with the following goals in mind:

* Smple cases are simple in the FIRM protocol. In particular, a typical specialization
turns out to be essentially the same as standard HT TP authorization.

* Complex cases are uniformly possible. The main point is then that the FIRM proto-
col uniformly extends to cases that are not possible in existing protocols, such as
negotiating new relationships. It accommodates sophisticated negotiation and con-

A Network-Centric Design for Relationship-Based Rights Management 49

FIRM: An Infrastructure for Digital Relationship Management

421

trol behavior, athough the number of message exchanges will of course scale with
the complexity of what one tries to accomplish.

In this section, we describe both of the transactional modes of FIRM: the negotiation
mode and the performance mode. A more formal specification of FIRM can be found in
the Appendix.

Negotiation Mode: Establishing Mutual Assent About an Agreement

Commpacts are agreed upon as aresult of a negotiation according to a genera, domain-
and content-independent protocol, which is designed to reflect legal contract practices.

Negotiation States and Transitions

Aswe outlined in our description of the conceptual commpact model in Section 2.0, the

basic actions are that of issuing an offer, negotiating it, and accepting or rejecting it, or
revoking it by the party who issued it. Successfully formed, “effective” agreements can
also be terminated and renegotiated—in which case a new offer takes the place of the
previous offer, and a new negotiation is started. This is indicated in Figure 4 on page 17
which is repeated here for convenience as Figure 18. This figure shows a finite-state
diagram that defines the overall process that can lead to a successful contract formation.

FIGURE 18.

Negotiation: States and Transitions. (Repeated)

: B: Accept
. A: Revoke A,B: Terminate
A: Take Ter-
Form ——» Draft A,B: Renegotiate Effec-— g min-
e

tive
B: Revok -

%ept

While Figure 18 indicates the basic transitions, at the action level, we would like to dis-
tinguish between the act of requesting a certain transition to take place and the act of
declaring this transition to have taken place. This gives us the following set of protocol
actions, two for each transition type:

Request Decl arel t AnCOf f er : For a given set of promises as part of a newly drafted
commpact, request that it be declared an offer.

Decl arel t AnCXf f er : As above, but actually declare it an offer now.

Request Accept Of f er : Issue a request to accept a given offer.

Decl areX f er Accept ed: Declare this offer to be actually accepted.

Request Modi f yOf f er : Issue a request to modify one or more attributes of a given
offer.

Decl ar e f er Modi f i ed: Declare an offer to be modified in one or more attributes.
Request RevokeOf f er : Request an offer to be revoked if possible.

Decl ar eX f er Revoked: Declare the offer to be actually revoked.

A Network-Centric Design for Relationship-Based Rights Management 50

FIRM: An Infrastructure for Digital Relationship Management

Request Rej ect O f er : Request the rejection of an offer.

Decl areOf f er Rej ect ed: Declare the offer to be regjected now.

Request Ter mi nat eConmpact : Request the termination of an effective commpact.
Decl ar eComrmpact Ter mi nat ed: Declare the commpact to be terminated.

Request Renegot i at e: For agiven commpact, request a renegotation of it.

Decl ar eAccept Renegot i at e: Declare that a given commpact is under renegotia-
tion.

There are anumber of reasons why we introduce two different actions (one for request-
ing and one for declaring), including the fact that

* this accommodates the case in which different parties (e.g., another agreement party,
an independent third party, etc.) execute the different parts of one type of action; and

* this allows the modél to reflect situations in which actions have been requested but
not yet succeeded.

As an example consider that we have successfully formed a commpact that one party

would like to terminate. This party would then issue a Request Ter i nat eCommpact

action. In many cases, this might automatically lead to a Decl ar eConmpact Ter mi -

nat ed action. However, in some cases, the request action might require authorization

from the other commpact parties—and the corresponding declare action would take
place only after having obtained this authorization. In particular, note that there could be
a time delay during which the state of the commpact is such that termination has been
requested by one party, while the commpact still gathers information about whether this
party has the right to terminate the agreement.

Another case to consider is that request actions can include other parties in the protocol
in a structured way. For instance, there might be a “supervising” third party that certifies
the negotiation process, as in many real-estate negotiations. Then the agreement parties
would issue the request actions to this third party, which would then in turn issue the
corresponding declare actions.

Often, shortcuts will be possible that avoid the need to have a request action separately
from a corresponding declare action. In particular, if a party can successfully directly

declare a commpact to be terminated, then there is no need to request this termination
first—and wait for a corresponding declare action in the successful case. The request
actions are only provided to cover a larger set of interactions, and to lead the path
towards an implementation model where such actions can be executed asynchronously.

In the above protocol, we also incorporated actions for submitting and accepting
requests to modify a given offer or agreement. This is to accommodate typical practices
as well as transactional efficiencies, more than it necessarily reflects legal theory. If a
merchant offers a good for a certain price, and an interested buyer asks for a price reduc-
tion and the merchant agrees, then the legal framework presumably would either inter-
pret the change request as an “out-of-band communication” that leads the merchant to
issue a new, adjusted offer, or it would posit that there was a counter-offer issued by the
buyer that automatically cancels any previous offers between the two parties about this
object (switching the offeror-offeree roles though). However, the latter is clearly a fairly
inefficient mechanism transactionally for such a common practice. We therefore include
additional protocol actions to submit and accept requests for changes in a given offer,
and endorse the out-of-band communication interpretation.

A Network-Centric Design for Relationship-Based Rights Management 51

FIRM: An Infrastructure for Digital Relationship Management

“Race Conditions”

In a distributed environment of concurrent processes, a number of “race conditions” can
happen that might lead to an arbitrary state if they are not dealt with in the protocol
design. Such concurrency-related race conditions are situations where two parties inde-
pendently initiate an action without knowledge that the other party also initiated an
action and, depending on which action is given priority, two different states result. As an
example, consider the following two situations that are classic cases in contract law:

* Crossing Paths Revocation-Acceptance: 1t might happen that the revocation request
for an offer crosses paths with an acceptance request. The question needs to be
resolved whether the acceptance takes precedence over the revocation (and the off-
eror is bound by his offer), or whether the revocation has priority—in which case the
accepting party will have reacted to an offer that then turned out to be not an offer
any more.

e Crossing Paths Termination-Authorization: Another case is that a commpact is
requested to be terminated by one party (that has the right to terminate the agree-
ment), and the other one just requested to be authorized for another action. We need
to have a policy by which we can resolve the question whether or not an action can
be still authorized under such circumstances.

In general, the policies that we assume in such cases are motivated by the way in which
these issues are dealt with by the various contract law principles (cf. [1][2][3][14]). An
additional complication arises in these cases, based on the fact that different legal sys-
tems deal differently with each of these cases. In the United States, the acceptance will
generally be considered effective on dispatch, while the revocation is effective only on
receipt (cf. [1]:par. 136). In other countries, it isthe receipt that mattersin each case.

We resolve the issue of such negotiation-related race conditions by defining the granu-

larity of actions in away that makes it possible to implement solutions in an unambigu-

ous way. In particular, since we intentionally separate each action into a ‘request’ and a
‘declare’ part and since we are dealing with an environment in which each of these
actions will take place in reasonably short time (a property that is not true for the action
as a whole, though), we can adopt the following policies:

* Thetime of an action isthe time at which the method call isreceived at the requested
object. Note that this also makes sure that all actions are measured with the same
“server time"—thus making it unnecessary to implement complicated synchroniza-
tion measures for the times between different machines.

* The mapping onto the legal framework is that the completion of a request action is
interpreted as the dispatch of a message, while the completion of a declare action is
interpreted as the reception of a message.

* Request actions can block the performance of concurrent request actions if their
types collide in the legal system that governs the contract formation, that is, for
instance, in the United States, a ‘request accept’ action would block a ‘request
revoke’ action until either a ‘declare accept’ action follows or the acceptance fails.

In other words, we use a standard blocking solution to implement policies for concur-
rency-related race conditions.

A Network-Centric Design for Relationship-Based Rights Management 52

FIRM: An Infrastructure for Digital Relationship Management

Offeror

Offeree

User Interface Affordances

Let us describe here the basic affordances for the various participants in a negotiation
process:. offerors, offerees, where each can possibly be supported by an agent.

From the perspective of the offeror (e.g. a publisher), there are affordances to

» draft an offer. People have some form of an editor that they can use to fill in con-
crete numbers into boiler-plate agreements, customize them, etc.

* declare an offer. When the drafting process is finalized, users have a way of declar-
ing it to be an offer now.

* revoke an offer. Outstanding offers can be called back by revoking them

* terminate an agreement. Effective agreements can be terminated. In addition, in
case all promises were declared to be fulfilled, agreements are also declared to be
terminated.

Each of these actionsis supported by a corresponding method on commpact objects (cf.
the next section). Offers include restrictions pertaining to how long they will be effec-
tive. Declaring an offer creates the liability of an outstanding offer. It can only be
retracted by a revocation request. Any action isitself subject to authorization and might
therefore not be feasible. For example, terminating a commpact is only possible if one
has a corresponding termination right; revoking it requires a revocation right, etc.

Negotiation starts with the drafting of an offer. Offers are based on drafts and forms.
Forms can be obtained from searchable collections operated by forms providers. More-
over, from any existing commpact (draft, offer, effective, etc.), one can obtain the base
form that it was created with. Once we have aform, we can turn it into a draft and cus-
tomize it in various forms. Associated constraints and promises can be modified. Once
the offeror is satisfied with a draft, it can declared to be an offer, available to a certain
set of e-persons.

In other words, for the purpose of creating an offer, thereis away for usersto

» search for and select a commpact form from one of a number of forms providers,
say, by some form of browsing in the simplest case,

e customize it (by modifying, adding, or deleting constraints, promises, object desig-
nators, etc.) and fill in defining parameters, such as the actual price to charge, etc.,

* declareit an offer.

From the perspective of the offeree, we have the ability to

* view a set of other people’s offeFar instance, one might want to view al the com-
mpacts applicable to a certain object that one is interested in, or all the commpacts
one can have with a certain e-person.

* reject an offer. This might be useful in the context of alarger negotiation processin
which an offeror might release offersin some sequential manner, and only offer new
ones after the outstanding ones were rejected.

* counter an offer. Counter offers are essentially just offersin response to other offers.

Aswith conventional contract law practices, a counter offer is assumed to automati-
cally cancel any outstanding previous offers.

A Network-Centric Design for Relationship-Based Rights Management 53

FIRM: An Infrastructure for Digital Relationship Management

Server

4.2.2

* accept one such offer and make the agreement effective. Thiswill lead to a check of
the commpact’s precedent conditions. Then, if these are fine, a new offer will be
“cloned” from the previous one (if it is valid multiple times). Most importantly, a
commpact of status ‘effective’ will be created at a designated commpact manager.

* renegotiate an agreement. Agreements can be renegotiated at the suggestion of one
of the parties. Thiswill spawn a separate negotiation dialogue.

¢ terminate an effective agreement.

Along the same lines, creating an offer is much like creating any other object in that
there needs to be some commpact that authorizes this creation.

Performance Mode: Making Use of an Established Agreement

As we have described in Chapter 3, commpacts effectively realize a distributed authori-
zation reference monitor. Given a user, a commpact, and an item or service that the user
isinterested in, it can be decided whether this action is acceptable (endorsed by aright)
or whether it might be required (by an obligation).

From the view of a server, FIRM primarily comes into play as an augmentation of the
authorization module. Consider a request that is received at a FIRM-enabled server,
e.g., an HTTP request to a Web server or some other request using some other protocol.
One of two casesis possible:

» Either the request includes a handle to the actor’s e-person, in which case we assume
that the augmented authorization protocol of FIRM is to be used, or

e it does not, in which case we use any other default authorization, e.g., the conven-
tional HTTP authorization.

Recall that after a “network login” (cf. Section 4.1.1), users are always identified by a
(possibly public-key signed) token that gives a handle to their e-person. For example, if
they use a Web browser as their client program, then the mechanism by which this han-
dle can be communicated is by using HTTP cookies; these cookies are information that
is sent along with requests to servers.

Assume we are now at the server, receiving a request that includes a handle to an e-per-
son. The first step will be to authenticate this handle by checking it against the public
key of the e-person’s home provider. This will assure us that the request coming in from

a certain network address is really associated with the e-person mentioned by the
request—since we get a token that has a signature on the fact that this network address
and the e-person are connected.

A Network-Centric Design for Relationship-Based Rights Management 54

FIRM: An Infrastructure for Digital Relationship Management

FIGURE 19. Negotiating a New Relationship.

@
€-perso
/2/'

\5
e-person z§?’v4>
o

1: Get all offers about item or service
2: List of pointers to offers

3: Accept chosen offer

4: Offer accepted

5: Offer accepted (optionally)

E-person One of two cases is now possible again. Either the request already includes a reference
to the commpact that is to be used, or it does not. If there is such a reference, then we
proceed with this handle. If no reference was part of the request, we first need to ask the
e-person about which commpact it wants to use—using the ‘GetDefaultCommpact’
method of e-persons that returns a reference to a commpact that is to be used for the
given circumstances (cf. the Appendix). The e-person itself will act as an agent and use
its default rules and preferences to determine whether it can uniquely identify an ade-
quate commpact on behalf of its user. If it is able to do so, then it will return this one.
Otherwise, the it will do one of two things:

* Either the e-person will indicate to the server that no default commpact can be deter-
mined. At this point, most servers will cause some form of a “Not Authorized”-mes-
sage to be sent.

* Or the e-person will try to negotiate a new commpact that it can then use to access
the service. See Figure 19 for this case. The e-person will ask the offeror’s e-person
for the offers that exist about the relevant item or service.
* Then, in case this offer falls under the e-person’s “auto-accept” preferences, the
e-person will automatically accept it and then use it to perform the action.

* If the offer does not qualify for automatic acceptance, then it will be added to the
e-person’s notifier. The user can then look at this offer and decide at liberty
whether or not to accept it. Notifier objects might react in one of a number of
ways to include the e-person’s user into the feedback loop: by popping up dialog
boxes if the user is currently present, by inserting it into an inbox if not present,
etc.

Server Once the server is pointed to the commpact to use, it will decide whether the
commpact’s interpreter is trusted and whether the commpact is a legitimate one. The lat-
ter will make sure that an actor cannot designate just any (bogus) commpact at an arbi-
trarily chosen site—and use it to authorize actions that the real rights holder would not
have granted. A commpact is legitimate if it was really agreed upon by the parties that it
claims to have been so; servers can ensure this by checking whether the promisor of the

A Network-Centric Design for Relationship-Based Rights Management 55

FIRM: An Infrastructure for Digital Relationship Management

Client

commpact’s promise that is to be exercised is indeed one of the offerors of the requested
object at the servér.

Now let us assume that the server possesses validated handles to the actor’s e-person
and the preferred commpact. This is the basic input to an authorization decision. This
decision consists quite simply then of

* getting hold of the right that we want to exercise,
e exercising thisright.

Exercising the right without any exception corresponds to a positive authorization. If we

get any kind of exception, then the action is either not authorized or its circumstances

are more specifically qualified. For instance, consider a ‘WaterMarkRequired’ excep-
tion that would tell the server that it can send out the requested information, but it first
needs to watermark it appropriately.

Note that the above appears complicated, but it really considers a lot of exceptions; in
the normal case this reduces to a few transactions with an overhead that is comparable
to current authorization schemes for the same types of authorizations.

In the case of a simple server-based relationship, the required rights object can be in the
same address space as the server, and we should therefore hardly be able to recognize
much difference in transaction cost between a conventional authorization and FIRM-
enabled authorization. But with the additional infrastructure, we have a scheme that
generalizes smoothly to more sophisticated authorization interactions, including those
not possible with simpler schemes.

As mentioned above, the conceptual assumption is that actions are performed with

respect to the context of a designated commpact—which will then be used for authoriz-
ing this action. In other words, from the client’s view, we need to have a way of commu-
nicating a reference to the commpact with respect to which we want to perform an
action. In FIRM, this task is split up between the (human) user and its e-person—the e-
person acts as an agent and tries to take over all those decisions that its user would have
taken in all likelihood as well (based on user-determined preferences); it would then
automatically pick an applicable default commpact, thus reducing the overall transac-
tion costs of the contracting scheme. A possible user interface implementation might
look like the following for a given action:

* If the actor is presently using the client interface and explicitly designates an “over-
ride commpact,” use this one.

e Otherwise, check whether the e-person is able to identify an applicable default
commpact. If yes, take it.

* Otherwise, enter negotiation: Ask the owner (or any other provider) of the requested
object/service about which offers exist for it, etc.

e Let the e-person determine whether it can automatically accept one of the offers

based on its preference rules. If yes, accept the offer and then use it for performing
the action.

. Note that one object can have more than one offeror, but adding a new offeror to an object’s list of

offerors will require a corresponding right to do so.

A Network-Centric Design for Relationship-Based Rights Management 56

FIRM: An Infrastructure for Digital Relationship Management

4.3

43.1

* Otherwise, add a message to the e-person’s notifier with a selected list of offers as
an attachment.

In Section 4.3, we will see an example of this behavior.

The User’s View: Examples from the RManage Prototype

In this section, we describe how the kinds of affordances that FIRM enables appear at
the user-conceptua level. We use the RManage implementation of FIRM as an demon-
stration example. Specificaly, we will aso introduce the RManage/DLITE viewer, a
prototype relationship management interface targeted at expert users, including publish-
ers, librarians, and other information/service providers, that was implemented as part of
the Stanford Digital Libraries Project using the DLITE toolkit [249] and the Stanford
Infobusinfrastructure [253]. The Stanford Infobusisa CORBA-based distributed object
infrastructure that provides higher-level information management service layers for
managing items and collections, metadata, search, and payment. The RManage/DLITE
viewer runs side-by-side with a conventional Web browser and provides augmented
direct-manipulation affordances to make it easy to interact with FIRM objects—in a
way that is integrated with the Web browser via HTML forms, etc. Note however that
alternative interfaces could be implemented on top of the FIRM platform as well.

At first, we will look at the user interface affordances for general users. Then, we will
describe the additional affordances that are available to those who offer new relation-
ships.

User Interface Affordances for General Users

RManage provides for four major types of affordances for general users: Affordances
for identifying oneself, for viewing and manilpulating the state of one’s relationships,
for controlling what to delegate to one’s e-person, and for controlling the extent to
which one wants to be informed about events in different relationships. We look at each
of them in turn.

Identifying Oneself: Network Login

Identifying who a certain user is and authenticating this information is a necessary step
that cannot be avoided, although it can be designed to incur less overhead than is the
case in many current systems. In particular, we provide a network login facility that
requires people to authenticate themselves only once. Once logged in, all subsequent,
service-specific authentications that might be necessary are dealt with by the system,
not the user. Note that while there exist network login mechanisms for limited domains,
the Web currently does not have a standard mechanism for a network login. This makes
it necessary to register again with every new service.

RManage implements a network login by initially authenticating a user’s client applica-
tion(s) with respect to the e-person of the user. These client applications can then
include a handle to the e-person object when performing network requests, and any ser-
vice has then a way of getting back to the user’s e-person.

From a user’s perspective, there exists a client program (e.g. a form in a Web browser)
through which users can provide simple authentication information, such as a password.
This password is used by the e-person to authenticate the identity of a user. From then
on, all programs know who the user is and how to interact with any server on the net-

A Network-Centric Design for Relationship-Based Rights Management 57

FIRM: An Infrastructure for Digital Relationship Management

work. Note that in specific usage contexts, we can even further reduce the overhead that
is created by the need to provide a password. For example, when running programs as
part of a Unix account, then RManage can make use of the authentication required to
log in to this account.

Under the hood, the following interactions would happen as part of such atypical net-
work login. Let us consider the case of the user interacting with a networked PC, say,
running two applications.

FIGURE 20.

Network Login Interactions.

E-persons
O O =
\

! Token:
! {Epers723,

Home Provider

Get index.html
ID: {Epers723, signed hash}

Local Resource Manager (LRM)

e.g.aPC with
two network applications
running (Web browser, etc.)

First, let us describe the notion of a “Local Resource Manager” (LRM). The LRM is an
object that knows about the local resources that a user has around the physical location
where he or she is using a specific computer. For example, the Local Resource Manager
object will know about the fact that a certain printer is part of the same work environ-
ment as a certain display monitor. Note that the need for an LRM is created by the fact
that client programs can essentially anywhere on the network. Two such applications
might not even know that they appear on the same screen to one specific user. Note that
LRMs are a necessary entity in a networked system based on distributed objects; they
enable us to view a document and then print it locally for example—something which is
not possible in systems without an LRM object, such as Marimba'’s Castanet. For further
detail, see also [249].

Consider now the following login interactions, reading Figure 20 from the user clock-
wise around a circle. A user interacts with some client program and provides appropri-
ate authentication information (e.g. a password). This client program will then contact
the “Local Resource Manager” (LRM) to ask it to perform a network login. The LRM in
turn will contact the user’s designated e-person, and obtain an authentication token in
exchange for a correct password. This token is a handle to the e-person object, signed by
the home provider’s private public-key-cryptography key. The LRM will now initialize
any of the user’s client-side programs (e.g. a Web browser) with this token such that this
application can send it along with every request. This allows then any of the subse-
guently contacted services (e.g. Web servers) to talk back to the user’'s e-person and
automatically negotiate further access conditions (dashed horizontal arrow). Note that,

A Network-Centric Design for Relationship-Based Rights Management 58

FIRM: An Infrastructure for Digital Relationship Management

for the last step, application-specific mechanisms need to be exploited. For example, to
have a Web browser send along an identification token with every request, the LRM can
use the HTTP cookie mechanism that is now available in most Web browsers.

The above scheme generalizes readily to the use of multiple e-persons. In this case, we
will generally only require users to authenticate themselves with respect to one e-per-
son, which will then perform further authentications to other e-persons if applicable.

Viewing and Manipulating One’s Relationships

RManage provides users with a uniform interface to the relationships that they have
with the various providers of FIRM-compatible network services. Figure 21 is asample
view that shows how users can list their relationships, and how they can initiate associ-
ated actions such as payment transfers in the Web-based RManage client in their noti-
fier.

For each of the relationships (“digital contracts”), a page that provides a structured
description of the relationship’s current state can be obtained by following the link in
the listing. This page will then provide a generic set of affordances that are common to
all relationships—such as the ability to terminate—and a set of type-specific affor-
dances, such as renewal and payment options.

FIGURE 21.

Relationship View in RManage.

Fle Edit View Go Bookmarks Options Directory Window
o f e |y | G| ER | G| i
Back | Forusrd| Home Feload | (r:ce=| Open | Prm | Find

|

File Edit View Go Bookmarks Options _i Subscription Contract (Effective)
wa || o | 4y [| €Y || ¥ || 22

Back || Farwers || Home Reload || Imeges Cpen

Inetance: -7 oL

o Contract Parties:
O Party & ("Publisher"): DLOps@Stanford
© Party B ("Subscriber”): roscheis@Stanford
» Description: Publisher agrees to give Subscriber access to
the service(s) for one year, and Subscriber agrees in fum
to pay the yearly subscription fee.
& This Contruct is About:

Collection: Relationships

Service.Mame=Dialog OR Service.Mame=SearchCom
» Sinius: Effective

6 of & items for rmr@Epersons.Stanford EDTU

/ » Rights ard Obligations:
: : : 1. Limited Search Right: Subscriber can search the
o Dialos Site License \/ services) a maximum munber of 200 times. The
number of searches possible witheut having paid is
» Dialog Pay—Per—Use Contract lirnited to 12. Number of completed searches: 3
times,
L 2. Paymerni Obligatfon: Subscriber needs to pay aflat
o WEJT Subscripton fee of $30 by the first of each menth.
O Required payment: $30
: ot O Previously paid: $300
o Law Abstracts Trial Subscription « General Torms and Comditions
» Based on Stunford Form: Subscription Form, Version 1.0
o YRML Plug—in Beta Testing A greement ® Current, : held at StanferdDLG
o Findl aw Community Registration -
Tenminate.
p— I - -

Controlling What to Delegate to an Agent: E-Person Preferences

By using an e-person, a software agent can take over replying to the bulk of those kinds
of requests for which it is clear how the user that the e-person represents would have
dealt with. The exact degree to which such requests will be automatically answered is a
user choice that can range from “fully automatic” to “always ask me explicitly.”

Requests sent to an e-person might include requests to accept a certain offer. Obviously,
nobody would want his or her e-person to automatically accept every such request, since

A Network-Centric Design for Relationship-Based Rights Management 59

FIRM: An Infrastructure for Digital Relationship Management

this might result in unwanted liabilities. Therefore, more reasonable preferences for the
e-person would typically include the type of offer, the size of the liabilities created, etc.

RManage implements two simple forms of e-person preferences to reduce the social
transactions that are involved in negotiating new agreements: Auto-Accept and Auto-
Fulfill:

e Auto-Accept: a way of designating which kinds of offers can be automatically
accepted by a user’s e-person without the user being explicitly. Possible parameters
include the type of the agreement (e.g., “accept all agreements that do not lead to any
obligation”, “accept all agreements that only give out my ZIP code”), the place
where they are enforced (“accept all user profiling agreements managed at Nielsen's

site”).

e Auto-Fulfill: away of indicating what kinds of obligations to fulfill automatically.
Parameters for this might include the type of obligation (e.g., “fulfill all payment
obligations just before they are due”), specific parameters of these (e.g., “fulfill all
payment obligations that are less than $5”), etc.

Note that this allows, for instance, for new agreements to be negotiated just by follow-
ing a link in a Web browser, without any explicit user involvement.

The screenshot in Figure 22 shows an example page describing the preferences for the
default behavior of e-person ‘roscheis@Stanford'. As with all of the browser screen-
shots in this section, note that the HTML pages that they display are textual descriptions
that were generated from FIRM objects directly (in MIME content type text/html),
based on the structured descriptions that each of these objects contains. For example, a
FIRM payment obligation object might have a ‘price’ object property that can be
requested by client programs using the FIRM protocol. At the same time, there exists a
URL that when requested by browsers will make the distributed object return a textual
description that shows the value of this attribute. The design of these descriptions is
partly embedded in the FIRM toolkit that is part of the RManage implementation, and
partly due to the specific way in which a forms designer chooses to implement a new
commpact object.

Figure 22 shows one such page, generated directly by the corresponding e-person
object. We see that the e-person would automatically accept all those agreements
offered to it that are based on one of two forms: it accepts use profiling agreements if

the requested attributes are for internal use only and if it is operated by a trusted site.
Site registrations are also automatically accepted if only name and e-mail address are
requested for this purpose, and if the e-mail address is not used for unsolicited mes-
sages. Furthermore, pay-per-view interactions are limited to a certain maximum price

unless they come from a subscription that was previously set up.

Note that there is full end-to-end integration. If a user presses one of the “Pay Now”
buttons in Figure 22 in order to initiate the fulfilment of a payment obligation, then a
structured set of actions is triggered both at the service provider’s side (such as a data-
base update) as well as at the user’s side (such as an addition of an appropriate item to
the user’s check-book application).

