
A NETWORK-CENTRIC DESIGN FOR

RELATIONSHIP-BASED RIGHTS MANAGEMENT

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

R. Martin Röscheisen

December 1997

 Copyright by R. Martin Röscheisen 1998

All Rights Reserved
ii

I certify that I have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Terry Winograd (Principal Advisor)
Computer Science Department
Stanford University

I certify that I have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Gio Wiederhold
Computer Science Department
Stanford University

I certify that I have read this dissertation and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Carey Heckman
Stanford Law School

Approved for the University Committee on Graduate Studies:

iii

Note: This document is a reformatted version of the thesis submitted to Stanford.

Martin Roscheisen
rmr@cs.stanford.edu

Gates Building 396
Stanford University
Stanford, CA 94305
iv

ation
te and
 and

FIRM,
enta-
an-

tion of

ener-
es and
shared
A NETWORK-CENTRIC DESIGN FOR
RELATIONSHIP-BASED RIGHTS MANAGEMENT

Martin Röscheisen
Computer Science Department

Stanford University

Networked environments such as the Internet provide a new platform for communic
and information access. In this thesis, we address the question of how to articula
enforce boundaries of control on top of this platform, while enabling collaboration
sharing in a peer-to-peer environment.

We develop the concepts and technologies for a new Internet service layer, called
that enables structured rights/relationship management. Using a prototype implem
tion, RManage, we show how FIRM makes it possible to unify rights/relationship m
agement from a user-centered perspective and to support full end-to-end integra
shared control state in network services and users’ client applications.

We present a network-centric architecture for managing control information, which g
alizes previous, client/server-based models to a peer-to-peer environment. Principl
concepts from contract law are used to identify a generic way of representing the
structure of different kinds of relationships.
v

ips”;
trol
time,
econd

ovative

igital
 testbed

 Ketch-
contin-

ments

t of our

tween
he rela-

arts in
ichel
lrich
 Stefik,

viron-
a ques-
ACKNOWLEDGEMENTS

Ten years ago, Martin Kay agreed to invite me to spend a couple of months with him at Xerox PARC, in the
natural language processing group led at the time by Kris Halvorsen. I consider the completion of this thesis
in many regards as an outgrowth of this time that I spent at PARC in 1987/88 right after coming out of high
school, as well as during subsequent summers as part of their excellent summer internship program.

Once at Stanford, my Ph.D. advisor Terry Winograd enabled me to follow my interest in exploring the possi-
bilities of the new Internet/Web medium that was just emerging. In the first two years, this led to two differ-
ent systems for Web-based collaboration: a system for sharing annotations on arbitrary Web pages, called
ComMentor (with Christian Mogensen; http://pcd.stanford.edu/ComMentor) and a system for collection-
based collaboration, called Grassroots (with Kenichi Kamiya; http://pcd.stanford.edu/Grassroots).

When the time came to choose a subject for my Ph.D. thesis, Terry suggested that I reexamine the classical
topic of access control. Terry anticipated that this issue would emerge as one of the key questions to be
addressed in order to allow the new medium to be able to live up to its true potential. We quickly identified
that issues such as privacy and access control are more about relationships than about information, and that
we need to think about mechanisms to support relationship management. Now that I have completed more
than two years of research and prototyping about how to make such an approach work, it turns out that oth-
ers agree with the basic assumptions that have guided this work. Kevin Kelly is quoted in a recent Time
cover story as saying that “We think that privacy is about information, but it’s not—it’s about relationsh
Esther Dyson devotes an entire issue of Release 1.0 to the question of how one can deal with access con
and privacy in the online domain; etc. I wish Terry would again give me two year’s worth of lead
equivalent to about a decade in Internet time—and this time I probably would not use it to get a s
Ph.D. Terry also helped shape this thesis significantly through weekly meetings and through his inn
teaching program in user-centered software design.

I am further indebted to Hector Garcia-Molina for coalescing a working group around the Stanford D
Libraries Project, and to Andreas Paepcke, Scott Hassan and Alan Steremberg for developing a
infrastructure that greatly facilitated my prototyping work.

My fellow Ph.D. students Michelle Baldonado, Steve Cousins, Frankie James, Luis Gravano, Steven
pel and Larry Page, as well as the other members of the Stanford Digital Libraries Project, provided
ual feedback from the early concept stage to the final presentation of this thesis.

As members of my reading committee, Gio Wiederhold and Carey Heckman provided numerous com
about the thesis; this improved the final presentation significantly.

Tim Stanley has helped me explore the legal and economic issues related to my thesis. A side effec
discussions is FindLaw (http://www.findlaw.com).

In the context of two seminars, Paul Goldstein helped me crystallize my thinking about the relation be
property systems (such as copyright) and contracts, which encouraged me ultimately to focus on t
tional approach to rights management that characterizes this thesis.

Over the past years, I have received valuable comments contributing to my thesis (given specific p
early versions only) from a number of individuals outside of Stanford, including Mark Ackerman, M
Bilello, Victoria Bellotti, Lorrie Cranor, Jim Davis, Henry Gladney, Ben Gross, Johannes Klein, U
Kohl, Carl Lagoze, Susan Owicki, Paul Resnick, Jerry Saltzer, Pamela Samuelson, Dave Solo, Mark
Hal Varian, Dan Wallach, Michael Wellman, Mary-Ellen Zurko.

Last but not least, I am grateful to my parents Margret and Fritz for providing a unique formative en
ment and support, and to Andrea—not only for being the first environmental geochemist who asked
tion in a computer science thesis defense that led to significant redesign and rewriting (Chapter 4).

Martin Röscheisen
Palo Alto, November 1997
vi

vii

Table of Contents

1 TOWARDS FRICTIONLESS DIGITAL RIGHTS/RELATIONSHIP MANAGEMENT 1
1. 1 The Problem: Rights/Relationship Management in Networked Environments 1
1. 2 Current Solutions: Idiosyncratic, Not User-Centered . 2
1. 3 Unifying Rights Management in a User-Centered Way: Example . 2
1. 4 Defining a Rights Management Service Layer . 4
1. 5 Overall Design Assumptions . 6
1. 6 Design Process . 8
1. 7 Taking a Relationship-Based Approach . 8
1. 8 Design Space . 11
1. 9 Design Goals . 12
1. 10 The Solution: Outline and Summary . 12

2 A CONCEPTUAL MODEL OF RELATIONSHIP MANAGEMENT . 14
2. 1 Understanding Agreements/Contracts . 14
2. 2 The Commpact Model . 15
2. 3 Related Work . 18
2. 4 Enforcement . 18

3 A NETWORK-CENTRIC ARCHITECTURE FOR MANAGING CONTROL INFORMATION. . . 27
3. 1 Three Ways of Organizing Control Information . 27
3. 2 Three Ways of Embedding Control Objects . 30
3. 3 Understanding Conventional Control Architectures . 31
3. 4 From Server-Based and Client-Based Control to Network-Centric Control 34
3. 5 Security Implications . 37
3. 6 Linking from Content Objects to Rights-Management Information . 37
3. 7 Related Architectures . 38

4 FIRM: AN INFRASTRUCTURE FOR DIGITAL RELATIONSHIP MANAGEMENT. 40
4. 1 Object Reifications . 40

E-Persons 41 – Home Providers 43 – Commpacts 44 – Commpact Managers 47 –
Commpact Forms 47 – Forms Providers 49

4. 2 Transaction Model . 49
4. 3 The User’s View: Examples from the RManage Prototype . 57

General Users 57 – Offerors 63
4. 4 Object Interactions: Sample Transaction Scenarios . 66

User Profiling Contract 66 – Subscription Contract 69
4. 5 Related Work . 72

5 CONCLUSION . 75

APPENDIX: SPECIFICATION OF FIRM. 79

1 OVERVIEW. 79

2 THE FIRM COMMON RIGHTS LANGUAGE OBJECT MODEL. 81

3 FIRM’ S OBJECT ATTRIBUTE MODELS . 99

4 EXAMPLES OF INTERFACE IMPLEMENTATIONS . 103

REFERENCES . 107

List of Illustrations

1. FIRM defines a rights management service layer on top of other Internet protocols. 5

2. FIRM enables a relationship-based approach to network security. 9

3. Design Space: Systems designed for different types of relationships.. 11

4. Negotiation: States and Transitions.. 17

5. Anchor Points for Enforcement.. 19

6. ISO Access Control Model: Action-Interrupt Control. . 21

7. The Generalized Enforcement Framework . 26

8. Lampson Access Control Matrix.. 28

9. Realizations of the Lampson Matrix (Revised).. 30

10. Authorization Interactions: Decision Facility Requests Attributes.. 31

11. CallerID Example: Simple Set of Phone-Access Rules. . 33

12. CallerID Example: ‘A calling B’ Leads to Complex Negotiation. . 33

13. Network-Centric Control Architecture. 35

14. CallerID Example: ‘A calling B’ with commpacts. 36

15. FIRM Object Reifications . 41

16. Commpacts as “Smart Contract” Objects. 45

17. Transactions in FIRM. 49

18. Negotiation: States and Transitions (Repeated) . 50

19. Negotiating a New Relationship. 55

20. Network Login Interactions. . 58

21. Relationship View in RManage. . 59

22. E-person Preferences.. 61

23. Notifier: Uniform View on Events from Different Relationships.. 62

24. Declaring Overrides in RManage/DLITE. 63

25. Using Commpact Forms to Offer New Relationships . 64

26. Customizing and Setting Parameters in a Contract Draft. 65

27. Sample Contract Offer . 66

28. Online Privacy Negotiation . 67

29. Transactions Under the Hood. 68

30. Special Case of Transactions . 68

31. Payment Interactions in FIRM. . 69

32. Certification: Example. . 71

33. FIRM Object Hierarchy . 83

viii

Towards Frictionless Digital Rights/Relationship Management

 ser-
eality
re.”

here,
iculate
tion
tion-

 have
ts, that
, etc.
 in a

 up its
nd to
chieve
ntered
 expe-
ile the
tion,
r rela-

erson
dress,
loyee
ualify
ls), a
tion-

n help
orked

nother
bout

eal
an-

d ser-
1.0 Towards Frictionless Digital Rights/Relationship Management

1.1 The Problem: Rights/Relationship Management in Networked Environments

Over the past few years, the Internet has evolved from an experimental data network
used by a fairly narrow community of researchers to a general medium with a good
potential for mainstream usage. Every moment now, more of the basic building
blocks—from network routers and connections to the different software layers and
vices—are being put into place, creating an infrastructure that increasingly gives r
to metaphors such as “information at your fingertips” and “contact anyone anywhe

The prospect of having a platform where anyone is able to get information anyw
anytime, creates the necessity to address the fundamental question of how to art
and enforce boundaries of control on top of this platform, while enabling collabora
and sharing in a peer-to-peer environment. We call this question one of “rights/rela
ship management.”

Note that the efficiencies of the online medium do not change the facts that people
specific privacy preferences, that companies need to control access to their asse
authors might want to get compensated or at least know who is in their audience
However, today’s Internet infrastructure supports such boundaries of control only
very limited way.

As an example, consider that currently every registration-based Web service puts
own user interface (in the form of a set of Web pages) to allow people to register a
use their registration to access certain content areas. All these interfaces try to a
basically one and the same purpose, but they are all different and—from a user-ce
perspective—offer heterogeneity that contributes to a less satisfactory overall user
rience. There is also an issue of a lack of end-to-end integration. For instance, wh
provider’s membership database will be well integrated with the registration func
users have no corresponding “client”-side integration that helps them manage thei
tionships with the providers of the various network services.

As another example, consider that what a Web server currently knows about the p
behind a browser is limited to a few general attributes, such as the browser’s IP ad
the type of software used, etc.; but it is not clear whether the person is an emp
(who might be authorized to access company documents), a student (who might q
for a student discount), a US citizen (who might be subject to certain export contro
subscriber with a subscription contract, or someone else with different kinds of rela
ships.

This thesis is about a concrete design that defines the kind of technology that ca
us address this issue of rights/relationship management in heterogeneous, netw
environments. It suggests how the current infrastructure can be augmented by a
software service layer—one for digital rights management—that allows us to talk a
such high-level objects as “contract,” “obligation,” “right,” and “person”—and to d
with the question of how to provide better end-to-end integration for relationship m
agement applications and how to lower the usability threshold for access-controlle
vices.
A Network-Centric Design for Relationship-Based Rights Management 1

Towards Frictionless Digital Rights/Relationship Management

ient-

tion
along

s an
ely
ed a
ntent

” that
aker,

 often
 eas-
gra-

rface,
pec-
ssi-
ntrol
mple

anage
terface
ervice
for
” but-
e sub-
 a way

mber-
ective,
1.2 Current Solutions: Idiosyncratic, Not User-Centered

There already exist several mechanisms implementing specific forms of digital rights
management, including mechanisms to control access to files and network services,
mechanisms to limit the use of information, mechanisms to select anonymity or pseud-
onymity, etc. For a survey of a recent set of commercial rights-management solutions,
see [96] and [98].

Conceptually, we can think of these mechanisms as falling into three classes, depending
on whether they predominantly manage control information in a “server-based,” “cl
based,” or “third-party based” way:

• Server-based control: This is the traditional model, widely employed for access con-
trol in file systems, Web servers, security firewalls, etc. The “access” of informa
is protected by having a server check the control information that it manages
with the services/information that it provides.

• Client-based control: Client-based control has been in use for many years. For exam-
ple, “demo copies” of commercial software often have usage limitations (such a
expiration date or limited functionality) built into the code, which can then be fre
distributed. More recently, the work on trusted clients by Stefik [97] has produc
far more general version of such client-based control for use in consumer co
commerce.

• Third-party based control: The Copyright Clearance Center is an example of control
that is managed by third parties. Other examples include the “license servers
are now routine purchase options for commercial software such as FrameM
PhotoShop, etc.

The overall picture is that we have a disparate set of special-purpose solutions,
implemented in a proprietary way. In networked environments, such heterogeneity
ily translates into interoperability problems and a lack of symmetric end-to-end inte
tion. Furthermore, by virtue of the fact that each system has a different control inte
we do not provide users with an interaction model that is uniform from their pers
tive. Finally, the lack of a common platform also makes it more difficult, if not impo
ble in certain cases, for application developers to introduce new kinds of co
behaviors for the services that they want to make available. The following exa
illustrates some of these points in more detail.

1.3 Unifying Rights Management in a User-Centered Way: Example

Consider the publisher of an online newsletter who puts a system in place to m
subscribers and give them preferential access to certain content areas. The user in
for such a system would typically consist of a set of Web pages designed by the s
provider. In such an interface, users find a way to fill out HTML forms with fields
their name, address and payment information, and hit some kind of a “subscribe
ton, that will then trigger certain actions at the server side to add the person to th
scriber database, schedule invoices, etc. In other words, the system is designed in
that integrates well with the service provider’s backend infrastructure, such as me
ship databases and payment processing applications. From the provider’s persp
this is an obvious approach to take.
A Network-Centric Design for Relationship-Based Rights Management 2

Towards Frictionless Digital Rights/Relationship Management

ship
 sup-
ich is
sym-
ber of

useful
m to
easy

erm
ies that
lica-

current
that
s. For
nship
 a toll-
s, the

y

s this

niform
e had
However, from a user-centered perspective, we are exposed to lots of different inter-
faces for the various services that all try to achieve basically the same purpose. The cur-
rent situation on the Web is essentially like a corresponding (theoretical) situation for
personal computer applications in which every developer of a PC application designs
their own way of scrolling a window and of copying and pasting text segments. This can
easily lead to confusion. Note that even if two Web registration interfaces look and
behave similarly, we cannot be sure whether their underlying terms and conditions are
similar. For instance, two identical interfaces for different services can easily have
widely differing privacy policies regarding the use of user-provided personal informa-
tion. There is in general no structured way by which one can get hold of such additional
properties.

A second set of issues relates to the asymmetric way in which integration is provided
with each of the participants’ systems. Interestingly, while a provider’s member
database will be well integrated with the subscription function, there is almost no
port available for having corresponding integration available on the user’s side, wh
also called the “client” side. Given that a contract/relationship is fundamentally a
metric arrangement, one would expect that there ought to be about an equal num
useful actions that can be triggered on the client side. For instance, it would be
for subscribers to list their current subscriptions in a contract portfolio, to allow the
schedule how to live up to a payment obligation from this listing, to provide an
way to examine the state of a relationship, to terminate it, etc.

In fact, the program by which users participate is called a “client” application—a t
that does not necessarily suggest a design with the kinds of peer-to-peer symmetr
characterizes many Web-based interactions today. We still call them “client app
tions” because client-server has been the traditional metaphor and because the
infrastructure is limited in a way that does not allow full end-to-end integration
would give these client applications a richer and more structured set of affordance
example, consider that while a publisher can easily manage a subscription relatio
by accessing a membership database directly, users would probably have to use
free phone number for requests to cancel the subscription; for invoicing purpose
postal system probably would have to be used; etc.

To summarize, a currently fairly typical solution to Web services is characterized b

• low internal integration: There are disparate interaction channels to manage one and
the same relationship;

• low external integration: An authorized outside party (e.g., the subscriber with a cli-
ent application) has no structured way to access information about the state of a rela-
tionship other than through a (non-programmatic) Web interface or through one of
the Internet-external channels; and

• user interface heterogeneity: Every content site that offers subscriptions has its own
interface to accomplish one and the same type of transaction. In many cases, such
heterogeneity will signify inconsistency. For instance, at some sites, clicking on
“subscribe” signifies the actual acceptance of a legal agreement, while at other
only leads to another dialogue that then describes the actual offer.

In this thesis, we propose a solution to these issues that makes user interfaces u
from a user-centered perspective and that enables full end-to-end integration. If w
A Network-Centric Design for Relationship-Based Rights Management 3

Towards Frictionless Digital Rights/Relationship Management

age-
h as

gests a
rfaces
ssoci-
dards
se for
tform
 their

er sys-

ed
pers
d by
her
 layer
ermi-
s with
turning

e with
ld eas-
s for
appli-
iffer-
ent
tered
tc., to
n that
hat we
d on

inter-

sary
at is
 for
to deal only with a small number of user interface providers, we could use a proxy-
based solution with a proxy for each of these providers, which would then map the idio-
syncratic interaction models into a more uniform framework. However, given the fact
that there is a very large number of interface developers, this is not a realistic approach.
The approach to take then will have to be based on augmenting the Internet infrastruc-
ture with an appropriate network service layer and by making available toolkits that
make it easy for application developers to follow certain guidelines.

In other words, by having an infrastructure that “opens up” proprietary rights-man
ment solutions, we obtain a structured way of talking about control information, suc
access rights and contracts, across different applications and services. This sug
shared format for rights-management interactions that can propel better user inte
in the same way that the Macintosh Human Interface Guidelines [243] and the a
ated toolbox that came with the Macintosh OS were able to enforce interface stan
across applications from different developers, and made the Macintosh easy to u
less sophisticated computer users. For instance, by introducing a development pla
that made it easy for developers to standardize the look and feel of scroll bars in
applications, the Macintosh was able to provide a better user experience than oth
tems.

A toolkit in conjunction with the APIs/protocols of the FIRM service layer propos
and prototyped in this thesis would have a number of benefits: Application develo
could rapidly implement the desired control behavior by using components provide
the rights-management toolkit. Moreover, the resulting solution will have hig
degrees of internal and external integration. Since the rights management service
provides for standard types of affordances with respect to contracts (accepting, t
nating, etc.), it is easier to provide a more comprehensive interface that also deal
cases that are otherwise often left out, such as means for cancelling a contract, re
goods, etc.

Furthermore, interested third parties can make use of the service layer to interfac
the appropriate rights-management structures directly. For example, someone cou
ily develop a next-generation Quicken-type application that provides affordance
managing contracts and the rights and obligations that result from them. Such an
cation could provide an interface for cancelling contracts that one signed up with d
ent providers. It could also directly deal with electronic invoices from differ
contracts. Ultimately, this enables us to shift the perspective from provider-cen
user interactions, where users interact with Web forms put up by every publisher, e
a user-centered view, where users interact with a relationship manager applicatio
has direct access to the relationship held with a publisher. The RManage system t
shall describe in this thesis is a prototype “relationship manager” application base
our FIRM rights management service layer, that gives a first glimpse of such an
face.

1.4 Defining a Rights Management Service Layer

Architectually, we achieve the kind of unification of services and protocols neces
for networked rights management by defining a network software service layer th
built on top of other network protocols to provide object definitions and services
managing rights and obligations.
A Network-Centric Design for Relationship-Based Rights Management 4

Towards Frictionless Digital Rights/Relationship Management

n-
or the
ific
rn of

nford
cols
ford

 pro-
itec-

e [242]
tions,
o way
; it is
se the
Three Classes of Usages

Objects provided by a rights management service layer essentially have three major
classes of usage:

• Authorizing/Controlling Actions: There is a way to determine whether a particular
action is acceptable or required under a given set of rights and obligations. It is pos-
sible to execute a generic set of transactions on each object, such as fulfilling an obli-
gation.

• Inspection by Humans: There is an interface through which people can obtain infor-
mation about the state of a certain rights relationship, the nature of outstanding obli-
gations, the terms and conditions for contingency cases such as return of goods, etc.
Furthermore, there is a clear mapping between computational objects and their inter-
pretation within a legal context.

• Use by “Agents”: Certain client programs (“agents”) can interface with rights-ma
agement objects in a structured way. For example, a program might search f
“best” offer for something by interfacing with the state information that spec
rights objects make available, such as terms and conditions about pricing, retu
goods, etc.

Our Solution: The FIRM Rights Management Service Layer

The rights management service layer proposed in this thesis is called the Sta
Framework for Interoperable Rights Management (FIRM). FIRM is one of the proto
of the Stanford “Infobus,” a prototype infrastructure developed as part of the Stan
Digital Libraries Project that is designed to provide a way of extending the Internet
tocols to higher-level information management protocol. For a survey of the arch
ture and the five service layers of the Stanford Infobus, cf. [253].

FIGURE 1. FIRM defines a rights management service layer on top of other Internet protocols.

FIRM makes use of a number of other services such as a standard attribute servic
as well as services provided by the Stanford Infobus for managing items and collec
and for managing metadata. The FIRM architecture, however, is general and in n
dependent on the specific protocols implemented as part of the Stanford Infobus
also possible to use FIRM as an add-on to conventional Web servers, e.g., to u

Rights Management (FIRM)
Payment (SET, …) Trust Management Security
Object Transfer (HTTP, IIOP/CORBA, DCOM)
Data Communication (IP with TCP, UDP, RPC)

),50�HQDEOHG
6HUYLFHV

-DYD
FOLHQW

:HE�EURZVHU

2EMHFWV�IRU�3HUVRQV��
&RQWUDFWV��2EOLJDWLRQV�
������������������«

),50�UHDG\
&OLHQWV

1HWZRUN
6HUYLFH�
/D\HUV
A Network-Centric Design for Relationship-Based Rights Management 5

Towards Frictionless Digital Rights/Relationship Management

type,

 a set
f the
 dis-
ser-

f the

efer-
xecute

232];

as well
ement
, spe-
have
tation

ovides
ger”
tate of
 peo-
ct.

rrent
t, mul-

rev-
 Local
ces

 and
vable
tware
stab-

s often
W3C’s P3P privacy vocabulary [219] instead of the one used in the Stanford proto
etc.

Related Service Layers: Security and Trust Management

Rights management is a higher-level service layer that builds on the availability of
of other network layers. In addition to the basic network layers in the capacity o
Internet Protocol (IP), the basic Web object transfer protocol (HTTP), and various
tributed object protocols (IIOP/CORBA, DCOM), this includes layers that provide
vices for security and digital trust management:

• Security is concerned with the problem of assuring the authenticity and integrity of
information. Fortunately, an array of protocols are now widely available, such as
security service layers from Intel [223], Microsoft [224] as well as security standards
and security toolkits, such as SSL [228], S-HTTP [229] and the Java security library
[230]. At the security level, we can therefore use best-of-a-kind solutions “out o
box” for our purposes.

• Trust management addresses the question of how to represent people’s trust pr
ences about issues such as whether a piece of code (an “applet”) is trusted to e
on a certain machine. Examples include AuthentiCode [231], signed applets [
PolicyMaker [135], Referee [142].

Our approach to rights management keeps both security and trust management,
as a whole set of more basic services, orthogonal to the services of a rights manag
layer. This keeps the rights management service layer “thin” and simple. Of course
cific implementations will have to make use of security services, and they will also
to incorporate various forms of trust management—both at the service implemen
level and at the user interface level.

For example, as we shall see later, our digital rights management service layer pr
for digital contract objects that are interpreted at specialized “control object mana
servers. Security mechanisms ensure that only authorized people can modify the s
a specific digital contract. Furthermore, trust management would be used to allow
ple to decide whether a specific server is trusted to manage a certain digital contra

1.5 Overall Design Assumptions

In the design of FIRM, we have taken into account several basic properties of cu
networked environments such as the Internet. These include heterogeneity of trus
tiplicity of enforcement choices, and multiplicity of implementation mechanisms.

Heterogeneity of Trust

Differences in levels of trust in different areas of the computing infrastructure are p
alent in networked environments such as the Internet. Even machines on the same
Area Network within an organization carry different trust levels. These differen
might be small, but they are still significant enough to lead to different practices
architectures. For example, to enforce licensing requirements it would be concei
(and advantageous) to manage individual licenses for commercially licensed sof
directly at the machine where the software is used. However, the predominantly e
lished practice is to have a license server run on another machine: a server that i
A Network-Centric Design for Relationship-Based Rights Management 6

Towards Frictionless Digital Rights/Relationship Management

his is
 can be
nt of
bina-
sses
that

he use
d that

e sup-
 pro-

l con-
which
 effi-
stems
rede-

 a net-
 to be
usages
on the same local network, but that is administratively not as easily accessible to users
as their own workstations.

We assume that such differences in levels of trust will continue to persist in networked
environments. For general use, we cannot expect to have one homogeneous trusted
computing base. [This assumption may well be inappropriate for specific other domains
such as a new product line of video players from Sony, a network of copier services by
Xerox, etc.]

Multiplicity of Enforcement Choices

Mechanisms for enforcing boundaries of control include, but are not limited to, enforce-
ment by technical locks, enforcement by police, prevention, fail-safe design, monitor-
ing, reputation-based and “panoptic” control (see page 18).

Often it is more effective to use enforcement means other than technical locks. T
especially the case in contexts where social mechanisms are already in place that
leveraged in enforcement. For example, software piracy is illegal independe
whether or not the software is specially protected, and the threat of audits in com
tion with appropriate systems of policing has minimized software piracy in busine
in the United States quite effectively. Monitoring is another type of enforcement
addresses some concerns quite effectively. For example, rather than controlling t
of an individual document in great detail, a publisher might just want to be assure
no excessive copying is taking place.

Our assumption is that the current multitude of enforcement choices needs to b
ported in a rights-management service layer. That is, we would like to provide a
grammable framework for different kinds of mechanisms.

Multiplicity of Mechanisms

At a system level, we assume that designers of rights-management solutions wil
tinue to make different design trade-offs to best deal with the specific usages at
their application is targeted. Any more general system is likely to end up being less
cient for specific uses. A part of this assumption is the fact that we have legacy sy
that now need to be tied into a larger infrastructure without requiring them to be
signed from the bottom up.

FIRM is therefore based on the assumption that the rights systems landscape in
worked environment of autonomous resources such as the Internet will continue
heterogeneous. There is not going to be one single rights system that covers all
and domains universally.

In other words, the assumption is that we will continue to have rights systems

• in legacy systems (e.g. the file access rights in Unix, Windows NT, etc.; the payment
obligation processing in Dialog, Uncover, etc.; the PhotoShop group license server),

• from different vendors (InfoSafe, Xerox, InterTrust, ...),

• for different domains (e.g. for privacy, for parental control, etc.), and

• for use with different devices (printers, PCs, etc.) and with different media (hard
disks, DVDs, etc.).
A Network-Centric Design for Relationship-Based Rights Management 7

Towards Frictionless Digital Rights/Relationship Management

 can
prac-
andard
igital
rface
d an
pen-

e, and
racter-
infra-
t, and

e shall

rvice
asic
rela-

del
cting
ation
ight
ccess

ccess,
sfully
quen-
ated
issues
ple

astle
they
But at the same time, we would like to achieve more uniformity and a way for different
kinds of applications to interoperate.

1.6 Design Process

At the heart of coming up with an appropriate design for our service layer is a process of
reification of existing objects and usages in the cyberworld: We enrich the technical
infrastructure by objects that recreate, in the cyberworld, aspects of existing objects in
the way we know them. For example, we can have a digital contract object to represent
the terms and conditions of a certain contractual relationship. We could design such an
object in a way that it affords a “terminate” action—to reify the fact that contracts
generally be cancelled. Furthermore, we can additionally choose to reify certain
tices. For instance, we can reify the practice that contracts are often based on st
templates that people only customize and fill out—leading to a design where d
contracts systematically be instantiated from contract-forms objects, a user inte
where contracts can be drafted by “taking” such forms and manipulating them, an
underlying institutional infrastructure where we have “forms designers” as an inde
dent entity.

This thesis describes an initial design for what these objects are, how they behav
how they are grounded in the heterogeneous set of mechanisms that currently cha
ize the technical landscape. It is a specific design, demonstrated in a prototype
structure, that embeds our assumptions on which usages are of primary interes
which ones are not as important. The main assumption along these lines, as w
explain in the next section, is that we support relationship-based interactions.

1.7 Taking a Relationship-Based Approach

The conceptual core that we use to realize architectural unification in our FIRM se
layer lies in the relationship-based perspective that we uniformly apply. Our b
approach is to shift the perspective from (information) objects to the participants’
tionships.

Rather than thinking primarily in terms of a traditional “information access” mo
where users access information/property (and we then conceive of ways of prote
this information from being accessed in certain cases), we apply a communic
model to think of the relationships that providers and consumers of information m
usefully want to engage in. We then deal with issues such as privacy, security, a
control, etc. as the ancillary of successfully managed relationships.

In our view, events such as privacy intrusions, security breaches, unauthorized a
etc., are primarily surface forms of an underlying process that points to unsucces
managed relationships between the relevant communication participants. Conse
tially, our hypothesis is that by providing support for a social mechanism of coordin
expectation through relationship management, we can deal with many of these
more effectively than if we look at these events in isolation. The following exam
from a specific domain illustrates our relationship-based perspective.

Example: Relationship-Based Network Security

The traditional metaphor that underlies much of network security is basically a “c
model.” Security firewalls are a well-known instance that implements this model:
A Network-Centric Design for Relationship-Based Rights Management 8

Towards Frictionless Digital Rights/Relationship Management

ntry
, etc.).

ad to
ht not
is e-
r, a
might
iza-
el only

ave a
any

core
 build-

 vari-

e one
and,
“extra-
t such
diate
t that
construct a “wall” around an organization with access limited to certain controlled e
points that serve to protect the inside (employees, etc.) from the outside (attackers

FIGURE 2. Network Security: FIRM enables a relationship-based approach to network security.

Even in conventional environments, this idealization creates anomalies that le
lower levels of usability and security. For example, one of the outside persons mig
be an attacker, but might in fact be the company’s CEO trying to catch up with h
mail while waiting for a connecting flight at an airport, or it might be a telecommute
supply-chain partner, etc. On the other hand, persons inside the firewall boundary
include individuals who have relatively weak forms of relationships with the organ
tion, such as contractors, summer interns, etc. For these cases, the castle mod
provides minimal control.

Such initial anomalies become more critical in the context of organizations that h
number of outside partners that are tightly integrated into the “inside,” as with m
organizations today, especially with “virtual companies,” which have a smaller
company whose assets are not as much kept in a mainframe in the headquarters
ing, but are determined by the quality of the relationships a company has with its
ous partners.

Continuing to apply a castle model of security to such an environment leads on th
hand to a multitude of smaller security segments (“logical firewalls”); on the other h
it creates the need to connect these various segments by “tunnels,” such as the
nets” that have recently received substantial attention as one way to implemen
tunnels. While such an approach is certainly able to fix a good number of imme
problems, it clearly does not grasp the underlying dynamics of the situation: the fac

Manufacturing
 Partner

 Inside Outside
Firewall

7UDGLWLRQDO�&RPSDQ\ 5HODWLRQVKLSV�LQ�WKH���¶V

Clients
Organizational Boundary

Employees

&DVWOH�0RGHO
RI�6HFXULW\

Clients

 Janitor Distributor

Contractors

3HUVSHFWLYH�6KLIW�WR
5HODWLRQVKLS�EDVHG�6HFXULW\&D

VW
OHV
��

7X
QQ
HOV

Commpacts
A Network-Centric Design for Relationship-Based Rights Management 9

Towards Frictionless Digital Rights/Relationship Management

then
ed as
erty-

mer
ating a
utual
lation-

ng the
red
acy-
t of the
er its
 one
grated
ic but
niza-
onsid-
ive on

sider
 that
tuning
ly the
which
y by
ould

 and
xam-
dver-
genuine security needs to be relationship-based.1 In other words, the question is how to
realize collaborative extranets that are managed on a peer-to-peer basis.

By providing an infrastructure such as FIRM that radically reduces the transaction costs
of managing one-to-one relationships, FIRM-based systems such as RManage effec-
tively make it possible to implement a security architecture that allows us to shift the
perspective entirely into a relationship view: Relationships (lines in Figure 2) are nego-
tiated between communication participants (small balls in Figure 2), and encapsulated
in communication pacts (“commpacts”) whose externalization can in principle
reside anywhere on the network (small boxes in Figure 2). Security is then obtain
the ancillary of successfully managed relationships, rather than by imposing prop
based boundaries.

1. Note that the word “relationship” is used in many different ways in different contexts (“custo
relationships”, etc.). In this thesis, we use the expression in a fairly general sense, design
pattern of interaction between communication participants that is based on structured, m
expectations. For instance, a tacit understanding between two persons would qualify as a re
ship in our usage here.

Other Examples

Relationship-based security is by no means limited to the problems that motivate the use
of firewalls. Much of what falls into the domain of contracting is subject to relationship-
based interactions. If a subdivision of a company wants to establish a new relationship
with an external supplier that includes sharing a significant amount of information
(indeed possibly even more than the same subdivision shares on a need-to-know basis
with any other group in its own organization), then we have a relationship issue that cuts
across organizational boundaries.

We need to support the kind of “trusted sharability” that has been described as bei
most significant impediment currently limiting the adoption of otherwise prefer
organizational forms (cf. [46] on virtual companies). Similar issues come up in priv
related areas, such as making health records available in a controlled way as par
highly structured relationships that now characterize the health-care industry aft
transformation from a largely invoice-based, service-for-fee cottage industry to
based on prenegotiated contracts with Health Maintenance Organizations and Inte
Delivery Systems [91]. Flexible records management requires managing dynam
structured relationships: that is, relationships that are not static to predefined orga
tional boundaries, but that also have more structure and context than have been c
ered in current models for simple exchange transactions. (See [29] for a perspect
how to understand corresponding “relationship marketing.”)

Trusted sharability can have quite light-weight appearances. For example, con
finding information about the current weather. Curiously, the interactive experience
one currently gets on the Web is in some regard worse than what one gets by just
into conventional broadcast TV in that, in the TV case, one at least obtains direct
weather one cares about—without first having to go through a number of steps by
one narrows down one’s geographical location. Having a structured, controlled wa
which servers can automatically obtain a user’s ZIP code for defined purposes w
allow the underlying “one-to-one infrastructure” to actually cash in on its promise
provide actual “one-to-one content.” The same holds of course for many other e
ples, including having a consensual and controlled way of allowing publishers of a
A Network-Centric Design for Relationship-Based Rights Management 10

Towards Frictionless Digital Rights/Relationship Management

nly
logies
ion-
ism is
tively
ent
 itself

s that
stems
 a first
tside

tured
capa-
hich
 and
s less
nisms.
tising-based Web sites to collect certain basic forms of demographic information for
their advertisers, etc. (See the P3P work for further usages [219].)

1.8 Design Space

One way to understand the design space is to consider relationships along two dimen-
sions:

• their dynamics, or how relationships are formed and completed,

• their complexity, or how much information one would need to characterize a relation-
ship.

FIGURE 3. Design Space: Systems designed for different types of relationships.

Different technologies address different corners of this space. In particular, security fire-
walls are both simple (one is either “in” or “out”) and fairly static (their boundaries o
change as a result of reorganizations or acquisitions). Most “e-commerce” techno
currently address mostly fairly simple—although possibly quite dynamic—relat
ships. For example, purchasing an online image by using a micropayment mechan
a relatively simple exchange transaction, but there might be many of them in a rela
short time period. Micropayment mechanisms can of course be used for fulfillm
tasks that come up in a relational context such as subscriptions, but the mechanism
does not support this context.

At the other end of the complexity spectrum, we have systems such as Lotus Note
deal with more structured relationships. After all, the target customers of such sy
have been enterprises that want to make their internal processes more efficient, as
step before addressing the question of how to improve their interactions with ou
parties.

Of course, both systems that were initially designed for usages in the static/struc
and in the dynamic/simple corner tend to have efforts on the way to extend their
bilities to the dynamic/structured corner—the position in the design space with w
we are primarily concerned. Also, while trying to accommodate both structured
dynamic relationships, we would clearly like to arrive at a design that also support
dynamic and less structured relationships just as effectively with the same mecha

�6LPSOH�����������������������6WUXFWXUHG

&RPSOH[LW\

���6WDWLF

���'\QDPLF

H�J��/RWXV�1RWHV

��PRVW�³H�FRPPHUFH´�
��WHFKQRORJLHV

ILUHZDOOV

�'
\Q

D
P
LF
V

5HODWLRQVKLS
A Network-Centric Design for Relationship-Based Rights Management 11

Towards Frictionless Digital Rights/Relationship Management

uni-
ocial

 legal
tion-

) in a
ture
 call
ny
eneral-
viron-

hips
iples

s. We
rating

ible to

abled
m a
1.9 Design Goals

The goals of our design are therefore to address the following questions:

• What is the overall conceptual framework that gives us a structured way to think
about relationships and how they relate to performing actions?

• What is a corresponding system architecture for managing control information that
we can use to apply this framework in the context of a networked environment such
as the Internet?

• At a systems level, how do we deal with domain extensibility and interoperability
given the wide range of possible relationships and mechanisms? Specifically, what is
the specification for a corresponding rights management service layer?

• Finally, what components are needed to make the system easy to use?

1.10 The Solution: Outline and Summary

Let us summarize key aspects of the design that we propose in this thesis as a solution to
the above goals.

A Conceptual Framework for Relationship Management: Commpacts

We articulate a communication model that situates actions in the context of previously
negotiated relationships. Relationships serve as social reference points that constitute a
baseline with respect to which communication participants perform and evaluate
actions. In our model, every action is therefore performed with respect to a “comm
cation pact” (short: “commpact”) that encapsulates the boundary conditions of a s
relationship. Possible externalizations of commpacts include but are not limited to
contracts and informal conventions. We also outline how this model offers a rela
ship-based generalization of speech act theory.

An Architecture for Managing Control Information: Network-Centric

We develop an architecture for managing first-class control objects (commpacts
way that reflects the basic notions of our conceptual framework. This architec
allows commpacts to reside in principle anywhere on the network (which is why we
it a “network-centric” architecture), allowing them to provide control in principle to a
other network object. This accommodates a wide range of usage scenarios, and g
izes previous, client/server-centered models of access control to a peer-to-peer en
ment.

A Structured Way of Representing Relationships: Reifying of Contract Law

At the next level of detail, we examine the question of exactly how rights relations
are structured and articulated. We rely heavily on contract law as the body of princ
and concepts that describe the shared structure of different rights relationship
describe the objects and protocols that define the core of our service layer. By sepa
generic from domain-specific elements, we ensure that the architecture is extens
arbitrary domains and rights relationships.

A Demonstration Prototype: The RManage Relationship Manager

Finally, we describe a relationship manager application, called RManage, that is en
by the FIRM service layer. RManage unifies rights/relationship management fro
A Network-Centric Design for Relationship-Based Rights Management 12

Towards Frictionless Digital Rights/Relationship Management

s these
enta-

 using
sed
sed

aries
nford

pati-
s of
s of

hese
t the
am-

s by
also
grate
ash,

fobus
umma-
 that
tion;

 they
user-centered perspective, and it supports full end-to-end integration of shared control
state in network services and users’ client applications.

RManage augments services such as Web servers with a component that allow
services to make use of the FIRM infrastructure. RManage also provides implem
tions of the person and contract objects that FIRM assumes. (See also Figure 1).

The RManage implementation is based on distributed objects in Java and Python,
the CORBA implementation: Xerox PARC’s ILU system [246]. RManage can be u
either with a plain Web browser or integrated into DLITE [249], a Java/CORBA-ba
direct-manipulation user interface developed as part of the Stanford Digital Libr
project. RManage implements FIRM as one of the five service layers of the Sta
Infobus [253].

RManage enables services to make available information governed by FIRM-com
ble digital contracts. The sample contracts currently available include various form
subscriptions, site licenses, and pay-per-view contracts, each with different form
search rights, approval rights, notification obligations, and payment obligations. T
digital contracts are “smart contracts” in that they integrate behavior related to wha
contract is about, including authorization, payment, privacy protection, etc. For ex
ple, RManage provides fulfillment processing for a range of payment obligation
making use of the UPAI payment application interface [251]. This interface was
prototyped as part of the Stanford project; it provides an abstraction layer to inte
native payment protocols from a variety of providers such as First Virtual, DigiC
VISA, etc.

Services that are currently using digital contracts as part of our experimental In
testbed include our Infobus proxies to the Dialog databases and to a document s
rizer at Xerox PARC (running behind the company’s firewall). Web-based services
have been augmented by FIRM plug-ins include a Web site with weather informa
sample contracts deal here mainly with the controlled use of personal information.

