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Abstract

Partial evaluators are compile time optimizers achieving performance improvements

through a program modi�cation technique called specialization. Partial evaluators

produce one or more copies, or specializations, of each procedure in a source program

in the output program. Specializations are distinguished by being optimized for

invocation from call sites with di�erent characteristics, for example, placing certain

constraints on argument values. Specializations are created by partially executing

procedures, leaving only unexecutable portions as residual code. Symbolic execution

can replace variable references by the referenced values, executed primitives by their

computed results, and function applications by the bodies of the applied functions,

yielding inlining.

One core challenge of partial evaluation is selecting what specializations to create.

Attempting to produce an in�nite number of specializations results in divergence. The

termination mechanism of a partial evaluator decides whether or not to symbolically

execute a procedure in order to create a new specialization.

Creating a termination mechanism that precludes divergence is not di�cult. How-

ever, crafting a termination mechanism resulting in the production of a su�cient

number of appropriate specializations to produce high quality residual code while still

terminating all, or most, of the time is quite challenging. This dissertation presents

a new type of analysis, called use analysis, forming the basis of a termination mech-

anism designed to yield a better combination of residual code quality and frequent

termination than the current state-of-the-art.

Most termination mechanisms characterize applications based on the arguments

supplied to functions during symbolic execution. Possible combinations of arguments

to each function are partitioned into sets. At most one specialization of each function

iv



is created for each partition.

Use analysis di�ers by de�ning partitions based only on information utilized in

performing computations during symbolic execution that contributes to the result of

a program. Irrelevant information supplied in arguments does not e�ect termination

decisions so a better combination of residual code quality and termination results.

The current implementation of use analysis consumes too many computational

resources to be of practical use. Future research is needed to investigate more e�cient

techniques for implementing use analysis or a more e�cient termination mechanism

yielding similar results to use analysis.
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Chapter 1

Introduction

I de�ne a partial evaluator as an optimizer that achieves performance improve-

ments through the utilization of a program modi�cation technique called procedure

cloning [15]. For each procedure in a source program, the partial evaluator produces

one or more copies of the procedure in the output program. When multiple copies

appear in the output, or residual program, the clones are distinguished by their be-

ing optimized for invocation from a subset of the call sites in the residual program.

Optimizations are performed on the body of that clone that are safe (i.e., correctness

preserving) only when the clone is called from that subset. The same optimizations

might not be safe in general (i.e., for all call sites).

In the partial evaluation literature, optimized clones are called specializations.

They are specialized in the sense that each clone can only be correctly utilized for

a limited number of call sites that possess certain characteristics. For example, one

clone of the exponentiation procedure in Figure 1.1 might be specialized for an ex-

ponent of 1. This specialization can be implemented very e�ciently, as shown in

Figure 1.2. The specialization needs only return its second argument. This clone can

only be called from call sites where the exponent argument is known always to be 1.

Creating clones typically creates new procedure call sites. These new call sites

o�er the opportunity to produce new clones. The termination issue in partial evalua-

tion is guaranteeing that only a �nite number of clones are investigated and created.

Assuring termination when processing recursive source programs is of particular in-

terest since an in�nite unrolling of a recursion will take place if a distinct clone is

1



2 CHAPTER 1. INTRODUCTION

(define expon

(lambda (base exp)

(cond

((zero? exp) 1)

((= exp 1) base)

((negative? exp) (/ 1 (expon base (- exp))))

(#t (* base (expon base (-1+ exp)))))))

Figure 1.1: Exponentiation function

(define expon

(lambda (base exp)

base))

Figure 1.2: A specialization of the exponentiation function for an exponent of 1

created for each iteration of the recursion.

Termination is tricky because the termination mechanism acts as an arbiter

amongst several con
icting goals. A partial evaluator must terminate on a su�ciently

broad class of input programs to be a useful tool. However, it must produce enough

appropriate specializations to yield residual programs that are su�ciently more ef-

�cient than the original source. Furthermore, a partial evaluator must not produce

too many inappropriate specializations or the bloated residual program might end up

slower than the original source.

A partial evaluator must make two intimately related decisions: what clones to

create and which clone to call from each call site. There is an additional important

decision that is made by all partial evaluators: when should clones be inlined? Most

partial evaluators perform extensive inlining of clones. Many inline all procedure calls

except those retained to prevent in�nite inlining of recursions [30, 37].

Most partial evaluators immediately decide whether to create a new clone for a

given call site, which clone to call from the call site, and whether the selected clone

will be inlined [30, 37]. Ensuring termination through the selection of a �nite number

of specializations is complicated in these partial evaluators by the uni�ed approach

utilized in making all three decisions. Both Osgood [32] and I have attempted to

simplify and improve the decision making process by partitioning partial evaluation
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into two phases, yielding what I call delayed commitment partial evaluation. In the

�rst phase, which I call the analysis phase, the partial evaluator investigates potential

specializations that might, or might not, appear in the �nal residual program. In

the second phase, which I call the code generation phase, the partial evaluator selects

those potential specializations that will be included in the residual program and makes

all the inlining decisions.

Delayed commitment partial evaluation o�ers leverage on the dual problems of

termination and residual code quality. Since the analysis phase only investigates

potential specializations, the termination mechanism for the analysis phase only seeks

to insure that a �nite number of potential specializations are analyzed and that all

interesting specializations are analyzed. It does not have to worry about producing

too many potential specializations (except as that impacts the run time and resource

consumption of the partial evaluator). The code generation phase performs the roles

of winnowing out the potential specializations, choosing a specialization to call from

each call site, and deciding whether to inline.

As Weise and I described in [31], it is not possible for a partial evaluator both to

guarantee termination on all input programs and to produce residual code that man-

ifests a number of desirable properties. In particular, a requirement that a residual

program perform no computations at runtime that could have been performed during

partial evaluation mandates that the partial evaluator be allowed to diverge on some

input programs. Consequently, I propose that a good termination mechanism is one

maximizing the cases in which a partial evaluator terminates while still allowing for

aggressive optimization.

The purpose of any optimization technique is to improve performance while main-

taining unmodi�ed the input/output behavior of a program. In the case of partial

evaluation, this means the residual program must produce the same results as the

source program for all inputs adhering to the input speci�cation. By implication, the

specializations applied at individual call sites must work in concert to preserve this

invariance.

Specializations of a function might be characterized by the domain of argument

values for which the specialized function has the same input/output properties as the

original function. However, requiring specializations to produce the identical result
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to the specialized source function for all argument values supplied at a call site limits

the application sites for each specialization. In some cases, not all of the information

returned by a function is utilized in subsequent computations. Any specialization

returning a value identical to the source function in those aspects of the return value

that are utilized is correctness preserving. This concept naturally yields a parametric

characterization of each specialization. Given some constraints on the aspects of the

results of a function that must remain unchanged, the domain of values for which a

specialized function produces the same result as a source function can be speci�ed.

I propose that not only restrictions on the values supplied as arguments at various

call sites, but also restricted utilization of the results of functions, ought to form the

basis of selection of the specialization to be utilized at each call site. I further suggest

that this same characterization ought to form the basis of the termination mecha-

nism for partial evaluation. Since determining whether two functions are equivalent

is undecidable, I have devised a system for approximating the desired characteriza-

tion by looking at the information utilized about argument values in performing the

optimizations used in creating specializations. In my partial evaluator, as well as all

others of which I am aware, the sole optimization technique utilized is symbolic exe-

cution of code during partial evaluation followed by replacement of the symbolically

evaluated expressions by the results computed during partial evaluation.

I propose that the only important information and computations in any program

are those utilized in computing the result of the program. Any calculations not

causally contributing to the computation of the result of a program are irrelevant,

as elimination of those computations would not e�ect the input/output behavior of

the program. By extension, computations performed by the specialized function at

runtime in order to compute those portions of its result causally contributing to the

result of the program are signi�cant. Since the computations performed at runtime by

a specialization are those not performed as part of creating the specialization during

partial evaluation, specializations can be characterized by the information used in

optimization of computations performed by the source function causally contributing

to the result of the program.

The job of all termination mechanisms is to guarantee that only a �nite number

of specializations are created. While the approaches to termination di�er widely,
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termination can always be reduced to a question of whether a new specialization

will be equivalent in some manner to a specialization that has already been, or is

being, produced. I propose that the basis of specialization equivalence ought to be

the information utilized about argument values used in performing optimizations of

computations in the source function causally contributing to computation of the result

of a program.

The termination strategy presented herein is based on a new form of analysis

that I call eager use analysis, and an improved version of use analysis called lazy use

analysis. These analyses not only are useful in making termination decisions in a

partial evaluator, but they can also be used in making code generation decisions that

improve the quality of residual code. Furthermore, the analysis techniques used in

selecting potential specializations may also have applications to other areas of research

beyond partial evaluation. For example, many compiler optimization algorithms are

based on source program analyses whose accuracies are limited by the selection of the

number of variants of each source procedure for which information is collected. In

particular, lazy use analysis o�ers a new means of selecting both the number and the

character of those variants and thereby o�ers the possibility of signi�cantly improved

accuracy.

A partial evaluator utilizing lazy use analysis as its termination mechanism must

have a somewhat di�erent structure than traditional partial evaluators. Whereas the

termination mechanisms of most partial evaluators indicate when symbolic execution

of recursions ought to be terminated due to a detected equivalence, lazy use analysis

indicates when symbolic execution ought to be continued because of detected di�er-

ences. The distinction is what the termination mechanism does in those cases when

it is unable to decide whether two applications are equivalent. A partial evaluator

utilizing lazy use analysis always terminates recursions unless the analysis indicates

that symbolic execution ought to be pursued further. In this regard, lazy use analysis

might better be called a commencement mechanism.

The very di�erent approach to termination taken by partial evaluators utilizing

lazy use analysis leads in some cases to premature termination. Premature termina-

tion is when basic lazy use analysis fails to cause symbolic execution of a recursion

to proceed until all desirable potential specializations are investigated. In order to
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address the problem of premature termination, an additional analysis, called base

case analysis, is added to lazy use analysis.

Base case analysis ensures that symbolic execution of all recursions proceeds until

at least one base case of the recursion is investigated. The addition of base case

analysis to lazy use analysis is motivated by the observation that no recursion can

terminate at runtime until a base case is executed. The addition of base case anal-

ysis to lazy use analysis appears to signi�cantly mitigate the problem of premature

termination.

The remainder of this document is divided into 5 chapters. Chapter 2 presents a

conceptual description of termination based on use analysis. Chapter 3 delves into

signi�cantly greater detail regarding the utilization of use analysis as a termination

mechanism for the analysis phase of a partial evaluator. It also presents the low

level details of a sample implementation. Chapter 4 places this work within the

context of previous partial evaluation research. It discusses traditional approaches

to termination of partial evaluation, their limitations, and how this work di�ers.

Chapter 5 discusses the sources of heavy resource consumption, notably memory, of

my termination mechanism. Implementation optimizations that have been employed,

both successfully and unsuccessfully are presented. Finally, untested ideas for reduced

resource consumption are given. Conclusions and future work appear in Chapter 6.



Chapter 2

Termination and Use Analysis

This chapter presents lazy use analysis as a potential solution to the termination prob-

lem in partial evaluation. The chapter begins by explaining the relationship between

termination and investigation of a �nite number of potential specializations. Equiv-

alence classes are then described as a means of ensuring �niteness and the types of

equivalence classes utilized by several di�erent partial evaluators are discussed. Next,

the concepts behind use analysis are presented and an algorithm for implementing

eager use analysis is described. After a brief discussion of the shortcomings of eager

use analysis, lazy use analysis is presented. The chapter concludes with an explana-

tion of the sources of approximation inherent in lazy use analysis and a description

of an addition to lazy use analysis called base case analysis, designed to minimize the

e�ects of approximation.

2.1 Finite Potential Specializations

The key to termination of the analysis phase of a partial evaluator is guaranteeing

that only a �nite number of potential specializations are investigated. It is the re-

sponsibility of the termination mechanism to make the selection of the �nite set of

potential specializations for each input program and input speci�cation. While only

�niteness is required for termination, the choice of the set of potential specializa-

tions to be investigated can greatly impact the performance of the resulting residual

program.

7
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(define polymorphic-double

(lambda (arg)

(cond

((number? arg)

(+ arg arg))

((string? arg)

(string-append arg arg))

((list? arg)

(append arg arg))

(else (error "Bad polymorphic-double:" arg)))))

Figure 2.1: A polymorphic doubling function that operates on numbers, strings, and

lists

Figure 2.1 contains a very simple example of a function for which a possibly in�nite

number of potential specializations might be investigated by a partial evaluator. The

polymorphic-double function doubles its input based on the type of its argument.

While polymorphic-doublemight be considered a trivial example, it is representative

of code that arises in many programs .

Consider the input program in Figure 2.2 that might call polymorphic-double

with the following di�erent values for its argument: an unknown list, the string "ab",

an unknown string, and the integers 1, 2, 3, 4, ..., up to some unknown limit. A

partial evaluator could create many di�erent potential specializations. In striving

to maximize runtime performance, it might produce potential specializations for the

unknown list, the string "ab", the unknown string, and some �nite set of integers.

However, if termination is to be insured, the partial evaluator must not attempt to

create potential specializations for the in�nite set of positive integers. At some point

it must stop and generate a potential specialization for the unknown integer.

Alternatively, the partial evaluator could chose to be more conservative and gen-

erate fewer potential specializations. It could generate the potential specialization

for the unknown string and use that potential specialization for the string "ab", as

well. It could generate one potential specialization for the unknown integer instead

of several potential specializations for di�erent integers. In the extreme, it might

generate only a single potential specialization for the unknown argument and use it

throughout.
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(define polymorphic-double-consumer

(lambda (lst str int)

(polymorphic-double lst)

. . .

(polymorphic-double "ab")

. . .

(polymorphic-double str)

. . .

(let loop ((i 1))

(if (< i int)

( ... (polymorphic-double i) ...

(loop (1+ i)))))))

Figure 2.2: A program calls polymorphic-double with a number of di�erent types

of arguments

As has been previously explained, there is a tension between the desire to in-

sure termination by maintaining �niteness and the need to investigate enough of the

appropriate potential specializations in order to generate high performance residual

code. There are a plethora of termination mechanisms that could be used to insur-

ing �niteness. The simplest of these is just to place a �nite limit on the number of

potential specializations of each function to investigate. However, the key is to �nd a

termination mechanism that achieves �niteness while artfully selecting the potential

specializations to investigate. This turns out to be signi�cantly more di�cult.

2.2 Equivalence Classes

It is instructive to think about the problem of selecting a �nite number of potential

specializations of each function in terms of equivalence classes. This approach is

advocated by Neil Jones in [29]. If all possible applications of each function are

divided into a �nite set of disjoint equivalence classes, at most a �nite number of

potential specialization are created for each equivalence class, and a program consists

of a �nite number of functions, then a partial evaluator is guaranteed to create a

�nite number of potential specializations.

I de�ne equivalence of applications constructively based on equivalence of their
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constituent components. Two applications are equivalent if the applied functions are

equivalent and the argument sets to which the functions are applied are equivalent.

For the purposes of this discussion, the nuances of function equivalence will not be

considered. For the time being, a very simple model in which only identical functions

are equivalent and all others are distinct su�ces. This presentation concentrates on

argument equivalence.

For simplicity, I will begin by considering equivalence classes for applications of

functions of a single argument. For each function of one argument, there are an

in�nite number of argument values to which the function could be applied. Imagine

partitioning these values into a �nite number of sets. If a partial evaluator creates

at most one potential specialization of a function for each of the �nite number of

argument sets, the partial evaluator is guaranteed to investigate only a �nite number

of potential specializations of each function.

Any �nite partitioning of argument values into disjoint sets serves to guarantee

termination; however, some partitionings yield far better residual code than others. A

partial evaluator limited to investigating at most one potential specialization for each

partition must produce potential specializations correct for all values in each partition.

In other words, any optimizations performed in creating the potential specializations

must be correct for all values in the corresponding partition. This motivates the desire

to create partitions in which all the values share properties that enable the same

optimizations to be performed by a partial evaluator. If an optimization is correct

for one half of the values in a partition, but not for the other half, then improved

potential specializations would result from subdividing the existing partition into two

separate partitions.

E�ective partitionings of argument values to a function might aptly be regarded

as separation of a language's domain of values into equivalence classes based on the

function being applied and the optimizations performed by a partial evaluator. Ide-

ally, the values in each partition ought to be \equivalent" in the respect that the

partial evaluator is able to perform the identical optimizations on the body of the

function for every one of the values. This allows the most highly optimized potential

specializations to be created and used for each possible argument value.

Consider once again the polymorphic-double function in Figure 2.1 on page 8.
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All Strings

. . .

All Lists All Integers

All Values

1 2 3

4

"ab"

Figure 2.3: polymorphic-double arguments

The sets of values to which polymorphic-doublewas to be applied were an unknown

list, the string "ab", an unknown string, and the integers 1, 2, 3, 4, ..., up to some

unknown limit.1 These values can be represented by the Venn diagram shown in

Figure 2.3. Note, the set of all values has been shown in the diagram with a dotted

line since there was no application of polymorphic-double to a completely unknown

value. The set of all values has been included as a reference to show the partitioning

of the complete domain of values of the language.

The �nite set of equivalence classes for the argument of polymorphic-double

shown in Figure 2.4 guarantees termination of partial evaluation of a program utilizing

polymorphic-double as speci�ed in this example. The partial evaluator would create

a potential specialization for each of the six equivalence classes with solid boundaries.

Figures 2.5 and 2.6 show successively coarser grained partitionings of the domain

of all possible argument values. In Figure 2.5, there is one single equivalence class for

all of the integers. A partial evaluator using the equivalence classes in Figure 2.5 would

not create any potential specializations for any designated integers. In Figure 2.6,

the separate equivalence classes for unknown lists and unknown strings have been

eliminated. Since these sets have been subsumed into the set of all values, a potential

1It has been assumed that we know about all applications of polymorphic-double. This is often
referred to as the closed-world assumption.
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All Strings

"ab"

All Lists All Integers

All Values

1 2

Figure 2.4: Equivalence classes for polymorphic-double

specialization is necessary in this case for the completely unknown argument.

The case of guaranteeing a �nite number of potential specializations for a function

of multiple arguments is quite similar to that for a function of a single argument. The

multiple arguments can be considered to be an n-tuple, with n being the arity of the

function. So long as the set of all possible n-tuples is partitioned into a �nite number

of disjoint equivalence classes for each function, it is guaranteed that a �nite number

of potential specializations will result.

The partitioning of n-tuples can be performed in many ways. One simple ap-

proach it to form separate equivalence classes for each of the arguments to a function.

Equivalence classes for the set of n-tuples can then be de�ned based on the cross

product of the equivalence classes for each of the arguments. So long as there are a

�nite number of equivalence classes for each of the arguments of a function, there will

result a �nite number of equivalence classes for n-tuples of arguments to the function.

2.2.1 How Existing Partial Evaluators Select Equivalence

Classes

Partial evaluators have been divided into two separate categories in the literature:

o�ine and online. The use of equivalence classes by the termination mechanisms for

these two types of partial evaluators is discussed separately.
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All Strings

"ab"

All Lists All Integers

All Values

Figure 2.5: Coarser grained equivalence classes for polymorphic-double

All Integers

"ab"

All Values

Figure 2.6: Even coarser grained equivalence classes for polymorphic-double
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O�ine

O�ine partial evaluators are characterized by a prepass called Binding Time Analy-

sis (BTA)[29]. The purpose of BTA is to create templates for the equivalence classes

to be used during partial evaluation. While di�erent BTA's create di�erent templates

yielding di�erent equivalence classes, they all share a number of common properties

described brie
y below.

All BTA's generate templates based on separating arguments to functions into

two classes: static and dynamic. The �rst and simplest BTA's were later to be called

monovariant BTA's. A monovariant BTA selects a single labeling of the arguments

of each function of each program as static or dynamic. The dynamic arguments are

ignored when de�ning equivalence classes. A di�erent equivalence class can be created

for application of a function to each possible combination of values for the argument

positions labeled as static.

For example, consider the length program in Figure 2.7. There are four possible

templates due to the four possible combinations of labelings of the two arguments

to the function loop as either static or dynamic. If both lst and ans are labeled

as dynamic, then only a single equivalence class results for applications of loop. At

most one specialization of loop will exist in the residual program. If lst is labeled as

dynamic and ans is labeled as static, then a di�erent equivalence class can exist for

every possible value of ans. This corresponds to having a potential specialization of

loop for counting each successive element of lists. One for the �rst element, one for

the second, etc. Since this template can produce an in�nite number of equivalence

classes, an in�nite number of potential specializations might result.

Alternatively, if lst is labeled as static and ans is labeled as dynamic, then a

di�erent equivalence class can exist for every possible value of lst. This corresponds

to having a potential specialization of loop for computing the remaining length of

each di�erent list passed to loop. If length were called on two di�erent length lists

sharing a common tail, the potential specializations of loop for the two tails would

be identical. Equivalence classes for applications of loop in this case are only being

de�ned based on the value of lst, not based on the length of the portion of the list

already analyzed and stored in ans. Once again, this template can produce an in�nite
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(define length

(lambda (lst)

(loop lst 0)))

(define loop

(lambda (lst ans)

(if (null? lst)

ans

(loop (cdr lst) (1+ ans)))))

Figure 2.7: A function for computing the length of lists

number of equivalence classes so an in�nite number of potential specializations might

result.

Finally, if both lst and ans are labeled as static, then a di�erent equivalence class

can exist for every di�erent combination of the arguments. This could lead to the

greatest variety of potential specializations. However, based on the in�nite number

of equivalence classes resulting, it might yield divergence of the partial evaluator.

Templates that can yield an in�nite number of equivalence classes might or might

not produce an in�nite number of potential specializations in practice. Consider a

program in which the only two applications of length are (length '(a b)) and

(length '(z a b). The template where lst is static and ans is dynamic would

likely produce potential specializations for the fours values of lst: (z a b), (a b),

(b), and (). A template with both lst and ans static would likely produce potential

specializations for the seven possible combinations of the values for lst and ans:

f(z a b),0g, f(a b),1g, f(b),2g, f(),3g, f(a b),0g, f(b),1g, and f(),2g.

Nearly all templates contain at least one static argument. When the static ar-

gument has a potentially ini�nte set of values it can assume, an in�nite number of

equivalence classes can result. The key to designing an e�ective BTA is generating

templates for functions that yield a terminating partial evaluation despite the po-

tentially in�nite set of equivalence classes that could in theory be instantiated from

those templates.

In the simplest BTA model, a static argument is one whose value is always known

during partial evaluation for every function call. A dynamic argument is ones whose
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value might, or might not be, known. If an argument's value is sometimes known and

other times unknown then it is labeled as dynamic in order to maintain control over

the number of equivalence classes. This ideal model of BTA often yields templates

producing an in�nite number of potential specializations during partial evaluation.

To avoid divergence, most BTA's replace some static labels with dynamics in order

to constrain the set of possible equivalence classes (e.g., [40] and [8]).

Finer grain control over the equivalence classes produced by BTA has been

achieved in two ways. Polyvariant BTA potentially creates multiple di�erent tem-

plates for the same function by assigning multiple di�erent labelings to the arguments

to a function. Di�erent templates are utilized for di�erent call sites[29]. Partially

static BTA is based on a richer set of labelings. Arguments used to store composite

values like pairs, lists, and vectors can be labeled as partially static and partially

dynamic, designating which parts of the composite data are to be used in de�ning

equivalence classes and which parts are to be ignored[21]. For example, these richer

templates can represent equivalence classes distinguished based on the values of the

cars of pairs, and not their cdrs.