A Network-Centric Design for Relationship-Based Rights Management 60

FIRM: An Infrastructure for Digital Relationship Management

FIGURE 22.

E-person Preferences.

o

Forward

Z| 4| @

Cpen Print Find

G

Reload

S

[ITEEs

o

Back

)

Home

E-Person Control Panel
Control the default behavior of e—person roscheis@@Stanford.
Auto-Accept

o User Profiling offers under the following conditions: Internal
use only; Personal info set: simple; Offeror: iTrust label

» Site Registration offers under the following conditions:
Personal info set: [name, e—mail]; Terms: "no unsolicited
e—nail"

Auto-Fulfill

® Pay—Per—View P nt obligations under the following
conditions: Amount due less than §5

» Payment obligations under the following conditions:
Contract type: subscription; Status: due.

o Notification obligations: always

@ Add Raules | i

o

The correspondence between textual descriptions and underlying actions (i.e., whether

clicking on ‘accept’ really leads to an accept preference) is matter of the implementation
of the object-request interface of the relevant FIRM object. In the case of commpacts,
this implementation is provided by forms designers, who would then also stand in for
“truth in advertising.” For e-person objects, home providers will want to make sure that
they use a faithful implementation; FIRM does not specify any mechanism for getting
such an implementation. In fact, FIRM also abstains from specifying the user-to-e-per-
son protocol since there are no interoperability requirements for this “private” interface.

Controlling Access to One’s Attention: Notifier

Events from relationships are brought to a user’s attention in a uniform way in the noti-
fier structure. The notifier is an affordance by which a user can catch up with ‘what’s
new’ for a certain e-person. This transparently includes both information push as well as
information pull events; the notifier implementation takes care of the specific access
method and structures the results in a way that mirrors the user’s preferred attention
structure. The notifier also allows people to initiate certain actions, such as fulfilling
payment obligations, and accepting offers.

In the current RManage implementation, the notifier basically only acts as an inbox that
allows us to take some modality out of interaction design—since we have obligations as
first-class objects, we can just add them to a user’s notifier and rely on the fact that they
are enforced to the extent that they will not go away unless they are fulfilled. In Grass-
roots [279], we have explored the notion of a notifier more extensively with respect to
information organization and communication.

Figure 23 shows a sample view of the notifier of e-person ‘roscheis@ Stanford’ queried
at a certain point in time. We see that there are various payment obligations due (the
hyperlinks lead to more detailed information about them and their context); affordances

A Network-Centric Design for Relationship-Based Rights Management 61

FIRM: An Infrastructure for Digital Relationship Management

are provided for directly initiating a payment transfer to fulfill them. Moreover, we are
informed about the fact that a notification obligation has been automatically fulfilled
and that an approval request is pending.

FIGURE 23.

File Edit View Go Bookmarks Options Directory Window
el olnl & 6] @l EN
Back | Forwardd - Home Feload | i Qpeh Pririt Find £
#
Notifier
4 of 4items for roscheis{@Stanford.
» Payment Due; §15.24
Context: Pay—Per—Use Contract sbout Dislog Service
Date: 1/12/97 { Auto—Fulfill),
Pay No&;
& Payment Due: $23.50
Context: Site License about PARC Summarizer
Date: 1/15/497,
Pay Nowjg
o Notification Sent: for accesses to records
Context: Membership Confract
Auto-Fulfilled.
o Requestto Accept Offer: User License from adming Stanford
Lccep ;I t

Declaring Overrides for Special Cases

Recall that when performing an action, users have the choice to designate a commpact

with respect to which they want to conduct the action. This commpact then acts as the

unit for authorizing a certain action. If the e-person’s preference rules clearly indicate
which agreement is applicable for a certain action, then RManage-enabled clients will
automatically include a reference to this default agreement in the request.

For example, consider that we have a subscription agreement with a certain online
newspaper, and that we have chosen this agreement to be the default agreement to use
when accessing the newspaper. Then, whenever we access material of the newspaper,
the user’s e-person will designate this agreement to the publisher. In other words, in the
normal case, all the required rights-management interactions can happen transparently
to the user.

Now consider that for some reason we want to use some other relationship to access to
same material. For example, consider that we also have a site license to the newspaper.
One way to deal with this is to declare the site license to be the default agreement for
accesses to this newspaper. Another affordance that RManage provides is that of a tem-
porary “override” to the default agreement. This provides a more light-weight way of

A Network-Centric Design for Relationship-Based Rights Management 62

FIRM: An Infrastructure for Digital Relationship Management

using another agreement for one or a few actions and then going back to the default
agreement. In RManage/DLITE, we have experimented with various direct-manipula-
tion ways of indicating such overrides as a feature for expert users. Cf. Figure 24 for an
example of how thisis prototyped in the RManage/DLITE interface.

FIGURE 24.

4.3.2

Declaring Overrides in RManage/DLITE: Dropping a Contract Icon on a Search Service.

= & S

fle Edit Add Constructors Template Debug

5
1Y MQ Relationship Manager

Stanfor
Stantord
Home Provider| |Eorne Provider|
ittt

.........

A

Dialog

-
Create Query

Query constructor

Alraista

llcansed
.

[License-based
Search Service

[~ Override contract used for

\ a specific search (the square)

—~~ Result set from successful search

- Notifier indicates that payment is due

Motifier of
roscheis@Stanford

=

[
|

Once accepted, an agreement enables users to use the services covered in the agreement.
The promises in an agreement implement the specific fee structure of a for-pay service.
For example, in a sample search license for the Dialog service as part of the RManage
implementation, we provide a fairly sophisticated search right that allows for a limited
number of searches before the payment obligation has been fulfilled. The payment obli-
gation on the other hand implements the fact that searches in this agreement are charged
for on a per-search basis, etc.; it then uses any of a number of native payment protocols
to allow this obligation to be actually fulfilled if thisiswhat a users wishes to do.

In the direct-manipulation interface in Figure 24 (RManage/DLITE), such obligations,

aswell as agreements themselves, can be directly manipulated (transferred to other peo-

ple, etc.). Payment obligations are some of the items that typically will show up on a

user’s notifier. In some cases, these notifier messages will only indicate that a certain
payment is due at a certain time. In other cases, especially if used as part of a pay-per-
view contract, they will often be fulfilled automatically and the notifier might only con-
tain a message that summarizes the payments executed.

Note that RManage independently manages control and content objects and sets them in
relation in a way that enables different control behaviors to become effective for one
and the same object.

User Interface Affordances for Offerors

In this section, we describe the user interface affordances that RManage provides for
those who offer information or services to others. In terms of our rights-management
framework, offering a service to others essentially amounts to creating an offer that oth-

A Network-Centric Design for Relationship-Based Rights Management 63

FIRM: An Infrastructure for Digital Relationship Management

ers might then accept. FIRM was designed to make it easy to create new offers by defin-
ing an infrastructure for the sharing of customizable contract forms. The basic process
of creating an offer consists primarily of selecting a contract form, customizing it, and
declaring this draft an offer.

Obtaining a Useful Contract Form

Forms can be obtained in one of a number of ways, including browsing and searching.

Figure 25 illustrates the offer drafting process as implemented in the RManage rel ation-

ship manager application. The | eft side shows the RManage/DLITE direct-manipulation

interface. The right side shows an HTML description of a contract form. In RManage, a

user creates a query for ‘subscription’ (upper left) and employs the ‘Stanford Forms
Provider’ service (middle) to search for digital contract forms that might be useful in
drafting a subscription offer. A result collection is returned with four different
commpact forms. Users can inspect each form and then take one and use it to draft an
offer—by customizing it and by filling in form-specific parameters

FIGURE 25.

Using Commpact Forms to Make it Easy to Offer New Relationships in RManage/DLITE,
a Java/CORBA-based direct-manipulation interface.

Hie Edit Template HAald Constructors Debug '
X " T—
[| Relationship Manager 1= criptian Contract {
File Edit View Go Bookmarks Options Directory
Create Query I : o
= : oo iy @ | 2
| e Bagk | Foreard | Home Reload | Images | Open | Print
CohhactstfeisHome P_ref_s’. ;
Location: I}n—.tp:,-’,-’Cmgo.stunford.mu:sooofl?l.
Q

B
Cialog

auailabl &

>

SearchCom

auaitable

4]

Stanford

Home Provider
available

ELd

Stant ord
Forms Provider

available

Subscription Contract (Form)

Form: 1pticnCommpact: anfordDL

o Contruct Parties:
O Party & ("Publisher")

' © Party B (" Subscriber")
—7 o Description: A subscription agreement in which

publisher agrees to give subscriber access to the
FubsE GO, service for one vear, and subscriber agrees in turn to
s Rer pay the yearly subscription fee.
o Staius: Form
4 o General Terms and Conditions

Draf
Mew Conn

Contract Forms
Provider: Stanford

A JU———

Drafting an Offer by Customizing Contract Forms

Once we have decided on a form and put it onto the drafting workbench, we can fill in

the defining parameters and choose the various options that the form provides. For
example, Figure 26 shows on the left the top-level choices for a sample subscription
agreement. These include simple fields for issues such as in which role we want to offer
the contract, how often to offer it, and a constraint about what the offer is. For each of

A Network-Centric Design for Relationship-Based Rights Management 64

FIRM: An Infrastructure for Digital Relationship Management

the two promises in this agreement, we then have further fill in options. For example, in
the specific search right that this contract form incorporated we can set the number of
searches that are allowed without having paid first. Moreover, we constrain the use of
this right to people affiliated with Stanford University by adding a corresponding con-
straint. In the payment obligation, we can fill-in the subscription fee. In every case,
thereis arange of generic attributes such as whether a promise is waivable, etc.

FIGURE 26.

Customizing and Setting Parameters in a Contract Draft.

Netsoape; Paynent Obligabion

Fle Edit view Go Bookmarks Options Directory Window

Location: Ihtr_p:/fo:mqu.stmfam.m.nsooo/l?l.54.75

Fle Edit view Go Bookmarks Options Directory Window |
Location: Ifhttp=NCmgc.stanford.EDU=9000f1?1.64.?5.64
J

Payment Obligation

Subscription Contract (Draft)

o Coniract Partées:

o Party B {" Subscriber”}
[“wSelece to switch roles)

[

Instance: SubseripticnCommpact -36@StanfordDlCemmpactianager $300 in total,

O Party & (" Publisher"): roscheis@Stanford

& Description: & subscription agreement in which publisher agrees

Instance ID: FlatPecPaymentObligation=38 88 part of commpast

® Description: Subscriber needs to pay flat fee for searching;

© Regquired payment; $300

o Wizrse:,;“s"r‘ﬂ%s:im 10 Ale Edit View Go Bookmarks Options Directory Window Help

[Switch to other party] B o
I

o exclusive

. Location: Ihu;p://‘o:mqa.scmfom.m:sooonn.ﬂ.75.54
o Mwaivable

searching: $300 in total

O Previously paid: §0
& General Terms amd Conditions
o Customizaiion Choices:

to give subscriber access to the service for one year, and o

subscriber agrees in tumn to pay the yearly subscription fee. ® Szl
o This contract is abowi: o Miransferrable Limited Search Right

© effective: N
Service.Name=Dialog OR Service.Mame=SearchCod / o Promissary Condition: Instance ID: LimitedSeazchiight=37 8s part of commpact
s Sewizs: Draft | Nerfe L -])
; L = ® Description:Subscriber can search the service a maimumn
» Rights m .omns:) /\ & Condition Subsequent: Mone number of 200 times. Moreover, the number of searches possible
1. Limited Search Right: Subscriber can search the service ® ftems subject to this promise:all of those) without having paid is limited to 1 search(es’, Number of

a mazirmrn munber of 200 tmes. Moreover, the number

of searches possible without having paid is limited to 1

search{es). Number of completed searches: 0 times
ment Obligaifon: Subscriber needs to pay aflat fee for,

O Required payment: $300

O Number of times to offer this contract; |70

o Allow offeree to chose privacy degree? | ¥/
& Based on Standard Form: SubscripionCommpact, Version 1.0 o Customization:

as provided by FormsProvi@ Stanford © Max number of searches: W
o CurrentInstance: held at StanfordDlOcmmpactManager

N o Cusmomdzetion: completed searches: O times
o Fee: ,F ® Holder: Subscriber
[- Switch fo other party]
. G ! Stutus:
© Uezclusive
Done
e —

o Mwaivable
o waived

el

o [transferrable.
O effective: N

o Promissory Candifivn:l Person.BEfiliaticn=stanford

o Condition Subsequent: None
® frems subject to this promise:all of those in contract

© Max number of searches without having paid: |31

‘ Updatel | Declare Draft an Oﬁferl

=8| T

= | sl

Values for attributes of persons can either be provided by the home provider or by third
parties. For example, certain home providers might record the student affiliation of a
person with their e-person structures; then, if trusted, these values can be used to obtain
this attribute for a person. Otherwise, the home provider might only provide an identify-
ing handle for the e-person (such as its full name), with which a commpact can then
obtain the attribute from some third party such as the university itself. The exact way in
which thisisdone is a decision of the forms designer.

Declaring a Draft an Offer

Finally, we can turn the contract draft into an effective offer that other users or agents
can then examine and possibly accept. See Figure 27 for a generic presentation of an
offer to users.

A Network-Centric Design for Relationship-Based Rights Management 65

FIRM: An Infrastructure for Digital Relationship Management

Note that in order for A to give accessto B about I, in a contracts-based approach, A will

create an offer about | that is limited to B, and B can then accept it if he wants to do so.

Note that in a more property-based model we could have simply “attached” the access
right for B to | and then telB about it in some out-of-band way (in the contracts
approach, we first have to assure mutual assent).

FIGURE 27.

4.4

44.1

Sample Contract Offer: FIRM provides a way of generating structured contract
descriptions.

File Edit View Go Bookmarks Oplions Directory Window Helpl

Sl Bl & .@lé’? pmlm N ﬂlml_lulllo;lilil l

Location: [Fitp: //Conge. Stanford . EDUS8000/171.64.75 .64 .60

Location: IIhttp:HCmgu.stnnEord.mU:EOOO;’l?l .64.75.64.6

Terms and Conditions

Licensor grants Licensee a royalty—free, nonexclusive license to use, copy,

Subs(:rip]jon Contract (Offer) ‘modify and distibute information obtained from Licensor and any relzted
for academi h and intemal purposes only
and subject to the following conditions:
astansst CEa32a8tantozanl =tianager 1. By using or copying the information, Licensee agree to abide by the
terms of this Agreement
Boran 2. Title and copyright to the information remain with Licensor and
o Contract Parfies: . i Licensee agrees to preserve the same.
(o] Party A (" Pubhshgr“); roscheis@ Stanford 3. Licensee admnwledges that the information is being supplied "as is”,
b o b without any ac anying services from Licensor. Licensor
O Party B (" Subscriber") MARES NG REPRRSERTATIONS OR WARRANTIES,
CHpE . C 5 : 3 EXPRESS OR IMPLIED. By way of example, but not limitation,
® Description: £ subscription agreement in which publisher agrees to Licensor MAKES NO REPRESENTATIONS OR WARRANTIES
i 1 i i OF MERCHANTABILITY OR FITNESS FOR ANY
give sul?scnber access to the service Epr one year, and subscriber L R O Y COFTWARE
agrees in turn to pay the yearly subscription fee. WILL NOTINFRINGE ON ANYPATENTS OROTHER
5 h ; f icensor shall ot be held lisble for any liabily nor for any
o This contract is abous: Dialog, SearchCorm, PARCSumnmarizer direct, indirect or consequential damages with respectto any claim |
o by Licensee or any third party with respect to this Agreement or any
» Stufus: Offer use of the informaion.
L

» Righty and Obligations:
1. Limited Search Right: Subscriber can search the service a
rmaxirmun munber of 200 times. Moreowver, the number of
searches possible without having paid is limited to 1
search(es . Number of completed searches: 0 times
2. Payment Obligation: Subscriber needs to pay a flat fee for

orany
based on the information to third parties provided (1) all copyright
notices and this Agreement appear on all copies, and (2) no chargeis
associated with such coples. Unless Licensee labels the derivative.
‘work with the notice * No Grantback”, Licensee agrees to grant
Licensor arogalty~free nonexclusive license to use, copy, modify
and distribute any modifications to the information ovmed by
Licensee and distributed to third parties as a derivative work under

5. If Licensee ditrbutes a dertvative vork then Licensee also agrees |/
Searchlng: $300 in total. B st '"T—“hm = =

O Required payment: $300

O Previously paid: §0

o Generwl Terms and Comlitions
» Options:

O Privacy guarantee: Address information will be used

Internally = | only,

» Based on Standard Form: SubscriptionCommpact, Yersion 1.0, as
provided by Forms Prowgd Stanford
o Corrent Instance: held at stanfordDLCommpactManager

| Accept Of:Eerl | Reject Of:farl

Object Interactions: Sample Transaction Scenarios

In this section, we examine a sample transaction scenario that demonstrates how digital
contracts make it possible for new relationships to be rapidly negotiated and applied.
The extended example that we consider here is taken from the privacy domain, and it
shows how a contract approach can be extended to domains that have previously been
amenable to a property approach only. We will also consider various aspects of a typical
subscription contract in this section.

Example: Contracting for Privacy

When visiting a shoe store to buy a pair of shoes, few people would object to giving out
their shoe size—since this is likely to make the shoe shopping experience more pleas-
ant. The question is how the analogue would work in the online domain: how can users
determine the nature of their relationship with the provider of a certain server, agree on
boundary conditions, and then make available personal information in a controlled

A Network-Centric Design for Relationship-Based Rights Management 66

FIRM: An Infrastructure for Digital Relationship Management

way—the shoe size for the shoe store, the ZIP code for the weather site (to be able to get
the local weather right away), basic demographic information for advertising-supported
sites (to minimize irrelevant ads), etc. In particular, the question is how can this be
accomplished without imposing any unnecessary usability overhead. Cf. Figure 28.

FIGURE 28.

Online Privacy: RManage uses FIRM to allow users to reveal personal information in a

controlled way.
@ Shoesize:9

-..
...................
s

»
...............
......
"y
Nay
~.

The user of a browser can set up his e-person to automatically accept user profiling con-
tract offers of a certain type—those that are about a simple set of personal information
and that have been certified by a certain labeling service. In the user’s view, a first-time
visit to a FIRM-enabled weather server will then present the user directly with the local
weather—since the server could use FIRM to obtain the requester’s ZIP code in a con-
trolled and consensual way. However, while accessing the FIRM-enabled site appears to
users to be as simple as browsing any other (uncontrolled) Web site, a whole range of
FIRM transactions are happening “under the hood”: A user profiling relationship is
negotiated based on the user’s default preferences, and personal information is used for
agreed-upon purposes.

Figure 29 indicates some of the transactions that FIRM defines for an authorization that
triggers the negotiation of a new relationship. Consider in particular the protocol
requests labelled E1, E2, and N1-N4. Note that this is the most comprehensive case that
tries to accommodate complex circumstances (no pre-existing relationship, no network
caching, possibly multiple offerors, etc.). In particular, these transactions include:

1. Requesting a document from the server, using some document access protocol (e.g.
HTTP). The FIRM-enabled server recognizes that the user has an e-person, and
therefore uses the augmented authorization module to negotiate access conditions.

2. The server asks the requester’s e-person for the commpact with respect to which this
access is supposed to take place.

3. The e-person returns a pointer to a commpact that it would like to use as the “autho-
rization decision facility” for the requested action. It could also return an authoriza-
tion token that it might have cached from a previous authorization.

4, Receiving the pointer to the commpact, the server will then ask this commpact for
authorization.

5. Once it obtained authorization (and validated it), the server can perform the
requested action.

A Network-Centric Design for Relationship-Based Rights Management 67

FIRM: An Infrastructure for Digital Relationship Management

FIGURE 29. Transactions Under the Hood: In one of the more comprehensive cases, a new
relationship is established: Tom accepts an offer from Mike, one of the offerors.

N .

Tom

1: Request: e.g. HTTP ;

2: Which commpact to use? Cet offerars

3: Use profiling commpact i

4: Exercise profiling right EZ'. List of offerors

A L3 N1: Get offers

5: Authorization Decision N2: List of offers
N3: Accept profiling offer
N4: Accepted

: Exception;

The above holds for the case in which there was already a relationship established. Note

that this protocol effectively mirrors other typical authorization protocols. For example,

in one of the typical cases where a user’s e-person and the browser are realized in the
same address space, and the commpact and the server are co-located as well, then we
essentially obtain the conventional authorization scheme of the HTTP protocol as a spe-
cialization of this special case. In other words, the simple cases reduce to familiar proto-
cols while the more complex cases can be dealt with uniformly. Cf. Figure 30.

FIGURE 30. Special Case of Transactions in Case Objects are Allocated in Specfic Form.

Tom

1: Request: e.g. HTTP

2: Which commpact to use ? like HTTP auth exchange
3: Response: Use this one

4: E ise righ . L.
5- Aﬁ?ﬁgﬁiartl%nt Decision like HTTP server authorization

If we have not yet had a relationship established, then the following negotiation protocol
will be triggered (see the additional actions in Figure 29):

El. The e-person asks the server to find out the identity of the offeror(s) for the relevant
objects.

E2. The server designates relevant offerors.

A Network-Centric Design for Relationship-Based Rights Management 68

FIRM: An Infrastructure for Digital Relationship Management

442

N1. It selects an offeror (by the name of Mike in Figure 29) and asks the offeror’s e-
person about any relevant offers.

N2. The e-person receives pointers to relevant offers.

N3. The e-person inspects an offer, and based on its default rules, it can automatically
accept it, and then use the accepted offer to authorize the access that required the
negotiation of a new relationship.

Note that in many cases a server will of course be able to short-cut the above protocol,
for example, by directly providing a default offer for a certain object, or by having
information cached from previous interactions.

Example: Subscription Contract

As a second example, let us consider a typical subscription contract with its various
terms and conditions. Consider a one-year subscription to an online newspaper that is
available on the Web to subscribers who pay in regular intervals for the subscription.

Coverage

The fact that this contract is about publication items that for instance have been issued
throughout the calendar year of 1997 is just a constraint as part of the FIRM contract
that specifies that the publication date of the newspaper (an ‘item’) is in this year:

About | tens Constraint: |tem PublicationDate. Year=1997

Note that this would allow us to access the issues of the newspaper from this year even
after the year has ended or the contract was completed.

Payment

As an example that demonstrates how fulfillment processing is tied into the FIRM rights
management service layer, let us now see how payment is dealt with in RManage in the
form of one of various kinds of payment obligations. For FIRM, payment primarily
appears in the form of payment obligations. FIRM keeps track of the status of payment
obligations and provides affordances for fulfilling them, but the actual way in which
they are fulfilled is dealt with by other service layers. The RManage implementation
uses the UPAI [251] payment application interface. Cf. Figure 31.

FIGURE 31.

Payment Interactions in FIRM.

Vlnﬁu
Payment
Obligation

Pay $3 to
jan@Stanford

DeclareFulfilled

Payment ;
Module native payment

e.g. UPAL | protocols bank, etc.

As with any other RManage promise, payment obligations are first-class objects with a
generic set of operations applicable to them. In the case of payment obligations, these

A Network-Centric Design for Relationship-Based Rights Management 69

FIRM: An Infrastructure for Digital Relationship Management

operations amount to initiating a payment transaction (fulfilling the obligation), declar-
ing it paid, etc. The exact way in which payments are executed is a matter of specific
payment protocols and institutions; it is not part of the FIRM specification itself.

While the RManage prototype implementation |everages the UPAI payment application
interface [6], any other implementation can make a different choice here as long as the

basic FIRM callbacks are used. UPAI provides an abstraction layer to integrate native
payment protocols from a variety of providers such as First Virtual, DigiCash, VISA,

etc. that allows RManage to disintermediate the various parties that play arole in pay-

ment transactions and provide a uniform interface to payment. Note that by leveraging
FIRM's structures, RManage’s interface provides a unified definition of what it means
to assent to a contract, to fulfill an obligation, etc.

Discounts and Other Contract Options

Let us now consider the case in which a customer would like to buy a subscription from
an online bookstore, but, as an ACM member, she would like to obtain a 10% discount.
From the user’s view, no breakdown should need to occur in order to deal with the dis-
count; the bill in the end would just contain the appropriate deduction if the bookstore is
FIRM-enabled.

To understand what is happening “under the hood,” we need to clarify the contractual
structure; once we have decided how to understand the situation, then there is a straight-
forward mapping into the RManage objects. Note that while FIRM makes control pro-
grammable and facilitates the computational realization of legal structures, it does not
help people obain an understanding of the legal structure of a certain situation.

One way to conceptualize a discount is the following (the designer needs to be clear
about this; not the user): The basic promises in the subscription contract are those of an
obligation to deliver the publication (held by the bookstore) and an obligation to pay
(held by the customer). To accommodate a discount, we assume that there is one and the
same contract, but in addition we have a discount right. This discount right has a prom-
issory condition that requires its holder to be a member of the ACM. When exercised, it
simply reduces the amount to be paid (an attribute of the payment obligation object) by
10%. Of course, users or their e-persons need to remember to exercise this right in order
to take advantage of the reduction. This is what one’s e-person will generally do if it is
set up to do so. Then other kinds of reductions can simply be reflected by adding corre-
sponding discount rights to an obligation. Note however that exercising a discount right
might of course also have other ramifications. For example, it might imply a waiver of
other rights—for instance, it might waive the use of other discount rights, or it might
void a right to return the good, etc.

In other words, FIRM forces us to be clear about the interpretation of a certain transac-
tion (e.g., questions such as whether something is an advertisement or whether it is an
offer at the same time). But it does not help us in finding this conceptualization; this is
an issue that needs to be dealt with prior to using the FIRM framework. Once it has
become clear how we want to understand a certain relationship, then FIRM provides a
straightforward mapping of the (contract law) entities into computational objects.

Terms and Conditions with Arbitrary Predicates

A vital part of a rights-management systems is to be able to articulate and enforce such
constraints as “accessible to US citizens only,” “minimum age of 12 required,” or “aca-
demically priced—for currently enrolled students only.”

A Network-Centric Design for Relationship-Based Rights Management 70

FIRM: An Infrastructure for Digital Relationship Management

FIRM provides for constraint structures as part of its rights objects that allow for poli-
cies to be formulated based on arbitrary predicates. However, FIRM does not specify
any (idiosyncratic) constraint language for articulating such constraints. The way in
which constraints are provided to FIRM objects is left as a choice to the specific user
interface realized by individual commpact implementations. Furthermore, FIRM itself
does not say anything about the internal representation or the syntax of such constraints;
it only specifies a basic request interface that constraint objects obey and that can be
used to determine whether a constraint is satisfied, etc. In RManage, we use a simple
Boolean constraint language that users can use to type in constraints in the various dia-
logue boxes of commpact forms.