Finally, RManage provides users with a uniform interface to the relationships that
have with the various providers of FIRM-compatible network services.
A Network-Centric Design for Relationship-Based Rights Management 13

A Conceptual Model of Relationship Management

cally
 soci-
here
orks

ansac-

agree-

ordi-
or-
ct of
r will
rds,
ulate
that a
ersa.
2.0 A Conceptual Model of Relationship Management

In this chapter, we articulate a framework for relationship management. We explore the
notion of an agreement, abstract it into a conceptual model, and address the question of
enforcement. This prepares the ground for going to the next levels in Chapters 3 and 4,
where we will define a computational architecture and specify a corresponding network
service layer.

2.1 Understanding Agreements/Contracts

Agreements/contracts are fundamentally a socially coordinated construct employed to
frame relationships, give them structure, and set common expectations. [9][10][41]
While simple exchange transactions in “spot market” environments have histori
been dealt with quite effectively by simple property claims, such as in barter-based
eties, contracts and contract law began to develop significantly in environments w
relationships had to be clarified. They became ubiquitous in modern legal framew
that conceptualize the existence of a contract even for simple kinds of exchange tr
tions.

Let us summarize here a few points that are essential for understanding what
ments are about at a general level.

• Agreements are a set of enforceable promises between two or more parties. They
provide the context necessary to characterize relationships, even if they are of
longer-term nature; they encapsulate boundary conditions of relationships, and they
create social reference points to which people can refer back at any later point, to call
into presence what they had coordinated themselves about, as part of a social mecha-
nism of coordinated expectation. See MacNeil [4][6][5] for more material along the
lines of the kind of relational perspective that we assume here, and [7][8] for critical
reviews that qualify this approach.

• Agreements can be enforced through a variety of means, not necessarily through the
legal system only. In fact, legal enforcement is secondary in many regards to other
forms of enforcement, and we do not rely on it as one of the primary mechanisms of
interest here.1 In Section 2.4, we will examine the issue of enforcement in further
detail.

• Agreements provide a conceptual separation—and thus flexibility—between co
nation activity (negotiation; agreeing on what to do) and fulfillment activity (perf
mance; actually doing it). For example, in a purchase transaction, the a
coordinating oneself around the expectation that one party will pay and the othe
deliver is separated from the actual fulfillment of these obligations. In other wo
we have obligations as first-class objects of a language that allows us to artic
how to constrain actions and their sequencing. For instance, we can require
payment obligation be fulfilled before an access right can be exercised, or vice v
In fact, obligations are objects that can also be transferred, traded, etc.

1. There are at least two reasons for this. For one, the reality in the United States is that courts are
basically already busy with criminal cases, leaving them virtually no room for contract matters.
Secondly, there is a wide range of present and historical examples that show how contracts have
been successfully used as a coordination mechanism, even in the absence of any legal enforce-
ment. See Ellickson [47][48] and Greif [38][39][40].
A Network-Centric Design for Relationship-Based Rights Management 14

A Conceptual Model of Relationship Management

ltiple
 items;
h it is.
plica-
ot yet
ll need
d obli-

l sub-
arate
odel

abili-

ased
rate
t the

unilat-
ip. In
 man-

s and
tween
ocial
 have
der-
ent on
ssi-

r if it
ct of

radio
om a
er and
d for
 rest

f the
xt of
• Agreements can be about objects, but they also uniformly extend to purely relational
forms that are not about any objects. Agreements can easily “quantify” over mu
objects. For example, a subscription agreement can be about a whole series of
there needs to be only one such agreement pointing to the objects about whic
The same could be achieved in a property-based model only via extensive re
tion. Indeed, agreements can express constraints about objects which do n
exist. For example, subscription agreements are usually about issues which sti
to come into existence; nevertheless, we can already talk about these rights an
gations of future objects, pay for them, etc.

• Agreements provide a uniform way for adding reservations and special clauses,
including warranties, guarantees, terms and conditions, etc.; this includes various
forms of “strings attached” such as usage conditions. Note that the conventiona
ject-object model of access control created a gulf which led to the need to sep
out “access” and other kinds of usage control. A relationship-based (contract) m
lends itself to uniformly extend to usage control issues and to obligations and li
ties along with access rights.

• Agreements are, at least in principle, peer-to-peer, not supplicant-granter. The con-
ceptual shift towards centering access/action control around relationships and
towards a communication model instead of the requester-granter metaphor rephrases
the old access-control question of “Do I grant this?” to the new questions of “B
on which relationship are we talking to each other?” and “How can we collabo
across organizational boundaries and communicate clearly to everyone wha
mutual expectations are?” It recasts the access control question from that of a
eral decision to a matter of agreeing on boundary conditions of a relationsh
other words, we recast security and access control as an issue of relationship
agement and collaboration.

2.2 The Commpact Model

Our framework is based on a communication model in which actors perform action
communicate with each other about the world. Communication acts take place be
actors within the context of the boundary conditions of the previously negotiated s
relationship between them. These boundary conditions do not necessarily have to
been explicitly articulated anywhere; they could be just in the form of a tacit un
standing, for example. However, we postulate that there always exists an agreem
the boundary conditions of the communication relationship—thus only making it po
ble for effective communication to take place—and if this agreement is imperfect o
could be more specific, then there will be negotiation communication to the effe
finding a better agreement.

At the risk of providing a bad metaphor, we can compare this situation to that of a
receiver that is being tuned into the right frequency to be able to receive signals fr
sender—only that we have a more peer-to-peer situation here where both the send
the receiver have a part in adjusting their behavior in order to find a common groun
communication, in a way that is negotiated in the same medium in which all of the
of the communication takes place as well.

There are two distinct processes of communication going on: a.) negotiation o
boundary conditions of a social relationship, and b.) performance within the conte
A Network-Centric Design for Relationship-Based Rights Management 15

A Conceptual Model of Relationship Management

ation
y of
f our
ondi-

at is

major
l con-
force-
s that
recto-

odels
n in

ed to

ccord-
 of the
plied
odel

ing it,
ents
 of the
gram
 forma-
the agreed-upon boundary conditions of such a relationship. As a matter of terminology,
we shall refer to this set of conditions that frame a relationship as a “communic
pact” (or “commpact” for short). We introduce this new word so that we have a wa
clearly referring to the meaning in the context of our conceptual model and, later, o
computational reification. In other words, commpacts encapsulate the boundary c
tions of the relationship of two or more communication participants—in a way th
able to prove a social reference point for coordination activity.

Note that commpacts can have different forms of externalizations. For example, a
subset of commpacts has an externalization in the legal world in the form of lega
tracts. Other commpacts have quite different externalizations and associated en
ment means. Anonymous ftp on the Internet, for instance, is a commpact that say
people who identify themselves with their e-mail address can access the public di
ries of a file archive provided by the offeror of the commpact.

In the remainder of this section, we examine more closely the basic dynamics of m
of negotiation and performance, which we will then further refine into a specificatio
Section 5 and in the Appendix:

• The negotiation model is that subjects negotiate the mutually agreed-upon boundary
conditions of their relationship, and then encapsulate them in a social reference point
that we call a commpact.

• The performance model is that every action is conducted with respect to a commpact
chosen by the performer. This designated commpact establishes the baseline with
respect to which actions are then interpreted and evaluated.

In practice, negotiation and performance often occur in parallel. Moreover, the step of
designating a commpact is often largely implicit, and default rules are used to make this
designation step efficient. For example, external circumstances such as the environment
in which an action takes place (e.g., office vs. home) will often make clear which
commpact applies by default—unless explicit other (e.g., linguistic) cues are us
introduce a different applicable commpact.

2.2.1 Negotiation Mode: Establishing Mutual Assent About a Commpact

A commpact is a set of promises that is agreed upon as a result of a negotiation a
ing to a general protocol that does not depend itself on the content or the domain
specific promises. This protocol effectively mirrors the concepts and principles ap
in contract law [1][2]. It is fundamentally based on an extension of the speech act m
in Winograd & Flores [240].

The basic actions are that of issuing an offer, negotiating it, and accepting or reject
or revoking it (by the party who issued it). Successfully formed, “effective” agreem
can also be terminated and renegotiated, in which case a new offer takes the place
previous offer, and a new negotiation is started. Figure 4 shows a finite-state dia
that defines the sequences in a negotiation process leading to successful contract
tion.
A Network-Centric Design for Relationship-Based Rights Management 16

A Conceptual Model of Relationship Management

revi-
search

 action
e per-
oriza-
he
or
xercise

ntify-
ying
 that a
livery
d in
g an

is
; it is
l of
ides
hich

l, con-
cess.

g an
on for
d been
2.2.2 Performance Mode: Making Use of an Established Commpact

The “normal” mode is that an actor would like to perform an action based on a p
ously established relationship. For example, a browser might want to access a
engine based on a licensing agreement that a user had set up.

FIGURE 4. Negotiation: States and Transitions.

As mentioned above, in such a case, the actor would request the execution of an
while designating the commpact with respect to which the action is supposed to b
formed. This commpact would then serve as the mandate (technically: the “auth
tion monitor”) for the given action, if the commpact is legitimate: A right in t
commpact would be exercised to be able to perform a corresponding action. F
instance, in our search engine example, in order to execute a search, we would e
the search right of the licensing commpact.

In other words, at the performance level, we are now dealing with the issue of ide
ing rights that we can exercise in order to “authorize” a certain action, or identif
obligations that require certain actions to be performed. As an example, consider
purchase agreement would generally contain a payment obligation as well as a de
obligation and other terms and conditions. This payment obligation can be fulfille
any of a variety of ways: by paying in cash, by sending a check in the mail, by doin
online transaction, etc. The exact, domain-dependent way in which this is done not
part of the rights management service layer (FIRM) that we define in the this thesis
left to implementation-specific mechanisms. Commpacts only talk at the leve
whether or not a certain obligation has been declared to be fulfilled. FIRM prov
APIs that allow us to talk about rights objects and their transactions; the way in w
such transactions are performed is left to specific implementations.

As an example of the kinds of constraints that can be expressed at the rights leve
sider that someone might want to require “prepayment” for a certain document ac
The way to articulate this in our model would be to posit a commpact containin
access right and a payment obligation such that there exists a promissory conditi
being able to exercise the access right that says that the payment obligation ha
declared to be fulfilled.

B: AcceptA: Offer
Offer

Effec-

A,B: Terminate
B: Reject

Offer

A,B: Renegotiate tive

A: Take Ter-

ted
min-

by A

by B

Form Draft

A: Revoke

A: Reject

B: Revoke

B: Offer A: Accept
A Network-Centric Design for Relationship-Based Rights Management 17

A Conceptual Model of Relationship Management

 acts”
uistic
uing
me-

o not
rsation
ual

n of a
s that
 situa-

 deliv-
ivery
 such
ional
rm of
240],

pact
odel

ing a
have
tinct
egoti-
-upon
egal
a way
to be

rticu-
 that

l. We
pplied
 ISO
d on
then
ble to

ame-
.

2.3 Related Work

In the linguistics community (philosophy of language), speech act theory (cf. Searle
[238], Austin [239]) pioneered the idea that there exists a set of generic “speech
that describe an expression’s underlying action at a level independent of the ling
form that realizes it. According to this framework, people communicate by iss
speech acts through which they “request,” “declare,” or “promise” something to so
one—to name just three.

Winograd & Flores [240] took this approach further by noting that speech acts d
occur in isolation, but as part of patterns of sequences of acts that define a “conve
for action” (cf. Figure 5.1 in [240]). Like speech act theory, this model takes individ
promises into the domain of first-level actions rather than separating the negotiatio
complete set of mutual promises into a distinct process. The drawback of this wa
even simple purchase transactions cannot be covered in a natural way. Consider a
tion where a buyer agrees with a seller to pay for a good in exchange for the seller
ering it. These are two interlinked promises: a payment obligation and a del
obligation. However, the model in [240] does not have a mechanism to express
linkage. Another point is that the model in [240] is geared towards an organizat
context, where actions always already have one default commpact, say, in the fo
the employment relationship. In such contexts, it is plausible to have a model like [
which uses issuing a ‘request’ as one of the possible, initial actions. The comm
model makes this explicit and provides us with a more general framework to m
such actions.

The commpact model articulated in this chapter addresses this issue by provid
more powerful framework that leverages the kinds of conceptualizations that
guided work in contract law [1][2]. The idea is to conceptually separate the two dis
processes of negotiation and performance: A complete set of mutual promises is n
ated in a process that is distinct from the process by which any of the agreed
promises can then be fulfilled. By applying concepts and principles from the l
domain, we also make sure that actions and states are computationally reified in
that provides a clear mapping to the way in which social behavior is considered
structured by the legal framework.

2.4 Enforcement

In this section, we examine the question of how to enforce terms and conditions a
lated in commpacts. Our main point will be that enforcement is a global property
depends on a range of dimensions that can be taken into design considerations.

We will first lay out the types of enforcement paradigms that play a role in genera
then examine how this compares to the models of enforcement that are typically a
in the design of software applications. As a prototypical example, we describe the
Access Control Framework [94], which formulates an abstract control model base
the idea of interrupting “unauthorized” actions to keep them from completing. We
use a number of examples to point out how this is too constrained a model to be a
deal with a range of practical situations. This leads us then to shift to a different fr
work that opens the space for toolkit-based design of application-specific solutions
A Network-Centric Design for Relationship-Based Rights Management 18

A Conceptual Model of Relationship Management

rce-
cted
urity
rop-
 units

 the
ple-
ssed

d by
t meant
text.

ance
e used
 acqui-
 issues
rchan-
2.4.1 Types of Enforcement: A Top-Down Perspective

Figure 5 gives an overview of the general types of mechanisms that can be used to
enforce policies at various time stages of an action that is supposed to be controlled in
some form. Table 1 then summarizes this with two examples.

Enforcement starts with the general environment. For instance, if the environment has a
balanced wealth distribution and there are no enemities, then people might not even
think of doing certain actions such as shooting someone or manevolently deleting some-
one else’s files. In the “real world,” we have many ways in which this type of enfo
ment is included, from “good neighborhoods” to open-doors offices in prote
buildings, etc. In computer systems, this has not typically been part of the sec
thinking, although we increasingly see instances of designs that explicitly exploit p
erties of the environment to reduce the control overhead necessary within certain
of a certain environment.1 Note that an unconducive environment does not rule out
possibility of certain actions to happen accidentally. This is why it is useful to com
ment this approach by applying in addition elements of the ‘remedy’ model, discu
below.

1. There is an interesting historical example of a shared computer system that exclusively relied an
unconducive environment and reputation-based control for enforcement: The MIT ITS system
(Incompatible Time-sharing System), an influential but highly idiosyncratic operating system
written for PDP-6s and PDP-10s at MIT, was used from the 1960s to 1982 at the MIT AI Lab,
without any technical access control to files. Even the ‘HALT’ instruction could be execute
any user at any time. The absence of control was generally considered a blessing since i
less overhead. The fact that all users of the system shared one room provided a social con

FIGURE 5. Anchor Points for Enforcement.

Next to creating an unconducive environment, one of the obviously most effective
means of keeping an action from happening is to remove the affordances/tools for this
action. This is the gun control model that is based on the fact that the absence of guns
necessarily implies the absence of gun shots. The problem with this model lies in cir-
cumstances where a similar affordance is required in another context to which the affor-
dance that we want to disable applies equally—and the nature of the afford
underspecifies the contexts in which it is applicable. For instance, guns can also b
for self-defence, and it is not easy to separate these two usages at the time of the
sition of the instrument. Note that the disable class of enforcement also extends to
through time. For example, consider a merchant who does not hand over sold me

time

action

begin end

Interrupt SanctionRemedy/
Revert

Disable

Environment
Tools/Unconducive

Create

Affordances
Deter
A Network-Centric Design for Relationship-Based Rights Management 19

A Conceptual Model of Relationship Management

 the
lated
umes
t turn

e a file
muni-

cov-
tually
oves
ack-
do not
ly.

. Both
ation
 dis-
ment.
at of
ment
l level.
ns for
s in

ntica-
m that
licies.

with
k is a
of an
dise until payment for it has been secured; this transaction protocol removes an affor-
dance for failing to pay for purchased goods.

Interrupting an initiated action if it is not supposed to happen, is another enforcement
method. This is the “bullet-proof vest” case. This action-interrupt model is also
enforcement model that is commonly used in computing systems, in the form articu
by the ISO access control framework, for example. The action-interrupt model ass
that an action is to be enforced that already started to happen but that a policy migh
out to declare unauthorized, such as a user making use of a delete key to delet
that then turns out not to be deleteable—a breakdown that then needs to be com
cated specially by involving the user in some extraneous dialogue, etc.

The ‘remedy’ approach is based on instituting means that support one’s ability of re
ering previous state. For instance, rather than executing ‘delete file’ requests by ac
deleting the object in the file system, we could have a design that always just m
such files into the “background,” much like current systems that do incremental b
ups, but user-conceptually more integrated. Then files can be recovered and we
have to worry as much about strictly limiting ‘delete’ actions to authorized users on

Finally, enforcement can make use models that sanction or deter specific actions
means require appropriate mechanisms that allow for identification and authentic
of a performer. In particular, an efficient form of enforcement that has been widely
cussed in the economics literature is that of reputation-based community enforce
This type of enforcement combines internal evaluation of members with the thre
being expelled from the community (cf. generally [41]). Reputation-based enforce
is a social mechanism that can be enabled by appropriate design at the technica
Enabling mechanisms for this type of enforcement include having adequate mea
identification and visibility. Interestingly, once we have these enabling mechanism
place, we can shift some of the enforcement burden from authorization to authe
tion, where authentication is used to trigger a identity-based feedback mechanis
then removes the need for the system itself to enforce specific authorization po
The examples in Section 2.4.3 will illustrate this.

2.4.2 Example: Action-Interrupt Control in the ISO Framework

Let us examine how enforcement of authorization policies is conventionally dealt
in current computing/communication systems. The ISO Access Control Framewor
representative model; it places enforcement of access control in the context

TABLE 1. Enforcement Types: Examples and Paradigms.

Example\Type Environment Disable Interrupt Remedy Sanction Deter

Crime, e.g.
“getting shot”

wealth distri-
bution, etc.

gun control bullet-proof
vest

hospital prison police

Unauthorized
file deletion

friendly atmo-
sphere, etc.

no “delete”
functionality

check
predefined
rights

backups &
undo

loss of
reputation

notification
of owner

Enforcement
Paradigms

Influencing
Environment/
Culture

Design of
Affordances

ISO Access
Control
Model

Design for
Fail-Safe/
Recover-
ability

Cost
Structure
Design

Design for
Identifica-
tion and
Visibility
A Network-Centric Design for Relationship-Based Rights Management 20

A Conceptual Model of Relationship Management

ich
this
e the

 AEF
 itself
pecific

bility

rupt
abstract technical system, and introduces relevant terminology (cf. Figure 6): Every
operation is intercepted by an “Access Control Enforcement Facility” (AEF), wh
asks an “Access Control Decision Facility” (ADF) for a decision about whether
action is authorized. If so, the operation is performed on the target object; otherwis
AEF generates a failure exception. The reference monitor including both ADF and
is part of a (secure) “trusted computing base”. The access-control decision facility
is generally conceived to be based on a system of access-control rules in which s
policies are expressed (e.g., LaPadula [179]).

Note that the ISO framework is based on an action-interrupt model. From a usa
perspective, the questions arise

• why a performer was led to believe in the first place that a certain action could be
executed, if this action is evidently “illegal” (therefore creating the need to inter
it to keep it from completing), and

• why no undo facility had ben put in place that would allow the uninterrupted com-
pletion of the action.

In other words, we arrive at the point where we want to shift the perspective from
enforcement as rule processing to enforcement as tool-supported design of an interac-
tion.

FIGURE 6. ISO Access Control Model: Action-Interrupt Control.

2.4.3 Shifting from Enforcement as Rule Processing to Enforcement as a Design Issue

Several examples demonstrate how technical systems can leverage forms of enforce-
ment other than simple action-interrupt control. These examples identify the need for a
design approach to enforcement that involves the design of the whole system, rather
than only the authoring of rules for an ADF. In particular, they show that for many prac-

Reference Monitor

Access Control
Decision Facility

(ADF)

Access Control
Enforcement

Facility (AEF)

DecisionRequest

Operation

Target
ObjectUser

OK

Fail

CONTEXT
A Network-Centric Design for Relationship-Based Rights Management 21

A Conceptual Model of Relationship Management

utions,

ts.

w to
d not
oes not
s the

 the
ersity
aterial,
t only
tion
 then
n be
, for

f so, the

mu-
ote

ture.

uni-
ss (or
udent
tical policies there exists no set of rules, decidable at action time, that would adequately
enforce policies that people intend to have in place.

Rather than focusing on researching better ways of representing authorization rules, as
done in a whole series of work; cf. [114][115][116][128][129], we therefore shift the
emphasis to application-specific design. Going along with this, our interest shifts to the
question of having toolkits that allow application developers to rapidly implement
appropriate enforcement solutions. The commpact model constitutes a unifying core
that can provide the basis for such a toolkit.

Example: University Course Material on the Web

Consider the following access control problem: A university professor uses the Web to
make available material related to a class she is teaching; this includes the weekly
assignments as well as their solutions. At the policy level, she has three primary con-
cerns in mind regarding the access control for this material:

• Access should essentially be open to anyone interested. Two exceptions are however
that

• students in her current class should not see any of the subsequent weeks’ sol
and

• those students who will take the same class in future years also should not have
access to any of the solutions—since there might be some reuse of assignmen

Note that such an access control policy is precise, although it is not obvious ho
articulate and enforce it given current systems. In particular, current models woul
consider parts of it even decidable, at least not at access request time, since one d
know which students will take the class in future; in terms of a framework such a
ISO model, the policies therefore appear ill-defined.

However, here is an outline of a commpact implementation that would achieve
desired effect in a practical way. It leverages the fact that the students at her univ
are already bound by the student honor code. To be able to access the course m
the “communication pact” would require accessors to authenticate themselves no
minimally, but also by their full name. Note that this is not a privacy-critical applica
and it helps the professor to track where her efforts went. Such information would
be logged by the commpact in an appropriate form. At times, the resulting log ca
matched against event masks in order to detect “interesting events,” including
instance, whether there is any overlap between students in class and accesses. I
professor will be notified by this event in an appropriate way.1

In other words, one of the requirements for our toolkit is that we have a way of com
nicating with the user of a certain application in a direct (application-specific) way. N
that this kind of communication channel is not even part of the overall ISO architec

A computational commpact object would have to be able to contain interface comm
cation that would be able to make clear to a user that if planning to take the cla
considering the possibility), then it is inadvisable to look at the pages. Then, if a st

1. Of course, a student can always find a friend who makes available his or her account to get around
the system. Note that this is like having a highly secure terminal login mechanism and then leav-
ing the terminal itself physically unsecured.
A Network-Centric Design for Relationship-Based Rights Management 22

A Conceptual Model of Relationship Management

 dealt

e
health
ating

r than
ole as
t law
 seen

 doc-
 still

tion in

atu-
 a set

t con-
tions
ions of
ent

orma-

[49],
ucted
ion of
ade
exer-

in a
ffer-
ion:
rows-
fault
) to
decides to look at a certain page and to go ahead a year later to take the same class, then
this event would show up on the professor’s notifier and the case would have to be
with on an individual basis.

Example: Privacy of Medical Records

The main thing this bill
does is to put everybody
on notice that if they are
handling sensitive
patient data, they have a
responsibility to that
data. If they do not hold
to those responsibilities,
there are sanctions that
come into play.

D.E. Detmer 1

Our second example is directly taken from a proposal1 that was considered for som
time as a legislative measure. This proposal articulates access control policies for
records, and, interestingly, the way in which this is done relies on a system of cre
awareness of responsibility and on making actions visible to stakeholders—rathe
depending on “technical locks” to prevent access. Notification plays an essential r
a means to this end. For example, the framework provides for an obligation tha
enforcement agencies would have to notify people within 30 days that they had
their records.

Notification as an obligation takes on a function of “panoptic”2 control. Such notifica-
tion allows for the “pure” access control to be expressed more liberally (e.g., “any
tor can see the medical record”), thus reducing the need for explicit approval while
making sure that the concerned parties are aware of what is happening to informa
which they have a stake.

An application of the commpact framework would deal with such a situation quite n
rally. The terms and conditions of the various relationships would be represented in
of commpacts between the different parties. Then the authorization functions tha
trol access to certain kinds of information would make user aware of the ramifica
of a certain access rather than necessarily preventing access, and implementat
objects such as notification obligations could automatically deal with the fulfillm
part, say, by sending appropriate messages to the relevant stakeholders.

1. US Medical Records Confidentiality Act, sponsored by Senator Robert Bennett and Patrick
Leahy, “intended to establish uniform Federal rules for the use and disclosure of health inf
tion, specifying who may see health records and under what circumstances.” The New York Times,
Nov 15, 1995, A1 (“Medical Records Are on Sale in the Marketplace”).

2. A panopticon is a general-purpose architecture of visibilities, articulated first in Bentham
that is most widely known for its suggested application to prison design. A carefully constr
set of visibilities is used to keep people from doing certain things. In a panopticon, every act
the controlled actor is fully visible to a controller, and the fact that this visibility exists is m
clear to the actor. However, it is kept invisible to the actor whether any controller is actually
cising the existing visibility, to observe any specific actions.

Example: Differential Pricing via Monitoring

A publisher would like to generate revenue from the content of its Web site. Standard
possibilities include advertising (which we will not consider here) or subscriptions
(which are likely to drive away many users and reduce traffic significantly).

Commpacts allow other forms of access control mechanisms to be implemented—
form that allows material to be priced according to people’s willingness to pay (di
ential pricing). In particular, consider the following monitoring-based implementat
Two commpacts are offered for the Web site. One of them is a “free occasional b
ing” commpact that does not carry any payment obligations. This is the de
commpact that users will transparently pick via their “e-persons” (cf. Chapter 5
access the site without the need for any registration or sign-up procedure.
A Network-Centric Design for Relationship-Based Rights Management 23

A Conceptual Model of Relationship Management

 users
 pay-

est of
 word
ertain

ingly
 some
 are an

blem
unity

 to find
eping

uld
s to

 first
y puts
ting.

identi-
ften
enta-
n are
e that

 of a
sic

ation
ut in
cation
bility
that it
in the

cha-
ication
 of the
lega-
ships
rofile
The only function of this commpact is to assign people a local pseudonym, to monitor
their accesses, and to cause an exception in case these accesses surpass a certain fre-
quency threshold, in which case the user is taken to be a “serious” one. Serious
will then be asked to agree to the other commpact, which might include a monthly
ment obligation, for example.

Note that by using such a “loosely” enforced form of access control, we get the b
all worlds: People can freely get to know the services of a certain site, spread the
to others, link it up, etc. On the other hand, people who repeatedly care about c
services will be asked for remuneration.

Example: Shared Space of an Online Community

Online communities exhibit social boundary elements that are becoming increas
relevant for mainstream networked environments. Such communities often share
“space,” and appropriate means of access/action control for this shared resource
issue for which the conventional techniques do not yet provide a good solution.

In this final example, we examine a typical problem in such communities: the pro
of managing access to the (Internet-accessible) shared information of this comm
such as member profiles and interests. Several solutions are possible, each trying
a better practical trade-off between ease of access for the “right” people, ease of ke
the information up-to-date, and security.

Conventional access control: An access control design in a conventional mindset wo
ask the question of who would get read/write rights to a certain profile. This lead
essentially two models, both of which turn out to be not entirely satisfactory. In the
one, elected administrators could do all the editing of the database. This is clearl
an unnecessary load on a few people, causing overhead that will discourage upda

The other obvious model is that of fine-grained access control based on per-user
fication of accesses and corresponding item-level restrictions on editing. This will o
turn out to be socially impractical for two reasons, one technical and one repres
tional. The technical reason is that the infrastructure requirements for authenticatio
currently large, and there are currently only few situations where one can assum
everyone has, say, a public-key credential.

The more interesting other reason applies equally in the context of full availability
widely adopted authentication facility with comprehensive functionality: The ba
problems lies in the fact that there is usually a large amount of informal communic
among the members of a community, resulting in “friends” helping each other o
editing their entries, etc. (e.g., people without Web access, people already on va
calling back someone to turn off the mail, etc. In other words, the barrier to usa
seems not to lie here in the adoption of better existing technologies, or in the fact
is hard to make certain technologies a widely used standard, but the barrier is
inadequate reflection of the underlying social dynamics in such formal models.

Note that the latter is conventionally treated under the label of “delegation,” a me
nism whose necessity arises in the context of having introduced per-user authent
and user-based access control; delegation then essentially tries to “undo” some
fine-grained parcellation which per-user authentication generated. An effective de
tion mechanism would have to make explicit the hidden structure of social relation
corresponding to such vague notion as being “friends” with respect to editing a p
A Network-Centric Design for Relationship-Based Rights Management 24

A Conceptual Model of Relationship Management

ady
rs for
ibili-
od-
ail

hat
t any-
ility
. Note
lly be
lity

ten-
ious
cess-
bina-
ges
entry at a given time, etc. Note that we do not claim that it is not possible to devise a suf-
ficiently flexible delegation mechanism for simple tasks; we are concerned with its rela-
tive cost compared to the model described below, including the cost/likelihood of its
standard availability.

Panoptic control: We can apply a model of “panoptic” control that leverages the alre
existing reputation-based community control. The idea is to register stakeholde
every information item (e.g., a member’s profile), and to introduce a system of vis
ties (both push and pull) that will make it unlikely that anyone will create harmful m
ifications. Such visibilities can be in the form of making clear that there will be e-m
notifications for certain actions, or in the form of a publicly visible enriched log file t
provides details about any modifications. Note that the point is not necessarily tha
one would want to look at such information, but the possibility together with the ab
to get back to such information often creates reasonable enforcement of an action
that apart from such visibility creation, the community database can then essentia
left open for anyone (in the community) to edit it in any way—thus giving the flexibi
that members can update profiles for their friends, etc.

Obviously, this setup is still vulnerable in terms of data integrity with respect to in
tional or accidental deletions of entries. This can be dealt with by replication of prev
state and detailed change logs (the ‘remedy’ model). In other words, a practical ac
control solution in the case of maintaining a community database consists of a com
tion of group membership certification and a network of visibilities that make chan
visible and assign responsibility to whoever performs the changes.
A Network-Centric Design for Relationship-Based Rights Management 25

A Conceptual Model of Relationship Management
2.4.4 A Generalized Enforcement Framework

As we shall describe in more detail in the following two chapters, one of the main addi-
tions that we incorporate into the overall control model is to integrate users and their
representations more fully into the access negotiation.

FIGURE 7. The Generalized Enforcement Framework: Integrating Application-Specific User
Interactions into the Control Framework.

In particular, we augment the ISO model by an Access-Control User Dialogue Protocol
that allows control objects such as commpacts to conduct a dialogue with users or their
representations. We implement application-specific ways of exercising enforcement that
appropriately reflects the circumstances of a given domain, notifying users in a user
interface, etc. Figure 7 shows this revised model.

Reference Monitor

Access Control
Decision Facility

(ADF)

Access Control
Enforcement
Facility (AEF)

DecisionRequest

Operation

Target
ObjectUser

OK

CONTEXT

Access Control
User Dialogue

Protocol (AUDP)
A Network-Centric Design for Relationship-Based Rights Management 26

A Network-Centric Architecture for Managing Control Information

ture

rga-
d way.
 in a

. The
aring
ally
day’s
ities
ees of
iron-
se Cal-
ation-
ontrol

ays.
mp-

 in
 third

 con-
w the
aniza-
ts”;
or

n the
n the
3.0 A Network-Centric Architecture
for Managing Control Information

In the previous chapter, we have seen the notion of a commpact as a relationship object.
In this section, we define an architecture that allows us to manage these objects in prin-
ciple anywhere on the network, and we explain how this “network-centric” architec
is a natural generalization of previous architectures.

First, we will survey the three abstract ways in which control information can be o
nized: in a subject-centered way, an object-centered way, or a relationship-centere
We then consider the different ways in which these structures can be distributed
computational environment—as capabilities, access-control lists, or commpacts
boundary conditions and design constraints are somewhat different in time-sh
environments (for which the conventional control architectures were origin
designed); in client-server environments (to which they can be adapted); and in to
networked environments. In the latter, we have to deal with a multiplicity of author
that are often at least theoretically peer-to-peer, and we also have varying degr
trust. This creates a need for flexibly allocating control objects in a networked env
ment. We show how the network-centric architecture enables these usages. We u
lerID negotiations as an example usage scenario to demonstrate how communic
based transactions are more naturally dealt with by a communication-based c
architecture than in conventional, client/server-based control architectures.

3.1 Three Ways of Organizing Control Information:
Subject-based, Object-based, or Relationship-based

Control information can be organized into information structures in three abstract w
Two of these—subject-centered and object-centered—are well-known from the “La
son matrix” [100] that originally introduced ways of organizing control information
time-sharing environments. We revisit both of these possibilities and also lay out a
logical possibility: a relationship-centered way.

The Lampson Matrix

Let us revisit the conventional textbook description of the fundamentals of access
trol: Since the seminal paper of Lampson [100], it has been commonplace to vie
protection problem as a large global access control matrix, where the human-org
tional objects (“subjects”; matrix rows) stand in some authorization relation (“righ
matrix entries) with information objects (“objects”; matrix columns). Cf. Figure 8. F
convenience, it is also common to additionally have “groups” of people included o
subject axis, and, similarly, to have collections of objects, defined by properties, o
object axis.
A Network-Centric Design for Relationship-Based Rights Management 27

A Network-Centric Architecture for Managing Control Information

nd
into
mifi-
ered
 the
ica-

ubject.
indi-

e
 syn-
they
tical

nite)
orld
very

atrix
ct.”
mp-

the
shar-
t the
only
s. In
FIGURE 8. Lampson Access Control Matrix.

Underlying Assumptions

Some of the implicit assumptions behind this Lampson matrix are the following. Note
that we are not challenging the mathematical validity and usefulness of the matrix, but
we want to identify sources of potential problems given the cost structure of obtaining
information in networked environments.

• Subject-Object World: The assumption is that we have notions of “subject” a
“object,” that is to say, for instance, that the quality of “subjecthood” comes
being uniformly and independently of the actual interaction. We detail some ra
cations of this below (cf. also Sandhu [111][112]). Note also that what is consid
“object” here, is of course really something provided by another subject,
“owner,” that is, the real person who is liable and responsible for it. A commun
tion-based model would place this owner on the same level as the requesting s
In the conceptualization of the access control matrix, owners only show up
rectly.

• Interaction-Independent Objects: Note that an “object” might come into existenc
only as part of an interaction. For example, cgi-bin scripts of Web servers can
thesize any number of objects at interaction time, without the stipulation that
necessarily exist prior to this interaction. It is possible to conceive a mathema
matrix which covers all these objects, even if this might stretch the idea of a (fi
matrix quite a bit. But this abstraction does not fully reflect the underlying real-w
dynamics, and it will not be surprising then if it might not capture certain cases
well.

• Interaction-Independent Subjects: A similar issue holds for subjects. Clearly, we
know that there are people and groups of people in the world. However, the qualities
which makes them “subject” or “group” in a given context are assumed in the m
model to be ontologically prior to the interaction between “subject” and “obje
This is generally far from clear. In particular, it depends on the following assu
tion.

• Open-Cards Assumption: This is the assumption that at the point of the access con-
trol decision, all of the information that is critical for the decision is laid out “on
table.” Note that this is a plausible assumption in environments, such as in time-
ing systems, where the system can take on a “Gods-eye” view. It is clearly no
case in peer-to-peer communication environments where two parties might
incrementally reveal properties that they hold, for instance, for privacy reason

O1 O2 O3 O4 ...
Objects

Subjects

S1

S2

S3

...

r

w

r

A Network-Centric Design for Relationship-Based Rights Management 28

A Network-Centric Architecture for Managing Control Information

form
eal-

icial
n of
t that
nly

sub-

lobal
 the
 that

s

it

ays
 the
bject

 each

n in
in the
 rela-
mple

 into
bjects.
fact, as we will later see, for communication-based usages in the general case of con-
tent-dependent and user-dependent access control we easily run into the trouble of
high negotiation cost—a fact that is partly the result of the assumption of uni
subjecthood in the Lampson matrix, which is not realized in the underlying r
world dynamics.

Abstractions that do not fully grasp the underlying dynamics often create artif
“exceptions,” that is, certain cases do not fit smoothly into the framework. The notio
a “role” of a person is one example of such an exception, which arises from the fac
subjecthood is treated as ontologically prior to the interaction by which it might o
come into being. “Roles” are then invented to try to fix this problem by discretizing
jecthood.

Subject-Object Conceptualizations

Having laid out the Lampson matrix, text books would then usually note that this g
matrix is impractical to implement directly, and that there are two ways of realizing
abstract formulation, which correspond to the two fundamental conceptualizations
have been investigated in much detail over the past 25 years:

1. (by column) Object-Centered Realization: For each object, specify which subject
have which access rights to it.

2. (by row) Subject-Centered Realization: For each subject, specify which objects
can access with which rights.

Subject-Subject Conceptualization

Shifting to a communication model and making explicit the fact that rights are alw
granted by owners of objects, we see that a third logical possibility for realizing
Lampson matrix is along the lines of the relationships between the owner of an o
and the holder of a right about this object (cf. Figure 9):

3. (by rights relationship) Relationship-Centered Realization: For each relationship
between object owners and interested users (“licensees”), specify which rights
party holds about the objects covered by this relationship.

In other words, we introduce an explicit third entity, a relationship object, as show
Figure 9. In the object-centered (ACLs) approach, there are three control objects;
subject-centered (capabilities) approach, we get three control objects; and in the
tionship-centered (commpacts) approach, we have two control objects in this exa
(one for each relationship).1

So far we have only considered the abstract organizations of control information
objects; we have not yet examined the orthogonal question where to place such o

1. The example happens to create fewer objects for the relationship-based realization of this typi-
cally sparse matrix than for the other ones. We do not wish to claim that this is necessarily a gen-
eral property of this realization though. In general, the relationship-based form will have a smaller
number of control objects if a lot of objects are governed by a few relationships.
A Network-Centric Design for Relationship-Based Rights Management 29

A Network-Centric Architecture for Managing Control Information

irst,
ccess

ns for

ffer-
FIGURE 9. Realizations of the Lampson Matrix (Revised): Organizations and Uses.

3.2 Three Ways of Embedding Control Objects

Information can be placed and used in a network at three different types of locations:
clients, servers, or anywhere else on the network. Depending on how we distribute con-
trol information, we therefore obtain different models of control management. The
object-based realization lends itself efficiently to use as server-based access-control lists
(ACLs), the subject-based organization as client-based capabilities, and the relation-
ship-based organization as commpacts. Note that commpacts are the only structure that
is symmetric and that is therefore not bound to a specific location.

In the time-sharing environments for which the earliest designs were developed, imple-
menters had homogeneous control over the security and trustworthiness of the different
parts of the system. It was therefore possible to easily associate capabilities with
requesters or ACLs with the accessed objects.

In client/server environments, this architecture generalizes in a fairly straightforward
way; the only difference is now that control information associated with subjects cannot
be trusted quite as much, and we therefore need to authenticate the asserted capabilities
properly, say, by using public-key tokens. Note that this is an authentication of the capa-
bility information itself, apart from the authentication of the subject, which we also
already have in time-sharing environments of course. Also note that a combination of
the ACLs and capabilities, a “lock-key” mechanism, is often used in practice: At f
ACLs are used to determine rights; then these rights are then “compiled” into an a
capability. However, this is really mostly an implementation optimization.

Once we move to a networked environment, we have additional boundary conditio
a control design:

• multiplicity of authorities and trust levels: There is a multiplicity of social authorities
that have a stake in the representation of various control structures, and many differ-
ent trust preferences need to be accommodated.

• peer-to-peer nature: The participants in the environment are peer-to-peer rather than
“supplicant-granter”; at least there is such an equality conceptually even if di
ences in bargaining power do clearly exist in practice.

O1 O2 O3 O4 ... Objects

Subjects

S1

S2

S3
...

r

w

O1: (S1, r)
O3: (S3, w)
O4: (S2, r)

S1: (r, O1)
S2: (r, O4)
S3: (w, O3)

<S1,S3>: (r, S1, O1), (w; S3, O3)
<S1,S2>: (r; S2, O4)

OwnersS3 S1 ...

r

ACLs

Capabilities

Commpacts

Use AsOrganization
A Network-Centric Design for Relationship-Based Rights Management 30

A Network-Centric Architecture for Managing Control Information

ould
server
ontrol

 cli-
mon-
es for

ework
erence
t only
on is
ties of
ple for
e all
 last

f user
ntrol
d set-
sh to
erally

iator”
 cer-
In such an environment, the issue of where to place control information becomes more
critical. In particular, a symmetric control structure such as commpacts—which w
have been unneeded overhead both in time-sharing environments and in client-
environments—become a useful representation. Commpacts allow us to place c
information where it fits given the trust preferences of the relevant stakeholders.

3.3 Understanding Conventional Control Architectures

In this section, we lay out how conventional control architectures that stem from a
ent-server world are ill-suited for peer-to-peer networked access control. We de
strate how the negotiation cost can easily get high in such conventional architectur
usages that are inherently subject-subject communication applications.

FIGURE 10. Authorization Interactions: Decision Facility Requests Attributes.

Let us reconsider the general access control architecture defined in the ISO fram
as discussed in Section 2.4. As we noted there, the basic model is to have a ref
monitor consisting of an enforcement and a decision module that make sure tha
authorized actions can go through without interruption. The authorization decisi
based on evaluating a set of access-control rules that will in turn depend on proper
the system context (e.g., the time), the target object, and the requester. An exam
such a general policy which we might want to accommodate could be “Approv
requests from US citizens for documents which have not been modified since
week.”

Requests from the target’s trusted reference monitor to the user for confirmation o
attributes (“Check with User” in Figure 10) would be intercepted by access co
again—this time by the user’s trusted reference monitor. Note that, in a distribute
ting, each participant has their own authority to determine by which rules they wi
participate in the system, and different users’ trust preferences will therefore gen
not extend to the same reference monitors.