Online

Online partial evaluators di�er from o�ine partial evaluators by de�ning their equiv-

alence classes on the 
y as the partial evaluation progresses. I will discuss only those

online systems that automatically generate their equivalence classes. I do not dis-

cuss online systems that base the selection of equivalence classes on user supplied

annotations [23] and declarations in a metalanguage [11].

When online partial evaluation is initiated, there is e�ectively a single poten-

tial specialization for each source function: the function itself. It is associated with

a single equivalence class containing all possible argument values. As online par-

tial evaluation proceeds, additional equivalence classes are created, along with their

associated potential specializations. The new equivalence classes are formed by suc-

cessively subdividing the initial equivalence class for each function. Termination of

the partial evaluator is dependent on ensuring only a �nite number of divisions of the

equivalence class for each function take place. Finiteness is maintained by detecting

recursions generating a possibly never-ending series of subdivisions of an equivalence
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(define car

(lambda (val)

(if (pair? val)

(primitive-car val)

(error "Illegal argument supplied to car:" val))))

Figure 2.8: An implementation of the car function

class and disallowing further division.

2.2.2 Improved Notions of Equivalence

This section presents a new basis for de�ning equivalence classes for partial evaluation.

It begins by introducing the concept of use of information and goes on to present Ruf's

domain of specialization. It concludes by describing a re�ned version of the domain

of specialization.

Use of Information

The equivalence classes presented so far have been based on the values of arguments

to a function. I propose equivalence classes based on how the values of arguments are

used in creating specializations. To be more precise, I propose distinguishing amongst

equivalence classes based on the information content in argument values utilized in

performing optimizations to create specializations.

For example, consider the implementation of the car function shown in Figure 2.8.

Traditional partial evaluators would place (car '(a b)) and (car '(a c)) in dif-

ferent equivalence classes since the two arguments are distinct. However, the special-

izations produced in the two cases are identical since the same optimizations can be

performed in both cases.

To better understand why, consider the optimizations that can be performed in

the two cases. First, the expression (pair? val) can be evaluated to yield #t. Next,

the conditional can be replaced by its consequent, (primitive-car val). Finally,

the primitive-car operation can be performed to yield 'a.

Another example of a de�nition of equivalence classes based on the information
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(define not

(lambda (arg)

(if (boolean? arg)

(if (eq? arg #t)

#f

#t)

#f)))

Figure 2.9: An implementation of the not function

utilized in creating specializations is presented by the implementation of the not func-

tion shown in Figure 2.9. Consider specializations of not generated for the expressions

(not 1) and (not 3). In both cases the result is a function that always returns #f;

however, traditional partial evaluators would place the two potential specializations

into separate equivalence classes since the applications of not are to two di�erent

values. I propose the two applications ought to be part of the same equivalence class

since the information utilized in performing optimizations in both cases, that the

argument is not a boolean, is identical.

What precisely do I mean by information used in performing optimizations to

generate potential specialization? I mean information necessary to perform delta

reductions (execute primitives) or execute conditional control 
ow operators to replace

an expression by a simpler expression or value. This does not include the substitution

of values for variables in beta reductions (function applications) performed during

partial evaluation. No information is utilized in performing a substitution of a value

for a variable, only in performing a computation utilizing a value.

For an example of the distinction between information that is used in perform-

ing delta reductions and the case when values are substituted for variables without

any information being used, consider the function polymorphic-+ in Figure 2.10.

polymorphic-+ is a cousin of polymorphic-double that performs either addition,

string concatenation, or appends two lists depending on the types of its arguments.

Partial evaluation of the application of polymorphic-+ to the value 1 and an un-

known value, utilizing equivalence classes based only on information used in perform-

ing delta reductions, yields the potential specialization in Figure 2.11, associated with
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(define polymorphic-+

(lambda (arg1 arg2)

(cond

((and (number? arg1) (number? arg2))

(+ arg1 arg2))

((and (string? arg1) (string? arg2))

(string-append arg1 arg2))

((and (list? arg1) (list? arg2))

(append arg1 arg2))

(else (error "Bad polymorphic-+:" arg1 arg2)))))

Figure 2.10: A polymorphic + function that operates on numbers, strings, and lists

(define polymorphic-+

(lambda (arg1 arg2)

(cond

(number? arg2)

(+ arg1 arg2))

(else (error "Bad polymorphic-+:" arg1 arg2)))))

Figure 2.11: A specialization of (polymorphic-+1 unknown)using equivalence classes

based on information used in performing delta reductions

the equivalence class in which only the information that 1 is a number is used. If sub-

stitution of values for variables were a type of use re
ected in the equivalence classes

utilized, the potential specialization in Figure 2.12 would result for the equivalence

class based on use of the value of 1. The di�erence between the two potential spe-

cializations is the substitution of the value 1 for the variable arg1 in the applications

of + and error in the second potential specialization.

The simple reason use based equivalence classes do not re
ect values substituted

for variables is that the smaller equivalence classes that would result tend to cause

a partial evaluator based on those equivalence classes to diverge. Information used

in performing delta reductions distinguishes whether applications are equivalent in a

more fundamental sense. The more polymorphic potential specializations resulting

from the larger equivalence classes re
ect di�erences amongst iterations of a recursion

that determine whether partial evaluation of the recursion will complete on its own



20 CHAPTER 2. TERMINATION AND USE ANALYSIS

(define polymorphic-+

(lambda (arg1 arg2)

(cond

(number? arg2)

(+ 1 arg2))

(else (error "Bad polymorphic-+:" 1 arg2)))))

Figure 2.12: A specialization of (polymorphic-+ 1 unknown) based on information

used in delta reductions and the substitution of values for variables

or needs to be terminated to prevent divergence.

Delayed commitment partial evaluation postpones decisions whether to substi-

tute actuals for formals in potential specializations until the code generation phase.

This means the specialization in Figure 2.12 might appear in the �nal residual code

even though the equivalence classes utilized for termination are associated with the

potential specialization in Figure 2.11. The code generation phase decides whether

substitutions of values for variables yielding only slightly higher performance special-

izations come at the expense of requiring a greater number of di�erent specializations,

resulting in unacceptable growth in code size.

Ruf's Domain of Specialization

Utilizing my original formulation of equivalence classes based on the information in

arguments that is used to construct specializations, Ruf showed one could in practice

enlarge the equivalence classes beyond the size generated by most partial evalua-

tors [38, 37]. He further demonstrated that larger equivalence classes enable signif-

icantly increased reuse and sharing in residual code, without degrading the quality

of the code. Ruf coined the term domain of specialization (DOS) to characterize the

equivalence class of applications in which a specialization can be safely reused, and

explained how to compute a safe approximation to the DOS (called the Most General

Index) by tracking the information used in constructing a specialization. Ruf did not

use the DOS as the basis of his termination strategy.
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Yet a Better DOS

Equivalence classes of applications based on use of information in performing opti-

mizations assumes that optimizations performed in creating di�erent potential spe-

cializations di�erentiate them. This approach misses one important fact: only those

computations a function performs in order to produce its result are signi�cant. Any

other computations are irrelevant. Therefore, use equivalence ought only be based

on uses of values that allow relevant computations to be optimized. Furthermore,

the only signi�cant computations in a complete program are those contributing to

computing the result of the program. Computations that create intermediate results

not utilized in later relevant computation are also irrelevant.

Equivalence classes based only on information that causally contributes to gener-

ating the result of a program can be somewhat larger than those based on the DOS

de�ned by Ruf. I believe these larger equivalence classes to be a more e�ective basis

for making termination decisions. But, what precisely does it mean to base equiva-

lence classes on information used in performing optimizations that contribute to the

computation of the result of a program?

The less information used about the return value of a specialization applied in

some context, the less constraints that are placed on which potential specializations

could correctly be utilized at that application site. If one thinks of all the potential

specializations that can correctly be utilized at some application site as members of

an equivalence class, then including consideration of the information used about the

return value of the specializations in that context e�ectively increases the size of the

equivalence class of specializations that can be called from that application site. For

example, assume the function test in �gure 2.13 is specialized on the number 5. The

DOS for square would be that n must be 5, which is reasonable since the entire body

of square could be replaced by the residual constant 25. However, the DOS for test

would specify that q must be 5. In fact, the entire body of test could be replaced by

the residual constant #t. This specialization of test is valid whenever q is a number.

The DOS has de�ned an overly restrictive equivalence class for the specialization of

test applied to 5.

Weise and I in [31] chose to refer to the DOS de�ned by Ruf as the context free
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(define square

(lambda (n)

(* n n)))

(define test

(lambda (q)

(number?

(square

q))))

Figure 2.13: DOS de�nes too small equivalence classes

domain of specialization (CF-DOS) to di�erentiate it from a context sensitive domain

of specialization (CS-DOS) that accounts for both the values to which a specialization

is applicable and how its result is used. When a function is called from a context

that doesn't use all the information available about its return value, it is important

to know if a specialization already exists (even one returning a di�erent value) that

can correctly be applied at the new call site. The CF-DOS is not as useful for this

purpose since it is a characterization based on information not necessarily used in

every context. In other words, equivalence classes based on the CF-DOS may be

unnecessarily small; in particular, too small to ensure e�ective termination.

For example, consider the \counting up" factorial program in Figure 2.14. Assum-

ing the value of n is unknown, during partial evaluation a series of iterations of loop

are analyzed starting with i equal to 1 and proceeding through successive integers.

The CF-DOS of loop for each iteration is based on the values of i and ans for the

iteration since the computation (1+ i) utilizes the value of i and the computation

(* ans i) utilizes the values of both i and ans. Since equivalence classes based on

the CF-DOS di�er for every iteration of loop, an in�nite number of iterations are

investigated and partial evaluation diverges. However, the CS-DOS for the iterations

of loop are all the same. Neither the values of i nor ans are utilized in computing the

return value of the factorial program so long as the value of n is unknown. Since all

iterations belong to the same equivalence class, partial evaluation terminates when

utilizing equivalence classes based on the CS-DOS.
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(define fact

(lambda (n)

(if (zero? n)

1

(let loop ((i 1)

(ans 1))

(if (> i n)

ans

(loop

(1+ i)

(* ans i)))))))

Figure 2.14: \Counting up" factorial program

The computational complexity of producing potential specializations for equiva-

lence classes based on approximations to the CF-DOS is much less than using the

CS-DOS. Whereas the CF-DOS requires investigating di�erent potential specializa-

tions for di�erent argument sets, the CS-DOS requires investigating di�erent poten-

tial specializations even for identical argument sets when the applications appear in

di�erent contexts, which is an exponentially larger set of potential specializations.

Furthermore, acquiring the information about contexts needed for equivalence classes

based on approximations to the CS-DOS often requires analyzing the same context

(i.e., continuation) separately for each 
ow of control into the context (i.e., invoking

the continuation).

As will be discussed in Sections 2.4 and 2.6, eager use analysis computes an

approximation to the CF-DOS, and lazy use analysis computes an approximation

to the CS-DOS. The role of CPS conversion in lazy use analysis and other partial

evaluators in order to improve context sensitivity is presented in Section 4.2. The

description of use analysis in this chapter for simplicity discusses use analysis without

CPS conversion. The low level description of the analysis including CPS conversion

appears in Chapter 3. Finally, the detrimental performance implications for lazy

use analysis resulting from the need to maintain context sensitivity are discussed in

Chapter 5.
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2.2.3 Higher-Order, First-Class Functions and Equivalence

Higher-order, �rst-class functions add new complications to the de�nition of equiva-

lence classes. Should two closures formed from the same lambda expression during

symbolic execution ever be members of the same equivalence class? Should applica-

tions of di�erent closures of the same lambda expression ever be deemed equivalent?

I believe the answer to the �rst question must be yes in order to yield e�ective ter-

mination and produce high quality residual code. The answer to the second question

depends on the type of termination mechanism being utilized. This section begins

with an example in which prohibiting equivalence between di�erent closures of the

same lambda expression presents a termination problem. It then presents an exam-

ple demonstrating that always assuming two closures formed from the same lambda

expression are equivalent can yield code quality and correctness problems. The �-

nal example shows that equivalence of applications of di�erent closures of the same

lambda expression can be desirable. The section concludes with a discussion of how

I propose closure equivalence ought to be handled when equivalence classes are based

on use of information.

When Lack of Equivalence Presents Problems

Utilization of higher-order, �rst-class functions as arguments can present a termina-

tion problem unless di�erent closures formed from the same lambda expression can

be equivalent. Consider the canonical recursive function shown in Figure 2.15. It can

be transformed into a version using closures as arguments as shown in Figure 2.16

by converting each argument at each call site into a thunk returning the original

argument value, by dethunking the arguments at each reference site by applying the

transformed arguments to no value, and by creating the obvious helper function that

maintains the original interface.

Applying this same transformation to the factorial function in Figure 2.17 yields

the version in Figure 2.18. Consider partial evaluation of the transformed version of

fact in Figure 2.18 applied to an unknown integer. During partial evaluation, the

argument to every application of closure-arg-fact is a di�erent closure returning

an unknown integer. If none of these closures are ever considered equivalent to each
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(define func

(lambda (arg)

. . .

(func value)

. . .

arg

. . .

))

Figure 2.15: A canonical recursive function

(define func

(lambda (arg)

(closure-arg-func (lambda () arg))))

(define closure-arg-func

(lambda (arg)

. . .

(closure-arg-func (lambda () value))

. . .

(arg)

. . .

))

Figure 2.16: A canonical recursive function using closures for arguments
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(define fact

(lambda (n)

(if (zero? n)

1

(* n (fact (-1+ n))))))

Figure 2.17: Factorial program

(define fact

(lambda (n)

(closure-arg-fact (lambda () n))))

(define closure-arg-fact

(lambda (n)

(if (zero? (n))

1

(* (n) (closure-arg-fact (lambda () (-1+ (n))))))))

Figure 2.18: Factorial program using closures for arguments

other, partial evaluation fails to terminate.

When Equivalence Presents Problems

Just as it is sometimes critical that di�erent closures formed from the same lambda

expression be considered equivalent, it is also desirable in some cases that they not be

deemed equivalent. Consider another partial evaluation of the transformed version

of factorial in Figure 2.18, this time applied to the value 5. If all closures formed

from the same lambda expression are always deemed equivalent then every iteration

of closure-arg-fact after the �rst is deemed equivalent. This causes termination of

the recursion before the factorial of 5 is computed. The result is a residual recursion,

as opposed to a residual program just returning 120. This is suboptimal residual

code.

Furthermore, considering di�erent closures of the same lambda expression always

to be equivalent can lead to the creation of incorrect residual code. Di�erent closures

of the same lambda often contain di�erent values in their environments. Using one

closure in place of another can result in the utilization of an incorrect value in a
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(define func

(lambda (arg)

((upward-funarg-func arg))))

(define upward-funarg-func

(lambda (arg)

(lambda ()

. . .

((upward-funarg-func value))

. . .

arg

. . .

)))

Figure 2.19: A canonical recursive function utilizing an upward funarg

computation.

Having demonstrated the desirability of allowing two closures of the same lambda

expression to belong to the same equivalence class, the next issue is when it is de-

sirable for applications of two closures of the same lambda expression to be deemed

equivalent. Consider once again the canonical recursive function shown in Figure 2.15.

It can be transformed into a version based on upward funargs as shown in Figure 2.19

through the following process: replace the body of the function with a lambda ex-

pression of no arguments whose body is the body of the original function, augment

all applications of the function by wrapping them in an application of the returned

value to no arguments, and create an new function with the original interface to call

the transformed version of the function.

Applying this same transformation to the factorial function in Figure 2.17 yields

the new version in Figure 2.20. This program presents an interesting question. Is the

function fact in Figure 2.20 recursive? If one takes as the de�nition of a recursive,

a function called while another application of the same function is still pending (i.e.,

has yet to return a value), then fact is not recursive. Each time fact is called, the

previous application of fact has already returned a closure as an upward funarg;

and, it is the upward funarg that is still executing. Of course, a di�erent closure is

returned each time so the upward funargs are only recursive if all the upward funargs
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(define fact

(lambda (n)

((upward-funarg-fact n))))

(define upward-funarg-fact

(lambda (n)

(lambda ()

(if (zero? n)

1

(* n ((upward-funarg-fact (-1+ n))))))))

Figure 2.20: Factorial program utilizing an upward funarg

formed from the same lambda expression are considered equivalent for the purpose

of de�ning recursion.

The signi�cance of whether Figure 2.20 contains a recursion depends on the struc-

ture of a partial evaluator's termination mechanism. Some termination mechanisms

make no distinction between recursive applications and all other applications. The

example in Figure 2.20 presents no problem for partial evaluators utilizing these forms

of termination mechanisms. However, this example presents a potential problem for

termination mechanisms based on detecting equivalent, recursive applications. Use

analysis falls in the latter category so the distinction is salient.

Termination mechanisms based on detecting equivalent, recursive applications

must allow two applications of di�erent closures of the same lambda expression to be

deemed equivalent in order to terminate on the example in Figure 2.20. This enables

a termination decision to be made for the `recursion' of the upward funargs when

both the functions applied and their arguments are deemed to be equivalent.

Suggested Means of Handling Equivalence of Functions

I believe closures ought to be handled analogously to aggregates. Lambda is really

just a constructor binding together a piece of code and an environment into a single

object. Two closures ought to be deemed equivalent if and only if both the code and

the environment of the closures are equivalent. Code equivalence is easily de�ned in
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terms of closures being formed from the same lambda expression.2 Again analogous

to aggregates, environment equivalence can be de�ned in terms of equivalence of

corresponding bindings in the environments.

If one's equivalence classes are based on use of information, then the following

types of uses of closures result. Any time a closure is applied, its code (i.e., the

lambda expression from which it is formed) is used in order to execute the body of

the function. This means all closures are equivalent so long as they are not applied.

As soon as they are applied, only closures of the same lambda are deemed equivalent.

Uses of information about values in the environment of a closure result naturally as

the body of a closure is executed.

Having de�ned closure equivalence, application equivalence follows directly. Two

applications are equivalent if the applied closures and all of the arguments are equiv-

alent. Another way of thinking about application equivalence is that all the values

in the environment of a closure e�ectively become extra arguments of applications.

It should be noted, this conceptualization of application equivalence is analogous to

the result of lambda lifting [27] programs prior to partial evaluation.

2.3 Use Analysis: Domains and Lattices3

Use analyses calculate an approximation to the information used by a partial evalu-

ator in performing optimizations of expressions. The information used in performing

optimizations can be represented by elements of domains of types of use and orga-

nized into a lattice. This section describes the properties of the domains and lattice

utilized by all use analyses. In subsequent sections the presentation of use analysis

proceeds in two stages. First, eager use analysis, which is fairly simple to explain and

understand, is developed.4 This is followed by a discussion of the shortcomings of the

eager form of the analysis. Finally, an improved lazy use analysis is discussed.

The selection of the domains representing types of use and a lattice based on those

domains is a plug replaceable module in the use analysis algorithms to be presented.

2Any more complex form of code equivalence rapidly becomes undecidable.
3Some portions of this section are taken in whole or part from [31].
4The �rst implementation of eager use analysis is described by Ruf in [37].
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The concepts behind use analysis are independent of the precise choice of the domains

and lattice. However, the domains and lattice selected can have a pronounced e�ect

on the quality of residual code produced by a partial evaluator since they determine

the equivalence classes used in choosing those potential specializations to investigate.

In addition, the domains and lattice must exhibit certain monotonicity properties

with respect to the primitive operations of the source language, as implemented by

delta reductions, in order for use analysis to be meaningful.

Figure 2.21 shows the value domains for a pure subset of Scheme [10] that does

not include all the data types in the full Scheme language. The pure subset selected

includes the following types of expressions: variable references, literals, function ap-

plications, function de�nitions (lambda), conditionals, recursive function de�nitions

(letrec), and de�nitions (define). Being a pure subset, it does not include as-

signments (set!), sequencing (begin), or the ability to create or throw to �rst-class

continuations.

A richer set of value domains capturing the partial information useful during

partial evaluation appears in Figure 2.22. The partial evaluation value domains in

Figure 2.22 also happen to serve as one reasonable set of values for representing the

types of information that can be used about a value. For example, use of only the

integer property of the number 3 during partial evaluation might be represented by

the abstract value ?Int.

As with any set of domains selected, there are many types of information about

values that cannot be precisely represented by the domains in Figures 2.22. For ex-

ample, the closest representations of the information that an integer is less than 5

are either the integer's identity or ?Int. The integer's identity is an overspeci�cation

of the information used, excluding other integers less than 5. ?Int is an underspec-

i�cation, including integers greater than or equal to 5. Whenever no element of a

domain can precisely represent the information content used about a value, a choice

must be made between either overspeci�cation or underspeci�cation. The choice of

how to approximate use can have a signi�cant impact on the size of the equivalence

classes utilised by a partial evaluator and therefore on termination and the number
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Int = 0+�1+�2+ � � � integers

Bool = true+ false booleans

Sym = 0a+ 0b+ � � � symbols

Nil = nil empty list

Pair = Sval� Sval pairs

Closure = Lambda� Env closure values

Env = (Id! Sval)
?

environments

Sval = Int+Bool +Nil + Pair + Closure scheme values

Figure 2.21: Value domains for a pure subset of Scheme

Int = 0+�1+�2+ � � � integers

?Int unspeci�ed integer

Bool = true+ false booleans

?Bool unspeci�ed boolean

Sym = 0a+ 0b+ � � � symbols

?Sym unspeci�ed symbol

Nil = nil empty list

Pair = PEval� PEval pairs

?Pair � ?PEval �?PEval unspeci�ed pair

Closure = Lambda� Env closure values

?Clos unspeci�ed closure

Env = (Id! PEval)
?

environments

Kval = Int+Bool +Nil + Pair + Closure known values

Bots = ?Int +?Bool +?Pair +?Clos bottom values

PEval = Kval+ Bots +?PEval partial evaluation values

?PEval unspeci�ed value

Figure 2.22: Value domains for partial evaluation of a pure subset of Scheme

of potential specializations investigated.5

A transitive binary relation based on the concept of information used about values

and denoted by � can be de�ned. � should be read as has less information than

and � as has less than or the same amount of information as. A lattice based on

the domains in Figure 2.22, the transitive, re
exive binary relation �, and a newly

5Since an overspecifying use analysis can lead to increased divergence and an underspecifying use
analysis can lead to incorrect reuse of potential specializations, it might be desirable to compute two
use analyses, one underspecifying use for termination purposes and the other overspecifying use for
making code sharing/reuse decisions. I currently only implement the former analysis.
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?

>

Int Bool Pair Closure

?Int ?Bool ?Sym

Nil

?Pair ?Clos

Sym

?PEval

Figure 2.23: Information lattice formed using partial evaluation value domains

introduced top and bottom element appears in Figures 2.23 and 2.24.6

The lattice diagram in Figure 2.23 shows that integers, booleans, symbols, the

empty list, pairs, and closures are disjoint and incomparable; there is less information

in knowing an object's type than in knowing its value (e.g., the relative position of

6The orientation of a lattice is arbitrary. Greater information can be represented by points either
higher or lower in the lattice. The orientation I selected as presented in Figures 2.23 and 2.24 is
opposite of the one used by Ruf in [38].

8 < x; y >;< x0; y0 >2 Pair:((< x0; y0 >�< x; y >)$ ((x0 � x) ^ (y0 � y)))

8 < l; e >;< l0; e0 >2 Closure:((< l0; e0 >�< l; e >)$ ((l0 = l) ^ (e0 � e)))

8e; e0 2 Env:((e0 � e)$ (8 < i; s0 >2 e0:(9 < i; s >2 e:(s0 � s))))

Figure 2.24: Information lattice equations to supplement the lattice diagram
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?Int and Int); and there is even less information is knowing one has a value, but

not even knowing its type (e.g., the relative position of ?PEval and ?Int). The top

element has no obvious interpretation; however, there is a distinction between ?PEval,

representing the object with an unknown value, and the bottom element of the lattice.