Predicates can rely in FIRM on any of the attributes that have been defined for a certain
object by a certain attribute service (proxy). In particular, attributes for constraints can
come from several sources. For example, a home provider could provide citizenship
information while the student status of a specific person might be best obtained from a
proxy operated by the university. In other words, implementations using FIRM will
have to decide which sources can be trusted and which ones will not be trusted.

For more information about the kind of metadata architecture that FIRM requires, see

the Appendix and [252]. In particular, FIRM leverages the online availability of services

on the network and does not use cryptographic credentials where other systems might

use them easily: For instance, to certify the student status of a person, a service can just

directly send a query to an online database—rather than introducing cryptographic cre-
dentials that can then be “presented” by users to a service.

FIGURE 32. Certification: Example.
Source Finder
e.g. GIOSS
Get collection of supported attributes
‘Person’ Model {‘Affiliation’, ...} native
et affiiation of epers7235 prorocol
et affiliation of epers
2 > "

Affiliation="Stanford’
-

Client, e.g. rights object Service Proxy Student

checking student status Supports: Database
Affiliation’ attribute

in ‘Person’ attribute model

Consider for instance a subscription contract where the price is specially reduced for
students. In other words, the condition precedent of the contract object is a constraint

A Network-Centric Design for Relationship-Based Rights Management 71

FIRM: An Infrastructure for Digital Relationship Management

that requires the purchaser to currently be a student.X One specific way to articulate this
in RManage/FIRM would just be the following:

Condi tion Precedent: Person.Affiliation="Stanford University’

Such a constraint would rely on there being an attribute proxy such as the home pro-

vider that knows about a person’s affiliation. The fact #fféiation is an attribute of the
Person attribute model would be a property that can be read from the representation of
the attribute model; it is a fact that can then be conveyed explicitly in the user interface
that allows offerors to provide such a constraint (for instance, via an option box).

A more complicated attribute proxy might even provide a more general attribute such as
StudentStatus (e.g., by relying on further requests to backend services); then, we could
have a more general constraint such as

Promi ssory Condi tion: Person.StudentStatus="Y’

As we explain in more detail in the Appendix, FIRM itself does not specific any
attribute sets. It uses a metadata architecture with first-class attribute models as a mech-
anism to keep this dimension outside the type system of FIRM. In other words, FIRM
can be used as long as commpact forms designers and services use attributes from
shared attribute models.

Related Work

FIRM relates to much recent work done to address the issue of security and rights man-
agement on the Internet. First of all, thereis clearly alarge amount of work in cryptog-
raphy and classical computer security on specific mechanisms by which the validity of
certain assertions can be securely determined. [171][164][163] Our perspective on this
work isthat we will use the best-of-a-kind products from this area, but the basic mecha-
nisms for managing control information that are our focus here address an orthogonal
layer of issues. In this section, we describe some of the key differences of our approach
to systemsthat are roughly in the same design space.

The SDSI system [147] provides an integrated solution for distributed security that is
based on simple, new representations for each of the different components that are nec-
essary. One of the main differences to FIRM isthat SDSI does not clearly separate pro-
tocol and architecture from specific implementation and transmission choices that can
be made by different implementors. For example, SDSI defines a new object request
interface (e-mail/HTTP), a new object transmission standard (the S-expressions), a new
congtraint language (the ANDs and ORs defined there), a new naming scheme, etc.
Given the multiplicity and heterogeneity of developers that need to adopt such a system
in order to make it work, it seems unlikely that it will be easy to get people to adopt all
of these new formats, especially in light of the fact that there already exist multiple leg-
acy solutions for each of these problems. Note that FIRM takes a somewhat different
design approach in that it deliberately abstains from defining, for instance, a new con-
straint language; it just defines rights-related object interfaces using standard languages
and components, by which different parts of the system can be glued together. Further-
more, SDSI does not define a user-conceptual model. In addition, it does not clearly

1. Alternatively, we could also install the same constraint as a promissory condition of theright to a
discount (with somewhat different ramifications).

A Network-Centric Design for Relationship-Based Rights Management 72

FIRM: An Infrastructure for Digital Relationship Management

separate the distinct layers of articulating assertions and their expression using specific
cryptographic mechanisms. This ties the architecture to a specific use of cryptographic
methods.

The work on rights management done at Xerox (Stefik [97][99]) contains (at |east) two

major components: a language for describing rights (the “Digital Property Rights Lan-
guage” (DPRL) [99]); and a specific architecture to assure the secure interpretation
(enforcement) of this rights language. The rights language describes rights in a certain
domain; it does not intend to provide a programmable framework, within which several
such rights languages can be expressed. The vocabulary of the rights language is very
rich (or, “complex”) compared to typical other rights languages. Its main focus is on
representing the kinds of (property-based) rights that are subject of the Copyright Act,
such as restrictions on copying, fair use rights for “backup” copies, etc. There is also
some amount of contracting/licensing implied, albeit not represented explicitly in a
direct form: A “ticket”-based conceptualization is used to deal with licensing relation-
ships rather than a full-fledged, direct contract-based approach. The architecture that
assures secure interpretation is based on a Trusted Computing Base (TCB) that extends
beyond what other secure content container architectures would typically assume.

IBM’s cryptolopes [144] are an instance of a secure content container architecture.
Along the same lines, InterTrust [145] has been developing a proprietary architecture
for secure content containers that generalizes IBM’s approach in that it does not require
any built-in architectural centralities. InterTrust's architecture for managing control
information accommodates first-class control objects, called ‘control sets’, although the
emphasis is on client-based control (using their secure content container technology)
rather than on network-centric control as in this thesis. In our view, the difference
between InterTrust's client-centric and FIRM’s network-centric architecture largely
boils down to the question of the extent to which one believes that users will want to be
micromanaged in client-side actions.

FIRM is designed to be orthogonal to any content container technologies. In fact, it

complements them, and it can use best-of-a-kind container technologies for enforcing
the terms and conditions expressed in commpacts if content objects need to be tightly
kept under control after release. Effectively, commpacts correspond to an access-control
decision facility, while secure content containers provide an access-control enforcement
facility.

InterTrust and FIRM share an overall emphasis on having a programmable platform.
For most practical purposes, FIRM is far more light-weight, however, especially
because it clearly decouples enforcement and authorization issues, allowing application
developers to leverage enforcement mechanisms that work well for applications in a
certain domain. InterTrust claims a number of patents on its technology, hone of which
seem to be related to content container technology or software-based rights manage-
ment, though. Details of the InterTrust design are not published.

EDI (Electronic Data Interchange) is a widely deployed message-based infrastructure
for electronic contracting that has the kinds of mechanisms for negotiating agreements
and defining new forms of agreements that are not very well represented in conven-
tional digital rights-management systems and that fall into the layer we are focusing on.
In particular, the notion of a standard template is one of the key insights from the EDI
world that we incorporate into our architecture. Creating a new commpact form effec-

A Network-Centric Design for Relationship-Based Rights Management 73

FIRM: An Infrastructure for Digital Relationship Management

tively corresponds to the case in EDI of creating a new message interaction type. Note

that in EDI this requires submitting a “New UNSM Request” to the appropriate “RT
Secretariat,” that is, the “rapporteur team” appointed for a certain geographical area,
which will then coordinate with the appropriate UN ECE office whether the proposed
type is sufficiently different from previous ones and warrants a new type. In the
commpact model, we carry over the assumption from EDI that new commpact forms are
generally not set up by end-users. This thesis does not address the question of the extent
to which an institutional infrastructure is required to support the naming and prolifera-
tion of the various standard forms.

The World-Wide Web Consortium (W3C) has recently started a number of efforts along
the lines of privacy (P3P [219]) and personal context management (“Web passports”
and OPS [220]). Both embody a number of key concepts that have also been part of
FIRM. The W3C proposals are more specifically targeted at providing fixes for certain
immediate problems, with the possibility of incremental improvements—rather than
starting out with a more general design that deals with a wider range of usages.

Mondex together with an industry consortium of companies has pioneered a higher-
level purchasing protocol, the Open Trading Protocol [227]. This protocol defines
requirements for consumer purchasing contracts that can be seen as a specific instance
of the kind of contract, that are possible in FIRM. At this point, there does not exist a
technical protocol/architecture specification though; only a requirements specification
exists, and there is no evidence that this work is actively being pursued. The current
requirements specification deals with a subset of the issues that are addressed by FIRM.

The design of the TIHI system [184][185][186] addresses security in collaborative set-
tings by providing a gateway, owned by the enterprise security officer, that uses a set of
policies to mediate queries and responses. The policies of the gateway include release
rules that make it possible to enforce content-based access control. TIHI is a practical
implementation of an architecture that takes into account the availability of a (human)
security officer in the kinds of applications in health care and in manufacturing that
motivated this design.

Minsky [182][183] introduces a mechanism for communication in distributed system
called "Regulated Interaction (RI)" (previously called "law-governed interaction™). The
central concept of this mechanism is a formal and enforced set of rules called a "law.”
The approach taken in this work supports heterogeneous systems with disparate coordi-
nation policies—much like the approach taken in this thesis—although in a way that is
more property-based rather than relationship-based.

A Network-Centric Design for Relationship-Based Rights Management 74

Conclusion

5.0

Conclusion

In this thesis, we have shown how the current Internet infrastructure can be augmented

by another service layer—one for digital rights management—that allows us to talk
about such high-level objects as “contract/agreement,” “obligation,” “right,” and “per-
son"—and provide a platform for structured relationship management that enables us to
deal with access to information, privacy and security, etc. as the ancillary of such rela-
tionship management.

The Thesis in this Thesis

Our basic hypothesis in the beginning was that with additional software infrastructure,
we can unify rights/relationship management from a user-centered perspective, and we
can achieve better end-to-end integration than current approaches that do not have
access to structured interfaces to relationship information.

This thesis defines a programmable service layer for rights/relationship management
and demonstrates a prototype relationship manager application, RManage, which
enables users to uniformly manipulate relationships and their properties, and which pro-
vides full end-to-end integration for RManage and FIRM-compliant network services to
share control and state information. The examples covered by the RManage implemen-
tation include various kinds of subscriptions and licenses, as they are widely used in
current practice.

The question that we will address in this section is how complete the infrastructure is.
This requires a classification of the relationships being supported, so that new kinds of
relationships can be accommodated by the FIRM framework. A large part of the answer
lies in the programmability of FIRM. FIRM is not a formalism, but a set of object inter-
faces/APls with associated definitions about how they can be used. Concrete FIRM-
compliant systems will implement some of these interfaces, and use others to interact
with existing network objects. The FIRM toolkit that we have implemented facilitates
application developers in providing new functionality. For instance, they can subclass
implementations of existing objects, such as a site license, and override specific behav-
ior, such as the way in which a payment obligation calculates the amount that is due.

By virtue of being a programmable platform, implementations can add new types of
control behaviors and state management functions in a FIRM-compliant way, and go
beyond the example cases that we have discussed in the previous chapters. FIRM essen-
tially only guarantees a basic common denominator for the exchange of structured rela-
tionship information, but it does not restrict application developers, including forms
designers, from providing additional functionality.

Of course, the formats of the attribute models used will have to be defined. This will
have to be dealt with much in the same way as done by EDI, which provides an exten-
sive set of data structure definitions for various domains of application. The first-class
attribute models used by FIRM provide a systematic mechanism of representing such
data structures in a way that can leverage EDI, without being restricted to the assump-
tions that such systems make about message exchange and communication protocols.

At the next level of detail, FIRM’s specific choice of object interfaces and interactions
does not constrain forms designers from being able to implement the kind of control
behavior that they want to express. The main effect of FIRM is to allow communication

A Network-Centric Design for Relationship-Based Rights Management 75

Conclusion

to shift to a format that uses open interfaces. In principle, one could use a FIRM rights

object, for example, in a way that only makes use of the “RequestExercise” method
defined by FIRM, with all of the access-control functionality being dealt with as part of
this method. Note that this is possible since any method can manage its own state, open
its own network connections, etc. We can easily see that such an extreme implementa-
tion can realize arbitrary functionality—even though we end up with the old dilemma in
this case where much of the state of a relationship is made inaccessible to programmatic
access. The second part of the answer is that FIRM only forces application developers to
be clear in their conceptualizations about how the various objects that they use relate to
concepts that make sense from a contract law perspective. If an application developer
cannot answer the question what the obligations of a certain contract are, or what kinds
of promissory conditions need to be satisfied to make a right effective, then the potential
inability to implement such constructs is justified.

Finally, let us reconsider the issues of security and efficiency. As we have pointed out in
the main part of this thesis, FIRM relies on a number of underlying services for security
and trust management. The design in this thesis suggests that commpacts be profession-
ally managed on the network by commpact managers. The security considerations for
these services are largely the same as for any other network service. Furthermore, com-
mpacts should only be instantiated with commpact managers that are trusted, of course.
The necessary trust preferences are part of every e-person’s data, as defined by FIRM in
the Appendix of this thesis.

The efficiency of the FIRM service layer depends largely on the behavioral complexity
that one would like to realize. As we pointed out in the previous chapter, for simple
usages that are already possible with current Web servers, for instance, the main differ-
ence that FIRM introduces is that of a “published” authorization-request interface,
rather than only a server-internal request interface. For more complex usages, the main
overhead created by FIRM in the context of integrating with legacy rights-management
systems is that of an additional wrapper that maps the legacy protocol into FIRM-com-
pliant structures.

Lessons from the RManage Implementation

We have implemented the FIRM rights management service layer as one of the five ser-
vice layers of the Stanford Infobus [253] in the context of the Stanford Digital Libraries
project. The implementation was based on distributed objects in Java and Python, using
the CORBA implementation of one of the our industrial partners (Xerox PARC’s ILU
system [246]). The sample RManage “relationship manager” application of FIRM that
we have prototyped in addition made use of the DLITE user interface toolkit [249]. The
testbed of the Stanford Digital Libraries project provided the sample services for which
we implemented FIRM-based rights-management solutions.

From the beginning, the purpose of the prototype implementation was primarily to vali-
date the coherence and feasibility of the ideas and concepts suggested in this thesis.
While the prototype has been successful in this regard, several issues became evident
that suggest that the same implementation design would not generalize well to a full-
scale use. We discuss some of these issues below. Note that since the Stanford testbed,
and RManage in particular, has not been deployed to a significant number of actual
users, we do not have any data on issues related to the usability, maintainability, and
robustness of RManage.

A Network-Centric Design for Relationship-Based Rights Management 76

Conclusion

One of these issuesisthat CORBA as a distributed object infrastructure, and in particu-

lar the Xerox implementation of it that we used, had shortcomings in terms of robust-

ness as well as scope. In particular, while CORBA defines a whole set of fundamental

object services (for object persistence, name resol ution, object-level security, etc.), these

were not available during the period when we implemented much of the system (begin-

ning in 1995). Partly this certainly reflects the early adopter status that we deliberately
stepped into, but partly we believe that this also signifies the tremendous relative com-
plexity of CORBA—compared to, for instance, using protocols that are simply layered
on top of HTTP.

Another issue is that the specific implementation design that we chose for the prototype
was “too object-oriented” and would be unlikely to scale even if one used more sophis-
ticated implementation environments, such as the CORBA-based Web application
server development environments that are now available from such companies as Net-
Dynamics, KivaSoft, and others: Our current implementation uses objects for almost
everything, including obligations, rights, and persons. The number of such objects thus
easily ends up being quite large in realistic applications, and this quickly becomes infea-
sible, especially given the resources that each of such an object requires (in terms of
memory, for instance). In other words, a somewhat different implementation strategy is
needed that is centered around a database to store objects’ properties and that uses a
transaction monitor for load balancing and for managing the availability of objects
whenever they are requested.

Finally, at another level, the services and usages that ended up being available as part of
the testbed of the Stanford Digital Libraries project turned out to be largely services that
are freely available on the Web, such as the Altavista search service—accessed through
proxies with additional processing, though, rather than the Web interface. In other
words, the use of rights management and payment was significant only for a few ser-
vices, such as the Dialog databases. Note though that most Web services are free only to
the extent that it is guaranteed that the banner ads that are part of the result pages are
visible to viewers. If one uses Altavista, for instance, via a proxy then a license is
required in general, and, with FIRM, we were able to accommodate this usage and
enable the various broker services of the Stanford Infobus to use such Web services
based on site licenses rather than based on an advertising model.

Second-Order Usages

In this thesis, we have primarily examined a range of first-order usages for RManage/
FIRM, such as service licensing, various forms of subscriptions, agreeing on the use of
personal information, etc. While we have focused on such immediate usages of a com-
putational contracting infrastructure, there is clearly a whole set of second-order usages
that we have not begun to explore. These second-order usages make use of the basic
contracting infrastructure to implement sophisticated negotiations, and transactions. In
particular, consider that e-person implementations can realize complex bidding schemes
based on the computational structures that FIRM defines. Since smarter e-person imple-
mentations will be highly sought after, we can even imagine a market for e-person
“plug-ins” that optimize the negotiation behavior of one’s agent viz-a-viz the capabili-
ties of other e-persons.

A Network-Centric Design for Relationship-Based Rights Management 77

Conclusion

Outlook

FIRM was originally motivated by a mixed set of issues related to access control and

privacy that appeared mostly in the context of people’s use of the Web. We identified
the absence of a more structured way for sharing control state as the underlying com-
mon problem. Effectively, the first wave of Internet technologies had transferred client/
server notions into a peer-to-peer environment, but this was not fully adequate.

The design in this thesis provides new infrastructure that addresses these issues by pro-
viding a platform for structured relationship management. The application scenarios
that motivated us in the beginning can be dealt with by this design. However, we now
believe that a FIRM-like infrastructure will not first come to bear on these kinds of
usages. It is difficult to assign a clear return-on-investment for consumer-oriented Inter-
net applications of such an improved infrastructure in the near-term future. Consider
that while privacy issues are much talked about, it is not clear how much people really
value it.

However, another class of application scenarios has recently become evident, and we
believe that these will ultimately drive the adoption of a FIRM-like infrastructure. This
class of usages takes place in corporate Intranets, which are already typically more
tightly integrated and based on a richer platform than the general Internet. In the first
wave, enterprises got equipped with Intranets, including ways of automating procure-
ment, enterprise resource planning, etc. In the second wave now, we increasingly run
into the question of how external collaborators can be tied into the corporate informa-
tion infrastructure, that is, how one organization with its Intranet can work together with
another organization, such as a partner or a supplier, that also has its own Intranet. But
this is exactly the question of how to manage long-standing relationships and facilitate
collaboration in a way that takes into account the presence of various boundaries of con-
trol.

Two reasons favor FIRM in this environment. One is the significant return-on-invest-
ment in the area, that will serve as a driving force. The other is that the base infrastruc-
ture in Intranets is already better than on the general Internet. (Distributed objects, for
example, have already made inroads in Intranets, while the general Internet is still one
or two steps away from this level of complexity.) In other words, we expect that FIRM’s
concepts will first find their place in helping corporate infrastructure to go beyond Intra-
nets.

A Network-Centric Design for Relationship-Based Rights Management 78

Overview

Appendix: Specification of the
FIRM Rights Management Service Layer

1.0

1 OVERVIEW .ttt e e e e e e 79

2 THEFIRM COMMON RIGHTS LANGUAGE OBJECT MODEL 81

2. L SUIVEY . ot 81
2.2 Specification 84

3 FIRM SOBJECT ATTRIBUTE MODELSottt e s 99
3.1 Attribute Modelsin the Stanford Metadata Architecture 100
3.2 Attribute Models as Domain Plug-Insfor FIRM: FOAMs 100
3.3 SampleAttribute Modelsfor FIRM Objects 101
3.4 Attribute Models and Interoperability of Heterogeneous Rights Languages . .102

4 EXAMPLESOF INTERFACE IMPLEMENTATIONS.o i 103
4.1 Example Commpact: A SiteLicensingContract 103
4.2 Example Customization: Adding aPrivacy Choice 103
4.3 Example Promise: A Payment Obligation 104
4.4 Example Authorization: Allowing Searching with a Search License 104

4.5 Client Example: Other Programs (“Agents”) Interfacing with FIRM Objects 105
4.6 Interoperability Example: Unix File Rights into the FIRM Object Model ...105

Overview

The Stanford Framework for Interoperable Rights Management (FIRM) defines a pro-
grammable rights management service layer for the Internet that supports a wide variety
of applications both in terms of the object representations that it supports and in terms of
the transaction protocol.

FIRM is designed to only require participants to agree on a thin, domain-independent
interoperability core in order to be able to fully leverage the FIRM infrastructure. By
providing a plug-in mechanism, FIRM itself does not need to be extended to be of use in
new domains and for new usages; it can be kept simple in its core while allowing appli-
cation developers to program new kinds of control behaviors for new domains and
usages.

This approach allows us to develop a shared (“infra”) structure that incorporates proto-
cols and services that are useful for more than one application, that is, we have facilities
that can be used to negotiate privacy preferences as well as to negotiate “smart con-
tracts” (e.g. subscriptions and licenses to services), or to manage security, etc. Thus,
costs can be amortized over a larger number of usages, and the pay-off is bigger than in
developing many disparate special-purpose systems.

The idea for identifying infrastructure components in FIRM is to carefully separate con-
cerns: to limit its specification to a computational reification of only generic principles
of rights/relationship management—and to factor out any domain-specific aspects into
plug-ins that are kept outside of the type system of the specification. FIRM specifically

A Network-Centric Design for Relationship-Based Rights Management 79

Overview

FIRM: Two Parts

Simplicity,
Extensibility,
and Distribution

identifies contract law as the body of material from which it draws the generic concepts
and principles that make up its infrastructure component. Note that contract law can be
seen as fundamentally nothing else than a body of concepts and principles that describe
the shared structure of rights relationships in a generic way.

In other words, rather than having a single-level rights management standard, we have
an extensible, two-partite framework:

* ageneric (domain-independent) specification that defines a common rights language
object model. This model represents the shared structure of different kinds of rights
relationships that one might have, and provides the transactional infrastructure for
negotiating contracts, exercising contract rights, etc.; and

* aformat for declaring domain-specific rights vocabularies that can then be contrib-
uted as “plug-ins” to the basic rights management infrastructure. Sample rights lan-
guages that can be expressed in this way include the Unix file access rights language,
Xerox' DPRL, the EDI standard message types, or specific privacy rights languages.

This appendix describes, in Sections 2 and 3, the corresponding two parts that comple-
ment each other to make up FIRM:

¢ the FIRM Common Rights Language Object Model: an interface specification that
describes how generic concepts and principles from contract law are reified digitally.

* the FIRM Object Attribute Models (FOAMS): a standard format for defining media-
specific or domain-specific rights vocabularies, that is, a format for first-class
attribute models that define with which attributes FIRM objects represent their state
(for use by “agents,” etc.).

To understand the separation, consider that FIRM’s common object model standardizes
on everything that is generic across different domains and cases (and nothing else). For
instance, the object model will take up the fact that a contract is between two or more
parties and that it is about a set of promises that become effective once the contract has
been accepted and all the prerequisite conditions have been fulfilled (contract law). The
FOAM attribute models on the other hand will take up domain-specific conceptualiza-
tion such as the fact that a certain payment obligation is on a per-use basis, that there is
a print right that counts the number of copies made (rather than the usage time), etc.

Using a two-level standard that separates specific from generic elements (much like the
MIME framework) has many advantages in terms of simplicity, extensibility, and distri-
bution of authority. For instance, by defining wrapper interfaces, FIRM provides a way
for legacy implementations (such as payment processing systems) to be tied into the
infrastructure. Moreover, as a relationship-based (rather than a property-based) frame-
work, the system is inherently extensible and decentralized: Any party can contribute
new rights vocabularies (say, for new domains or new media) by simply “publishing”
corresponding rights attribute models. Such extensibility reduces complexity in that
components for additional domains/usages only need to be “loaded” on an as-needed
basis. In particular, this means that only minimal coordination is required among partic-
ipants, enabling decentralized administration for everything but the interoperability
core. In Section 4, we shall give a number of examples from the RManage prototype
implementation of FIRM that demonstrate such plug-ins and wrappers.

A Network-Centric Design for Relationship-Based Rights Management 80

The FIRM Common Rights Language Object Model

2.0

The FIRM Common Rights Language Object Model

21

Survey

Before we give a detailed specification, we describe the basic FIRM objects and their
properties, as well as the protocol by which clients can directly interact with FIRM
objects (the Access-Control User Dialogue Protocol). We also describe which specifica-
tion language we use.

Basic Objects

In FIRM, contracts, contract parties, rights vocabularies, and even rights and obligations
are represented as first-class objects, each with an appropriate set of transactions that
can be performed on them. In the following, we give a brief survey of the basic objects
of the FIRM specification. The naming convention is that the names of object classes
start with a ‘C’, while the names of simple types start with a ‘T".

The top-level encapsulation of control information is that of a contract olg€cint
mpact). Commpacts consists primarily of a set of promis#rdmise) between two or
more partiesTParty). Commpacts are effective if they have been mutually agreed upon
and if all prerequisite conditions (the ‘ConditionsPrecedent’ of commpacts and prom-
ises) are satisfied.

Each contract party participates in the relationship in a certainT@ityRole). Such

roles are characterized by a constraint on who can fill the role (“all persons whose citi-
zenship is USA”), and possibly a set of the instances of per€&per€) that are cur-

rently filling the role (that is, the finite list of all those who accepted the offer). There
can be two or more roles for one commpact, and each role can possibly be filled by
more than one party instance (except for the ‘offeror’ role which is always only one spe-
cific party). A commpact has an ‘Aboutltems’ constraint that characterizes which items
it is about.

Promises CPromise) can be either rightsCRight) or obligations CObligation). Rights

are promises that allow promisees to perform certain actions; obligations are promises
that require their promisors to perform certain actions. Promises might have a promis-
sory condition (‘PromissoryCondition’) that specifies which conditions need to be in
place before the promise becomes effective. In particular, this can of course include a
requirement such as the fact that certain obligations or assertions are satisfied. Promises
also have a ‘ConditionSubsequent’, that is the set of contingency promises that would
become effective if the contract is terminated. Among the generic actions that can be
performed on promises are methods for them to be waived, transferred, etc. Transferring
an obligation is different from just allowing other people to fulfill it (which might be
possible); in the former but not in the latter case, it becomes embedded into a new
commpact.

Most importantly, of course, rights can be declared to be exercised, and obligations can
be declared to be fulfilled. Moreover, there can be additional “trigger” methods that pro-
vide further computational integration: For example, fulfilling a payment obligation
could trigger an actual payment transfer, upon whose completion the obligation would
then be declared to be fulfilled. In other words, declaring fulfillment and initiating ful-
filment are two separate actions on an obligation (with the analogous applying for

A Network-Centric Design for Relationship-Based Rights Management 81

The FIRM Common Rights Language Object Model

rights objects). Obligations can register a time with the manager of the commpact of

which they are a part. This defines the time at which the objects wants to receive a
‘wakeup’ call. For example, a payment obligation that is due on a certain date could reg-
ister this time, and then, when woken up, it can decide to fulfill a payment obligation
right before it is due.