In this general case, the reference monitor takes on more of the role of a “negot
between client and target. Although simplifications are possible in the case where

Reference Monitor

Access Control
Decision Facility

(ADF)

Access Control
Enforcement

Facility (AEF)

DecisionRequest

Fail

Operation Target
Object

User

Check with User

Check with Target

CONTEXTReference Monitor

Access Control
Decision Facility

(ADF)

Access Control
Enforcement

Facility (AEF)

DecisionRequest

OK

Fail

OK
A Network-Centric Design for Relationship-Based Rights Management 31

A Network-Centric Architecture for Managing Control Information

ther

as to
e pri-

 inter-
[113]
not be

 might
e. The
 name
l sys-
illing

esses
de in

e

e

on
te is
tain entities are fully trusted, in general, the rule interactions within a given reference
monitor and those between different reference monitors (user-trusted, target-trusted) are
less than obvious, and the negotiation costs can easily get high. Not only do the access
rules within one system have to be appropriate, but they also have to work together in
the right “incremental revelation” schedule with those of the rules protecting o
objects.

For example, in the nationality-based policy mentioned above, the requester h
understand that when claiming access with respect to this policy, then the otherwis
vate nationality attribute must be revealed to the target’s reference monitor. Such
actions can become complex and difficult to understand, and Moffet and Sloman
conclude that such general, application-independent access control will therefore
practical.

Example: Negotiation Cost for Simple CallerID Interactions

Let us consider as a simple demonstration example a set of rules by which people
want to determine under which circumstances others can call them on the phon
privacy implications of such access rules have been extensively debated under the
“CallerID”. In this case, much can be resolved by going to a general access-contro
tem which enables participants to articulate the conditions under which they are w
to participate in a communication exchange.

Consider the two communication participants Tom and Lisa, each of whom expr
preferences in a set of access-control rules (cf. the Datalog-like pseudoco
Figure 11). Each person has a set of attributes such as name, ID, and callType, which
are communicated only when the corresponding reveal access predicate allows it. Th
phone bell is accessed here by the function connect_call, which determines whether
or not the call will be connected. A notation of A.name is used to access the nam
attribute of A; if this is executed by someone other than A, then A is asked to reveal this
attribute.1 Specifically, reveal is a special predicate about a personal informati
attribute; if there is a rule which makes it true, then the corresponding attribu
returned.

1. There is a certain body of work in distributed logic programming etc. which is looking into how
to transform rule systems in order to minimize communication overhead (e.g., Wolfson and Sil-
berschatz [233], Saraswat et al. [234]). However, these works generally do not consider con-
straints pertaining to boundaries of authority/ownership and privacy of the locally owned rules,
that is, limitations as to which processors can be trusted for what.
A Network-Centric Design for Relationship-Based Rights Management 32

A Network-Centric Architecture for Managing Control Information
FIGURE 11. CallerID Example: Simple Set of Phone-Access Rules.

Figure 12, shown below, lays out the temporal sequence (top-down) of the authorization
interactions when A calls B in the evening. Notice the brittleness of the system: With the
distributed rule authorities, bugs can easily be introduced by one party by not suffi-
ciently considering the possible dynamics which might result from unexpected interac-
tions with the unknown policies at other sites. Indeed, in the general case, not even the
possibility of deadlocks can be ruled out. Not only is the negotiation cost high, but also
the usability of such a system is likely to be low.

FIGURE 12. CallerID Example: ‘A calling B’ Leads to Complex Negotiation.

The underlying reason for this is of course that we have here a coordination problem
which needs a language shared among the participants; if such a language provides
high-level primitives, then the lower-level transactions which account for much of the
negotiation cost can be avoided. Note that A does not know a priori what B wants to
know, and vice versa. Moreover, privacy considerations dictate that only as much infor-
mation as needed to lead to success should be released.

Person B: Lisa

name=’Lisa’.
callType=’private’.

reveal(name) IF isFriend(A).

reveal(callType).

connect_call IF
 NOT block_call AND good_call.

block_call IF
Context.time=’evening’ AND
(A.ID=’6953’ OR NOT A.ID).

good_call IF isFriend(A).

isFriend(A) IF A.name=’Tom’.

Person A: Tom

name=’Tom’.
ID=’72355’.

reveal(name) IF
 B.callType=’private’.

reveal(ID).

A B Con-
text

Please connect_call.

Please reveal ID.

OK. ID=’72355’ .

Please reveal name .
Please reveal callType .

OK. callType=’private’ .

OK. name=’Tom’.

OK. connect_call.

time ?

‘evening’

not block_call

good_call
connect_call

A.name=’Tom’ ?

A.name=’Tom’
isFriend(A)
A Network-Centric Design for Relationship-Based Rights Management 33

A Network-Centric Architecture for Managing Control Information

nt is
n.

13
ity is

ision
 that
ant to
ship
done,
illus-
s that

tho-
ect to
t will
r. The
ecific
t for
The conceptualization which we will suggest as an access control framework is targeted
at avoiding this negotiation complexity by bridging the gap between requester and tar-
get with an intermediate concept, which encapsulates interdependent access control pol-
icies. This would reduce negotiation cost and might enable general access control
policies.

3.4 From Server-Based and Client-Based Control to Network-Centric Control

In this section, we describe a control framework that

• puts control information as first-class objects onto the network,

• encapsulates interdependencies on a per-relationship basis, using a (peer-to-peer)
communication model rather than a client-server model,

First-Class Control Objects

The first step is that rather than attaching control information to controlled information,
the model is that we encapsulate control information into first-class control objects that
designate the objects that they control (by using a constraint). In this way, we keep inde-
pendent two dimensions that are orthogonal: the question of which controls apply and
the question of which objects control is applied to.1 Encapsulating related control infor-
mation helps us to factor out unintended rule interactions and supersede some of the
negotiation cost problem, as we saw it in the previous section.

1. Note that, strictly speaking, it is therefore incorrect to say that “rights languages attach control
information to objects”—since they just need to set it in relation with each other. Attachme
primarily a matter of the delivery mechanism (NNTP, etc.), not a matter of the control desig

Introducing a Network API for Control Requests

The next step is then to allow the control objects to reside in principle anywhere on the
network—which is obviously why we call it a “network-centric” design. Figure
depicts the new control architecture. Effectively, the Access-Control Decision Facil
moved onto the network, and there is a standard API introduced for requests to it.

Relationship-Based Control

The third step is to organize the policies contained in the Access-Control Dec
Facility in a relationship-based way, and distribute the control information in a way
reflects the trust and usage pattern that characterize a given relationship. We w
reconceptualize control information along the lines of relationships. Relation
objects (commpacts) are then the baseline with respect to which authorization is
and we can place them in locations with matching trust expectations. Figure 13
trates how commpact objects have an interface that includes authorization function
are typically performed by an Access-Control Decision Facility.

Commpacts are then effectively a network-centric variant of an ADF. Actions are au
rized by using the commpact that the actor designated as the baseline with resp
which a certain action is to be performed. The choice of the appropriate commpac
usually be determined by preference rules in a way that is transparent to the use
number of commpacts that a person can have is unlimited in principle, although sp
implementations will have resource limitations, of course. There is one commpac
every relationship.
A Network-Centric Design for Relationship-Based Rights Management 34

A Network-Centric Architecture for Managing Control Information

mpact
es that

which
rvice
 con-

rma-
ntered
at a
 third
efault
olled
rchi-
lation-
is for
work
ently
a pub-
 sub-

 by a
riza-
FIGURE 13. Network-Centric Control Architecture.

Network-Centric Architecture

With commpacts residing in principle anywhere on the network, we need an architec-
ture for managing them. We call the object managers that manage commpact objects
simply “commpact managers.” Commpact managers are servers that manage com
objects. In other words, the idea is to have a set of professionally managed servic
deal with control information in a secure and reliable way.

In the network-centric architecture, commpacts stand in a m:n-relationship with the
objects (and services) that they control. Trust management is used to determine
objects accept control by which commpacts. For example, a specific network se
might only trust authorizations from a certain commpact manager. Furthermore, a
straint determines which objects a certain commpact controls.

The network-centric design generalizes the other models of organizing control info
tion: the client-centered, possession-based capabilities model and the server-ce
model. While commpacts can be co-located with the information they control (
server), they do not have to be so; for instance, they might as well just reside with a
party, such as a rights clearing house. However, we can still consider it as the d
case that commpacts will in fact actually just reside with the server of the contr
object, as in conventional access control. The main point in the network-centric a
tecture is that we have the protocols and APIs that give us structured access to re
ship state, independent of the location of this information. This provides the bas
achieving the kind of end-to-end integration between client applications and net
services that we have been targeting. It also gives us the flexibility to independ
instantiate and modify commpacts and the objects that they control. For example,
lisher could provide a pay-per-view contract, and at some later point in addition a
scription agreement for the same online content.

In other words, in the network-centric architecture, we augment network services
network-based authorization facility that functions much in the same way as autho

Reference Monitor

Access Control
Enforcement

Facility (AEF)

DecisionRequestOperation Target
Object

User

CONTEXTReference Monitor Access Control
Decision Facility

(ADF)

Access Control
Enforcement

Facility (AEF)

DecisionRequest

OK

Fail

OK
A Network-Centric Design for Relationship-Based Rights Management 35

A Network-Centric Architecture for Managing Control Information
tion is currently done, but that also provides a principled way of exchanging, managing,
and interacting with such control information.

CallerID Example Revisited

Communication-based usage scenarios can be easily dealt with in a commpact control
architecture. Here is how the CallerID interactions in Figure 14 would look in the com-
munication agreement framework.

FIGURE 14. CallerID Example: ‘A calling B’ with commpacts.

We have to distinguish two cases:

• Normal Case: The two parties are already in a relationship; a commpact exists. The
commpact is referenced by the caller (possibly transparently to the calling person),
and used to authorize the action.

• Negotiation Case: No previously negotiated commpact exists. In this case, a new
commpact that contains the shared control information for this relationship would be
negotiated between the two parties, possibly automatically by using preferences
articulated by the two participants.

Note that a number of special cases which have been raised as objections against the
introduction of Calling-Number identification can be readily dealt with. For example, it
was pointed out in the debates surrounding the CallerID issue that

• certain people like psychiatrists might want to call patients without revealing their
number. This points to the necessity of a blocking feature for some circumstances.

• if someone calls 911 in case of emergency, then the blocking feature, which might
have been enabled, should be ineffective since otherwise the caller cannot be located.

In the commpact model, each of these types of behaviors would basically get a different
commpact. Next to the commpacts mentioned above, there might simply be an Emer-
gencyCallCommpact for calls to 911, and an PatientCallCommpact for cases such
as the one mentioned above.

A B

Please

Commpact
Manager

connect_call

FriendCallCommpact
 to B under FriendCallCommpact

ID
Name

callTypeAuthorized?

Connect.

Yes.
A Network-Centric Design for Relationship-Based Rights Management 36

A Network-Centric Architecture for Managing Control Information

labil-
p to
cess is

om-
APIs/
 way,
ve in
medi-
e wish
 this

ations.

in the
nism to

pact
ve to
t. Sev-
 pur-

otocol
mmu-
y cre-

nts to
 wants
ve the
. The
eed to
phic
t: Ser-

raph-
 this

cannot
s using
mpact

y of the
 that
How-
ngine,
tter.
3.5 Security Implications

Having commpacts reside on the network, managed by specialized commpact manager
servers, clearly has a number of security implications, at least in the general case. As a
first issue, since it is a “network-centric” design, we obviously depend on the avai
ity of the network. Without reliable network access, this architecture will not live u
its full potential. For usages that we have targeted, the assumption of network ac
something that we are willing to take.

Once we get beyond the network availability issue, we have a twofold situation: If c
mpacts are just used to provide structured access to control information (via the
protocols that they define), and if they are managed exclusively in a server-side
then no additional security considerations are implied beyond what we already ha
current systems. For instance, if we run a commpact manager within the same im
ate trusted computing base (e.g. the same machine) as the network service that w
to access-control, and if we tightly control who can instantiate new commpacts with
commpact manager (e.g. no outside person), then we have no new security implic

As soon as a service uses a commpact for authorization that is not located with
same immediate trusted computing base as the service itself, we need a mecha
determine whether this outside commpact is trusted: that is, whether this comm
belongs to our dynamically extended trusted computing base. In particular, we ha
assure that no “bogus” commpact is used to authorize actions that we care abou
eral mechanisms exist to dynamically extend a trusted computing base for such
poses. Parts of the system in Stefik [97] are about exactly this question, using a pr
that extends existing communication protocols by a prologue exchange where co
nicating systems make sure that they trust each other by demonstrating public-ke
dentials to each other.

For our specific purposes, the following scheme can be used by a service that wa
determine whether it can trust an authorization from a commpact that a requester
to use for the service. Every service has one or more providers (“owners”) that ha
right to give others access to it. Network services maintain a list of their providers
problem is then for the service to determine whether a given commpact was agr
by one of its providers. Since services know their providers, standard cryptogra
means can be used to make sure that we are not dealing with an invalid commpac
vices only trust a commpact’s authorization if the commpact can provide a cryptog
ically signed token that shows that (one of) the service’s provider(s) agreed to
commpact. The commpact itself would get hold of this token during negotiation.

Note, however, that the scheme in the previous paragraph is only necessary if we
establish the presence of a trusted computing base through simpler means, such a
the fact that a service is run as part of an Intranet, that it is run on the trusted com
manager of a partnering organization, etc.

3.6 Linking from Content Objects to Rights-Management Information

As we have seen in the previous sections, commpacts are managed independentl
objects that they control. Network services maintain a list of their providers such
they can determine which commpacts they can trust for authorization purposes.
ever, commpacts can control not only network services, such as a Web search e
but also content objects, such as the issues of a subscription-based online newsle
A Network-Centric Design for Relationship-Based Rights Management 37

A Network-Centric Architecture for Managing Control Information

ester-

ndard
of its
g else,

eta-
nally
t infor-
age-
-mail

d a cor-
 4 for
ailable
t sys-

nd at

 and
e of

For content objects, several delivery mechanisms exist, including SMTP, NNTP, and
HTTP; and a variety of packaging formats are used, including MIME and its subtypes as
well as various content container technologies [96][93][143][145]. The question is how
the interface between content objects and commpacts is defined. Specifically, the ques-
tion is how content objects can link to their provider(s). As discussed in the previous
section, all the other aspects are just the same for content objects as for general services.

Commpacts complement secure content container technologies in that they use them as
one of the access-control enforcement facilities from which authorization requests
might originate. Content containers provide a mechanism by which accesses can be
interrupted to make sure that the request is authorized—in our case from a requ
designated commpact.

In order to make the commpact scheme work for content objects delivered by sta
delivery protocols, we need to point to the provider(s) of a content object as part
metadata in its header or in its content container. Note that we do not need anythin
since commpacts are independently managed.

Incidentally, the Dublin Core attribute model [270], for instance, already defines a m
data standard for documents in which rights-management information is intentio
kept outside the scope of the standard, except for a pointer to rights managemen
mation.1 This fits well with the commpact model in that we can use this rights-man
ment attribute to provide a reference to the content object’s provider (owner). For e
and newsgroup articles, we can use document header information such as

X-Provider: martin@Epersons.Stanford.EDU

for the same purpose. Using a name server, an object name can be resolved to fin
responding object handle for the provider’s “e-person” representation (cf. Chapter
further details). From there, we can then request the set of commpacts that are av
for the object. In a distributed object implementation, the name server of this objec
tem would be used.

Alternatively, we could also directly include a list of offers as part of the metadata:

X-Offers: [PayPerViewLicense-34@Licenses.Stanford.EDU]

Such a list would point to corresponding commpact offer objects, that can be fou
some commpact manager.

In summary, the impact of the commpact framework on existing content delivery
packaging mechanisms is minimal. Existing mechanisms meld well with the us
commpacts.

1. The Dublin Core defines a basic set of attributes for documents, such as ‘title’ and ‘author’.

3.7 Related Architectures

Relationship-based control is not the same as what we called client/capabilities-based
control. [95] Capabilities are opaque tokens that reference a relationship context that
itself might still be predominantly defined elsewhere: While the client might possess the
A Network-Centric Design for Relationship-Based Rights Management 38

A Network-Centric Architecture for Managing Control Information

ame
any of
s only
t—
rized
al vs.
the-
 con-
 reify
rade-
ple,
ntent,
et, or

o have
, in the
sage.
and at
token, the interpretation context within which this token is meaningful is usually on the
server.

From a user’s view, capabilities usually appear as the familiar “tickets”—with the s
set of associated problems: when they are lost, they are gone; trying to revoke
them guarantees to be a major enterprise, etc. Unlike full-fledged contracts, ticket
provide limited information about the context within which their use came abou
which is why they are used almost exclusively in situations that are either characte
by low stakes and a strong imbalance of trust/bargaining power (e.g., Joe Individu
National Railway Operations) or low stakes and immediate fulfillment (e.g., movie
ater tickets). For such special cases, tickets are a low-cost variant of externalizing
tract information. Some technical systems (e.g. [96]) take this as a reason to only
tickets and abstain from reifying contracts themselves. While certainly a plausible t
off for many applications, this limits the affordances available for users. For exam
while they might be able to purchase a ticket and use it to gain access to online co
there would be no structured ways of cancelling the contract and returning the tick
just obtaining information about such things as which warranties a good has.

Client-based access control as implemented by SmartCards has been known t
advantages in cases where a policy requires various forms of strings attached, say
form of client-side actions that need to be controlled, such as limiting the time of u
In such cases, we need to make sure that the client has the control information at h
any point of time—even after an initially positive access authorization.
A Network-Centric Design for Relationship-Based Rights Management 39

FIRM: An Infrastructure for Digital Relationship Management

igital
nt of
 of
s we
viron-

stem
e will

odel,
 that

 the
ive a
inally,
g a
esis.

ons,
 well as
online
s a

n of a
allows
t infor-

jects

tion
 light-
” in
4.0 FIRM: An Infrastructure for
Digital Relationship Management

In this chapter, we take the next step towards an implementation model and describe the
kinds of objects and transactions that we can use to realize the commpact framework. In
particular, we will describe the Stanford Framework for Interoperable Rights Manage-
ment (FIRM).

FIRM defines a relationship-based rights management service layer on top of existing
Internet protocols, supporting a host of usages including, but not limited to, digital con-
tracting, privacy negotiations, and network security. These usages can be enabled in an
incremental, bottom-up way since FIRM is designed to be able to evolve naturally from
services present in the current Internet. In particular, FIRM implies an institutional con-
text that does not require the development of any new institutions such as a “D
Property Trust” (Stefik [97]) or a centralized authority to enable the manageme
property rights (IBM [143][144]). FIRM’s centrality properties are only at the level
organizations (via services such as “home providers” and “forms designers,” a
define them in this chapter) rather than at the level of the complete networked en
ment, where we only assume the adoption of a generic interface standard.

FIRM has been prototyped as part of the Stanford Digital Libraries Project in a sy
called RManage, a prototype relationship manager application. In this chapter, w
draw on examples of RManage to illustrate the FIRM network service layer.

Sections 4.1 and 4.2 describe FIRM’s object reifications and its transaction m
respectively. This is followed by a survey of the kinds of user interface affordances
a FIRM implementation can provide. In particular, we will draw on examples from
RManage prototype implementation for this purpose. In Section 4.4, we will then g
sample transaction scenario that describes how the various objects can interact. F
in Section 4.5, we will describe related work. Further explanations of FIRM includin
formal object-request interface specification can be found in the appendix of this th

4.1 Object Reifications

In this section, we describe how we computationally reify objects including pers
and roles of persons, agreements, agreement forms, promises, and constraints, as
the object managers that manage each of the reified objects. The latter include
“home providers,” “forms providers,” and “relationship managers.” The following i
summary of some of the major object reifications in FIRM. See also Figure 15.

E-Person: An e-person is a software agent that is a persistent online representatio
person, or of one of its roles. E-persons have a structured request interface that
clients to request approval, negotiate access conditions, access personal contex
mation, etc.

Home Provider: A home provider is the network service that manages e-person ob
and makes sure that they are constantly available for network requests.

Commpact: A commpact is the computational object that is the digital representa
of an agreement between two or more parties, be it a legal contract or a more
weight “communication pact” (e.g., one related to privacy). It is a “smart contract
A Network-Centric Design for Relationship-Based Rights Management 40

FIRM: An Infrastructure for Digital Relationship Management

ol-

These
nforce
onery”
 in the
 con-
anag-
ntional
aring

special
 dis-

d their
that it is based on code that can generate descriptions about its current state, enforce
some of the terms and conditions, etc.

Commpact Manager: A commpact manager is the network service that keeps, man-
ages, and interprets commpact objects that have been assigned to it.

Commpact Form: A commpact form is the basic template of a commpact. Commpact
forms are the “stationery” that people can customize, fill out, and then offer.

Commpact Forms Provider: A forms provider is the server that makes available a c
lection of commpact forms.

The basic scheme is that form designers develop standard digital contract forms.
are object implementations that can describe their state, that can automatically e
at least some of the policies, etc. These forms are then made available as “stati
that anyone can take, customize, and instantiate. People are represented online
form of an e-person. An e-person is hosted by a home provider; it has its various
tractual relationships (commpacts) managed by any of a number of commpact m
ers. The latter can reside anywhere on the network, whether at a server (conve
access control), at a client (usage control), or with a third party (e.g., a rights cle
house).

Note that some of the terms either are new words or they are phrases used with a
intended meaning; we introduce new words such as ‘commpact’ and ‘e-person’ to
tinguish between real-world objects, such as a legal contract or a real person, an
electronic representation (the digital objects).

FIGURE 15. FIRM Object Reifications: Commpacts and commpact manager, e-persons and home
provider, forms and forms provider.

4.1.1 Reifying (Roles of) Persons: “E-Persons”

E-Person: An e-person is a software agent that is the persistent online representation of
(a role of) a person with a structured request interface. When acting online, users are
identified by a (possibly opaque) handle to their e-person, allowing any communication
clients to talk back to this structured representation. E-persons make it possible to have
certain kinds of transactions take place on behalf of a user without that this user neces-
sarily needs to be involved in it directly. Users can set up default preferences that deter-
mine the actions that the e-person might automatically execute. This includes

%RRN

3DJHV

:HE�VHUYHU

+RPH�3URYLGHU

7LP¶V�
SULYDWH
H�SHUVRQ-HII¶V

H�SHUVRQ

7LP¶V�
6WDQIRUG
H�SHUVRQ

&RPPSDFW�
0DQDJHU

7LP¶V
/LFHQVH

0DUWLQ¶V
6XEVFULSWLRQ

)RUPV�3URYLGHU

6WDQGDUG�
*URXS�/LFHQVH

6LPSOH
5HJLVWUDWLRQ
A Network-Centric Design for Relationship-Based Rights Management 41

FIRM: An Infrastructure for Digital Relationship Management

n a
o infor-
agree-

ividual
 more
on, that

class-
proxy

ne for
 firm.
e, it
ny lia-
er-e-
vail-

etwork
 inter-
g the
 regis-
 this
us to
y inter-

pect to
ng any
word
ts will
 server
negotiating access conditions, for example. A Unix account can be seen as a current
form of a limited version of an e-person.

E-persons are a way of conceptually separating out the reality of a physical person and
the image created by its online behavior. An e-person essentially can be seen as a more
structured generalization of existing variants of this concept, including controlled ways
of getting hold of personal information, requesting (automatic) approvals, leaving
behind notifications, automatically setting up certain standard relationships such as
accounts with content providers, etc.

An e-person has generic (access-controlled) interfaces for information push (e.g.,
receiving e-mail, other notifications, etc.) and information pull (e.g., requests for per-
sonal information, polling for preferences, etc.). Every e-person is also assumed to have
a “notifier,” that is an inbox that provides a uniform way of seeing “what’s new” i
way that accommodates a structured set of actions and that also equally extends t
mation push and pull. E-persons can enter relationships with other e-persons by
ing on commpacts.

One and the same person can have multiple e-persons; for instance, a certain ind
might have one e-person for private and one for business. If a physical person has
than one e-person, one of them can be designated to be the person’s super-e-pers
is, the e-person from which the others “inherit” basic properties of the person, in a
less inheritance scheme. Inheritance means in this case that one object will
requests to another object for a defined set of its properties.

Example: Bob has access to three e-persons, one for him as a private person, o
him in his role as treasurer of an organization, and one for him as a partner of his
His firm agrees to be home provider for all three of them, but, for the private on
grants only limited disk space and for the treasurer one it has disclaimers about a
bilities that might result from it. Bob designated his private e-person to be his sup
person. His birth date is therefore stored with his private e-person, but in principle a
able to the others via inheritance.

E-Persons as User Agents, Enabling a Network Login

The two main functions of an e-person are to act as an agent and to enable a n
login. E-persons represent users online and act on their behalf for certain standard
actions. For instance, e-persons allows users to access information by providin
appropriate passwords that might be necessary for a service, or possibly even by
tering users automatically or by accepting certain contract offers automatically—if
is within the space of what user-defined preference rules endorse. This allows
reduce the transaction costs inherent in a contracting scheme and to keep as man
actions as possible out of the face of the human user.

People have a way of authenticating themselves (the programs they use) with res
one or more of their e-persons. The authentication step itself can be conducted usi
of a variety of schemes, including Kerberos authentication [207] or Unix-style pass
comparisons [171]; but we assume that as a result of such an authentication, clien
obtain an authentication token that can be presented to any server such that the
A Network-Centric Design for Relationship-Based Rights Management 42

FIRM: An Infrastructure for Digital Relationship Management

e
d cryp-
ider’s
twork
d.

 is
rms.
out
d out
ut an
if the

arate
inary

mes-
page
 of a
ews-
r pro-
. (See

rface
(or a
er that
y the
thenti-
indeed
ster’s

 eper-
ation
t net-

nline
value-
can use it to confirm the requester’s identity.1 This token can just be the name of th
user’s chosen e-person and the network address of the client program, both signe
tographically by the e-person’s home provider. Any server can use the home prov
public key to make sure that the program that sent a request from a certain ne
address is in fact associated with the e-person with which it claims to be associate

Once authenticated by a network login, the conceptual assumption is that an e-person
identified by its epersID for every action that it (or one of its user’s programs) perfo
Being identified by an epersID is much like being in a room with other people with
knowing their name or any other attributes; one can “address” others and try to fin
more about them as part of a negotiation, but by default nothing will be known abo
identity. In this sense, an epersID can provide a quasi-anonymous identification
user chooses as a policy to deny inquiries for further personal information.

Note that various limited forms of an e-person currently already exist, albeit disp
and not uniform. For example, a standard Unix account can be seen as a prelim
form of an e-person, limited to a simple information push interface (adding e-mail
sages to its mailbox) and an information pull interface in the form of a Web home
or a directory server entry. Note that the notifier in this example takes on the form
disparate set of units, including a user’s mail inbox, a news inbox for unread n
groups, as well as a variety of notification events in applications such as calenda
grams. The epersID for an account would be simply that person’s e-mail address
the Grassroots system [279] for a more extensive use of the notion of a notifier.)

In the RManage prototype, e-persons are CORBA objects with the request inte
given in the Appendix. User’s client applications convey the string binding handle
name that can be resolved by a naming service) of their person object to any serv
a user might be talking to; this handle is part of a public-key token that is signed b
e-person’s home provider. Augmented servers can then use this information to au
cate the requester—that is, verify that a request from a certain network address is
from the e-person object whose handle was provided—and talk back to the reque
representation about further details. New client programs can directly submit the
sID token; for Web browsers, HTTP cookies are used to send along this inform
with every request. EpersID tokens have an expiration time; they are initialized a
work login time.

1. If the client application is a Web browser, then HTTP cookies can be used to convey this token to
servers. This implementation works well for a limited number of FIRM-enabled services, as in
the RManage prototype. However, at this point, this approach would not work for full-scale use
due to the fact that most browsers currently do not allow HTTP cookies to be accessible to all
servers; cookies are required to be limited to a specific set of servers. Client-side proxies could be
used to get around this problem, but in the case of full-scale use, one probably would want to
incorporate this mechanism more tightly into the HTTP protocol.

4.1.2 Managing E-Persons: “Home Providers”

Home Provider: A home provider is a network service that manages e-person objects
and makes sure that they are always available for requests. It thus provides an “o
home” for persons (in the form of an e-person). Home providers can be seen as a
added extension of current online services and ISPs.
A Network-Centric Design for Relationship-Based Rights Management 43

FIRM: An Infrastructure for Digital Relationship Management

d by
 all the

an e-
d con-
 sup-
bal

of pre-
ities
yees;

 notion
ading
lls
ation-
 user
bers
hich
tions

on
 par-
on
er-
pacts

 fact
rlying

cap-
ation

in the
xter-
rced by
ternet
-mail
l.

 of the

scrip-
mpact
er and
ght not
E-person objects are persistent representations of persons in the online environment,
even if their users are not “logged on” at a given time. They have to be provide
some institution that has the resources to keep the person objects reliably running
time. We call this object manager a “home provider.”

As mentioned in the previous subsection, by making available the abstraction of
person, home providers can serve as privacy intermediaries for their members an
trol access to their personal information and their attention or time. This includes
port in securing proper authentication of their members without requiring glo
identities and consumer-side public keys.

Current online services and Internet Service Providers can be seen as examples
liminary versions of such home providers for consumers on the Internet. Univers
and companies currently provide similar in-house services for students and emplo
each of these can be seen functionally as an instance of a home provider. But the
of a home provider also extends to other domains. In the case of electronic tr
(using EDI standards; cf. [161] for an introduction), the “EDI network provider” fulfi
functions that we attribute more generally to a home provider. These include reput
based management of membership, authenticating members, and certifying
attributes. Generally, home providers will have service contracts with their mem
that allow them to regulate which kinds of electronic activities are binding under w
terms and conditions, and to which rules their members are committed for interac
among themselves.

4.1.3 Reifying Relationships/Agreements: “Commpacts”

Commpact: A commpact is the “relationship object” that is the digital representati
of the agreed-upon terms and conditions of the relationship between two or more
ties, be it a legal contract or a more light-weight articulation of a “communicati
pact.” Commpacts are “smart contracts” in that they have a structured (FIRM) int
face, code that implements behavior, state, and a set of textual descriptions. Comm
contain a mixture of informal textual descriptions and implementation code. The
that both have the same semantics is the responsibility of the designer of the unde
commpact form.

A “commpact” is the electronic representation of the “communication pact” that en
sulates the boundary conditions of a relationship between two or more communic
participants. A major subset of such communication pacts has externalizations
legal world in the form of legal contracts. Other commpacts have quite different e
nalizations and associated enforcement means, such as social conventions enfo
community reputation-based enforcement. For example, anonymous ftp on the In
is conceptually a commpact that says that anyone who identifies herself with her e
address can access the public directories of the file archive and download materia

Architecturally, commpacts are first-class objects that are managed independently
objects about which they provide control behavior. Commpacts designate the objects
about which they are in the form of a constraint about objects. For example, a sub
tion contract for a year’s worth of newspaper issues will be represented by a com
containing a constraint that designates all the objects that are by a certain publish
that have a publication date in a certain range. (Note that some of these issues mi
even exist yet.)
A Network-Centric Design for Relationship-Based Rights Management 44

FIRM: An Infrastructure for Digital Relationship Management

tiation
cts’),
rds,
IRM),

which

e tex-

mpact
ntent
 for
Commpacts have a structure that is formally specified by the APIs defined by FIRM (cf.
the Appendix). Commpacts authorize actions, enforce prerequisites, and provide a way
to live up to obligations, such as by initiating a payment transfer. The piece of text by
which we generally know legal contracts is just the result of one of the many methods
that can be called on commpact objects–but there are also others, including nego
methods (e.g. ‘terminate’), structural messages (‘get me the set of promise obje
and, last but not least, authorization interactions (‘exercise this right’). In other wo
commpacts are objects that have a structured request interface (as defined by F
code that implements their behavior, state, and a set of textual descriptions from
descriptive information can be generated. Cf. Figure 16.

FIGURE 16. Commpacts as “Smart Contract” Objects: FIRM Interface + Code + State + Texts.

Commpacts have a method by which one can obtain a human-readable description
about them. These descriptions are generated dynamically based on the attributes that
commpact objects are defined to have (by the FIRM specification). For instance, in our
prototype system RManage, such a description is an HTML page that describes the
terms and conditions of a subscription contract with links to descriptions of the terms
and conditions of the access right and the payment obligation that are part of this con-
tract. It is the commpact forms designer who makes sure that the textual descriptions
generated by a commpact object reflect the meaning of the underlying structured repre-
sentation.

Commpacts also contain machine-interpretable code that automates parts of their
behavior. In other words, they not only articulate certain promises, but can also enforce
at least some of the terms and conditions of the agreement.

The extent to which contract policies are implemented depends on the extent to which
corresponding infrastructure is available online. For example, various regulations about
dispute resolution in courts will plausibly just be part of the general terms and condi-
tions of the agreement; however, in the hypothetical case where online infrastructure is
available, say, to automatically register complaints with a court, such behavior can be
taken up into the code implementation of the commpact—rather than merely in th
tual descriptions.

Commpacts can be interpreted at any of a number of trusted interpreters (“com
managers”), including interpreters run by (and presumably co-located with) the co
server (conventional “access” control), the client machine (for high interactivity or

&RPPSDFW
*HW'HVFULSWLRQ

6LWH�/LFHQVH
7KH�IROORZLQJ�SDUWLHV
DJUHH�WR�WKH�FRQGLWLRQV

*
HW3URP

LVHV
>3URP

LVH�@ 7H
UP

LQ
DW
H

VWDWXV��YDOLG
FRXQW���

([HUFLVH5LJKW
A Network-Centric Design for Relationship-Based Rights Management 45

FIRM: An Infrastructure for Digital Relationship Management

right

nd
er-
ail-
).

en

he
prom-
 size

 pro-
ate.

es for
more
erizes
 over

) that
tive, a
about
can be
low-
bed-

and a
e cur-
s pro-
g the

eract
izing
ed on
rther

sent
me-
work
hort-
the mobile case), or a third party such as any kinds of “rights clearinghouses” (copy
clearance centers such as CCC, IVY, etc.).

Reifying Contract Law

FIRM closely follows contract law principles [1][2][3] in defining the structure a
behavior of its objects. A FIRM interface specification is available in CORBA’s Int
face Definition Language [5], although nothing in FIRM intrinsically relies on the av
ability of a CORBA distributed object infrastructure (see the Appendix of this thesis

At the most elementary level, commpacts are just a set of enforceable promises betwe
two or more parties. Promises in turn are either rights or obligations. Rights allow their
holders to do something, obligations require them to do something. For example, t
obligation to pay a certain fee for a subscription to a newsletter might be one such
ise as part of a subscription contract. This obligation object could keep track of the
of the outstanding obligation, the past payment history, etc. It might also directly
vide means to initiate an automatic payment transaction, say, just before the due d

Each party participates in an agreement as part of a certain agreement role. Roles are
characterized by a constraint on who can fill the role. There can be two or more rol
one agreement, and each role except for the ‘offeror’ role can possibly be filled by
than one party (instance). A commpact has an ‘AboutItems’ constraint that charact
which items the agreement is about. In other words, the control object quantifies
the objects it controls rather than being attached to these objects.

Promises have components such as a promissory condition (‘ConditionsPrecedent’
specifies which conditions need to be in place before the promise becomes effec
‘ConditionsSubsequent’, and a constraint that specifies the objects that it is
(unless the promise is about the same objects as the commpact). Promises
waived, transferred, etc.—where transferring an obligation is different from just al
ing someone else to fulfill it; in the former but not in the latter case, it becomes em
ded into a new contract context.

Each FIRM object has a method by which one can obtain a description about it
reference to it. The reference includes a persistent name. It might also include th
rent object address, say, for a distributed object, but a persistent name is alway
vided. If applicable, this name can then be resolved into an object address, usin
name server of the object system employed.

Using the Access-Control User Dialogue Protocol (ACUDP), users can directly int
with commpacts, as well as other FIRM objects, for such purposes as custom
parameters, accepting offers, etc. In the simplest case, this protocol is just bas
HTTP using the standard HTML forms/URL-encoded parameters convention. Fu
detail about this can be found in the Appendix.

Not Everything is Reified: Two Examples

While contract law provides the basic conceptual framework for how to repre
objects, not everything is carried over exactly as it is in law. In particular, in legal fra
works, we find various provisions that are geared towards making the framework
more smoothly in the real world, say, by taking into account some of the obvious s
cuts that are likely to be made by people given the cost.
A Network-Centric Design for Relationship-Based Rights Management 46

FIRM: An Infrastructure for Digital Relationship Management

epted
sity to
nce.
tract”
t my
en if

ce the
fra-
g on

arize
ervers
ontrol
Com-
ersons

e and
d basi-
ies to
plica-
hird-
nts of

act
fully

very-
rame-
pact

, and
For example, there is a notion of “silent acceptance,” by which an offer can be acc
without having to explicitly issue an acceptance—but thus also creating the neces
explicitly reject an unwanted offer that might otherwise qualify for silent accepta
Another example of such a transaction cost issue is the concept of a “unilateral con
(a promise given in exchange for an act, such as “I pay you $100 if you pain
house”), where a mere fulfillment action would already bind the promising party ev
no separate, explicit acceptance action ever took place.

We have usually chosen not to reify such cases in our digital representation sin
cost of executing an additional protocol action is relatively minor in an electronic in
structure relative to the cost of the additional ambiguity that is created by relyin
such short-cuts.

4.1.4 Managing Commpacts for an E-Person: “Commpact Managers”

Commpact Manager: A commpact manager is the digital process that keeps, manages,
and interprets commpact objects that have been deposited with it. Commpact managers
can be co-located with clients, servers (conventional access control), or trusted third
parties (e.g., rights clearing houses). Every e-person has a default commpact manager.

Commpact managers are essentially the network-centric realization of a conventional
authorization reference monitor—using relationships as the unit by which to modul
this authorization module in a distributed environment. Commpact managers are s
specialized for security and access control; they are the entities that manage c
information in the same way as we have servers managing content information.
mpact managers essentially act as a “personal relationship managers” for the e-p
whose relationships they maintain.

Commpacts can in principle reside at any commpact manager on the network. On
the same commpact can also reside at more than one site. Such replication woul
cally correspond to the real-world case where an agreement is distributed in cop
the agreement parties instead of being deposited with a third party. In particular, re
tion to the client-side is useful in case of “usage” rights; replication to a trusted t
party is useful in certain cases of lacking trust or of the need to access large amou
data that cannot be moved elsewhere easily.

4.1.5 Reifying Standard Contract Templates: “Commpact Forms”

Commpact Form: A commpact form is the basic “template” of a commpact. Commp
forms are much like a standard rental agreement in that they have been care
designed by someone once, but then they are readily available as “stationery” to e
one else; general users can simply take such a form, customize it, fill in some pa
ters (such as the actual price offered, etc.), and then declare it an offer. Comm
forms are assumed to be designed by what we call a “commpact forms designer”
they are made accessible through “commpact forms providers.”

Commpacts are based on shareable (possibly standard) commpact forms. Forms are
objects themselves. From every commpact, one can obtain its basic form. The notion of
having standard templates of commpacts serves the purpose of keeping things simple
for end-users and dealing with complexity at design time. At the same time, any quali-
fied person can define a new form and make it available to others.
A Network-Centric Design for Relationship-Based Rights Management 47

FIRM: An Infrastructure for Digital Relationship Management

vel-
ch as

avior
scrip-

e com-
t this
party

 do not
eified
 there
oints
 Elec-
sso-

limit
thers
refer-
thods
l ele-
of the
Standard forms make it possible to encapsulate possibly complex behavior at design
time, and they provide a mechanism by which parties other than the ones that are
directly involved in the negotiation of a specific relationship can contribute useful work.
In other words, having a mechanism for forms defines a market for offering services
that make it easier for interested parties to draft offers about certain types of relation-
ships.

Encapsulation is also significant in terms of the third-party reputation that such bundles
can acquire, and the reputation-based efficiencies that this introduces for end-users. For
instance, general consumers usually find prepackaged choices more usable than micro-
managing a larger number of individual decisions, some of which they might not care
about in detail, others of which they might find themselves not even to be competent to
decide about.

“Commpact Forms Designers”: Developing Shared Commpact Forms

A forms designer is the original contributor of a commpact form. Such designers should
have domain expertise combined with an ability to provide the corresponding imple-
mentation that is necessary together with various textual descriptions to make up a com-
plete commpact form.

Defining a new form is analogous to coming up with a new standard rental agreement
form, that is, a task that most people would generally not take on themselves; at best
they would want to customize an existing form. While in principle anyone could define
a new commpact form, we expect that this will be an infrequent case; new forms are
likely to be provided by professionals at trusted proxies, such as home provider admin-
istrators, librarians, security officers, or an informal variety of the kinds of “local de
opers” that Nardi [250] finds are so useful in helping people use applications su
spreadsheets.

It is the forms designer’s authority that guarantees the fact that a commpact’s beh
corresponds to what its descriptions say, i.e., that the semantics of the textual de
tions and the semantics of the behavior of the associated implementation code ar
patible. It is then up to the users of such a form to decide whether or not they trus
implementation, based on the reputation of the forms designer and other third-
information.

Forms designers do not necessarily need to be forms providers themselves; they
even necessarily have to be online. Forms designers are therefore not explicitly r
(in any specific other form than being referenceable as an e-person). In particular,
can be a multiplicity of such forms designers in a way that lays open the different p
of view one might have. For instance, one might have forms recommended by the
tronic Privacy Information Center, forms recommended by the Direct Marketing A
ciation, etc.

Commpact forms can have different degrees of customizability. While some might
customization to the option of crossing out a certain obligation or a certain right, o
might allow people to insert different kinds of constraints and add more personal p
ences. Designing a form involves providing an implementation of those basic me
of a commpact object that one wishes to override. Part of this is providing textua
ments from which textual descriptions can be generated that describe the state
commpact.
A Network-Centric Design for Relationship-Based Rights Management 48

FIRM: An Infrastructure for Digital Relationship Management

s, but

d for
ously

way
otocol
 these
er the
mple,
 which
mati-
eed

(e.g.
 a dis-
 the
ed in
4.1.6 Making Available Commpact Forms: “Forms Providers”

Commpact Forms Provider: A forms provider is the service that actually operates an
online server carrying a collection of commpact forms that is searchable or browsable.