This distinction will be discussed later in Section 2.6.2 when presenting an algorithm

for implementing lazy use analysis.

The equations in Figure 2.24 de�ne the orderings amongst pairs and closures. The

pair equation is the typical generalization to aggregates. One aggregate contains less

information than another aggregate if the property holds for corresponding compo-

nents of the aggregates. Closures are organized based on the information used about

the variables over which the same lambda expressions are closed. Less or the same

amount of information is used about one closure of a lambda expression than about

a second closure of the same lambda expression if and only if this property holds for

every variable over which the �rst closure is closed.

2.4 Eager Use Analysis

Eager use analysis is explained in several parts. The data structures used by the

analysis are presented. Then, an explanation of how use information is recorded about

applications of primitive functions is given. This is followed by a discussion of the

core of the analysis with the exception being that the parts of the algorithm relating

to termination are omitted. Finally, termination is added to the base algorithm and

issues involving and resulting from the termination mechanism are discussed.

Eager use analysis is implemented by an augmented Scheme interpreter. In recog-

nition of the additions to the basic execution model, the augmented interpreter is said

to symbolically execute the source program. The augmented interpreter operates on

the extended value domains of Figure 2.22, rather than the domains for pure Scheme

in Figure 2.21. When a control 
ow decision point is reached for which there is insuf-

�cient information during the use analysis phase of partial evaluation to decide what

control path will be taken at runtime, the augmented interpreter investigates both

possible 
ows of control. Sometimes the symbolic executor desists investigation of

a 
ow of control because a termination decision is made in order to protect against
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divergence of the partial evaluator. Finally, symbolic execution collects information

about the uses of values and di�erent potential specializations.

The augmented interpreter utilizes several data structures in implementing eager

use analysis. These include extended symbolic values, use dependences, a stack of

pending function calls, a table of potential specializations, a work list of 
ows of

control remaining to be analyzed, and use change daemons that detect when a new

type of use is made of a value. While each of the data structures is explained in more

detail later, a brief one sentence description of each is given here as well.

Symbolic values are utilized to represent the information available during partial

evaluation about each value on which the augmented interpreter performs compu-

tations. This information might include its value (e.g., it is an integer) and other

invarients gathered during analysis. Use dependences codify how utilization of infor-

mation about one data value implies use of some type of information about another

data value. For example, when the function application (boolean #f) is performed,

a use dependence might be created between the symbolic value for the result, #t,

and the symbolic value for the argument, #f, signifying that use of the result value

implies use of the property that #f is a boolean.

The stack of pending function calls is utilized in determining when a function ap-

plication is a recursive call. The table of potential specializations is used to determine

when a potential specialization already exists for a speci�c equivalence class. The use

analysis algorithm works by placing pieces of program to be analyzed on a work list

and removing a new program segment from the work list for analysis each time the

algorithm completes work on the current program segment. The algorithm completes

when no program segments to be analyzed remain on the work list. Finally, use

change daemons detect when a new form of use is made of a value and this change in

use might necessitate performing some additional analysis of some program segment.

The use change daemon when activated adds an object to the work list to perform

the necessary analysis.

Weise utilized symbolic values in Fuse to represent the data values upon which

his partial evaluator operated [48]. Weise's symbolic values are composed of two

components: a representation of the information available about a value during partial

evaluation and a representation of the residual code still needing to be executed at
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Use Pro�le

3
Use Dependences

Residual CodeValue

Use Annotation

?Int

Figure 2.25: A symbolic value representing the value 3 with a use annotation of ?Int

runtime to produce a runtime value from the partial value available during partial

evaluation. For use analysis, I have extended symbolic values to include a third

component, a representation of the information used about a value in performing

delta reductions during symbolic execution. The values stored in the use component

will be referred to as use pro�les. Each use pro�le is composed of two portions: a

use annotation recording the information about a value that has been utilized and

a list of use dependences recording how use of this value implies use of other values.

For example, Figure 2.25 shows a symbolic value representing the value 3 with a use

annotation of ?Int and no use dependences or residual code.

Recording the information about argument values used as each delta reduction

is performed during symbolic execution is achieved by updating the use annotations

of the arguments. Use analysis needs to know how much information about every

value is utilized in symbolically executing some expression or program segment, so

it records the maximum amount of information utilized about each value during

symbolic execution. Every symbolic value is created with an initial use annotation

of ?, representing an as yet unused value. Each delta reduction makes some type

of use of each of its arguments. The use annotations of the symbolic values for the

arguments are updated by computing the least upper bound (LUB) of the previous

use annotation and the new use made by the current delta reduction.7

A table containing a number of applications of primitive Scheme function and

the use annotations generated for the underlined arguments appears in Figure 2.26.

The use annotations presented are based on the lattice in Figure 2.22. For each of

the examples shown, a use annotation precisely capturing the information utilized in

7The LUB's are with respect to the lattice of uses being utilized by the use analysis.
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Expression Argument Use Pro�les

(integer? 3) ?Int

(car 0(1 : 2)) ?Pair

(boolean? ?Bool) ?Bool

(+ 1 2) 1,2

(* 3 0) ?Int,0

Figure 2.26: Eager use annotations

performing the delta reductions is available.

The �nal two examples in Figure 2.26 demonstrate some of the subtleties of use

analysis. Calculating use is in one regard very similar to computing a partial deriva-

tive. The information about a single argument used in performing a computation is

determined by holding all other arguments constant and observing the dependence of

the result on the single input. In the case of (+ 1 2), if the second argument is held

constant, the information that the �rst argument is 1 is necessary in order to compute

the result of 3. Holding the �rst argument constant, a similar result is obtained for

the second argument.

If the computation had been (< 1 5), no use from the domains in Figure 2.22

could precisely capture the information utilized in performing the computation. As-

suming the second argument is held constant, there are still many di�erent values for

the �rst argument producing the same result of #t. This application is an example

of the case discussed in the previous section in which either an underspeci�cation or

an overspeci�cation of use is required.

The last example in Figure 2.26 demonstrates that some primitives ought to oper-

ate in a special fashion for some argument values. Since anything multiplied by zero

produces a result of zero, the value of the �rst argument in (* 3 0) is not needed

in order to compute the result. However, since multiplication in Scheme does a type

check of its arguments before performing the actual computation, the fact that 3 is

an integer is used in executing the * function. If Scheme were statically typed, a use

of ? would be generated for 3.

The double-integer function in Figure 2.27 demonstrates how use annotations

are calculated utilizing least upper bounds. When double-integer is applied to the

value 2, the symbolic value for val has an initial value of 2 and use annotation of
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(define double-integer

(lambda (val)

(if (integer? val)

(* val 2)

(error "Illegal argument supplied to double-integer:" val))))

Figure 2.27: A function for doubling integers

?. The integer? delta reduction creates a use annotation of ?Int for its argument.

Taking the LUB of ? and ?Int produces a new use annotation of ?Int for val. Next,

the * delta reduction produces a use annotation of 2 for val. Taking the LUB of

the previous use annotation for val, ?Int, and the new use, 2, produces a new use

annotation of 2. The net result is the double-integer function produces a use

annotation of 2 for its argument when applied to the value 2.

Nested function applications and aggregates as arguments can produce more com-

plex use annotations. For example, (integer? (cdr (car '((1 . 2) (3 . 4)))))

results in a use annotation of << ?;?Int >;? > for the argument to car. The inner-

most car uses the information the argument is a pair. The cdr uses the information

the �rst component of the pair is also a pair. integer? uses the information the

second component of that pair is an integer. The aggregate argument utilized in this

example demonstrates one subtlety of use analysis. The car delta reduction extracts

one component of an aggregate. The cdr delta reduction makes use of information

about the extracted component. However, it is also by implication making use of

information about the original aggregate. The analysis must insure the appropriate

use annotations are created for both the original aggregate and for the substructure

returned by the application of car.

Figures 2.28-2.31 show how symbolic values, use pro�les, and use dependences

are utilized to compute the uses described in the previous paragraph. When car

is applied to a symbolic value representing an aggregate, a new symbolic value and

use pro�le are created for the extracted portion of the aggregate. In addition, a

use dependence (shown as a dashed line) is created between the use pro�les of the

new symbolic value and the one representing the aggregate. The use dependence
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((1 . 2) (3 . 4)) ?

Figure 2.28: Symbolic value for '((1 . 2) (3 . 4))

car

< ?;? >((1 . 2) (3 . 4))

?((1 . 2))

Figure 2.29: Symbolic values for (car '((1 . 2) (3 . 4)))

cdr

<< ?;? >;? >((1 . 2) (3 . 4))

< ?;? >((1 . 2))

2 ?

car

Figure 2.30: Symbolic values for (cdr (car '((1 . 2) (3 . 4))))

integer?

<< ?;?Int >;? >((1 . 2) (3 . 4))

?Int2

?#t

< ?;?Int >((1 . 2))

car

cdr

Figure 2.31: Symbolic values for (integer? (cdr (car '((1 . 2) (3 . 4)))))
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represents that any change in the use annotation of the extracted component must

also be re
ected by a corresponding change in the use annotation for the aggregate.

The use dependences are labeled to indicate how the use of information about one

symbolic value implies use of information about another symbolic value. Note, the

car and cdr use dependences a�ect di�erent components of use pro�les at the arrow

ends of the dependences.

2.4.1 The Algorithm

Partial evaluation and eager use analysis both begin with a program to be ana-

lyzed/specialized and an input speci�cation for that program. The input to the

analysis can be represented as a function application of the function initiating execu-

tion of the program to be analyzed applied to the input speci�cation, as represented

by the arguments. Eager use analysis begins with symbolic execution of this initial

application.

In explaining the eager use analysis algorithm, I will separate the issues of how

use is computed and potential specializations are analyzed through symbolic execu-

tion from the issue of termination. As such, eager use analysis is initially explained

assuming the algorithm completes somehow. Termination is added to the algorithm

in Section 2.4.2.

I �rst present how each of the expression types is handled during symbolic execu-

tion. The di�erent types of expressions present in the pure subset of Scheme to which

use analysis has been applied are variable references, literals, function applications,

function de�nitions (lambda), conditionals, recursive function de�nitions (letrec),

and de�nitions (define).

Variable references look up a value in an environment. The symbolic execution

engine operates similar to a normal evaluator except that a symbolic value is returned

by a variable reference instead of a simple value.

Literals are self evaluating and produce a symbolic value whose value is that of

the literal. The symbolic value for each literal is initialized with a use annotation of

? and no use dependences.

Lambda expressions are also self evaluating. They yield a symbolic value whose
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value is a closure composed of the associated lambda expression and the current lexical

environment. As for other self evaluating objects, the symbolic value is initialized with

a use annotation of ? and no use dependences.

Top level de�nitions bind a name in the global environment to the symbolic value

passed as the second argument to define. The current implementation does not

support Scheme's optional internal de�nitions.

A discussion of the letrec special form is postponed until Chapter 3. As is ex-

plained in more detail there, recursive function de�nitions are syntactically rewritten

into code using only the other expression types by utilizing the applicative order Y

combinator [34, 20].

This brings us to the two most interesting expression types: function applications

and conditionals. Function application depends on whether the function is a primitive

or non-primitive function. The simpler case of delta reductions performed by primitive

functions is addressed �rst.

The implementation of each primitive function is built into the symbolic execu-

tion engine. Symbolic execution of the application of a primitive function consist

of three parts: computation of the symbolic result, assertion of use of the informa-

tion about the arguments utilized in computing the symbolic result, and creation of

use dependences between the symbolic value for the result and the symbolic values

for the arguments. Since the details of the implementation of primitive applications

was already discussed in some detail in Section 2.4, there is no need to repeat that

information here.

Symbolic execution of the application of a non-primitive function consists of three

parts: creation of an entry in a table of potential specializations, addition of an entry

onto a stack of pending applications as will be explained in Section 2.4.2, and symbolic

execution of the body of the function. Symbolic execution of any application of a non-

primitive function �rst adds an entry to the table of potential specializations for the

new potential specialization about to be analyzed. The entry as shown in Figure 2.32

consists of symbolic values for the function and each of its arguments, a slot for a

description of the resulting potential specialization, and a slot for storing the symbolic
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Function Potential SpecializationArguments Return Value(s)

Figure 2.32: An entry in the table of potential specializations

value(s) for the return value(s)8. The symbolic values for the function, arguments, and

return values will eventually contain the use annotations characterizing the potential

specialization.

Since the use annotations in symbolic values in the new table entry are only

intended to re
ect information used during symbolic execution of the body of the

function, new symbolic values must be created for the table entry. The new symbolic

values for the function and the formal parameters have the same values as the ones

for the original function and actual parameters, but have distinct use pro�les. The

new symbolic values are related to the original ones by use dependences that cause

all uses of the new symbolic values also to be re
ected in the original ones. If new

symbolic values were not created for the function and arguments, then the separate

uses of a single value made as a result of it being passed to two di�erent functions

would be con
ated.

Symbolic execution of the function body is initiated using the new symbolic values

for the arguments. The expressions that compose the function body are symbolically

executed in the fashion being described. The only expression types yet to be addressed

are control 
ow operators. Only conditionals will be discussed since all other control


ow operators can be implemented using conditionals.

Symbolic execution of a conditional begins with symbolic execution of the pred-

icate. If the predicate produces a known boolean value, then it is decidable during

use analysis which 
ow of control will be executed by the conditional at runtime.

Symbolic execution of the conditional proceeds with either symbolic execution of the

consequent or the alternative, as appropriate. If the boolean value of the predicate is

not decidable during the analysis, then both the consequent and the alternative must

be analyzed separately. The consequent is placed on the work list for later symbolic

8Symbolic execution of a function may produce one or more return values due to analysis of
di�erent potential 
ows of control.
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execution. Symbolic execution of the alternative is initiated immediately.9

When symbolic execution produces a return value for the original function appli-

cation of the program to the input speci�cation (i.e., a result of the program), no

analysis remains to be performed in that 
ow of control. Use analysis takes another


ow of control from the work list and initiates symbolic execution of it. If the work

list is empty, then eager use analysis has completed. At completion, the entries in

the table of potential specializations all contain use annotations characterizing the

equivalence classes to which those potential specializations belong.

2.4.2 Termination 10

Section 2.1 explained that termination of partial evaluation depends on insuring only

a �nite number of potential specializations are investigated. Section 2.2 proposed a

framework in which equivalence classes of applications are utilized in order to guaran-

tee �niteness. By limiting a partial evaluator to investigating at most a �nite number

of potential specializations for each of a �nite number of equivalence classes, termina-

tion can be guaranteed. This leaves two goals: determining a �nite set of equivalence

classes for each function in a program and insuring only a �nite number of potential

specializations are investigated for each equivalence class.

The equivalence classes to be used in termination of use analysis are based on the

use annotations associated with symbolic values. Two function applications belong

to the same equivalence class if the use annotations of the applied functions and each

of their corresponding arguments are identical. This set of equivalence classes, like

those used by many other partial evaluators, is not necessarily �nite. In particular, an

in�nite set of use based equivalence classes may result when use analysis is applied to

a nonterminating input program. It is not known in precisely which cases use based

equivalence classes are guaranteed to be �nite.

9It would be completely equivalent to place both the consequent and the alternative on the work
list and then take the top element o� the work list as the next thread to be analyzed. However,
in practice it turns out scheduling either the consequent or the alternative for immediate analysis
improves the runtime performance of the analysis. Which of the consequent and alternative is chosen
for immediate investigation while the other is placed on the work list appears to be irrelevant, and
the order selected is completely arbitrary.

10Some portions of this section are taken in whole or part from [31].
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Use analysis ensures that at most a �nite number of potential specializations

are investigated for each equivalence class as follows. Each time symbolic execution

reaches a function application, the analysis is about to investigate a new potential

specialization. The critical question is whether the new potential specialization about

to be investigated would be equivalent to a potential specialization already, or cur-

rently being, investigated. A termination mechanism can answer this question in one

of three ways: either it believes the new potential specialization would be equivalent

to some previously created potential specialization; or it believes the new potential

specialization would not be equivalent to any previous potential specialization; or it

is uncertain at this time whether the new potential specialization would be equivalent

to another.

Previous termination algorithms have not considered the possibility that a ter-

mination algorithm might not be able to decide whether a potential specialization

is going to be equivalent to some other potential specializations at the point when

symbolic execution reaches the application site that initiated the investigation of the

new potential specialization, but that the algorithm might be able to give a more

de�nitive answer at some later time. Use analysis di�ers in this regard. As a result,

the structure of a partial evaluator utilizing use analysis as a termination mecha-

nism is somewhat di�erent from most other partial evaluators. Whereas most partial

evaluators continue symbolic execution until the termination algorithm indicates sym-

bolic execution ought not to progress any farther, use analysis has more of the 
avor

of stopping until the termination mechanism indicates symbolic execution ought to

proceed. Consequently, use analysis might better be termed a commencement mech-

anism, rather than a termination mechanism.

Furthermore, most partial evaluation algorithms are able to characterize the equiv-

alence class to which a function application belongs immediately upon encountering

the application during symbolic execution. Use analysis is unable to associate a func-

tion application with an equivalence class until symbolic execution of the function's

body has been completed. However, as symbolic execution progresses, more and more

information is collected about the DOS of the potential specialization being created.

This increased information further and further restricts the size of the equivalence

class with which the potential specialization being created will be associated.
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Conceptual Implementation

The termination problem in partial evaluation results from recursions.11 Protecting

against divergent analysis is achieved by detecting recursive function applications and

then deciding whether to symbolically execute a recursive application or to terminate

the analysis of the recursion at that point. (Throughout this explanation, the phrase

terminate a recursion will be utilized as a short form to designate that symbolic

execution of a recursion has been terminated by a decision not to symbolically execute

a recursive function application. The operations performed by the symbolic execution

engine when a recursion is terminated will be discussed in greater detail later.) The

decision to terminate a recursion is made when an initial and a recursive application

appear equivalent. Equivalence is determined by comparing the use annotations of the

functions and corresponding formal parameters of the two applications to determine

whether they are all equivalent.

In order to detect and, as appropriate, terminate recursions, my partial evaluation

algorithm maintains a stack of pending function applications for each 
ow of control.

Each time symbolic execution of a function application is initiated, a pending appli-

cation record is pushed onto the stack. The same record shown in Figure 2.32 on

page 41 placed in the table of potential specializations is the one placed on the stack

since it contains all of the appropriate information. Each time symbolic execution

returns a value from an application, the associated application record is popped o�

the stack. Conveniently, the record popped o� the stack is the one into which the

value being returned needs to be recorded; and, a return value is in hand when the

record is popped from the stack.12

When symbolic execution reaches a function application, use analysis has no in-

formation about how the arguments to the function will be used. Consequently, the

function application is initially characterized as belonging to the equivalence class

11In Scheme, all iteration constructs are implemented as tail recursive functions.
12Even when the source language being partial evaluated is properly tail recursive (e.g., Scheme),

application records are not removed from the stack until a value is returned from a function. Re-
taining the records on the stack until a value is returned is mandatory in order for the termination
mechanism to be able to detect recursions and prevent divergence. However, introduction of the
stack of pending applications means that when utilizing use analysis, symbolic execution of a tail
recursive source language is not properly tail recursive.
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allowing any element of the domain of values for the function and each of the ar-

guments. When the �rst recursive call to a function is made, use analysis has only

acquired information about the �rst iteration of the loop. It has only analyzed those

uses of information that took place between the initial application of the function and

the �rst recursive application. No information is available regarding how argument

values will be used in the second iteration of the loop, so there is no valid basis for

deciding whether the �rst two iterations of the loop are use equivalent. Therefore,

symbolic execution continues until a second recursive call is made, at which point

information has been acquired regarding uses of information in two iterations of the

loop. It is then possible to decide preliminarily equivalence of the �rst two function

applications.

How a termination decision is made using the stack of pending applications is

now explained. When a function application is encountered, the stack of pending

applications is searched for all applications of closures formed from the same lambda

expression. The subset of these applications that meet a condition called compli-

ance are then identi�ed. Finally, the compliant applications are compared pairwise,

starting with the most recent applications, searching for a pair of pending, compliant

applications equivalent to each other. If an equivalent pair is found, the recursion is

terminated.

In order for later portions of the analysis to operate correctly, it is important that

recursions be terminated at the end of a second equivalent portion of a recursion. The

compliance check is designed to ensure the function application about to be performed

is the end of the second portion of the recursion. Since the application ending the

second equivalent portion will by de�nition be the beginning of the third equivalent

portion of the recursion, the compliance check is used to eliminate from consideration

function applications for which the pending application could not possibly represent

the beginning of a third equivalent portion of the recursion.

A brief example should serve to motivate the need for the compliance check.

Imagine a recursion in which all odd iterations are equivalent to each other and all

even iterations are equivalent to each other, but odd and even iterations are not

equivalent. When the third application is is reached, there are two applications

already on the stack, one odd and one even. The two applications are not equivalent.
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When the fourth application is reached, there are three applications on the stack, two

odd and one even. The odd applications are equivalent; but, the end of the second

equivalent portion of the recursion will not be reached until the �fth application. The

compliance test is designed to insure that termination takes place when the �fth, and

not the fourth, application is pending.

A value is said to be use compliant with a use annotation if that type of use could

correctly be made of that value.13 For example, 2 is use compliant with 2, ?Int, and

?, but not with 3, ?Bool, or 'a. If the arguments to the pending function application

are not compliant with the uses of the formal parameters of an application on the

stack, then the pending application could not possibly be the beginning of the next

equivalent portion of the recursion for which the application on the stack marked the

beginning. This is because the formal parameters of the pending application could

never have the same use annotations as the application on the stack.

After decideding whether to terminate a pending application, analysis continues

in one of two fashions. If termination is not required, then symbolic execution of the

pending application proceeds as previously outlined in Section 2.4.1. If termination

is required, then a series of steps are performed to allow the analysis to proceed from

the point of the terminated recursion, as explained below. A brief discussion of why

two iterations are analyzed before a termination decision is made appears �rst.

Why Two Iterations are Analyzed

Couldn't a termination decision be made at the time the �rst recursive application

of a function is encountered? Couldn't the values of the arguments of the second

application just be compared with the uses of arguments to the �rst application to

ensure they are compliant? The short answer is yes. A termination mechanism based

on this rule would be correctness preserving (i.e., would produce correct residual code)

and would terminate at least as frequently as the algorithm I advocate. Unfortunately,

the algorithm making a termination decision at the �rst recursive call often yields

lower quality residual code than the one I advocate.

13Assuming values and uses are represented using the same domains of values, a value is compliant
with a use if and only if use � value.
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Consider once again the example of non-equivalent odd and even iterations pre-

sented above. It is quite possible that the arguments of every iteration are compliant

with both the uses of the odd and the even iterations, even though the uses of those

iterations di�er from each other. The algorithm making a termination decision at the

�rst recursive application based on compliance would terminate the recursion after a

single iteration in this case and produce a residual recursion with the same structure

as the source program; whereas, my algorithm would produce residual code in which

the loop has been unrolled one time in order to create di�erent specializations for the

odd and even iterations. It is quite possible these two specializations would be more

highly optimized than the single, generic version.

One might ask, if two iterations are better than one, why not three, four, or �ve? It

is true that it is always the case that analysis of more iterations might yield a superior

result. In fact, the optimal number of iteration to analyze for a given recursion is not

in general decidable. However, in practice, it has been found that waiting until at

least two iterations have been analyzed so that uses can be compared with each other

instead of just compliance with new argument values produces signi�cantly better

results. The bene�t of setting a minimum number of iterations beyond two appears

much, much less signi�cant and does not outweigh the costs of the additional analysis

required.