Also, each object has a method by which one can obtain a description of its most recent
state. There is also a method by which one can obtain a generic reference to the object
(via a ‘SelfRef’ method that returns types suchgzer sRef or TFormRef) that contains

both a handle to its current address as well as a persistent name to it (a designator that is
valid in the long term, but that might have to undergo some name lookup mechanism to
resolve it into an address).

Objects and Types Defined by FIRM

In total, FIRM defines the following objects (with their inheritance relation indicated in
Figure 33):

e CFIRMObject: the most generic rights management object

e CCommpact: the contract object

e CPromise: the promise object

* CRight: a specific type of a promise object

e COnligation: a specific type of a promise object

* CEpers:. the person object

e CHomeProvider: the object manager of person objects

e CCommpactManager: the object manager of contract objects

Furthermore, the following objects are used in FIRM that are not specific to rights man-
agement:

e Cltem: ageneric information item

e CCaollection: ageneral collection object that manages items

e CFOAM: an attribute model (just a collection of items that define attributes)

e CCongtraint: a query/constraint object

Finally, the following record types are used in the FIRM specification:

e TCommpactStatus: the status of a contract object

e TPromiseSatus: the status of a promise object

e TFormRef: away of referencing a contract form

* TEpersRef: away of referencing a person object

e TParty: away of describing the requirements and instances of a certain contract role
* TPartyRoleName: the name of a certain contract role (e.g. “Subscriber”)

We also use the typ@String’ to specify a general data string (not defined here).

A Network-Centric Design for Relationship-Based Rights Management 82

The FIRM Common Rights Language Object Model

FIGURE 33. FIRM Object Hierarchy: Objects that are not specific to FIRM are not in bold face font.
Cltem
CFIRM Object CcCollection CConstraint
CCommpact CEpers CHomeProvider CFOAM
‘ CCommpactM anager
CPromise
CRight CObligation

The Access-Control User Dialogue Protocol (AUPD)

Each FIRM object can be directly manipulated via the Access-Control User Dialogue
Protocol (AUPD). This manipulation is interactive; it includes not only interactions

such as obtaining a human-readable textual description of a FIRM object, but it also
includes interactions such as obtaining a description of a set of options that a FIRM

object carries for a certain attribute (e.g. “Choose privacy option: o Your address will be
forwarded to interested parties; o No personal information will be used outside of this
relationship”), a way of selecting one of the options, and a way of setting it in the FIRM
object directly.

A MIME type is used to designate the protocol that is used by a given object for this
purpose. In the simplest case, this will be just based on the standard Web conventions
for defining “(HTML) forms” and for transferring and parsing the submitted results of
such a form (the URL encoding of parameters as used in CGI scripts according to
MIME type application/x-url-encoded). However, different user interaction protocols
can be defined in principle.

Specification Language

As a specification language, we use CORBA's “Interface Definition Language” (IDL).
IDL defines class interfaces in a cross-platform and language-independent way; it can
be viewed as an object system specification language, that is, it specifies the objects
including their methods and their instance variables (but it does not define specific
implementation issues). In particular, we will be using a variant of IDL here: the ISL
(“Interlface Specification Language”) of Xerox PARC’s CORBA implementation, ILU
[248].

1. ILU isused asadistributed object infrastructure for the testbed of the Stanford Digital Library
project as part of which FIRM has been prototyped; the languages used in the testbed to write
specific object implementations are Python. C++, and Java.

A Network-Centric Design for Relationship-Based Rights Management 83

The FIRM Common Rights Language Object Model

As with any interface specification, FIRM specifies (in a language- and platform-inde-
pendent way) the abstract interface to computational (rights management) objects. A
specific rights management system will then provide a concrete implementation of this
interface, using a specific programming language and a certain environment. For exam-
ple, the RManage relationship manager application outlined in the main part of this the-
sisis a prototype implementation of the FIRM interface in Python and Java, providing
implementations for contracts such as group licenses, subscription contracts, etc. (cf.
also Section 4.0 of this appendix for further detail). Note that it is then the underlying
distributed object model that makes various such implementations interoperate seam-
lessly based on the interface specification and the transactional conventions.

2.2 Specification

(*
* The Stanford FI RM R ghts Managenent bj ect Mbdel
*
* Revision: 3.0

* Author: “Martin Roscheisen” <rmr@cs.stanford.edu>

* Date: 1997/04/23 00:59:49

*)

| NTERFACE FI RM
| MPORTS
SMA (* the Stanford Metadata Architecture *)
END;

(**)

(* GENERAL *)

(**)

(* Itens, Collections, Constraints, and Attribute Mdels *)

(* Foritems, collections, constraints, and FOAMSs, a simple sam-
ple interface is given here for purposes of exposition. For
more versatile interfaces for these objects, see the work on
the DLIOP and SMA service layers referenced above. For items,
see also the property service defined by the OMG. *)

(* - Items: the most generic form of an information object, from
which representations for other objects (such as documents,
persons, services, etc.) are derived. Items are essentially
just a set of properties, that is, a set of attribute-value
pairs, where the value can be of any type. *)

Cltem TYPE Cltem = OBJECT OPTI ONAL
SUPERCLASS SMVA. Cl tem
VETHODS

Li st PropertyNanes(): SEQUENCE OF TString
RAI SES Not Aut hori zed END,
Get PropertyVal ue(nanme: TString): TAny
RAI SES NoSuchltem Not Aut hori zed END,
Set PropertyVal ue(nanme: TString, value: TAny)
RAI SES Not Aut hori zed END,

A Network-Centric Design for Relationship-Based Rights Management 84

The FIRM Common Rights Language Object Model

END;

(* - Collections: a notion of a grouping of such itens. Such
col l ections m ght be constrai nable, that is, one can obtain a
subset of itens fulfilling a certain constraint/query. *)

CCollection TYPE CCol | ection = OBJECT OPTI ONAL
SUPERCLASS SMA. CCol | ecti on
MVETHODS

Li stl1tenNames(constraint: CConstraint): SEQUENCE OF TString
RAI SES Not Aut hori zed END,
Getlten{item D. TString): Cltem
RAI SES NoSuchltem Not Aut hori zed END,
Additem(item D: TString, item Cltem
RAI SES Not Aut hori zed END,
Rermoveltem(item D: TString)
RAI SES NoSuchltem Not Aut hori zed END,

END;

(* - Constraints: the ability to express a constraint on val ues
of attributes of a certain attribute nodel. The exact defini-
tion of such a | anguage is an orthogonal issue; we can basi -
cally use any sufficiently rich | anguage here. In particul ar,
we can use the sane | anguage that is also used for fornul at-
ing search queries (e.g. a sinple Bool ean query | anguage with
procedural attachnent). *)

CConstraint TYPE CConstraint = OBJECT OPTI ONAL
SUPERCLASS SMA. CQuery
METHODS

Eval uate(): Bool ean

RAI SES Not Possi bl e, Not Aut hori zed END,
GetConstraintString(): TString

RAI SES NoSuchltem Not Aut hori zed END,
Set ConstraintString(c: TString)

RAI SES Not Aut hori zed END,

END;

(* - FOAMB: Attribute nodel s as first-class objects according to
the Stanford netadata architecture (SMA). In terns of their
interface, FOAMs are just collections of attribute definition

itens. *)
CFOAM TYPE CFOAM = OBJECT OPTI ONAL
SUPERCLASS CCol l ection (* of Cltens *)
METHODS

Get FOAMNane(): TString
RAI SES Not Aut hori zed END,

END;

A Network-Centric Design for Relationship-Based Rights Management 85

The FIRM Common Rights Language Object Model

CFIRMObject

(**)

(* FI RV OBJECTS *)

(**)

(* FIRMXbjects are the nost generic formof an object in FIRM
They behave |i ke basic information itens, but they also have
State that can be accessed in a structured way. *)

TYPE CFlI RMObj ect = OBJECT OPTI ONAL
SUPERCLASS Cltem
VETHODS

(* Self-Descriptive Properties *)

(* A way of referencing the FI RM obj ect persistently *)
Sel f Ref (): TFI RMObj ect Ref
RAI SES Not Aut hori zed END,

(* A name of the FIRM object. E.g. “Subscription Contract” *)
Name(): TString
RAI SES Not Aut hori zed END,

(* Different textual descriptions of the FIRM object. There is
both a short description in plain text that can be inserted
in the descriptions that are synthesized by other FIRM
objects (e.g. a commpact can include a list of the descrip-
tions of its promises). Then there is a full description that
can include interactive features such as option fields that
can be selected, etc. The default MIME type is ‘text/html’.
Fora commpact, the full description is essentially just like

the text of conventional legal contracts. *)

ShortDescription(): TString (* a plainshort paragraph *)
RAI SES Not Aut hori zed END,

Description(audp: TMne): TString (* a full description *)

RAI SES | nval i dl nf o, Not Aut hori zed END,

(* A callback method for processing the client actions for the
customization options of a FIRM object. Customization options
include the ability to fill in specific numbers (e.g. the
number of times a newsletter appears per week), to select
options (e.g. which of two delivery modes is preferred,
etc.). The format for this Access-Control User Dialogue Pro-
tocol is specified in a MIME type. Typically, this will be
Just the standard HTML forms/cgi result values conventions of
returning results for user choices. *)

Set Cust omi zation(audp: TM e, result: TString)
RAI SES | nval i dl nf o, Not Aut hori zed END,

(* Access to (Donmmi n-Specific) State Infornation *)

(* FIRM objects such as commpacts and promises are stateful;
this state usually depends on the specific domain at which
they are targeted (e.g. “number of searches allowed” in a
search contract, etc.). *)

A Network-Centric Design for Relationship-Based Rights Management 86

The FIRM Common Rights Language Object Model

(* A pointer to the attribute model used (e.g. the “search
engine rights model” or the “printer model”) *)
Get StateAttri buteMdel (): CFOAM
RAI SES Not Aut hori zed END,

(* An attribute set containing the attributes and their values
according to the above attribute model *)
GetState(): Cltem

RAI SES Not Aut hori zed END,

END; (* of CFlI RVObject *)

(**)

(* COMMPACTS — Contract Objects Representation *)
(G S e o)

(* Commpacts (“communication pacts”) are the object representa-
tion of various kinds of agreements including contracts.

(* The Main Contract Qbject *)

CCommpact TYPE CCommpact = OBJECT OPTI ONAL
SUPERCLASS CFI RMbj ect
METHODS

(* Access to Conmpact Conponents *)

(* A contract is a set of enforceable promises between two
parties. It specifies about which objects it is, which condi-
tions are prerequisite for a valid formation, and what the
general terms and conditions are. The following methods give
access to these components. *)

(* The (standard) form on which it was originally based. One
can always obtain the base form of a commpact via this
method. *)

BaseForn(): TFor nRef
RAI SES Not Aut hori zed END,

(* The current status of the contract (e.g. “offer”) as defined
below *)
Status(): TCommpact St at us
RAI SES Not Aut hori zed END,

(* The contract parties as defined below. The specification of
a contract party includes a constraint on who can fill a cer-
tain contract role and the party/parties who are actually
filling it. *)

Parties(): SEQUENCE OF TParty
RAI SES Not Aut hori zed END,

(* The conditions that have to be satisfied before the contract
formation is considered to be completed. Note that often
there is a choice whether to add a condition as a precedent
condition here or whether to include it as a promissory con-

*)

A Network-Centric Design for Relationship-Based Rights Management

87

The FIRM Common Rights Language Object Model

(*

(*

dition as part of a promise-—with somewhat different ramifi-
cations (e.g. in the former case the contract will not have
to be cancelled in case of non-fulfillment, but other prom-
ises will also not be available for use). *)
Condi ti onsPrecedent (): CConstraint

RAI SES Not Aut hori zed END,

A set of promises (that is, rights and obligations).
Prom ses(): CCollection (* ofpromises (CPromise) *)
RAI SES Not Aut hori zed END,

A constraint that designates the items about which the con-

tract is. Note that this constraint can easily designate an

infinite number of items, including non-existing ones (e.g. a

subscription contract about news issues appearing within the

next year). *)

About I tens(): CConstraint (* whatthe contractis about
RAI SES Not Aut hori zed END,

(* The general terms and conditions of the contract. For exam-

(*
(*

(*
(*

ple, these might include the more general kinds of terms that
would be often printed on the back of legal contract forms.
The stipulations in this text take up all those policies that
the attribute model of the contract does not formalize. In
particular, this includes policies that go beyond what can be
dealt with by a commpact’s code implementation (e.g. conflict
resolution procedures, etc.). *)
TnCs(): TString (* textual description *)

RAI SES Not Aut hori zed END,

Transactions *)

There are operations to support each of the two phases/modes
in which a contract lives:

- “negotiation mode”: First, a contract needs to be set up

and mututal assent about it has to be established.

- “performance mode”: Then, it can be used to give a mandate
to those actions that fall within the action space that it
constrains. *)

Met hods for Contract Creation *)

For any commpact, one can obtain the basic template (“form”)
it is based on.Every commpact is derived from one of such
contract forms. These forms were defined by an appropriate
“forms designer” authority. One can take and instantiate such
a form into a “draft” commpact, which can then be customized
appropriately.[If there is a newer version for this template
than the one that was used for the given commpact instance,
then the newer version will be returned here (but the form
obtained via the BaseForm method will still refer to the old
version).] *)
Get Forn{newOf feror: TEpersRef): CCommpact

RAI SES Not Aut hori zed END,

*)

*)

A Network-Centric Design for Relationship-Based Rights Management

88

The FIRM Common Rights Language Object Model

(*

(*
(*

A nethod for adding pronmi ses to a commpact instance. |n par-
ticular, certain commpact actions m ght create new prom ses
that then need to be added to its set of prom ses (e.g. pronm
ises fromthe condition subsequent). In particular, if the
added promise is an obligation, then this method will inmedi-
ately activate it (“wakeup”) to allow it to register a future
activation time or to indicate that it needs to be fulfilled
immediately (such as when exercising a certain search right
creates an obligation to filter or watermark its results
before they are returned). *)
NewPr om se(nanme: TString): CProni se

RAI SES Not Aut hori zed END,
ASYNCHRONOUS Request AddPr omi se(promi se: CPromi se),
DoneAddPromi se() (* callback *)

RAI SES Not Aut hori zed END,

Met hods for Negotiation Mde *)

Once drafts are customized, they can be declared to be an

offer. Such offers can then be accepted or rejected (by who-

ever qualifies as an offeree), or be revoked (by the off-

eror). A validly formed commpact (“effective”) can then also

be terminated; such termination might in turn require other

“subsequent conditions” to be performed (which is why there

is technically an asynchronous variant for this method). *)
ASYNCHRONOUS Request Decl areDraf t AnOf f er (act or: TEpersRef),
Decl areDraft AnOf fer (actor: TEper sRef)

RAI SES | nval i dSt at us, Not Aut hori zed END,
ASYNCHRONOUS Request Accept O f er (actor: TEpersRef),

Decl areCf f er Accept ed(actor: TEpersRef): CCompact

RAI SES | nval i dSt at us, Not Aut hori zed END,
ASYNCHRONOUS Request RevokeOf f er (actor: TEper sRef),

Decl areOf f er Revoked(act or: TEper sRef)

RAI SES | nval i dSt at us, Not Aut hori zed END,
ASYNCHRONOUSRequest Rej ect Of fer (act or: TEper sRef),

Decl areOf f er Rej ect ed(actor: TEpersRef)

RAI SES | nval i dSt at us, Not Aut hori zed END,
ASYNCHRONOUS Request Modi fyOf fer (actor: TEpersRef, extent:

Cltem,

Decl areOf fer Modi fi ed(actor: TEpersRef, extent: Clten): CCom
nmpact

RAI SES | nval i dSt at us, Not Aut hori zed END,
ASYNCHRONOUSRequest Renegot i at e(act or: TEper sRef),

Decl ar eAccept Renegoti at e(actor: TEper sRef)

RAI SES | nval i dSt at us, Not Aut hori zed END,
ASYNCHRONOUS Request Ter m nat eCommpact (act or: TEpersRef),
Decl ar eComnmpact Ter mi nat ed(actor: TEpersRef)

RAI SES | nval i dSt at us, Not Aut hori zed END,
ASYNCHRONOUS Request Conpl et eConmpact (actor: TEper sRef),
Decl ar eComrmpact Conpl et ed(act or: TEper sRef)

RAI SES | nval i dSt at us, Not Aut hori zed END,

(* Methods for Performance Mde *)

A Network-Centric Design for Relationship-Based Rights Management 89

The FIRM Common Rights Language Object Model

(* Asinple nethod for finding a prom se. OF course, clients can
al wvays also directly interface with the whol e collection of
promi ses thensel ves;, the foll owi ng method i s intended to nake
the frequent case sinple and allow for server-side optim za-
tions. Note that there is no separate ‘authorize’ method—
rights are just exercised directly. *)

Fi ndProm se(hol der: TEpersRef, nane: TString): CProm se
RAI SES NoSuchltem Multipleltens, NotAuthorized END,

END; (* of CCommpact *)
(* Auxiliary Types for Commpacts *)

(* States in which a commpact can be. The transitions among
these states are defined by the corresponding transactions
(e.g. declaring it an offer turns a draft into an offer). *)

TCommpactStatus TYPE TConmpact St at us = ENUVERATI ON

(* The inital commpact template from a forms provider *)
Form

(* A status to designate a variety of intermediate situations—-
such as when we have a revoked offer or when someone is work-
ing on the customization of a form (in which case we have

more than a form but not yet an offer). *)
Draft,

(* A valid offer that is ready to be accepted *)
Ofer,

(* An effective agreement (i.e., an accepted offer with forma-
tion complete *)
Ef fective,

(* A terminated relationship *)

Ter m nat ed

END; (* of TCommpactStatus *)

(* Away of referencing a (standard) commpact form, that is, the
template on which commpacts are based: by naming its identi-
fier (e.g. “Standard License for Web Search Engines”), the
version number, andthe authority who originally provided it.
Optionally again, a current (direct) address of an object
instance of it. *)

TFormRef TYPE TFor nRef = RECORD

formName: TString,

version: TString,

fornmProvi der: TEpersRef,

form CCommpact (* optional *)

END; (* of TFormRef *)

(* A way of characterizing a contract party: by designating the
role that this party plays as part of the contract (e.g.
“subscriber”), any constraint that applies to filling this
role (e.g. “student status required”), and the set of e-per-

A Network-Centric Design for Relationship-Based Rights Management 90

The FIRM Common Rights Language Object Model

TParty

TPartyRoleName

CPromise

sons that are actually currently filling this role. In the

nost typical cases, a contract will just have two party
roles, with each one e-person filling one of the roles (off-
eror and offeree). However, in sone cases we m ght have sone
third-party role in addition, and in other cases, we can
allow multiple e-persons to fill one and the sane role if the

contract’s state information does not depend on the identity
of the filler. *)

TYPE TParty = RECORD

(* A “local name” for the contract party *)
rol eNane: TPartyRol eNane,

(* A constraint on who can fill this role *)
constraint: CConstraint,

(* The e-persons that actually accepted to fill this role
i nstances: CCollection (* ofe-persons (CEpers) *)

END; (* of TParty *)

(* A role name gives a way of specifying contract templates
without having to name/know the specific party at specifica-
tion time; they can then be used to specify which party has
holds which promises, etc. In other words, these names func-
tion much like local variable declarations. *)

TYPE TPartyRol eName = TStri ng;

*)

(**)

(* PROM SES

*)

(**)

(* Promises are the core component of a contract as a set of
enforceable promises. The two main subtypes are rights and
obligations. Promises are represented themselves as first-
class objects within the context of a commpact. *)

(* The Main Prom se bj ect Representation *)

TYPE CPronise = OBJECT OPTI ONAL
SUPERCLASS CFI RMbj ect
VETHODS

(* Access to Promi se Conponents *)

(* A promise is a right or an obligation held by one of the con-
tract parties. It can be only about a subset of the objects
that the contract talks about. *)

(* A local reference to the party who promises it *)
Prom sor(): TPartyRol eNane
RAI SES Not Aut hori zed END,

(* In case of multi-party contracts with more than two parties,
a local reference to the party who is the promisee *)

A Network-Centric Design for Relationship-Based Rights Management

91

The FIRM Common Rights Language Object Model

(*

(*

(*

(*

(*
(*

(*

(*

(*

Prom see(): TPartyRol eNanme
RAI SES Not Aut hori zed END,

The current generic status of the prom se (see bel ow) *)
Status(): TProm seStatus
RAI SES Not Aut hori zed END,

Possi bly any conditions that need to be in place before the
promi se becones effective (e.g. a delivery prom se under the
condition that a paynent obligation was fulfilled). *)
Prom ssoryCondi tion(): CConstraint
(* on commpact attributes *)
RAI SES Not Aut hori zed END,

Possi bl y any ki nds of pronmises that cone into place upon ter-
m nation of the contract relationship *)
Condi ti onsSubsequent (): CCol | ection
(* of pronises (CPronise) *)
RAI SES Not Aut hori zed END,

ptionally an additional constraint that specifies the subset

of items which the promise is about—in case it is not about

all those that are subject of the commpact itself (default

case). *)

About I tens(): CConstraint (* on whichitems itis about *)
RAI SES Not Aut hori zed END,

Transactions *)

A method for exercising a right or fulfilling an obligation
(a generic redirect to the ‘exercise’ and ‘fulfill’ methods
of the CRight and CObligation subtypes, respectively). *)
ASYNCHRONOUS Request Decl ar eExerci sed(actor: TEper sRef,
extent: Clten),
Decl ar eExerci sed(actor: TEpersRef, extent: Cltem
RAI SES | nval i dl nfo Not Aut hori zed END,

Whether or not the promise is currently effective *)
CheckValidity(): Bool ean
RAI SES Not Aut hori zed END,

Methods for transferring a promise to another party *)

ASYNCHRONOUS Request Decl ar eTr ansf er r ed(newHol der: TEper sRef ,
newCpct: CCompact),

Decl ar eTr ansf erred(newHol der: TEpersRef, newCpct: CCommpact)
RAI SES Not Aut hori zed END,

Methods for waiving a promise (in the negotiation phase) *)
ASYNCHRONOUS Request Decl ar eVi ved(),
Decl ar eWai ved()

RAI SES Not Aut hori zed END,

END; (* of CPromise *)

(* Auxiliary Types for Prom ses *)

A Network-Centric Design for Relationship-Based Rights Management

92

The FIRM Common Rights Language Object Model

TPromiseStatus

CRight

(* Generic state information for every prom se includes whet her
it is exclusive, waivable (during negotiation), transferrable
(to other parties), whether it is (unconditionally) effec-
tive, and whether it has already been fulfilled. *)

TYPE TProm seStatus = RECORD

excl usive: Boolean, (* e.g. an exclusive right *)

wai vabl e: Bool ean, (* whether the pronise is waivable *)
transferrabl e: Bool ean, (* whether it is transferrable *)
wai ved: Bool ean, (* whether it was indeed wai ved *)
transferred: Bool ean, (* whether it was transferred *)

ef fective: Boolean, (* whether it is currently effective *)
fulfilled: Boolean (* whether it was conpleted *)

END; (* of TProm seStatus *)

(* Note on case-specific paraneterization: Transactions on pron:
ises are often qualified by donain-specific action parane-
ters. For exanple, when fulfilling a paynent obligation,
someone mght opt to do this in part only, or when exercising
a fancy print right, one nmight want to indicate with which
resolution to print a docunent. Whenever applicable, FIRM
al | ows t hese paraneters to be passed al ong to net hods as part
of an argument of type ‘Cltem’. This type is just an
attribute set, and the assumption is that it is structured
according to the attribute model of the promise. In other
words, when fulfilling a payment obligation that has an
attribute model containing a ‘sumToPay’ attribute (with a
correspondingly defined meaning), we can pass along a value
for this attribute as part of the ‘extent’ argument of type
Cltem. *)

(**)

(* RIGHTS and OBLI GATI ONS *)

(**)

(* Rights and obligations are the immediate subtypes of prom-
ises. [Other promises such as guarantees and warranties are
considered to be just obligations with corresponding promis-
sory conditions.] *)

(* Rights *)

TYPE CRi ght = OBJECT OPTI ONAL
SUPERCLASS CProm se
VETHODS

(* A method for declaring that a right has been exercised (fully
or partially). The extent to which it is “exhausted” is inde-
cated (e.g. “fully” or a certain fraction such as 31 of 1000
allowed searches). Promises keep track of these state
changes in a promise-specific way. *)
Decl ar eExerci sed(actor: TEpersRef, extent: Cltem
RAI SES Not Aut hori zed END,

A Network-Centric Design for Relationship-Based Rights Management 93

The FIRM Common Rights Language Object Model

(* A nmethod for exercising a right (fully or partially).
corresponds to an authorization call; rights-specific param

eters can be provided as part of the ‘extent’ argument (e.g.

the number of searches to allow as part of a request to

authorize searches). *)

ASYNCHRONQUS Exerci se(actor: TEpersRef, extent: Clten

END; (* of CRight *)

(* pligations *)

CObligation TYPE CObl i gati on = OBJECT OPTI ONAL
SUPERCLASS CProni se
METHCDS

(* A method for declaring an obligation fulfilled. Contract par-

(*

(*

(*

(*

ties or appropriate third parties can declare an obligation

to be (partially or completely) fulfilled. The promise keeps

track of who has made which declarations such that inconsis-

tencies can be detected. The extent to which an obligation

is fulfilled uses obligation-specific attributes, this is

indicated with a corresponding ‘extent’-cookie that can have

any value (following the attribute model of the promise). A

null value is taken to be “completely fulfilled”. *)

ASYNCHRONOUS Request Decl areFul fill ed(actor: TEpersRef,
extent: Clten),

Decl areFul filled(actor: TEpersRef, extent: Cltem
RAI SES Not Aut hori zed END,

A method for triggering the actual process of fulfilling an

obligations (if available): The obligation holder can ini-

tiate a (complete or partial) fulfillment of the obligation

(e.g. initiate electronic payment). *)

ASYNCHRONQUS Ful fill (actor: TEpersRef, extent: Cltem,

A way for the promisee or any observing third party to
request the (complete or partial) fulfillment of the obga-
tion. *)
Request Ful fill (actor: TEpersRef, extent: Clten)
RAI SES Not Aut hori zed, Not AnEffectiveProm se END,

An obligation can register a wake-up time with the manager of
the commpact that it is part of (see the commpact manager

Thi s

interface). The following method is then called back. *)

Wakeup(cooki e: TString)
RAI SES Not Aut hori zed END,

A method for inspecting those other rights or obligations

that are created by not living up to an obligation (e.g. a

penalty payment obligation through late payment; a termina-

tion right through non-delivery, etc.) *)

Get Consequences(): CCol lection (* of CPromise *)
RAI SES Not Aut hori zed END

END; (* of CObligation *)

A Network-Centric Design for Relationship-Based Rights Management

94

The FIRM Common Rights Language Object Model

(**)

(* EPERS — Person Object Representations *)

(rrrex

* * * *)

(* An epers/e-person is the object representation of (a rol e of)

a person (natural, corporate, etc.). It is essentially a

generalization of the notion of a (Unix, AOL,...) “account”

in that it provides the online represenation of a person with

a request interface (which is more structured here than with
the forms of accounts that we currently know). One and the
same human can have multiple e-persons (e.g. one for private
and one for a certain organizational function).