Forms providers are a subclass of commpact managers that specialize in commpacts in
their ‘form’ state. Forms providers will often be the same authority as the designer
they are not required to be so.

4.2 Transaction Model

FIRM defines a programmable infrastructure for negotiating new relationships an
authorizing actions based on existing relationships by exercising rights of a previ
negotiated agreement. This protocol mirrors contract law practices.

As indicated in Figure 17, the bulk of the low-level transactions in FIRM are kept a
from users by having a user’s e-person agent execute and respond to FIRM pr
actions on a user’s behalf. Users only specify the basic preferences that guide
actions, and the e-person takes care that any complexity remains invisible “und
hood” unless a certain case is not covered by any default rule. In RManage, for exa
users can use an ‘e-person control panel’ to articulate basic preferences such as
offers an e-person should automatically accept or which obligations it should auto
cally fulfill. In this way, many actions can be dealt with automatically without the n
for a user to deal with low-level issues.

FIGURE 17. Transactions in FIRM.

Note that while the client-server transactions can use conventional protocols
HTTP), the FIRM protocol can be based on more sophisticated mechanisms (e.g.,
tributed object infrastructure such as IIOP/Corba [242]). FIRM itself is neutral to
type of protocol used for this purpose, although the current specification is describ
terms of a distributed object environment.

The FIRM protocol has been designed with the following goals in mind:

• Simple cases are simple in the FIRM protocol. In particular, a typical specialization
turns out to be essentially the same as standard HTTP authorization.

• Complex cases are uniformly possible. The main point is then that the FIRM proto-
col uniformly extends to cases that are not possible in existing protocols, such as
negotiating new relationships. It accommodates sophisticated negotiation and con-

Server
Client *HW

5HVXOW

),50�ULJKWV�SURWRFRO

 program

Tom’s
E-person

Tom
A Network-Centric Design for Relationship-Based Rights Management 49

FIRM: An Infrastructure for Digital Relationship Management

 can
of the
ge 17
-state
ation.

 dis-
act of
tocol

ted

ven

.

trol behavior, although the number of message exchanges will of course scale with
the complexity of what one tries to accomplish.

In this section, we describe both of the transactional modes of FIRM: the negotiation
mode and the performance mode. A more formal specification of FIRM can be found in
the Appendix.

4.2.1 Negotiation Mode: Establishing Mutual Assent About an Agreement

Commpacts are agreed upon as a result of a negotiation according to a general, domain-
and content-independent protocol, which is designed to reflect legal contract practices.

Negotiation States and Transitions

As we outlined in our description of the conceptual commpact model in Section 2.0, the
basic actions are that of issuing an offer, negotiating it, and accepting or rejecting it, or
revoking it by the party who issued it. Successfully formed, “effective” agreements
also be terminated and renegotiated—in which case a new offer takes the place
previous offer, and a new negotiation is started. This is indicated in Figure 4 on pa
which is repeated here for convenience as Figure 18. This figure shows a finite
diagram that defines the overall process that can lead to a successful contract form

FIGURE 18. Negotiation: States and Transitions. (Repeated)

While Figure 18 indicates the basic transitions, at the action level, we would like to
tinguish between the act of requesting a certain transition to take place and the
declaring this transition to have taken place. This gives us the following set of pro
actions, two for each transition type:

RequestDeclareItAnOffer: For a given set of promises as part of a newly draf
commpact, request that it be declared an offer.
DeclareItAnOffer: As above, but actually declare it an offer now.
RequestAcceptOffer: Issue a request to accept a given offer.
DeclareOfferAccepted: Declare this offer to be actually accepted.
RequestModifyOffer: Issue a request to modify one or more attributes of a gi
offer.
DeclareOfferModified: Declare an offer to be modified in one or more attributes
RequestRevokeOffer: Request an offer to be revoked if possible.
DeclareOfferRevoked: Declare the offer to be actually revoked.

B: AcceptA: Offer
Offer

Effec-

A,B: Terminate
B: Reject

Offer

A,B: Renegotiate tive

A: Take Ter-

ted
min-

by A

by B

Form Draft

A: Revoke

A: Reject

B: Revoke

B: Offer A: Accept
A Network-Centric Design for Relationship-Based Rights Management 50

FIRM: An Infrastructure for Digital Relationship Management

 take
ld be
 been
r this

otocol
tifies
 parties
e the

arately
ectly
ination
quest
 path
ously.

pting
ctices
y. If a
 reduc-
 inter-
ant to
by the
ut this
airly
lude

 offer,
RequestRejectOffer: Request the rejection of an offer.
DeclareOfferRejected: Declare the offer to be rejected now.
RequestTerminateCommpact: Request the termination of an effective commpact.
DeclareCommpactTerminated: Declare the commpact to be terminated.
RequestRenegotiate: For a given commpact, request a renegotation of it.
DeclareAcceptRenegotiate: Declare that a given commpact is under renegotia-
tion.

There are a number of reasons why we introduce two different actions (one for request-
ing and one for declaring), including the fact that

• this accommodates the case in which different parties (e.g., another agreement party,
an independent third party, etc.) execute the different parts of one type of action; and

• this allows the model to reflect situations in which actions have been requested but
not yet succeeded.

As an example consider that we have successfully formed a commpact that one party
would like to terminate. This party would then issue a RequestTerminateCommpact
action. In many cases, this might automatically lead to a DeclareCommpactTermi-
nated action. However, in some cases, the request action might require authorization
from the other commpact parties—and the corresponding declare action would
place only after having obtained this authorization. In particular, note that there cou
a time delay during which the state of the commpact is such that termination has
requested by one party, while the commpact still gathers information about whethe
party has the right to terminate the agreement.

Another case to consider is that request actions can include other parties in the pr
in a structured way. For instance, there might be a “supervising” third party that cer
the negotiation process, as in many real-estate negotiations. Then the agreement
would issue the request actions to this third party, which would then in turn issu
corresponding declare actions.

Often, shortcuts will be possible that avoid the need to have a request action sep
from a corresponding declare action. In particular, if a party can successfully dir
declare a commpact to be terminated, then there is no need to request this term
first—and wait for a corresponding declare action in the successful case. The re
actions are only provided to cover a larger set of interactions, and to lead the
towards an implementation model where such actions can be executed asynchron

In the above protocol, we also incorporated actions for submitting and acce
requests to modify a given offer or agreement. This is to accommodate typical pra
as well as transactional efficiencies, more than it necessarily reflects legal theor
merchant offers a good for a certain price, and an interested buyer asks for a price
tion and the merchant agrees, then the legal framework presumably would either
pret the change request as an “out-of-band communication” that leads the merch
issue a new, adjusted offer, or it would posit that there was a counter-offer issued
buyer that automatically cancels any previous offers between the two parties abo
object (switching the offeror-offeree roles though). However, the latter is clearly a f
inefficient mechanism transactionally for such a common practice. We therefore inc
additional protocol actions to submit and accept requests for changes in a given
and endorse the out-of-band communication interpretation.
A Network-Centric Design for Relationship-Based Rights Management 51

FIRM: An Infrastructure for Digital Relationship Management

” can
tocol
 inde-

d an
s an

w:

 the
 offer

and a
hese
ction

iza-

uest
ls.

cur-
“Race Conditions”

In a distributed environment of concurrent processes, a number of “race conditions
happen that might lead to an arbitrary state if they are not dealt with in the pro
design. Such concurrency-related race conditions are situations where two parties
pendently initiate an action without knowledge that the other party also initiate
action and, depending on which action is given priority, two different states result. A
example, consider the following two situations that are classic cases in contract la

• Crossing Paths Revocation-Acceptance: It might happen that the revocation request
for an offer crosses paths with an acceptance request. The question needs to be
resolved whether the acceptance takes precedence over the revocation (and the off-
eror is bound by his offer), or whether the revocation has priority—in which case
accepting party will have reacted to an offer that then turned out to be not an
any more.

• Crossing Paths Termination-Authorization: Another case is that a commpact is
requested to be terminated by one party (that has the right to terminate the agree-
ment), and the other one just requested to be authorized for another action. We need
to have a policy by which we can resolve the question whether or not an action can
be still authorized under such circumstances.

In general, the policies that we assume in such cases are motivated by the way in which
these issues are dealt with by the various contract law principles (cf. [1][2][3][14]). An
additional complication arises in these cases, based on the fact that different legal sys-
tems deal differently with each of these cases. In the United States, the acceptance will
generally be considered effective on dispatch, while the revocation is effective only on
receipt (cf. [1]:par. 136). In other countries, it is the receipt that matters in each case.

We resolve the issue of such negotiation-related race conditions by defining the granu-
larity of actions in a way that makes it possible to implement solutions in an unambigu-
ous way. In particular, since we intentionally separate each action into a ‘request’
‘declare’ part and since we are dealing with an environment in which each of t
actions will take place in reasonably short time (a property that is not true for the a
as a whole, though), we can adopt the following policies:

• The time of an action is the time at which the method call is received at the requested
object. Note that this also makes sure that all actions are measured with the same
“server time”—thus making it unnecessary to implement complicated synchron
tion measures for the times between different machines.

• The mapping onto the legal framework is that the completion of a request action is
interpreted as the dispatch of a message, while the completion of a declare action is
interpreted as the reception of a message.

• Request actions can block the performance of concurrent request actions if their
types collide in the legal system that governs the contract formation, that is, for
instance, in the United States, a ‘request accept’ action would block a ‘req
revoke’ action until either a ‘declare accept’ action follows or the acceptance fai

In other words, we use a standard blocking solution to implement policies for con
rency-related race conditions.
A Network-Centric Design for Relationship-Based Rights Management 52

FIRM: An Infrastructure for Digital Relationship Management
User Interface Affordances

Let us describe here the basic affordances for the various participants in a negotiation
process: offerors, offerees, where each can possibly be supported by an agent.

Offeror From the perspective of the offeror (e.g. a publisher), there are affordances to

• draft an offer. People have some form of an editor that they can use to fill in con-
crete numbers into boiler-plate agreements, customize them, etc.

• declare an offer. When the drafting process is finalized, users have a way of declar-
ing it to be an offer now.

• revoke an offer. Outstanding offers can be called back by revoking them

• terminate an agreement. Effective agreements can be terminated. In addition, in
case all promises were declared to be fulfilled, agreements are also declared to be
terminated.

Each of these actions is supported by a corresponding method on commpact objects (cf.
the next section). Offers include restrictions pertaining to how long they will be effec-
tive. Declaring an offer creates the liability of an outstanding offer. It can only be
retracted by a revocation request. Any action is itself subject to authorization and might
therefore not be feasible. For example, terminating a commpact is only possible if one
has a corresponding termination right; revoking it requires a revocation right, etc.

Negotiation starts with the drafting of an offer. Offers are based on drafts and forms.
Forms can be obtained from searchable collections operated by forms providers. More-
over, from any existing commpact (draft, offer, effective, etc.), one can obtain the base
form that it was created with. Once we have a form, we can turn it into a draft and cus-
tomize it in various forms. Associated constraints and promises can be modified. Once
the offeror is satisfied with a draft, it can declared to be an offer, available to a certain
set of e-persons.

In other words, for the purpose of creating an offer, there is a way for users to

• search for and select a commpact form from one of a number of forms providers,
say, by some form of browsing in the simplest case,

• customize it (by modifying, adding, or deleting constraints, promises, object desig-
nators, etc.) and fill in defining parameters, such as the actual price to charge, etc.,

• declare it an offer.

Offeree From the perspective of the offeree, we have the ability to

• view a set of other people’s offers. For instance, one might want to view all the com-
mpacts applicable to a certain object that one is interested in, or all the commpacts
one can have with a certain e-person.

• reject an offer. This might be useful in the context of a larger negotiation process in
which an offeror might release offers in some sequential manner, and only offer new
ones after the outstanding ones were rejected.

• counter an offer. Counter offers are essentially just offers in response to other offers.
As with conventional contract law practices, a counter offer is assumed to automati-
cally cancel any outstanding previous offers.
A Network-Centric Design for Relationship-Based Rights Management 53

FIRM: An Infrastructure for Digital Relationship Management

ill be
 a
ger.

ssume

by a
le, if

s han-
n that

 e-per-
ublic
 from
y the
ddress
• accept one such offer and make the agreement effective. This will lead to a check of
the commpact’s precedent conditions. Then, if these are fine, a new offer w
“cloned” from the previous one (if it is valid multiple times). Most importantly,
commpact of status ‘effective’ will be created at a designated commpact mana

• renegotiate an agreement. Agreements can be renegotiated at the suggestion of one
of the parties. This will spawn a separate negotiation dialogue.

• terminate an effective agreement.

Along the same lines, creating an offer is much like creating any other object in that
there needs to be some commpact that authorizes this creation.

4.2.2 Performance Mode: Making Use of an Established Agreement

As we have described in Chapter 3, commpacts effectively realize a distributed authori-
zation reference monitor. Given a user, a commpact, and an item or service that the user
is interested in, it can be decided whether this action is acceptable (endorsed by a right)
or whether it might be required (by an obligation).

Server From the view of a server, FIRM primarily comes into play as an augmentation of the
authorization module. Consider a request that is received at a FIRM-enabled server,
e.g., an HTTP request to a Web server or some other request using some other protocol.
One of two cases is possible:

• Either the request includes a handle to the actor’s e-person, in which case we a
that the augmented authorization protocol of FIRM is to be used, or

• it does not, in which case we use any other default authorization, e.g., the conven-
tional HTTP authorization.

Recall that after a “network login” (cf. Section 4.1.1), users are always identified
(possibly public-key signed) token that gives a handle to their e-person. For examp
they use a Web browser as their client program, then the mechanism by which thi
dle can be communicated is by using HTTP cookies; these cookies are informatio
is sent along with requests to servers.

Assume we are now at the server, receiving a request that includes a handle to an
son. The first step will be to authenticate this handle by checking it against the p
key of the e-person’s home provider. This will assure us that the request coming in
a certain network address is really associated with the e-person mentioned b
request—since we get a token that has a signature on the fact that this network a
and the e-person are connected.
A Network-Centric Design for Relationship-Based Rights Management 54

FIRM: An Infrastructure for Digital Relationship Management

pact’
for the
d use
 ade-
one.

es-

erson

, the

erty
r of
ialog
ent,

 the
he lat-
n arbi-
d not
that it
r of the
FIGURE 19. Negotiating a New Relationship.

E-person One of two cases is now possible again. Either the request already includes a reference
to the commpact that is to be used, or it does not. If there is such a reference, then we
proceed with this handle. If no reference was part of the request, we first need to ask the
e-person about which commpact it wants to use—using the ‘GetDefaultComm
method of e-persons that returns a reference to a commpact that is to be used
given circumstances (cf. the Appendix). The e-person itself will act as an agent an
its default rules and preferences to determine whether it can uniquely identify an
quate commpact on behalf of its user. If it is able to do so, then it will return this
Otherwise, the it will do one of two things:

• Either the e-person will indicate to the server that no default commpact can be deter-
mined. At this point, most servers will cause some form of a “Not Authorized”-m
sage to be sent.

• Or the e-person will try to negotiate a new commpact that it can then use to access
the service. See Figure 19 for this case. The e-person will ask the offeror’s e-p
for the offers that exist about the relevant item or service.
• Then, in case this offer falls under the e-person’s “auto-accept” preferences

e-person will automatically accept it and then use it to perform the action.
• If the offer does not qualify for automatic acceptance, then it will be added to the

e-person’s notifier. The user can then look at this offer and decide at lib
whether or not to accept it. Notifier objects might react in one of a numbe
ways to include the e-person’s user into the feedback loop: by popping up d
boxes if the user is currently present, by inserting it into an inbox if not pres
etc.

Server Once the server is pointed to the commpact to use, it will decide whether
commpact’s interpreter is trusted and whether the commpact is a legitimate one. T
ter will make sure that an actor cannot designate just any (bogus) commpact at a
trarily chosen site—and use it to authorize actions that the real rights holder woul
have granted. A commpact is legitimate if it was really agreed upon by the parties
claims to have been so; servers can ensure this by checking whether the promiso

���*HW�DOO�RIIHUV�DERXW�LWHP�RU�VHUYLFH
���/LVW�RI�SRLQWHUV�WR�RIIHUV
���$FFHSW�FKRVHQ�RIIHU
���2IIHU�DFFHSWHG
���2IIHU�DFFHSWHG��RSWLRQDOO\�

3,4

1
5

2
e-person

CommpactOfferee

Offeror’s
e-person
A Network-Centric Design for Relationship-Based Rights Management 55

FIRM: An Infrastructure for Digital Relationship Management

uested

-person
. This

cep-
t first

ns; in
arable

 in the
cognize
IRM-
 that

those

 list of

horiz-
mu-
 an

the e-
ld have
then
sac-
ight

ver-
commpact’s promise that is to be exercised is indeed one of the offerors of the req
object at the server.1

Now let us assume that the server possesses validated handles to the actor’s e
and the preferred commpact. This is the basic input to an authorization decision
decision consists quite simply then of

• getting hold of the right that we want to exercise,

• exercising this right.

Exercising the right without any exception corresponds to a positive authorization. If we
get any kind of exception, then the action is either not authorized or its circumstances
are more specifically qualified. For instance, consider a ‘WaterMarkRequired’ ex
tion that would tell the server that it can send out the requested information, but i
needs to watermark it appropriately.

Note that the above appears complicated, but it really considers a lot of exceptio
the normal case this reduces to a few transactions with an overhead that is comp
to current authorization schemes for the same types of authorizations.

In the case of a simple server-based relationship, the required rights object can be
same address space as the server, and we should therefore hardly be able to re
much difference in transaction cost between a conventional authorization and F
enabled authorization. But with the additional infrastructure, we have a scheme
generalizes smoothly to more sophisticated authorization interactions, including
not possible with simpler schemes.

1. Note that one object can have more than one offeror, but adding a new offeror to an object’s
offerors will require a corresponding right to do so.

Client As mentioned above, the conceptual assumption is that actions are performed with
respect to the context of a designated commpact—which will then be used for aut
ing this action. In other words, from the client’s view, we need to have a way of com
nicating a reference to the commpact with respect to which we want to perform
action. In FIRM, this task is split up between the (human) user and its e-person—
person acts as an agent and tries to take over all those decisions that its user wou
taken in all likelihood as well (based on user-determined preferences); it would
automatically pick an applicable default commpact, thus reducing the overall tran
tion costs of the contracting scheme. A possible user interface implementation m
look like the following for a given action:

• If the actor is presently using the client interface and explicitly designates an “o
ride commpact,” use this one.

• Otherwise, check whether the e-person is able to identify an applicable default
commpact. If yes, take it.

• Otherwise, enter negotiation: Ask the owner (or any other provider) of the requested
object/service about which offers exist for it, etc.

• Let the e-person determine whether it can automatically accept one of the offers
based on its preference rules. If yes, accept the offer and then use it for performing
the action.
A Network-Centric Design for Relationship-Based Rights Management 56

FIRM: An Infrastructure for Digital Relationship Management

rs as

in a
that

 will
ation-

nces
ips,
t to

 each

 step
 is the
that
quent,
stem,
ains,
akes

lica-
 then
y ser-

wser)
word.
 then

 net-
• Otherwise, add a message to the e-person’s notifier with a selected list of offe
an attachment.

In Section 4.3, we will see an example of this behavior.

4.3 The User’s View: Examples from the RManage Prototype

In this section, we describe how the kinds of affordances that FIRM enables appear at
the user-conceptual level. We use the RManage implementation of FIRM as an demon-
stration example. Specifically, we will also introduce the RManage/DLITE viewer, a
prototype relationship management interface targeted at expert users, including publish-
ers, librarians, and other information/service providers, that was implemented as part of
the Stanford Digital Libraries Project using the DLITE toolkit [249] and the Stanford
Infobus infrastructure [253]. The Stanford Infobus is a CORBA-based distributed object
infrastructure that provides higher-level information management service layers for
managing items and collections, metadata, search, and payment. The RManage/DLITE
viewer runs side-by-side with a conventional Web browser and provides augmented
direct-manipulation affordances to make it easy to interact with FIRM objects—
way that is integrated with the Web browser via HTML forms, etc. Note however
alternative interfaces could be implemented on top of the FIRM platform as well.

At first, we will look at the user interface affordances for general users. Then, we
describe the additional affordances that are available to those who offer new rel
ships.

4.3.1 User Interface Affordances for General Users

RManage provides for four major types of affordances for general users: Afforda
for identifying oneself, for viewing and manilpulating the state of one’s relationsh
for controlling what to delegate to one’s e-person, and for controlling the exten
which one wants to be informed about events in different relationships. We look at
of them in turn.

Identifying Oneself: Network Login

Identifying who a certain user is and authenticating this information is a necessary
that cannot be avoided, although it can be designed to incur less overhead than
case in many current systems. In particular, we provide a network login facility
requires people to authenticate themselves only once. Once logged in, all subse
service-specific authentications that might be necessary are dealt with by the sy
not the user. Note that while there exist network login mechanisms for limited dom
the Web currently does not have a standard mechanism for a network login. This m
it necessary to register again with every new service.

RManage implements a network login by initially authenticating a user’s client app
tion(s) with respect to the e-person of the user. These client applications can
include a handle to the e-person object when performing network requests, and an
vice has then a way of getting back to the user’s e-person.

From a user’s perspective, there exists a client program (e.g. a form in a Web bro
through which users can provide simple authentication information, such as a pass
This password is used by the e-person to authenticate the identity of a user. From
on, all programs know who the user is and how to interact with any server on the
A Network-Centric Design for Relationship-Based Rights Management 57

FIRM: An Infrastructure for Digital Relationship Management

s an
cation
nager

iron-
e fact
tions
te that
; they
ch is
rther

ock-
ropri-
ntact
 in
en in
ned by
ze
at this
ubse-
n and
 that,
work. Note that in specific usage contexts, we can even further reduce the overhead that
is created by the need to provide a password. For example, when running programs as
part of a Unix account, then RManage can make use of the authentication required to
log in to this account.

Under the hood, the following interactions would happen as part of such a typical net-
work login. Let us consider the case of the user interacting with a networked PC, say,
running two applications.

FIGURE 20. Network Login Interactions.

First, let us describe the notion of a “Local Resource Manager” (LRM). The LRM i
object that knows about the local resources that a user has around the physical lo
where he or she is using a specific computer. For example, the Local Resource Ma
object will know about the fact that a certain printer is part of the same work env
ment as a certain display monitor. Note that the need for an LRM is created by th
that client programs can essentially anywhere on the network. Two such applica
might not even know that they appear on the same screen to one specific user. No
LRMs are a necessary entity in a networked system based on distributed objects
enable us to view a document and then print it locally for example—something whi
not possible in systems without an LRM object, such as Marimba’s Castanet. For fu
detail, see also [249].

Consider now the following login interactions, reading Figure 20 from the user cl
wise around a circle. A user interacts with some client program and provides app
ate authentication information (e.g. a password). This client program will then co
the “Local Resource Manager” (LRM) to ask it to perform a network login. The LRM
turn will contact the user’s designated e-person, and obtain an authentication tok
exchange for a correct password. This token is a handle to the e-person object, sig
the home provider’s private public-key-cryptography key. The LRM will now initiali
any of the user’s client-side programs (e.g. a Web browser) with this token such th
application can send it along with every request. This allows then any of the s
quently contacted services (e.g. Web servers) to talk back to the user’s e-perso
automatically negotiate further access conditions (dashed horizontal arrow). Note

Home Provider

Epers723E-persons e.g. Web Server

e.g. a PC with
two network applications
running (Web browser, etc.)

LRM Local Resource Manager (LRM)

Password

Token:

 signed hash}
{Epers723,

N

Get index.html
ID: {Epers723, signed hash}
A Network-Centric Design for Relationship-Based Rights Management 58

FIRM: An Infrastructure for Digital Relationship Management

tured
k in
on to
ffor-

 kinds
 have
d is a

ly.”
iously,

, since
for the last step, application-specific mechanisms need to be exploited. For example, to
have a Web browser send along an identification token with every request, the LRM can
use the HTTP cookie mechanism that is now available in most Web browsers.

The above scheme generalizes readily to the use of multiple e-persons. In this case, we
will generally only require users to authenticate themselves with respect to one e-per-
son, which will then perform further authentications to other e-persons if applicable.

Viewing and Manipulating One’s Relationships

RManage provides users with a uniform interface to the relationships that they have
with the various providers of FIRM-compatible network services. Figure 21 is a sample
view that shows how users can list their relationships, and how they can initiate associ-
ated actions such as payment transfers in the Web-based RManage client in their noti-
fier.

For each of the relationships (“digital contracts”), a page that provides a struc
description of the relationship’s current state can be obtained by following the lin
the listing. This page will then provide a generic set of affordances that are comm
all relationships—such as the ability to terminate—and a set of type-specific a
dances, such as renewal and payment options.

FIGURE 21. Relationship View in RManage.

Controlling What to Delegate to an Agent: E-Person Preferences

By using an e-person, a software agent can take over replying to the bulk of those
of requests for which it is clear how the user that the e-person represents would
dealt with. The exact degree to which such requests will be automatically answere
user choice that can range from “fully automatic” to “always ask me explicit
Requests sent to an e-person might include requests to accept a certain offer. Obv
nobody would want his or her e-person to automatically accept every such request
A Network-Centric Design for Relationship-Based Rights Management 59

FIRM: An Infrastructure for Digital Relationship Management

eters
to any
ace
lsen’s

ent
ll all

llow-

 for the
een-
ptions

l),
mple, a
 be
ists a
xtual
ns is

 and
 new

erson
ments
nts if
d site.
ss are
 mes-
price

ow”
n a
 data-
item to
this might result in unwanted liabilities. Therefore, more reasonable preferences for the
e-person would typically include the type of offer, the size of the liabilities created, etc.

RManage implements two simple forms of e-person preferences to reduce the social
transactions that are involved in negotiating new agreements: Auto-Accept and Auto-
Fulfill:

• Auto-Accept: a way of designating which kinds of offers can be automatically
accepted by a user’s e-person without the user being explicitly. Possible param
include the type of the agreement (e.g., “accept all agreements that do not lead
obligation”, “accept all agreements that only give out my ZIP code”), the pl
where they are enforced (“accept all user profiling agreements managed at Nie
site”).

• Auto-Fulfill: a way of indicating what kinds of obligations to fulfill automatically.
Parameters for this might include the type of obligation (e.g., “fulfill all paym
obligations just before they are due”), specific parameters of these (e.g., “fulfi
payment obligations that are less than $5”), etc.

Note that this allows, for instance, for new agreements to be negotiated just by fo
ing a link in a Web browser, without any explicit user involvement.

The screenshot in Figure 22 shows an example page describing the preferences
default behavior of e-person ‘roscheis@Stanford'. As with all of the browser scr
shots in this section, note that the HTML pages that they display are textual descri
that were generated from FIRM objects directly (in MIME content type text/htm
based on the structured descriptions that each of these objects contains. For exa
FIRM payment obligation object might have a ‘price’ object property that can
requested by client programs using the FIRM protocol. At the same time, there ex
URL that when requested by browsers will make the distributed object return a te
description that shows the value of this attribute. The design of these descriptio
partly embedded in the FIRM toolkit that is part of the RManage implementation,
partly due to the specific way in which a forms designer chooses to implement a
commpact object.

Figure 22 shows one such page, generated directly by the corresponding e-p
object. We see that the e-person would automatically accept all those agree
offered to it that are based on one of two forms: it accepts use profiling agreeme
the requested attributes are for internal use only and if it is operated by a truste
Site registrations are also automatically accepted if only name and e-mail addre
requested for this purpose, and if the e-mail address is not used for unsolicited
sages. Furthermore, pay-per-view interactions are limited to a certain maximum
unless they come from a subscription that was previously set up.

Note that there is full end-to-end integration. If a user presses one of the “Pay N
buttons in Figure 22 in order to initiate the fulfillment of a payment obligation, the
structured set of actions is triggered both at the service provider’s side (such as a
base update) as well as at the user’s side (such as an addition of an appropriate
the user’s check-book application).
A Network-Centric Design for Relationship-Based Rights Management 60

FIRM: An Infrastructure for Digital Relationship Management

ation
acts,
n for
 that
tting
-per-
face.

 noti-
hat’s
ell as
cess
ention
lling

x that
ns as
t they
rass-
ct to

eried
e (the
nces
FIGURE 22. E-person Preferences.

The correspondence between textual descriptions and underlying actions (i.e., whether
clicking on ‘accept’ really leads to an accept preference) is matter of the implement
of the object-request interface of the relevant FIRM object. In the case of commp
this implementation is provided by forms designers, who would then also stand i
“truth in advertising.” For e-person objects, home providers will want to make sure
they use a faithful implementation; FIRM does not specify any mechanism for ge
such an implementation. In fact, FIRM also abstains from specifying the user-to-e
son protocol since there are no interoperability requirements for this “private” inter

Controlling Access to One’s Attention: Notifier

Events from relationships are brought to a user’s attention in a uniform way in the
fier structure. The notifier is an affordance by which a user can catch up with ‘w
new’ for a certain e-person. This transparently includes both information push as w
information pull events; the notifier implementation takes care of the specific ac
method and structures the results in a way that mirrors the user’s preferred att
structure. The notifier also allows people to initiate certain actions, such as fulfi
payment obligations, and accepting offers.

In the current RManage implementation, the notifier basically only acts as an inbo
allows us to take some modality out of interaction design—since we have obligatio
first-class objects, we can just add them to a user’s notifier and rely on the fact tha
are enforced to the extent that they will not go away unless they are fulfilled. In G
roots [279], we have explored the notion of a notifier more extensively with respe
information organization and communication.

Figure 23 shows a sample view of the notifier of e-person ‘roscheis@Stanford’ qu
at a certain point in time. We see that there are various payment obligations du
hyperlinks lead to more detailed information about them and their context); afforda
A Network-Centric Design for Relationship-Based Rights Management 61

FIRM: An Infrastructure for Digital Relationship Management

icate
s will

online
t to use
spaper,
 in the
arently

ess to
spaper.
nt for

 a tem-
y of
are provided for directly initiating a payment transfer to fulfill them. Moreover, we are
informed about the fact that a notification obligation has been automatically fulfilled
and that an approval request is pending.

FIGURE 23. Notifier: Uniform View on Events from Different Relationships.

Declaring Overrides for Special Cases

Recall that when performing an action, users have the choice to designate a commpact
with respect to which they want to conduct the action. This commpact then acts as the
unit for authorizing a certain action. If the e-person’s preference rules clearly ind
which agreement is applicable for a certain action, then RManage-enabled client
automatically include a reference to this default agreement in the request.

For example, consider that we have a subscription agreement with a certain
newspaper, and that we have chosen this agreement to be the default agreemen
when accessing the newspaper. Then, whenever we access material of the new
the user’s e-person will designate this agreement to the publisher. In other words,
normal case, all the required rights-management interactions can happen transp
to the user.

Now consider that for some reason we want to use some other relationship to acc
same material. For example, consider that we also have a site license to the new
One way to deal with this is to declare the site license to be the default agreeme
accesses to this newspaper. Another affordance that RManage provides is that of
porary “override” to the default agreement. This provides a more light-weight wa
A Network-Centric Design for Relationship-Based Rights Management 62

FIRM: An Infrastructure for Digital Relationship Management

ertain
y-per-
n-

hem in
 one

es for
ment
t oth-
using another agreement for one or a few actions and then going back to the default
agreement. In RManage/DLITE, we have experimented with various direct-manipula-
tion ways of indicating such overrides as a feature for expert users. Cf. Figure 24 for an
example of how this is prototyped in the RManage/DLITE interface.

FIGURE 24. Declaring Overrides in RManage/DLITE: Dropping a Contract Icon on a Search Service.

Once accepted, an agreement enables users to use the services covered in the agreement.
The promises in an agreement implement the specific fee structure of a for-pay service.
For example, in a sample search license for the Dialog service as part of the RManage
implementation, we provide a fairly sophisticated search right that allows for a limited
number of searches before the payment obligation has been fulfilled. The payment obli-
gation on the other hand implements the fact that searches in this agreement are charged
for on a per-search basis, etc.; it then uses any of a number of native payment protocols
to allow this obligation to be actually fulfilled if this is what a users wishes to do.

In the direct-manipulation interface in Figure 24 (RManage/DLITE), such obligations,
as well as agreements themselves, can be directly manipulated (transferred to other peo-
ple, etc.). Payment obligations are some of the items that typically will show up on a
user’s notifier. In some cases, these notifier messages will only indicate that a c
payment is due at a certain time. In other cases, especially if used as part of a pa
view contract, they will often be fulfilled automatically and the notifier might only co
tain a message that summarizes the payments executed.

Note that RManage independently manages control and content objects and sets t
relation in a way that enables different control behaviors to become effective for
and the same object.

4.3.2 User Interface Affordances for Offerors

In this section, we describe the user interface affordances that RManage provid
those who offer information or services to others. In terms of our rights-manage
framework, offering a service to others essentially amounts to creating an offer tha

License-based
Search Service

Override contract used for
a specific search (the square)

Result set from successful search

Notifier indicates that payment is due

Query constructor
A Network-Centric Design for Relationship-Based Rights Management 63

FIRM: An Infrastructure for Digital Relationship Management

orms
l in
nt
raft an

fill in
. For

iption
 offer

ch of
ers might then accept. FIRM was designed to make it easy to create new offers by defin-
ing an infrastructure for the sharing of customizable contract forms. The basic process
of creating an offer consists primarily of selecting a contract form, customizing it, and
declaring this draft an offer.

Obtaining a Useful Contract Form

Forms can be obtained in one of a number of ways, including browsing and searching.
Figure 25 illustrates the offer drafting process as implemented in the RManage relation-
ship manager application. The left side shows the RManage/DLITE direct-manipulation
interface. The right side shows an HTML description of a contract form. In RManage, a
user creates a query for ‘subscription’ (upper left) and employs the ‘Stanford F
Provider’ service (middle) to search for digital contract forms that might be usefu
drafting a subscription offer. A result collection is returned with four differe
commpact forms. Users can inspect each form and then take one and use it to d
offer—by customizing it and by filling in form-specific parameters.

FIGURE 25. Using Commpact Forms to Make it Easy to Offer New Relationships in RManage/DLITE,
a Java/CORBA-based direct-manipulation interface.

Drafting an Offer by Customizing Contract Forms

Once we have decided on a form and put it onto the drafting workbench, we can
the defining parameters and choose the various options that the form provides
example, Figure 26 shows on the left the top-level choices for a sample subscr
agreement. These include simple fields for issues such as in which role we want to
the contract, how often to offer it, and a constraint about what the offer is. For ea
A Network-Centric Design for Relationship-Based Rights Management 64

FIRM: An Infrastructure for Digital Relationship Management
the two promises in this agreement, we then have further fill in options. For example, in
the specific search right that this contract form incorporated we can set the number of
searches that are allowed without having paid first. Moreover, we constrain the use of
this right to people affiliated with Stanford University by adding a corresponding con-
straint. In the payment obligation, we can fill-in the subscription fee. In every case,
there is a range of generic attributes such as whether a promise is waivable, etc.

FIGURE 26. Customizing and Setting Parameters in a Contract Draft.

Values for attributes of persons can either be provided by the home provider or by third
parties. For example, certain home providers might record the student affiliation of a
person with their e-person structures; then, if trusted, these values can be used to obtain
this attribute for a person. Otherwise, the home provider might only provide an identify-
ing handle for the e-person (such as its full name), with which a commpact can then
obtain the attribute from some third party such as the university itself. The exact way in
which this is done is a decision of the forms designer.

Declaring a Draft an Offer

Finally, we can turn the contract draft into an effective offer that other users or agents
can then examine and possibly accept. See Figure 27 for a generic presentation of an
offer to users.
A Network-Centric Design for Relationship-Based Rights Management 65

FIRM: An Infrastructure for Digital Relationship Management

ccess
ts

 digital
plied.
and it
ly been
ypical

g out
pleas-
users
ee on
olled
Note that in order for A to give access to B about I, in a contracts-based approach, A will
create an offer about I that is limited to B, and B can then accept it if he wants to do so.
Note that in a more property-based model we could have simply “attached” the a
right for B to I and then tell B about it in some out-of-band way (in the contrac
approach, we first have to assure mutual assent).

FIGURE 27. Sample Contract Offer: FIRM provides a way of generating structured contract
descriptions.

4.4 Object Interactions: Sample Transaction Scenarios

In this section, we examine a sample transaction scenario that demonstrates how
contracts make it possible for new relationships to be rapidly negotiated and ap
The extended example that we consider here is taken from the privacy domain,
shows how a contract approach can be extended to domains that have previous
amenable to a property approach only. We will also consider various aspects of a t
subscription contract in this section.

4.4.1 Example: Contracting for Privacy

When visiting a shoe store to buy a pair of shoes, few people would object to givin
their shoe size—since this is likely to make the shoe shopping experience more
ant. The question is how the analogue would work in the online domain: how can
determine the nature of their relationship with the provider of a certain server, agr
boundary conditions, and then make available personal information in a contr
A Network-Centric Design for Relationship-Based Rights Management 66

FIRM: An Infrastructure for Digital Relationship Management

 to get
rted

is be
.

g con-
ation
-time
local
 con-
ars to

nge of
p is
sed for

n that
ocol
se that
twork

ol (e.g.
, and

ions.

h this

utho-
riza-

t for

 the
way—the shoe size for the shoe store, the ZIP code for the weather site (to be able
the local weather right away), basic demographic information for advertising-suppo
sites (to minimize irrelevant ads), etc. In particular, the question is how can th
accomplished without imposing any unnecessary usability overhead. Cf. Figure 28

FIGURE 28. Online Privacy: RManage uses FIRM to allow users to reveal personal information in a
controlled way.

The user of a browser can set up his e-person to automatically accept user profilin
tract offers of a certain type—those that are about a simple set of personal inform
and that have been certified by a certain labeling service. In the user’s view, a first
visit to a FIRM-enabled weather server will then present the user directly with the
weather—since the server could use FIRM to obtain the requester’s ZIP code in a
trolled and consensual way. However, while accessing the FIRM-enabled site appe
users to be as simple as browsing any other (uncontrolled) Web site, a whole ra
FIRM transactions are happening “under the hood”: A user profiling relationshi
negotiated based on the user’s default preferences, and personal information is u
agreed-upon purposes.

Figure 29 indicates some of the transactions that FIRM defines for an authorizatio
triggers the negotiation of a new relationship. Consider in particular the prot
requests labelled E1, E2, and N1-N4. Note that this is the most comprehensive ca
tries to accommodate complex circumstances (no pre-existing relationship, no ne
caching, possibly multiple offerors, etc.). In particular, these transactions include:

1. Requesting a document from the server, using some document access protoc
HTTP). The FIRM-enabled server recognizes that the user has an e-person
therefore uses the augmented authorization module to negotiate access condit

2. The server asks the requester’s e-person for the commpact with respect to whic
access is supposed to take place.

3. The e-person returns a pointer to a commpact that it would like to use as the “a
rization decision facility” for the requested action. It could also return an autho
tion token that it might have cached from a previous authorization.

4. Receiving the pointer to the commpact, the server will then ask this commpac
authorization.

5. Once it obtained authorization (and validated it), the server can perform
requested action.

ZHDWKHU�VLWH

VKRH�VWRUH%URZVHU

=,3����
���

6KRH�VL]H���
A Network-Centric Design for Relationship-Based Rights Management 67

FIRM: An Infrastructure for Digital Relationship Management

 in the
then we
a spe-
proto-

tocol

vant
FIGURE 29. Transactions Under the Hood: In one of the more comprehensive cases, a new
relationship is established: Tom accepts an offer from Mike, one of the offerors.

The above holds for the case in which there was already a relationship established. Note
that this protocol effectively mirrors other typical authorization protocols. For example,
in one of the typical cases where a user’s e-person and the browser are realized
same address space, and the commpact and the server are co-located as well,
essentially obtain the conventional authorization scheme of the HTTP protocol as
cialization of this special case. In other words, the simple cases reduce to familiar
cols while the more complex cases can be dealt with uniformly. Cf. Figure 30.

FIGURE 30. Special Case of Transactions in Case Objects are Allocated in Specfic Form.

If we have not yet had a relationship established, then the following negotiation pro
will be triggered (see the additional actions in Figure 29):

E1. The e-person asks the server to find out the identity of the offeror(s) for the rele
objects.

E2. The server designates relevant offerors.

(���([FHSWLRQ�
������*HW�RIIHURUV
(���/LVW�RI�RIIHURUV�
1���*HW�RIIHUV
1���/LVW�RI�RIIHUV
1���$FFHSW�SURILOLQJ�RIIHU
1���$FFHSWHG

E1,2

N3,4

N1,2

Server
Client

2 5
4

3Tom’s
e-person UserProfiling

offer

Tom

���5HTXHVW��H�J��+773
���:KLFK�FRPPSDFW�WR�XVH"
���8VH�SURILOLQJ�FRPPSDFW
���([HUFLVH�SURILOLQJ�ULJKW
���$XWKRUL]DWLRQ�'HFLVLRQ

1: GET index.html

6: Result

Mike’s
e-person

OLNH�+773�DXWK�H[FKDQJH

OLNH�+773�VHUYHU�DXWKRUL]DWLRQ�

Server
Client

2
5

43Tom’s
E-person Tom’s

UserProfiling
Commpact

Tom
:HE�EURZVHU

:HE�VHUYHU
1: GET index.html

6: Result

���5HTXHVW��H�J��+773
���:KLFK�FRPPSDFW�WR�XVH�"
���5HVSRQVH��8VH�WKLV�RQH
���([HUFLVH�ULJKW
���$XWKRUL]DWLRQ�'HFLVLRQ
A Network-Centric Design for Relationship-Based Rights Management 68

FIRM: An Infrastructure for Digital Relationship Management

’s e-

tically
red the

tocol,
ing

rious
that is
n.

ssued
tract

r even

ights
 in the
rily
ment
ich
tion

ith a
 these
N1. It selects an offeror (by the name of Mike in Figure 29) and asks the offeror
person about any relevant offers.