Continuing the Analysis After Terminating a Recursion

When a recursion is terminated, a use change daemon is created for each of the

equivalent applications. Use change daemons are activated when the use annotations

of either the function or one of its arguments in the associated application record

changes. Use changes occur due to ongoing symbolic execution performed to cre-

ate the potential specialization associated with the application record. When a use

change daemon is activated, it places an entry on the work list to resume symbolic

execution of a recursive function application. The application is the one that was

about to be initiated when a termination decision was made. The termination deci-

sion was made due to the function application associated with the use change daemon

appearing to be equivalent to another application on the stack. When symbolic exe-

cution is resumed, the stack is again searched for compliant, equivalent applications.
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If equivalent applications are found, execution is immediately reterminated in the

manner previous outlined. Otherwise, symbolic execution of the function application

proceeds in the normal manner.

When a recursion is terminated, symbolic execution continues from the point

where the function application not symbolically executed returns a value to its en-

closing expression (i.e., to the continuation of the application). The question of what

return value to utilize and how to generate it is left until Section 2.4.3. For now it

should just be assumed a value representing the result of the terminated application

is somehow created and symbolic execution of the continuation utilizes that value.

Why might it be necessary to resume a recursion due to an incorrectly perceived

equivalence? One reason is because every recursive function is composed of two parts:

the head and the tail. The head is the portion of the function performed before the

recursive call; and, the tail, the portion performed after. The termination algorithm

makes an initial termination decision based only on use information about the heads

of recursive functions. In practice, two iterations of a loop might have equivalent

heads but distinct tails. Two iterations are not truly equivalent unless both their

heads and tails are equivalent.

For example, consider the function in Figure 2.33 that takes a list of numbers as

its input and returns a list of the squares of those numbers. The head of each iteration

of square-list-elements just checks if the end of the list has been reached, and oth-

erwise makes a recursive call to square-list-elements. If square-list-elements

is applied to the list (1 7 4 12), the heads of each of the �rst two iterations use

the information that lst is not the empty list, but use no information about the ele-

ments of the list. The two iterations therefore appear equivalent. However, the tails

of the iterations use the actual values of the list elements 1 and 7 in calculating the

squares of those values. When the uses of both the heads and the tails are taken into

account, the two iterations are not equivalent. If a specialization created for the �rst

iteration were utilized for the second iteration, the wrong value would be returned by

square-list-elements. Furthermore, termination of the recursion and production

of residual code to compute the return value of square-list-elements is far less

e�cient than creating a specialization of square-list-elements just returning the

constant value '(1 49 16 144).
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(define square-list-elements

(lambda (lst)

(if (null? lst)

'()

(let ((square-rest

(square-list-elements

(cdr lst))))

(cons

(square (car lst))

square-rest)))))

Figure 2.33: A function for doubling integers

The problem of equivalent heads but distinct tails is addressed by allowing all

termination decisions in a partial evaluator based on use analysis to be retracted

at a later time as more information becomes available. Whenever the tails of two

iterations that were previously thought to be equivalent are found to be distinct, all

termination decisions based on that equivalence are retracted and symbolic execution

of the terminated recursion is resumed from the termination point(s). When symbolic

execution of an entire program completes, recursive specializations will only have been

created for those loops in which there are two iterations for which both the heads and

the tails of the iterations were found to be equivalent.

When symbolic execution of a recursion is to be resumed due to retraction of

a termination decision, symbolic execution of the continuation of the terminated

recursion might already have been initiated. Since symbolic execution of the recursion

ought to have continued further, the previously initiated execution of the continuation

is no longer needed or desirable. As a result, all 
ows of control associated with

symbolic execution of the continuation must be removed from the work list. Also

all data structures created by symbolic execution of the continuation ought to be

destroyed. Finally, any entries in any tables of potential specializations created by

this 
ow of control need to be removed. Undoing the results of symbolic execution of

the continuation of the terminated recursion turns out to be fairly straightforward,

easy, and e�cient. The details of the implementation will not be presented here as

they are not terribly interesting or illuminating.
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No records need to be removed from any stacks of pending applications when a

recursion is resumed because a copy of the stack is made when a recursion is termi-

nated. The new copy is used when performing symbolic execution of the continuation

of the terminated recursion. If the recursion is later resumed, the original, unadul-

terated stack is utilized. No other stacks are e�ected by symbolic execution of the

continuation.

2.4.3 Modeling Return Values of Terminated Recursions

When a recursion is terminated, it must be decided how to represent the return value

of the application for which symbolic execution is not performed. A return value

is required in order to continue analysis of the rest of the program following the

terminated application. That is, to perform symbolic execution of the continuation

of the application for which symbolic execution is not performed.

Prior to Weise and Ruf [49, 39, 37] all published partial evaluators utilized the

completely unknown value, ?, in performing analysis of the continuation.14 Ruf

demonstrated that use of a more precise return value leads to improved optimization

during partial evaluation. Symbolic execution is able to perform computations uti-

lizing the more precise return value that would not be possible using the completely

unknown return value.

I have adopted a variant of Weise and Ruf's method for computing a more precise

representation of the value returned by a terminated recursion. It not only supports

the greater potential for optimization sought by Weise and Ruf, but also leads to im-

proved precision of use analysis. The additional computations performed by symbolic

execution utilizing the more precise representations of return values produce addi-

tional use information. Not only does this generate additional use information about

the return values themselves, but also about other values involved in computations

performed using the more precise return values.

14Weise and Ruf chose their lattice with the opposite orientation of the one I selected, so in his
papers this value is referred to as >V al.
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(define loop

(lambda (i)

. . .

(if (< i 10)

( . . .

(loop . . . )

. . . )

. . . )))

Figure 2.34: A partial program for which care is required in computing the generalized

return value

Weise and Ruf's Method of Modeling Return Values

Conceptually Weise and Ruf's technique for computing representations of return val-

ues is to keep track of all of the di�erent values returned by symbolic execution of

a function application and generate a single representation encompassing all of the

values.15 The representation of the generalized return value is calculated by comput-

ing the greatest lower bound of all of the return values utilizing a lattice of the form

presented in Figures 2.23 and 2.24 on page 32.

When a recursion is terminated, the iterations that have been symbolically ex-

ecuted are not necessarily representative of all iterations of the recursion that will

take place at runtime. The partial program in Figure 2.34 demonstrates how this can

be the case. Assume the recursion of loop is terminated after iterations in which i

has taken on successive values of 1 and 2.16 For each of these iterations, only the

consequent of the conditional has been symbolically executed since all the values of

i are less than 10. However, when the recursion is executed at runtime, there is no

indication i will not take on values greater than or equal to 10. Utilizing only the

return values of all of the existing applications of loop to compute the generalized

15As explained previously, multiple return values are possible from a single application due to the
uncertainty during partial evaluation as to which 
ow of control will be taken through a function at
runtime.

16Weise and Ruf's termination mechanism makes the termination decision at the �rst recursive
call, unlike use analysis based termination.



52 CHAPTER 2. TERMINATION AND USE ANALYSIS

return value might produce an erroneous result since no values produced by the alter-

native branch of the conditional would be incorporated. For example, the consequent

might always return either #t or #f, which would yield a generalized return value

of ?Bool; but, the alternative might return integers so the correct generalized return

value is really ?PEval.

In addition, for a partial evaluator like Weise and Ruf's Fuse that produces spe-

cialized code as it performs symbolic execution, the specialized code created for the

iterations of a recursion symbolically executed up to the point of termination may

not be correct for all possible argument values supplied during runtime execution of

the recursive specialization. Fuse insures the creation of correct residual code for each

specialization and computes a generalized return value correct for all possible return

values as follows. When a recursion is terminated, the corresponding arguments of

the two equivalent applications are generalized by taking their least upper bound with

respect to a use lattice. This produces a generalized argument set. If the generalized

arguments are not identical to those in the equivalent applications, then symbolic

execution is performed of the function applied to the generalized arguments. When

the recursion initiated by this application is terminated, the same process is repeated

until the the generalized argument set is the same as those of the most recent equiv-

alent applications. It is the return values of the last application performed using

generalized arguments that are utilized in computing the generalized return value.17

Applying this principle to the example above, the argument values 1 and 2 are

generalized to produce a new argument of ?Int. loop is then applied to ?Int. If the

new recursion initiated by (loop ?Int) is terminated with an identical application

of loop to ?Int, then the generalized return value is computed by generalizing the

return values of the initial application of loop to ?Int. However, if the recursion

initiated with (loop ?Int), is terminated with an application of loop to #t, then the

process must be repeated since the generalized argument previously utilized, ?Int,

does not include the new type of argument utilized in the terminated recursion.

17Weise and Ruf consider the process of repeatedly generalizing argument sets and performing
symbolic execution of the generalized applications to be part of their termination mechanism as
opposed to part of the process of generating a return value approximation due to their approach to
code generation.



2.4. EAGER USE ANALYSIS 53

Generalizing ?Int and #t produces ?PEval. Symbolic execution is now performed

of (loop ?PEval). Assuming this recursion is terminated with another application

of loop to ?PEval, the process is now completed and the generalized return value can

be computed by generalizing the return values of the initial application of loop to

?PEval.

There is one complicating factor in computing generalized return values. Symbolic

execution of the continuation of a terminated recursion utilizing a generalized return

value yields at least one new return value for the equivalent recursive application. Re-

computation of the generalized return value utilizing all of the return values including

the newest one might yield a di�erent value than the one previously computed. In

this case, symbolic execution of the continuation of the terminated application must

be performed again using the new generalized return value. This process is repeated

until the resulting generalized return value ceases to change yielding a �xed point.

I now provide an example. Figure 2.35 contains a simple length function bor-

rowed from Ruf [37]. Assume length is specialized on the value ?. Since the value

of (null? lst) is not decidable during symbolic execution, both the consequent and

the alternative of the conditional are analyzed. The consequent returns the value 0.

The alternative makes a recursive call to length. Assuming the recursion is termi-

nated, a return value is needed to proceed with symbolic execution of the terminated

application. Since only the single value 0 has been returned by the �rst application of

length, the initial generalized return value is 0. The continuation of the terminated

application adds 1 to the initial generalized return value yielding a second return

value of 1. Addition of the new return value to the application record causes a new

generalized return value to be computed. Using the lattices of Figures 2.23 and 2.24

on page 32, the greatest lower bound of 0 and 1 is ?Int. Since the new generalized

return value di�ers from the previous one, symbolic execution of the continuation of

the terminated application is performed again utilizing the new generalized return

value. The addition of 1 and ?Int yields the value ?Int as a new return value for

length. A recomputation of the generalized return value utilizing the three values

0, 1, and ?Int once again produces ?Int, so a �xed point has been reached and no

further computation is required in order to determine the correct generalized return

value for length applied to ?.
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(define length

(lambda (lst)

(if (null? lst)

0

(+ 1 (length (cdr lst))))))

Figure 2.35: A function for computing the length of a list

Modeling Return Values in Use Analysis

Application of Weise and Ruf's approach for modeling return values to use analysis

can be demonstrated by considering once again the example in Figure 2.34. For use

analysis, the recursion is terminated after symbolic execution of two iterations of the

recursion. The applications of loop to both 1 and 2 have been symbolically executed

and in this case the application of loop to 3 is the one that is terminated. At that

point the stack of pending applications is as shown in Figure 2.36. Taking the greatest

lower bound of the argument values of 1, 2, and 3 using the lattice in Figures 2.23

and 2.24 produces a generalized argument of ?Int. Symbolic execution proceeds with

the application (loop ?Int). For the sake of this example, I will assume successive

iterations of loop are initiated by recursive applications to the identical argument

value, ?Int. When the new recursion is terminated, the argument values would once

again be generalized to produce a new set of generalized arguments. Since the same

argument value of ?Int is used in every iteration, the new generalized argument is

?Int, which is identical to that for the earlier iteration. Consequently, the generalized

return value is computed by taking the greatest lower bound of the return values of

the �rst application of loop to ?Int.

My algorithm operates the same as Weise and Ruf's with two small additions. In

Weise and Ruf's partial evaluator in which termination is not based on use analysis,

the generalized return value can be created by repeatedly generalizing arguments

and performing new applications until the process converges. The generalized return

value is the generalization of the return values of the �nal recursion that is analyzed.

Analysis of the tails of the iterations of the intermediate recursions is not necessary.

However, when termination is based on use analysis, correct termination of each of
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loop

loop 1

2

Figure 2.36: Stack at time of �rst termination

the intermediate recursions can be dependent on analysis that is performed of the

tails of those intermediate iterations. In order to get use information about the tails

of the iterations, symbolic execution of the tails must be performed. The purpose of

the �rst addition to Weise and Ruf's algorithm is to ensure symbolic execution of the

tails.

Symbolic execution of the tails of intermediate iterations is facilitated by utilizing

the continuation of each terminated application as the continuation of the application

of that function to a generalized argument set. When symbolic execution of the

application of the function to the generalized argument set is completed, symbolic

execution proceeds with the continuation assigned to that application. Since the

continuation is that of the terminated application, symbolic execution proceeds with

the tail of the earlier iteration.

Continuing the loop example from Figure 2.34 on page 51, when the second re-

cursion is terminated, the stack appears as shown in Figure 2.37. (The dotted lines

designate the generalization of the arguments. The argument to the terminated appli-

cation that has not been performed appears on the right.) When the �rst application

of (loop ?Int) returns, its return value is supplied to the continuation of the appli-

cation of loop to 3.

The second addition to Weise and Ruf's approach is needed in order to ensure that

uses of generalized values imply use of information about the values utilized in creating

the generalized values. A link in the use dependence graph between generalized

values and the values used in computing the generalization is required for correct

use annotations to be created for all the other values in a use dependence graph.

Otherwise, there would be no use link between the value returned by a recursive



56 CHAPTER 2. TERMINATION AND USE ANALYSIS

?Intloop

loop ?Int

3

loop 1

loop 2

Figure 2.37: Stack at time of second termination

function and the arguments supplied to initiate the recursion [37].

When two values are generalized to produce a new value, two use dependences

must be created. Each use dependence links use of the new generalized value to

use of one of the two values combined to form the generalization. Any use made of

the generalized value is implied for both of the values used in computing its value.

Similarly, if more than two values are generalized, then a use dependence is created

from the generalized result to each of the values used in computing the generalized

result.

Figure 2.38 is an updated version of Figure 2.37 with the use dependences created

by generalization of arguments included. Assuming the �rst iteration of (loop ?Int)

returns two values, #t and #f, Figure 2.39 shows the stack at the point at which the

tail of (loop 2) is about to be executed. The (loop ?Int) application is just about

to be popped o� the stack. ?Bool is the generalized return value that will be supplied

to the continuation that evaluates the tail of (loop ?Int).

The use dependences created by the generalization operation are necessary to

insure appropriate use is recorded for all of the values utilized in each iteration of a

recursion. Without these use dependences, use of information about the generalized

return value could not imply use of information about argument values utilized in

computing the generalized return value.
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?Intloop

2

3

loop

loop ?Int

loop 1

Figure 2.38: Stack at time of second termination including use dependences

2

?Bool

loop

loop

loop 1

?Int #f#t

3

Figure 2.39: Stack just before the tail of (loop 2) is executed
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2.5 Shortcomings of Eager Analysis

Eager use analysis records information utilized in performing symbolic execution of

expressions. As such, it is an approximation to the CF-DOS. It does not attempt

to determine the minimum amount of information necessary to generate the same

result. Consequently, the characterization of an expression produced by eager use

analysis often is an overspeci�cation of the information required to produce a given

specialization. For example, in the expression (integer? (+ 1 2)), + uses the identity

of both of its arguments to produce the result 3. Eager use analysis modi�es the use

annotations of the arguments 1 and 2 to re
ect use of the values of the arguments.

The function integer? only uses that 3 is an integer, not its value. integer? would

return the same result for any two integer arguments to which + were applied. A

specialization of the expression (integer? (+ 1 2)) really only depends upon the

types of 1 and 2, not on their identities (values). Embedding (integer? (+ 1 2))

in an even larger expression leads to yet greater overspeci�cation of the information

utilized. In the expression ((lambda (a b) a) #f (integer? (+ 1 2))), no information

about 1 or 2 is used since the result of integer? is thrown away; however, the use

annotations resulting from eager use analysis still indicate that the identities of the

integers are used.

The overspeci�cation of use inherent in eager use analysis yields smaller equiva-

lence classes than are implied by the semantics of a program. This can cause a partial

evaluator whose termination mechanism is based on eager use analysis to diverge, as

previously demonstrated in Section 2.2.2 using the \counting up" factorial example.

Similarly, failure to recognize two applications are equivalent due to overspeci�cation

of use can cause the creation of duplicate potential specializations and potentially

unneeded duplicate residual code.

For example, consider the strange version of factorial appearing in Figure 2.40.

The extra parameter i is unneeded, but a computation is performed utilizing it during

each iteration of the recursion. Eager use analysis of strange-fact applied to an

unknown value of n and the value 1 for i, yields a nonterminating recursion. This is

because in every iteration of the recursion a di�erent value of i is used in computing

the value of i for the next iteration. As will be explained in the Section 2.6, lazy use
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(define strange-fact

(lambda (n i)

(if (zero? n)

1

(* n

(strange-fact (-1+ n) (* i 2))))))

Figure 2.40: A strange version of factorial with an unnecessary extra argument

analysis does not record di�erent uses of i for each iteration and therefore terminates.

Finally, the overspeci�cation of use inherent in the eagerness of eager use analysis

ought to be distinguished from the over or underspeci�cation of use resulting from

the inability of a given lattice of uses to precisely capture the uses of information

made by some primitives. The former results from certain primitives not using all

the information available about all of their arguments. The latter results from the

necessity to approximate some uses of information.

2.6 Lazy Use Analysis

Eager use analysis is based on recording information utilized in performing delta

reductions, even those that do not contribute to the result of a program. Equiva-

lence classes based on information used in performing intermediate computations not

contributing to the result of a program are overly small and lead to more frequent

divergence since they unnecessarily distinguish between potential specializations with

identical input/output behavior.

Equivalence classes based on eager use analysis fail to take the context of expres-

sions into account. Lazy use analysis di�ers by utilizing context information. Because

of the utilization of context information, lazy use analysis is an approximation to the

CS-DOS.

Information can contribute to a result of a program in one of two ways, either by

a�ecting the data or the control 
ow of a program. The means in which information

about a value percolates through the data 
ow of a program to a�ect the �nal result

is fairly straightforward and is evident from the dynamic data 
ow graph of the
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execution of a program. Values can also a�ect the result of a program when they are

used in making a control 
ow decision (e.g., by the predicate of a conditional). When

a control 
ow decision e�ects the computation of the �nal result of a program, the

information used in making the control 
ow decision has been used in generating the

program's result.

Whereas eager use analysis records information as being used as soon as a delta re-

duction is performed, lazy use analysis must trace the 
ow of information through an

entire program before it can precisely establish what uses of information are salient.

Lazy use analysis of a delta reduction only produces use dependences between sym-

bolic values, it does not record any actual uses of information. How a graph of use

dependences are utilized in order to generate use annotations for symbolic values will

be explained after a discussion of how the use dependences are created for lazy use

analysis. Greater detail on the low level implementation of these concepts, including

the set of uses and use dependences utilized, appears in Chapter 3.

2.6.1 Creating the Graph of Use Dependences

This section discusses how arcs and nodes are created for several di�erent types of

expressions in the use dependence graph. Delta reductions are presented �rst. Then

control 
ow operators are discussed. Amongst control 
ow operators, the two types

outlined are conditionals and function applications.

Each time a delta reduction is performed, a symbolic value is produced for the

result and use dependences are created between the result and each of the arguments

to the delta reduction. The use dependences express how use of information about

the result implies use of some corresponding information about the arguments. For

example, performing the delta reduction (+ 1 2) yields the result 3. When utilizing

the domains in Figure 2.22 on page 31, repeated as Figure 2.41, and the lattice

in Figures 2.23 and 2.24 on page 32, repeated as Figures 2.42 and 2.43, the use

dependences created by the application of + express the following relationships. Use

of the identity of the integer result would imply use of the identities of both of the

arguments. However, use of the integer property of the result would only imply use of

the integer properties of the arguments. Finally, the need to compute the result would
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Int = 0+�1+�2+ � � � integers

?Int unspeci�ed integer

Bool = true+ false booleans

?Bool unspeci�ed boolean

Sym = 0a+ 0b+ � � � symbols

?Sym unspeci�ed symbol

Nil = nil empty list

Pair = PEval� PEval pairs

?Pair � ?PEval �?PEval unspeci�ed pair

Closure = Lambda� Env closure values

?Clos unspeci�ed closure

Env = (Id! PEval)
?

environments

Kval = Int+Bool +Nil + Pair + Closure known values

Bots = ?Int +?Bool +?Pair +?Clos bottom values

PEval = Kval+ Bots +?PEval partial evaluation values

?PEval unspeci�ed value

Figure 2.41: Value domains for partial evaluation of a pure subset of Scheme (repeat

of Figure 2.22)

imply the need to compute both of the arguments. However, the use annotations

of the arguments 1 and 2 are not immediately a�ected by symbolic execution of the

addition primitive. This di�ers from eager use analysis in which the use annotation of

1 would immediately be changed to 1 and the use annotation of 2 would immediately

be changed to 2.

Figure 2.44 shows the application record, symbolic values, and use dependences

built for the ((lambda (a b) a) #f (integer? (+ 1 2))) example in Section 2.5. The

dependences between 3 and both 1 and 2 are labeled as id for identity. As explained

in the previous paragraph, these dependences express that use of the identity of

the former implies use of the identity of the latter; use of the type of the former,

use of the type of the latter; and, the need to compute the former, the need to

compute the latter. The value->type dependence between #t and 3 results from the

integer? application. It expresses that use of the boolean value of #t implies use

of the type (i.e., integerness) of three. Furthermore, the need to compute #t implies

the need to compute 3. However, use of the boolean property of #t implies no use

of any information about 3 since all values returned by integer? are booleans. By
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?

>

Int Bool Pair Closure

?Int ?Bool ?Sym

Nil

?Pair ?Clos

Sym

?PEval

Figure 2.42: Information lattice formed using partial evaluation value domains (repeat

of Figure 2.23)

8 < x; y >;< x0; y0 >2 Pair:((< x0; y0 >�< x; y >)$ ((x0 � x) ^ (y0 � y)))

8 < l; e >;< l0; e0 >2 Closure:((< l0; e0 >�< l; e >)$ ((l0 = l) ^ (e0 � e)))

8e; e0 2 Env:((e0 � e)$ (8 < i; s0 >2 e0:(9 < i; s >2 e:(s0 � s))))

Figure 2.43: Information lattice equations to supplement the lattice diagram (repeat

of Figure 2.24)
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Return Value

id

id

value->type

id
id

id

Record
Application

Function Arguments

(lambda (a b) a)

(lambda (a b) a)

#t3

1

2

#f

any->code

#t#f

Figure 2.44: The application record, symbolic values, and use dependences built for

((lambda (a b) a) #f (integer? (+ 1 2)))

transitivity, all uses of 3 implied by uses of #t are also implied of 1 and 2.

Looking at the application record in Figure 2.44, the function is the clo-

sure for (lambda (a b) a). The arguments are the #f explicit in the expression

((lambda (a b) a) #f (integer? (+ 1 2))) and the #t resulting from the computa-

tion (integer? (+ 1 2)). As presented for eager use analysis, a copy is made of the

function and each of the arguments when creating the application record so there is a

distinct place for recording uses of information resulting from symbolic execution of

the body of the applied function. As the semantics of copying would imply, an id use

dependence is created between each of the copies and the original. The only value

returned by the application in the example is the �rst argument, #f. Note, there is no

use dependence chain from the result to any of the values #t, 3, 2, or 1. Regardless

of what use is made of the result of the expression, no uses will ever be implied for

any of the values #t, 3, 2, or 1. The meaning of the any->code dependence between
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value->type

any->BoolVal

1#t3

Figure 2.45: The symbolic values resulting from (if (integer? 3) 1 2)

#f and the closure (lambda (a b) a) will be presented later.