CEpers TYPE CEpers = OBJECT OPTI ONAL
SUPERCLASS CFI RMDbj ect
METHODS

(*

(*

(*

(*

(*

(*

Standard collections for every e-person. Every e-person has
at least four default collections: *)

- the commpacts currently held by this e-person,
Commpacts(): CCol | ection (* ofcommpacts *)
RAI SES Not Aut hori zed END,

- the set of public offers from this e-person, and
Ofers(): CCollection (* ofcommpact offers *)
RAI SES Not Aut hori zed END,

- a notifier as a unified “attention structure” for the e-

person (the e-person’s “inbox”). *)

Notifier(): CCollection (* ofCltems *)
RAI SES Not Aut hori zed END,

Methods for telling the e-person whether its user (the real
person) is online and, if so, where to reach it there: by
telling it about the current “local resource manager” (LRM),
that is, an object that knows about how to get to the user’s
screen, etc. *)
Regi ster LRM | rmNanme: TStri ng)

RAI SES Not Aut hori zed END,
Unr egi ster LRM)

RAI SES Not Aut hori zed END,

A way of notifying an e-person of something. For example,
some party might request an e-person to accept a certain
commpact offer. For certain types of offers, the e-person’s
default preferences will lead it to accept this offer auto-
matically (in which case it might not even show up on the
notifier); in other cases, it might involve more direct user
feedback. *)

*)

*)

ASYNCHRONOUS Request Accept O f er (of fer: CConmpact),
ASYNCHRONOUS Request Rej ect O f er (of fer: CConmpact),
ASYNCHRONOUS Request RevokeOf f er (of fer: CConmpact),
ASYNCHRONOUS Request Modi fyOf fer (of fer: CConmpact),

*)

A Network-Centric Design for Relationship-Based Rights Management

95

The FIRM Common Rights Language Object Model

ASYNCHRONOUS Request Ter m nat eCommpact (cpct: CCommpact),
ASYNCHRONOUS Request Renegot i at eConmpact (cpct: CConmmpact),

(* Optional callbacks for a nunber of negotiation transactions
that an e-person mght want to be notified about. *)
ASYNCHRONQUS O f er Decl ar edRej ect ed(cpct: CCommpact),
ASYNCHRONOQUS O f er Decl ar edRevoked(cpct: CCompact),
ASYNCHRONQUS O f er Decl ar edAccept ed(cpct: CCommpact),
ASYNCHRONQUS O f er Decl ar edMbdi fi ed(cpct: CCommpact),
ASYNCHRONQUS Commpact Decl ar edTer mi nat ed(ccpt: CCommpact),
ASYNCHRONQUS Commpact Decl ar edRenegoti at e(ccpt: CConmpact),

(* A set of preferences that determ ne sonme of the automatic
default behavior of an e-person. Note that these preferences
are just obligations held by the e-person. For exanple, there
m ght be obligations that detern ne which types of commpact
offers the e-person is to accept automatically, which ones to
pick to authorize performng a certain action (automatically
or not), etc. Since these obligations held by the e-person to
their “outside owner” (the real person), these obligations
are special in that they are not part of any commpact. *)

Def aul t Eper sOol i gations(): CCol |l ection (* of CObligation *)
RAI SES Not Aut hori zed END,

(* A way of automating the choice of which commpact to use by
default for a certain action (such as, for example, whether
to use a subscription or a pay-per-search contract for a
given search engine—assuming that the e-person has both).
Based on its preference rules (obligations), an e-person
determines the default commpact that is to be used to autho-
rize an action. In the simplest case, this will be just based
on the item considered (e.g. the search engine activated).
In more complex cases, this might lead to more complicated
negotiation. *)
Get Def aul t Cormpact (action: TString,
item TString, ownedBy: CEpers): CConmpact
RAI SES Not Aut hori zed END,

(* Authentication. A network login is done by authenticating
oneself (one’s browser’s network address, etc.) with respect
to one’s e-person. A credential signed with the public key
of the home provider is returned. *)
Aut henti cat e(password: TString, selflnfo: TEpersRef): TString
RAI SES | nval i dAut henti cati on, Not Aut hori zed END,

(* An e-person can refer to another e-person and redirect cer-
tain requests to it. For example, instead of replicating
certain personal information that is constant over various e-
persons (“roles”) that a person might have (e.g. the person’s
height), this information can be kept at one e-person only
and the others cause exceptions when such attributes are
requested and redirect to a designated other e-person. The
object model is one of “classless inheritance” here. *)

A Network-Centric Design for Relationship-Based Rights Management 96

The FIRM Common Rights Language Object Model

Get Super Epers(): CEpers
RAI SES Not Aut hori zed END,

(* A default “personal relationship manager.” *)
Get Cormpact Manager () : CConmpact Manager
RAI SES Not Aut hori zed END

END; (* of CEpers *)

(* A persistent way of referencing and identifying an e-person

*)
TEpersRef TYPE TEper sRef = RECORD
(* The pseudonym of the e-person *)

epersI D TString,

(* The name of the home provider, that is, the manager of the
person object *)
honeProvi derI D. TString; (* object manager name *)

(* Optionally, a cryptographic guarantee that there is indeed
the e-person with the above attributes behind the requesting
network address (e.g. using a PK-signed hash of these three
information pieces). Such a warrant can be obtained by suc-
cessfully performing a network login, that is, by providing
valid authentication information to the home provider and in
return obtaining a corresponding warrant that is signed by
the home provider’s private key). *)
warrant: TString,

(* Optionally, the object’s current network address (string
binding handle) *)
epersHandl e: TString

END; (* of TEpersRef *)

(**)

*)

(**)

(* HOME PROVI DER

(* E-person objects are managed by an object manager called
“home provider”. Here, a home provider is represented as a
searchable collection of e-persons. Often a home provider
will integrate the following two services (although this is
not strictly necessary): a default collection manager that is
able to persistently manage the member e-persons’ items and
collections (as their personal “file space”), and a default
commpact manager that manages the relationship objects (com-
mpacts) of an e-person. *)

CHomeProvider TYPE CHoneProvi der = OBJECT OPTI ONAL
SUPERCLASS CCol | ection (* of CEpers *)
METHCDS

(* Request new e-person to be created with a certain name

*)

A Network-Centric Design for Relationship-Based Rights Management

97

The FIRM Common Rights Language Object Model

NewEpers(epersl D: TString): CEpers
RAI SES | nval i dl nf o, Not Aut hori zed END,

(* Obtain the hone providers public key. *)
Get Publ i cKey(): TString
RAI SES Not Aut hori zed END,

(* ptionally, a default commpact manager *)
Get Def aul t Cormpact Manager () : CCommpact Manager
RAI SES Not Aut hori zed END,

(* Auxiliary methods for finding and renoving e-persons *)
Fi ndEpers(eperslD: TString): CEpers
RAI SES NoSuchltem Not Aut hori zed END,
RenmoveEper s(epersliD: TString)
RAI SES NoSuchltem Not Aut hori zed END,

END; (* of CHonmeProvider *)

(**)

(* COMVPACT MANAGER *)

(**)

(* A commpact manager manages/keeps e-persons’ commpacts. Spe-
cial cases of commpact managers are forms providers (who make
available standard digital contract forms) and personal
commpact/relationship managers. Commpact Managers can reside
with a server (conventional access control), but also with a
client or with a trusted third party (e.g. a rights clearing-

house). *)
CCommpactManager TYPE CConmpact Manager = OBJECT OPTI ONAL
SUPERCLASS CCol | ection (* ofcommpacts *)
METHODS

(* A way of asking the commpact manager to instantiate a new
commpact based on a certain template *)
NewConmpact (actor: TEpersRef, form TFornRef): CCommpact
RAI SES | nval i dl nfo, Not Aut horized END,

(* A way of getting hold of the commpact manager’s public key *)
Get Publ i cKey(): TString
RAI SES Not Aut hori zed END,

(* Away of registering a wake-up call. For example, obligations
can register such a time with the manager of the commpact
that they are part of; thus, they can be sure to be activated
at any required deadline. A cookie can be added to provide
information on the wakeup context. *)
Regi st er WakeupTi me(tinme: TString, cookie: TString)
RAI SES Not Aut hori zed END,

(* Auxiliary methods for finding commpacts and commpact forms. *)
Fi ndForn{actor: TEpersRef, nane: TFornRef): CCompact
RAI SES NoSuchl t em END,

A Network-Centric Design for Relationship-Based Rights Management 98

FIRM’s Object Attribute Models

3.0

Fi ndCompact (actor: TEpersRef, nane: TString): CCommpact
RAI SES NoSuchl t em END,

END; (* of CCommpact Manager *)

(**)

(* EXCEPTI ONS *)

(**)

(* Note: In this specification, only high-Ilevel exceptions have
been explicitly indicated. It is assuned that every nethod
can al so throw a set of base-level (CORBA) object system
exceptions such as ‘CommunicationFailure’, ‘InterfaceVer-
sionMismatch’, etc. *)

EXCEPTI ON | nval i dAut henti cati on;
EXCEPTI ON Not Aut hori zed;

EXCEPTI ON NoSuchl tem

EXCEPTI ON Mul ti pl el t ens;

EXCEPTI ON Not Possi bl e;

EXCEPTI ON | nval i dI nf o;

EXCEPTI ON | nval i dSt at us;

FIRM’s Object Attribute Models

Complementing the common rights object model outlined in the previous section, we

have domain-specific rights conceptualizations. These are not taken into the type system

of the object model, but they are specified independently. FIRM uses attribute models
(FOAMS) to “publish” the attributes with which the corresponding objects represent
their state—in a way that is useful for other programs (such as “agents”). Note that
FIRM only specifies a format for the attribute models; it does not itself specify any con-
crete attribute models.

FOAMs give the flexibility of adding rights vocabularies for specific domains on top of

an already established basic FIRM infrastructure. In particular, this flexibility is
achieved in a way that does not assume any centralized infrastructure (standards institu-
tion), and that is extensible over time without the need to modify the basic FIRM speci-
fication.

To understand FOAMSs, consider the Unix file access rights as a simple example of a
rights language. The Unix file access rights define a rights relationship between the
owner of a file and other interested parties. Specifically, this relationship is conceptual-
ized by three promises, all rights, namely the well-known rights to read, write, and exe-
cute. A FIRM wrapper/proxy that makes these rights available to other FIRM services
would take up this fact in a commpact. Then, for each of the rights, we then have a
promise attribute model (FOAM) that describes which attributes characterize the state
of the promise. In the case of the write right in Unix, this is for instance the last-
accessed time. This time will be one attribute of the write-right FOAM. Of course,
another attribute is the identity of the holder of the right. But this does not need to be
part of the FOAM—since it is already part of the generic structure of a promise.

A Network-Centric Design for Relationship-Based Rights Management 99

FIRM’s Object Attribute Models

3.1

3.2

The meta-data architecture of the Stanford Digital Libraries Project defines aformat for
first-class attribute models that is suitable for FIRM’s attribute models.

Attribute Models in the Stanford Metadata Architecture

We are assuming in FIRM the availability of the kind of attribute services that the Stan-
ford meta-data architecture provides.

The Stanford metadata architecture is designed to provide an infrastructure that affords
interoperability among heterogeneous, autonomous digital library services. It includes
attribute model proxies, attribute model translation services, metadata information facil-
ities, and local metadata repositories.

For our purposes here, we are mainly interested in the following characteristics:

* Attribute models are first-class objects that can be referred to and that can be
searched for specific attribute definitions.

* Attribute models are thus fundamentally a collection of items, where each item isan
attribute definition containing the attribute name, an attribute documentation (a tex-
tual description of its meaning), and a definition of the attribute value (using IDL
syntax).

* New attribute models can be defined by anyone by providing a collection of new
attribute definitions and by publishing it.

Attribute Models as Domain Plug-Ins for FIRM: FOAMs

As pointed out above, the FIRM common object model specifies only an abstract inter-

face to rights management objects. Any concrete rights management system will pro-

vide a specific implementation of this interface that realizes the (domain-specific)
behavior in that one is interested in a specific case. For example, someone might pro-

vide a Javaimplementation for a FIRM obligation object that represents a payment obli-
gation, such that triggering the ‘fulfill’ method on this object would actually lead to a
real payment transaction from one bank account to another.

In this way, we are flexible with regard to which domain-specific conceptualization to
choose. For example, a print right in one rights language might provide for a counter of
the number of times that a document can be printed, the maximum resolution that this
right allows a printer to have, etc. If someone considers this insufficient, then this can be
extended to include further attributes (possibly inheriting from the previous).

Consider a payment obligation that is characterized by two attributes, namely the
amount that was due and the amount that was already paid. To make this explicit, a ref-
erence to an attribute model that defines these two attributes will be included in the pay-
ment promise object. Thus, anyone can ask the promise object for the attribute model it
uses for its state, and then ask the object for specific values of this state (if authorized).
Moreover, implementations of FIRM objects will use these attribute models themselves
for various purposes. For example, a payment obligation that is based on pay-per-use
will have an attribute that describes the price per use, for instance. But to come up with
an amount to be paid, it will need to know about the number of uses that are applicable.
If embedded in a search contract that contains a search right next to the payment obliga-

A Network-Centric Design for Relationship-Based Rights Management 100

FIRM’s Object Attribute Models

3.3

tion, it can then obtain this number from the search right (that will count the number of
searches for every timeit is exercised to perform a search).

All FIRM objects declare which attribute model they use to represent their state. In prin-

ciple, new attribute models can be defined by anyone, although it is of course to be
expected that there will be a certain set of “standard” models for generic cases. Such
models would be efficient in terms of reuse and in terms of making available a language
by which one can talk about domain-specific issues across different implementations
and platforms.

Sample Attribute Models for FIRM Objects

In this subsection, we examine a few concrete attribute models for sample FIRM object
implementations. Note how these FOAMs effectively make explicit the conceptualiza-
tion that a designer chose for a certain action, promise, or relationship.

For example, it is as part of the attribute model that the designer declares whether a
search right is characterized only by a number of searches completed relative to those
allowed, or whether it includes a counter of the total number of items returned for all
searches, etc.

Si npl eSear chRi ght Mbdel : : Ri ght sAttri but eMbdel = {
attrl = {
attrName: ' sear chBudget’
attrValueType: ‘CARDINAL’
attrDocumentation: ‘Total number of searches allowed’

}
attr2 = {

attrName: * sear chCount’

attrValueType: ‘CARDINAL’

attrDocumentation: ‘Total number of searches done so far’
}

}

The above defines a new attribute model that inherits from ‘RightsAttributeModel’
(defined elsewhere) and adds two attribute items, each with their attribute name (a
string), their value (an ISL specification as a string), and the intended meaning
described by a textual description.

Alternatively, someone might define a more complex search right model, which also
represents the number of items returned for each search:

Si npl el t em zedSear chRi ght Model : : Sear chRi ght Model = {
attrl = {

attrName:* searchHi story’

attrValueType: ‘SEQUENCE OF RECORD
time: TTime,
resultSetSize: CARDINAL
END’

attrDocumentation: ‘History of searches that have been
successfully completed so far—as a list of structures,
one for each search, where each structure describes
the time of the search and the number of items
returned for this search’

A Network-Centric Design for Relationship-Based Rights Management 101

FIRM’s Object Attribute Models

3.4

}

As another example, consider the following attribute model that defines case-specific
state information for a payment obligation that operates on a per-use (e.g. per search)
basis. Note that the holder and the beneficiary of the payment obligation (the e-person
that has to pay and the receiver) are already defined as part of the generic structure of a
promise.

Si npl ePayPer UsePaynent Obl i gati onMbdel : : bl i gati onModel = {
attrl ={
attrName: * pri cePer Use’
attrValueType: ‘CARDINAL’
attrDocumentation: ‘Price per use in US Dollars’

}
attr2 = {

attrName: * mi nAnount’

attrValueType: ‘CARDINAL’

attrDocumentation: ‘Minimum charge to be applied (in USD)’
}

}

Since promises know about the commpact in which they are embedded, we could now
have a search license (commpact) that allows people to use a search service, with an
obligation to pay on a per-search basis.

In other words, attribute models are used here to complement FIRM in that they provide
all the domain-specific state structure that FIRM intentionally abstains from defining;
they can be contributed by anyone, and they are managed in a distributed way (as a set
of attribute model servers).

FIRM's attribute models provide a format by which other rights languages can be tied
into the framework. This includes specific mechanisms such as the Unix file access
rights language, but also more extensive standards such as the domain-specific record
formats of EDI's standard message types.

Attribute Models and Interoperability of Heterogeneous Rights Languages

Recall that it is our assumption that there will continue to be a heterogeneous set of
rights languages, each generally targeted at a specific design trade-off space. FIRM can
be used to address the issue of interoperability across different rights languages. FIRM'’s
interfaces would serve as a common dominator for interoperation, and its FOAM
attribute models could be used to “export” the defining properties from specific rights
vocabularies and make them available across different implementation languages and
platforms via the FIRM interface.

In particular, once there is a basic mechanical interoperability attained in this way, we
can achieve a more semantic level of interoperability by additionally providing imple-
mentations for services such as the attribute translators that the Stanford metadata archi-
tecture provides for.

In Section 4.6, we will give an example of how such interoperability can work for the
simple case of the Unix file access rights language.

A Network-Centric Design for Relationship-Based Rights Management 102

Examples of Interface Implementations

4.0

Examples of Interface Implementations

4.1

The FIRM specification in Section 2.0 is an interface specification that defines the
abstract request interface by which objects on possibly different platforms and possibly
implemented in different languages can interact. The following demonstrates how a
competent “forms provider” can implement and make available new types of contracts
in a relatively easy way by leveraging a class hierarchy. These examples of specific
implementations are given in Python; they are drawn from the RManage prototype
implementation.

Example Commpact: A Site Licensing Contract

The most basic form of a sample subscription commpact is very simple if we use the
RManage toolkit to provide an implementation ‘CCommpact’ that takes care of all of
the generic transactional behavior. Essentially, we only have to provide then some docu-
mentation information and create the initial promises (which deal with most of the con-
tract-specific behavior).

cl ass Subscri pti onCommpact (Conmpact | npl . CCommpact) :
def __init__(self):
self.roleNames = [“Publisher”, “Subscriber”]
Commpactimpl.CCommpact.__init__(self)

Add Prom ses
prom = self. NewPromise(“SearchRight”)
self.AddPromise(prom)
prom = self. NewPromise(“FlatFeePaymentObligation”)
self.AddPromise(prom)
def Nane(self):
return “Subscription Contract”
def TnCs(self):
return “The standard terms and conditions of the retail
industry are included by reference regarding the return of
goods and warranties.”
def Short Descri ption(self):
return “A subscription agreement in which publisher agrees to
deliver the indicated number of issues to subscriber who in
turn agrees to pay at least quarterly.”

4.2 Example Customization: Adding a Privacy Choice

Let us now consider that we want to add the choice of a privacy option to the contract,
using an HTML-based description. This can be done quite easily by just implementing
the following method of the RManage commpact toolkit to the above implementation:

def Get Custonizati onOpti ons(self):

Get generic options, if any

page = Commpactimpl.CCommpact.GetCustomizationOptions(self)
Add our specific options to offers

if self.Status()=="Offer":

page = page + “<P>Restrict use of address information ?
<INPUT TYPE=checkbox NAME=addressPriv VALUE=Y *
+ self[*addressPriv’] + "> Y/N”
else:

A Network-Centric Design for Relationship-Based Rights Management 103

Examples of Interface Implementations

4.3

4.4

If not an offer, just include choice in description
page = page + “<P>Restrict use of address information? “
+ self[*addressPriv”]
return page

This is dl that is needed to introduce another state variable (addressPriv) to the
commpact and provide all the interactive behavior to allow people (or their e-persons)
to pick aprivacy option when accepting an offer.

Example Promise: A Payment Obligation

The following Python code sketches the implementation of a specific subtype of a pay-
ment obligation based on a flat-fee pricing model. The class from which it is derived
itself would be amore generic implementation of a payment obligation, realizing abasic
FIRM obligation object. In particular, note how descriptions are generated from state
information.

class Fl at FeePaynent Obl i gat i on(PaymentObligation):
def __init__(self):
PaymentObligation.__init__(self)
self[“flatFee”] = 300
self[“amountPaid”] = 0

def Short Descri pti on(self):

Generate descriptive text

page = PaymentObligation.ShortDescription(self)

page = page + “The following flat fee needs to be paid: "
+ self[“flatFee”] + “USD in total.<P> Of this, ”
+ (self[“flatFee”]-self[“amountPaid"])
+ “USD are still due.”

return page

This class does not need to provide a ‘fulfill’ method since we can use by default the
one from its parent class (the payment obligation). The fulfilment method there would
be implemented to actually initiate a payment transfer, for example. In RManage, this
would be done quite easily using the UPAI application program interface. Note, how-
ever, that it is in principle not strictly required to also provide the link to actual auto-
matic payment as a fulfillment action; we might as well just assume that payment is
done off-line, and only use the DeclareFulfilled method to register new state.

The following additional method would make it possible for offerors to customize the
initial flat fee (while drafting the contract offer).

def Get Custoni zationOptions(self):
if self.cpctContext.Status()=="Draft":
return “<P>Flat fee: <INPUT SIZE=5 NAME=flatFee
VALUE="+self[“flatFee”]+">"

Example Authorization: Allowing Searching with a Search License

Let us consider the following case: We have a Web search engine that can be used by
anyone with alicense. A client already has one such license (otherwise, it would have to
be negotiated first), and wants to conduct a search. The following actions will now
result: First, the client sends the search request to the search engine. This request

A Network-Centric Design for Relationship-Based Rights Management 104

Examples of Interface Implementations

4.5

4.6

includes the query and areference to the contract that the searcher wantsto use (the cli-

ent's e-person might automatically pick one based on the user’s designated preferences).
Then, the search engine receives this information, and does an authorization along the
lines of the following code fragment (at least initially):

Requester: e-person of the searching user

Parans: what kind of search to conduct; e.g. could
be the follow ng default paraneters

params = {*maxResultSetSize": 100}

|icenseCpct: the commpact that the user wants to use

searchRight = licenseCpct.FindPromise(requester,“Search”)
try:

searchRight.Exercise(requester, params)
except FIRM.NotAuthorized:

raise Error

Specifically, if we have a contract where we have to pay for searches, then exercising
the search right will create a payment obligation correspondingly (where the exact
amount might depend on parameters of the search again).

Client Example: Other Programs (“Agents”) Interfacing with FIRM Objects

One of the often-quoted scenarios in electronic commerce is the ability of having an

“agent” roaming around the network and trying to find the cheapest offer from a variety
of sources. Let us outline here how client programs can interface with FIRM objects in a
way that enables such usages in a very general way, that is, in a way that not only can
take basic attributes such as the price of a good into account, but in principle also any
other types of terms and conditions (such as policies about return-of-goods, etc.).

Given a contract offer with a certain payment obligation, any program can ask for the
attribute model of this contract. The following code fragment shows how a program can
find out the price of an offer. Note that in this case, the price is a per-item price—a fact
that will be known to the programmer of the agent and therefore can be considered in
comparing this per-item price with other prices that might be using a different pricing
model.

payOblig = offer.FindPromise(“Payment®)

theModel = payOblig.GetAttributeModel()

if theModel.Name()=="SimplePayPerUsePaymentObligationModel”:
attribNameForPrice = “pricePerUse*

pricelnThisOffer = payOblig[attribNameForPrice]

Interoperability Example: Unix File Rights into the FIRM Object Model

Let us consider here how FIRM could provide an interoperability “wrapper” for the
basic access rights that the Unix file system provides. We could have such wrappers for
the various file servers that people with different accounts use (next to corresponding
wrappers for Windows NT, for instance). This would allow us to use the FIRM service
layer to determine and manipulate access rights in a uniform way.

Specifically, let us consider here the Unix ‘read’ right as an example. We would like to
have an implementation for a FIRM rights object that is a wrapper to the Unix read right

A Network-Centric Design for Relationship-Based Rights Management 105

Examples of Interface Implementations

for aspecific file. Thisimplementation could be just a proxy to the real Unix file access
control in the following way (although there clearly could be other conceptualizations
and implementations).

We assume that the generic promise behavior has already been implemented by Prom

i sel npl . CProni se; in particular, this right then already knows who it is held by,

which file it is about, etc. Moreover, we assume that there is some commpact that
encapsulates the relationship that a specific person has with the provider of the Unix

account on a certain system. This might include disk space quotas, etc. In particular, it
provides the necessary information to deal with the relevant authentication issues
involved. The account names are made available via an attribute model in this case that

has an attribute “UnixUserIDs.”. This provides the required mapping from the identity
of an e-person to the account name that this person has with a particular Unix system. In
other words, we mostly need to provide an implementation of the ‘exercise’ methods:

cl ass Uni xReadRi ght (Promni sel npl . CProm se):
def ShortDescription(self):
page = Prom sel npl . CProni se. Short Descri ption(sel f)
page = page + “The holder of this right has unlimited
read access to the files.”
return page

An auxiliary nmethod that gets the Unix account nane
that corresponds to the right holder’s e-person handle.

def convert Eper sl D2Uni xAccount | D(eper sRef) :

return self.cpctContext[“UnixUserlDs"|[self.Holder()]

def Exer ci se(self, actor, inParams):
Check whet her actor is authorized to exercise this right;
and do ot her general checks.
Promiselmpl.CPromise.Exercise(actor, inParams)
Get local user nane
try:
epersUID = self.convertEpersID2UnixAccountlD(self.Holder())
except:
raise FIRM.NotAuthorized, “Do not have a local account*
Get the file that this read request is about
fileName = inParams[“requestedFile]
Now proxy to Uhix access read access right:
Get the Unix file descriptors for this file.
(st_mode, st_ino, st_dev, st_nlink, st_uid, st_gid, st_size,
st_actime, st_mtime, st_ctime) = posix.stat(fileName)
Check whet her user has read right
if epersUID<>st_uid:
raise FIRM.NotAuthorized, “Not the file’s Unix owner*
ownerReadRight = string.atoi(oct(st_mode)[-3])
if not (ownerReadRight % 2):
raise FIRM.NotAuthorized, “Do not have read access*
If we conme to this point, then we know that we have
read access to the file according to Unix.
At this point, we could performadditional state keeping
functions, such as cacheing, |ogging accesses, etc.