N2. The e-person receives pointers to relevant offers.

N3. The e-person inspects an offer, and based on its default rules, it can automa
accept it, and then use the accepted offer to authorize the access that requi
negotiation of a new relationship.

Note that in many cases a server will of course be able to short-cut the above pro
for example, by directly providing a default offer for a certain object, or by hav
information cached from previous interactions.

4.4.2 Example: Subscription Contract
As a second example, let us consider a typical subscription contract with its va
terms and conditions. Consider a one-year subscription to an online newspaper
available on the Web to subscribers who pay in regular intervals for the subscriptio

Coverage
The fact that this contract is about publication items that for instance have been i
throughout the calendar year of 1997 is just a constraint as part of the FIRM con
that specifies that the publication date of the newspaper (an ‘item’) is in this year:

AboutItems Constraint: Item.PublicationDate.Year=1997

Note that this would allow us to access the issues of the newspaper from this yea
after the year has ended or the contract was completed.

Payment

As an example that demonstrates how fulfillment processing is tied into the FIRM r
management service layer, let us now see how payment is dealt with in RManage
form of one of various kinds of payment obligations. For FIRM, payment prima
appears in the form of payment obligations. FIRM keeps track of the status of pay
obligations and provides affordances for fulfilling them, but the actual way in wh
they are fulfilled is dealt with by other service layers. The RManage implementa
uses the UPAI [251] payment application interface. Cf. Figure 31.

FIGURE 31. Payment Interactions in FIRM.

As with any other RManage promise, payment obligations are first-class objects w
generic set of operations applicable to them. In the case of payment obligations,

3D\PHQW
2EOLJDWLRQ

)XOILOO

3D\PHQW
0RGXOH
H�J��83$,

3D\����WR
MDQ#6WDQIRUG

QDWLYH�SD\PHQW
SURWRFROV

'HFODUH)XOILOOHG

EDQN��HWF�
A Network-Centric Design for Relationship-Based Rights Management 69

FIRM: An Infrastructure for Digital Relationship Management

ans

 from
ount.
 dis-
re is

ctual
traight-
pro-
s not

 clear
 of an

 pay
and the
rom-

ed, it
ct) by
 order

f it is
corre-
 right
r of
ight

nsac-
it is an
is is

t has
des a

 such
aca-
operations amount to initiating a payment transaction (fulfilling the obligation), declar-
ing it paid, etc. The exact way in which payments are executed is a matter of specific
payment protocols and institutions; it is not part of the FIRM specification itself.

While the RManage prototype implementation leverages the UPAI payment application
interface [6], any other implementation can make a different choice here as long as the
basic FIRM callbacks are used. UPAI provides an abstraction layer to integrate native
payment protocols from a variety of providers such as First Virtual, DigiCash, VISA,
etc. that allows RManage to disintermediate the various parties that play a role in pay-
ment transactions and provide a uniform interface to payment. Note that by leveraging
FIRM’s structures, RManage’s interface provides a unified definition of what it me
to assent to a contract, to fulfill an obligation, etc.

Discounts and Other Contract Options
Let us now consider the case in which a customer would like to buy a subscription
an online bookstore, but, as an ACM member, she would like to obtain a 10% disc
From the user’s view, no breakdown should need to occur in order to deal with the
count; the bill in the end would just contain the appropriate deduction if the booksto
FIRM-enabled.

To understand what is happening “under the hood,” we need to clarify the contra
structure; once we have decided how to understand the situation, then there is a s
forward mapping into the RManage objects. Note that while FIRM makes control
grammable and facilitates the computational realization of legal structures, it doe
help people obain an understanding of the legal structure of a certain situation.

One way to conceptualize a discount is the following (the designer needs to be
about this; not the user): The basic promises in the subscription contract are those
obligation to deliver the publication (held by the bookstore) and an obligation to
(held by the customer). To accommodate a discount, we assume that there is one
same contract, but in addition we have a discount right. This discount right has a p
issory condition that requires its holder to be a member of the ACM. When exercis
simply reduces the amount to be paid (an attribute of the payment obligation obje
10%. Of course, users or their e-persons need to remember to exercise this right in
to take advantage of the reduction. This is what one’s e-person will generally do i
set up to do so. Then other kinds of reductions can simply be reflected by adding
sponding discount rights to an obligation. Note however that exercising a discount
might of course also have other ramifications. For example, it might imply a waive
other rights—for instance, it might waive the use of other discount rights, or it m
void a right to return the good, etc.

In other words, FIRM forces us to be clear about the interpretation of a certain tra
tion (e.g., questions such as whether something is an advertisement or whether
offer at the same time). But it does not help us in finding this conceptualization; th
an issue that needs to be dealt with prior to using the FIRM framework. Once i
become clear how we want to understand a certain relationship, then FIRM provi
straightforward mapping of the (contract law) entities into computational objects.

Terms and Conditions with Arbitrary Predicates
A vital part of a rights-management systems is to be able to articulate and enforce
constraints as “accessible to US citizens only,” “minimum age of 12 required,” or “
demically priced–for currently enrolled students only.”
A Network-Centric Design for Relationship-Based Rights Management 70

FIRM: An Infrastructure for Digital Relationship Management

c cre-

d for
traint
FIRM provides for constraint structures as part of its rights objects that allow for poli-
cies to be formulated based on arbitrary predicates. However, FIRM does not specify
any (idiosyncratic) constraint language for articulating such constraints. The way in
which constraints are provided to FIRM objects is left as a choice to the specific user
interface realized by individual commpact implementations. Furthermore, FIRM itself
does not say anything about the internal representation or the syntax of such constraints;
it only specifies a basic request interface that constraint objects obey and that can be
used to determine whether a constraint is satisfied, etc. In RManage, we use a simple
Boolean constraint language that users can use to type in constraints in the various dia-
logue boxes of commpact forms.

Predicates can rely in FIRM on any of the attributes that have been defined for a certain
object by a certain attribute service (proxy). In particular, attributes for constraints can
come from several sources. For example, a home provider could provide citizenship
information while the student status of a specific person might be best obtained from a
proxy operated by the university. In other words, implementations using FIRM will
have to decide which sources can be trusted and which ones will not be trusted.

For more information about the kind of metadata architecture that FIRM requires, see
the Appendix and [252]. In particular, FIRM leverages the online availability of services
on the network and does not use cryptographic credentials where other systems might
use them easily: For instance, to certify the student status of a person, a service can just
directly send a query to an online database—rather than introducing cryptographi
dentials that can then be “presented” by users to a service.

FIGURE 32. Certification: Example.

Consider for instance a subscription contract where the price is specially reduce
students. In other words, the condition precedent of the contract object is a cons

INFOBUS

Student
Service ProxyClient, e.g. rights object

checking student status

native
protocol

Supports:
‘Affiliation’ attribute
in ‘Person’ attribute model

Get collection of supported attributes

‘Person’ Model {‘Affiliation’, ...}

Get affiliation of epers7235

Affiliation=’Stanford’

Find source for ‘Affilia
tion’

List of Sources

Source Finder
e.g. GlOSS

Database
A Network-Centric Design for Relationship-Based Rights Management 71

FIRM: An Infrastructure for Digital Relationship Management

on of
rface

ch as
ould
that requires the purchaser to currently be a student.1 One specific way to articulate this
in RManage/FIRM would just be the following:

Condition Precedent: Person.Affiliation=’Stanford University’

Such a constraint would rely on there being an attribute proxy such as the home pro-
vider that knows about a person’s affiliation. The fact that affiliation is an attribute of the
Person attribute model would be a property that can be read from the representati
the attribute model; it is a fact that can then be conveyed explicitly in the user inte
that allows offerors to provide such a constraint (for instance, via an option box).

A more complicated attribute proxy might even provide a more general attribute su
StudentStatus (e.g., by relying on further requests to backend services); then, we c
have a more general constraint such as

Promissory Condition: Person.StudentStatus=’Y’

As we explain in more detail in the Appendix, FIRM itself does not specific any
attribute sets. It uses a metadata architecture with first-class attribute models as a mech-
anism to keep this dimension outside the type system of FIRM. In other words, FIRM
can be used as long as commpact forms designers and services use attributes from
shared attribute models.

1. Alternatively, we could also install the same constraint as a promissory condition of the right to a
discount (with somewhat different ramifications).

4.5 Related Work

FIRM relates to much recent work done to address the issue of security and rights man-
agement on the Internet. First of all, there is clearly a large amount of work in cryptog-
raphy and classical computer security on specific mechanisms by which the validity of
certain assertions can be securely determined. [171][164][163] Our perspective on this
work is that we will use the best-of-a-kind products from this area, but the basic mecha-
nisms for managing control information that are our focus here address an orthogonal
layer of issues. In this section, we describe some of the key differences of our approach
to systems that are roughly in the same design space.

The SDSI system [147] provides an integrated solution for distributed security that is
based on simple, new representations for each of the different components that are nec-
essary. One of the main differences to FIRM is that SDSI does not clearly separate pro-
tocol and architecture from specific implementation and transmission choices that can
be made by different implementors. For example, SDSI defines a new object request
interface (e-mail/HTTP), a new object transmission standard (the S-expressions), a new
constraint language (the ANDs and ORs defined there), a new naming scheme, etc.
Given the multiplicity and heterogeneity of developers that need to adopt such a system
in order to make it work, it seems unlikely that it will be easy to get people to adopt all
of these new formats, especially in light of the fact that there already exist multiple leg-
acy solutions for each of these problems. Note that FIRM takes a somewhat different
design approach in that it deliberately abstains from defining, for instance, a new con-
straint language; it just defines rights-related object interfaces using standard languages
and components, by which different parts of the system can be glued together. Further-
more, SDSI does not define a user-conceptual model. In addition, it does not clearly
A Network-Centric Design for Relationship-Based Rights Management 72

FIRM: An Infrastructure for Digital Relationship Management

Lan-
tation
ertain
veral
is very
 on

t Act,
 also
in a
ion-
e that
xtends

cture.
cture

equire
trol
h the
ology)
nce
ely

 to be

ct, it
rcing
tightly
ontrol
ment

form.
ially
cation
 in a
hich
nage-

cture
ments
nven-
g on.
 EDI
ffec-
separate the distinct layers of articulating assertions and their expression using specific
cryptographic mechanisms. This ties the architecture to a specific use of cryptographic
methods.

The work on rights management done at Xerox (Stefik [97][99]) contains (at least) two
major components: a language for describing rights (the “Digital Property Rights
guage” (DPRL) [99]); and a specific architecture to assure the secure interpre
(enforcement) of this rights language. The rights language describes rights in a c
domain; it does not intend to provide a programmable framework, within which se
such rights languages can be expressed. The vocabulary of the rights language
rich (or, “complex”) compared to typical other rights languages. Its main focus is
representing the kinds of (property-based) rights that are subject of the Copyrigh
such as restrictions on copying, fair use rights for “backup” copies, etc. There is
some amount of contracting/licensing implied, albeit not represented explicitly
direct form: A “ticket”-based conceptualization is used to deal with licensing relat
ships rather than a full-fledged, direct contract-based approach. The architectur
assures secure interpretation is based on a Trusted Computing Base (TCB) that e
beyond what other secure content container architectures would typically assume.

IBM’s cryptolopes [144] are an instance of a secure content container archite
Along the same lines, InterTrust [145] has been developing a proprietary archite
for secure content containers that generalizes IBM’s approach in that it does not r
any built-in architectural centralities. InterTrust’s architecture for managing con
information accommodates first-class control objects, called ‘control sets’, althoug
emphasis is on client-based control (using their secure content container techn
rather than on network-centric control as in this thesis. In our view, the differe
between InterTrust’s client-centric and FIRM’s network-centric architecture larg
boils down to the question of the extent to which one believes that users will want
micromanaged in client-side actions.

FIRM is designed to be orthogonal to any content container technologies. In fa
complements them, and it can use best-of-a-kind container technologies for enfo
the terms and conditions expressed in commpacts if content objects need to be
kept under control after release. Effectively, commpacts correspond to an access-c
decision facility, while secure content containers provide an access-control enforce
facility.

InterTrust and FIRM share an overall emphasis on having a programmable plat
For most practical purposes, FIRM is far more light-weight, however, espec
because it clearly decouples enforcement and authorization issues, allowing appli
developers to leverage enforcement mechanisms that work well for applications
certain domain. InterTrust claims a number of patents on its technology, none of w
seem to be related to content container technology or software-based rights ma
ment, though. Details of the InterTrust design are not published.

EDI (Electronic Data Interchange) is a widely deployed message-based infrastru
for electronic contracting that has the kinds of mechanisms for negotiating agree
and defining new forms of agreements that are not very well represented in co
tional digital rights-management systems and that fall into the layer we are focusin
In particular, the notion of a standard template is one of the key insights from the
world that we incorporate into our architecture. Creating a new commpact form e
A Network-Centric Design for Relationship-Based Rights Management 73

FIRM: An Infrastructure for Digital Relationship Management

“RT
area,
sed

 the
s are
 extent

fera-

long
orts”
art of
rtain
than

gher-
ines
stance
ist a
ation
urrent
 FIRM.

 set-
set of
elease
ctical
an)

that

tem
The
"law.”
oordi-
at is
tively corresponds to the case in EDI of creating a new message interaction type. Note
that in EDI this requires submitting a “New UNSM Request” to the appropriate
Secretariat,” that is, the “rapporteur team” appointed for a certain geographical
which will then coordinate with the appropriate UN ECE office whether the propo
type is sufficiently different from previous ones and warrants a new type. In
commpact model, we carry over the assumption from EDI that new commpact form
generally not set up by end-users. This thesis does not address the question of the
to which an institutional infrastructure is required to support the naming and proli
tion of the various standard forms.

The World-Wide Web Consortium (W3C) has recently started a number of efforts a
the lines of privacy (P3P [219]) and personal context management (“Web passp
and OPS [220]). Both embody a number of key concepts that have also been p
FIRM. The W3C proposals are more specifically targeted at providing fixes for ce
immediate problems, with the possibility of incremental improvements—rather
starting out with a more general design that deals with a wider range of usages.

Mondex together with an industry consortium of companies has pioneered a hi
level purchasing protocol, the Open Trading Protocol [227]. This protocol def
requirements for consumer purchasing contracts that can be seen as a specific in
of the kind of contract, that are possible in FIRM. At this point, there does not ex
technical protocol/architecture specification though; only a requirements specific
exists, and there is no evidence that this work is actively being pursued. The c
requirements specification deals with a subset of the issues that are addressed by

The design of the TIHI system [184][185][186] addresses security in collaborative
tings by providing a gateway, owned by the enterprise security officer, that uses a
policies to mediate queries and responses. The policies of the gateway include r
rules that make it possible to enforce content-based access control. TIHI is a pra
implementation of an architecture that takes into account the availability of a (hum
security officer in the kinds of applications in health care and in manufacturing
motivated this design.

Minsky [182][183] introduces a mechanism for communication in distributed sys
called "Regulated Interaction (RI)" (previously called "law-governed interaction").
central concept of this mechanism is a formal and enforced set of rules called a
The approach taken in this work supports heterogeneous systems with disparate c
nation policies—much like the approach taken in this thesis—although in a way th
more property-based rather than relationship-based.
A Network-Centric Design for Relationship-Based Rights Management 74

Conclusion

 talk
er-
 us to
 rela-

ture,
nd we
t have

ment
which
h pro-
s to

emen-
ed in

re is.
ds of
swer

ter-
IRM-
teract
tes

class
ehav-
e.

s of
d go
 essen-
 rela-
rms

 will
xten-

class
 such
sump-
cols.

ions
ntrol
tion
5.0 Conclusion

In this thesis, we have shown how the current Internet infrastructure can be augmented
by another service layer—one for digital rights management—that allows us to
about such high-level objects as “contract/agreement,” “obligation,” “right,” and “p
son”—and provide a platform for structured relationship management that enables
deal with access to information, privacy and security, etc. as the ancillary of such
tionship management.

The Thesis in this Thesis

Our basic hypothesis in the beginning was that with additional software infrastruc
we can unify rights/relationship management from a user-centered perspective, a
can achieve better end-to-end integration than current approaches that do no
access to structured interfaces to relationship information.

This thesis defines a programmable service layer for rights/relationship manage
and demonstrates a prototype relationship manager application, RManage,
enables users to uniformly manipulate relationships and their properties, and whic
vides full end-to-end integration for RManage and FIRM-compliant network service
share control and state information. The examples covered by the RManage impl
tation include various kinds of subscriptions and licenses, as they are widely us
current practice.

The question that we will address in this section is how complete the infrastructu
This requires a classification of the relationships being supported, so that new kin
relationships can be accommodated by the FIRM framework. A large part of the an
lies in the programmability of FIRM. FIRM is not a formalism, but a set of object in
faces/APIs with associated definitions about how they can be used. Concrete F
compliant systems will implement some of these interfaces, and use others to in
with existing network objects. The FIRM toolkit that we have implemented facilita
application developers in providing new functionality. For instance, they can sub
implementations of existing objects, such as a site license, and override specific b
ior, such as the way in which a payment obligation calculates the amount that is du

By virtue of being a programmable platform, implementations can add new type
control behaviors and state management functions in a FIRM-compliant way, an
beyond the example cases that we have discussed in the previous chapters. FIRM
tially only guarantees a basic common denominator for the exchange of structured
tionship information, but it does not restrict application developers, including fo
designers, from providing additional functionality.

Of course, the formats of the attribute models used will have to be defined. This
have to be dealt with much in the same way as done by EDI, which provides an e
sive set of data structure definitions for various domains of application. The first-
attribute models used by FIRM provide a systematic mechanism of representing
data structures in a way that can leverage EDI, without being restricted to the as
tions that such systems make about message exchange and communication proto

At the next level of detail, FIRM’s specific choice of object interfaces and interact
does not constrain forms designers from being able to implement the kind of co
behavior that they want to express. The main effect of FIRM is to allow communica
A Network-Centric Design for Relationship-Based Rights Management 75

Conclusion

thod
rt of
, open
enta-

a in
matic
ers to
late to
eloper
 kinds
ential

out in
urity
ession-
ns for
, com-
ourse.
IRM in

xity
ple

 differ-
ace,
 main

ment
com-

e ser-
ries
 using
ILU
 that
 The
hich

vali-
thesis.

evident
 full-

testbed,
ctual

y, and
to shift to a format that uses open interfaces. In principle, one could use a FIRM rights
object, for example, in a way that only makes use of the “RequestExercise” me
defined by FIRM, with all of the access-control functionality being dealt with as pa
this method. Note that this is possible since any method can manage its own state
its own network connections, etc. We can easily see that such an extreme implem
tion can realize arbitrary functionality—even though we end up with the old dilemm
this case where much of the state of a relationship is made inaccessible to program
access. The second part of the answer is that FIRM only forces application develop
be clear in their conceptualizations about how the various objects that they use re
concepts that make sense from a contract law perspective. If an application dev
cannot answer the question what the obligations of a certain contract are, or what
of promissory conditions need to be satisfied to make a right effective, then the pot
inability to implement such constructs is justified.

Finally, let us reconsider the issues of security and efficiency. As we have pointed
the main part of this thesis, FIRM relies on a number of underlying services for sec
and trust management. The design in this thesis suggests that commpacts be prof
ally managed on the network by commpact managers. The security consideratio
these services are largely the same as for any other network service. Furthermore
mpacts should only be instantiated with commpact managers that are trusted, of c
The necessary trust preferences are part of every e-person’s data, as defined by F
the Appendix of this thesis.

The efficiency of the FIRM service layer depends largely on the behavioral comple
that one would like to realize. As we pointed out in the previous chapter, for sim
usages that are already possible with current Web servers, for instance, the main
ence that FIRM introduces is that of a “published” authorization-request interf
rather than only a server-internal request interface. For more complex usages, the
overhead created by FIRM in the context of integrating with legacy rights-manage
systems is that of an additional wrapper that maps the legacy protocol into FIRM-
pliant structures.

Lessons from the RManage Implementation

We have implemented the FIRM rights management service layer as one of the fiv
vice layers of the Stanford Infobus [253] in the context of the Stanford Digital Libra
project. The implementation was based on distributed objects in Java and Python,
the CORBA implementation of one of the our industrial partners (Xerox PARC’s
system [246]). The sample RManage “relationship manager” application of FIRM
we have prototyped in addition made use of the DLITE user interface toolkit [249].
testbed of the Stanford Digital Libraries project provided the sample services for w
we implemented FIRM-based rights-management solutions.

From the beginning, the purpose of the prototype implementation was primarily to
date the coherence and feasibility of the ideas and concepts suggested in this
While the prototype has been successful in this regard, several issues became
that suggest that the same implementation design would not generalize well to a
scale use. We discuss some of these issues below. Note that since the Stanford
and RManage in particular, has not been deployed to a significant number of a
users, we do not have any data on issues related to the usability, maintainabilit
robustness of RManage.
A Network-Centric Design for Relationship-Based Rights Management 76

Conclusion

ered

otype
phis-
ation
s Net-
most
 thus

infea-
rms of
gy is
t uses a
ects

 part of
s that
hrough
other
 ser-

 only to
ges are
e is
 and
rvices

nage/
use of
 com-
sages
e basic
ns. In
emes

 imple-
rson
bili-
One of these issues is that CORBA as a distributed object infrastructure, and in particu-
lar the Xerox implementation of it that we used, had shortcomings in terms of robust-
ness as well as scope. In particular, while CORBA defines a whole set of fundamental
object services (for object persistence, name resolution, object-level security, etc.), these
were not available during the period when we implemented much of the system (begin-
ning in 1995). Partly this certainly reflects the early adopter status that we deliberately
stepped into, but partly we believe that this also signifies the tremendous relative com-
plexity of CORBA—compared to, for instance, using protocols that are simply lay
on top of HTTP.

Another issue is that the specific implementation design that we chose for the prot
was “too object-oriented” and would be unlikely to scale even if one used more so
ticated implementation environments, such as the CORBA-based Web applic
server development environments that are now available from such companies a
Dynamics, KivaSoft, and others: Our current implementation uses objects for al
everything, including obligations, rights, and persons. The number of such objects
easily ends up being quite large in realistic applications, and this quickly becomes
sible, especially given the resources that each of such an object requires (in te
memory, for instance). In other words, a somewhat different implementation strate
needed that is centered around a database to store objects’ properties and tha
transaction monitor for load balancing and for managing the availability of obj
whenever they are requested.

Finally, at another level, the services and usages that ended up being available as
the testbed of the Stanford Digital Libraries project turned out to be largely service
are freely available on the Web, such as the Altavista search service—accessed t
proxies with additional processing, though, rather than the Web interface. In
words, the use of rights management and payment was significant only for a few
vices, such as the Dialog databases. Note though that most Web services are free
the extent that it is guaranteed that the banner ads that are part of the result pa
visible to viewers. If one uses Altavista, for instance, via a proxy then a licens
required in general, and, with FIRM, we were able to accommodate this usage
enable the various broker services of the Stanford Infobus to use such Web se
based on site licenses rather than based on an advertising model.

Second-Order Usages

In this thesis, we have primarily examined a range of first-order usages for RMa
FIRM, such as service licensing, various forms of subscriptions, agreeing on the
personal information, etc. While we have focused on such immediate usages of a
putational contracting infrastructure, there is clearly a whole set of second-order u
that we have not begun to explore. These second-order usages make use of th
contracting infrastructure to implement sophisticated negotiations, and transactio
particular, consider that e-person implementations can realize complex bidding sch
based on the computational structures that FIRM defines. Since smarter e-person
mentations will be highly sought after, we can even imagine a market for e-pe
“plug-ins” that optimize the negotiation behavior of one’s agent viz-a-viz the capa
ties of other e-persons.
A Network-Centric Design for Relationship-Based Rights Management 77

Conclusion

tified
 com-
ient/

by pro-
arios
 now
 of

Inter-
sider
really

nd we
his
 more
 first
cure-
ly run
rma-
with
et. But
ilitate
f con-

est-
struc-
s, for
ill one
M’s
tra-
Outlook

FIRM was originally motivated by a mixed set of issues related to access control and
privacy that appeared mostly in the context of people’s use of the Web. We iden
the absence of a more structured way for sharing control state as the underlying
mon problem. Effectively, the first wave of Internet technologies had transferred cl
server notions into a peer-to-peer environment, but this was not fully adequate.

The design in this thesis provides new infrastructure that addresses these issues
viding a platform for structured relationship management. The application scen
that motivated us in the beginning can be dealt with by this design. However, we
believe that a FIRM-like infrastructure will not first come to bear on these kinds
usages. It is difficult to assign a clear return-on-investment for consumer-oriented
net applications of such an improved infrastructure in the near-term future. Con
that while privacy issues are much talked about, it is not clear how much people
value it.

However, another class of application scenarios has recently become evident, a
believe that these will ultimately drive the adoption of a FIRM-like infrastructure. T
class of usages takes place in corporate Intranets, which are already typically
tightly integrated and based on a richer platform than the general Internet. In the
wave, enterprises got equipped with Intranets, including ways of automating pro
ment, enterprise resource planning, etc. In the second wave now, we increasing
into the question of how external collaborators can be tied into the corporate info
tion infrastructure, that is, how one organization with its Intranet can work together
another organization, such as a partner or a supplier, that also has its own Intran
this is exactly the question of how to manage long-standing relationships and fac
collaboration in a way that takes into account the presence of various boundaries o
trol.

Two reasons favor FIRM in this environment. One is the significant return-on-inv
ment in the area, that will serve as a driving force. The other is that the base infra
ture in Intranets is already better than on the general Internet. (Distributed object
example, have already made inroads in Intranets, while the general Internet is st
or two steps away from this level of complexity.) In other words, we expect that FIR
concepts will first find their place in helping corporate infrastructure to go beyond In
nets.
A Network-Centric Design for Relationship-Based Rights Management 78

Overview

9

05
05

 pro-
ariety
ms of

ndent
 By
se in
ppli-
 and

roto-
cilities
rt con-
 Thus,
than in

con-
les

s into
cally
Appendix: Specification of the
FIRM Rights Management Service Layer

1 OVERVIEW . 79

2 THE FIRM COMMON RIGHTS LANGUAGE OBJECT MODEL 81
2. 1 Survey .81
2. 2 Specification .84

3 FIRM’ S OBJECT ATTRIBUTE MODELS . 9
3. 1 Attribute Models in the Stanford Metadata Architecture 100
3. 2 Attribute Models as Domain Plug-Ins for FIRM: FOAMs 100
3. 3 Sample Attribute Models for FIRM Objects .101
3. 4 Attribute Models and Interoperability of Heterogeneous Rights Languages . .102

4 EXAMPLES OF INTERFACE IMPLEMENTATIONS 103
4. 1 Example Commpact: A Site Licensing Contract .103
4. 2 Example Customization: Adding a Privacy Choice .103
4. 3 Example Promise: A Payment Obligation .104
4. 4 Example Authorization: Allowing Searching with a Search License 104
4. 5 Client Example: Other Programs (“Agents”) Interfacing with FIRM Objects 1
4. 6 Interoperability Example: Unix File Rights into the FIRM Object Model . . .1

1.0 Overview

The Stanford Framework for Interoperable Rights Management (FIRM) defines a
grammable rights management service layer for the Internet that supports a wide v
of applications both in terms of the object representations that it supports and in ter
the transaction protocol.

FIRM is designed to only require participants to agree on a thin, domain-indepe
interoperability core in order to be able to fully leverage the FIRM infrastructure.
providing a plug-in mechanism, FIRM itself does not need to be extended to be of u
new domains and for new usages; it can be kept simple in its core while allowing a
cation developers to program new kinds of control behaviors for new domains
usages.

This approach allows us to develop a shared (“infra”) structure that incorporates p
cols and services that are useful for more than one application, that is, we have fa
that can be used to negotiate privacy preferences as well as to negotiate “sma
tracts” (e.g. subscriptions and licenses to services), or to manage security, etc.
costs can be amortized over a larger number of usages, and the pay-off is bigger
developing many disparate special-purpose systems.

The idea for identifying infrastructure components in FIRM is to carefully separate
cerns: to limit its specification to a computational reification of only generic princip
of rights/relationship management—and to factor out any domain-specific aspect
plug-ins that are kept outside of the type system of the specification. FIRM specifi
A Network-Centric Design for Relationship-Based Rights Management 79

Overview

 lan-
uage,
ges.

mple-

rdizes
e). For
more
ct has

). The
liza-
here is
tc.

ke the
stri-
way
to the
frame-
ibute
ing”
 that
eeded
artic-
ility

otype
identifies contract law as the body of material from which it draws the generic concepts
and principles that make up its infrastructure component. Note that contract law can be
seen as fundamentally nothing else than a body of concepts and principles that describe
the shared structure of rights relationships in a generic way.

FIRM: Two Parts In other words, rather than having a single-level rights management standard, we have
an extensible, two-partite framework:

• a generic (domain-independent) specification that defines a common rights language
object model. This model represents the shared structure of different kinds of rights
relationships that one might have, and provides the transactional infrastructure for
negotiating contracts, exercising contract rights, etc.; and

• a format for declaring domain-specific rights vocabularies that can then be contrib-
uted as “plug-ins” to the basic rights management infrastructure. Sample rights
guages that can be expressed in this way include the Unix file access rights lang
Xerox’ DPRL, the EDI standard message types, or specific privacy rights langua

This appendix describes, in Sections 2 and 3, the corresponding two parts that co
ment each other to make up FIRM:

• the FIRM Common Rights Language Object Model: an interface specification that
describes how generic concepts and principles from contract law are reified digitally.

• the FIRM Object Attribute Models (FOAMs): a standard format for defining media-
specific or domain-specific rights vocabularies, that is, a format for first-class
attribute models that define with which attributes FIRM objects represent their state
(for use by “agents,” etc.).

To understand the separation, consider that FIRM’s common object model standa
on everything that is generic across different domains and cases (and nothing els
instance, the object model will take up the fact that a contract is between two or
parties and that it is about a set of promises that become effective once the contra
been accepted and all the prerequisite conditions have been fulfilled (contract law
FOAM attribute models on the other hand will take up domain-specific conceptua
tion such as the fact that a certain payment obligation is on a per-use basis, that t
a print right that counts the number of copies made (rather than the usage time), e

Simplicity,
Extensibility,
and Distribution

Using a two-level standard that separates specific from generic elements (much li
MIME framework) has many advantages in terms of simplicity, extensibility, and di
bution of authority. For instance, by defining wrapper interfaces, FIRM provides a
for legacy implementations (such as payment processing systems) to be tied in
infrastructure. Moreover, as a relationship-based (rather than a property-based)
work, the system is inherently extensible and decentralized: Any party can contr
new rights vocabularies (say, for new domains or new media) by simply “publish
corresponding rights attribute models. Such extensibility reduces complexity in
components for additional domains/usages only need to be “loaded” on an as-n
basis. In particular, this means that only minimal coordination is required among p
ipants, enabling decentralized administration for everything but the interoperab
core. In Section 4, we shall give a number of examples from the RManage prot
implementation of FIRM that demonstrate such plug-ins and wrappers.
A Network-Centric Design for Relationship-Based Rights Management 80

The FIRM Common Rights Language Object Model

pon
rom-

 citi-

ere
d by

 spe-
tems

mises
omis-
e in
ude a
omises
ould

an be
ferring
e
 new

s can
 pro-
ion
ould

ful-
 for
2.0 The FIRM Common Rights Language Object Model

2.1 Survey

Before we give a detailed specification, we describe the basic FIRM objects and their
properties, as well as the protocol by which clients can directly interact with FIRM
objects (the Access-Control User Dialogue Protocol). We also describe which specifica-
tion language we use.

Basic Objects

In FIRM, contracts, contract parties, rights vocabularies, and even rights and obligations
are represented as first-class objects, each with an appropriate set of transactions that
can be performed on them. In the following, we give a brief survey of the basic objects
of the FIRM specification. The naming convention is that the names of object classes
start with a ‘C’, while the names of simple types start with a ‘T’.

The top-level encapsulation of control information is that of a contract object (CCom-
mpact). Commpacts consists primarily of a set of promises (CPromise) between two or
more parties (TParty). Commpacts are effective if they have been mutually agreed u
and if all prerequisite conditions (the ‘ConditionsPrecedent’ of commpacts and p
ises) are satisfied.

Each contract party participates in the relationship in a certain role (TPartyRole). Such
roles are characterized by a constraint on who can fill the role (“all persons whose
zenship is USA”), and possibly a set of the instances of persons (CEpers) that are cur-
rently filling the role (that is, the finite list of all those who accepted the offer). Th
can be two or more roles for one commpact, and each role can possibly be fille
more than one party instance (except for the ‘offeror’ role which is always only one
cific party). A commpact has an ‘AboutItems’ constraint that characterizes which i
it is about.

Promises (CPromise) can be either rights (CRight) or obligations (CObligation). Rights
are promises that allow promisees to perform certain actions; obligations are pro
that require their promisors to perform certain actions. Promises might have a pr
sory condition (‘PromissoryCondition’) that specifies which conditions need to b
place before the promise becomes effective. In particular, this can of course incl
requirement such as the fact that certain obligations or assertions are satisfied. Pr
also have a ‘ConditionSubsequent’, that is the set of contingency promises that w
become effective if the contract is terminated. Among the generic actions that c
performed on promises are methods for them to be waived, transferred, etc. Trans
an obligation is different from just allowing other people to fulfill it (which might b
possible); in the former but not in the latter case, it becomes embedded into a
commpact.

Most importantly, of course, rights can be declared to be exercised, and obligation
be declared to be fulfilled. Moreover, there can be additional “trigger” methods that
vide further computational integration: For example, fulfilling a payment obligat
could trigger an actual payment transfer, upon whose completion the obligation w
then be declared to be fulfilled. In other words, declaring fulfillment and initiating
fillment are two separate actions on an obligation (with the analogous applying
A Network-Centric Design for Relationship-Based Rights Management 81

The FIRM Common Rights Language Object Model

 reg-
tion

recent
 object

r that is
sm to

 in
rights objects). Obligations can register a time with the manager of the commpact of
which they are a part. This defines the time at which the objects wants to receive a
‘wakeup’ call. For example, a payment obligation that is due on a certain date could
ister this time, and then, when woken up, it can decide to fulfill a payment obliga
right before it is due.

Also, each object has a method by which one can obtain a description of its most
state. There is also a method by which one can obtain a generic reference to the
(via a ‘SelfRef’ method that returns types such as TEpersRef or TFormRef) that contains
both a handle to its current address as well as a persistent name to it (a designato
valid in the long term, but that might have to undergo some name lookup mechani
resolve it into an address).

Objects and Types Defined by FIRM

In total, FIRM defines the following objects (with their inheritance relation indicated
Figure 33):

• CFIRMObject: the most generic rights management object

• CCommpact: the contract object

• CPromise: the promise object

• CRight: a specific type of a promise object

• CObligation: a specific type of a promise object

• CEpers: the person object

• CHomeProvider: the object manager of person objects

• CCommpactManager: the object manager of contract objects

Furthermore, the following objects are used in FIRM that are not specific to rights man-
agement:

• CItem: a generic information item

• CCollection: a general collection object that manages items

• CFOAM: an attribute model (just a collection of items that define attributes)

• CConstraint: a query/constraint object

Finally, the following record types are used in the FIRM specification:

• TCommpactStatus: the status of a contract object

• TPromiseStatus: the status of a promise object

• TFormRef: a way of referencing a contract form

• TEpersRef: a way of referencing a person object

• TParty: a way of describing the requirements and instances of a certain contract role

• TPartyRoleName: the name of a certain contract role (e.g. “Subscriber”)

We also use the type ‘TString’ to specify a general data string (not defined here).
A Network-Centric Design for Relationship-Based Rights Management 82

The FIRM Common Rights Language Object Model

ill be
f this
IRM

 this
ntions
 of
ng to
ols

L).
it can
bjects
ecific
ISL
U

FIGURE 33. FIRM Object Hierarchy: Objects that are not specific to FIRM are not in bold face font.

The Access-Control User Dialogue Protocol (AUPD)

Each FIRM object can be directly manipulated via the Access-Control User Dialogue
Protocol (AUPD). This manipulation is interactive; it includes not only interactions
such as obtaining a human-readable textual description of a FIRM object, but it also
includes interactions such as obtaining a description of a set of options that a FIRM
object carries for a certain attribute (e.g. “Choose privacy option: o Your address w
forwarded to interested parties; o No personal information will be used outside o
relationship”), a way of selecting one of the options, and a way of setting it in the F
object directly.

A MIME type is used to designate the protocol that is used by a given object for
purpose. In the simplest case, this will be just based on the standard Web conve
for defining “(HTML) forms” and for transferring and parsing the submitted results
such a form (the URL encoding of parameters as used in CGI scripts accordi
MIME type application/x-url-encoded). However, different user interaction protoc
can be defined in principle.

Specification Language

As a specification language, we use CORBA’s “Interface Definition Language” (ID
IDL defines class interfaces in a cross-platform and language-independent way;
be viewed as an object system specification language, that is, it specifies the o
including their methods and their instance variables (but it does not define sp
implementation issues). In particular, we will be using a variant of IDL here: the
(“Interface Specification Language”) of Xerox PARC’s CORBA implementation, IL
[246].1

1. ILU is used as a distributed object infrastructure for the testbed of the Stanford Digital Library
project as part of which FIRM has been prototyped; the languages used in the testbed to write
specific object implementations are Python. C++, and Java.

CFIRMObject

CCommpact

CPromise

CRight CObligation

CEpers CHomeProvider

CCommpactManager

CItem

CCollection CConstraint

CFOAM
A Network-Centric Design for Relationship-Based Rights Management 83

The FIRM Common Rights Language Object Model
As with any interface specification, FIRM specifies (in a language- and platform-inde-
pendent way) the abstract interface to computational (rights management) objects. A
specific rights management system will then provide a concrete implementation of this
interface, using a specific programming language and a certain environment. For exam-
ple, the RManage relationship manager application outlined in the main part of this the-
sis is a prototype implementation of the FIRM interface in Python and Java, providing
implementations for contracts such as group licenses, subscription contracts, etc. (cf.
also Section 4.0 of this appendix for further detail). Note that it is then the underlying
distributed object model that makes various such implementations interoperate seam-
lessly based on the interface specification and the transactional conventions.