Symbolic execution of dynamic control 
ow operators creates use dependences.

The return value of a conditional depends upon whether the consequent or the al-

ternative of the conditional is evaluated. Any use of information about the result

of a conditional is dependent on the boolean value of the predicate that determined

which branch of the conditional was executed. As a result, symbolic execution of a

conditional creates a use dependence between the symbolic value for the result of the

conditional and the symbolic value for the predicate.18

Figure 2.45 shows the symbolic values for the expression (if (integer? 3) 1 2).

The any->BoolValdependence between the symbolic values for 1 and #t signi�es that

any use of the result of the conditional, 1, implies use of the value of the boolean #t

that caused the consequent to be executed. By transitivity, use of any information

about the result also implies use of the integerness of 3.

A function application is a dynamic control 
ow operation similar to a conditional.

The value returned by a function application is not only dependent on the arguments

to which the closure is applied, but also on the closure being applied. Since a closure

is composed of both a lambda expression and an environment, the return value of an

application may be dependent on three di�erent types of information: the argument

values, the lambda expression evaluated19, and the values stored in the environment

of the closure. Separate use dependences may be needed to capture each of these

18If the boolean value of a predicate is not decidable during symbolic execution, both branches of
the conditional must be analyzed. In this case, no dependence is needed between the two possible
results and the predicate since the boolean value of the predicate was unknown so no control 
ow
decision was made during partial evaluation.

19Lazy use analysis de�nes code equivalence in terms of identical lambda expressions. Of course,
function equivalence is in general undecidable.
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three types of information utilization.

The rules for symbolic execution of delta reductions and control 
ow operators

other than function applications naturally handle the dependences between the value

returned by a function application and the values of the arguments and those in the

environment of the closure.20 A new type of dependence is needed to capture the

dependence of the return value on the code portion of a closure. This dependence

between the value returned by an application and the closure applied represents the

control 
ow dependence of the the value returned on the lambda expression from

which the closure was formed. The any->codedependence between the symbolic value

for the return value of #f and the closure for (lambda (a b) a) in the previously

discussed example in Figure 2.44 is an example of this new type of dependence.

In the absence of the any->code dependence, the following two applications would

yield the identical set of symbolic values and use dependences: (+ ?Int ?Int) and

(* ?Int ?Int). Since all the values and use dependences would be identical, the

two applications would be placed in the same equivalence class. This is clearly not

appropriate as the two functions applied are clearly not equivalent and neither are

the potential specializations that would result from the applications presented. The

any->code dependences codify that the results of the two applications each depend

on the code of the closures applied, so if any information is utilized about the results,

then the applications are not equivalent.

Embedding the conditional example from Figure 2.45 in a closure yields the ex-

pression (lambda (a) (if (integer? a) 1 2)). Specializing that closure on the

input value 3 produces the result in Figure 2.46. The example now demonstrates two

types of control 
ow dependences: one for a function application (any->code) and

one for a conditional (any->BoolVal).

2.6.2 Generating Use Annotations

So far it has been explained how symbolic execution creates a use dependence graph

for lazy use analysis. The graph represents how use of information about one symbolic

20Values in the environment of the closure can naturally be thought of as extra arguments in the
application, which is the implementation technique used for lazy use analysis.
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Record
Application

Function Arguments Return Value

id id

any->BoolVal

value->type

3

any->code

(lambda (a) . . . )

(lambda (a) . . . )

3

#t 1

Figure 2.46: The symbolic values and application record resulting from

((lambda (a) (if (integer? a) 1 2) 3)

value implies use of information about possibly many other symbolic values. However,

it has yet to be explained how use is ever asserted about any value, causing use

information to start being propagated along the use dependence arcs.

Based on the assumption that the purpose of executing a program is to compute

its result, lazy use analysis was designed to record the information used in computing

the result(s) of symbolic execution of a program.21 It is not surprising, therefore,

that the propagation of use information over a use dependence graph is initiated by

asserting some use of the return value(s) of a program. The critical question is the

type of use to assert.

The analysis could assert that all the information present in each return value is

needed/used. For example, if the value 3 were one of the family of return values, use

of its 3-ness would be asserted. If another return value were the unspeci�ed boolean

value, ?Bool, ?Bool use would be asserted of that return value. If the return value

21Since symbolic execution is based on partial information, there may be many possible 
ows of
control so there may be a family of possible return values.
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were an aggregate, use of the value of each of the components of the aggregate would

be asserted.

Asserting all of the information present in all results is needed is potentially an

overspeci�cation of the actual use. Much as it was observed when discussing eager

versus lazy use that not all information produced by a subexpression may be utilized,

not all the information present in all the return values of a program may be important.

For example, when partial evaluation produces a family of possible return values, not

all of the return values would be produced by any single execution of the input

program. Asserting all the information in all of the return values is utilized can lead

to an overspeci�cation of the information used to produce the result of one single

execution.

The overspeci�cation of use inherent in asserting all of the information about all

results is used can yield an analysis based on arti�cially small equivalence classes. As

previously discussed, such analyses are not particularly well suited for termination

decisions since they lead more frequently to divergence, but are well suited for making

reuse decisions about potential specializations that are correctness preserving. Con-

sequently, one possible approach for creating a use analysis for making code reuse

decisions, but not for termination, has been identi�ed. Selecting what to assert to

produce a use analysis for making termination decisions is subtler.

The use of some information about results must be asserted or no use annotations

will be produced for any of the values in a program. To ensure an underspecifying

analysis, the use asserted about results must be guaranteed to be the minimal amount

ever used. It safely can be asserted that any program must produce its result, even if

no information about the result is used. The question is how to represent this concept

as a use.

Intuitively, there is less information content in needing to produce a value than

in needing any information about that value. On the other hand, needing to produce

a result represents a requirement for slightly more information about the result than

not requiring any information about the result at all. These two intuitive information

bounds dictate the placement within an information lattice of the use annotation

representing the need to compute a result.

A discussion of the di�erence between ?PEval and ? was postponed during an



68 CHAPTER 2. TERMINATION AND USE ANALYSIS

earlier presentation of the lattice repeated in Figures 2.42 and 2.43 on page 62. ?

represents that absolutely no information about a value has been used; whereas,

?PEval represents that the value must be computed, but no information beyond the

need for the value to be computed is used. Based on these de�nitions, lazy use

analysis initializes all symbolic values with a use annotation of ?. An underspecifying

use analysis for termination asserts the result(s) of a program must be computed by

assigning a use of ?PEval to the return value(s) of a program. Based on those use

assignments and the use dependences, assigning uses to all symbolic values produced

during symbolic execution is straightforward.

The last piece of the puzzle is to explain how ?PEval is handled by the di�er-

ent types of use dependences. The need for a primitive function to produce a result

implies the need for it to be supplied with a value for each argument in which the

function is strict. Consequently, a use dependence arc is created between the sym-

bolic value for the result of a primitive and the symbolic values for each of its strict

arguments, causing ?PEval use of the result to imply ?PEval use of the strict argu-

ment(s). Conditional control 
ow operators produce use dependences that convert

the need for the conditional control 
ow operator to produce a result into use of the

information required to decide to execute the 
ow of control that produces the result.

For example,?PEval use of the result of a conditional implies use of the boolean value

of the predicate that caused the branch of the conditional producing the result to be

executed.

Figure 2.47 is an updated version of Figure 2.46 created by asserting the result

of the program (lambda (a) (if (integer? a) 1 2)) specialized on 3 must be

computed. The process of assigning uses is initiated by asserting ?PEval use of the

return value, 1. As a result of this assertion and the any->BoolVal dependence, #t

use is asserted of #t. This in turn causes ?Int use to be asserted for the copy and

original argument, 3. The any->code dependence and the assertion of ?PEval use of

the return value causes use of the code portion of the original and copy of the function

to be asserted.
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FunctionRecord
Application

Arguments Return Value

id id

any->BoolVal

value->type

3

(lambda (a) . . . )

(lambda (a) . . . )

3

#t 1

any->code

#t ?PEval

?Int

?Int

code

code

Figure 2.47: Use annotations for ((lambda (a) (if (integer? a) 1 2) 3)

2.6.3 Termination

A partial evaluator based on lazy use analysis is unable to collect any information

about uses before the question whether two iterations of a loop are equivalent is

�rst asked. Why? Because, no information about uses is propagated through a use

dependence graph until a return value of a program is generated and some use of

the return value is asserted. Assuming the return values of a program are dependent

on the return value of the recursion about which a termination decision is being

made, the return values of the program could not possibly be generated before the

return value of the recursion. However, the return value of the recursion cannot be

generated until either symbolic execution of the loop runs to completion or until the

loop is terminated and a generalized return value is created to represent the return

value of the entire recursion.

The solution to this chicken and egg problem with lazy use analysis is the same

one eager use analysis utilizes to address the problem that the tails of iterations

have not yet been analyzed when a termination decision �rst needs to be made. A

preliminary termination decision is made that might be retracted later if it proves to
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have been incorrect. Since there is no use information available when lazy use analysis

�rst considers whether two iterations of a recursion are equivalent, all applications

initially fall within the same equivalence class: the one for no utilization of information

about any values. As a result, all iterations of each recursion are initially deemed

equivalent, and symbolic execution of all recursions is terminated after two iterations.

Later, information propagation through the use dependence graph may invalidate

equivalence decisions causing symbolic execution of the corresponding recursions to

be reinitiated.

There exists one subtlety in deciding to resume symbolic execution of a recur-

sion when two iterations of the recursion become nonequivalent. As use information

propagates through a use dependence graph, it arrives at some nodes before others.

It must be ensured that any non-equivalent use annotations are not the result of

information having reached some nodes of the use dependence graph before others.

In other words, the check for equivalence must only be performed after the e�ects of

changing some use annotations have been fully propagated throughout a graph.

For example, imagine a recursive function of a single argument whose value is

3 at the �rst function application, 4 at the �rst recursive application, and 5 at the

next recursive application. Symbolic execution is terminated at the second recursive

application due to both the 3 and the 4 being annotated as unused at the point at

which the termination decision is �rst made. However, the integer property of each of

the argument values might be contributing to the return value of the program. Even-

tually use information might propagate through the use dependence graph to change

the use annotations of all of the arguments to be ?Int. But, an intermediate state

might exist in which the use annotation of one of the arguments is ?Int and the use

annotation of the other is ?. As a result, it is critical the decision to resume symbolic

execution of a previously terminated recursion only be made when propagation of

use information through a use dependence graph has quiesced; otherwise, equivalent

iterations might appear non-equivalent, leading to divergence. This issue is discussed

in greater detail in Section 3.2.2.
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2.7 Approximating Use

In theory there is a precise speci�cation of the information needed about all of the

values referenced by any program in order to compute its result. However, in practice

it is almost never possible for any real partial evaluator to represent precisely the

information used. As a result, any realizable use analysis must make approximations

when it represents the information about values used. When use analysis must ap-

proximate the information utilized and the implications of those approximations is

now presented.

Two types of approximation of use are discussed in this section. The �rst results

from any form of use analysis being an approximation to the fundamental information

used by two potential specializations. While lazy use analysis comes closer than

eager use analysis to representing the fundamental information utilized, both are

approximations to the ideal. Second, no set of domains and use lattice can precisely

represent the types of information utilized in executing all of the primitives of any

interesting programming language.

The choice of how and when to record use is one source of approximation in

any use analysis. Eager use analysis systematically overspeci�es the information

used about values. This results from recording the information used in performing

all delta reductions and control 
ow decisions, as opposed to recording only the

information needed to compute the result. Lazy use analysis lessens, but does not

necessarily eliminate, the overspeci�cation of use by attempting to capture only those

uses contributing to the result. Overspeci�cation remains from the assumptions that

the result needs to be computed, the return value of a conditional depends on which

branch is taken, and the return value of a function application depends on the code

associated with the closure applied.

The inability to precisely represent the information used by some delta reductions

causes approximation. As previously presented, it is not possible to represent precisely

the information used in performing the reduction (< 3 5) utilizing the information

domains in Figure 2.22 on page 31. An approximation either over or under specifying

the actual use is necessary.

A fundamental decision in implementing either eager or lazy use analysis is
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whether to over or under specify use for those delta reductions for which a precise

representation is not possible. Four di�erent analyses result from the choices of eager

versus lazy analysis and over versus under speci�cation. Analyses based on overspec-

i�cation are most useful for deciding when a specialization can be reused for a new

set of values since the approximations have been made in a direction ensuring reuse

is correctness preserving. Analyses that underspecify use are probably most desirable

for making termination decisions since they minimize the probability of divergence.

However, termination based on underspeci�cation of use tends to reduce the number

of specializations generated. This can lead to lower quality residual code due to par-

tial evaluation failing to create some useful specializations. An implementor might

choose to allow a partial evaluator to diverge more often in order to yield improved

residual code in those cases in which the partial evaluation terminates. This fact

notwithstanding, my presumption in the following discussion is that overspeci�cation

will be used for reuse decisions and underspeci�cation for termination decisions. Re-

taining both types of use information requires performing two types of analysis in

parallel, with one being utilized to terminate both itself and the other one.

The diagram in Figure 2.48 represents the relative amounts of information utiliza-

tion that might be recorded by di�erent types of analyses for the same value. Points

higher on the diagram should be interpreted as representing use of a greater amount

of information. The dashed lines represent that the lower value in the diagram is

related to the upper value by the previously de�ned � operator read as has less than

or the same amount of information as.22 While the diagram is not a lattice, it can

be interpreted in much the same manner. V alue is the value whose use is being

recorded. EUreuse is the result of eager use analysis using overspeci�cation when no

precise representation is possible; EUterm, the result of eager use analysis with un-

derspeci�cation; LUreuse, the result of lazy use analysis and overspeci�cation; and,

LUterm, the result of lazy use analysis and underspeci�cation.

The relative positions of the di�erent analyses in the diagram in Figure 2.48 arise

as follows. Any correct use analysis always records use of some subset of the informa-

tion available about a value. It is not possible to use more information about a value

22Figure 2.48 is based on the presumption the same domains are being used to represent both
values and uses so the values are comparable using the � operator.
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V alue

LUterm

EUreuse

LUreuse EUterm

?

Figure 2.48: Relative amount of use information recorded by di�erent analyses

than it contains. An underspecifying use analysis always records less information

utilization than a corresponding overspecifying analysis. Consequently, the analysis

with the term subscripts always appear below the corresponding analysis with reuse

subscripts. By de�nition, lazy analyses always record use of less information than

corresponding eager analysis. Finally, LUreuse and EUterm are incomparable. Lazy

analyses in general record less information utilization; however, LUreuse is a lazy anal-

ysis based on overspeci�cation of use in some cases while EUterm is an analysis based

on an underspecifying approximation. The net result is either of the two analyses

might record more or less information utilization in di�erent cases.

2.8 Base Case Analysis23

The previous section proposed using an underspecifying lazy use analysis for making

termination decisions during the analysis phase in order to minimize the probability of

divergence of a partial evaluator. The downside of underspeci�cation is the resulting

larger equivalence classes can cause symbolic execution to terminate prematurely. In

23A complete design of base case analysis exists; however, it has not been fully implemented.
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particular, two iterations of a recursion that could be executed to completion during

the analysis phase might appear to be equivalent. Premature termination of symbolic

execution can cause a partial evaluator to produce a residual recursion, rather than

simple straight line code to compute the result. In the extreme case, premature

termination might yield a residual recursion rather than just the code for the return

value.

The iota function in Figure 2.49 is an example of a program for which utilization

of an underspecifying lazy use analysis can lead to premature termination. Partial

evaluation of (iota 5) ought to yield a program that just builds and returns the

list (0 1 2 3 4). However, an underspecifying lazy use analysis characterizes all of

the iterations of the loop as being equivalent so symbolic execution is terminated

before the �nal answer is determined. The culprit, so to speak, is the delta reduction

(= i n). In every iteration but the last, this expression returns the value #f since the

loop index, i, is not equal to 5. The actual information utilized is that the value of

i is not equal to the value of n. The information domains in Figure 2.22 on page 31,

repeated as Figure 2.50, cannot precisely capture the concept of inequality, so an

approximation must be used. The overspecifying approximation is that the values

of both i and n are used. Termination based on overspeci�cation yields the desired

result for partial evaluation of (iota 5), but leads to divergence whenever iota is

applied to an unknown value.24 An underspecifying analysis states that only the

integer property of i and n is used. This causes all of the applications of = to appear

to be equivalent, regardless of the value of i, as long as i is not equal to n.

Base case analysis strives to mitigate, if not solve, the problem of premature termi-

nation. Base case analysis is grounded in the observation that no runtime recursion

can terminate until a base case is reached. By extension symbolic execution of a

recursion should not be terminated until at least one 
ow of control through the re-

cursion has reached a base case. Otherwise, symbolic execution would in some sense

be incomplete since at least one base case will have to be executed at runtime but no

base case has been investigated during partial evaluation.

What precisely is a base case? All 
ows of control initiated by an application

24This is precisely the motivation for using an underspecifying analysis for termination decisions.
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(define iota

(lambda (n)

(define loop

(lambda (i)

(if (= i n)

'()

(cons

i

(loop (1+ i))))))

(loop 1)))

Figure 2.49: Iota function

Int = 0+�1+�2+ � � � integers

?Int unspeci�ed integer

Bool = true+ false booleans

?Bool unspeci�ed boolean

Sym = 0a+ 0b+ � � � symbols

?Sym unspeci�ed symbol

Nil = nil empty list

Pair = PEval� PEval pairs

?Pair � ?PEval �?PEval unspeci�ed pair

Closure = Lambda� Env closure values

?Clos unspeci�ed closure

Env = (Id! PEval)
?

environments

Kval = Int+Bool +Nil + Pair + Closure known values

Bots = ?Int +?Bool +?Pair +?Clos bottom values

PEval = Kval+ Bots +?PEval partial evaluation values

?PEval unspeci�ed value

Figure 2.50: Value domains for partial evaluation of a pure subset of Scheme (repeat

of Figure 2.22)
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fall in one of two classes. Some of the 
ows of control are terminated at recursive

applications found to be equivalent to the initial application being considered. These


ows of control are not base cases for the initial application being considered. All

other 
ows of control returning a value for the initial application are considered to

be bases cases. Even 
ows of control containing other terminated recursions based

on di�erent functions or applications are considered to be base cases for applications

not terminated at recursive calls. This de�nition holds both for self and mutual

recursions.

Base case analysis is a heuristic added on top of an underspecifying use analysis.

Any time all of the control 
ow paths of a recursion are terminated because lazy

use analysis decides the recursive applications are equivalent to earlier applications,

premature termination has taken place.25 To �nd a base case, symbolic execution

of each terminated recursive applications is reinitiated. If the additional symbolic

execution does not produce a base case, symbolic execution of the terminated recursive

applications is once again reinitiated. This process of forcing analysis of additional

iterations continues until at least one control 
ow path returns a value, as opposed

to being terminated at a recursive function application.

The addition of base case analysis to lazy use analysis yields a partial evaluator

that correctly unfolds (iota 5). However, base case analysis is not a panacea. It

is still possible for a partial evaluator to terminate recursions prematurely when a

program contains multiple di�erent base cases, only some of which have been inves-

tigated. Base case analysis cannot solve the multiple base case problem since it is

undecidable whether all, or what subset of, base cases ought to be investigated for

any set of argument values. The only absolute is that at least one base case must be

reached if a recursion terminates. The drawback of base case analysis is that partial

evaluation of some divergent recursions can fortuitously terminate in the absence of

base case analysis, yet diverge once base case analysis is introduced. Whether this is

of concern depends on what termination properties one desires.

25This assumes programs are not intentionally nonterminating.
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2.9 Conclusion

Termination of partial evaluation requires limiting symbolic execution to investigation

of a �nite number of potential specializations. This can be achieved by dividing the

potentially in�nite set of possible applications of each function into a �nite collection

of subsets and allowing at most a �nite number of potential specializations to be

investigated for each subset. The selection of the subsets, or equivalence classes,

determines how e�ective a partial evaluator is in producing quality residual code and

whether it terminates.

Use analysis o�ers one approach to selection of equivalence classes. A simple eager

use analysis was found to produce too many and too small equivalence classes to be an

e�ective basis for termination. In response, lazy use analysis was created. The larger

equivalence classes of the lazy analysis reduce the frequency of divergence. However,

the decrease frequency of divergence comes at the cost of premature termination in

some cases. In particular, some loops that could be completely executed or com-

pletely unrolled during partial evaluation are not fully analyzed. In response, base

case analysis was developed to induce a partial evaluator to perform more symbolic

execution than would result from lazy use analysis alone. The addition of base case

analysis to lazy use analysis improves residual code.



Chapter 3

A Low Level Look at the Analysis

Phase

This chapter investigates the low level details of the implementation of an analysis

phase utilizing lazy use analysis for termination. These details are not necessary for

a conceptual understanding of use analysis and may be skipped by the reader who

desires a basic understanding, but does not require knowledge of the subtleties needed

to implement the analysis. However, some of the details are necessary for a complete

understanding of some of the sources of large resource consumption presented in

Chapter 5.

This presentation is divided into two sections: preprocessing of a source program

and actual analysis. During preprocessing, an input program is rewritten and con-

verted into an intermediate form suitable as input to an analysis engine. During the

analysis, symbolic execution is utilized to generate the information needed by a code

generation phase in order to make the decisions necessary to produce high quality

residual code.

78
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(define fact

(lambda (n)

(if (zero? n)

1

(* n (fact (-1+ n))))))

Figure 3.1: Factorial program (repeated from Figure 2.17)

3.1 Preprocessor

My preprocessor is composed of three passes: a front end, continuation passing

style (CPS) conversion, and alpha conversion. The front end translates Scheme code,

in the form of s-expressions, into a simple tree structured intermediate language based

on the small number of primitive forms needed to represent Scheme. A standard CPS

conversion is then performed on the output of the front end. Finally, the alpha

conversion pass restructures the way variables are named, de�ned, and referenced.

A separate discussion of each of the three passes in the preprocessor appears in

Sections 3.1.1- 3.1.3. The simple factorial program in Figure 2.17 on page 26, repeated

as Figure 3.1, is used as an ongoing example throughout. The output of each of the

stages of the preprocessor appears in Appendix A.

3.1.1 Front End

A simple pattern matching rewrite system su�ces to parse Scheme. Due to the

simplicity of this process, I do not present any rewrite rules or code for a pattern

matching rewrite system.1 I just show the tree structured intermediate language used

for the output of my front end, discuss the two interesting rewrites, those for letrec

and conditionals, and present the e�ects of feeding a factorial function through the

front end.

The intermediate language used as output from the front end appears in Figure 3.2

as a Scheme de�nition. Define-structure-collection is a macro that builds a

1The interested reader can get more information about how to implement a rewriting system for
Scheme in [1].
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(define-structure-collection fe-code

(fe-constant ;Self evaluating constants: booleans,

value) ;characters, numbers, and strings

(fe-reference ;Variable reference

variable) ;Name of the referenced variable

(fe-quote ;Quoted values

expression) ;The quoted expression

(fe-lambda ;Function creator

name ;A name for identification purposes

formals ;The names of the args

body) ;The body of the function: a piece of

;fe-code

(fe-definition ;A top level definition

name ;The defined name

value) ;The assigned value

(fe-conditional ;A conditional

predicate

consequent

alternative)

(fe-application ;A function application

function ;The function to apply

args)) ;A list of arguments

Figure 3.2: Front End Code
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(letrec

((<variable 1> <init 1>) . . . )

body)

�

(let

((<variable 1> <unspecified>) . . . )

(set! <variable 1> <init 1>)

. . .

body)

Figure 3.3: Letrec rewrite to let and set! form

group of structures.2 The collection is assigned the name that is the �rst argument to

define-structure-collection, in the case of Figure 3.2, fe-code. The subsequent

arguments are lists whose heads are structure names and whose other elements are

the �eld names of the structures. For example, the structure for lambda expressions

is fe-lambda. It is composed of three �elds: the name of the lambda, which is really

just a comment, the formal parameters of the lambda, and the body of the lambda,

which is another fe-code structure.