A Network-Centric Design for Relationship-Based Rights Management 106

References

1.0 Privacy, Copyright, Intellectual Property,
Legal and Economic Aspects
1.1 Legal Aspects
1.1.1 Contract Law
[1] Gilbert Law Summaries. (1985). Contracts. By Eisenberg, M.A. Harcourt, Brace, Jovaovich
Legal and Professional Publications.
[2] Craswell, R., and A. Schwatz (1994). Foundation of Contract Law. Oxford University Press.
[3] Atiyah, PS. (1995). An Introduction to the Law of Contract. Clarendon Law Series. Fifth Edition.
Clarendon Press, Oxford.
[4] MacNeil, I.R. (1985). Relational Contract: What We Do and Do Not Know. Wisconsin Law
Review 483.
[5] Whitford, W.C. (1985). lan MacNeil's Contribution to Contracts Scholarshigconsin Law
Review 545.
[6] MacNeil, I.R. (1974). The Many Futures of Contra8sithern California Law Review 47(691).
[7] Barnett, R.E. (1986). A Consent-Theory of Contr@clumbia Law Review 86(269).
[8] Barnett, R.E. (1992). Conflicting Visions: A Critique of lan MacNeil's Relational Theory of Con-
tract. Virginia Law Review 78(1175).
[9] Fried, C. (1981). Contract as Promie: A Theory of Contractual Obligation. Harvard University
Press.
[10] Linzer, P. (1995, eds.). A Contracts Anthology. Anderson Publishing. pp. 54-128.
1.1.2 Electronic Contracting

[11] Baum, M. (1989). Electronic Contracting in the U.S.: The Legal and Control Context. In I.
Walden (ed.)EDI and the Law. Blenheim Online, London.

[12] Greguras, F.M., T.A. Golobic, R.A. Mesa, R. Duncan (1995). On-line Contract Issues. Updated
version of a presentation madd.atv Seminars International Electronic Commerce: Doing Busi-
ness On-line, September 21, 1995. Web: http://www.batnet.com/oikoumene/ec_contracts.html.

[13] Allen, T., and R. Widdison (1996). Can Computers Make Contr&tas?ard Journal of Law &
Technology 9(25), Harvard Law School.

[14] Wright, B. (1995).The Law of Electronic Commerce. EDI, E-Mail, and Internet: Technology,
Proof, and Liability. Little, Brown and Co.

1.1.3 Copyright

[15] Goldstein, P. (1994 opyright's Highway: The Law and Lore of Copyright from Gutenberg to the
Celestial Jukeboxtill and Wang.

[16] Greguras, F. (1995). Copyright Clearances and Moral Rights. Softic Symposium ‘9®ovember
1995.

[17] Canadian Copyright Subcommittee (1995). Report on Copyright and the Information Highway
Information Highway Advisory Council. September. Available at http://debra.dgbt.doc.calinfo-
highway/ih.html.

[18] U.S. Government (1995). Intellectual Property and the National Information Infrastructure.

Report of the Working Group on Intellectual Property Rights. Lehman, Bruce, and Ronald Brown,
Information Infrastructure Task Force. September. Washington, DC.

A Network-Centric Design for Relationship-Based Rights Management 107

114

[19]

[20]

[21]
[22]

(23]

[24]

1.15

[25]
[26]

[27]

1.2
(28]
[29]
[30]
(31]

(32]

(33]

[34]

13
[39]
[36]
[37]
(38]

[39]

Property

Gilbert Law Summaries (1990). Property. By Dukeminier. M. Harcourt, Brace, Jovaovich Legal
and Professional Publications.

Rose, C.M. (1994). Property and Persuasion: Essays on the History, Theory, and Rhetoric of
Ownership. Westview Press, Inc.

Radin, M J. (1993). Reinterpreting Property. University of Chicago Press.

Branscomb, A.W. (1994). Who Owns Information ? From Privacy to Public Access. New York:
Basic Books.

Perritt, H. (1994). Permission Headers and Contract Law. Proceedings of the Workshop on Tech-
nological Strategies for Protecting Intellectual Property in the Networked Multimedia Environ-
ment. Coalition for Networked Information, Interactive Multimedia Association, and John F.
Kennedy School of Government.

Jensen, M. (1994). Need-Based Intellectual Property Protection and Networked University Press
Publishing. Proceedings of the Workshop on Technological Strategies for Protecting Intellectual
Property in the Networked Multimedia Environment. Coalition for Networked Information, Inter-
active Multimedia Association, and John F. Kennedy School of Government.

Other

Rose, Lance (1995). NewLaw: Your Rightsin the Online World. Osborne McGraw-Hill, Berkeley.
Nimmer, R., and P. Krauthaus (1992). Information as a Commodity: New Imperatives of Com-
mercial Law. Law and Contemporary Problems 55(3).

Reidenberg, Joel (1993). Rules of the Road for Global Electronic Highways. Merging the Trade
and Technical Paradigms. Harvard Journal of Law & Technology 287, 289.

Business Aspects

Dyson, Esther (1995). Intellectual Value. Wired, Issue 3.07. Excerpt from December 1994 issue of
Release 1.0, EDventure Holdings.

McKenna, Regis (1991). Relationship Marketing: Successful Strategies for the Age of the Cus-
tomer. Addison-Wesley.

McKenna, Regis (1997). Real-Time: Preparing for the Age of the Never Satisfied Customer. Har-
vard Business School Press.

Peppers, Don, and Martha Rogers (1993). The One to One Future: Building Relationships One
Customer At a Time. Currency Doubleday.

Mansfield, Nick (1996). Security at Shell IntProceedings of the Sxth Conference on Comput-
ers, Freedom, and Privacy, Boston. Presentation by Nick Mansfield, Information Security Advi-
sor for Shell Companies. Web: http://swissnet.ai.mit.edu/~switz/cfp96/plenary-crypto.html

National Writers Union (1994). Statement of Principles on Contracts between Writers and Elec-
tronic Book Publishers. Available at ftp://ftp.netcom.com/pub/nw/nwu/press/online-pub.txt.

Moss, N. (1996). Europe’s slow-motion view: Hollywood is fighting to retain control of film
release dates. Report by Nicholas Mds$e European, June 3rd, 1996.

Economic Aspects

Bressand, Albert, and Catherine Distler (1993)plan‘ete relationnelle. Paris: Flammarion.

Coase, R.H. (1988The Firm, the Market, and the Law. University of Chicago Press, London.
Coase, R.H. (1990)nstitutions, Institutional Change and Economic Performance. Cambridge
University Press.

Greif, Avner (1994). Cultural Beliefs and the Organization of Society: Historical and Theoretical
Reflection on Collectivist and Individualist Societi&he Journal of Palitical Economy, October.

Greif, Avner (1992). Institutions and Commitment in International Trade: Lessons from the Com-
mercial RevolutionAmerican Economic Review 82(5), pp. 128-133.

A Network-Centric Design for Relationship-Based Rights Management 108

[40] Greif, A., P. Milgrom, and B. Weingast (1992). The Merchant Guild as a Nexus of Contracts.
Mimeo, Stanford University.

[41] Milgrom, Paul, and John Roberts (1992). Economics, Organization, and Management. Prentice
Hall, NJ.

[42] Williamson, O. (1985). The Economic Institutions of Capitalism The Free Press, NY.

[43] Williamson, O. (1975). Markets and Hierarchies: Analysis and Antitrust Implications The Free
Press, NY.

[44] Williamson, O. (1986). Economic Organization: Firms, Markets and Policy Control. New York
University Press, NY.

[45] North, Douglas C. (1990). Institutions, Institutional Change and Economic Performance. Cam-
bridge University Press.

[46] Hardwick, M., D.L. Spooner, T. Rando, and K.C. Morris (1996). Sharing manufacturing informa-
tion in virtual enterprises. Communications of the ACM 39(2):46-53.

1.4 Enforcement of Informal Constraints

[47] Ellickson, R. (1986). Of Coase and Cattle: Dispute Resolution Among Neighbors in Shasta
County. Sanford Law Review, 38:624-87.

[48] Ellickson, R. (1997). Order without Law. Harvard University Press, Cambridge, MA.

[49] Bentham, Jeremy (1787). Panopticon; or, The inspection-house: containing the idea of a new
principle of construction applicable to any sort of establishment, in which persons of any
description are to be kept under inspection: and in particular to penitentiary-houses, prisons,
houses of industry ... and schools: with a plan of management adapted to the principle. Dublin
printed; London, Re-printed and sold by T. Payne, 1791.

[50] Semple, Janet (1993). Bentham’s Prison: A Study of the Panopticon Penitenti@xford Univer-
sity Press.

[51] Williams, Monte (1996). Sex offenders law prompts privacy debate in New York. The New York
Times Al, January 24.

1.5 Privacy, Personal Information
1.5.1 General

[52] Warren, Samuel, and Louis Brandeis (1890). The Right to Privacy. Harvard Law Review93.

[53] Agre, Phil (1994). Surveillance and Capture: Two Models of Privacy. The Information Society
10(2), pp. 101-127.

[54] Burns, R., R. Samargjiva, and R. Mukherjee (1992). Customer Information: Competitive and Pri-
vacy ImplicationsColumbus, OH: National Regulatory Institute.

[55] Gandy, O.H., J. (1993). The Panoptic Sort: A Political Economy of Personal Informatizwoul -
der CO: Westview.

[56] Goffman, E. (1971). Relations in Public: Microstudies of the Public Ordiiew York: Basic
Books.

[57] Goffman, E. (1963). Behavior in Public Places he Free Press.

[58] Gottdiener, M. (1985). The Social Production of Urban Spadeustin, TX: University of Texas
Press.

[59] Jussawalla, M., and C. Chee-Wah (1987). Economic Analysis of the Legal and Policy Aspects of
Information Privacy. Chapter 4 in The Calculus of International Communicatiohétleton, CO.

[60] Karnow, Curtis E.A. (1994). The Encrypted Self: Fleshing out the Rights of Electronic Personali-
ties. Conferencen Computers, Freedom, and Privacy

[61] Miller, A.R. (1969). Personal Privacy in the Computer Age: The Challenge of New Technology in
an Information-Oriented Society. Michigan Law RevieW7: 1224-25.

A Network-Centric Design for Relationship-Based Rights Management 109

(62]

[63]

[64]

[65]

[66]

(67]
(68]

152

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

Samargjiva, R. (1994). Electronic Public Space: Dystopic and other Futures. Computers, Free-
dom, and Privacy Conference.

Stanley, T. (1994). Electronic Communications Privacy Rights. CPSR Civil Liberties Project.
URL: http://www-leland.stanford.edu/~tstanley/cpsrart.html.

Turn, R. (1990). Information Privacy Issuesfor the 1990s. |EEE Computer Society Symposium on
Research in Security and Privacy.

Arms, B. (1994). Key Concepts in the Architecture of the Digital Library. D-Lib Journal, July.
Web: http://www.cnri.reston.va.us’home/dlib/July95/.

Bellotti, V., and A. Sellen (1993). Design for Privacy in Ubiquitious Computing Environments.
Proceedings of the Third European Conference on Computer-Supported Cooperative \Work,
Milan, Italy.

Chaum, D. (1992). Achieving Electronic Privacy. Scientific American, August.

Rotenberg, M. (1993). Communications Privacy: Implications for Network Design. Communica-
tions of the ACM 36(8), pp. 61-68.

Studies and Guidelines

OECD (1980). Guidelines Governing the Protection of Privacy and Transborder Flows of Per-
sonal Data. Annex to Recommendations of the Council of 23rd September 1980, Organization for
Economic Cooperation and Development.

Lawson, Ph., and M. Vallee (1995). Canadians Take Their Information “PersBrisaty Files
1(1), pp. 4-9, October. Progesta Publishing, Canada.

Ekos Research Associates (199Bjivacy Revealed: The Canadian Privacy Survey. Ekos.
Ottawa, Cananda.

Canadian Standards Association (19€A Model Code for Protection of Personal Information.
CAN/CSA-Q830-1995, August. Working Draft.

European Union (1995Pirective of the European Parliament and of the Council on the Protec-
tion of Individuals with Regard to the Processing of Personal Data and on the Free Movement of
Such Data. July 20th, Brussels.

U.S. Congress (1995)nformation Security and Privacy in Network Environments. Office of
Technology Assessment Study. Washington, DC.

U.S. Government (1995Privacy and the National Information Infrastructure: Principles for
Providing and Using Personal Information. Information Infrastructure Task Force, Information
Policy Committee, Privacy Working Group. Washington, DC.

U.S. Congress (1991homestic and International Data Protection Issues. Hearings before the
Government Information, Justice, and Agriculture Subcommittee of the Committee on Gover-
ment Operations, April 10, 1991. Washington, DC.

Equifax (1990).The Equifax Report on Consumers in the Information Age. Survey conducted by
Louis Harries & Associates and Dr. Alan Westin. Reprinted in Congressional Hearings [76], pp.
290-435.

Westin, Alan F. (1991). How the American public views consumer privacy issues in the early 90’s
and why. Testimony before the Subcommittee on Government Information, Justice, andAgricul-
ture. House Committee on Government Operations, Washington, D.C., April 10, 1991.

Equifax (1995).The 1995 Equifax-Harris Mid-Decade Consumer Privacy Survey. Survey con-
ducted by Louis Harries & Associates and Dr. Alan Westin. Available from URL http://
www.equifax.com/.

Westin, Alan F. (1991). Interpretive Essay. Interpretation of the Findings in Equifax [79]. Web:
http://www.equifax.com/.

Garfinkel, Simon (1995). Separating Equifax from Fictidéred 3.09, September, pp. 96-107.

A Network-Centric Design for Relationship-Based Rights Management 110

1.5.3 Medical Information

[82] Westin, Alan F. (1976). Computers, Health Records, and Citizen's Right$s. Department of
Commerce.

[83] Medical Records (1996). Report on the US Medical Records Confidentiality Act, sponsored by
Senator Robert Bennett and Patrick Leary. The New York Time&Nov 15, 1995, Al (“Medical
Records Are on Sale in the Marketplace”).

[84] Privacy of Medical Records (1979). Hearings before a Subcommittee of the House Committee on
Government Operations, 96th Cong., 1st Sess.

[85] Legislation to Protect the Privacy of Medical Records (1979). Hearings before the Senate Com-
mittee on Governmental Affairs, 96th Cong. 1st Sess.

[86] House Committee on Government Operations (1980). Federal Privacy of Medical Information
Act, H.R. Rep. No 96-832 Part 1, 96th Cong., 2d Sess.

[87] Data Protection, Computers, and Changing Information Practices (1990). Hearing before the Sub-
comm. on Government Information, Justice, and Agriculture, House Comm. on Government
Operations, 101st Cong., 2d Sess.

[88] Health Reform, Health Records, Computers and Confidentiality (1993). Hearing before the Infor-
mation, Justice, Transportation, and Agriculture Subcomm. of the House Committee on Govern-
ment Operations, 103rd Cong., 1st Sess.

[89] Fair Health Information Practices Act of 1994 (1994). Hearings before the Information, Justice,
Transportation, and Agriculture Subcomm. of the House Committee on Government Operations,
103rd Cong., 2d Sess.

[90] House Committee on Government Operations (1994). Health Security Act, H.R. Rep. No 103-601
Part 5, 103rd Cong., 2d Sess.

[91] Rindfleisch, T. (1997). Privacy and Security in Health C&emmunications of the ACM,
August.

2.0 Access Control, Rights Management

2.1 General

[92] Saltzer, J.D., and M.D. Schroeder (1975). The Protection of Information in Computer Systems.
Proceedings of the IEEE 63(9), pp. 1278-1308.

[93] ERMG (1995). Minutes of the first meeting of the Electronic Rights Management Group (Boston,
MA), Information Industries Association, October 31, 1995.

[94] ISO (1989). Security Framework IlI: Access Control Framework. ISO/IEC JTC1/SC21 N4206.
Draft, November.

[95] Silberschatz, A., J. Peterson, and P. G. Galvin (199fgrating Systems Concepts. Addison-
Wesley.

[96] Weber, Robert (1995). Digital Rights Management Technologigarnitional Federation of
Reproduction Rights Organization, Danvers, MA. October 1995.

[97] Stefik, M. (1995). Letting loose the light: Igniting commerce in electronic publishing. Dratft,
Xerox Palo Alto Research Center, Palo Alto, CA.

[98] Cyberspace Law Center (1997). Accessible at http://www.cybersquirrel.com/clc/

[99] Stefik, M. (1996). Digital Property Rights: Technology, Choices, and Social Values. Xerox Palo
Alto Research Center, Palo Alto, CA.

2.2 Conceptual Models

[100] Lampson, B.W. (1971). ProtectioBth Princeton Symposium on Information Science and Sys-

tems. Reprinted inACM Operating Systems Review 8(1):18-24, 1974.

A Network-Centric Design for Relationship-Based Rights Management 111

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

2.3
[117]

[118]

[119]

[120]

[121]

[122]

Harrison, M.H., W.L. Ruzzo, and J.D. Ullman (1976). Protection in operating systems. Commu-
nications of the ACM 19(8), pp. 461-471.

Marc, D. (1993). A Petri Net Representation of the Take-Grant Model. Proceedings of the |EEE
Symposium on Security and Privacy.

Minsky, N. (1977). Cooperative authorization in computer systems. IEEE Computer Society’s
First International Computer Software and Applications Confergom&29-33.

Minsky, N. (1978). An operation-control scheme for authorization in computer systems. Interna-
tional Journal of Computer & Information Scienc#g), pp. 157-91.

Minsky, N.H., and A.D. Lockman (1985). Ensuring integrity by adding obligations to privileges.
Proceedings of the 8th International Conference on Software Engineppir@p-102.

Sandhu, R.S. (1989). Transformation of Access Rights. Proceedings of the IEEE Symposium on
Security and Privac@akland, CA.

Sandhu, R.S., and G.S. Suri (1992). Non-Monotonic Transformation of Access Rights. Proceed-
ings of the IEEE Symposium on Security and Pri@atyand, CA.

Sandhu, R.S. (1992). The Typed Access Matric Model. Proceedings of the IEEE Symposium on
Security and Privac@akland, CA.

Sandhu, R.S. (1988). The Schematic Protection Model: Its Definitions and Analysis for Acyclic
Attenuating Schemes. Journal of ACM3(2):404-432.

Sandhu, R.S., and M.E. Share (1986). Some Owner-based Schemes with Dynamic Groups in the
Schematic Protection Model. Proceedings of the IEEE Symposium on Security and Privacy.
Thomas, R.K., and R.S. Sandhu (1993). Towards a Task-based Paradigm for Flexible and Adapt-
able Access Control in Distributed Applications. Proceedings of the Second New Security Para-
digms Workshop.ittle Compton, Rhode Island.

Thomas, RK., and R.S. Sandhu (1994). Conceptual Foundations for a Model of Task-based
Authorizations. Proceedings of the IEEE Conference on Security and Privacy

Moffett, J.D., and M. S. Sloman (1991). Content-dependent Access Control. Operating Systems
Review25 (2), pp. 63-70, April.

Strack, H., and K. Lam (1993). Context-dependent Access Control in Distributed Systems. IFIP
Transactions in Computer Securiy37. Elsevier Publishers.

Abrams, M.D., and M.V. Joyce (1993). Extending the | SO Access Control Framework for Multi-
ple Palicies. IFIP Transactions in Computer Securfy37. Elsevier Publishers.

Abrams, M.D., and |.M. Olsen (1992). Rule-based Trusted Access Control. In G.G. Gable and
W.J. Ceglli (eds)), IT Security: The Need for International Cooperati&isevier Publishers.

Authorization Languages

Stefik, M. (1996). The Digital Property Rights Language. Manual and Tutoria. Version 1.02, Sep-
tember 18th. Xerox Palo Alto Research Center, Palo Alto.

Upthegrove, Luella, and T. Roberts (1994). Intellectual Property Header Descriptors: A Dynamic
Approach. Proceedings of the Workshop on Technological Strategies for Protecting Intellectual
Property in the Networked Multimedia EnvironmeZdalition for Networked Information, Inter-
active Multimedia Association, and John F. Kennedy School of Government.

CODASY L Data Description Language Committee (1987). Report. Information Systeni¥(4), pp.
247-320.

W30 (1994). WWW Access Authorization. URL: http://www.w3.org/hypertext/WWW/AccessA-
uthorization/Overview.html.

Koster, M. (1994). A Standard for Robot Exclusion. Web: http://info.webcrawler.com/mak/
projects/robots/norobots.html.

Morris, J. H. (1973). Protection in Programming Languages. Communications of the ACI5(1).
pp. 15-21.

A Network-Centric Design for Relationship-Based Rights Management 112

[123]

[124]

[125]

[126]

[127]

[128]

[129]

2.4
[130]

[131]

[132]

2.5
[133]

[134]

2.6

[135]
[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

Kieburtz, R. B., and A. Silberschatz (1983). Access Right Expressions. ACM Transactions on
Programming Languages and Systems 5(1), pp. 78-96.

Abadi, M., M. Burrows, and B. Lampson (1993). A Calculus for Access Control in Distributed
Systems. ACM TOPLS 15(4), pp. 706-734, September.

Hoffmann, L.J. (1971). The Formulary Model for Flexible Privacy and Access Control. AFIPS
Conf. Proc. 39, FICC, 587-601. AFIPS Press, Montvale, NJ.

La Padula, L. (1990). Formal Modeling in a Generalized Framework for Access Control. Pro-
ceedings of the IEEE Symposium on Security and Privacy,Oakland, CA.

Chrysanthis, PK., and K. Ramamritham (1990). ACTA: A Framework for Specifying and Rea-
soning about Transaction Structure and Behavior. Proceedings of the ACM SSIGMOD conference,
pages 194-203.

Sandhu, R.S. (1988). Transaction Control Expressions for Separation of Duties. Proceedings of
the Fourth Computer Security Applications Conference, pp. 282-286.

Woo, Th., and S. Lam (1992). Authorization in Distributed Systems. A Forma Approach. Pro-
ceedings of the IEEE Conference on Security and Privacy, Oakland, CA.

Implementation Models
Hauser, R. (1993). Does Licensing Require New Access Control Techniques ? Proceedings of the
First ACM Conference on Computer and Communications Security, pp. 1-8. Fairfax, VA.

Kahan, J. (1994). Un Nouveau Modeéle d’Autorisation pour les Systemes de Consultation d’'Infor-
mation Multimédia Reparti@&FCET, Télécom Paris.

Zurko, M.E. (1992). Attribute Support for Inter-Domain UBeoceedings of the IEEE Confer-
ence on Security and Privacy, Oakland, CA.

Revocation
Redell, D. (1974)Naming and Protection in Extendible Operating Systems. PhD dissertation, UC
Berkeley. Also: MIT MAC TR TR-140.

Ekanadham, K., and A. J. Bernstein (1979). Conditional CapabiliE&& Transactions on Soft-
ware Engineering SE5(5), pp. 458-464.

Systems

Blaze, M. et al. (1996). PolicyMaker. Web: ftp://research.att.com/dist/mab/.

Blaze, M., J. Feigenbaum, and J. Lacy (1996). Decentralized Trust ManagtasEhSympo-

sium on Security and Privacy, Oakland CA, May 1996.

Corbato, F. J., and V. A. Wssotsky (1965). Introduction and Overview of the MULTICS System.
Proceedings of AFIPS SICC, pp. 185-196.

Levin, R., E. S. Cohen, W. M. Corwin, F. J. Pollack, and W. A. Wulf (1975). Policy/Mechanism
Separation in Hydr&Proceedings of the Fifth ACM Symposium on Operating System Principles,

pp. 132-140.

Cohen, E. S., and D. Jefferson (1975). Protection in the Hydra Operating Sisiesadings of

the Fifth ACM Symposium on Operating System Principles, pp. 141-160.

Needham, R. M., and R. D. H. Walker (1977). The Cambridge CAP Computer and its Protection
System Proceedings of the Sixth ACM Symposium on Operating System Principles, pp. 1-10.

Cox, B., J.D. Tygar, and M. Sirbu (1995). NetBill Security and Transaction Protocol. Technical
Report, Carnegie-Mellon University.

Chu, Y.-H., J. Feigenbaum, B. LaMacchia, P. Resnick, M. Strauss (1997). Referee: Trust Manage-
ment for Web Applications. 6th Web Conference, Stanford.

Gladney, H,M. (1996). Digital Intellectual Property—Risks and Protection Mechanisms. IBM
Almaden Reseach Center, San Jose, CA.

A Network-Centric Design for Relationship-Based Rights Management 113

[144] Gladney, H.M. (1992). Access Control for Large Collections. IBM Research Report RJ 8946.
Also in ACM Trans. Information Systems.

[145] InterTrust (1995). InterTrust Electronic Rights System. InterTrust, Incorporated. URL: http://
www.intertrust.com (formerly Electronic Publishing Resources, http://www.epr.com)

[146] Erickson, J.S. (1994). Electronic Copyright Management in the Production of Networked Interac-
tive Multimedia. PhD thesis proposal, Thayer School of Engineering, Dartmouth College.

[147] Rivest, R., and B. Lampson (1996). SDSI—A Simple Distributed Security Infrastructure. Techni-
cal Report. Massachusetts Institute of Technology, Cambride, MA.

[148] Rotenberg, L. (1973). Making computers keep secrets. PhD dissertation, MIT, Cambridge, Mass.
Also: MIT MAC TR-115.

[149] Ritchie, D. M., and K. Thompson (1978). The UNIX Time-Sharing Sys@mmunications of
the ACM 17(7), pp. 365-375, July.

[150] Kahn, R.E. (1994). Deposit, Registration, and Recordation in an Electronic Copyright Manage-
ment SystemProceedings of the Workshop on Technological Strategies for Protecting Intellec-
tual Property in the Networked Multimedia Environment. Coalition for Networked Information,
Interactive Multimedia Association, and John F. Kennedy School of Government.

[151] Library of Congress (1996). The CORDS copyright management system. Web: http://
Icweb.loc.gov/copyright/cords.html

2.7 Watermarking

[152] Low, Maxemchuk, Brassil, O'Gorman (199%)ocument Marking and Identification using both
Line and Word Shifting. Web: ftp://ftp.research.att.com/dist/brassil/docmark?2.ps.

[153] Choudhury, Maxemchuk, Paul, Schulzrinne (19@6pyright Protection for Electronic Publish-
ing over Computer Networks. Web: ftp://ftp.research.att.com/dist/anoncc/copyright.epub.ps.Z.

[154] Brassil, Low, Maxemchuk & O’Gorman (1994 ectronic Marking and Identification Tech-
nigues to Discourage Document Copying. Web: ftp:/ftp.research.att.com/dist/brassil/
infocom94.ps.