2.2 Specification

(*
 * The Stanford FIRM Rights Management Object Model
 *
 * Revision: 3.0
 * Author: “Martin Roscheisen” <rmr@cs.stanford.edu>
 * Date: 1997/04/23 00:59:49
 *)

INTERFACE FIRM
IMPORTS

 SMA (* the Stanford Metadata Architecture *)
END;

(**)
(* GENERAL *)
(**)

(* Items, Collections, Constraints, and Attribute Models *)

(* For items, collections, constraints, and FOAMs, a simple sam-
ple interface is given here for purposes of exposition. For
more versatile interfaces for these objects, see the work on
the DLIOP and SMA service layers referenced above. For items,
see also the property service defined by the OMG. *)

(* - Items: the most generic form of an information object, from
which representations for other objects (such as documents,
persons, services, etc.) are derived. Items are essentially
just a set of properties, that is, a set of attribute-value
pairs, where the value can be of any type. *)

CItem TYPE CItem = OBJECT OPTIONAL
 SUPERCLASS SMA.CItem
 METHODS

ListPropertyNames(): SEQUENCE OF TString
RAISES NotAuthorized END,

GetPropertyValue(name: TString): TAny
RAISES NoSuchItem, NotAuthorized END,

SetPropertyValue(name: TString, value: TAny)
RAISES NotAuthorized END,
A Network-Centric Design for Relationship-Based Rights Management 84

The FIRM Common Rights Language Object Model
 END;

(* - Collections: a notion of a grouping of such items. Such
collections might be constrainable, that is, one can obtain a
subset of items fulfilling a certain constraint/query. *)

CCollection TYPE CCollection = OBJECT OPTIONAL
 SUPERCLASS SMA.CCollection
 METHODS

ListItemNames(constraint: CConstraint): SEQUENCE OF TString
RAISES NotAuthorized END,

GetItem(itemID: TString): CItem
RAISES NoSuchItem, NotAuthorized END,

AddItem(itemID: TString, item: CItem)
RAISES NotAuthorized END,

RemoveItem(itemID: TString)
RAISES NoSuchItem, NotAuthorized END,

 END;

(* - Constraints: the ability to express a constraint on values
of attributes of a certain attribute model. The exact defini-
tion of such a language is an orthogonal issue; we can basi-
cally use any sufficiently rich language here. In particular,
we can use the same language that is also used for formulat-
ing search queries (e.g. a simple Boolean query language with
procedural attachment). *)

CConstraint TYPE CConstraint = OBJECT OPTIONAL
 SUPERCLASS SMA.CQuery
 METHODS

Evaluate(): Boolean
RAISES NotPossible, NotAuthorized END,

GetConstraintString(): TString
RAISES NoSuchItem, NotAuthorized END,

SetConstraintString(c: TString)
RAISES NotAuthorized END,

 END;

(* - FOAMs: Attribute models as first-class objects according to
the Stanford metadata architecture (SMA). In terms of their
interface, FOAMs are just collections of attribute definition
items. *)

CFOAM TYPE CFOAM = OBJECT OPTIONAL
 SUPERCLASS CCollection (* of CItems *)
 METHODS

GetFOAMName(): TString
RAISES NotAuthorized END,

 END;
A Network-Centric Design for Relationship-Based Rights Management 85

The FIRM Common Rights Language Object Model
(**)
(* FIRM OBJECTS *)
(**)

(* FIRMObjects are the most generic form of an object in FIRM.
They behave like basic information items, but they also have
state that can be accessed in a structured way. *)

CFIRMObject TYPE CFIRMObject = OBJECT OPTIONAL
 SUPERCLASS CItem
 METHODS

(* Self-Descriptive Properties *)

(* A way of referencing the FIRM object persistently *)
SelfRef(): TFIRMObjectRef

RAISES NotAuthorized END,

(* A name of the FIRM object. E.g. “Subscription Contract” *)
Name(): TString

RAISES NotAuthorized END,

(* Different textual descriptions of the FIRM object. There is
both a short description in plain text that can be inserted
in the descriptions that are synthesized by other FIRM
objects (e.g. a commpact can include a list of the descrip-
tions of its promises). Then there is a full description that
can include interactive features such as option fields that
can be selected, etc. The default MIME type is ‘text/html’.
For a commpact, the full description is essentially just like
the text of conventional legal contracts. *)
ShortDescription(): TString (* a plain short paragraph *)

RAISES NotAuthorized END,
Description(audp: TMime): TString (* a full description *)

RAISES InvalidInfo, NotAuthorized END,

(* A callback method for processing the client actions for the
customization options of a FIRM object. Customization options
include the ability to fill in specific numbers (e.g. the
number of times a newsletter appears per week), to select
options (e.g. which of two delivery modes is preferred,
etc.). The format for this Access-Control User Dialogue Pro-
tocol is specified in a MIME type. Typically, this will be
just the standard HTML forms/cgi result values conventions of
returning results for user choices. *)
SetCustomization(audp: TMime, result: TString)

RAISES InvalidInfo, NotAuthorized END,

(* Access to (Domain-Specific) State Information *)

(* FIRM objects such as commpacts and promises are stateful;
this state usually depends on the specific domain at which
they are targeted (e.g. “number of searches allowed” in a
search contract, etc.). *)
A Network-Centric Design for Relationship-Based Rights Management 86

The FIRM Common Rights Language Object Model
(* A pointer to the attribute model used (e.g. the “search
engine rights model” or the “printer model”) *)
GetStateAttributeModel(): CFOAM

RAISES NotAuthorized END,

(* An attribute set containing the attributes and their values
according to the above attribute model *)
GetState(): CItem

RAISES NotAuthorized END,

 END; (* of CFIRMObject *)

(**)
(* COMMPACTS — Contract Objects Representation *)
(**)

(* Commpacts (“communication pacts”) are the object representa-
tion of various kinds of agreements including contracts. *)

(* The Main Contract Object *)

CCommpact TYPE CCommpact = OBJECT OPTIONAL
 SUPERCLASS CFIRMObject
 METHODS

 (* Access to Commpact Components *)

(* A contract is a set of enforceable promises between two
parties. It specifies about which objects it is, which condi-
tions are prerequisite for a valid formation, and what the
general terms and conditions are. The following methods give
access to these components. *)

(* The (standard) form on which it was originally based. One
can always obtain the base form of a commpact via this
method. *)
BaseForm(): TFormRef

RAISES NotAuthorized END,

(* The current status of the contract (e.g. “offer”) as defined
below *)
Status(): TCommpactStatus

RAISES NotAuthorized END,

 (* The contract parties as defined below. The specification of
a contract party includes a constraint on who can fill a cer-
tain contract role and the party/parties who are actually
filling it. *)
Parties(): SEQUENCE OF TParty

RAISES NotAuthorized END,

(* The conditions that have to be satisfied before the contract
formation is considered to be completed. Note that often
there is a choice whether to add a condition as a precedent
condition here or whether to include it as a promissory con-
A Network-Centric Design for Relationship-Based Rights Management 87

The FIRM Common Rights Language Object Model
dition as part of a promise-—with somewhat different ramifi-
cations (e.g. in the former case the contract will not have
to be cancelled in case of non-fulfillment, but other prom-
ises will also not be available for use). *)
ConditionsPrecedent(): CConstraint

RAISES NotAuthorized END,

(* A set of promises (that is, rights and obligations). *)
Promises(): CCollection (* of promises (CPromise) *)

RAISES NotAuthorized END,

(* A constraint that designates the items about which the con-
tract is. Note that this constraint can easily designate an
infinite number of items, including non-existing ones (e.g. a
subscription contract about news issues appearing within the
next year). *)
AboutItems(): CConstraint (* what the contract is about *)

RAISES NotAuthorized END,

(* The general terms and conditions of the contract. For exam-
ple, these might include the more general kinds of terms that
would be often printed on the back of legal contract forms.
The stipulations in this text take up all those policies that
the attribute model of the contract does not formalize. In
particular, this includes policies that go beyond what can be
dealt with by a commpact’s code implementation (e.g. conflict
resolution procedures, etc.). *)
TnCs(): TString (* textual description *)

RAISES NotAuthorized END,

(* Transactions *)

(* There are operations to support each of the two phases/modes
in which a contract lives:
- “negotiation mode”: First, a contract needs to be set up
and mututal assent about it has to be established.
- “performance mode”: Then, it can be used to give a mandate
to those actions that fall within the action space that it
constrains. *)

(* Methods for Contract Creation *)

(* For any commpact, one can obtain the basic template (“form”)
it is based on.Every commpact is derived from one of such
contract forms.These forms were defined by an appropriate
“forms designer” authority. One can take and instantiate such
a form into a “draft” commpact, which can then be customized
appropriately.[If there is a newer version for this template
than the one that was used for the given commpact instance,
then the newer version will be returned here (but the form
obtained via the BaseForm method will still refer to the old
version).] *)
GetForm(newOfferor: TEpersRef): CCommpact

RAISES NotAuthorized END,
A Network-Centric Design for Relationship-Based Rights Management 88

The FIRM Common Rights Language Object Model
(* A method for adding promises to a commpact instance. In par-
ticular, certain commpact actions might create new promises
that then need to be added to its set of promises (e.g. prom-
ises from the condition subsequent). In particular, if the
added promise is an obligation, then this method will immedi-
ately activate it (“wakeup”) to allow it to register a future
activation time or to indicate that it needs to be fulfilled
immediately (such as when exercising a certain search right
creates an obligation to filter or watermark its results
before they are returned). *)
NewPromise(name: TString): CPromise

RAISES NotAuthorized END,
ASYNCHRONOUS RequestAddPromise(promise: CPromise),
DoneAddPromise() (* callback *)

RAISES NotAuthorized END,

(* Methods for Negotiation Mode *)

(* Once drafts are customized, they can be declared to be an
offer. Such offers can then be accepted or rejected (by who-
ever qualifies as an offeree), or be revoked (by the off-
eror). A validly formed commpact (“effective”) can then also
be terminated; such termination might in turn require other
“subsequent conditions” to be performed (which is why there
is technically an asynchronous variant for this method). *)
ASYNCHRONOUS RequestDeclareDraftAnOffer(actor: TEpersRef),
DeclareDraftAnOffer(actor: TEpersRef)

RAISES InvalidStatus, NotAuthorized END,
ASYNCHRONOUS RequestAcceptOffer(actor: TEpersRef),
DeclareOfferAccepted(actor: TEpersRef): CCommpact

RAISES InvalidStatus, NotAuthorized END,
ASYNCHRONOUS RequestRevokeOffer(actor: TEpersRef),
DeclareOfferRevoked(actor: TEpersRef)

RAISES InvalidStatus, NotAuthorized END,
ASYNCHRONOUSRequestRejectOffer(actor: TEpersRef),
DeclareOfferRejected(actor: TEpersRef)

RAISES InvalidStatus, NotAuthorized END,
ASYNCHRONOUS RequestModifyOffer(actor: TEpersRef, extent:

CItem),
DeclareOfferModified(actor: TEpersRef, extent: CItem): CCom-

mpact
RAISES InvalidStatus, NotAuthorized END,

ASYNCHRONOUSRequestRenegotiate(actor: TEpersRef),
DeclareAcceptRenegotiate(actor: TEpersRef)

RAISES InvalidStatus, NotAuthorized END,
ASYNCHRONOUS RequestTerminateCommpact(actor: TEpersRef),
DeclareCommpactTerminated(actor: TEpersRef)

RAISES InvalidStatus, NotAuthorized END,
ASYNCHRONOUS RequestCompleteCommpact(actor: TEpersRef),
DeclareCommpactCompleted(actor: TEpersRef)

RAISES InvalidStatus, NotAuthorized END,

(* Methods for Performance Mode *)
A Network-Centric Design for Relationship-Based Rights Management 89

The FIRM Common Rights Language Object Model
(* A simple method for finding a promise. Of course, clients can
always also directly interface with the whole collection of
promises themselves; the following method is intended to make
the frequent case simple and allow for server-side optimiza-
tions. Note that there is no separate ‘authorize’ method—
rights are just exercised directly. *)
FindPromise(holder: TEpersRef, name: TString): CPromise

RAISES NoSuchItem, MultipleItems, NotAuthorized END,

END; (* of CCommpact *)

(* Auxiliary Types for Commpacts *)

(* States in which a commpact can be. The transitions among
these states are defined by the corresponding transactions
(e.g. declaring it an offer turns a draft into an offer). *)

TCommpactStatus TYPE TCommpactStatus = ENUMERATION

(* The inital commpact template from a forms provider *)
Form,

(* A status to designate a variety of intermediate situations—-
such as when we have a revoked offer or when someone is work-
ing on the customization of a form (in which case we have
more than a form but not yet an offer). *)
Draft,

(* A valid offer that is ready to be accepted *)
Offer,

(* An effective agreement (i.e., an accepted offer with forma-
tion complete *)
Effective,

(* A terminated relationship *)
Terminated

END; (* of TCommpactStatus *)

(* A way of referencing a (standard) commpact form, that is, the
template on which commpacts are based: by naming its identi-
fier (e.g. “Standard License for Web Search Engines”), the
version number, and the authority who originally provided it.
Optionally again, a current (direct) address of an object
instance of it. *)

TFormRef TYPE TFormRef = RECORD

formName: TString,
version: TString,
formProvider: TEpersRef,
form: CCommpact (* optional *)

END; (* of TFormRef *)

(* A way of characterizing a contract party: by designating the
role that this party plays as part of the contract (e.g.
“subscriber”), any constraint that applies to filling this
role (e.g. “student status required”), and the set of e-per-
A Network-Centric Design for Relationship-Based Rights Management 90

The FIRM Common Rights Language Object Model
sons that are actually currently filling this role. In the
most typical cases, a contract will just have two party
roles, with each one e-person filling one of the roles (off-
eror and offeree). However, in some cases we might have some
third-party role in addition, and in other cases, we can
allow multiple e-persons to fill one and the same role if the
contract’s state information does not depend on the identity
of the filler. *)

TParty TYPE TParty = RECORD

(* A “local name” for the contract party *)
roleName: TPartyRoleName,

(* A constraint on who can fill this role *)
constraint: CConstraint,

(* The e-persons that actually accepted to fill this role *)
instances: CCollection (* of e-persons (CEpers) *)

END; (* of TParty *)

(* A role name gives a way of specifying contract templates
without having to name/know the specific party at specifica-
tion time; they can then be used to specify which party has
holds which promises, etc. In other words, these names func-
tion much like local variable declarations. *)

TPartyRoleName TYPE TPartyRoleName = TString;

(**)
(* PROMISES *)
(**)

(* Promises are the core component of a contract as a set of
enforceable promises. The two main subtypes are rights and
obligations. Promises are represented themselves as first-
class objects within the context of a commpact. *)

(* The Main Promise Object Representation *)

CPromise TYPE CPromise = OBJECT OPTIONAL
 SUPERCLASS CFIRMObject
 METHODS

(* Access to Promise Components *)

(* A promise is a right or an obligation held by one of the con-
tract parties. It can be only about a subset of the objects
that the contract talks about. *)

(* A local reference to the party who promises it *)
Promisor(): TPartyRoleName

RAISES NotAuthorized END,

(* In case of multi-party contracts with more than two parties,
a local reference to the party who is the promisee *)
A Network-Centric Design for Relationship-Based Rights Management 91

The FIRM Common Rights Language Object Model
Promisee(): TPartyRoleName
RAISES NotAuthorized END,

(* The current generic status of the promise (see below) *)
Status(): TPromiseStatus

RAISES NotAuthorized END,

(* Possibly any conditions that need to be in place before the
promise becomes effective (e.g. a delivery promise under the
condition that a payment obligation was fulfilled). *)
PromissoryCondition(): CConstraint

 (* on commpact attributes *)
RAISES NotAuthorized END,

(* Possibly any kinds of promises that come into place upon ter-
mination of the contract relationship *)
ConditionsSubsequent(): CCollection

 (* of promises (CPromise) *)
RAISES NotAuthorized END,

(* Optionally an additional constraint that specifies the subset
of items which the promise is about—in case it is not about
all those that are subject of the commpact itself (default
case). *)
AboutItems(): CConstraint (* on which items it is about *)

RAISES NotAuthorized END,

(* Transactions *)

(* A method for exercising a right or fulfilling an obligation
(a generic redirect to the ‘exercise’ and ‘fulfill’ methods
of the CRight and CObligation subtypes, respectively). *)
ASYNCHRONOUS RequestDeclareExercised(actor: TEpersRef,

extent: CItem),
DeclareExercised(actor: TEpersRef, extent: CItem)

RAISES InvalidInfo NotAuthorized END,

(* Whether or not the promise is currently effective *)
CheckValidity(): Boolean

RAISES NotAuthorized END,

(* Methods for transferring a promise to another party *)
ASYNCHRONOUS RequestDeclareTransferred(newHolder: TEpersRef,

newCpct: CCommpact),
DeclareTransferred(newHolder: TEpersRef, newCpct: CCommpact)

RAISES NotAuthorized END,

(* Methods for waiving a promise (in the negotiation phase) *)
ASYNCHRONOUS RequestDeclareWaived(),
DeclareWaived()

RAISES NotAuthorized END,

END; (* of CPromise *)

(* Auxiliary Types for Promises *)
A Network-Centric Design for Relationship-Based Rights Management 92

The FIRM Common Rights Language Object Model
(* Generic state information for every promise includes whether
it is exclusive, waivable (during negotiation), transferrable
(to other parties), whether it is (unconditionally) effec-
tive, and whether it has already been fulfilled. *)

TPromiseStatus TYPE TPromiseStatus = RECORD

exclusive: Boolean, (* e.g. an exclusive right *)
waivable: Boolean, (* whether the promise is waivable *)
transferrable: Boolean, (* whether it is transferrable *)
waived: Boolean, (* whether it was indeed waived *)
transferred: Boolean, (* whether it was transferred *)
effective: Boolean, (* whether it is currently effective *)
fulfilled: Boolean (* whether it was completed *)

END; (* of TPromiseStatus *)

(* Note on case-specific parameterization: Transactions on prom-
ises are often qualified by domain-specific action parame-
ters. For example, when fulfilling a payment obligation,
someone might opt to do this in part only, or when exercising
a fancy print right, one might want to indicate with which
resolution to print a document. Whenever applicable, FIRM
allows these parameters to be passed along to methods as part
of an argument of type ‘CItem’. This type is just an
attribute set, and the assumption is that it is structured
according to the attribute model of the promise. In other
words, when fulfilling a payment obligation that has an
attribute model containing a ‘sumToPay’ attribute (with a
correspondingly defined meaning), we can pass along a value
for this attribute as part of the ‘extent’ argument of type
CItem. *)

(**)
(* RIGHTS and OBLIGATIONS *)
(**)

(* Rights and obligations are the immediate subtypes of prom-
ises. [Other promises such as guarantees and warranties are
considered to be just obligations with corresponding promis-
sory conditions.] *)

(* Rights *)

CRight TYPE CRight = OBJECT OPTIONAL
 SUPERCLASS CPromise
 METHODS

(* A method for declaring that a right has been exercised (fully
or partially). The extent to which it is “exhausted” is inde-
cated (e.g. “fully” or a certain fraction such as 31 of 1000
allowed searches). Promises keep track of these state
changes in a promise-specific way. *)
DeclareExercised(actor: TEpersRef, extent: CItem)

RAISES NotAuthorized END,
A Network-Centric Design for Relationship-Based Rights Management 93

The FIRM Common Rights Language Object Model
(* A method for exercising a right (fully or partially). This
corresponds to an authorization call; rights-specific param-
eters can be provided as part of the ‘extent’ argument (e.g.
the number of searches to allow as part of a request to
authorize searches). *)
ASYNCHRONOUS Exercise(actor: TEpersRef, extent: CItem)

END; (* of CRight *)

(* Obligations *)

CObligation TYPE CObligation = OBJECT OPTIONAL
 SUPERCLASS CPromise
 METHODS

(* A method for declaring an obligation fulfilled. Contract par-
ties or appropriate third parties can declare an obligation
to be (partially or completely) fulfilled. The promise keeps
track of who has made which declarations such that inconsis-
tencies can be detected. The extent to which an obligation
is fulfilled uses obligation-specific attributes; this is
indicated with a corresponding ‘extent’-cookie that can have
any value (following the attribute model of the promise). A
null value is taken to be “completely fulfilled”. *)
ASYNCHRONOUS RequestDeclareFulfilled(actor: TEpersRef,

extent: CItem),
DeclareFulfilled(actor: TEpersRef, extent: CItem)

RAISES NotAuthorized END,

(* A method for triggering the actual process of fulfilling an
obligations (if available): The obligation holder can ini-
tiate a (complete or partial) fulfillment of the obligation
(e.g. initiate electronic payment). *)
ASYNCHRONOUS Fulfill(actor: TEpersRef, extent: CItem),

(* A way for the promisee or any observing third party to
request the (complete or partial) fulfillment of the obga-
tion. *)
RequestFulfill(actor: TEpersRef, extent: CItem)

RAISES NotAuthorized, NotAnEffectivePromise END,

(* An obligation can register a wake-up time with the manager of
the commpact that it is part of (see the commpact manager
interface). The following method is then called back. *)
Wakeup(cookie: TString)

RAISES NotAuthorized END,

(* A method for inspecting those other rights or obligations
that are created by not living up to an obligation (e.g. a
penalty payment obligation through late payment; a termina-
tion right through non-delivery, etc.) *)
GetConsequences(): CCollection (* of CPromise *)

RAISES NotAuthorized END

END; (* of CObligation *)
A Network-Centric Design for Relationship-Based Rights Management 94

The FIRM Common Rights Language Object Model
(**)
(* EPERS — Person Object Representations *)
(**)

(* An epers/e-person is the object representation of (a role of)
a person (natural, corporate, etc.). It is essentially a
generalization of the notion of a (Unix, AOL,...) “account”
in that it provides the online represenation of a person with
a request interface (which is more structured here than with
the forms of accounts that we currently know). One and the
same human can have multiple e-persons (e.g. one for private
and one for a certain organizational function). *)

CEpers TYPE CEpers = OBJECT OPTIONAL
 SUPERCLASS CFIRMObject
 METHODS

(* Standard collections for every e-person. Every e-person has
at least four default collections: *)

(* - the commpacts currently held by this e-person, *)
Commpacts(): CCollection (* of commpacts *)

RAISES NotAuthorized END,

(* - the set of public offers from this e-person, and *)
Offers(): CCollection (* of commpact offers *)

RAISES NotAuthorized END,

(* - a notifier as a unified “attention structure” for the e-
person (the e-person’s “inbox”). *)
Notifier(): CCollection (* of CItems *)

RAISES NotAuthorized END,

(* Methods for telling the e-person whether its user (the real
person) is online and, if so, where to reach it there: by
telling it about the current “local resource manager” (LRM),
that is, an object that knows about how to get to the user’s
screen, etc. *)
RegisterLRM(lrmName: TString)

RAISES NotAuthorized END,
UnregisterLRM()

RAISES NotAuthorized END,

(* A way of notifying an e-person of something. For example,
some party might request an e-person to accept a certain
commpact offer. For certain types of offers, the e-person’s
default preferences will lead it to accept this offer auto-
matically (in which case it might not even show up on the
notifier); in other cases, it might involve more direct user
feedback. *)
ASYNCHRONOUS RequestAcceptOffer(offer: CCommpact),
ASYNCHRONOUS RequestRejectOffer(offer: CCommpact),
ASYNCHRONOUS RequestRevokeOffer(offer: CCommpact),
ASYNCHRONOUS RequestModifyOffer(offer: CCommpact),
A Network-Centric Design for Relationship-Based Rights Management 95

The FIRM Common Rights Language Object Model
ASYNCHRONOUS RequestTerminateCommpact(cpct: CCommpact),
ASYNCHRONOUS RequestRenegotiateCommpact(cpct: CCommpact),

(* Optional callbacks for a number of negotiation transactions
that an e-person might want to be notified about. *)
ASYNCHRONOUS OfferDeclaredRejected(cpct: CCommpact),
ASYNCHRONOUS OfferDeclaredRevoked(cpct: CCommpact),
ASYNCHRONOUS OfferDeclaredAccepted(cpct: CCommpact),
ASYNCHRONOUS OfferDeclaredModified(cpct: CCommpact),
ASYNCHRONOUS CommpactDeclaredTerminated(ccpt: CCommpact),
ASYNCHRONOUS CommpactDeclaredRenegotiate(ccpt: CCommpact),

(* A set of preferences that determine some of the automatic
default behavior of an e-person. Note that these preferences
are just obligations held by the e-person. For example, there
might be obligations that determine which types of commpact
offers the e-person is to accept automatically, which ones to
pick to authorize performing a certain action (automatically
or not), etc. Since these obligations held by the e-person to
their “outside owner” (the real person), these obligations
are special in that they are not part of any commpact. *)
DefaultEpersObligations(): CCollection (* of CObligation *)

RAISES NotAuthorized END,

(* A way of automating the choice of which commpact to use by
default for a certain action (such as, for example, whether
to use a subscription or a pay-per-search contract for a
given search engine—assuming that the e-person has both).
Based on its preference rules (obligations), an e-person
determines the default commpact that is to be used to autho-
rize an action. In the simplest case, this will be just based
on the item considered (e.g. the search engine activated).
In more complex cases, this might lead to more complicated
negotiation. *)
GetDefaultCommpact(action: TString,

item: TString, ownedBy: CEpers): CCommpact
RAISES NotAuthorized END,

(* Authentication. A network login is done by authenticating
oneself (one’s browser’s network address, etc.) with respect
to one’s e-person. A credential signed with the public key
of the home provider is returned. *)
Authenticate(password: TString, selfInfo: TEpersRef): TString

RAISES InvalidAuthentication, NotAuthorized END,

(* An e-person can refer to another e-person and redirect cer-
tain requests to it. For example, instead of replicating
certain personal information that is constant over various e-
persons (“roles”) that a person might have (e.g. the person’s
height), this information can be kept at one e-person only
and the others cause exceptions when such attributes are
requested and redirect to a designated other e-person. The
object model is one of “classless inheritance” here. *)
A Network-Centric Design for Relationship-Based Rights Management 96

The FIRM Common Rights Language Object Model
GetSuperEpers(): CEpers
RAISES NotAuthorized END,

(* A default “personal relationship manager.” *)
GetCommpactManager(): CCommpactManager

RAISES NotAuthorized END

END; (* of CEpers *)

(* A persistent way of referencing and identifying an e-person
*)

TEpersRef TYPE TEpersRef = RECORD

 (* The pseudonym of the e-person *)
epersID: TString,

(* The name of the home provider, that is, the manager of the
person object *)
homeProviderID: TString; (* object manager name *)

(* Optionally, a cryptographic guarantee that there is indeed
the e-person with the above attributes behind the requesting
network address (e.g. using a PK-signed hash of these three
information pieces). Such a warrant can be obtained by suc-
cessfully performing a network login, that is, by providing
valid authentication information to the home provider and in
return obtaining a corresponding warrant that is signed by
the home provider’s private key). *)
warrant: TString,

(* Optionally, the object’s current network address (string
binding handle) *)
epersHandle: TString

END; (* of TEpersRef *)

(**)
(* HOME PROVIDER *)
(**)

(* E-person objects are managed by an object manager called
“home provider”. Here, a home provider is represented as a
searchable collection of e-persons. Often a home provider
will integrate the following two services (although this is
not strictly necessary): a default collection manager that is
able to persistently manage the member e-persons’ items and
collections (as their personal “file space”), and a default
commpact manager that manages the relationship objects (com-
mpacts) of an e-person. *)

CHomeProvider TYPE CHomeProvider = OBJECT OPTIONAL
 SUPERCLASS CCollection (* of CEpers *)
 METHODS

(* Request new e-person to be created with a certain name *)
A Network-Centric Design for Relationship-Based Rights Management 97

The FIRM Common Rights Language Object Model
NewEpers(epersID: TString): CEpers
RAISES InvalidInfo, NotAuthorized END,

(* Obtain the home providers public key. *)
GetPublicKey(): TString

RAISES NotAuthorized END,

(* Optionally, a default commpact manager *)
GetDefaultCommpactManager(): CCommpactManager

RAISES NotAuthorized END,

(* Auxiliary methods for finding and removing e-persons *)
FindEpers(epersID: TString): CEpers

RAISES NoSuchItem, NotAuthorized END,
RemoveEpers(epersID: TString)

RAISES NoSuchItem, NotAuthorized END,

END; (* of CHomeProvider *)

(**)
(* COMMPACT MANAGER *)
(**)

(* A commpact manager manages/keeps e-persons’ commpacts. Spe-
cial cases of commpact managers are forms providers (who make
available standard digital contract forms) and personal
commpact/relationship managers. Commpact Managers can reside
with a server (conventional access control), but also with a
client or with a trusted third party (e.g. a rights clearing-
house). *)

CCommpactManager TYPE CCommpactManager = OBJECT OPTIONAL
 SUPERCLASS CCollection (* of commpacts *)
 METHODS

(* A way of asking the commpact manager to instantiate a new
commpact based on a certain template *)
NewCommpact(actor: TEpersRef, form: TFormRef): CCommpact

RAISES InvalidInfo, NotAuthorized END,

(* A way of getting hold of the commpact manager’s public key *)
GetPublicKey(): TString

RAISES NotAuthorized END,

(* A way of registering a wake-up call. For example, obligations
can register such a time with the manager of the commpact
that they are part of; thus, they can be sure to be activated
at any required deadline. A cookie can be added to provide
information on the wakeup context. *)
RegisterWakeupTime(time: TString, cookie: TString)

RAISES NotAuthorized END,

(* Auxiliary methods for finding commpacts and commpact forms. *)
FindForm(actor: TEpersRef, name: TFormRef): CCommpact

RAISES NoSuchItem END,
A Network-Centric Design for Relationship-Based Rights Management 98

FIRM’s Object Attribute Models

sent
 that
con-

 of
 is
institu-
peci-

 of a
n the
tual-

 exe-
ices
ve a

 state
last-
rse,
to be
FindCommpact(actor: TEpersRef, name: TString): CCommpact
RAISES NoSuchItem END,

END; (* of CCommpactManager *)

(**)
(* EXCEPTIONS *)
(**)

(* Note: In this specification, only high-level exceptions have
been explicitly indicated. It is assumed that every method
can also throw a set of base-level (CORBA) object system
exceptions such as ‘CommunicationFailure’, ‘InterfaceVer-
sionMismatch’, etc. *)

EXCEPTION InvalidAuthentication;
EXCEPTION NotAuthorized;
EXCEPTION NoSuchItem;
EXCEPTION MultipleItems;
EXCEPTION NotPossible;
EXCEPTION InvalidInfo;
EXCEPTION InvalidStatus;

3.0 FIRM’s Object Attribute Models

Complementing the common rights object model outlined in the previous section, we
have domain-specific rights conceptualizations. These are not taken into the type system
of the object model, but they are specified independently. FIRM uses attribute models
(FOAMs) to “publish” the attributes with which the corresponding objects repre
their state—in a way that is useful for other programs (such as “agents”). Note
FIRM only specifies a format for the attribute models; it does not itself specify any
crete attribute models.

FOAMs give the flexibility of adding rights vocabularies for specific domains on top
an already established basic FIRM infrastructure. In particular, this flexibility
achieved in a way that does not assume any centralized infrastructure (standards
tion), and that is extensible over time without the need to modify the basic FIRM s
fication.

To understand FOAMs, consider the Unix file access rights as a simple example
rights language. The Unix file access rights define a rights relationship betwee
owner of a file and other interested parties. Specifically, this relationship is concep
ized by three promises, all rights, namely the well-known rights to read, write, and
cute. A FIRM wrapper/proxy that makes these rights available to other FIRM serv
would take up this fact in a commpact. Then, for each of the rights, we then ha
promise attribute model (FOAM) that describes which attributes characterize the
of the promise. In the case of the write right in Unix, this is for instance the
accessed time. This time will be one attribute of the write-right FOAM. Of cou
another attribute is the identity of the holder of the right. But this does not need
part of the FOAM—since it is already part of the generic structure of a promise.
A Network-Centric Design for Relationship-Based Rights Management 99

FIRM’s Object Attribute Models

tan-

ffords
udes
facil-

o a

n to
ter of
t this

an be

 the
 a ref-
 pay-
del it

rized).
elves
er-use
 with

cable.
obliga-
The meta-data architecture of the Stanford Digital Libraries Project defines a format for
first-class attribute models that is suitable for FIRM’s attribute models.

3.1 Attribute Models in the Stanford Metadata Architecture

We are assuming in FIRM the availability of the kind of attribute services that the S
ford meta-data architecture provides.

The Stanford metadata architecture is designed to provide an infrastructure that a
interoperability among heterogeneous, autonomous digital library services. It incl
attribute model proxies, attribute model translation services, metadata information
ities, and local metadata repositories.

For our purposes here, we are mainly interested in the following characteristics:

• Attribute models are first-class objects that can be referred to and that can be
searched for specific attribute definitions.

• Attribute models are thus fundamentally a collection of items, where each item is an
attribute definition containing the attribute name, an attribute documentation (a tex-
tual description of its meaning), and a definition of the attribute value (using IDL
syntax).

• New attribute models can be defined by anyone by providing a collection of new
attribute definitions and by publishing it.

3.2 Attribute Models as Domain Plug-Ins for FIRM: FOAMs

As pointed out above, the FIRM common object model specifies only an abstract inter-
face to rights management objects. Any concrete rights management system will pro-
vide a specific implementation of this interface that realizes the (domain-specific)
behavior in that one is interested in a specific case. For example, someone might pro-
vide a Java implementation for a FIRM obligation object that represents a payment obli-
gation, such that triggering the ‘fulfill’ method on this object would actually lead t
real payment transaction from one bank account to another.

In this way, we are flexible with regard to which domain-specific conceptualizatio
choose. For example, a print right in one rights language might provide for a coun
the number of times that a document can be printed, the maximum resolution tha
right allows a printer to have, etc. If someone considers this insufficient, then this c
extended to include further attributes (possibly inheriting from the previous).

Consider a payment obligation that is characterized by two attributes, namely
amount that was due and the amount that was already paid. To make this explicit,
erence to an attribute model that defines these two attributes will be included in the
ment promise object. Thus, anyone can ask the promise object for the attribute mo
uses for its state, and then ask the object for specific values of this state (if autho
Moreover, implementations of FIRM objects will use these attribute models thems
for various purposes. For example, a payment obligation that is based on pay-p
will have an attribute that describes the price per use, for instance. But to come up
an amount to be paid, it will need to know about the number of uses that are appli
If embedded in a search contract that contains a search right next to the payment
A Network-Centric Design for Relationship-Based Rights Management 100

FIRM’s Object Attribute Models

 Such
uage
tions

bject
liza-

ther a
 those
r all

del’
e (a

ning

also
tion, it can then obtain this number from the search right (that will count the number of
searches for every time it is exercised to perform a search).

All FIRM objects declare which attribute model they use to represent their state. In prin-
ciple, new attribute models can be defined by anyone, although it is of course to be
expected that there will be a certain set of “standard” models for generic cases.
models would be efficient in terms of reuse and in terms of making available a lang
by which one can talk about domain-specific issues across different implementa
and platforms.

3.3 Sample Attribute Models for FIRM Objects

In this subsection, we examine a few concrete attribute models for sample FIRM o
implementations. Note how these FOAMs effectively make explicit the conceptua
tion that a designer chose for a certain action, promise, or relationship.

For example, it is as part of the attribute model that the designer declares whe
search right is characterized only by a number of searches completed relative to
allowed, or whether it includes a counter of the total number of items returned fo
searches, etc.

SimpleSearchRightModel::RightsAttributeModel = {
attr1 = {

attrName: ‘ searchBudget’
attrValueType: ‘CARDINAL’
attrDocumentation: ‘Total number of searches allowed’

}
attr2 = {

attrName: ‘ searchCount’
attrValueType: ‘CARDINAL’
attrDocumentation: ‘Total number of searches done so far’

}
}

The above defines a new attribute model that inherits from ‘RightsAttributeMo
(defined elsewhere) and adds two attribute items, each with their attribute nam
string), their value (an ISL specification as a string), and the intended mea
described by a textual description.

Alternatively, someone might define a more complex search right model, which
represents the number of items returned for each search:

SimpleItemizedSearchRightModel::SearchRightModel = {
attr1 = {

attrName: ‘ searchHistory’
attrValueType: ‘SEQUENCE OF RECORD

time: TTime,
resultSetSize: CARDINAL
END’

attrDocumentation: ‘History of searches that have been
successfully completed so far—as a list of structures,
one for each search, where each structure describes
the time of the search and the number of items
returned for this search’
A Network-Centric Design for Relationship-Based Rights Management 101

FIRM’s Object Attribute Models

 tied
cess
record

set of
M can
IRM’s
AM

ghts
s and

y, we
ple-
 archi-

 the
}
}

As another example, consider the following attribute model that defines case-specific
state information for a payment obligation that operates on a per-use (e.g. per search)
basis. Note that the holder and the beneficiary of the payment obligation (the e-person
that has to pay and the receiver) are already defined as part of the generic structure of a
promise.

SimplePayPerUsePaymentObligationModel::ObligationModel = {
attr1 ={

attrName: ‘ pricePerUse’
attrValueType: ‘CARDINAL’
attrDocumentation: ‘Price per use in US Dollars’

}
attr2 = {

attrName: ‘ minAmount’
attrValueType: ‘CARDINAL’
attrDocumentation: ‘Minimum charge to be applied (in USD)’

}
}

Since promises know about the commpact in which they are embedded, we could now
have a search license (commpact) that allows people to use a search service, with an
obligation to pay on a per-search basis.

In other words, attribute models are used here to complement FIRM in that they provide
all the domain-specific state structure that FIRM intentionally abstains from defining;
they can be contributed by anyone, and they are managed in a distributed way (as a set
of attribute model servers).

FIRM’s attribute models provide a format by which other rights languages can be
into the framework. This includes specific mechanisms such as the Unix file ac
rights language, but also more extensive standards such as the domain-specific
formats of EDI’s standard message types.

3.4 Attribute Models and Interoperability of Heterogeneous Rights Languages

Recall that it is our assumption that there will continue to be a heterogeneous
rights languages, each generally targeted at a specific design trade-off space. FIR
be used to address the issue of interoperability across different rights languages. F
interfaces would serve as a common dominator for interoperation, and its FO
attribute models could be used to “export” the defining properties from specific ri
vocabularies and make them available across different implementation language
platforms via the FIRM interface.

In particular, once there is a basic mechanical interoperability attained in this wa
can achieve a more semantic level of interoperability by additionally providing im
mentations for services such as the attribute translators that the Stanford metadata
tecture provides for.

In Section 4.6, we will give an example of how such interoperability can work for
simple case of the Unix file access rights language.
A Network-Centric Design for Relationship-Based Rights Management 102

Examples of Interface Implementations

racts
ecific
type

e the
ll of
 docu-
con-
4.0 Examples of Interface Implementations

The FIRM specification in Section 2.0 is an interface specification that defines the
abstract request interface by which objects on possibly different platforms and possibly
implemented in different languages can interact. The following demonstrates how a
competent “forms provider” can implement and make available new types of cont
in a relatively easy way by leveraging a class hierarchy. These examples of sp
implementations are given in Python; they are drawn from the RManage proto
implementation.

4.1 Example Commpact: A Site Licensing Contract

The most basic form of a sample subscription commpact is very simple if we us
RManage toolkit to provide an implementation ‘CCommpact’ that takes care of a
the generic transactional behavior. Essentially, we only have to provide then some
mentation information and create the initial promises (which deal with most of the
tract-specific behavior).

class SubscriptionCommpact(CommpactImpl.CCommpact):
 def __init__(self):
 self.roleNames = [“Publisher”, “Subscriber”]
 CommpactImpl.CCommpact.__init__(self)

 # Add Promises
 prom = self.NewPromise(“SearchRight”)
 self.AddPromise(prom)
 prom = self.NewPromise(“FlatFeePaymentObligation”)
 self.AddPromise(prom)
 def Name(self):
 return “Subscription Contract”
 def TnCs(self):
 return “The standard terms and conditions of the retail
 industry are included by reference regarding the return of
 goods and warranties.”
 def ShortDescription(self):
 return “A subscription agreement in which publisher agrees to
 deliver the indicated number of issues to subscriber who in
 turn agrees to pay at least quarterly.”

4.2 Example Customization: Adding a Privacy Choice

Let us now consider that we want to add the choice of a privacy option to the contract,
using an HTML-based description. This can be done quite easily by just implementing
the following method of the RManage commpact toolkit to the above implementation:

 def GetCustomizationOptions(self):
 # Get generic options, if any
 page = CommpactImpl.CCommpact.GetCustomizationOptions(self)
 # Add our specific options to offers
 if self.Status()==”Offer”:
 page = page + “<P>Restrict use of address information ?
 <INPUT TYPE=checkbox NAME=addressPriv VALUE=Y “
 + self[“addressPriv”] + ”> Y/N”
 else:
A Network-Centric Design for Relationship-Based Rights Management 103

Examples of Interface Implementations

lt the
ould
, this
ow-

uto-
nt is

 the
 # If not an offer, just include choice in description
 page = page + “<P>Restrict use of address information? “
 + self[“addressPriv”]
 return page

This is all that is needed to introduce another state variable (addressPriv) to the
commpact and provide all the interactive behavior to allow people (or their e-persons)
to pick a privacy option when accepting an offer.

4.3 Example Promise: A Payment Obligation

The following Python code sketches the implementation of a specific subtype of a pay-
ment obligation based on a flat-fee pricing model. The class from which it is derived
itself would be a more generic implementation of a payment obligation, realizing a basic
FIRM obligation object. In particular, note how descriptions are generated from state
information.

class FlatFeePaymentObligation(PaymentObligation):
 def __init__(self):
 PaymentObligation.__init__(self)
 self[“flatFee”] = 300
 self[“amountPaid”] = 0

 def ShortDescription(self):
 # Generate descriptive text
 page = PaymentObligation.ShortDescription(self)
 page = page + “The following flat fee needs to be paid: ”
 + self[“flatFee”] + “USD in total.<P> Of this, ”
 + (self[“flatFee”]-self[“amountPaid”])
 + “USD are still due.”
 return page

This class does not need to provide a ‘fulfill’ method since we can use by defau
one from its parent class (the payment obligation). The fulfillment method there w
be implemented to actually initiate a payment transfer, for example. In RManage
would be done quite easily using the UPAI application program interface. Note, h
ever, that it is in principle not strictly required to also provide the link to actual a
matic payment as a fulfillment action; we might as well just assume that payme
done off-line, and only use the DeclareFulfilled method to register new state.

The following additional method would make it possible for offerors to customize
initial flat fee (while drafting the contract offer).

 def GetCustomizationOptions(self):
 if self.cpctContext.Status()==“Draft”:
 return “<P>Flat fee: <INPUT SIZE=5 NAME=flatFee
 VALUE=”+self[“flatFee”]+“>”

4.4 Example Authorization: Allowing Searching with a Search License

Let us consider the following case: We have a Web search engine that can be used by
anyone with a license. A client already has one such license (otherwise, it would have to
be negotiated first), and wants to conduct a search. The following actions will now
result: First, the client sends the search request to the search engine. This request
A Network-Centric Design for Relationship-Based Rights Management 104

Examples of Interface Implementations

nces).
ng the

riety
s in a
ly can
o any

r the
 can
 fact

red in
cing

the
rs for

nding
vice

e to
right
includes the query and a reference to the contract that the searcher wants to use (the cli-
ent’s e-person might automatically pick one based on the user’s designated prefere
Then, the search engine receives this information, and does an authorization alo
lines of the following code fragment (at least initially):

 # Requester: e-person of the searching user
 # Params: what kind of search to conduct; e.g. could
 # be the following default parameters
 params = {“maxResultSetSize”: 100}
 # licenseCpct: the commpact that the user wants to use

 searchRight = licenseCpct.FindPromise(requester,“Search”)
 try:
 searchRight.Exercise(requester, params)
 except FIRM.NotAuthorized:
 raise Error

Specifically, if we have a contract where we have to pay for searches, then exercising
the search right will create a payment obligation correspondingly (where the exact
amount might depend on parameters of the search again).

4.5 Client Example: Other Programs (“Agents”) Interfacing with FIRM Objects

One of the often-quoted scenarios in electronic commerce is the ability of having an
“agent” roaming around the network and trying to find the cheapest offer from a va
of sources. Let us outline here how client programs can interface with FIRM object
way that enables such usages in a very general way, that is, in a way that not on
take basic attributes such as the price of a good into account, but in principle als
other types of terms and conditions (such as policies about return-of-goods, etc.).

Given a contract offer with a certain payment obligation, any program can ask fo
attribute model of this contract. The following code fragment shows how a program
find out the price of an offer. Note that in this case, the price is a per-item price—a
that will be known to the programmer of the agent and therefore can be conside
comparing this per-item price with other prices that might be using a different pri
model.

 payOblig = offer.FindPromise(“Payment“)
 theModel = payOblig.GetAttributeModel()
 if theModel.Name()==”SimplePayPerUsePaymentObligationModel”:
 attribNameForPrice = “pricePerUse“
 ...
 priceInThisOffer = payOblig[attribNameForPrice]

4.6 Interoperability Example: Unix File Rights into the FIRM Object Model

Let us consider here how FIRM could provide an interoperability “wrapper” for
basic access rights that the Unix file system provides. We could have such wrappe
the various file servers that people with different accounts use (next to correspo
wrappers for Windows NT, for instance). This would allow us to use the FIRM ser
layer to determine and manipulate access rights in a uniform way.