Those familiar with Scheme will note there are several primitive types missing

in the fe-code de�nition. Assignment (set!) and a form to capture continua-

tions (call-with-current-continuation) are not present because this work only

addresses the functional subset of Scheme. However, the absence of a special form

for creating recursive functions (letrec) is somewhat more interesting.

Letrec has two common implementations: let and set and the applicative order

Y combinator[34, 20]. Let and set is the more frequently utilized technique for per-

formance reasons. The let and set implementation as shown in Figure 3.3 is based on

replacing letrecs with let bindings of the same variables to uninitialized or unspec-

i�ed values and then binding each of those variables to the appropriate value using a

set!.

The �rst problem with utilizing the let and set implementation of letrec for use

2My implementation produces constant time dispatchers for collections. This enables the creation
of the equivalent of a case statement that executes in constant time, as opposed to time proportional
to the number of cases weighted by their relative probabilities.
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analysis is its dependence on the set! operator that does not exist in a functional

subset of Scheme. However, the real problem is somewhat deeper and more inter-

esting. An earlier version of this work tried to implement letrec using the let and

set technique by introducing a letrec-set! operator solely for the purpose of imple-

menting letrec. The tough question was what use dependences should be created

for a letrec-set!.

Conceptually, letrecs create functions closed in the environment in which they

are de�ned. This circularity makes the letrec form useful and is the source of the

problem it poses. In use analysis the argument set of each function must be extended

to include all variables a function is closed over that are referenced in the function's

body. In the case of recursive function de�nitions introduced by letrec, this means

recursive functions essentially become arguments of themselves. The problem is use of

the function argument in a recursive application implies use of information about an

aspect of the function itself. This circularity, if naively modeled with a circularity in

the use dependence graph, can lead to divergence of the analysis phase due to a never

ending propagation of use information along the circular path in the use dependence

graph. Ideally, a �xed point of the use propagating around the circular portion of

the use dependence graph needs to be computed. However, simple application of the

technology used for the rest of use analysis would create use annotations that are a


attened versions of the circular use structure. As the use algorithm would propagate

use information around a cycle repeatedly, the 
attened representation would grow

without limit, leading to divergence of the analysis.

Removing the circularity from use dependence graphs appears to be the simplest

solution to the divergence problem. For simple recursions this might be achieved by

removing recursive functions as virtual arguments of themselves. More complicated

rewriting would be necessary for mutual recursions. Unfortunately, this naive ap-

proach does not lead to \correct" equivalences in all cases so it is not worth pursuing.

To date, no correct set of use dependences has been identi�ed for the let and set

implementation of letrec.

The applicative order Y combinator implementation of letrec produces correct

results in the absence of any special implementation techniques. This is because the

applicative order Y combinator implementation is based on a rewriting of letrec that
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only depends on operators in the functional subset of Scheme shown in Figure 3.4.3

There are two noteworthy aspects of the implementation of letrec in terms of the

Y combinator. The �rst is that use analysis can handle the Y combinator at all. The

Y combinator makes extensive use of higher-order functions. Many published anal-

yses for making termination decisions in a partial evaluator have di�culty handling

complex uses of higher-order functions. That use analysis of the Y combinator yields

termination decisions powerful enough that letrecs can be replaced with uses of the

Y combinator is therefore signi�cant.

The second important point is that a partial evaluator based on use analysis

removes all of the overhead of the Y combinator implementation of letrec before

producing residual code in almost all cases. Basically, all of the added function

applications get executed during the analysis phase and all that is left for runtime

execution are the simple recursions apparent in the input program. The signi�cant

exception is when it is not possible during the analysis phase to determine what

function will be applied by a given application at runtime due to a program using a

closure created by letrec is a �rst-class manner. Depending on the code generation

strategy used by a partial evaluator in such cases, it might be desirable to retain some

auxiliary information about the rewriting of letrecs in order to produce residual code

that does not contain any added overhead due to rewriting based on the Y combinator.

The bottom line is rewriting letrecs using the Y combinator yields a use anal-

ysis that produces good results. The execution costs of the increased computational

complexity resulting from the rewriting are nearly all paid during the analysis phase

when symbolic execution of the added function applications is performed. Little or

no cost is incurred by the residual program. Discovery of a means of achieving an

equivalent use analysis through the addition of appropriate arcs to a use dependence

graph might improve the execution speed of partial evaluation, but is unlikely to

yield signi�cantly better residual code. Furthermore, since the let and set technique

includes a side e�ect, it is possible that a use analysis capable of handling a language

including arbitrary side e�ects would be necessary to handle this technique.

The fe-definition form in Figure 3.2 on page 80 is utilized only for top level

3For an intuitive explanation of the applicative order Y combinator, see [20].



84 CHAPTER 3. A LOW LEVEL LOOK AT THE ANALYSIS PHASE

(letrec

((<variable 1>

(lambda (<x 11> . . .)

<body 1>[<variable 1>, <variable 2>, . . .])

(<variable 2>

(lambda (<x 21> . . .)

<body 2>[<variable 1>, <variable 2>, . . .]))

. . .)

<body>[<variable 1>, <variable 2>, . . .]))

�

(let ((Y

(lambda (f1 f2 . . .)

(let ((h1

(lambda (h1 h2 . . .)

(lambda (<x 11> . . .)

((f1 (h1 h1 h2 . . .)

(h2 h1 h2 . . .)

. . .)

<x 11> . . .))))

(h2

(lambda (h1 h2 . . .)

(lambda (<x 21> . . .)

((f2 (h1 h1 h2 . . .)

(h2 h1 h2 . . .)

. . .)

<x 21> . . .))))

. . .)

(list (h1 h1 h2 . . .)

(h2 h1 h2 . . .)))))

(F1

(lambda (f1 f2 . . .)

(lambda (<x 11> . . .)

<body 1>[f1 f2 . . .])))

(F2

(lambda (f1 f2 . . .)

(lambda (<x 21> . . .)

<body 2>[f1 f2 . . .]))))

(let ((<funcs> (Y F1 F2 . . .)))

<body>[(car <funcs>), (cadr <funcs>), . . .]))

Figure 3.4: Letrec rewrite using the applicative order Y combinator
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de�nitions. Internal de�nitions, an optional Scheme syntax for introducing local func-

tion de�nitions in a lexical environment, are converted to their letrec equivalent as

described in [10] and then rewritten using the Y combinator. However, mutual recur-

sions amongst groups of functions introduced by top level de�nitions must be handled

by introduction of a letrec either by hand by the programmer or automatically by

the front end.

Processing of the factorial program in Figure 3.1 on page 79 by the front end

yields the intermediate form shown in the �rst section of Appendix A. Although the

output of the front end is a tree structured data structure, it has been represented as

an S-expression in the appendix for ease of readability.

Note that not has been applied to the predicate of the conditional and the conse-

quent and the alternative have been reversed as a result. The preprocessor introduces

an application of not to all predicates because Scheme allows any expression as the

predicate of a conditional, even if the expression does not return a boolean. The

introduction of an application of not canonicalizes the results of all predicates to be

booleans so if and other conditional special forms only have to deal with the details

of implementing pure conditional operators expecting boolean predicates.

3.1.2 CPS Conversion

The CPS conversion pass uses a fairly standard implementation of CPS conversion,

but with a couple of simple additions. Three special forms have been added to the

standard intermediate language used to represent CPS converted Scheme programs,

clambda, throw, and exit-conditional, all of which are explained below. A tree

structured intermediate language, including these additions, used to represent pro-

grams resulting from the CPS conversion pass appears in Figure 3.5.

Most CPS converters use lambda expressions of a single argument for continua-

tions and function applications to throw to continuations. For the purposes of partial

evaluation, it is useful to maintain information regarding entry to and exit from func-

tions. A program written in, or converted to, continuation passing style does not

enter and return from functions, but instead just repeatedly enters one function after

another until the program produces a �nal answer. In order to maintain information
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(define-structure-collection cps-code

(cps-constant ;Self evaluating constants: booleans,

value) ;characters, numbers, and strings

(cps-reference ;Variable reference

variable) ;Name of the referenced variable

(cps-quote ;Quoted values

expression) ;The quoted expression

(cps-lambda ;Function creator

name ;A name for identification purposes

formals ;The names of the args (including the

;continuation)

body) ;The body of the function: a piece of

;cps-code

(cps-definition ;A top level definition

name ;The defined name

value) ;The assigned value

(cps-conditional ;A conditional

predicate

consequent

alternative)

(cps-exit-conditional ;A throw to return a value from a

;conditional

continuation ;The continuation to which to throw

value) ;The return value

(cps-application ;A function application

function ;The function

args) ;A list of arguments (including the

;continuation)

(cps-clambda ;Continuation creator

name ;A name for identification purposes

formal ;The name of the arg

body) ;The body of the continuation: a piece

;of cps-code

(cps-throw ;A throw to a continuation

continuation ;The continuation to which to throw

value)) ;The value supplied to the continuation

Figure 3.5: CPS Code
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about entry to and exit from functions in an original source program, my implemen-

tation of CPS conversion introduces two new primitive forms clambda and throw.

Clambda is a special version of lambda producing closures known to be continuations.

Throw is a special form used to apply a continuation to a value for the purpose of

exiting a function and returning the value to which the clambda is applied.

As presented in Section 2.6.1, a code dependence needs to be created between

each value returned by a function and the function executed to create that value.

Creating this form of use dependence requires being able to identify both the function

that was applied and its return value. The applied function naturally appears on

the stack of pending applications maintained by most partial evaluators; however,

identifying when values are returned requires a little more e�ort. First, preprocessed

input programs and the symbolic execution engine must be structured so that tail

recursion elimination [2, 1] is not performed. Otherwise, information about function

exits can disappear before use dependences for the return values is created. Retention

of information about function returns in a program that has been CPS converted

can be achieved by making each function exit explicit by introducing a throw to a

continuation for every function exit. What would have been tail recursive exits from

deeply nested sets of applications become a series of throws to continuations, each of

which causes a return one level up the function application chain.

Second, the correspondences between function applications and return values must

be identi�ed in order to build the use dependences. The functions appear on the

stack maintained by most partial evaluators, so all that is needed is a hook in the

symbolic evaluation engine that detects when values are returned. The throw form

supplies this hook. Throw identi�es those throws to continuations used to return

values from functions. The code generated to prevent tail recursion elimination is

a series of clambdas; the body of each of which is a throw to another continuation.

As a �nal note, if clambda were replaced by lambda and throw were replaced by

function application in any program resulting from the CPS conversion pass of my

preprocessor, the resulting code would be precisely what one would expect to see

as the result of CPS conversion for an implementation not supporting tail recursion

elimination.

Another use dependence that integrates dynamic control 
ow with data 
ow is the
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one between the value returned by a conditional and the value of the predicate of the

conditional. Once a program has been CPS converted, the values of predicates are

passed directly to the conditional special form. However, there is no identi�cation of

return values from conditionals. My CPS converter introduces the exit-conditional

special form for that purpose. Exit-conditional operates just like throw. It throws

to a continuation that is its �rst argument, supplying it with the value that is its

second argument. When symbolic execution encounters an exit-conditional form,

it is handed the return value of the conditional as its second argument. To build a

use dependence, the symbolic execution engine needs the value of the predicate. My

symbolic execution engine maintains a stack of pending conditionals as part of the

stack of pending function applications. When an exit-conditional is performed,

information about the predicate of the conditional is available in the conditional frame

at the top of the stack. Exit-conditional creates a use dependence and pops the

conditional frame o� the stack just like throw creates a use dependence and then

pops an application frame o� of the stack.

Once the factorial example has been fed through the CPS conversion pass, it looks

as is shown in the second section of Appendix A. Note that CPS conversion of fact

introduces a lambda expression that surrounds the conditional. CPS conversion intro-

duces the lambda to avoid duplicating the continuation of the conditional. E�ectively,

it uses a let to bind the continuation to a name and then refers to the continuation by

that name in both the consequent and the alternative of the conditional. Of course, a

let is just the application of a lambda to a series of values, so the output of the CPS

conversion pass contains an application and a lambda. Furthermore, since all returns

from applications are explicit in the output of the CPS conversion pass, throws must

be introduced in the code for both the consequent and the alternative for the return

from the introduced lambda.

3.1.3 Alpha Conversion

Calling the third pass of the preprocessor alpha conversion is a misnomer. The

alpha conversion pass does not perform alpha conversion, instead it changes the ways

variables are de�ned, named, and referenced. The most signi�cant change during
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the alpha conversion pass is in the representation of lambdas. Because use analysis

requires the argument set of closures to include all of the lexically inherited bindings

in the body of a closure, the alpha conversion phase modi�es the representation of

lambdas to include two sets of arguments. The formal parameters are the names of

the variables that store the arguments to which a closure is applied. The inheriteds

are the variables the lambda was closed over that are referenceable from the body

of the lambda. A new de�nition for lambda appears in the alpha code de�nitions in

Figure 3.6.

Once lambdas have been augmented to include the inherited bindings, true lexical

environments are no longer needed. Each closure carries with it a 
attened version

of the lexical hierarchy. The arguments to which a closure is applied become local

variables in the environment in which a closure's body is evaluated, and all of the

lexically referenceable variables become inherited lookups in the same environment.

All variable references in the body of a lambda are performed by looking up the

variable binding in the single environment created for execution of the closure's body.

Even though there can be no ambiguity regarding to what variable a given refer-

ence refers, for pedagogical reasons I chose to retain the distinction between local and

inherited variables. I also chose to create two di�erent types of variable references, one

for local bindings for arguments and the other to inherited bindings from values in the

virtual lexically enclosing environments. As a result, the reference special form in

Figure 3.5 has been replaced by local-reference and inherited-reference forms

in Figure 3.6.

The local-reference and inherited-reference forms di�er from their

reference predecessor in their inclusion of two new �elds: offset and

single-reference?. Offset is a numeric o�set into the vector of bindings in an

environment. It is the second half of the lexical level/o�set representation used in

many compilers [2]. The lexical level portion is unneeded since the lexical hierar-

chy has been eliminated. Looking up a reference requires knowing only whether the

reference is to a local or an inherited binding and its o�set.

The single-reference? �eld indicates whether a reference is the only one to a

given binding that appears anywhere in the body of a function. When a binding
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(define-structure-collection alpha-code

(alpha-constant ;Self evaluating constants: booleans,

value) ;characters, numbers, and strings

(alpha-local-reference ;Variable reference to a local -

;defined in this scope

variable ;Name of the referenced variable

offset ;Offset into the list of locals

single-reference?) ;#t, if unique reference

(alpha-inherited-reference ;Variable reference to an inherited - Always

;inherited from the directly enclosing scope

variable ;Name of the referenced variable

offset ;Offset into the list of inheriteds

single-reference?) ;#t, if unique reference

(alpha-quote ;Quoted values

expression) ;The quoted expression

(alpha-lambda ;Function creator

name ;A name for identification purposes

formals ;The names of the args (including the continuation)

inheriteds ;References to inherited values from enclosing

;scopes

body) ;The body of the function: a piece of alpha-code

(alpha-definition ;A top level definition

name ;The defined name

global-number ;The offset into the list of globals

value) ;The assigned value

(alpha-conditional ;A conditional

predicate

consequent

alternative)

(alpha-exit-conditional ;A throw to return a value from a conditional

continuation ;The continuation to which to throw

value) ;The return value

(alpha-application ;A function application

function ;The function

args) ;A list of arguments (including the continuation)

(alpha-clambda ;Continuation creator

name ;A name for identification purposes

formal ;The name of the arg

inheriteds ;References to inherited values from enclosing

;scopes

body) ;The body of the continuation: alpha-code

(alpha-throw ;A throw to a continuation

continuation ;The continuation to which to throw

value))) ;The value supplied to the continuation

Figure 3.6: Alpha Code
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has at most one reference, use analysis can perform optimizations that reduce mem-

ory consumption and increase speed of the analysis. This �eld is recording during

preprocessing for utilization later in the analysis phase.

Other changes between CPS code and alpha code are all direct extensions of the

ones presented so far. Clambdas have an added �eld for inheriteds that is akin to

the one for lambdas. Definitions have an added �eld called global-number that

is an o�set into the vector of bindings in the global environment. The other code

representations remain unchanged.

At the conclusion of the alpha conversion pass, the factorial program generated

looks as shown in third section of Appendix A.

3.1.4 Conclusion

The preprocessor performs a fairly straightforward rewriting of source programs into

a tree structured intermediate language suitable for use by the rest of the analysis

phase. The steps in the conversion process are a simple rewriting of s-expressions into

a standard set of Scheme forms by the front end, a replacement of letrec by uses of

the Y combinator, CPS conversion, and �nally the removal of lexical structure and

variable renaming through the introduction of what I have termed lexical arguments.

The next section describes the uses of symbolic execution to perform the real work

of the analysis phase.
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3.2 Symbolic Execution and Computation of

Lazy Use

This section presents details on the implementation of the analysis phase of a partial

evaluator whose termination mechanism is based on lazy use analysis. The discussion

is separated into three major portions. The �rst describes the operation of symbolic

execution and the formation of a use dependence graph. The second presents how

uses are propagated along the arcs in a use dependence graph, how this can result in

the detection that two values that were previously believed to be equivalent are actu-

ally not equivalent, and how this realization can lead to further symbolic execution.

Finally, a description of how base case analysis integrates with the rest of lazy use

analysis is presented.
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3.2.1 Symbolic Execution

This explanation begins with a presentation of the data structures utilized during

symbolic execution and their purposes. Next an explanation of how the various

special forms in Scheme are handled during symbolic execution is given. This is

followed by a deeper discussion of the most interesting form, function application.

Of particular note is how the handling of primitive procedures di�ers from that of

compound procedures4 [24] and how a generalized return value is generated when

symbolic execution of a recursion is terminated based on an equivalence detected by

use analysis.

The Data Structures Utilized During Symbolic Execution

The �nal version of a source program after rewriting by the preprocessor is loaded

by the symbolic execution engine for processing by the remainder of the analysis

phase. The tree structured intermediate language used to represent programs once

they are loaded for symbolic execution appears in Figure 3.7. There are two signi�cant

di�erences between the code representation used in performing analysis of a program

and the �nal version of the code as produced by the preprocessor. The �rst is that

the lambda and clambda forms both have an added �eld used in tracking all of the

closures and continuations created by execution of those forms. The code generation

phase uses the information to identify all the di�erent potential specializations of a

lambda or clambda investigated during the analysis phase. The second di�erence is

the addition of the primitive special form. In the representation of code used in

performing the actual analysis, the primitive form is used for primitive procedures

and the lambda form is used only for compound procedures.

In addition to code, the other key objects are symbolic values, use dependences,

and use annotations. A brief discussion of the representations selected for each follows.

Symbolic values are represented as shown in Figure 3.8. The �rst �eld stores a

characterization of a runtime value and the second �eld a characterization of the lazy

use annotation for that value.

Figures 3.10 and 3.11 show the representations for values that are manipulated by

4Those procedures de�ned in terms of other primitive and compound procedures
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(define-structure-collection pe-code

(pe-constant ;Self evaluating constants: booleans,

value) ;characters, numbers, and strings

(pe-local-reference ;Variable reference to a local

variable ;Name of the referenced variable

offset ;Offset into the list of locals

single-reference?) ;#t, if unique reference

(pe-inherited-reference ;Variable reference to an inherited

variable ;Name of the referenced variable

offset ;Offset into the list of inheriteds

single-reference?) ;#t, if unique reference

(pe-quote expression) ;Quoted values

(pe-lambda ;Function creator

name ;A name for identification purposes

formals ;The names of the args (including the continuation)

inheriteds ;References to the values inherited from enclosing

;scopes

body ;The body of the function: a piece of pe-code

closures) ;Closures formed by evaluating this lambda

(pe-definition ;A top level definition

name ;The defined name

global-number ;The offset into the list of globals

value) ;The assigned value

(pe-conditional ;A conditional

predicate

consequent

alternative)

(pe-exit-conditional ;A throw to return a value from a conditional

continuation ;The continuation to which to throw

value) ;The return value

(pe-application ;A function application

function ;The function

args) ;A list of arguments (including the continuation)

(pe-clambda ;Continuation creator

name ;A name for identification purposes

formal ;The name of the arg

inheriteds ;References to the values inherited from enclosing

;scopes

body ;The body of the continuation: a piece of pe-code

continuations) ;Continuations formed by evaluating this clambda

(pe-throw ;A throw to a continuation

continuation ;The continuation to which to throw

value) ;The value supplied to the continuation

(pe-primitive ;The body of a primitive

function)) ;A function of 2 args (stack and env)

;executed to produce the return value

Figure 3.7: Partial Evaluation Code



3.2. SYMBOLIC EXECUTION AND COMPUTATION OF LAZY USE 95

(define-structure

symbolic-value

value ;The value in the heap

use-profile) ;The use description for this object

Figure 3.8: Representation for Symbolic Values

Int = 0+�1+�2+ � � � integers

Bool = true+ false booleans

Sym = 0a+ 0b+ � � � symbols

Nil = nil empty list

Pair = Sval� Sval pairs

Closure = Lambda� Env closure values

Env = (Id! Sval)
?

environments

Sval = Int+Bool +Nil + Pair + Closure scheme values

Figure 3.9: Value domains for a pure subset of Scheme (repeat of Figure 2.21)

the symbolic execution engine. These representations correspond to the value domains

shown in Figure 2.21 on page 31, repeated in Figure 3.9, with one minor addition:

the new continuation value type has been introduced to represent continuations as

a distinct type of object from the other closures.

The other signi�cant data structures represent use annotations and use depen-

dences. The use-profile �eld of each symbolic value points to a use-profile of

the form shown in Figure 3.12. The use-annotation �eld represents the use an-

notation for the corresponding symbolic value as determined by lazy use analysis.

Dependences contains a list of the other use pro�les that depend on this one. These

are the arcs in a use dependence graph. When the memoized annotation of the

use-profile changes through modi�cation of the use-annotation �eld, a message

is sent to every use pro�le in the dependences list informing the use pro�les at the

other end of the arcs of the use change. Since the amount of use recorded for each

node can only monotonically increase, memoization plus update messages sent when

an annotation changes is guaranteed to produce correct annotations, and to do so

e�ciently.