3.0 Electronic Contracting, EDI

[155] EDI (1979). ANSI ASC X12. ISO/IEC JTC1/SWG-EDI.

[156] EDIFACT (1995). UN/EDIFACT Standards (EDI for Adminstration, Commerce, and Transport).
Web: http://www.premenos.com/unedifact/.

[157] UN/ECE (1994). UN/EDIFACT Message Design Guidelines. Web: http://www.premenos.com/
standards/.

[158] UN/ECE (1994). General Introduction to UNSM Descriptions. Web: http://www.premenos.com/
standards/.

[159] Open-EDI (1994). Open-EDI Conceptual Model. ISO/IEC JTC1/SWG-EDI N222.

[160] Hill, N., and D. Ferguson (1995). Electronic Data Exchange: A Definition and Perspé&five.
Aware, Issue 4, Winter. Web: http://infopolel.soca.cf.ac.uk/edi/EDIAware4index.html.

[161] Nelson, C. (1995). The ABC of EDIEDI Aware, Issue 4, Winter. Web: http://
infopolel.soca.cf.ac.uk/edi/EDIAware4Index.html.

[162] UN/ECE (1995). Electronic Data Interchange Standards. Web: http://www.premenos.com/stan-
dards/.

4.0 Security, Integrity, and Cryptography

4.1 General

[163] Anderson, R. (1995). Computer and Communications Security Reviews. Web: http:/

www.cl.cam.ac.uk/users/rjal4/.

A Network-Centric Design for Relationship-Based Rights Management 114

[164]

[165]

[166]

[167]

[168]

[169]

[170]
[171]

4.2
[172]

[173]

[174]

[175]

4.3
[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Amoroso, E. (1994). Fundamentals of Computer Security Technology. Prentice Hall. Englewood
Cliffs, NJ.

Fernandez, E., R. Summers, and C. Wood (1981). Database Security and Integrity. Addison-Wes-
ley.

Kaufman, C., R. Perlman, and M. Speciner (1995). Network Security: Private Communicationsin
a Public World. Prentice Hall, NJ.

Anderson, J. P. (1972). Computer Security Technology Planning Study. ESD-TR-73-51, AD-758
206, ESD/AFSC Hanscom.

Anderson, R.J. (1993). Why Cryptosystems Fail. Proceedings of the First ACM Conference on
Computer and Communications Security, Fairfax, pp. 215-227.

Lampson, B.W. (1973). A Note on the Confinement Problem. Communications of the ACM
16(10), pp. 613-615.

Smith, M. (1994). A People Problem. International Security Review 83.

Schneier, B. (1994). Applied Cryptography: Protocols, Algorithms, and Source Code in C. John
Wiley and Sons, NY.

Authentication

Birrel, A., B. Lampson, R. Needham, and M. Schroeder (1986). A Global Authentication Service
without Global Trust. Proceedings of the |EEE Symposium on Security and Privacy.

Wobber, E., M. Abadi, M. Burrows, and B. Lampson (1993). Authentication in the Taos Operat-

ing System. ACM SIGOPS, pp. 256-269.

Dennis, J., and E. van Horn (1966). Programming Semantics for Multi-programmed Computa-

tions. Communications of the ACM 9(3), pp. 143-155.

Yahalom, R., B. Klein, and Th. Beth (1993). Trust Relationship in Secure Systems—A Distrib-
uted Authentication Perspectivieroceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA.

Security and Integrity

Denning, D. (1993). A New Paradigm for Trusted Systéheedings of the New Security Par-
adigms Workshop. Little Compton, Rhode Island.

Department of Defense (1985). Trusted Computer Systems Evaluation Criteria. DOD 5200.28-
STD, December.

Dobson, John (1993). New Security Paradigms: What Other Concepts Do We Need &rwvell?
ceedings of the New Security Paradigms Workshop. Little Compton, Rhode Island.

LaPadula, L.J., and J.G. Williams (1991). Towards a Universal Integrity Meateedings of

the IEEE Computer Security Foundations Workshop. Franconia, New Hampshire. IEEE Press.
McCullough, D. (1987). Specification for Multi-level Security and a Hook-up Progendgeed-

ings of the IEEE Symposium on Security and Privacy, Oakland, CA.

Sandhu, R.S. (1990). On the Five Definitions of Data Intedrityceedings of the 7th Annual

IFIP Working Conference on Database Security. Huntsville, Alabama.

Minsky, N., and V. Ungureano (1997). Unified Support for Heterogeneous Security Policies in
Distributed Systems. Department of Computer Science, Rutgers University.

Minsky, N., and V. Ungureano (1997). A Framework for Supporting Heterogeneous Coordination
Policies. Department of Computer Science, Rutgers University.

Wiederhold, G., M. Bilello, V. Sarathy, and X. Qian (1996). A Security Mediator for Health Care
Information. Proceedings of the 1996 AMIA (formely SCAMC) Conference, Oct. 1996, pp.120-

124.

Wiederhold, G., Michel B., V. Sarathy, and X. Qian (1996). Protecting CollaborBtiareedings

of the NISSC’96 National Information Systems Security Conference, pp. Oct. 1996, pp.561-569.

A Network-Centric Design for Relationship-Based Rights Management 115

[186] Qian, X., G. Wiederhold, M. Bilello, A. Chavez, and V. Sarathy (1996). Trusted Interoperation of
Healthcare Information. Abstract for the NS Challenge workshop, Stanford, March 20-23, 1996.
4.4 Specific Security Policies and Models
[187] Béll, D.E., and L.J. LaPadula (1976). Secure Computer Systems: Unified Exposition and Multics
Interpretation, Report No. MTR-2997, MITRE, Bedford, MA.
[188] Biba (1977). Integrity Considerations for Secure Computer Systems. ESD-TR-76-372, USAF
Electronic Systems Division, Bedford, MA.
[189] Brewer, D., and M. Nash (1989). The Chinese Wall Security Policy. Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA.
[190] Clark, D.D., and D.R. Wilson (1987). A Comparison of Commercial and Military Security Poli-
cies. Proceedings of the |EEE Symposium on Security and Privacy, Oakland, CA.
[191] Dobson, JE., and JA.McDermid (1989). Security Models and Enterprise Models. In C.E. Land-
wehr (ed.), Database Security, |1: Satus and Prospects, Elsevier Science Publishers, Amsterdam.
[192] Goguen, JA., and J. Meseguer (1982). Security Policy and Security Models. Proceedings of the
|EEE Symposium on Security and Privacy, Oakland, CA.
[193] McLean, J. (1990). Security Models and Information Flow. Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA.
[194] Sandhu, R.S. (1990). Separation of Duties in Computerized Information Systems. In C.E. Land-
wehr (ed.), Database Security, IV: Satus and Prospects, Elsevier Science Publishers, Amsterdam.
[195] Sterne, D. (1991). On the Buzzword “Security Polic{Ptoceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA.
[196] Sutherland, D. (1986). A Model of Informatider.oceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA.
[197] Williams, J. (1993). A Shift in Security Modeling Paradigrmsoceedings of the IEEE Sympo-
sium on Security and Privacy, Oakland, CA.
4.5 Cryptography
[198] Hoffman, L., F. Ali, S. Heckler, and A. Huybrechts (1993). Cryptography: Policy and Technology
Trends.Conference on Computers, Freedom, and Privacy.
[199] Diffie, W., and M. E. Hellman (1976). New Directions in CryptogragB£E Transactions on
Information Theory 22(6), pp. 397-427.
[200] Rivest, R. L., A. Shamir, and L. Adleman (1978). On Digital Signatures and Public Key Crypto-
systemsCommunications of the ACM 21(2), pp. 120-126.
[201] Chaum, D. (1985). Showing Credentials without Identification: Signatures transferred between
Unconditionally Unlinkable Pseudonyms. Advances in Cryptology—Eurocrypt ‘8fp. 241-
244. Springer Verlag.
5.0 Standards Process Documents
5.1 IETF Standards Track RFCs
[202] Linn, J. (1993). Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption
and Authentication ProcedureRFC1421. Web: http://ds.internic.net/rfc/.
[203] Kent, S. (1993). Privacy Enhancement for Internet Electronic Mail: Part Il: Certificate-Based
Key ManagemenRFC1422. Web: http://ds.internic.net/rfc/.
[204] Kalinski, B. (1993). PEM 1V: Key Certification and Related Servic&=C1424. Web: http://
ds.internic.net/rfc/.
[205] Kaufman, C. (1993). DASS - Distributed Authentication Security SeniRleC1507. Web: http://

ds.internic.net/rfc/.

A Network-Centric Design for Relationship-Based Rights Management 116

[206]

[207]

5.2

[208]

[209]

53
[210]

[211]

[212]

[213]

[214]

5.4
[215]

[216]
[217]
[218]
54.1

[219]
[220]

55

[221]
[222]

5.6
[223]

[224]

[225]

[226]

Linn, J. (1993). Generic Security Service Application Program Interface. RFC1508. Web: http://
ds.internic.net/rfc/.

Kohl, J.,, and C. Neuman (1993). The Kerberos Network Authentication Service (V5). RFC1510.
Web: http://ds.internic.net/rfc/.

IETF Informational RFCs
Braden, R., D. Clark, S. Crocker, C. Huitema (1994). Report of 1AB Workshop on Security in the
Internet 1994. RFC1636. Web: http://ds.internic.net/rfc/.

Haller, N., and R. Atkinson (1994). On Internet Authentication. RFC1704. Web: http://ds.inter-
nic.net/rfc/.

CCITT Standards

CCITT X.509 (1988). Recommendation X.509: The Directory—Authentication Framework.

Consultative Committee on International Telegraphy and Telephony.

CCITT X.500 (1988). Recommendation X.500: The Directory—Overview of Concepts, Models
and Services. Consultative Committee on International Telegraphy and Telephony.

CCITT X.501 (1988). Recommendation X.501: The Directory—Models. Consultative Committee
on International Telegraphy and Telephony

CCITT X.208 (1988). Recommendation X.208. Abstract Syntax Notation 1 (ASN.1). Consulta-
tive Committee on International Telegraphy and Telephony.

CCITT X.209 (1988). Recommendation X.209. Basic Encoding for ASN.1. Consultative Com-
mittee on International Telegraphy and Telephony.

RSA Laboratories Standards

RSA Laboratories (1993)PKCS #6: Extended-Certificate Syntax Sandard. Web: ftp://
ftp.rsa.com/pub/pkcs/.

RSA Laboratories (1993PKCS#9: Selected Attribute Types. Web: ftp://ftp.rsa.com/pub/pkcs/.

RSA Laboratories (1993)PKCS #10:Certification Request Syntax Standard. Web: ftp://
ftp.rsa.com/pub/pkcs/.

RSA Laboratories (1993PKCS Standard #1-#10. Web: ftp://ftp.rsa.com/pub/pkcs/.
W3C Projects/Submissions

P3P (1997). Platform for Privacy Preferences (formerly “P3"). Web: http://www.w3.org/.
OPS (1997). Open Profiling Standard. Firefly, Netscape. Web: http://www.w3.org/.

Personal Information/Directories

Versit (1995). Personal Data Interchange Specification, 1.0. Web: http://www.versit.com/.

Yeong, W., T. Howes, S. Kille (1995). Lightweight Directory Access Protocol (LDAP). RFC-
1777. Web: http://www.umich.edu/~rsug/ldap/doc/rfc/rfcl777.txt

Security and Payment

Hickman, K. (1995)Communications Secure Socket Layer (SSL). Web: http://home.mcom.com/
info/SSL.html. Draft, Netscape Communications Corp.

Rescorla. E., and A. Schiffman (199%cure Hyper Text Transfer Protocol (SHTTP). Web: http:/
Iwww.commerce.net/information/standards/drafts/shttp.txt. Draft, Enterprise Integration Technol-
ogies.

Ankney, R. (1996). Enhanced Management Controls Using Digital Signatures and Attribute Cer-
tificates. ANSI X9.45, Draft 4, March 13.

SET (1997). SET: Secure Electronic Transactions. VISA/MasterCard. Web: http://www.master-
card.com/set/.

A Network-Centric Design for Relationship-Based Rights Management 117

[227] OTP (1997). Open Trading Protocol. Mondex. Web: http://www.mondex.com/.

[228] Intel (1997). Common Data Security Architecture (CDSA). Web: http://devel oper.intel.com/ial/
security/cdsa/index.htm

[229] Microsoft (1997). Windows Security Support Provider Interface (SSPI). Web: http:/pre-
mium.microsoft.com/isapi/devonly/prodinfo/msdnprod/msdnlib.idctheURL =/msdn/library/sdk-
doc/dpbuild_6unk.htm

[230] Sun (1997). Java Security Toolkit. Web: http://www.javasoft.com/security/whitepaper.ps

[231] Authenticode (1997). Microsoft's Authenticode system. Web: http://microsoft.com/ie/security/.

[232] Netscape (1997). Signed Applets. Web: http://www.netscape.com/.

6.0 Miscellaneous

6.1 Distributed Logic Programming

[233] Wolfson, O., and A. Silberschatz (1988). Distributed Processing of Logic ProghaiksS G-
MOD International Conference on Management of Data 17(3), pp. 329-36.

[234] Saraswat, V., K. Kahn, and J. Levy (1990). Janus: A Step towards Distributed Constraint Pro-
gramming.Proceedings of the 1990 North American Conference on Logic Programming. Austin,
TX. pp. 431-46. MIT Press.

[235] Smith, R.G. (1980). The Contract Net Protocol: High-level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers. Vol. C-29, 12.

6.2 Logic and Law

[236] Reiter, R. (1980). A Logic for Default Reasonidgtificial Intelligence 13(1-2), pp. 81-132.

[237] McCarty, L. Thorne (1994). Modalities over Actions, |. Model TheoryPinceedings of the
Fourth International Conference on Principles of Knowledge Representation and Reasoning
(KR'94), pp. 437-48.

6.3 Speech Act Theory, Language/Action

[238] Searle, John (1969%peech Acts. Cambridge University Press.

[239] Austin, J.L. (1962). How to Do Things With Words. Harvard University Press.

[240] Winograd, T., and F. Flores (199&)nderstanding Computers and Cognition: A New Foundation
for Design. Addison-Wesley.

6.4 Stanford InfoBus, Prototype Development

[241] Object Management Group (199%)bject Property Service. IBM, SunSoft, Taligent. OMG TC
Document 96.6.1.

[242] Object Management Group (1993je Common Object Request Broker: Architecture and speci-
fication. Accessible at ftp://omg.org/pub/CORBA/.

[243] Mac (1993). Macintosh Human Interface Guidelines. Apple Computer, Cupertino.

[244] Paepcke, A. (1996). The Stanford Digital Library Interoperability Protocol (DLIOP). Technical
Report, Stanford Digital Library Project, Department of Computer Science, Stanford University.

[245] Hassan, S. (1996). JYLU—an ILU run-time kernel in Java. Web: http://db.stanford.edu/~hassan/.

[246] Janssen, Betal. (1997). ILU: Inter-Language Unification. Web: http://parc.xerox.com/.

[247] Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1996). The Stanford Digital Library
Metadata Architecture. Technical Report, Stanford Digital Library Project, Department of Com-
puter Science, Stanford University.

[248] Paepcke, A., S. Cousins, H. Garcia-Molina, S. Ketchpel, M. Roscheisen, and T. Winograd (1996).

Towards Interoperability in Digital Libraries: Overview and Selected Highlights of the Stanford
Digital Library Project|EEE Computer, 29 (5), May 1996, 61-68.

A Network-Centric Design for Relationship-Based Rights Management 118

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[250]

[260]

[261]

[262]

[263]
[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

Cousins, S. (1997). DLITE: The Digital Library Integrated Task Environment. Web: http://
dlite.stanford.edu/.

Cousins, S, S.. Hassan, A. Pagpcke, and T. Winograd (1996). A Distributed Interface to the Digi-

tal Library. Technical Report, Digital Library Project, Stanford University.

Ketchpel, S, et al. (1996). U-PAI: The Stanford Universal Payment Application Interface. Eco-
nomics Subgroup, Stanford Digital Libraries Project. In USENIX 96—-Electronic Commerce.
Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1996). The Stanford Digital Library
Metadata Architecture. Technical Report, Digital Library Project, Stanford University.

Roscheisen, Met al. (1997). The Stanford InfoBus and Its Service Layers: Augmenting the Inter-
net by Higher-Level Information Management Protocols. Web: http://diglib.stanford.edu/rmr/.
Paepcke, A., S. Cousins, H. Garcia-Molina, S. Ketchpel, M. Rdscheisen, and T. Winograd (1996).
Towards Interoperability in Digital LibrarieEEEE Computer, 29 (5).

Baldonado, M. (1997). SenseMaker: An Information-Exploration Interface Supporting the Con-
textual Evolution of a User’s Intere§omputer-Human Interaction Conference CHI'@&lanta.
Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1997). The Stanford Digital Library
Metadata Architecture. International Journal of Digital Libraries1(2).

Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1997). Metadata for Digital Libraries:
Architecture and Design Rationale. Proceedings of DL'97

Chang, C.-C., K., H. Garcia-Molina, and Andreas Paepcke (1996). Boolean Query Mapping
Across Heterogeneous Information Sources. IEEE Transactions on Knowledge and Data Engi-
neering,8(4):515-521, August.

Cousins, S., A. Paepcke, T. Winograd, E.A. Bier, and K. Pier (1996). The Digital Library Inte-

grated Task Environment (DLITE). Proceedings of DL'97

Gravano, L., K. Chen-Chuan Chang, H. GarciasMoalina, and A. Paepcke (1996). STARTS: Stan-

ford Protocol Proposa for Internet Retrieval and Search. Accessible at http://www-db.stan-
ford.edu/~gravano/starts.html

Gravano, L., H. GarciasMolina, and A. Tomasic (1994). The effectiveness of GLOSS for the text-
database discovery problem. Proceedings of SIGMOD’94

Gravano, L., K. Chen-Chuan Chang, Hector Garcia-Molina, and Andreas Paegpcke (1996).
STARTS: Stanford Proposal for Internet Meta-Searching. Proceedings of SIGMOD’97

Paepcke, A. (1996). InterBib. Cf. http://www-db.stanford.edu/~testbed/.

Balabanovic, M. and Y. Shoham (1997). Combining Content-Based and Collaborative Recom-
mendation. Communications of the AGMO(3), March.

Shivakumar, N., and Hector GarciaMalina (1995). SCAM: A Copy Detection Mechanism for

Digital Documents. Proceedings of DL'95.

USMARC (1994). Format for Bibliographic Data: Including Guidelines for Content Designation.
Cataloging Distribution Service, Library of Congress, Washington, D.C.

GILS (1996). Government Information Locator Service. Accessible at http://info.er.usgs.gov:80/

gld.

Hardy D.R., M.F. Schwartz, and D. Wessels (1996). Harvest User’s Manual. Accessible at http://
harvest.transarc.com/-afs/-transarc.com/-public/-trg/-Harvest/-user-manual/.

Lagoze, C., and D. Ely (1995). Implementation Issues in an Open Architectural Framework for
Digital Object Services. TR95-1590, Cornell University.

Lagoze, C., and C.A. Lynch and Ron Daniel Jr. (1996). The Warwick Framework: A Container
Architecture for Aggregating Sets of Metadata. TR96-1593, Cornell University.

Z3950 (1995). Information Retrieval: Application Service Definition and Protocol Specification.
ANSI/NISO. April.

Borenstein, N., and N. Freed (1993). MIME: Multipurpose Internet Mail Extensions: Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies. Internet RFC
1521.

A Network-Centric Design for Relationship-Based Rights Management 119

6.5
[273]

[274]

[275]

[276]

[277]

[278]

[279]

Selected Prior Publications

Roéscheisen, M. and T. Winograd (1996). A Network-Centric Design for Relationship-based Secu-
rity and Access Control. Overview of the Security Architecture of the Stanford Integrated Digital
Libraries Project. Invited Contribution to thdournal of Computer Security. Web: http:/
diglib.stanford.edu/rmr/.

Roéscheisen, M., and T. Winograd (1997he FIRM Framework for Interoperable Rights Man-
agement: Defining a Rights Management Service Layer for the Int&oreim on Technology-

based Intellectual Property Management, Washington, DC. Interactive Media Association, White
House Economic Council, and White House Office of Science and Technology.

Roscheisen, M. and T. Winograd (1996). A Communication Agreement Framework for Access/
Action Control. InProceedings of the |EEE Symposium on Research in Security andPrivacy, Oak-
land.

Roéscheisen, M. (1996). Beyond Privacy as Anonymity: Rights Management Technologies for Pri-
vacy and Intellectual Property Control. Lunchtime presentati@omtputers, Freedom, and Pri-
vacy, CFP96, Boston, March 28-30. Slides: http://pcd.stanford.edu/rmr/CFP96

Roscheisen, M. (1995). General Certificates. Working Paper #12. Stanford Integrated Digital
Libraries Project, Stanford University.

Roéscheisen, M., C. Mogensen, and T. Winograd (1994). Shared Web Annotations As A Platform
for Third-Party Value-Added Information Providers: Architecture, Protocols, and Usage Exam-
ples. Technical Report, Stanford Integrated Digital Library Project, Computer Science Depart-
ment, Stanford University, November 1994. Alsoodeedings of the Third International World-

Wide Web Conference, Darmstadt, GermanyProceedings of CHI95, Denver, CO. Web: http://
pcd.stanford.edu/COMMENTORY/.

Kamiya, K., M. Rdscheisen, and T. Winograd (1995). Grassroots: Providing a Uniform Frame-
work for Communicating, Sharing Information, and Organizing People. Short Gefo5
Conference Paper, 6th WWW ConferenceParis; and Technical Report, Computer Science
Department, Stanford University. Web: http://pcd.stanford.edu/Grassroots/.

A Network-Centric Design for Relationship-Based Rights Management 120

	A Network-Centric design for relationship-based ri...
	A dissertation
	submitted to the department of Computer Science
	and the committee on graduate studies
	of stanford university
	in partial fulfillment of the requirements
	for the degree of
	doctor of philosophy
	R. Martin Röscheisen
	December 1997
	” Copyright by R. Martin Röscheisen 1998
	All Rights Reserved
	I certify that I have read this dissertation and t...
	Table of Contents
	1 Towards Frictionless Digital Rights/Relationship...
	1. 1 The Problem: Rights/Relationship Management i...
	1. 2 Current Solutions: Idiosyncratic, Not User-Ce...
	1. 3 Unifying Rights Management in a User-Centered...
	1. 4 Defining a Rights Management Service Layer 4
	1. 5 Overall Design Assumptions 6
	1. 6 Design Process 8
	1. 7 Taking a Relationship-Based Approach 8
	1. 8 Design Space 11
	1. 9 Design Goals 12
	1. 10 The Solution: Outline and Summary 12

	2 A Conceptual Model of Relationship Management 14...
	2. 1 Understanding Agreements/Contracts 14
	2. 2 The Commpact Model 15
	2. 3 Related Work 18
	2. 4 Enforcement 18

	3 A Network-Centric Architecture for Managing Cont...
	3. 1 Three Ways of Organizing Control Information ...
	3. 2 Three Ways of Embedding Control Objects 30
	3. 3 Understanding Conventional Control Architectu...
	3. 4 From Server-Based and Client-Based Control to...
	3. 5 Security Implications 37
	3. 6 Linking from Content Objects to Rights-Manage...
	3. 7 Related Architectures 38

	4 FIRM: An Infrastructure for Digital Relationship...
	4. 1 Object Reifications 40
	4. 2 Transaction Model 49
	4. 3 The User’s View: Examples from the RManage Pr...
	4. 4 Object Interactions: Sample Transaction Scena...
	4. 5 Related Work 72

	5 Conclusion 75
	Appendix: Specification of FIRM 79
	1 Overview 79
	2 The FIRM Common Rights Language Object Model 81
	3 FIRM’s Object Attribute Models 99
	4 Examples of Interface Implementations 103

	References 107

	List of Illustrations

	1.0 Towards Frictionless Digital Rights/Relationsh...
	1.1 The Problem: Rights/Relationship Management in...
	1.2 Current Solutions: Idiosyncratic, Not User-Cen...
	1.3 Unifying Rights Management in a User-Centered ...
	1.4 Defining a Rights Management Service Layer
	Three Classes of Usages
	Our Solution: The FIRM Rights Management Service L...
	FIGURE 1. FIRM defines a rights management service...

	Related Service Layers: Security and Trust Managem...

	1.5 Overall Design Assumptions
	Heterogeneity of Trust
	Multiplicity of Enforcement Choices
	Multiplicity of Mechanisms

	1.6 Design Process
	1.7 Taking a Relationship-Based Approach
	Example: Relationship-Based Network Security
	FIGURE 2. Network Security: FIRM enables a relatio...

	Other Examples

	1.8 Design Space
	FIGURE 3. Design Space: Systems designed for diffe...

	1.9 Design Goals
	1.10 The Solution: Outline and Summary
	A Conceptual Framework for Relationship Management...
	An Architecture for Managing Control Information: ...
	A Structured Way of Representing Relationships: Re...
	A Demonstration Prototype: The RManage Relationshi...

	2.0 A Conceptual Model of Relationship Management
	2.1 Understanding Agreements/Contracts
	2.2 The Commpact Model
	2.2.1 Negotiation Mode: Establishing Mutual Assent...
	2.2.2 Performance Mode: Making Use of an Establish...
	FIGURE 4. Negotiation: States and Transitions.

	2.3 Related Work
	2.4 Enforcement
	2.4.1 Types of Enforcement: A Top-Down Perspective...
	FIGURE 5. Anchor Points for Enforcement.
	TABLE 1. Enforcement Types: Examples and Paradigms...

	2.4.2 Example: Action-Interrupt Control in the ISO...
	FIGURE 6. ISO Access Control Model: Action-Interru...

	2.4.3 Shifting from Enforcement as Rule Processing...
	Example: University Course Material on the Web
	Example: Privacy of Medical Records
	The main thing this bill does is to put everybody ...

	Example: Differential Pricing via Monitoring
	Example: Shared Space of an Online Community

	2.4.4 A Generalized Enforcement Framework
	FIGURE 7. The Generalized Enforcement Framework: I...

	3.0 A Network-Centric Architecture for Managing Co...
	3.1 Three Ways of Organizing Control Information: ...
	The Lampson Matrix
	FIGURE 8. Lampson Access Control Matrix.

	Underlying Assumptions
	Subject-Object Conceptualizations
	1. (by column) Object-Centered Realization: For e...
	2. (by row) Subject-Centered Realization: For each...

	Subject-Subject Conceptualization
	3. (by rights relationship) Relationship-Centered ...
	FIGURE 9. Realizations of the Lampson Matrix (Revi...

	3.2 Three Ways of Embedding Control Objects
	3.3 Understanding Conventional Control Architectur...
	FIGURE 10. Authorization Interactions: Decision Fa...
	Example: Negotiation Cost for Simple CallerID Inte...
	FIGURE 11. CallerID Example: Simple Set of Phone-A...
	FIGURE 12. CallerID Example: ‘A calling B’ Leads t...