Specifically, let us consider here the Unix ‘read’ right as an example. We would lik
have an implementation for a FIRM rights object that is a wrapper to the Unix read
A Network-Centric Design for Relationship-Based Rights Management 105

Examples of Interface Implementations

ntity
em. In
ds:
for a specific file. This implementation could be just a proxy to the real Unix file access
control in the following way (although there clearly could be other conceptualizations
and implementations).

We assume that the generic promise behavior has already been implemented by Prom-
iseImpl.CPromise; in particular, this right then already knows who it is held by,
which file it is about, etc. Moreover, we assume that there is some commpact that
encapsulates the relationship that a specific person has with the provider of the Unix
account on a certain system. This might include disk space quotas, etc. In particular, it
provides the necessary information to deal with the relevant authentication issues
involved. The account names are made available via an attribute model in this case that
has an attribute “UnixUserIDs.”. This provides the required mapping from the ide
of an e-person to the account name that this person has with a particular Unix syst
other words, we mostly need to provide an implementation of the ‘exercise’ metho

class UnixReadRight(PromiseImpl.CPromise):
 def ShortDescription(self):
 page = PromiseImpl.CPromise.ShortDescription(self)
 page = page + “The holder of this right has unlimited
 read access to the files.“
 return page

 # An auxiliary method that gets the Unix account name
 # that corresponds to the right holder’s e-person handle.
 def convertEpersID2UnixAccountID(epersRef):
 return self.cpctContext[“UnixUserIDs”][self.Holder()]

 def Exercise(self, actor, inParams):
 # Check whether actor is authorized to exercise this right;
 # and do other general checks.
 PromiseImpl.CPromise.Exercise(actor, inParams)
 # Get local user name
 try:
 epersUID = self.convertEpersID2UnixAccountID(self.Holder())
 except:
 raise FIRM.NotAuthorized, “Do not have a local account“
 # Get the file that this read request is about
 fileName = inParams[“requestedFile“]
 # Now proxy to Unix access read access right:
 # Get the Unix file descriptors for this file.
 (st_mode, st_ino, st_dev, st_nlink, st_uid, st_gid, st_size,
 st_actime, st_mtime, st_ctime) = posix.stat(fileName)
 # Check whether user has read right
 if epersUID<>st_uid:
 raise FIRM.NotAuthorized, “Not the file’s Unix owner“
 ownerReadRight = string.atoi(oct(st_mode)[-3])
 if not (ownerReadRight % 2):
 raise FIRM.NotAuthorized, “Do not have read access“
 # If we come to this point, then we know that we have
 # read access to the file according to Unix.
 # At this point, we could perform additional state keeping
 # functions, such as cacheing, logging accesses, etc.
A Network-Centric Design for Relationship-Based Rights Management 106

on-

rsity

In I.

dated

l.

the

.

References

1.0 Privacy, Copyright, Intellectual Property,
Legal and Economic Aspects

1.1 Legal Aspects

1.1.1 Contract Law

[1] Gilbert Law Summaries. (1985). Contracts. By Eisenberg, M.A. Harcourt, Brace, Jovaovich
Legal and Professional Publications.

[2] Craswell, R., and A. Schwatz (1994). Foundation of Contract Law. Oxford University Press.

[3] Atiyah, P.S. (1995). An Introduction to the Law of Contract. Clarendon Law Series. Fifth Edition.
Clarendon Press, Oxford.

[4] MacNeil, I.R. (1985). Relational Contract: What We Do and Do Not Know. Wisconsin Law
Review 483.

[5] Whitford, W.C. (1985). Ian MacNeil’s Contribution to Contracts Scholarship. Wisconsin Law
Review 545.

[6] MacNeil, I.R. (1974). The Many Futures of Contracts. Southern California Law Review 47(691).

[7] Barnett, R.E. (1986). A Consent-Theory of Contract. Columbia Law Review 86(269).

[8] Barnett, R.E. (1992). Conflicting Visions: A Critique of Ian MacNeil’s Relational Theory of C
tract. Virginia Law Review 78(1175).

[9] Fried, C. (1981). Contract as Promie: A Theory of Contractual Obligation. Harvard Unive
Press.

[10] Linzer, P. (1995, eds.). A Contracts Anthology. Anderson Publishing. pp. 54-128.

1.1.2 Electronic Contracting

[11] Baum, M. (1989). Electronic Contracting in the U.S.: The Legal and Control Context.
Walden (ed.), EDI and the Law. Blenheim Online, London.

[12] Greguras, F.M., T.A. Golobic, R.A. Mesa, R. Duncan (1995). On-line Contract Issues. Up
version of a presentation made at Law Seminars International Electronic Commerce: Doing Busi-
ness On-line, September 21, 1995. Web: http://www.batnet.com/oikoumene/ec_contracts.htm

[13] Allen, T., and R. Widdison (1996). Can Computers Make Contracts? Harvard Journal of Law &
Technology 9(25), Harvard Law School.

[14] Wright, B. (1995). The Law of Electronic Commerce. EDI, E-Mail, and Internet: Technology,
Proof, and Liability. Little, Brown and Co.

1.1.3 Copyright

[15] Goldstein, P. (1994). Copyright’s Highway: The Law and Lore of Copyright from Gutenberg to
Celestial Jukebox. Hill and Wang.

[16] Greguras, F. (1995). Copyright Clearances and Moral Rights. Softic Symposium ‘95, November
1995.

[17] Canadian Copyright Subcommittee (1995). Report on Copyright and the Information Highway.
Information Highway Advisory Council. September. Available at http://debra.dgbt.doc.ca/info-
highway/ih.html.

[18] U.S. Government (1995). Intellectual Property and the National Information Infrastructure
Report of the Working Group on Intellectual Property Rights. Lehman, Bruce, and Ronald Brown,
Information Infrastructure Task Force. September. Washington, DC.
A Network-Centric Design for Relationship-Based Rights Management 107

i-

Elec-

lm

tical

om-
1.1.4 Property

[19] Gilbert Law Summaries (1990). Property. By Dukeminier. M. Harcourt, Brace, Jovaovich Legal
and Professional Publications.

[20] Rose, C.M. (1994). Property and Persuasion: Essays on the History, Theory, and Rhetoric of
Ownership. Westview Press, Inc.

[21] Radin, M.J. (1993). Reinterpreting Property. University of Chicago Press.

[22] Branscomb, A.W. (1994). Who Owns Information ? From Privacy to Public Access. New York:
Basic Books.

[23] Perritt, H. (1994). Permission Headers and Contract Law. Proceedings of the Workshop on Tech-
nological Strategies for Protecting Intellectual Property in the Networked Multimedia Environ-
ment. Coalition for Networked Information, Interactive Multimedia Association, and John F.
Kennedy School of Government.

[24] Jensen, M. (1994). Need-Based Intellectual Property Protection and Networked University Press
Publishing. Proceedings of the Workshop on Technological Strategies for Protecting Intellectual
Property in the Networked Multimedia Environment. Coalition for Networked Information, Inter-
active Multimedia Association, and John F. Kennedy School of Government.

1.1.5 Other

[25] Rose, Lance (1995). NewLaw: Your Rights in the Online World. Osborne McGraw-Hill, Berkeley.

[26] Nimmer, R., and P. Krauthaus (1992). Information as a Commodity: New Imperatives of Com-
mercial Law. Law and Contemporary Problems 55(3).

[27] Reidenberg, Joel (1993). Rules of the Road for Global Electronic Highways: Merging the Trade
and Technical Paradigms. Harvard Journal of Law & Technology 287, 289.

1.2 Business Aspects

[28] Dyson, Esther (1995). Intellectual Value. Wired, Issue 3.07. Excerpt from December 1994 issue of
Release 1.0, EDventure Holdings.

[29] McKenna, Regis (1991). Relationship Marketing: Successful Strategies for the Age of the Cus-
tomer. Addison-Wesley.

[30] McKenna, Regis (1997). Real-Time: Preparing for the Age of the Never Satisfied Customer. Har-
vard Business School Press.

[31] Peppers, Don, and Martha Rogers (1993). The One to One Future: Building Relationships One
Customer At a Time. Currency Doubleday.

[32] Mansfield, Nick (1996). Security at Shell Int’l. Proceedings of the Sixth Conference on Comput-
ers, Freedom, and Privacy, Boston. Presentation by Nick Mansfield, Information Security Adv
sor for Shell Companies. Web: http://swissnet.ai.mit.edu/~switz/cfp96/plenary-crypto.html

[33] National Writers Union (1994). Statement of Principles on Contracts between Writers and
tronic Book Publishers. Available at ftp://ftp.netcom.com/pub/nw/nwu/press/online-pub.txt.

[34] Moss, N. (1996). Europe’s slow-motion view: Hollywood is fighting to retain control of fi
release dates. Report by Nicholas Moss, The European, June 3rd, 1996.

1.3 Economic Aspects

[35] Bressand, Albert, and Catherine Distler (1995). La plan‘ete relationnelle. Paris: Flammarion.

[36] Coase, R.H. (1988). The Firm, the Market, and the Law. University of Chicago Press, London.

[37] Coase, R.H. (1990). Institutions, Institutional Change and Economic Performance. Cambridge
University Press.

[38] Greif, Avner (1994). Cultural Beliefs and the Organization of Society: Historical and Theore
Reflection on Collectivist and Individualist Societies. The Journal of Political Economy, October.

[39] Greif, Avner (1992). Institutions and Commitment in International Trade: Lessons from the C
mercial Revolution. American Economic Review 82(5), pp. 128-133.
A Network-Centric Design for Relationship-Based Rights Management 108

[40] Greif, A., P. Milgrom, and B. Weingast (1992). The Merchant Guild as a Nexus of Contracts.
Mimeo, Stanford University.

[41] Milgrom, Paul, and John Roberts (1992). Economics, Organization, and Management. Prentice
Hall, NJ.

[42] Williamson, O. (1985). The Economic Institutions of Capitalism. The Free Press, NY.

[43] Williamson, O. (1975). Markets and Hierarchies: Analysis and Antitrust Implications. The Free
Press, NY.

[44] Williamson, O. (1986). Economic Organization: Firms, Markets and Policy Control. New York
University Press, NY.

[45] North, Douglas C. (1990). Institutions, Institutional Change and Economic Performance. Cam-
bridge University Press.

[46] Hardwick, M., D.L. Spooner, T. Rando, and K.C. Morris (1996). Sharing manufacturing informa-
tion in virtual enterprises. Communications of the ACM 39(2):46-53.

1.4 Enforcement of Informal Constraints

[47] Ellickson, R. (1986). Of Coase and Cattle: Dispute Resolution Among Neighbors in Shasta
County. Stanford Law Review, 38:624-87.

[48] Ellickson, R. (199?). Order without Law. Harvard University Press, Cambridge, MA.

[49] Bentham, Jeremy (1787). Panopticon; or, The inspection-house: containing the idea of a new
principle of construction applicable to any sort of establishment, in which persons of any
description are to be kept under inspection: and in particular to penitentiary-houses, prisons,
houses of industry ... and schools: with a plan of management adapted to the principle. Dublin
printed; London, Re-printed and sold by T. Payne, 1791.

[50] Semple, Janet (1993). Bentham’s Prison: A Study of the Panopticon Penitentiary. Oxford Univer-
sity Press.

[51] Williams, Monte (1996). Sex offenders law prompts privacy debate in New York. The New York
Times, A1, January 24.

1.5 Privacy, Personal Information

1.5.1 General

[52] Warren, Samuel, and Louis Brandeis (1890). The Right to Privacy. Harvard Law Review 193.

[53] Agre, Phil (1994). Surveillance and Capture: Two Models of Privacy. The Information Society
10(2), pp. 101-127.

[54] Burns, R., R. Samarajiva, and R. Mukherjee (1992). Customer Information: Competitive and Pri-
vacy Implications. Columbus, OH: National Regulatory Institute.

[55] Gandy, O.H., Jr. (1993). The Panoptic Sort: A Political Economy of Personal Information. Boul-
der CO: Westview.

[56] Goffman, E. (1971). Relations in Public: Microstudies of the Public Order. New York: Basic
Books.

[57] Goffman, E. (1963). Behavior in Public Places. The Free Press.

[58] Gottdiener, M. (1985). The Social Production of Urban Space. Austin, TX: University of Texas
Press.

[59] Jussawalla, M., and C. Chee-Wah (1987). Economic Analysis of the Legal and Policy Aspects of
Information Privacy. Chapter 4 in The Calculus of International Communications. Littleton, CO.

[60] Karnow, Curtis E.A. (1994). The Encrypted Self: Fleshing out the Rights of Electronic Personali-
ties. Conference on Computers, Freedom, and Privacy.

[61] Miller, A.R. (1969). Personal Privacy in the Computer Age: The Challenge of New Technology in
an Information-Oriented Society. Michigan Law Review 67: 1224-25.
A Network-Centric Design for Relationship-Based Rights Management 109

n

over-

], pp.

 90’s
ricul-

p://

eb:
[62] Samarajiva, R. (1994). Electronic Public Space: Dystopic and other Futures. Computers, Free-
dom, and Privacy Conference.

[63] Stanley, T. (1994). Electronic Communications Privacy Rights. CPSR Civil Liberties Project.
URL: http://www-leland.stanford.edu/~tstanley/cpsrart.html.

[64] Turn, R. (1990). Information Privacy Issues for the 1990s. IEEE Computer Society Symposium on
Research in Security and Privacy.

[65] Arms, B. (1994). Key Concepts in the Architecture of the Digital Library. D-Lib Journal, July.
Web: http://www.cnri.reston.va.us/home/dlib/July95/.

[66] Bellotti, V., and A. Sellen (1993). Design for Privacy in Ubiquitious Computing Environments.
Proceedings of the Third European Conference on Computer-Supported Cooperative Work,
Milan, Italy.

[67] Chaum, D. (1992). Achieving Electronic Privacy. Scientific American, August.

[68] Rotenberg, M. (1993). Communications Privacy: Implications for Network Design. Communica-
tions of the ACM 36(8), pp. 61-68.

1.5.2 Studies and Guidelines

[69] OECD (1980). Guidelines Governing the Protection of Privacy and Transborder Flows of Per-
sonal Data. Annex to Recommendations of the Council of 23rd September 1980, Organization for
Economic Cooperation and Development.

[70] Lawson, Ph., and M. Vallee (1995). Canadians Take Their Information “Personal.” Privacy Files
1(1), pp. 4-9, October. Progesta Publishing, Canada.

[71] Ekos Research Associates (1993). Privacy Revealed: The Canadian Privacy Survey. Ekos.
Ottawa, Cananda.

[72] Canadian Standards Association (1995). CSA Model Code for Protection of Personal Information.
CAN/CSA-Q830-1995, August. Working Draft.

[73] European Union (1995). Directive of the European Parliament and of the Council on the Protec-
tion of Individuals with Regard to the Processing of Personal Data and on the Free Movement of
Such Data. July 20th, Brussels.

[74] U.S. Congress (1995). Information Security and Privacy in Network Environments. Office of
Technology Assessment Study. Washington, DC.

[75] U.S. Government (1995). Privacy and the National Information Infrastructure: Principles for
Providing and Using Personal Information. Information Infrastructure Task Force, Informatio
Policy Committee, Privacy Working Group. Washington, DC.

[76] U.S. Congress (1991). Domestic and International Data Protection Issues. Hearings before the
Government Information, Justice, and Agriculture Subcommittee of the Committee on G
ment Operations, April 10, 1991. Washington, DC.

[77] Equifax (1990). The Equifax Report on Consumers in the Information Age. Survey conducted by
Louis Harries & Associates and Dr. Alan Westin. Reprinted in Congressional Hearings [76
290-435.

[78] Westin, Alan F. (1991). How the American public views consumer privacy issues in the early
and why. Testimony before the Subcommittee on Government Information, Justice, andAg
ture. House Committee on Government Operations, Washington, D.C., April 10, 1991.

[79] Equifax (1995). The 1995 Equifax-Harris Mid-Decade Consumer Privacy Survey. Survey con-
ducted by Louis Harries & Associates and Dr. Alan Westin. Available from URL htt
www.equifax.com/.

[80] Westin, Alan F. (1991). Interpretive Essay. Interpretation of the Findings in Equifax [79]. W
http://www.equifax.com/.

[81] Garfinkel, Simon (1995). Separating Equifax from Fiction. Wired 3.09, September, pp. 96-107.
A Network-Centric Design for Relationship-Based Rights Management 110

tee on

 Com-

ation

e Sub-
ment

Infor-
vern-

stice,
tions,

3-601

tems.

ston,

206.

aft,

Palo
1.5.3 Medical Information

[82] Westin, Alan F. (1976). Computers, Health Records, and Citizen’s Rights. U.S. Department of
Commerce.

[83] Medical Records (1996). Report on the US Medical Records Confidentiality Act, sponsored by
Senator Robert Bennett and Patrick Leary. The New York Times, Nov 15, 1995, A1 (“Medical
Records Are on Sale in the Marketplace”).

[84] Privacy of Medical Records (1979). Hearings before a Subcommittee of the House Commit
Government Operations, 96th Cong., 1st Sess.

[85] Legislation to Protect the Privacy of Medical Records (1979). Hearings before the Senate
mittee on Governmental Affairs, 96th Cong. 1st Sess.

[86] House Committee on Government Operations (1980). Federal Privacy of Medical Inform
Act, H.R. Rep. No 96-832 Part 1, 96th Cong., 2d Sess.

[87] Data Protection, Computers, and Changing Information Practices (1990). Hearing before th
comm. on Government Information, Justice, and Agriculture, House Comm. on Govern
Operations, 101st Cong., 2d Sess.

[88] Health Reform, Health Records, Computers and Confidentiality (1993). Hearing before the
mation, Justice, Transportation, and Agriculture Subcomm. of the House Committee on Go
ment Operations, 103rd Cong., 1st Sess.

[89] Fair Health Information Practices Act of 1994 (1994). Hearings before the Information, Ju
Transportation, and Agriculture Subcomm. of the House Committee on Government Opera
103rd Cong., 2d Sess.

[90] House Committee on Government Operations (1994). Health Security Act, H.R. Rep. No 10
Part 5, 103rd Cong., 2d Sess.

[91] Rindfleisch, T. (1997). Privacy and Security in Health Care. Communications of the ACM,
August.

2.0 Access Control, Rights Management

2.1 General

[92] Saltzer, J.D., and M.D. Schroeder (1975). The Protection of Information in Computer Sys
Proceedings of the IEEE 63(9), pp. 1278-1308.

[93] ERMG (1995). Minutes of the first meeting of the Electronic Rights Management Group (Bo
MA), Information Industries Association, October 31, 1995.

[94] ISO (1989). Security Framework III: Access Control Framework. ISO/IEC JTC1/SC21 N4
Draft, November.

[95] Silberschatz, A., J. Peterson, and P. G. Galvin (1991). Operating Systems Concepts. Addison-
Wesley.

[96] Weber, Robert (1995). Digital Rights Management Technologies. International Federation of
Reproduction Rights Organization, Danvers, MA. October 1995.

[97] Stefik, M. (1995). Letting loose the light: Igniting commerce in electronic publishing. Dr
Xerox Palo Alto Research Center, Palo Alto, CA.

[98] Cyberspace Law Center (1997). Accessible at http://www.cybersquirrel.com/clc/

[99] Stefik, M. (1996). Digital Property Rights: Technology, Choices, and Social Values. Xerox
Alto Research Center, Palo Alto, CA.

2.2 Conceptual Models

[100] Lampson, B.W. (1971). Protection. 5th Princeton Symposium on Information Science and Sys-
tems. Reprinted in ACM Operating Systems Review 8(1):18-24, 1974.
A Network-Centric Design for Relationship-Based Rights Management 111

n

n

a-

tual
[101] Harrison, M.H., W.L. Ruzzo, and J.D. Ullman (1976). Protection in operating systems. Commu-
nications of the ACM 19(8), pp. 461-471.

[102] Marc, D. (1993). A Petri Net Representation of the Take-Grant Model. Proceedings of the IEEE
Symposium on Security and Privacy.

[103] Minsky, N. (1977). Cooperative authorization in computer systems. IEEE Computer Society’s
First International Computer Software and Applications Conference, pp.729-33.

[104] Minsky, N. (1978). An operation-control scheme for authorization in computer systems. Interna-
tional Journal of Computer & Information Sciences 7(2), pp. 157-91.

[105] Minsky, N.H., and A.D. Lockman (1985). Ensuring integrity by adding obligations to privileges.
Proceedings of the 8th International Conference on Software Engineering, pp. 92-102.

[106] Sandhu, R.S. (1989). Transformation of Access Rights. Proceedings of the IEEE Symposium o
Security and Privacy.Oakland, CA.

[107] Sandhu, R.S., and G.S. Suri (1992). Non-Monotonic Transformation of Access Rights. Proceed-
ings of the IEEE Symposium on Security and Privacy.Oakland, CA.

[108] Sandhu, R.S. (1992). The Typed Access Matric Model. Proceedings of the IEEE Symposium o
Security and Privacy.Oakland, CA.

[109] Sandhu, R.S. (1988). The Schematic Protection Model: Its Definitions and Analysis for Acyclic
Attenuating Schemes. Journal of ACM 8(2):404-432.

[110] Sandhu, R.S., and M.E. Share (1986). Some Owner-based Schemes with Dynamic Groups in the
Schematic Protection Model. Proceedings of the IEEE Symposium on Security and Privacy.

[111] Thomas, R.K., and R.S. Sandhu (1993). Towards a Task-based Paradigm for Flexible and Adapt-
able Access Control in Distributed Applications. Proceedings of the Second New Security Par
digms Workshop. Little Compton, Rhode Island.

[112] Thomas, R.K., and R.S. Sandhu (1994). Conceptual Foundations for a Model of Task-based
Authorizations. Proceedings of the IEEE Conference on Security and Privacy.

[113] Moffett, J.D., and M. S. Sloman (1991). Content-dependent Access Control. Operating Systems
Review 25 (2), pp. 63-70, April.

[114] Strack, H., and K. Lam (1993). Context-dependent Access Control in Distributed Systems. IFIP
Transactions in Computer Security A-37. Elsevier Publishers.

[115] Abrams, M.D., and M.V. Joyce (1993). Extending the ISO Access Control Framework for Multi-
ple Policies. IFIP Transactions in Computer Security A-37. Elsevier Publishers.

[116] Abrams, M.D., and I.M. Olsen (1992). Rule-based Trusted Access Control. In G.G. Gable and
W.J. Caelli (eds.), IT Security: The Need for International Cooperation. Elsevier Publishers.

2.3 Authorization Languages

[117] Stefik, M. (1996). The Digital Property Rights Language. Manual and Tutorial. Version 1.02, Sep-
tember 18th. Xerox Palo Alto Research Center, Palo Alto.

[118] Upthegrove, Luella, and T. Roberts (1994). Intellectual Property Header Descriptors: A Dynamic
Approach. Proceedings of the Workshop on Technological Strategies for Protecting Intellec
Property in the Networked Multimedia Environment. Coalition for Networked Information, Inter-
active Multimedia Association, and John F. Kennedy School of Government.

[119] CODASYL Data Description Language Committee (1987). Report. Information Systems 3(4), pp.
247-320.

[120] W3O (1994). WWW Access Authorization. URL: http://www.w3.org/hypertext/WWW/AccessA-
uthorization/Overview.html.

[121] Koster, M. (1994). A Standard for Robot Exclusion. Web: http://info.webcrawler.com/mak/
projects/robots/norobots.html.

[122] Morris, J. H. (1973). Protection in Programming Languages. Communications of the ACM 16(1).
pp. 15-21.
A Network-Centric Design for Relationship-Based Rights Management 112

Infor-

tem.

ism

ction

nical

nage-

IBM
[123] Kieburtz, R. B., and A. Silberschatz (1983). Access Right Expressions. ACM Transactions on
Programming Languages and Systems 5(1), pp. 78-96.

[124] Abadi, M., M. Burrows, and B. Lampson (1993). A Calculus for Access Control in Distributed
Systems. ACM TOPLS 15(4), pp. 706-734, September.

[125] Hoffmann, L.J. (1971). The Formulary Model for Flexible Privacy and Access Control. AFIPS
Conf. Proc. 39, FJCC, 587-601. AFIPS Press, Montvale, NJ.

[126] La Padula, L. (1990). Formal Modeling in a Generalized Framework for Access Control. Pro-
ceedings of the IEEE Symposium on Security and Privacy,Oakland, CA.

[127] Chrysanthis, P.K., and K. Ramamritham (1990). ACTA: A Framework for Specifying and Rea-
soning about Transaction Structure and Behavior. Proceedings of the ACM SIGMOD conference,
pages 194-203.

[128] Sandhu, R.S. (1988). Transaction Control Expressions for Separation of Duties. Proceedings of
the Fourth Computer Security Applications Conference, pp. 282-286.

[129] Woo, Th., and S. Lam (1992). Authorization in Distributed Systems: A Formal Approach. Pro-
ceedings of the IEEE Conference on Security and Privacy, Oakland, CA.

2.4 Implementation Models

[130] Hauser, R. (1993). Does Licensing Require New Access Control Techniques ? Proceedings of the
First ACM Conference on Computer and Communications Security, pp. 1-8. Fairfax, VA.

[131] Kahan, J. (1994). Un Nouveau Modèle d’Autorisation pour les Systèmes de Consultation d’
mation Multimédia Repartie. AFCET, Télécom Paris.

[132] Zurko, M.E. (1992). Attribute Support for Inter-Domain Use. Proceedings of the IEEE Confer-
ence on Security and Privacy, Oakland, CA.

2.5 Revocation

[133] Redell, D. (1974). Naming and Protection in Extendible Operating Systems. PhD dissertation, UC
Berkeley. Also: MIT MAC TR TR-140.

[134] Ekanadham, K., and A. J. Bernstein (1979). Conditional Capabilities. IEEE Transactions on Soft-
ware Engineering SE-5(5), pp. 458-464.

2.6 Systems

[135] Blaze, M. et al. (1996). PolicyMaker. Web: ftp://research.att.com/dist/mab/.

[136] Blaze, M., J. Feigenbaum, and J. Lacy (1996). Decentralized Trust Management. IEEE Sympo-
sium on Security and Privacy, Oakland CA, May 1996.

[137] Corbato, F. J., and V. A. Vyssotsky (1965). Introduction and Overview of the MULTICS Sys
Proceedings of AFIPS SJCC, pp. 185-196.

[138] Levin, R., E. S. Cohen, W. M. Corwin, F. J. Pollack, and W. A. Wulf (1975). Policy/Mechan
Separation in Hydra. Proceedings of the Fifth ACM Symposium on Operating System Principles,
pp. 132-140.

[139] Cohen, E. S., and D. Jefferson (1975). Protection in the Hydra Operating System. Proceedings of
the Fifth ACM Symposium on Operating System Principles, pp. 141-160.

[140] Needham, R. M., and R. D. H. Walker (1977). The Cambridge CAP Computer and its Prote
System. Proceedings of the Sixth ACM Symposium on Operating System Principles, pp. 1-10.

[141] Cox, B., J.D. Tygar, and M. Sirbu (1995). NetBill Security and Transaction Protocol. Tech
Report, Carnegie-Mellon University.

[142] Chu, Y.-H., J. Feigenbaum, B. LaMacchia, P. Resnick, M. Strauss (1997). Referee: Trust Ma
ment for Web Applications. 6th Web Conference, Stanford.

[143] Gladney, H,M. (1996). Digital Intellectual Property—Risks and Protection Mechanisms.
Almaden Reseach Center, San Jose, CA.
A Network-Centric Design for Relationship-Based Rights Management 113

chni-

Mass.

age-

ttp://

l/

rt).

om/

om/

/stan-

ttp://
[144] Gladney, H.M. (1992). Access Control for Large Collections. IBM Research Report RJ 8946.
Also in ACM Trans. Information Systems.

[145] InterTrust (1995). InterTrust Electronic Rights System. InterTrust, Incorporated. URL: http://
www.intertrust.com (formerly Electronic Publishing Resources, http://www.epr.com)

[146] Erickson, J.S. (1994). Electronic Copyright Management in the Production of Networked Interac-
tive Multimedia. PhD thesis proposal, Thayer School of Engineering, Dartmouth College.

[147] Rivest, R., and B. Lampson (1996). SDSI—A Simple Distributed Security Infrastructure. Te
cal Report. Massachusetts Institute of Technology, Cambride, MA.

[148] Rotenberg, L. (1973). Making computers keep secrets. PhD dissertation, MIT, Cambridge,
Also: MIT MAC TR-115.

[149] Ritchie, D. M., and K. Thompson (1978). The UNIX Time-Sharing System. Communications of
the ACM 17(7), pp. 365-375, July.

[150] Kahn, R.E. (1994). Deposit, Registration, and Recordation in an Electronic Copyright Man
ment System. Proceedings of the Workshop on Technological Strategies for Protecting Intellec-
tual Property in the Networked Multimedia Environment. Coalition for Networked Information,
Interactive Multimedia Association, and John F. Kennedy School of Government.

[151] Library of Congress (1996). The CORDS copyright management system. Web: h
lcweb.loc.gov/copyright/cords.html

2.7 Watermarking

[152] Low, Maxemchuk, Brassil, O’Gorman (1993). Document Marking and Identification using both
Line and Word Shifting. Web: ftp://ftp.research.att.com/dist/brassil/docmark2.ps.

[153] Choudhury, Maxemchuk, Paul, Schulzrinne (1994). Copyright Protection for Electronic Publish-
ing over Computer Networks. Web: ftp://ftp.research.att.com/dist/anoncc/copyright.epub.ps.Z.

[154] Brassil, Low, Maxemchuk & O’Gorman (1994). Electronic Marking and Identification Tech-
niques to Discourage Document Copying. Web: ftp://ftp.research.att.com/dist/brassi
infocom94.ps.

3.0 Electronic Contracting, EDI
[155] EDI (1979). ANSI ASC X12. ISO/IEC JTC1/SWG-EDI.

[156] EDIFACT (1995). UN/EDIFACT Standards (EDI for Adminstration, Commerce, and Transpo
Web: http://www.premenos.com/unedifact/.

[157] UN/ECE (1994). UN/EDIFACT Message Design Guidelines. Web: http://www.premenos.c
standards/.

[158] UN/ECE (1994). General Introduction to UNSM Descriptions. Web: http://www.premenos.c
standards/.

[159] Open-EDI (1994). Open-EDI Conceptual Model. ISO/IEC JTC1/SWG-EDI N222.

[160] Hill, N., and D. Ferguson (1995). Electronic Data Exchange: A Definition and Perspective.EDI
Aware, Issue 4, Winter. Web: http://infopole1.soca.cf.ac.uk/edi/EDIAware4Index.html.

[161] Nelson, C. (1995). The ABC of EDI. EDI Aware, Issue 4, Winter. Web: http://
infopole1.soca.cf.ac.uk/edi/EDIAware4Index.html.

[162] UN/ECE (1995). Electronic Data Interchange Standards. Web: http://www.premenos.com
dards/.

4.0 Security, Integrity, and Cryptography

4.1 General

[163] Anderson, R. (1995). Computer and Communications Security Reviews. Web: h
www.cl.cam.ac.uk/users/rja14/.
A Network-Centric Design for Relationship-Based Rights Management 114

trib-

0.28-

?

es in

ation

are
[164] Amoroso, E. (1994). Fundamentals of Computer Security Technology. Prentice Hall. Englewood
Cliffs, NJ.

[165] Fernandez, E., R. Summers, and C. Wood (1981). Database Security and Integrity. Addison-Wes-
ley.

[166] Kaufman, C., R. Perlman, and M. Speciner (1995). Network Security: Private Communications in
a Public World. Prentice Hall, NJ.

[167] Anderson, J. P. (1972). Computer Security Technology Planning Study. ESD-TR-73-51, AD-758
206, ESD/AFSC Hanscom.

[168] Anderson, R.J. (1993). Why Cryptosystems Fail. Proceedings of the First ACM Conference on
Computer and Communications Security, Fairfax, pp. 215-227.

[169] Lampson, B.W. (1973). A Note on the Confinement Problem. Communications of the ACM
16(10), pp. 613-615.

[170] Smith, M. (1994). A People Problem. International Security Review 83.

[171] Schneier, B. (1994). Applied Cryptography: Protocols, Algorithms, and Source Code in C. John
Wiley and Sons, NY.

4.2 Authentication

[172] Birrel, A., B. Lampson, R. Needham, and M. Schroeder (1986). A Global Authentication Service
without Global Trust. Proceedings of the IEEE Symposium on Security and Privacy.

[173] Wobber, E., M. Abadi, M. Burrows, and B. Lampson (1993). Authentication in the Taos Operat-
ing System. ACM SIGOPS, pp. 256-269.

[174] Dennis, J., and E. van Horn (1966). Programming Semantics for Multi-programmed Computa-
tions. Communications of the ACM 9(3), pp. 143-155.

[175] Yahalom, R., B. Klein, and Th. Beth (1993). Trust Relationship in Secure Systems—A Dis
uted Authentication Perspective. Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA.

4.3 Security and Integrity

[176] Denning, D. (1993). A New Paradigm for Trusted Systems. Proceedings of the New Security Par-
adigms Workshop. Little Compton, Rhode Island.

[177] Department of Defense (1985). Trusted Computer Systems Evaluation Criteria. DOD 520
STD, December.

[178] Dobson, John (1993). New Security Paradigms: What Other Concepts Do We Need as WellPro-
ceedings of the New Security Paradigms Workshop. Little Compton, Rhode Island.

[179] LaPadula, L.J., and J.G. Williams (1991). Towards a Universal Integrity Model. Proceedings of
the IEEE Computer Security Foundations Workshop. Franconia, New Hampshire. IEEE Press.

[180] McCullough, D. (1987). Specification for Multi-level Security and a Hook-up Property. Proceed-
ings of the IEEE Symposium on Security and Privacy, Oakland, CA.

[181] Sandhu, R.S. (1990). On the Five Definitions of Data Integrity. Proceedings of the 7th Annual
IFIP Working Conference on Database Security. Huntsville, Alabama.

[182] Minsky, N., and V. Ungureano (1997). Unified Support for Heterogeneous Security Polici
Distributed Systems. Department of Computer Science, Rutgers University.

[183] Minsky, N., and V. Ungureano (1997). A Framework for Supporting Heterogeneous Coordin
Policies. Department of Computer Science, Rutgers University.

[184] Wiederhold, G., M. Bilello, V. Sarathy, and X. Qian (1996). A Security Mediator for Health C
Information. Proceedings of the 1996 AMIA (formely SCAMC) Conference, Oct. 1996, pp.120-
124.

[185] Wiederhold, G., Michel B., V. Sarathy, and X. Qian (1996). Protecting Collaboration. Proceedings
of the NISSC’96 National Information Systems Security Conference, pp. Oct. 1996, pp.561-569.
A Network-Centric Design for Relationship-Based Rights Management 115

logy

pto-

ween

on

d

[186] Qian, X., G. Wiederhold, M. Bilello, A. Chavez, and V. Sarathy (1996). Trusted Interoperation of
Healthcare Information. Abstract for the NSF Challenge workshop, Stanford, March 20-23, 1996.

4.4 Specific Security Policies and Models

[187] Bell, D.E., and L.J. LaPadula (1976). Secure Computer Systems: Unified Exposition and Multics
Interpretation, Report No. MTR-2997, MITRE, Bedford, MA.

[188] Biba (1977). Integrity Considerations for Secure Computer Systems. ESD-TR-76-372, USAF
Electronic Systems Division, Bedford, MA.

[189] Brewer, D., and M. Nash (1989). The Chinese Wall Security Policy. Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, CA.

[190] Clark, D.D., and D.R. Wilson (1987). A Comparison of Commercial and Military Security Poli-
cies. Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA.

[191] Dobson, J.E., and J.A.McDermid (1989). Security Models and Enterprise Models. In C.E. Land-
wehr (ed.), Database Security, II: Status and Prospects, Elsevier Science Publishers, Amsterdam.

[192] Goguen, J.A., and J. Meseguer (1982). Security Policy and Security Models. Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA.

[193] McLean, J. (1990). Security Models and Information Flow. Proceedings of the IEEE Symposium
on Security and Privacy, Oakland, CA.

[194] Sandhu, R.S. (1990). Separation of Duties in Computerized Information Systems. In C.E. Land-
wehr (ed.), Database Security, IV: Status and Prospects, Elsevier Science Publishers, Amsterdam.

[195] Sterne, D. (1991). On the Buzzword “Security Policy”. Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA.

[196] Sutherland, D. (1986). A Model of Information. Proceedings of the IEEE Symposium on Security
and Privacy, Oakland, CA.

[197] Williams, J. (1993). A Shift in Security Modeling Paradigms. Proceedings of the IEEE Sympo-
sium on Security and Privacy, Oakland, CA.

4.5 Cryptography

[198] Hoffman, L., F. Ali, S. Heckler, and A. Huybrechts (1993). Cryptography: Policy and Techno
Trends. Conference on Computers, Freedom, and Privacy.

[199] Diffie, W., and M. E. Hellman (1976). New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), pp. 397-427.

[200] Rivest, R. L., A. Shamir, and L. Adleman (1978). On Digital Signatures and Public Key Cry
systems. Communications of the ACM 21(2), pp. 120-126.

[201] Chaum, D. (1985). Showing Credentials without Identification: Signatures transferred bet
Unconditionally Unlinkable Pseudonyms. In Advances in Cryptology—Eurocrypt ‘85, pp. 241-
244. Springer Verlag.

5.0 Standards Process Documents

5.1 IETF Standards Track RFCs

[202] Linn, J. (1993). Privacy Enhancement for Internet Electronic Mail: Part I: Message Encrypti
and Authentication Procedures. RFC1421. Web: http://ds.internic.net/rfc/.

[203] Kent, S. (1993). Privacy Enhancement for Internet Electronic Mail: Part II: Certificate-Base
Key Management. RFC1422. Web: http://ds.internic.net/rfc/.

[204] Kalinski, B. (1993). PEM IV: Key Certification and Related Services. RFC1424. Web: http://
ds.internic.net/rfc/.

[205] Kaufman, C. (1993). DASS - Distributed Authentication Security Service. RFC1507. Web: http://
ds.internic.net/rfc/.
A Network-Centric Design for Relationship-Based Rights Management 116

ork.

dels

ittee

ulta-

om-

C-

hnol-

 Cer-

ster-
[206] Linn, J. (1993). Generic Security Service Application Program Interface. RFC1508. Web: http://
ds.internic.net/rfc/.

[207] Kohl, J., and C. Neuman (1993). The Kerberos Network Authentication Service (V5). RFC1510.
Web: http://ds.internic.net/rfc/.

5.2 IETF Informational RFCs

[208] Braden, R., D. Clark, S. Crocker, C. Huitema (1994). Report of IAB Workshop on Security in the
Internet 1994. RFC1636. Web: http://ds.internic.net/rfc/.

[209] Haller, N., and R. Atkinson (1994). On Internet Authentication. RFC1704. Web: http://ds.inter-
nic.net/rfc/.

5.3 CCITT Standards

[210] CCITT X.509 (1988). Recommendation X.509: The Directory—Authentication Framew
Consultative Committee on International Telegraphy and Telephony.

[211] CCITT X.500 (1988). Recommendation X.500: The Directory—Overview of Concepts, Mo
and Services. Consultative Committee on International Telegraphy and Telephony.

[212] CCITT X.501 (1988). Recommendation X.501: The Directory—Models. Consultative Comm
on International Telegraphy and Telephony

[213] CCITT X.208 (1988). Recommendation X.208. Abstract Syntax Notation 1 (ASN.1). Cons
tive Committee on International Telegraphy and Telephony.

[214] CCITT X.209 (1988). Recommendation X.209. Basic Encoding for ASN.1. Consultative C
mittee on International Telegraphy and Telephony.

5.4 RSA Laboratories Standards

[215] RSA Laboratories (1993). PKCS #6: Extended-Certificate Syntax Standard. Web: ftp://
ftp.rsa.com/pub/pkcs/.

[216] RSA Laboratories (1993). PKCS #9: Selected Attribute Types. Web: ftp://ftp.rsa.com/pub/pkcs/.

[217] RSA Laboratories (1993). PKCS #10:Certification Request Syntax Standard. Web: ftp://
ftp.rsa.com/pub/pkcs/.

[218] RSA Laboratories (1993). PKCS Standard #1-#10. Web: ftp://ftp.rsa.com/pub/pkcs/.

5.4.1 W3C Projects/Submissions

[219] P3P (1997). Platform for Privacy Preferences (formerly “P3”). Web: http://www.w3.org/.

[220] OPS (1997). Open Profiling Standard. Firefly, Netscape. Web: http://www.w3.org/.

5.5 Personal Information/Directories

[221] Versit (1995). Personal Data Interchange Specification, 1.0. Web: http://www.versit.com/.

[222] Yeong, W., T. Howes, S. Kille (1995). Lightweight Directory Access Protocol (LDAP). RF
1777. Web: http://www.umich.edu/~rsug/ldap/doc/rfc/rfc1777.txt

5.6 Security and Payment

[223] Hickman, K. (1995). Communications Secure Socket Layer (SSL). Web: http://home.mcom.com/
info/SSL.html. Draft, Netscape Communications Corp.

[224] Rescorla. E., and A. Schiffman (1994). Secure HyperText Transfer Protocol (SHTTP). Web: http:/
/www.commerce.net/information/standards/drafts/shttp.txt. Draft, Enterprise Integration Tec
ogies.

[225] Ankney, R. (1996). Enhanced Management Controls Using Digital Signatures and Attribute
tificates. ANSI X9.45, Draft 4, March 13.

[226] SET (1997). SET: Secure Electronic Transactions. VISA/MasterCard. Web: http://www.ma
card.com/set/.
A Network-Centric Design for Relationship-Based Rights Management 117

/.

t Pro-

 Dis-

ical
sity.

san/.

rary
om-

996).
ford
[227] OTP (1997). Open Trading Protocol. Mondex. Web: http://www.mondex.com/.