Use annotations are represented by the data structures de�ned in Figure 3.13. Not

surprisingly, these data structures are virtually identical to the ones for representing
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(define-structure-collection pe-values

(pe-boolean ;Booleans - #t or #f

value) ;#t or #f

(pe-bottom-boolean) ;An unspecified boolean

(pe-symbol ;Symbols

value) ;The symbol's value (e.g., 'a)

(pe-bottom-symbol) ;An unspecified symbol

(pe-integer ;Integers

value) ;The integer's value (e.g., 23)

(pe-bottom-integer) ;An unspecified integer

(pe-closure ;Closures

parent-env ;The closing environment

lambda ;The lambda expression executed to

;create this closure

applications) ;A list of structures describing

;applications of this closure

(pe-bottom-closure) ;An unspecified closure

(pe-continuation ;Continuations

clambda ;The clambda expression executed to

;create this continuation

stack ;The stack to be installed when a throw

;to this continuation is performed

parent-env ;The closing environment

throws) ;A list of structures describing

;throws to this closure

(pe-bottom-continuation) ;An unspecified continuation

(pe-pair ;A cons cell

car ;A symbolic value representing the car

cdr) ;A symbolic value representing the cdr

(pe-null) ;The empty list

(pe-bottom-value) ;An unspecified value

(pe-top-value ;A special value that can only result

;from generalization of no values

specializations)) ;A list of specialization points,

;application descriptions, for which

;this bottom is a generalized return

;value

Figure 3.10: Representations for Values during Symbolic Execution
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(define-structure

pe-env

creator ;Either a closure, a continuation, or

;'GENERALIZATION

parent ;The parent environment

locals ;A vector of symbolic values

inheriteds ;A vector of symbolic values

comparison-cache) ;A cache of environments to which this

;one is currently being compared

Figure 3.11: Representation for Environments during Symbolic Execution

(define-structure

use-profile

use-annotation ;A use structure defining the type of

;use

dependences) ;A list of links reflecting how changes

;in use should be propagated.

Figure 3.12: A Data Structure for Use Information

values as shown in Figure 3.10. The last important set of data structures are those

used to represent arcs in the use dependence graph as shown in Figure 3.14. For

clarity, each of the di�erent types of use dependences is brie
y discussed.

An id-dependence signi�es that whatever use is made of the value that is the

source of the dependence, the identical use is made of the value that is the sink of the

dependence. In other words, this is the identity use dependence. The id-dependence

is utilized when an argument is passed to a function. A new symbolic value is created

for the actual parameter in the execution environment in which the function's body is

evaluated. The new symbolic value has an id-dependence to the argument symbolic

value to which the function was applied. The motivation for copying the symbolic

value and creating an id-dependence is that while every use of the value in the

body of the applied function implies corresponding use of the argument to which

the function was applied, the converse is not necessarily true. If two functions are

applied to the same symbolic value, the use of the argument value is the union of

the uses of that value by the two functions. However, the uses each function makes
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(define-structure-collection use-types

(use-boolean ;Booleans - #t or #f

value) ;#t or #f

(use-bottom-boolean) ;An unspecified boolean

(use-symbol ;Symbols

value) ;The symbol's value (e.g., 'a)

(use-bottom-symbol) ;An unspecified symbol

(use-integer ;Integers

value) ;The integer's value (e.g., 23)

(use-bottom-integer) ;An unspecified integer

(use-closure ;Closures

closure)

(use-bottom-closure) ;An unspecified closure

(use-continuation ;Continuations

continuation)

(use-bottom-continuation) ;An unspecified continuation

(use-pair ;A cons cell whose identity is used

cons)

(use-bottom-pair) ;An unspecified pair

(use-null) ;The empty list

(use-bottom-value) ;An unspecified, but needed value

(unused)) ;A completely unused value (bottom)

Figure 3.13: Data Structures for Use Annotations
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(define-structure-collection use-dependence-types

(id-dependence ;An id dependence between two use profiles

source

sink)

(cons-dependence ;A dependence between a cons cell and

source ;its car and cdr objects

car-sink

cdr-sink)

(car-dependence ;A dependence between the car of a cons

source ;cell and the cons cell

sink)

(cdr-dependence ;A dependence between the cdr of a cons

source ;cell and the cons cell

sink)

(closure-dependence ;A dependence between a closure and

source ;the values inherited from its env

sinks) ;A vector of symbolic values

(application-dependence ;A dependence between an inherited

closure ;value and the associated closure

source

sink

sink-offset)

(continuation-dependence ;A dependence between a continuation and the

source ;values inherited from its environment

sinks)

(throw-dependence ;A dependence between an inherited value

continuation ;and the associated continuation

source

sink

sink-offset)

(generic-dependence ;A generic dependence between any two use profiles

source

sink

sink-asserter)

(resumption-dependence ;A dependence to resume execution if

source ;the use of an object changes

resumption-lock

resumption-thunk) ;The thunk to execute to resume exec

(specialization-dependence ;An id dependence between an argument of a

source ;specialization and an argument of a recursive call

sink-use-profile ;to that specialization. Used to complete the use

sink-pe-value ;cycle for the finite representation of a loop.

thread))

Figure 3.14: Data Structures for Use Dependences
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of its formal parameters need to be retained separately as well. Those uses must

not be con
ated between di�erent functions, so a new use pro�le, and therefore a

new symbolic value, is created for each parameter when a function application is

performed during symbolic execution.5

The potential to con
ate information in the absence of copying of symbolic values

is demonstrated by the code in Figure 3.15. If the symbolic value for the cons cell to

which independent-uses-cons-cell is bound were not copied before being passed

to use-car and use-cdr then independent-uses-cons-cell, use-car-cons-cell,

and use-cdr-cons-cell would all be bound to the same symbolic value. Assuming

use-car makes use of some information about the car of the cons cell and use-cdr

makes use of some information about the cdr of the cons cell, the single symbolic value

would contain the union of those uses. This is correct for the symbolic value to which

independent-uses-cons-cell is bound, but not for either use-car-cons-cell or

use-cdr-cons-cell. Imagine a termination decision is being made for a recursive

call to use-car. It should only be e�ected by uses of use-car-cons-cell taking

place as a result of execution of the body of use-car; however, if the symbolic value

for independent-uses-cons-cell is not copied prior to passing it as an argument

then the termination decision is e�ected by the irrelevant uses of the cdr of the cons

cell in use-cdr. Copying of symbolic values supplied as arguments insures uses from

di�erent callees are aggregated in the caller, but uses by the caller or other callees

are not con
ated with those of individual callees.

A cons-dependence is created by the cons primitive function. It represents the

use dependence between the symbolic value for a cons cell returned by an application

of the cons function and the symbolic values for the car and cdr arguments to which

cons was applied. A cons-dependence signi�es that any use made of the car of a

cons cell is also made of the symbolic value of the �rst argument to cons. Similarly,

any use of the cdr of a cons cell is also made of the symbolic value of the second

argument to cons.

5This rule doesn't hold when there can only be a single reference to a symbolic value during
symbolic execution. In this case, use of a newly created symbolic value is guaranteed to produce
identical results to use of the value of which it is a clone; and, the copying of the symbolic value
can be avoided. The single-reference? �eld in the reference code types in Figure 3.7 on page 94
supports this performance optimization.
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(define independent-uses

(lambda (independent-uses-cons-cell)

. . .

(use-car independent-uses-cons-cell)

. . .

(use-cdr independent-uses-cons-cell)

. . .

))

(define use-car

(lambda (use-car-cons-cell)

. . .

(car use-car-cons-cell)

. . .

))

(define use-cdr

(lambda (use-cdr-cons-cell)

. . .

(cdr use-cdr-cons-cell)

. . .

))

Figure 3.15: Why symbolic values need to be copied when being passed as arguments
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(define curried-addition

(lambda (a)

(lambda (b)

(+ a b)))))

Figure 3.16: A curried version of the addition function

The car-dependence and cdr-dependence are in some sense the inverses of the

cons-dependence. They are generated by the car and cdr primitive functions. They

represent that use of a symbolic value returned by an application of car or cdr implies

the same use of the corresponding �eld of the symbolic value for the cons cell to which

car or cdr was applied.

A closure-dependence represents the relationship between the symbolic value for

a closure and the symbolic values in the environment in which a lambda expression

was evaluated in order to form the closure. When a use is made of an inherited value

in the body of a function, a closure-dependence ensures the same use is recorded

for the corresponding value in the environment in which the lambda expression was

closed. A simple example of a closure-dependence arises from the curried addition

function in Figure 3.16. Loading of the de�nition of curried-addition causes the

function de�nition to be evaluated and the outermost lambda expression to be con-

verted into a closure. The closure is closed in an environment that has a binding

for +. A closure-dependence is created at the time curried-addition is closed

between curried-addition and the symbolic value for + in the enclosing environ-

ment. Similarly, when curried-addition is applied to some value, another closure

is produced. This closure is closed in an environment that has a local de�nition for a

and an inherited de�nition for +. The closure-dependence created when the inner

lambda is closed represents the relationship between the symbolic value for the clo-

sure of the inner lambda and the symbolic values for a and + in the environment in

which the inner lambda was closed.

An application-dependence codi�es the relationship between symbolic values

for inherited values in the execution environment for the body of a closure and the

corresponding symbolic values in the closure object. In this case the source of the

dependence is a symbolic value in the environment created for execution of the body



3.2. SYMBOLIC EXECUTION AND COMPUTATION OF LAZY USE 103

of the applied closure and the sink is the closure that was applied. The sink-offset

�eld speci�es which of the symbolic values in the environment portion of the closure is

dependent on the symbolic value in the current execution environment for the closure

body.

Returning to the curried-addition example in Figure 3.16, when the closure for

curried-addition is applied to a value, a new environment is created for the execu-

tion of the closure body. That environment contains a local binding for a and an inher-

ited binding for +. An application-dependence is created linking the symbolic value

for + in the new environment to the symbolic value for the curried-addition clo-

sure. The combination of the application-dependence and the previously described

closure-dependence causes any use made of + in the body of curried-addition

to be propagated to the corresponding symbolic value for + in the lexically enclosing

environment. Similarly, when the closure resulting from applying curried-addition

to a �rst value is applied to a second value, a new environment is built that contains a

local binding for b and inherited bindings for + and a. Application-dependences are

created for both of the inherited values at the time of application. The eventual use

of the value of + in the body of the closure of the inner lambda propagates over two

application-dependences, two closure-dependence's, and through two di�erent

closures in getting between the point of use of the closure and its point of de�nition.

The continuation-dependence and throw-dependence serve identical purposes

for continuations and throws as the closure-dependence and

application-dependence serve for closures and applications. This is not surpris-

ing due to the symmetries between lambda and clambda, closures and continuations,

and applications and throws.

A generic-dependence is utilized to represent all of the various other forms

of dependences between symbolic values. Most of these arise from the execution of

primitive functions. For example, the function not can be applied to any type of value.

If the argument is not a boolean, then the result of applying not is determined by

the type of the argument. If the argument is a boolean, then the result is determined

by the boolean value of the argument. In the �rst case, use of the boolean value

of the result implies use of the type of the argument. A generic-dependence can

be utilized to represent this relationship between the boolean value of one symbolic
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value and the type of another symbolic value.

The Sink-asserter �eld is a function that encodes how the use of information

about source implies use of other information about sink. When the use annotation

of the source changes, the desired e�ect on the use annotation of the sink is determined

by applying the sink-asserter function to the new use annotation for the source.

The resumption-dependence �eld contains a daemon that noti�es the symbolic

execution engine when a recursion that has been previously terminated might need

to be reinitiated. Resumption-dependences detect changes in the use annotation of

one of two symbolic values previously deemed equivalent. A change in an annotation

indicates the values might not be equivalent.

The specialization-dependence handles a subtle case of use analysis. The

analysis needs to generate uses of the arguments of �nal recursive function applica-

tions that are not performed when symbolic execution of a recursion is terminated.

A generalized return value is created for the application, and symbolic execution con-

tinues from the point of the function return; but, the terminated application is not

performed so symbolic execution is not performed utilizing the supplied arguments.

Since the application not performed is presumed to be equivalent to prior appli-

cations initiating the iterations of the terminated recursion, the logical solution is to

utilize the uses made of the arguments of earlier applications and assert the same

uses about the arguments to the application not performed. Asserting some type

of use of the arguments to the function application never performed is necessary to

ensure appropriate use equivalence of symbolic values elsewhere in a program. In the

absence of asserting some use of these arguments, appropriate use cannot be propa-

gated to the symbolic values utilized to generate the arguments. Consequently, values

that ought to be use equivalent would have di�erent use annotations. The bottom

line is that specialization-dependences are needed between arguments to appli-

cations not performed due to termination and the corresponding arguments of the

applications initiating earlier iterations of the recursion to which the �nal application

is deemed equivalent.6

6It has never been proven that using specialization-dependences yields the desired equiva-
lences in all cases. In practice this approach seems to work well on all programs investigated, while
the absence of specialization-dependences yields poor results. A better way of generating use
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Symbolic Execution of the Scheme Forms

The evaluation framework utilized for symbolic execution in my partial evaluator

is based on a virtual machine with four pieces of state: an expression, a stack, an

environment, and a thread. The expression is the piece of code (pe-code) currently

being executed. The stack maintains a stack of pending function calls and conditionals

utilized by the analysis in deciding when to terminate recursions. The environment

is a 
at environment model as shown in Figure 3.11 on page 97. It is 
at in the

sense that all of the inherited values have been copied into each environment so no

references up the lexical hierarchy are needed to get values de�ned in enclosing scopes.

Finally, there is a thread. Threads are used to keep track of the di�erent possible


ows of control resulting from execution of undecidable control 
ow operators. For

example, a conditional for which the predicate's value cannot be determined during

symbolic execution yields two alternative 
ows of control. Distinct threads are created

for each possible 
ow of control, and the threads are analyzed separately. For the

remainder of this discussion, the explanations of how symbolic execution handles

di�erent forms only consider expressions, stacks, and environments, suppressing the

details of threads. Thread handling adds considerable complexity to the code, but is

not terribly enlightening.

Symbolic execution of a pe-constant expression creates a new symbolic value,

with the value �eld being the appropriate form of pe-value for the constant expres-

sion executed and the use-profile being initialized with a use annotation of unused.

For a constant, the stack and environment are irrelevant.

Symbolic execution of pe-quote is basically identical to that of pe-constant.

pe-quote creates an unused symbolic value with the appropriate quoted type of

pe-value as its value.

Pseudocode for performing symbolic execution of a pe-local-reference appears

in Figure 3.17. First, the symbolic value to which the pe-local-reference refers

is looked up in the environment, env. If the reference is the only possible reference

to the speci�ed symbolic value, then the symbolic value returned by the lookup in

annotations for the arguments of terminated applications may exist.
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(define sym-exec-local-reference

(lambda (ref stack env thread)

(let ((referenced-value

(pe-env-local-ref

env

(pe-local-reference.offset

ref))))

(if (pe-local-reference.single-reference? ;If unique reference:

ref)

referenced-value ;Return the reference symbolic

;value

(make-id-symbolic-value ;Else, return a copy of the

;value

referenced-value)))))

Figure 3.17: Pseudocode for performing symbolic execution of a pe-local-reference

the environment can be returned by the pe-local-reference .7 In the more general

case, the result of the lookup must be copied. A new symbolic value is created having

the identical value to the symbolic value returned by the lookup. Its use annotation

is initialized to be unused. Most importantly, an id-dependence is created between

the new symbolic value and the one looked up in the environment. This dependence

is stored in the use pro�le of the newly created symbolic value. It ensures that

use asserted about the newly created symbolic value is propagated along the use

dependence graph, and it is also asserted about the symbolic value of which the new

one is a copy.

Symbolic execution of a pe-lambda forms a symbolic value for the resulting closure

as shown in the pseudocode in Figure 3.18. It then adds a closure dependence from

the newly formed closure to the inherited values from the enclosing environment. The

symbolic values for the inherited values are identi�ed by performing a value lookup

in the enclosing environment for each of the inherited parameters in the pe-lambda

description.

Symbolic execution of the pe-definition form is straightforward as is shown by

the pseudocode in Figure 3.19. The symbolic value to be assigned is determined by

7The optimization of only copying symbolic values when necessary was explained in a previous
section.
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(define sym-exec-lambda

(lambda (a-lambda stack env thread)

(let* ((symbolic-value ;Build symbolic value

(make-unused-pe-object

(make-pe-closure

env

a-lambda)))

(closure-use-profile ;Extract use profile

(symbolic-value.use-profile

symbolic-value)))

(add-use-dependence ;Add closure dependence

closure-use-profile

(make-closure-dependence

closure-use-profile

(list->vector

(pe-lambda-inheriteds-map

(lambda (ref)

(symbolic-value.use-profile

(pe-env-ref

env

ref)))

(pe-lambda.inheriteds

a-lambda)))))

symbolic-value)))

Figure 3.18: Pseudocode for performing symbolic execution of a pe-lambda
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(define sym-exec-definition

(lambda (a-define stack env thread)

(pe-global-env-set!

(pe-definition.global-number ;The global to be installed

a-define)

(sym-exec-expr ;The value to install

(pe-definition.value

a-define)

stack

env

thread))))

Figure 3.19: Pseudocode for performing symbolic execution of a pe-definition

performing symbolic execution of the body of the de�nition. The name to which this

symbolic value is to be bound has already been converted by the preprocessor into

an o�set into the table of global de�nitions, so the symbolic value is just assigned to

the appropriate slot in the data structure for global de�nitions.

Symbolic execution of a pe-conditional is the �rst interesting case. Pseudocode

for processing conditionals appears in Figure 3.20. The �rst step is to generate a

symbolic value for the predicate of the conditional through symbolic execution. If

the boolean value of the predicate can be determined during the analysis phase,

symbolic execution can proceed with either the consequent or the alternative, as

appropriate. However, �rst a conditional frame must be placed on the stack. The

frame is utilized when the consequent or alternative returns a value. A use dependence

will be generated between the return value and the symbolic value for the predicate

found in the conditional frame, as described in Section 2.6.1.

When the boolean value of the predicate is not decidable during the analysis phase,

both the consequent and the alternative must be investigated. Again, a conditional

frame is �rst placed on the stack. Next, the information needed for analyzing the

consequent is placed on a queue of threads to be processed through symbolic exe-

cution. Finally, symbolic execution of the alternative is performed. A new thread

is created for symbolic execution of both the consequent and the alternative so the

analysis phase can keep track of the separate contributions of the di�erent 
ows of

control.
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(define sym-exec-conditional

(lambda (conditional stack env thread)

(let* ((predicate-symbolic-value ;Symbolically execute the predicate

(sym-exec-expr

(pe-conditional.predicate

conditional)

stack

env

thread))

(predicate-value ;Extract the value field

(pe-object.value predicate)))

(if (known-runtime-truth-value? ;If runtime truth value predicate

predicate-value) ;is known at analysis time:

(begin

(push-cond-frame

stack

(make-conditional-desc

predicate-symbolic-value

#t)) ;The conditional was decidable

(sym-exec-expr ;Symbolically execute either the

(if (runtime-truth-value ;consequent or the alternative

predicate-value)

(pe-conditional.consequent

conditional)

(pe-conditional.alternative

conditional))

stack

env

thread))

(begin

(push-cond-frame ;Frame for this conditional

stack

(make-conditional-desc

predicate-symbolic-value

#f)) ;The conditional was undecidable

(scheduler-queue-enqueue ;Schedule alternative for later

(pe-conditional.alternative ;execution

conditional)

stack

env

(make-child-thread ;Separate thread needed for

thread)) ;alternative

(sym-exec-expr ;Evaluate the consequent immediately

(pe-conditional.consequent

conditional)

stack

env

(make-child-thread ;Separate thread needed for

thread))))))) ;consequent

Figure 3.20: Pseudocode for performing symbolic execution of a pe-conditional



110 CHAPTER 3. A LOW LEVEL LOOK AT THE ANALYSIS PHASE

Pseudocode for symbolic execution of a pe-exit-conditional appears in Fig-

ure 3.21. The �rst step is getting information about the conditional being exited

from o� the stack. Next, the continuation of the conditional and the value to be

returned by the conditional must be computed through symbolic execution. If the

boolean value of the predicate of the conditional was decidable during symbolic exe-

cution, a use dependence must be created between the return value of the conditional

and the value of the predicate. This dependence relates use of information about the

result of the conditional to use of the boolean value of the predicate utilized in making

a control 
ow decision to execute either the consequent or the alternative. Symbolic

execution of a pe-exit-conditional form concludes by throwing to the continuation

of the conditional, passing the continuation the return value of the conditional.

The process of throwing to a continuation is shown in the pseudocode in Fig-

ure 3.22. After looking up both the continuation to which to throw and the clambda

from which the continuation was formed, the real work begins. A new environment

in which the body of the continuation will be evaluated is created. This environment

consists of a new binding for the value on which the continuation is invoked plus

those bindings that are inherited from the environment in which the continuation

was formed. Once the new environment is generated, use dependences are created

between the inherited values in the new environment and the continuation object from

which they were generated. Finally, the actual execution of the continuation takes

place by recursively invoking the symbolic execution engine. The code to be executed

is the body of the continuation to which the throw is being performed. By de�nition,

the stack to be used after a throw is the one captured at the time the continuation to

which the throw is performed was created; and, the environment in which the body

of the continuation should be evaluated is the newly created environment.

The most interesting case for symbolic execution is function application. Pseu-

docode for processing a pe-application appears in Figure 3.23. First, the closure

to be applied is generated through symbolic execution and its di�erent components

are extracted. Then, the arguments to which the closure will be applied are created

through symbolic execution. An environment in which the body of the closure can

be executed is created based on the argument values and the values inherited from

the closing environment of the closure.
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(define sym-exec-exit-conditional

(lambda (exit-cond stack env thread)

(let* ((cond-desc ;Get the conditional off the stack

(pop-cond-frame

stack))

(cont-symbolic-value ;Compute the continuation

(sym-exec-expr

(pe-exit-conditional.continuation

exit-cond)

stack

env

thread))

(returned-symbolic-value ;Compute the return value

(sym-exec-expr

(pe-exit-conditional.value

exit-cond)

stack

env

thread)))

(if (conditional-desc.decidable? ;If the conditional being exited

cond-desc) ;wasdecidable:

(add-any->bool-dependence ;Add a dependence between the

(symbolic-value.use-profile ;return value of the conditional

returned-symbolic-value) ;and the boolean value of the

(symbolic-value.use-profile ;predicate

(conditional-desc.predicate

cond-desc))

(pe-boolean.value

(symbolic-value.value

(conditional-desc.predicate

cond-desc)))))

(perform-invoke-continuation

cont-symbolic-value

returned-symbolic-value

stack

env

thread))))

Figure 3.21: Pseudocode for performing symbolic execution of a

pe-exit-conditional
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(define perform-invoke-continuation

(lambda (cont-symbolic-value arg-symbolic-value stack env thread)

(let* ((cont-value ;Get the value portion of the

(symbolic-value.value ;continuation

cont-symbolic-value))

(cont-clambda ;Get the clambda from which the

(pe-continuation.clambda ;continuation was formed

cont-value))

(new-env ;A new environment built from the

(build-child-environment

(pe-continuation.parent-env ;Parent environment

cont-value)

(vector arg-symbolic-value) ;Local values

(pe-clambda.inheriteds ;Inherited values

cont-clambda))))

(for-each-inherited-value ;Create a use dependence for every

(lambda (inherited-symbolic-value ;inherited value

offset)

(add-use-dependence

(symbolic-value.use-profile ;Store the dependence with the

inherited-symbolic-value) ;inherited value

(make-throw-dependence ;Dependence type

cont-symbolic-value

(symbolic-value.use-profile ;Source

inherited-symbolic-value)

(symbolic-value.use-profile ;Sink symbolic value

cont-symbolic-value)

offset))) ;Field within the sink

(pe-clambda.inheriteds

cont-clambda))

(sym-exec-expr ;Symbolically execute

(pe-clambda.body ;The continuation body

cont-clambda)

(pe-continuation.stack ;Using the stack captured by

cont-value) ;the continuation

new-env ;And the newly created environment

thread))))

Figure 3.22: Pseudocode for throwing to a continuation
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(define sym-exec-application

(lambda (application stack env thread)

(let* ((function-symbolic-value ;Get the closure being applied

(sym-exec-expr

(pe-application.function

application)

stack

env

thread))

(function-value ;And its associated value field

(symbolic-value.value

function-symbolic-value))

(function-lambda ;Get the lambda from which the closure

(pe-closure.lambda ;being applied was formed

function-value))

(arg-symbolic-values ;Symbolically evaluate each of the args

(map (lambda (arg)

(sym-exec-expr

arg

stack

env

thread))

(pe-application.args

application)))

(new-env ;Create a new environment for the

(build-child-environment ;application from the

(pe-application.parent-env ;Parent environment

function-value)

(list->vector ;Local values

arg-symbolic-values)

(pe-lambda.inheriteds ;Inherited values

function-lambda))))

(let ((terminate?