	3.4 From Server-Based and Client-Based Control to ...
	First-Class Control Objects
	Introducing a Network API for Control Requests
	Relationship-Based Control
	FIGURE 13. Network-Centric Control Architecture.

	CallerID Example Revisited
	FIGURE 14. CallerID Example: ‘A calling B’ with co...

	3.5 Security Implications
	3.6 Linking from Content Objects to Rights-Managem...
	3.7 Related Architectures

	4.0 FIRM: An Infrastructure for Digital Relationsh...
	4.1 Object Reifications
	FIGURE 15. FIRM Object Reifications: Commpacts and...
	4.1.1 Reifying (Roles of) Persons: “E-Persons”
	E-Persons as User Agents, Enabling a Network Login...

	4.1.2 Managing E-Persons: “Home Providers”
	4.1.3 Reifying Relationships/Agreements: “Commpact...
	FIGURE 16. Commpacts as “Smart Contract” Objects: ...
	Reifying Contract Law
	Not Everything is Reified: Two Examples

	4.1.4 Managing Commpacts for an E-Person: “Commpac...
	4.1.5 Reifying Standard Contract Templates: “Commp...
	“Commpact Forms Designers”: Developing Shared Comm...

	4.1.6 Making Available Commpact Forms: “Forms Prov...

	4.2 Transaction Model
	FIGURE 17. Transactions in FIRM.
	4.2.1 Negotiation Mode: Establishing Mutual Assent...
	Negotiation States and Transitions
	FIGURE 18. Negotiation: States and Transitions. (R...

	“Race Conditions”
	User Interface Affordances
	Offeror
	Offeree

	4.2.2 Performance Mode: Making Use of an Establish...
	Server
	FIGURE 19. Negotiating a New Relationship.
	E-person
	Server
	Client

	4.3 The User’s View: Examples from the RManage Pro...
	4.3.1 User Interface Affordances for General Users...
	Identifying Oneself: Network Login
	FIGURE 20. Network Login Interactions.

	Viewing and Manipulating One’s Relationships
	FIGURE 21. Relationship View in RManage.

	Controlling What to Delegate to an Agent: E-Person...
	FIGURE 22. E-person Preferences.

	Controlling Access to One’s Attention: Notifier
	FIGURE 23. Notifier: Uniform View on Events from D...

	Declaring Overrides for Special Cases
	FIGURE 24. Declaring Overrides in RManage/DLITE: D...

	4.3.2 User Interface Affordances for Offerors
	Obtaining a Useful Contract Form
	FIGURE 25. Using Commpact Forms to Make it Easy to...

	Drafting an Offer by Customizing Contract Forms
	FIGURE 26. Customizing and Setting Parameters in a...

	Declaring a Draft an Offer
	FIGURE 27. Sample Contract Offer: FIRM provides a ...

	4.4 Object Interactions: Sample Transaction Scenar...
	4.4.1 Example: Contracting for Privacy
	FIGURE 28. Online Privacy: RManage uses FIRM to al...
	1. Requesting a document from the server, using so...
	2. The server asks the requester’s e-person for th...
	3. The e-person returns a pointer to a commpact th...
	4. Receiving the pointer to the commpact, the serv...
	5. Once it obtained authorization (and validated i...

	FIGURE 29. Transactions Under the Hood: In one of ...
	FIGURE 30. Special Case of Transactions in Case Ob...
	E1. The e-person asks the server to find out the i...
	E2. The server designates relevant offerors.
	N1. It selects an offeror (by the name of Mike in ...
	N2. The e-person receives pointers to relevant off...
	N3. The e-person inspects an offer, and based on i...

	4.4.2 Example: Subscription Contract
	Coverage
	Payment
	FIGURE 31. Payment Interactions in FIRM.

	Discounts and Other Contract Options
	Terms and Conditions with Arbitrary Predicates
	FIGURE 32. Certification: Example.

	4.5 Related Work

	5.0 Conclusion
	The Thesis in this Thesis
	Lessons from the RManage Implementation
	Second-Order Usages
	Outlook
	Appendix: Specification of the FIRM Rights Managem...
	1 Overview 79
	2 The FIRM Common Rights Language Object Model 81
	2. 1 Survey 81
	2. 2 Specification 84

	3 FIRM’s Object Attribute Models 99
	3. 1 Attribute Models in the Stanford Metadata Arc...
	3. 2 Attribute Models as Domain Plug-Ins for FIRM:...
	3. 3 Sample Attribute Models for FIRM Objects 101
	3. 4 Attribute Models and Interoperability of Hete...

	4 Examples of Interface Implementations 103
	4. 1 Example Commpact: A Site Licensing Contract 1...
	4. 2 Example Customization: Adding a Privacy Choic...
	4. 3 Example Promise: A Payment Obligation 104
	4. 4 Example Authorization: Allowing Searching wit...
	4. 5 Client Example: Other Programs (“Agents”) Int...
	4. 6 Interoperability Example: Unix File Rights in...

	1.0 Overview
	FIRM: Two Parts
	Simplicity, Extensibility, and Distribution

	2.0 The FIRM Common Rights Language Object Model
	2.1 Survey
	Basic Objects
	Objects and Types Defined by FIRM
	FIGURE 33. FIRM Object Hierarchy: Objects that are...

	The Access-Control User Dialogue Protocol (AUPD)
	Specification Language

	2.2 Specification
	CItem
	CCollection
	CConstraint
	CFOAM
	CFIRMObject
	CCommpact
	TCommpactStatus
	TFormRef
	TParty
	TPartyRoleName
	CPromise
	TPromiseStatus
	CRight
	CObligation
	CEpers
	TEpersRef
	CHomeProvider
	CCommpactManager

	3.0 FIRM’s Object Attribute Models
	3.1 Attribute Models in the Stanford Metadata Arch...
	3.2 Attribute Models as Domain Plug-Ins for FIRM: ...
	3.3 Sample Attribute Models for FIRM Objects
	3.4 Attribute Models and Interoperability of Heter...

	4.0 Examples of Interface Implementations
	4.1 Example Commpact: A Site Licensing Contract
	4.2 Example Customization: Adding a Privacy Choice...
	4.3 Example Promise: A Payment Obligation
	4.4 Example Authorization: Allowing Searching with...
	4.5 Client Example: Other Programs (“Agents”) Inte...
	4.6 Interoperability Example: Unix File Rights int...

	References
	1.0 Privacy, Copyright, Intellectual Property, Leg...
	1.1 Legal Aspects
	1.1.1 Contract Law
	[1] Gilbert Law Summaries. (1985). Contracts. By E...
	[2] Craswell, R., and A. Schwatz (1994). Foundatio...
	[3] Atiyah, P.S. (1995). An Introduction to the La...
	[4] MacNeil, I.R. (1985). Relational Contract: Wha...
	[5] Whitford, W.C. (1985). Ian MacNeil’s Contribut...
	[6] MacNeil, I.R. (1974). The Many Futures of Cont...
	[7] Barnett, R.E. (1986). A Consent-Theory of Cont...
	[8] Barnett, R.E. (1992). Conflicting Visions: A C...
	[9] Fried, C. (1981). Contract as Promie: A Theory...
	[10] Linzer, P. (1995, eds.). A Contracts Antholog...

	1.1.2 Electronic Contracting
	[11] Baum, M. (1989). Electronic Contracting in th...
	[12] Greguras, F.M., T.A. Golobic, R.A. Mesa, R. D...
	[13] Allen, T., and R. Widdison (1996). Can Comput...
	[14] Wright, B. (1995). The Law of Electronic Comm...

	1.1.3 Copyright
	[15] Goldstein, P. (1994). Copyright’s Highway: Th...
	[16] Greguras, F. (1995). Copyright Clearances and...
	[17] Canadian Copyright Subcommittee (1995). Repor...
	[18] U.S. Government (1995). Intellectual Property...

	1.1.4 Property
	[19] Gilbert Law Summaries (1990). Property. By Du...
	[20] Rose, C.M. (1994). Property and Persuasion: E...
	[21] Radin, M.J. (1993). Reinterpreting Property. ...
	[22] Branscomb, A.W. (1994). Who Owns Information ...
	[23] Perritt, H. (1994). Permission Headers and Co...
	[24] Jensen, M. (1994). Need-Based Intellectual Pr...

	1.1.5 Other
	[25] Rose, Lance (1995). NewLaw: Your Rights in th...
	[26] Nimmer, R., and P. Krauthaus (1992). Informat...
	[27] Reidenberg, Joel (1993). Rules of the Road fo...

	1.2 Business Aspects
	[28] Dyson, Esther (1995). Intellectual Value. Wir...
	[29] McKenna, Regis (1991). Relationship Marketing...
	[30] McKenna, Regis (1997). Real-Time: Preparing f...
	[31] Peppers, Don, and Martha Rogers (1993). The O...
	[32] Mansfield, Nick (1996). Security at Shell Int...
	[33] National Writers Union (1994). Statement of P...
	[34] Moss, N. (1996). Europe’s slow-motion view: H...

	1.3 Economic Aspects
	[35] Bressand, Albert, and Catherine Distler (1995...
	[36] Coase, R.H. (1988). The Firm, the Market, and...
	[37] Coase, R.H. (1990). Institutions, Institution...
	[38] Greif, Avner (1994). Cultural Beliefs and the...
	[39] Greif, Avner (1992). Institutions and Commitm...
	[40] Greif, A., P. Milgrom, and B. Weingast (1992)...
	[41] Milgrom, Paul, and John Roberts (1992). Econo...
	[42] Williamson, O. (1985). The Economic Instituti...
	[43] Williamson, O. (1975). Markets and Hierarchie...
	[44] Williamson, O. (1986). Economic Organization:...
	[45] North, Douglas C. (1990). Institutions, Insti...
	[46] Hardwick, M., D.L. Spooner, T. Rando, and K.C...

	1.4 Enforcement of Informal Constraints
	[47] Ellickson, R. (1986). Of Coase and Cattle: Di...
	[48] Ellickson, R. (199?). Order without Law. Harv...
	[49] Bentham, Jeremy (1787). Panopticon; or, The i...
	[50] Semple, Janet (1993). Bentham’s Prison: A Stu...
	[51] Williams, Monte (1996). Sex offenders law pro...

	1.5 Privacy, Personal Information
	1.5.1 General
	[52] Warren, Samuel, and Louis Brandeis (1890). Th...
	[53] Agre, Phil (1994). Surveillance and Capture: ...
	[54] Burns, R., R. Samarajiva, and R. Mukherjee (1...
	[55] Gandy, O.H., Jr. (1993). The Panoptic Sort: A...
	[56] Goffman, E. (1971). Relations in Public: Micr...
	[57] Goffman, E. (1963). Behavior in Public Places...
	[58] Gottdiener, M. (1985). The Social Production ...
	[59] Jussawalla, M., and C. Chee-Wah (1987). Econo...
	[60] Karnow, Curtis E.A. (1994). The Encrypted Sel...
	[61] Miller, A.R. (1969). Personal Privacy in the ...
	[62] Samarajiva, R. (1994). Electronic Public Spac...
	[63] Stanley, T. (1994). Electronic Communications...
	[64] Turn, R. (1990). Information Privacy Issues f...
	[65] Arms, B. (1994). Key Concepts in the Architec...
	[66] Bellotti, V., and A. Sellen (1993). Design fo...
	[67] Chaum, D. (1992). Achieving Electronic Privac...
	[68] Rotenberg, M. (1993). Communications Privacy:...

	1.5.2 Studies and Guidelines
	[69] OECD (1980). Guidelines Governing the Protect...
	[70] Lawson, Ph., and M. Vallee (1995). Canadians ...
	[71] Ekos Research Associates (1993). Privacy Reve...
	[72] Canadian Standards Association (1995). CSA Mo...
	[73] European Union (1995). Directive of the Europ...
	[74] U.S. Congress (1995). Information Security an...
	[75] U.S. Government (1995). Privacy and the Natio...
	[76] U.S. Congress (1991). Domestic and Internatio...
	[77] Equifax (1990). The Equifax Report on Consume...
	[78] Westin, Alan F. (1991). How the American publ...
	[79] Equifax (1995). The 1995 Equifax-Harris Mid-D...
	[80] Westin, Alan F. (1991). Interpretive Essay. I...
	[81] Garfinkel, Simon (1995). Separating Equifax f...

	1.5.3 Medical Information
	[82] Westin, Alan F. (1976). Computers, Health Rec...
	[83] Medical Records (1996). Report on the US Medi...
	[84] Privacy of Medical Records (1979). Hearings b...
	[85] Legislation to Protect the Privacy of Medical...
	[86] House Committee on Government Operations (198...
	[87] Data Protection, Computers, and Changing Info...
	[88] Health Reform, Health Records, Computers and ...
	[89] Fair Health Information Practices Act of 1994...
	[90] House Committee on Government Operations (199...
	[91] Rindfleisch, T. (1997). Privacy and Security ...

	2.0 Access Control, Rights Management
	2.1 General
	[92] Saltzer, J.D., and M.D. Schroeder (1975). The...
	[93] ERMG (1995). Minutes of the first meeting of ...
	[94] ISO (1989). Security Framework III: Access Co...
	[95] Silberschatz, A., J. Peterson, and P. G. Galv...
	[96] Weber, Robert (1995). Digital Rights Manageme...
	[97] Stefik, M. (1995). Letting loose the light: I...
	[98] Cyberspace Law Center (1997). Accessible at h...
	[99] Stefik, M. (1996). Digital Property Rights: T...

	2.2 Conceptual Models
	[100] Lampson, B.W. (1971). Protection. 5th Prince...
	[101] Harrison, M.H., W.L. Ruzzo, and J.D. Ullman ...
	[102] Marc, D. (1993). A Petri Net Representation ...
	[103] Minsky, N. (1977). Cooperative authorization...
	[104] Minsky, N. (1978). An operation-control sche...
	[105] Minsky, N.H., and A.D. Lockman (1985). Ensur...
	[106] Sandhu, R.S. (1989). Transformation of Acces...
	[107] Sandhu, R.S., and G.S. Suri (1992). Non-Mono...
	[108] Sandhu, R.S. (1992). The Typed Access Matric...
	[109] Sandhu, R.S. (1988). The Schematic Protectio...
	[110] Sandhu, R.S., and M.E. Share (1986). Some Ow...
	[111] Thomas, R.K., and R.S. Sandhu (1993). Toward...
	[112] Thomas, R.K., and R.S. Sandhu (1994). Concep...
	[113] Moffett, J.D., and M. S. Sloman (1991). Cont...
	[114] Strack, H., and K. Lam (1993). Context-depen...
	[115] Abrams, M.D., and M.V. Joyce (1993). Extendi...
	[116] Abrams, M.D., and I.M. Olsen (1992). Rule-ba...

	2.3 Authorization Languages
	[117] Stefik, M. (1996). The Digital Property Righ...
	[118] Upthegrove, Luella, and T. Roberts (1994). I...
	[119] CODASYL Data Description Language Committee ...
	[120] W3O (1994). WWW Access Authorization. URL: h...
	[121] Koster, M. (1994). A Standard for Robot Excl...
	[122] Morris, J. H. (1973). Protection in Programm...
	[123] Kieburtz, R. B., and A. Silberschatz (1983)....
	[124] Abadi, M., M. Burrows, and B. Lampson (1993)...
	[125] Hoffmann, L.J. (1971). The Formulary Model f...
	[126] La Padula, L. (1990). Formal Modeling in a G...
	[127] Chrysanthis, P.K., and K. Ramamritham (1990)...
	[128] Sandhu, R.S. (1988). Transaction Control Exp...
	[129] Woo, Th., and S. Lam (1992). Authorization i...

	2.4 Implementation Models
	[130] Hauser, R. (1993). Does Licensing Require Ne...
	[131] Kahan, J. (1994). Un Nouveau Modèle d’Autori...
	[132] Zurko, M.E. (1992). Attribute Support for In...

	2.5 Revocation
	[133] Redell, D. (1974). Naming and Protection in ...
	[134] Ekanadham, K., and A. J. Bernstein (1979). C...

	2.6 Systems
	[135] Blaze, M. et al. (1996). PolicyMaker. Web: f...
	[136] Blaze, M., J. Feigenbaum, and J. Lacy (1996)...
	[137] Corbato, F. J., and V. A. Vyssotsky (1965). ...
	[138] Levin, R., E. S. Cohen, W. M. Corwin, F. J. ...
	[139] Cohen, E. S., and D. Jefferson (1975). Prote...
	[140] Needham, R. M., and R. D. H. Walker (1977). ...
	[141] Cox, B., J.D. Tygar, and M. Sirbu (1995). Ne...
	[142] Chu, Y.-H., J. Feigenbaum, B. LaMacchia, P. ...
	[143] Gladney, H,M. (1996). Digital Intellectual P...
	[144] Gladney, H.M. (1992). Access Control for Lar...
	[145] InterTrust (1995). InterTrust Electronic Rig...
	[146] Erickson, J.S. (1994). Electronic Copyright ...
	[147] Rivest, R., and B. Lampson (1996). SDSI—A Si...
	[148] Rotenberg, L. (1973). Making computers keep ...
	[149] Ritchie, D. M., and K. Thompson (1978). The ...
	[150] Kahn, R.E. (1994). Deposit, Registration, an...
	[151] Library of Congress (1996). The CORDS copyri...

	2.7 Watermarking
	[152] Low, Maxemchuk, Brassil, O’Gorman (1993). Do...
	[153] Choudhury, Maxemchuk, Paul, Schulzrinne (199...
	[154] Brassil, Low, Maxemchuk & O’Gorman (1994). E...

	3.0 Electronic Contracting, EDI
	[155] EDI (1979). ANSI ASC X12. ISO/IEC JTC1/SWG-E...
	[156] EDIFACT (1995). UN/EDIFACT Standards (EDI fo...
	[157] UN/ECE (1994). UN/EDIFACT Message Design Gui...
	[158] UN/ECE (1994). General Introduction to UNSM ...
	[159] Open-EDI (1994). Open-EDI Conceptual Model. ...
	[160] Hill, N., and D. Ferguson (1995). Electronic...
	[161] Nelson, C. (1995). The ABC of EDI. EDI Aware...
	[162] UN/ECE (1995). Electronic Data Interchange S...

	4.0 Security, Integrity, and Cryptography
	4.1 General
	[163] Anderson, R. (1995). Computer and Communicat...
	[164] Amoroso, E. (1994). Fundamentals of Computer...
	[165] Fernandez, E., R. Summers, and C. Wood (1981...
	[166] Kaufman, C., R. Perlman, and M. Speciner (19...
	[167] Anderson, J. P. (1972). Computer Security Te...
	[168] Anderson, R.J. (1993). Why Cryptosystems Fai...
	[169] Lampson, B.W. (1973). A Note on the Confinem...
	[170] Smith, M. (1994). A People Problem. Internat...
	[171] Schneier, B. (1994). Applied Cryptography: P...

	4.2 Authentication
	[172] Birrel, A., B. Lampson, R. Needham, and M. S...
	[173] Wobber, E., M. Abadi, M. Burrows, and B. Lam...
	[174] Dennis, J., and E. van Horn (1966). Programm...
	[175] Yahalom, R., B. Klein, and Th. Beth (1993). ...

	4.3 Security and Integrity
	[176] Denning, D. (1993). A New Paradigm for Trust...
	[177] Department of Defense (1985). Trusted Comput...
	[178] Dobson, John (1993). New Security Paradigms:...
	[179] LaPadula, L.J., and J.G. Williams (1991). To...
	[180] McCullough, D. (1987). Specification for Mul...
	[181] Sandhu, R.S. (1990). On the Five Definitions...
	[182] Minsky, N., and V. Ungureano (1997). Unified...
	[183] Minsky, N., and V. Ungureano (1997). A Frame...
	[184] Wiederhold, G., M. Bilello, V. Sarathy, and ...
	[185] Wiederhold, G., Michel B., V. Sarathy, and X...
	[186] Qian, X., G. Wiederhold, M. Bilello, A. Chav...

	4.4 Specific Security Policies and Models
	[187] Bell, D.E., and L.J. LaPadula (1976). Secure...
	[188] Biba (1977). Integrity Considerations for Se...
	[189] Brewer, D., and M. Nash (1989). The Chinese ...
	[190] Clark, D.D., and D.R. Wilson (1987). A Compa...
	[191] Dobson, J.E., and J.A.McDermid (1989). Secur...
	[192] Goguen, J.A., and J. Meseguer (1982). Securi...
	[193] McLean, J. (1990). Security Models and Infor...
	[194] Sandhu, R.S. (1990). Separation of Duties in...
	[195] Sterne, D. (1991). On the Buzzword “Security...
	[196] Sutherland, D. (1986). A Model of Informatio...
	[197] Williams, J. (1993). A Shift in Security Mod...

	4.5 Cryptography
	[198] Hoffman, L., F. Ali, S. Heckler, and A. Huyb...
	[199] Diffie, W., and M. E. Hellman (1976). New Di...
	[200] Rivest, R. L., A. Shamir, and L. Adleman (19...
	[201] Chaum, D. (1985). Showing Credentials withou...

	5.0 Standards Process Documents
	5.1 IETF Standards Track RFCs
	[202] Linn, J. (1993). Privacy Enhancement for Int...
	[203] Kent, S. (1993). Privacy Enhancement for Int...
	[204] Kalinski, B. (1993). PEM IV: Key Certificati...
	[205] Kaufman, C. (1993). DASS - Distributed Authe...
	[206] Linn, J. (1993). Generic Security Service Ap...
	[207] Kohl, J., and C. Neuman (1993). The Kerberos...

	5.2 IETF Informational RFCs
	[208] Braden, R., D. Clark, S. Crocker, C. Huitema...
	[209] Haller, N., and R. Atkinson (1994). On Inter...

	5.3 CCITT Standards
	[210] CCITT X.509 (1988). Recommendation X.509: Th...
	[211] CCITT X.500 (1988). Recommendation X.500: Th...
	[212] CCITT X.501 (1988). Recommendation X.501: Th...
	[213] CCITT X.208 (1988). Recommendation X.208. Ab...
	[214] CCITT X.209 (1988). Recommendation X.209. Ba...

	5.4 RSA Laboratories Standards
	[215] RSA Laboratories (1993). PKCS #6: Extended-C...
	[216] RSA Laboratories (1993). PKCS #9: Selected A...
	[217] RSA Laboratories (1993). PKCS #10:Certificat...
	[218] RSA Laboratories (1993). PKCS Standard #1-#1...
	5.4.1 W3C Projects/Submissions
	[219] P3P (1997). Platform for Privacy Preferences...
	[220] OPS (1997). Open Profiling Standard. Firefly...

	5.5 Personal Information/Directories
	[221] Versit (1995). Personal Data Interchange Spe...
	[222] Yeong, W., T. Howes, S. Kille (1995). Lightw...

	5.6 Security and Payment
	[223] Hickman, K. (1995). Communications Secure So...
	[224] Rescorla. E., and A. Schiffman (1994). Secur...
	[225] Ankney, R. (1996). Enhanced Management Contr...
	[226] SET (1997). SET: Secure Electronic Transacti...
	[227] OTP (1997). Open Trading Protocol. Mondex. W...
	[228] Intel (1997). Common Data Security Architect...
	[229] Microsoft (1997). Windows Security Support P...
	[230] Sun (1997). Java Security Toolkit. Web: http...
	[231] Authenticode (1997). Microsoft’s Authenticod...
	[232] Netscape (1997). Signed Applets. Web: http:/...

	6.0 Miscellaneous
	6.1 Distributed Logic Programming
	[233] Wolfson, O., and A. Silberschatz (1988). Dis...
	[234] Saraswat, V., K. Kahn, and J. Levy (1990). J...
	[235] Smith, R.G. (1980). The Contract Net Protoco...

	6.2 Logic and Law
	[236] Reiter, R. (1980). A Logic for Default Reaso...
	[237] McCarty, L. Thorne (1994). Modalities over A...

	6.3 Speech Act Theory, Language/Action
	[238] Searle, John (1969). Speech Acts. Cambridge ...
	[239] Austin, J.L. (1962). How to Do Things With W...
	[240] Winograd, T., and F. Flores (1996). Understa...

	6.4 Stanford InfoBus, Prototype Development
	[241] Object Management Group (1995). Object Prope...
	[242] Object Management Group (1993). The Common O...
	[243] Mac (1993). Macintosh Human Interface Guidel...
	[244] Paepcke, A. (1996). The Stanford Digital Lib...
	[245] Hassan, S. (1996). JYLU—an ILU run-time kern...
	[246] Janssen, B. et al. (1997). ILU: Inter-Langua...
	[247] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[248] Paepcke, A., S. Cousins, H. Garcia-Molina, S...
	[249] Cousins, S. (1997). DLITE: The Digital Libra...
	[250] Cousins, S, S.. Hassan, A. Paepcke, and T. W...
	[251] Ketchpel, S., et al. (1996). U-PAI: The Stan...
	[252] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[253] Röscheisen, M. et al. (1997). The Stanford I...
	[254] Paepcke, A., S. Cousins, H. Garcia-Molina, S...
	[255] Baldonado, M. (1997). SenseMaker: An Informa...
	[256] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[257] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[258] Chang, C.-C., K., H. Garcia-Molina, and Andr...
	[259] Cousins, S., A. Paepcke, T. Winograd, E.A. B...
	[260] Gravano, L., K. Chen-Chuan Chang, H. Garcia-...
	[261] Gravano, L., H. Garcia-Molina, and A. Tomasi...
	[262] Gravano, L., K. Chen-Chuan Chang, Hector Gar...
	[263] Paepcke, A. (1996). InterBib. Cf. http://www...
	[264] Balabanovic, M. and Y. Shoham (1997). Combin...
	[265] Shivakumar, N., and Hector Garcia-Molina (19...
	[266] USMARC (1994). Format for Bibliographic Data...
	[267] GILS (1996). Government Information Locator ...
	[268] Hardy D.R., M.F. Schwartz, and D. Wessels (1...
	[269] Lagoze, C., and D. Ely (1995). Implementatio...
	[270] Lagoze, C., and C.A. Lynch and Ron Daniel Jr...
	[271] Z3950 (1995). Information Retrieval: Applica...
	[272] Borenstein, N., and N. Freed (1993). MIME: M...

	6.5 Selected Prior Publications
	[273] Röscheisen, M. and T. Winograd (1996). A Net...
	[274] Röscheisen, M., and T. Winograd (1997). The ...
	[275] Röscheisen, M. and T. Winograd (1996). A Com...
	[276] Röscheisen, M. (1996). Beyond Privacy as Ano...
	[277] Röscheisen, M. (1995). General Certificates....
	[278] Röscheisen, M., C. Mogensen, and T. Winograd...
	[279] Kamiya, K., M. Röscheisen, and T. Winograd (...