[228] Intel (1997). Common Data Security Architecture (CDSA). Web: http://developer.intel.com/ial/
security/cdsa/index.htm

[229] Microsoft (1997). Windows Security Support Provider Interface (SSPI). Web: http://pre-
mium.microsoft.com/isapi/devonly/prodinfo/msdnprod/msdnlib.idc?theURL=/msdn/library/sdk-
doc/dpbuild_6unk.htm

[230] Sun (1997). Java Security Toolkit. Web: http://www.javasoft.com/security/whitepaper.ps

[231] Authenticode (1997). Microsoft’s Authenticode system. Web: http://microsoft.com/ie/security

[232] Netscape (1997). Signed Applets. Web: http://www.netscape.com/.

6.0 Miscellaneous

6.1 Distributed Logic Programming

[233] Wolfson, O., and A. Silberschatz (1988). Distributed Processing of Logic Programs. ACM SIG-
MOD International Conference on Management of Data 17(3), pp. 329-36.

[234] Saraswat, V., K. Kahn, and J. Levy (1990). Janus: A Step towards Distributed Constrain
gramming. Proceedings of the 1990 North American Conference on Logic Programming. Austin,
TX. pp. 431-46. MIT Press.

[235] Smith, R.G. (1980). The Contract Net Protocol: High-level Communication and Control in a
tributed Problem Solver. IEEE Transactions on Computers. Vol. C-29, 12.

6.2 Logic and Law

[236] Reiter, R. (1980). A Logic for Default Reasoning. Artificial Intelligence 13(1-2), pp. 81-132.

[237] McCarty, L. Thorne (1994). Modalities over Actions, I. Model Theory. In Proceedings of the
Fourth International Conference on Principles of Knowledge Representation and Reasoning
(KR’94), pp. 437-48.

6.3 Speech Act Theory, Language/Action

[238] Searle, John (1969). Speech Acts. Cambridge University Press.

[239] Austin, J.L. (1962). How to Do Things With Words. Harvard University Press.

[240] Winograd, T., and F. Flores (1996). Understanding Computers and Cognition: A New Foundation
for Design. Addison-Wesley.

6.4 Stanford InfoBus, Prototype Development

[241] Object Management Group (1995). Object Property Service. IBM, SunSoft, Taligent. OMG TC
Document 96.6.1.

[242] Object Management Group (1993). The Common Object Request Broker: Architecture and speci-
fication. Accessible at ftp://omg.org/pub/CORBA/.

[243] Mac (1993). Macintosh Human Interface Guidelines. Apple Computer, Cupertino.

[244] Paepcke, A. (1996). The Stanford Digital Library Interoperability Protocol (DLIOP). Techn
Report, Stanford Digital Library Project, Department of Computer Science, Stanford Univer

[245] Hassan, S. (1996). JYLU—an ILU run-time kernel in Java. Web: http://db.stanford.edu/~has

[246] Janssen, B. et al. (1997). ILU: Inter-Language Unification. Web: http://parc.xerox.com/.

[247] Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1996). The Stanford Digital Lib
Metadata Architecture. Technical Report, Stanford Digital Library Project, Department of C
puter Science, Stanford University.

[248] Paepcke, A., S. Cousins, H. Garcia-Molina, S. Ketchpel, M. Roscheisen, and T. Winograd (1
Towards Interoperability in Digital Libraries: Overview and Selected Highlights of the Stan
Digital Library Project. IEEE Computer, 29 (5), May 1996, 61-68.
A Network-Centric Design for Relationship-Based Rights Management 118

ter-
/.
996).

Con-

i-

http://

rk for

iner

ion.

ne:
t RFC
[249] Cousins, S. (1997). DLITE: The Digital Library Integrated Task Environment. Web: http://
dlite.stanford.edu/.

[250] Cousins, S, S.. Hassan, A. Paepcke, and T. Winograd (1996). A Distributed Interface to the Digi-
tal Library. Technical Report, Digital Library Project, Stanford University.

[251] Ketchpel, S., et al. (1996). U-PAI: The Stanford Universal Payment Application Interface. Eco-
nomics Subgroup, Stanford Digital Libraries Project. In USENIX 96—-Electronic Commerce.

[252] Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1996). The Stanford Digital Library
Metadata Architecture. Technical Report, Digital Library Project, Stanford University.

[253] Röscheisen, M. et al. (1997). The Stanford InfoBus and Its Service Layers: Augmenting the In
net by Higher-Level Information Management Protocols. Web: http://diglib.stanford.edu/rmr

[254] Paepcke, A., S. Cousins, H. Garcia-Molina, S. Ketchpel, M. Röscheisen, and T. Winograd (1
Towards Interoperability in Digital Libraries. IEEE Computer, 29 (5).

[255] Baldonado, M. (1997). SenseMaker: An Information-Exploration Interface Supporting the
textual Evolution of a User’s Interest. Computer-Human Interaction Conference CHI’97, Atlanta.

[256] Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1997). The Stanford Digital Library
Metadata Architecture. International Journal of Digital Libraries, 1(2).

[257] Baldonado, M., K. Chang, L. Gravano, and A. Paepcke (1997). Metadata for Digital Libraries:
Architecture and Design Rationale. Proceedings of DL’97.

[258] Chang, C.-C., K., H. Garcia-Molina, and Andreas Paepcke (1996). Boolean Query Mapping
Across Heterogeneous Information Sources. IEEE Transactions on Knowledge and Data Eng
neering, 8(4):515-521, August.

[259] Cousins, S., A. Paepcke, T. Winograd, E.A. Bier, and K. Pier (1996). The Digital Library Inte-
grated Task Environment (DLITE). Proceedings of DL’97.

[260] Gravano, L., K. Chen-Chuan Chang, H. Garcia-Molina, and A. Paepcke (1996). STARTS: Stan-
ford Protocol Proposal for Internet Retrieval and Search. Accessible at http://www-db.stan-
ford.edu/~gravano/starts.html

[261] Gravano, L., H. Garcia-Molina, and A. Tomasic (1994). The effectiveness of GLOSS for the text-
database discovery problem. Proceedings of SIGMOD’94.

[262] Gravano, L., K. Chen-Chuan Chang, Hector Garcia-Molina, and Andreas Paepcke (1996).
STARTS: Stanford Proposal for Internet Meta-Searching. Proceedings of SIGMOD’97.

[263] Paepcke, A. (1996). InterBib. Cf. http://www-db.stanford.edu/~testbed/.
[264] Balabanovic, M. and Y. Shoham (1997). Combining Content-Based and Collaborative Recom-

mendation. Communications of the ACM, 40(3), March.
[265] Shivakumar, N., and Hector Garcia-Molina (1995). SCAM: A Copy Detection Mechanism for

Digital Documents. Proceedings of DL‘95.
[266] USMARC (1994). Format for Bibliographic Data: Including Guidelines for Content Designation.

Cataloging Distribution Service, Library of Congress, Washington, D.C.
[267] GILS (1996). Government Information Locator Service. Accessible at http://info.er.usgs.gov:80/

gils/.
[268] Hardy D.R., M.F. Schwartz, and D. Wessels (1996). Harvest User’s Manual. Accessible at

harvest.transarc.com/-afs/-transarc.com/-public/-trg/-Harvest/-user-manual/.
[269] Lagoze, C., and D. Ely (1995). Implementation Issues in an Open Architectural Framewo

Digital Object Services. TR95-1590, Cornell University.
[270] Lagoze, C., and C.A. Lynch and Ron Daniel Jr. (1996). The Warwick Framework: A Conta

Architecture for Aggregating Sets of Metadata. TR96-1593, Cornell University.
[271] Z3950 (1995). Information Retrieval: Application Service Definition and Protocol Specificat

ANSI/NISO. April.

[272] Borenstein, N., and N. Freed (1993). MIME: Multipurpose Internet Mail Extensions: Part O
Mechanisms for Specifying and Describing the Format of Internet Message Bodies. Interne
1521.
A Network-Centric Design for Relationship-Based Rights Management 119

Secu-
igital

-

e

cess/

r Pri-

igital

tform
am-
part-

ame-
6.5 Selected Prior Publications

[273] Röscheisen, M. and T. Winograd (1996). A Network-Centric Design for Relationship-based
rity and Access Control. Overview of the Security Architecture of the Stanford Integrated D
Libraries Project. Invited Contribution to the Journal of Computer Security. Web: http://
diglib.stanford.edu/rmr/.

[274] Röscheisen, M., and T. Winograd (1997). The FIRM Framework for Interoperable Rights Man
agement: Defining a Rights Management Service Layer for the Internet. Forum on Technology-
based Intellectual Property Management, Washington, DC. Interactive Media Association, Whit
House Economic Council, and White House Office of Science and Technology.

[275] Röscheisen, M. and T. Winograd (1996). A Communication Agreement Framework for Ac
Action Control. In Proceedings of the IEEE Symposium on Research in Security andPrivacy, Oak-
land.

[276] Röscheisen, M. (1996). Beyond Privacy as Anonymity: Rights Management Technologies fo
vacy and Intellectual Property Control. Lunchtime presentation at Computers, Freedom, and Pri-
vacy, CFP96, Boston, March 28-30. Slides: http://pcd.stanford.edu/rmr/CFP96

[277] Röscheisen, M. (1995). General Certificates. Working Paper #12. Stanford Integrated D
Libraries Project, Stanford University.

[278] Röscheisen, M., C. Mogensen, and T. Winograd (1994). Shared Web Annotations As A Pla
for Third-Party Value-Added Information Providers: Architecture, Protocols, and Usage Ex
ples. Technical Report, Stanford Integrated Digital Library Project, Computer Science De
ment, Stanford University, November 1994. Also: Proceedings of the Third International World-
Wide Web Conference, Darmstadt, Germany; Proceedings of CHI95, Denver, CO. Web: http://
pcd.stanford.edu/COMMENTOR/.

[279] Kamiya, K., M. Röscheisen, and T. Winograd (1995). Grassroots: Providing a Uniform Fr
work for Communicating, Sharing Information, and Organizing People. Short paper, CHI ‘95
Conference; Paper, 6th WWW Conference, Paris; and Technical Report, Computer Science
Department, Stanford University. Web: http://pcd.stanford.edu/Grassroots/.
A Network-Centric Design for Relationship-Based Rights Management 120

	A Network-Centric design for relationship-based ri...
	A dissertation
	submitted to the department of Computer Science
	and the committee on graduate studies
	of stanford university
	in partial fulfillment of the requirements
	for the degree of
	doctor of philosophy
	R. Martin Röscheisen
	December 1997
	” Copyright by R. Martin Röscheisen 1998
	All Rights Reserved
	I certify that I have read this dissertation and t...
	Table of Contents
	1 Towards Frictionless Digital Rights/Relationship...
	1. 1 The Problem: Rights/Relationship Management i...
	1. 2 Current Solutions: Idiosyncratic, Not User-Ce...
	1. 3 Unifying Rights Management in a User-Centered...
	1. 4 Defining a Rights Management Service Layer 4
	1. 5 Overall Design Assumptions 6
	1. 6 Design Process 8
	1. 7 Taking a Relationship-Based Approach 8
	1. 8 Design Space 11
	1. 9 Design Goals 12
	1. 10 The Solution: Outline and Summary 12

	2 A Conceptual Model of Relationship Management 14...
	2. 1 Understanding Agreements/Contracts 14
	2. 2 The Commpact Model 15
	2. 3 Related Work 18
	2. 4 Enforcement 18

	3 A Network-Centric Architecture for Managing Cont...
	3. 1 Three Ways of Organizing Control Information ...
	3. 2 Three Ways of Embedding Control Objects 30
	3. 3 Understanding Conventional Control Architectu...
	3. 4 From Server-Based and Client-Based Control to...
	3. 5 Security Implications 37
	3. 6 Linking from Content Objects to Rights-Manage...
	3. 7 Related Architectures 38

	4 FIRM: An Infrastructure for Digital Relationship...
	4. 1 Object Reifications 40
	4. 2 Transaction Model 49
	4. 3 The User’s View: Examples from the RManage Pr...
	4. 4 Object Interactions: Sample Transaction Scena...
	4. 5 Related Work 72

	5 Conclusion 75
	Appendix: Specification of FIRM 79
	1 Overview 79
	2 The FIRM Common Rights Language Object Model 81
	3 FIRM’s Object Attribute Models 99
	4 Examples of Interface Implementations 103

	References 107

	List of Illustrations

	1.0 Towards Frictionless Digital Rights/Relationsh...
	1.1 The Problem: Rights/Relationship Management in...
	1.2 Current Solutions: Idiosyncratic, Not User-Cen...
	1.3 Unifying Rights Management in a User-Centered ...
	1.4 Defining a Rights Management Service Layer
	Three Classes of Usages
	Our Solution: The FIRM Rights Management Service L...
	FIGURE 1. FIRM defines a rights management service...

	Related Service Layers: Security and Trust Managem...

	1.5 Overall Design Assumptions
	Heterogeneity of Trust
	Multiplicity of Enforcement Choices
	Multiplicity of Mechanisms

	1.6 Design Process
	1.7 Taking a Relationship-Based Approach
	Example: Relationship-Based Network Security
	FIGURE 2. Network Security: FIRM enables a relatio...

	Other Examples

	1.8 Design Space
	FIGURE 3. Design Space: Systems designed for diffe...

	1.9 Design Goals
	1.10 The Solution: Outline and Summary
	A Conceptual Framework for Relationship Management...
	An Architecture for Managing Control Information: ...
	A Structured Way of Representing Relationships: Re...
	A Demonstration Prototype: The RManage Relationshi...

	2.0 A Conceptual Model of Relationship Management
	2.1 Understanding Agreements/Contracts
	2.2 The Commpact Model
	2.2.1 Negotiation Mode: Establishing Mutual Assent...
	2.2.2 Performance Mode: Making Use of an Establish...
	FIGURE 4. Negotiation: States and Transitions.

	2.3 Related Work
	2.4 Enforcement
	2.4.1 Types of Enforcement: A Top-Down Perspective...
	FIGURE 5. Anchor Points for Enforcement.
	TABLE 1. Enforcement Types: Examples and Paradigms...

	2.4.2 Example: Action-Interrupt Control in the ISO...
	FIGURE 6. ISO Access Control Model: Action-Interru...

	2.4.3 Shifting from Enforcement as Rule Processing...
	Example: University Course Material on the Web
	Example: Privacy of Medical Records
	The main thing this bill does is to put everybody ...

	Example: Differential Pricing via Monitoring
	Example: Shared Space of an Online Community

	2.4.4 A Generalized Enforcement Framework
	FIGURE 7. The Generalized Enforcement Framework: I...

	3.0 A Network-Centric Architecture for Managing Co...
	3.1 Three Ways of Organizing Control Information: ...
	The Lampson Matrix
	FIGURE 8. Lampson Access Control Matrix.

	Underlying Assumptions
	Subject-Object Conceptualizations
	1. (by column) Object-Centered Realization: For e...
	2. (by row) Subject-Centered Realization: For each...

	Subject-Subject Conceptualization
	3. (by rights relationship) Relationship-Centered ...
	FIGURE 9. Realizations of the Lampson Matrix (Revi...

	3.2 Three Ways of Embedding Control Objects
	3.3 Understanding Conventional Control Architectur...
	FIGURE 10. Authorization Interactions: Decision Fa...
	Example: Negotiation Cost for Simple CallerID Inte...
	FIGURE 11. CallerID Example: Simple Set of Phone-A...
	FIGURE 12. CallerID Example: ‘A calling B’ Leads t...

	3.4 From Server-Based and Client-Based Control to ...
	First-Class Control Objects
	Introducing a Network API for Control Requests
	Relationship-Based Control
	FIGURE 13. Network-Centric Control Architecture.

	CallerID Example Revisited
	FIGURE 14. CallerID Example: ‘A calling B’ with co...

	3.5 Security Implications
	3.6 Linking from Content Objects to Rights-Managem...
	3.7 Related Architectures

	4.0 FIRM: An Infrastructure for Digital Relationsh...
	4.1 Object Reifications
	FIGURE 15. FIRM Object Reifications: Commpacts and...
	4.1.1 Reifying (Roles of) Persons: “E-Persons”
	E-Persons as User Agents, Enabling a Network Login...

	4.1.2 Managing E-Persons: “Home Providers”
	4.1.3 Reifying Relationships/Agreements: “Commpact...
	FIGURE 16. Commpacts as “Smart Contract” Objects: ...
	Reifying Contract Law
	Not Everything is Reified: Two Examples

	4.1.4 Managing Commpacts for an E-Person: “Commpac...
	4.1.5 Reifying Standard Contract Templates: “Commp...
	“Commpact Forms Designers”: Developing Shared Comm...

	4.1.6 Making Available Commpact Forms: “Forms Prov...

	4.2 Transaction Model
	FIGURE 17. Transactions in FIRM.
	4.2.1 Negotiation Mode: Establishing Mutual Assent...
	Negotiation States and Transitions
	FIGURE 18. Negotiation: States and Transitions. (R...

	“Race Conditions”
	User Interface Affordances
	Offeror
	Offeree

	4.2.2 Performance Mode: Making Use of an Establish...
	Server
	FIGURE 19. Negotiating a New Relationship.
	E-person
	Server
	Client

	4.3 The User’s View: Examples from the RManage Pro...
	4.3.1 User Interface Affordances for General Users...
	Identifying Oneself: Network Login
	FIGURE 20. Network Login Interactions.

	Viewing and Manipulating One’s Relationships
	FIGURE 21. Relationship View in RManage.

	Controlling What to Delegate to an Agent: E-Person...
	FIGURE 22. E-person Preferences.

	Controlling Access to One’s Attention: Notifier
	FIGURE 23. Notifier: Uniform View on Events from D...

	Declaring Overrides for Special Cases
	FIGURE 24. Declaring Overrides in RManage/DLITE: D...

	4.3.2 User Interface Affordances for Offerors
	Obtaining a Useful Contract Form
	FIGURE 25. Using Commpact Forms to Make it Easy to...

	Drafting an Offer by Customizing Contract Forms
	FIGURE 26. Customizing and Setting Parameters in a...

	Declaring a Draft an Offer
	FIGURE 27. Sample Contract Offer: FIRM provides a ...

	4.4 Object Interactions: Sample Transaction Scenar...
	4.4.1 Example: Contracting for Privacy
	FIGURE 28. Online Privacy: RManage uses FIRM to al...
	1. Requesting a document from the server, using so...
	2. The server asks the requester’s e-person for th...
	3. The e-person returns a pointer to a commpact th...
	4. Receiving the pointer to the commpact, the serv...
	5. Once it obtained authorization (and validated i...

	FIGURE 29. Transactions Under the Hood: In one of ...
	FIGURE 30. Special Case of Transactions in Case Ob...
	E1. The e-person asks the server to find out the i...
	E2. The server designates relevant offerors.
	N1. It selects an offeror (by the name of Mike in ...
	N2. The e-person receives pointers to relevant off...
	N3. The e-person inspects an offer, and based on i...

	4.4.2 Example: Subscription Contract
	Coverage
	Payment
	FIGURE 31. Payment Interactions in FIRM.

	Discounts and Other Contract Options
	Terms and Conditions with Arbitrary Predicates
	FIGURE 32. Certification: Example.

	4.5 Related Work

	5.0 Conclusion
	The Thesis in this Thesis
	Lessons from the RManage Implementation
	Second-Order Usages
	Outlook
	Appendix: Specification of the FIRM Rights Managem...
	1 Overview 79
	2 The FIRM Common Rights Language Object Model 81
	2. 1 Survey 81
	2. 2 Specification 84

	3 FIRM’s Object Attribute Models 99
	3. 1 Attribute Models in the Stanford Metadata Arc...
	3. 2 Attribute Models as Domain Plug-Ins for FIRM:...
	3. 3 Sample Attribute Models for FIRM Objects 101
	3. 4 Attribute Models and Interoperability of Hete...

	4 Examples of Interface Implementations 103
	4. 1 Example Commpact: A Site Licensing Contract 1...
	4. 2 Example Customization: Adding a Privacy Choic...
	4. 3 Example Promise: A Payment Obligation 104
	4. 4 Example Authorization: Allowing Searching wit...
	4. 5 Client Example: Other Programs (“Agents”) Int...
	4. 6 Interoperability Example: Unix File Rights in...

	1.0 Overview
	FIRM: Two Parts
	Simplicity, Extensibility, and Distribution

	2.0 The FIRM Common Rights Language Object Model
	2.1 Survey
	Basic Objects
	Objects and Types Defined by FIRM
	FIGURE 33. FIRM Object Hierarchy: Objects that are...

	The Access-Control User Dialogue Protocol (AUPD)
	Specification Language

	2.2 Specification
	CItem
	CCollection
	CConstraint
	CFOAM
	CFIRMObject
	CCommpact
	TCommpactStatus
	TFormRef
	TParty
	TPartyRoleName
	CPromise
	TPromiseStatus
	CRight
	CObligation
	CEpers
	TEpersRef
	CHomeProvider
	CCommpactManager

	3.0 FIRM’s Object Attribute Models
	3.1 Attribute Models in the Stanford Metadata Arch...
	3.2 Attribute Models as Domain Plug-Ins for FIRM: ...
	3.3 Sample Attribute Models for FIRM Objects
	3.4 Attribute Models and Interoperability of Heter...

	4.0 Examples of Interface Implementations
	4.1 Example Commpact: A Site Licensing Contract
	4.2 Example Customization: Adding a Privacy Choice...
	4.3 Example Promise: A Payment Obligation
	4.4 Example Authorization: Allowing Searching with...
	4.5 Client Example: Other Programs (“Agents”) Inte...
	4.6 Interoperability Example: Unix File Rights int...

	References
	1.0 Privacy, Copyright, Intellectual Property, Leg...
	1.1 Legal Aspects
	1.1.1 Contract Law
	[1] Gilbert Law Summaries. (1985). Contracts. By E...
	[2] Craswell, R., and A. Schwatz (1994). Foundatio...
	[3] Atiyah, P.S. (1995). An Introduction to the La...
	[4] MacNeil, I.R. (1985). Relational Contract: Wha...
	[5] Whitford, W.C. (1985). Ian MacNeil’s Contribut...
	[6] MacNeil, I.R. (1974). The Many Futures of Cont...
	[7] Barnett, R.E. (1986). A Consent-Theory of Cont...
	[8] Barnett, R.E. (1992). Conflicting Visions: A C...
	[9] Fried, C. (1981). Contract as Promie: A Theory...
	[10] Linzer, P. (1995, eds.). A Contracts Antholog...

	1.1.2 Electronic Contracting
	[11] Baum, M. (1989). Electronic Contracting in th...
	[12] Greguras, F.M., T.A. Golobic, R.A. Mesa, R. D...
	[13] Allen, T., and R. Widdison (1996). Can Comput...
	[14] Wright, B. (1995). The Law of Electronic Comm...

	1.1.3 Copyright
	[15] Goldstein, P. (1994). Copyright’s Highway: Th...
	[16] Greguras, F. (1995). Copyright Clearances and...
	[17] Canadian Copyright Subcommittee (1995). Repor...
	[18] U.S. Government (1995). Intellectual Property...

	1.1.4 Property
	[19] Gilbert Law Summaries (1990). Property. By Du...
	[20] Rose, C.M. (1994). Property and Persuasion: E...
	[21] Radin, M.J. (1993). Reinterpreting Property. ...
	[22] Branscomb, A.W. (1994). Who Owns Information ...
	[23] Perritt, H. (1994). Permission Headers and Co...
	[24] Jensen, M. (1994). Need-Based Intellectual Pr...

	1.1.5 Other
	[25] Rose, Lance (1995). NewLaw: Your Rights in th...
	[26] Nimmer, R., and P. Krauthaus (1992). Informat...
	[27] Reidenberg, Joel (1993). Rules of the Road fo...

	1.2 Business Aspects
	[28] Dyson, Esther (1995). Intellectual Value. Wir...
	[29] McKenna, Regis (1991). Relationship Marketing...
	[30] McKenna, Regis (1997). Real-Time: Preparing f...
	[31] Peppers, Don, and Martha Rogers (1993). The O...
	[32] Mansfield, Nick (1996). Security at Shell Int...
	[33] National Writers Union (1994). Statement of P...
	[34] Moss, N. (1996). Europe’s slow-motion view: H...

	1.3 Economic Aspects
	[35] Bressand, Albert, and Catherine Distler (1995...
	[36] Coase, R.H. (1988). The Firm, the Market, and...
	[37] Coase, R.H. (1990). Institutions, Institution...
	[38] Greif, Avner (1994). Cultural Beliefs and the...
	[39] Greif, Avner (1992). Institutions and Commitm...
	[40] Greif, A., P. Milgrom, and B. Weingast (1992)...
	[41] Milgrom, Paul, and John Roberts (1992). Econo...
	[42] Williamson, O. (1985). The Economic Instituti...
	[43] Williamson, O. (1975). Markets and Hierarchie...
	[44] Williamson, O. (1986). Economic Organization:...
	[45] North, Douglas C. (1990). Institutions, Insti...
	[46] Hardwick, M., D.L. Spooner, T. Rando, and K.C...

	1.4 Enforcement of Informal Constraints
	[47] Ellickson, R. (1986). Of Coase and Cattle: Di...
	[48] Ellickson, R. (199?). Order without Law. Harv...
	[49] Bentham, Jeremy (1787). Panopticon; or, The i...
	[50] Semple, Janet (1993). Bentham’s Prison: A Stu...
	[51] Williams, Monte (1996). Sex offenders law pro...

	1.5 Privacy, Personal Information
	1.5.1 General
	[52] Warren, Samuel, and Louis Brandeis (1890). Th...
	[53] Agre, Phil (1994). Surveillance and Capture: ...
	[54] Burns, R., R. Samarajiva, and R. Mukherjee (1...
	[55] Gandy, O.H., Jr. (1993). The Panoptic Sort: A...
	[56] Goffman, E. (1971). Relations in Public: Micr...
	[57] Goffman, E. (1963). Behavior in Public Places...
	[58] Gottdiener, M. (1985). The Social Production ...
	[59] Jussawalla, M., and C. Chee-Wah (1987). Econo...
	[60] Karnow, Curtis E.A. (1994). The Encrypted Sel...
	[61] Miller, A.R. (1969). Personal Privacy in the ...
	[62] Samarajiva, R. (1994). Electronic Public Spac...
	[63] Stanley, T. (1994). Electronic Communications...
	[64] Turn, R. (1990). Information Privacy Issues f...
	[65] Arms, B. (1994). Key Concepts in the Architec...
	[66] Bellotti, V., and A. Sellen (1993). Design fo...
	[67] Chaum, D. (1992). Achieving Electronic Privac...
	[68] Rotenberg, M. (1993). Communications Privacy:...

	1.5.2 Studies and Guidelines
	[69] OECD (1980). Guidelines Governing the Protect...
	[70] Lawson, Ph., and M. Vallee (1995). Canadians ...
	[71] Ekos Research Associates (1993). Privacy Reve...
	[72] Canadian Standards Association (1995). CSA Mo...
	[73] European Union (1995). Directive of the Europ...
	[74] U.S. Congress (1995). Information Security an...
	[75] U.S. Government (1995). Privacy and the Natio...
	[76] U.S. Congress (1991). Domestic and Internatio...
	[77] Equifax (1990). The Equifax Report on Consume...
	[78] Westin, Alan F. (1991). How the American publ...
	[79] Equifax (1995). The 1995 Equifax-Harris Mid-D...
	[80] Westin, Alan F. (1991). Interpretive Essay. I...
	[81] Garfinkel, Simon (1995). Separating Equifax f...

	1.5.3 Medical Information
	[82] Westin, Alan F. (1976). Computers, Health Rec...
	[83] Medical Records (1996). Report on the US Medi...
	[84] Privacy of Medical Records (1979). Hearings b...
	[85] Legislation to Protect the Privacy of Medical...
	[86] House Committee on Government Operations (198...
	[87] Data Protection, Computers, and Changing Info...
	[88] Health Reform, Health Records, Computers and ...
	[89] Fair Health Information Practices Act of 1994...
	[90] House Committee on Government Operations (199...
	[91] Rindfleisch, T. (1997). Privacy and Security ...

	2.0 Access Control, Rights Management
	2.1 General
	[92] Saltzer, J.D., and M.D. Schroeder (1975). The...
	[93] ERMG (1995). Minutes of the first meeting of ...
	[94] ISO (1989). Security Framework III: Access Co...
	[95] Silberschatz, A., J. Peterson, and P. G. Galv...
	[96] Weber, Robert (1995). Digital Rights Manageme...
	[97] Stefik, M. (1995). Letting loose the light: I...
	[98] Cyberspace Law Center (1997). Accessible at h...
	[99] Stefik, M. (1996). Digital Property Rights: T...

	2.2 Conceptual Models
	[100] Lampson, B.W. (1971). Protection. 5th Prince...
	[101] Harrison, M.H., W.L. Ruzzo, and J.D. Ullman ...
	[102] Marc, D. (1993). A Petri Net Representation ...
	[103] Minsky, N. (1977). Cooperative authorization...
	[104] Minsky, N. (1978). An operation-control sche...
	[105] Minsky, N.H., and A.D. Lockman (1985). Ensur...
	[106] Sandhu, R.S. (1989). Transformation of Acces...
	[107] Sandhu, R.S., and G.S. Suri (1992). Non-Mono...
	[108] Sandhu, R.S. (1992). The Typed Access Matric...
	[109] Sandhu, R.S. (1988). The Schematic Protectio...
	[110] Sandhu, R.S., and M.E. Share (1986). Some Ow...
	[111] Thomas, R.K., and R.S. Sandhu (1993). Toward...
	[112] Thomas, R.K., and R.S. Sandhu (1994). Concep...
	[113] Moffett, J.D., and M. S. Sloman (1991). Cont...
	[114] Strack, H., and K. Lam (1993). Context-depen...
	[115] Abrams, M.D., and M.V. Joyce (1993). Extendi...
	[116] Abrams, M.D., and I.M. Olsen (1992). Rule-ba...

	2.3 Authorization Languages
	[117] Stefik, M. (1996). The Digital Property Righ...
	[118] Upthegrove, Luella, and T. Roberts (1994). I...
	[119] CODASYL Data Description Language Committee ...
	[120] W3O (1994). WWW Access Authorization. URL: h...
	[121] Koster, M. (1994). A Standard for Robot Excl...
	[122] Morris, J. H. (1973). Protection in Programm...
	[123] Kieburtz, R. B., and A. Silberschatz (1983)....
	[124] Abadi, M., M. Burrows, and B. Lampson (1993)...
	[125] Hoffmann, L.J. (1971). The Formulary Model f...
	[126] La Padula, L. (1990). Formal Modeling in a G...
	[127] Chrysanthis, P.K., and K. Ramamritham (1990)...
	[128] Sandhu, R.S. (1988). Transaction Control Exp...
	[129] Woo, Th., and S. Lam (1992). Authorization i...

	2.4 Implementation Models
	[130] Hauser, R. (1993). Does Licensing Require Ne...
	[131] Kahan, J. (1994). Un Nouveau Modèle d’Autori...
	[132] Zurko, M.E. (1992). Attribute Support for In...

	2.5 Revocation
	[133] Redell, D. (1974). Naming and Protection in ...
	[134] Ekanadham, K., and A. J. Bernstein (1979). C...

	2.6 Systems
	[135] Blaze, M. et al. (1996). PolicyMaker. Web: f...
	[136] Blaze, M., J. Feigenbaum, and J. Lacy (1996)...
	[137] Corbato, F. J., and V. A. Vyssotsky (1965). ...
	[138] Levin, R., E. S. Cohen, W. M. Corwin, F. J. ...
	[139] Cohen, E. S., and D. Jefferson (1975). Prote...
	[140] Needham, R. M., and R. D. H. Walker (1977). ...
	[141] Cox, B., J.D. Tygar, and M. Sirbu (1995). Ne...
	[142] Chu, Y.-H., J. Feigenbaum, B. LaMacchia, P. ...
	[143] Gladney, H,M. (1996). Digital Intellectual P...
	[144] Gladney, H.M. (1992). Access Control for Lar...
	[145] InterTrust (1995). InterTrust Electronic Rig...
	[146] Erickson, J.S. (1994). Electronic Copyright ...
	[147] Rivest, R., and B. Lampson (1996). SDSI—A Si...
	[148] Rotenberg, L. (1973). Making computers keep ...
	[149] Ritchie, D. M., and K. Thompson (1978). The ...
	[150] Kahn, R.E. (1994). Deposit, Registration, an...
	[151] Library of Congress (1996). The CORDS copyri...

	2.7 Watermarking
	[152] Low, Maxemchuk, Brassil, O’Gorman (1993). Do...
	[153] Choudhury, Maxemchuk, Paul, Schulzrinne (199...
	[154] Brassil, Low, Maxemchuk & O’Gorman (1994). E...

	3.0 Electronic Contracting, EDI
	[155] EDI (1979). ANSI ASC X12. ISO/IEC JTC1/SWG-E...
	[156] EDIFACT (1995). UN/EDIFACT Standards (EDI fo...
	[157] UN/ECE (1994). UN/EDIFACT Message Design Gui...
	[158] UN/ECE (1994). General Introduction to UNSM ...
	[159] Open-EDI (1994). Open-EDI Conceptual Model. ...
	[160] Hill, N., and D. Ferguson (1995). Electronic...
	[161] Nelson, C. (1995). The ABC of EDI. EDI Aware...
	[162] UN/ECE (1995). Electronic Data Interchange S...

	4.0 Security, Integrity, and Cryptography
	4.1 General
	[163] Anderson, R. (1995). Computer and Communicat...
	[164] Amoroso, E. (1994). Fundamentals of Computer...
	[165] Fernandez, E., R. Summers, and C. Wood (1981...
	[166] Kaufman, C., R. Perlman, and M. Speciner (19...
	[167] Anderson, J. P. (1972). Computer Security Te...
	[168] Anderson, R.J. (1993). Why Cryptosystems Fai...
	[169] Lampson, B.W. (1973). A Note on the Confinem...
	[170] Smith, M. (1994). A People Problem. Internat...
	[171] Schneier, B. (1994). Applied Cryptography: P...

	4.2 Authentication
	[172] Birrel, A., B. Lampson, R. Needham, and M. S...
	[173] Wobber, E., M. Abadi, M. Burrows, and B. Lam...
	[174] Dennis, J., and E. van Horn (1966). Programm...
	[175] Yahalom, R., B. Klein, and Th. Beth (1993). ...

	4.3 Security and Integrity
	[176] Denning, D. (1993). A New Paradigm for Trust...
	[177] Department of Defense (1985). Trusted Comput...
	[178] Dobson, John (1993). New Security Paradigms:...
	[179] LaPadula, L.J., and J.G. Williams (1991). To...
	[180] McCullough, D. (1987). Specification for Mul...
	[181] Sandhu, R.S. (1990). On the Five Definitions...
	[182] Minsky, N., and V. Ungureano (1997). Unified...
	[183] Minsky, N., and V. Ungureano (1997). A Frame...
	[184] Wiederhold, G., M. Bilello, V. Sarathy, and ...
	[185] Wiederhold, G., Michel B., V. Sarathy, and X...
	[186] Qian, X., G. Wiederhold, M. Bilello, A. Chav...

	4.4 Specific Security Policies and Models
	[187] Bell, D.E., and L.J. LaPadula (1976). Secure...
	[188] Biba (1977). Integrity Considerations for Se...
	[189] Brewer, D., and M. Nash (1989). The Chinese ...
	[190] Clark, D.D., and D.R. Wilson (1987). A Compa...
	[191] Dobson, J.E., and J.A.McDermid (1989). Secur...
	[192] Goguen, J.A., and J. Meseguer (1982). Securi...
	[193] McLean, J. (1990). Security Models and Infor...
	[194] Sandhu, R.S. (1990). Separation of Duties in...
	[195] Sterne, D. (1991). On the Buzzword “Security...
	[196] Sutherland, D. (1986). A Model of Informatio...
	[197] Williams, J. (1993). A Shift in Security Mod...

	4.5 Cryptography
	[198] Hoffman, L., F. Ali, S. Heckler, and A. Huyb...
	[199] Diffie, W., and M. E. Hellman (1976). New Di...
	[200] Rivest, R. L., A. Shamir, and L. Adleman (19...
	[201] Chaum, D. (1985). Showing Credentials withou...

	5.0 Standards Process Documents
	5.1 IETF Standards Track RFCs
	[202] Linn, J. (1993). Privacy Enhancement for Int...
	[203] Kent, S. (1993). Privacy Enhancement for Int...
	[204] Kalinski, B. (1993). PEM IV: Key Certificati...
	[205] Kaufman, C. (1993). DASS - Distributed Authe...
	[206] Linn, J. (1993). Generic Security Service Ap...
	[207] Kohl, J., and C. Neuman (1993). The Kerberos...

	5.2 IETF Informational RFCs
	[208] Braden, R., D. Clark, S. Crocker, C. Huitema...
	[209] Haller, N., and R. Atkinson (1994). On Inter...

	5.3 CCITT Standards
	[210] CCITT X.509 (1988). Recommendation X.509: Th...
	[211] CCITT X.500 (1988). Recommendation X.500: Th...
	[212] CCITT X.501 (1988). Recommendation X.501: Th...
	[213] CCITT X.208 (1988). Recommendation X.208. Ab...
	[214] CCITT X.209 (1988). Recommendation X.209. Ba...

	5.4 RSA Laboratories Standards
	[215] RSA Laboratories (1993). PKCS #6: Extended-C...
	[216] RSA Laboratories (1993). PKCS #9: Selected A...
	[217] RSA Laboratories (1993). PKCS #10:Certificat...
	[218] RSA Laboratories (1993). PKCS Standard #1-#1...
	5.4.1 W3C Projects/Submissions
	[219] P3P (1997). Platform for Privacy Preferences...
	[220] OPS (1997). Open Profiling Standard. Firefly...

	5.5 Personal Information/Directories
	[221] Versit (1995). Personal Data Interchange Spe...
	[222] Yeong, W., T. Howes, S. Kille (1995). Lightw...

	5.6 Security and Payment
	[223] Hickman, K. (1995). Communications Secure So...
	[224] Rescorla. E., and A. Schiffman (1994). Secur...
	[225] Ankney, R. (1996). Enhanced Management Contr...
	[226] SET (1997). SET: Secure Electronic Transacti...
	[227] OTP (1997). Open Trading Protocol. Mondex. W...
	[228] Intel (1997). Common Data Security Architect...
	[229] Microsoft (1997). Windows Security Support P...
	[230] Sun (1997). Java Security Toolkit. Web: http...
	[231] Authenticode (1997). Microsoft’s Authenticod...
	[232] Netscape (1997). Signed Applets. Web: http:/...

	6.0 Miscellaneous
	6.1 Distributed Logic Programming
	[233] Wolfson, O., and A. Silberschatz (1988). Dis...
	[234] Saraswat, V., K. Kahn, and J. Levy (1990). J...
	[235] Smith, R.G. (1980). The Contract Net Protoco...

	6.2 Logic and Law
	[236] Reiter, R. (1980). A Logic for Default Reaso...
	[237] McCarty, L. Thorne (1994). Modalities over A...

	6.3 Speech Act Theory, Language/Action
	[238] Searle, John (1969). Speech Acts. Cambridge ...
	[239] Austin, J.L. (1962). How to Do Things With W...
	[240] Winograd, T., and F. Flores (1996). Understa...

	6.4 Stanford InfoBus, Prototype Development
	[241] Object Management Group (1995). Object Prope...
	[242] Object Management Group (1993). The Common O...
	[243] Mac (1993). Macintosh Human Interface Guidel...
	[244] Paepcke, A. (1996). The Stanford Digital Lib...
	[245] Hassan, S. (1996). JYLU—an ILU run-time kern...
	[246] Janssen, B. et al. (1997). ILU: Inter-Langua...
	[247] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[248] Paepcke, A., S. Cousins, H. Garcia-Molina, S...
	[249] Cousins, S. (1997). DLITE: The Digital Libra...
	[250] Cousins, S, S.. Hassan, A. Paepcke, and T. W...
	[251] Ketchpel, S., et al. (1996). U-PAI: The Stan...
	[252] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[253] Röscheisen, M. et al. (1997). The Stanford I...
	[254] Paepcke, A., S. Cousins, H. Garcia-Molina, S...
	[255] Baldonado, M. (1997). SenseMaker: An Informa...
	[256] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[257] Baldonado, M., K. Chang, L. Gravano, and A. ...
	[258] Chang, C.-C., K., H. Garcia-Molina, and Andr...
	[259] Cousins, S., A. Paepcke, T. Winograd, E.A. B...
	[260] Gravano, L., K. Chen-Chuan Chang, H. Garcia-...
	[261] Gravano, L., H. Garcia-Molina, and A. Tomasi...
	[262] Gravano, L., K. Chen-Chuan Chang, Hector Gar...
	[263] Paepcke, A. (1996). InterBib. Cf. http://www...
	[264] Balabanovic, M. and Y. Shoham (1997). Combin...
	[265] Shivakumar, N., and Hector Garcia-Molina (19...
	[266] USMARC (1994). Format for Bibliographic Data...
	[267] GILS (1996). Government Information Locator ...
	[268] Hardy D.R., M.F. Schwartz, and D. Wessels (1...
	[269] Lagoze, C., and D. Ely (1995). Implementatio...
	[270] Lagoze, C., and C.A. Lynch and Ron Daniel Jr...
	[271] Z3950 (1995). Information Retrieval: Applica...
	[272] Borenstein, N., and N. Freed (1993). MIME: M...

	6.5 Selected Prior Publications
	[273] Röscheisen, M. and T. Winograd (1996). A Net...
	[274] Röscheisen, M., and T. Winograd (1997). The ...
	[275] Röscheisen, M. and T. Winograd (1996). A Com...
	[276] Röscheisen, M. (1996). Beyond Privacy as Ano...
	[277] Röscheisen, M. (1995). General Certificates....
	[278] Röscheisen, M., C. Mogensen, and T. Winograd...
	[279] Kamiya, K., M. Röscheisen, and T. Winograd (...