(terminate-execution? ;If symbolic execution of a recursion

function-value ;has reached a fixed-point

stack

new-env)))

(if terminate?

(process-termination

terminate?

new-env

function-symbolic-value

arg-symbolic-values)

(process-application

function-symbolic-value

arg-symbolic-values

stack

new-env))))))

Figure 3.23: Pseudocode for performing symbolic execution of a application
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(define terminate-execution?

(lambda (function stack env)

(let* ((compliant-applications

(stack-appl-search

(lambda (appl-stack-frame)

(use-compliant-application?

function

env

appl-stack-frame))

stack))

(application-search

use-equivalent-applications?

compliant-applications)))))

Figure 3.24: Pseudocode for checking whether symbolic execution of a recursion

should be terminated

The critical step in symbolic execution of a function application is deciding

whether to perform the application. The terminate-execution? function imple-

ments the termination mechanism of use analysis. It decides whether an application

is distinct from all previous applications and should therefore by analyzed through

symbolic execution, or whether symbolic execution of a recursion should be termi-

nated. If the application should be performed, then symbolic execution proceeds

with the process-application function. Otherwise, termination is handled by

process-termination. The one subtlety is that the terminate-execution? func-

tion returns the two equivalent previous applications, when a decision is made to ter-

minate. The equivalent applications are then supplied to the process-termination

function.

The details of terminate-execution? appear in the pseudocode in Figure 3.24.

First, the stack is searched for all previous applications of equivalent functions com-

pliant with the current application. That is, all applications of closures of the same

lambda to arguments with use annotations compliant with the argument values sup-

plied in the current application. The compliant applications are then searched to �nd

any two having equivalent use annotations for their arguments. Assuming equivalent

applications are located on the stack, the two most recent equivalent applications are

returned. If no pair of equivalent applications is found, then #f is returned.
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The application-search function is a special version of for-each applying

the closure supplied as its �rst argument to pairs of elements of the list that is

its second argument until the closure argument returns a true value for some pair.

Once a true value is found, it is returned as the result of application-search.

Use-equivalent-applications? takes two application descriptions as arguments

and compares the environments generated for execution of those applications in order

to determine whether corresponding bindings in the two environments have equivalent

use annotations.

The process-application function as shown in Figure 3.25 implements sym-

bolic execution of a function application.8 Of note is the creation of an

application-dependence between the symbolic value for each inherited value in

the environment created for performing the function application and the closure ob-

ject being applied. Just prior to initiating symbolic execution of the body of the

closure, an application frame for the current application is pushed onto the stack.

The �nal case in symbolic execution of applications is when a recursion is termi-

nated. In this case, symbolic execution proceeds from the point at which a value

would be returned by the function application not analyzed due to termination.

Pseudocode for performing termination is shown in Figure 3.26. The �rst step

is probably the most important. Detection of two recursive applications deemed

equivalent based on their having equivalent use annotations for their correspond-

ing arguments caused a termination decision to be made. Should the use anno-

tations of any of the symbolic values involved in those comparisons change in the

future, the equivalence decision might be invalidated, necessitating the resumption

of symbolic execution of the recursion beginning with the terminated application.

Monitoring of changes in the use annotations of the critical symbolic values is im-

plemented by the annotate-to-resume-exec-on-use-change function. This func-

tion creates a daemon that detects changes in the use annotations of values using

resumption-dependences.

Before symbolic execution can proceed from the point at which a value would

have been returned by a terminated application, a generalized return value is needed

8This pseudocode does not address the details of the case in which the function to be applied is
not uniquely known during partial evaluation.
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(define process-application

(lambda (function-symbolic-value arg-symbolic-values stack new-env)

(let* ((function-value ;Get the closure value

(symbolic-value.value

function-symbolic-value))

(function-lambda ;Get the lambda from which the

(pe-closure.lambda ;closure being applied was formed

function-value))

(for-each-inherited-value ;Create a use dependence for every

(lambda (inherited-symbolic-value ;inherited value

offset)

(add-use-dependence

(symbolic-value.use-profile ;Store the dependence with the

inherited-symbolic-value) ;inherited value

(make-application-dependence ;Application type

function-symbolic-value

(symbolic-value.use-profile ;Source

inherited-symbolic-value)

(symbolic-value.use-profile ;Sink symbolic value

function-symbolic-value)

offset))) ;Field within the sink

(pe-lambda.inheriteds

function-clambda))

(push-appl-frame ;Push a frame for this application

stack ;onto the stack

(make-application-desc

function-value

new-env

#f)) ;Not starting a specialization

;due to termination

(sym-exec-expr ;Symbolically execute the closure

(pe-lambda.body ;body

function-lambda)

stack

new-env

thread)))))

Figure 3.25: Pseudocode for performing symbolic execution of an application
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(define process-termination

(lambda (eqv-appl-descs new-env function-symbolic-value arg-symbolic-values)

(annotate-to-resume-exec-on-use-change ;Enable daemons

eqv-appl-descs ;that will cause termination

function-symbolic-value ;to be rechecked on use changes

stack

new-env

thread)

(if (start-new-specialization? ;If a specialized version of the

eqv-appl-descs ;the function still must be

function-symbolic-value ;investigated to create the

new-env) ;generalized return value:

(process-build-generalization

eqv-appl-descs

new-env

function-symbolic-value

arg-symbolic-values)

(let ((generalized-return-value ;Else, if a specialization has been

(generalized-return-value ;completed

eqv-appl-descs)))

(add-changed-generalization-daemon

eqv-appl-descs

new-env

stack)

(add-any->code-dependence ;Set up the dependence of

(symbolic-value.use-profile ;function on the generalized

generalized-return-value) ;return value

(symbolic-value.use-profile

function-symbolic-value))

(link-uses-of-start&end-of-recursion

eqv-appl-descs

new-env)

(perform-invoke-continuation ;Actually evaluate the continuation

(continuation-arg

arg-symbolic-values)

generalized-return-value

stack

new-env

thread)))))

Figure 3.26: Pseudocode for terminating a recursion
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for the application. If the generalized return value has not already been computed,

then a new specialization must be analyzed in order to generate the value. The

details of the process of generating a generalized return value as implemented by

process-build-generalization are discussed in a future section.

Once a generalized return value is available, all that remains is to implement

the function return. A generic use dependence is created so any uses of the return

value of the terminated application imply use of the code portion of the closure to

have been applied in the terminated application. As described in Section 2.6.1, use

dependences are also created linking the symbolic values of the arguments of the

terminated application to those of the applications initiating previous iterations of

the terminated recursion. Finally, a function return is performed by throwing to the

continuation of the terminated application using the generalized return value.

The one �nal detail is the call to add-changed-generalization-daemon. Its

purpose is related to the creation of generalized return values and will be discussed

in a future section.

Symbolic execution of pe-clambda is virtually identical to that of pe-lambda and

needs no further discussion. However, symbolic execution of pe-throw as imple-

mented by the pseudocode in Figure 3.27 is critical. Sym-exec-throw is a wrapper

that computes the continuation and argument objects using symbolic execution and

then calls perform-sym-exec-throw to do the real work. Perform-sym-exec-throw

�rst checks whether the continuation represents a return of the result of a program to

the read/eval/print loop. The details of returning a value to the read/eval/print loop

are not particularly interesting and have been omitted. In the more common case, a

generic use dependence is created to represent that any use of the return value of a

closure implies the code of the closure producing the result has been utilized. Next,

the value returned is recorded. All that remains is to invoke the continuation using

the perform-invoke-continuation function previously presented in Figure 3.22 on

page 112.

The �nal form is the pe-primitive form used for implementing primitives. Pseu-

docode for this form as shown in Figure 3.28 is trivial because all of the interesting

aspects are implemented as part of the primitives, themselves.
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(define sym-exec-throw

(lambda (throw stack env thread)

(let ((cont-symbolic-value ;Get the continuation object

(sym-exec-expr

(pe-throw.continuation throw)

stack

env

thread))

(arg-symbolic-value ;Symbolically evaluate the arg

(sym-exec-expr

(pe-throw.value throw)

stack

env

thread)))

(perform-sym-exec-throw

cont-symbolic-value

arg-symbolic-value

stack

env

thread))))

(define perform-sym-exec-throw

(lambda (cont-symbolic-value arg-symbolic-value stack env thread)

(if (not (repl-continuation? ;If this is not a throw back to the

cont-symbolic-value )) ;repl:

(begin

(add-any->code-dependence ;Set up the dependence between the

(symbolic-value.use-profile ;Return value and

arg-object)

(symbolic-value.use-profile ;The code of the closure that is

(application-desc.closure ;returning the value

(top-appl-desc stack))))

(add-return-value ;Add the return value to the list of

(top-appl-desc stack) ;values returned by this application

arg-symbolic-value

thread)))

(perform-invoke-continuation

cont-symbolic-value

arg-symbolic-value

stack

env

thread))

(schedule-next-thread)))) ;Else, start execution of another thread

Figure 3.27: Pseudocode for symbolic execution of a pe-throw
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(define sym-exec-primitive

(lambda (prim stack env thread)

((pe-primitive.function

prim)

stack

env

thread)))

Figure 3.28: Pseudocode for symbolic execution of a pe-primitive

Symbolic Execution of Primitive Procedures

Symbolic execution of the pe-application form handles analysis of compound pro-

cedures as shown in the previous section. The real work of a program gets done in

the primitives. Since none of the details of the implementation of primitives is appar-

ent in the pseudocode for symbolic execution of the pe-primitive form, one must

examine the implementations of primitives to appreciate what is taking place.

The make-builtin-primitive function for which pseudocode appears in Fig-

ure 3.29 is used to create a primitive function to be loaded into the global environ-

ment. The important aspect of the code in Figure 3.29 is the creation of a pe-lambda

for every primitive. Symbolic execution of the pe-lambda builds the environment for

executing the body of the primitive. The body of the primitive as implemented by

sym-exec-func is able to assume the environment has already been built correctly

and only needs to handle the details of implementing a particular primitive.

Pseudocode for an implementation of the integer? primitive appears in

Figure 3.30. The body of the implementation is wrapped in a call to

perform-sym-exec-throw, as de�ned in Figure 3.27, causing the value returned by

the primitive to be passed to the continuation of the application of integer? via

a throw. The continuation to be invoked is the second argument to integer? and

is extracted from the environment created for execution of the body of integer?

by the arg-2 function. The main portion of the implementation of integer? is de-

voted to computing the symbolic value representing the result and building the use

dependences for the result value. This process proceeds as follows.
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(define make-primitive

(lambda (name num-args sym-exec-func)

(make-pe-definition

(builtin-global-number

name)

(make-pe-lambda

(make-lambda-args

num-args)

(make-lambda-inheriteds ;A primitive has no inherited args

'())

(make-pe-primitive

sym-exec-func)))))

Figure 3.29: Pseudocode for symbolic execution of a make-builtin-primitive

First, the argument to integer? is extracted from the environment. If the argu-

ment is a bottom value, then it is not possible to determine what boolean result should

be returned by integer? until runtime; therefore, a symbolic value whose value is an

unspeci�ed boolean (?Bool) is created. In this case, the only use dependence neces-

sary is one representing that any use of the unspeci�ed boolean return value implies

the actual return value must be computed at runtime. If any information is available

about the argument to integer?, then the argument's type can be determined so the

return value of integer? is computable during the analysis phase. Once the return

value is computed, the appropriate use dependence is created. If the return value is

#t, any computation making use of trueness of the return value also makes use of

the integer type of the argument. This is re
ected in the generic dependence built by

add-b->type-dependence. If the return result is #f, the information used in com-

puting the result is that the argument is not of type integer. Unfortunately, this fact

cannot be represented by any use annotation in the domains in Figure 2.22 on page 31,

repeated in Figure 3.31. To say the type of the argument was used in determining

the return value would be an overspeci�cation of use. The correct, conservative ap-

proximation for a lazy use analysis for termination is to state that any use of the

return value implies only that the argument must be computed at runtime. That is,

any use of the result implies bottom value use of the argument. This dependence

must be generated regardless of the value returned by integer?. It is built and in-

stalled by add-any->bottom-value-dependence. Finally, result-symbolic-value
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(define make-integer?

(lambda ()

(make-builtin-primitive

'integer?

1 ;1 arg

(lambda (stack env thread)

(perform-sym-exec-throw ;Throw to the

(arg-2 env) ;Continuation with

(let* ((arg-symbolic-value ;The value

(arg-1 env))

(arg-value ;Get components of the arg

(symbolic-value.value arg))

(arg-use-profile

(symbolic-value.use-profile arg)))

(if (pe-bottom-value? arg-value) ;If arg's value unknown:

(let ((result-symbolic-value

(make-unused-symbolic-value ;Return an unspecified boolean

(make-pe-bottom-boolean))))

(add-any->bottom-value-dependence ;Add a control dependence

(symbolic-value.use-profile ;between the result and the arg

result-symbolic-value)

arg-use-profile)

result-symbolic-value))

(let* ((result-value ;Else, argument known so compute

(integer-type? arg-value)) ;result

arg-value))

(result-symbolic-value ;Create a known boolean object

(make-unused-pe-object

(make-pe-boolean

result-value))))

(if result-value ;If the return value is #t:

(add-b->type-dependence ;Add a dependence between the

(pe-object.use-profile ;value of the returned boolean

result-symbolic-value) ;and the type of the arg

arg-use-profile

(pe-object.value

result-symbolic-value)))

(add-any->bottom-value-dependence ;Otherwise, should add a

(pe-object.use-profile ;b->bottom-value dependence

result-symbolic-value) ;which is subsumed by this

arg-use-profile) ;dependence

result-symbolic-value))

stack

env

thread)))))

Figure 3.30: Pseudocode for symbolic execution of the primitive integer?
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Int = 0+�1+�2+ � � � integers

?Int unspeci�ed integer

Bool = true+ false booleans

?Bool unspeci�ed boolean

Sym = 0a+ 0b+ � � � symbols

?Sym unspeci�ed symbol

Nil = nil empty list

Pair = PEval� PEval pairs

?Pair � ?PEval �?PEval unspeci�ed pair

Closure = Lambda� Env closure values

?Clos unspeci�ed closure

Env = (Id! PEval)
?

environments

Kval = Int+Bool +Nil + Pair + Closure known values

Bots = ?Int +?Bool +?Pair +?Clos bottom values

PEval = Kval+ Bots +?PEval partial evaluation values

?PEval unspeci�ed value

Figure 3.31: Value domains for partial evaluation of a pure subset of Scheme (repeat

of Figure 2.22)

is returned by integer? by passing it as an argument to perform-sym-exec-throw.

The cons function shown in Figure 3.32 serves as another interesting example of

the implementation of a primitive. As for integer?, the body of the implementation

of cons is a throw to the continuation of cons using the value returned by cons.

The throw is implemented by an application of perform-sym-exec-throw. Its �rst

argument is the continuation of the application to cons, which is the third argument

to which cons was applied. The continuation is extracted from the environment built

for executing cons by arg-3. The value returned by cons is the second argument

supplied to perform-sym-exec-throw.

In order to compute the return value, �rst the two arguments to be concatenated

by cons to produce the result are extracted using arg-1 and arg-2. Next, the

symbolic value for the pair to be returned is produced. Finally, use dependences

are needed to relate the symbolic value for the result to the symbolic values for

the arguments. A pe-cons-dependence is created by the make-cons-dependence

function relating uses of either the car or cdr of the resulting pair to either the �rst

or second arguments supplied to cons, respectively. Two generic dependences are
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created by add-any->bottom-value-dependence signify that if any use is made of the

return value, the arguments utilized in creating the pair must be computed at runtime.

The process of supplying the result to perform-sym-exec-throw is completed by

returning the symbolic value for the return value from the let form used to produce

it.

Generating Generalized Return Values

The pseudocode for building a generalized return value is shown in Figure 3.33. First,

a generalized environment and function9 are computed based on the three applica-

tions. The generalized environment contains the generalizations of the arguments

and the generalizations of the inherited values from the environments of the closures.

Next, the continuation of the �nal application not performed is inserted into the ap-

propriate place in the generalized environment since the desire is for the generalized

return value to be returned to that continuation, not a generalization of several con-

tinuations. A description of the generalized application is then placed on the stack.

Finally, symbolic execution of the generalized application is performed.

The second half of the process of forming a generalized return value was al-

ready presented in the pseudocode for process-termination in Figure 3.26 on

page 117 and for perform-sym-exec-throw in Figure 3.27 on page 119. The call

to add-changed-generalization-daemon in process-termination builds a dae-

mon that looks for changes in a generalized return value. If the generalized return

value changes, the daemon causes symbolic execution of the associated computation

to be repeated for the new generalized return value.

9The termination mechanism utilized by my system di�ers from those of many other systems in
that two applications can be found to be equivalent even if the closures applied are not identical. This
is because a closure is really just a piece of code and an environment. Consequently, the applications
of two closures formed from the same lambda expression can be determined to be equivalent if the
applications make equivalent uses of corresponding values in the two closures' environments. This
fact is mentioned to explain why my system must compute a generalized closure to be used in
performing a generalized application. A generalized closure is created by taking the greatest lower
bound of several closures. The generalized closure consists of the common code and a generalization
of corresponding �elds in the closures' environments. As one might suspect, my system forms the
generalized closure from the combination of three di�erent closures: the two used in the equivalent
applications and the one in the application about to be performed when the termination decision
was made.
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(define make-cons

(lambda ()

(make-builtin-primitive

'cons

2 ;2 args

(lambda (stack env thread)

(perform-sym-exec-throw ;Throw to the

(arg-3 env) ;Continuation with the value

(let* ((arg1 (arg-1 env)) ;Get args

(arg2 (arg-2 env))

(result-symbolic-value

(make-unused-symbolic-value

(make-pe-pair

arg1

arg2)))

(result-use-profile

(symbolic-value.use-profile

result-symbolic-value)))

(add-use-dependence

result-use-profile

(make-cons-dependence

result-use-profile

(symbolic-value.use-profile

arg1)

(symbolic-value.use-profile

arg2)))

(add-any->bottom-value-dependence ;Add a control dependence between

result-use-profile ;the result and the args

(symbolic-value.use-profile

arg1))

(add-any->bottom-value-dependence

result-use-profile

(symbolic-value.use-profile

arg2))

result-symbolic-value)

stack

env

thread)))))

Figure 3.32: Pseudocode for symbolic execution of the primitive cons
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(define process-build-generalization

(lambda (eqv-appl-descs new-env function-symbolic-value arg-symbolic-values)

(let ((generalized-env ;Build generalized environment

(make-generalized-environment

eqv-appl-descs

new-env))

(generalized-function ;Build generalized closure

(make-generalized-function

eqv-appl-descs

function-symbolic-value)))

(pe-env-local-set! ;Set the continuation to be the one

generalized-env ;supplied to this call rather than

(-1+ ;a generalization of the

(pe-env-num-locals ;continuations

generalized-env))

continuation)

(push-appl-frame ;Push a frame for this application

stack ;onto the stack

(make-application-desc

generalized-function

generalized-env

eqv-appl-descs)) ;The two applications for which

;the specialization is being built

(sym-exec-expr ;Symbolically execute the closure

(pe-lambda.body ;body - identical to that of the

(pe-closure.lambda ;generalized function

(symbolic-value.value

function-symbolic-value)))

stack

generalized-env

thread))))

Figure 3.33: A function for that builds a generalized return value
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(define add-return-value

(lambda (appl-desc return-value thread)

(add-return-value-to-appl-desc! ;Store the new return value

appl-desc

return-value)

(if (computing-generalized-return-value?

appl-desc)

(let* ((old-generalization ;Get the old generalization

(generalized-return-value

appl-desc))

(new-generalization ;Compute the new generalization

(make-unused-symbolic-value ;Store the result in an object

(symbolic-value.value ;that has no use links to the

(generalize ;original values to prevent use

old-generalization ;from feeding through the

return-value))))) ;generalized return value to the

;other return values

(if (not (generalization-eqv? ;If the generalization has changed

old-generalization

new-generalization))

(begin

(set-generalized-return-value! ;Store the new generalization

appl-desc ;This may activate changed

new-generalization))))))) ;generalization daemons and cause

;symbolic execution of some

;computations to be repeated

Figure 3.34: A function for processing the values returned by applications

The application of add-return-value in perform-sym-exec-throw does more

than just keep a list of values returned by functions as becomes apparent from the

pseudocode in Figure 3.34. After storing each return value, it is determined whether

the current return value requires changing the generalized return value as follows.

A new generalized return value is computed by generalizing the existing generalized

return value and the current return value. The existing generalized return value and

the new generalized return value are then compared. If the two generalized return

values are not equivalent, the new generalized return value is saved. The process of

saving the new generalized return value may activate changed generalization daemons

and cause symbolic execution of some computations to be repeated utilizing the new

generalized return value.
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3.2.2 Computation of Lazy Use via Use Propagation

The �rst part of the analysis phase consists of performing symbolic execution of

an input program based on a partial speci�cation of its inputs. During symbolic

execution, use dependences are created between di�erent symbolic values. However,

no symbolic value is ever assigned a use annotation other than ? (completely unused).

As a result, no use is propagated along any of the use dependences created.

The process of assigning other use annotations to values is initiated after sym-

bolic execution has completed. Assignment of new use annotations is initiated by

assigning ?PEval use to every one of the values returned by a program10. Once use

annotations have been assigned to the return value(s), use changes propagate along

use dependences to change the annotations on other symbolic values.

As use annotations are modi�ed, resumption-dependences may be activated.

Resumption-dependences are designed to keep track of when uses of either of two

symbolic values previously deemed to be use equivalent change. The activation of a

resumption-dependence does not guarantee two symbolic values are not really use

equivalent, it just indicates that it might be a possibility. It is possible the use anno-

tations of both symbolic values are going to change to the same value. For example,

when the iota function in Figure 2.49 on page 75, repeated in Figure 3.35, is applied

to ?Int, the argument i for every application of loop is initially annotated as unused.

After the return results have all been annotated with ?PEval use, all of the arguments

to which loop is applied will also eventually be annotated with ?PEval use. However,

each change in use of an argument to loop activates a resumption-dependence.

Since the propagation of use along use dependences is a sequential process, there are

points in time at which the use annotations will not be equivalent.

Because use annotations can become temporarily not equivalent, even though they

may quiesce to equivalent values, symbolic execution is not resumed the instant a re-

sumption dependence is activated by a change in a use annotation. Instead, informa-

tion about all activated resumption dependences is retained until all use annotations

have been updated based on the full set of use dependences and the use annotations

10Because symbolic execution can investigate multiple di�erent possible 
ows of control through
a program, symbolic execution may return a family of possible return values, as opposed to a single
value.
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(define iota

(lambda (n)

(define loop

(lambda (i)

(if (= i n)

'()

(cons

i

(loop (1+ i))))))

(loop 1)))

Figure 3.35: Iota function (repeat of Figure 2.49)

asserted for the return values. At that point, each resumption dependence activated

is checked to see if two symbolic values previously deemed to be use equivalent no

longer have equivalent use annotations. In cases in which symbolic values are found

no longer to be use equivalent, symbolic execution of any recursion terminated based

on the perceived equivalence must be resumed from the point at which the recursion

was terminated.

Resumption of symbolic execution of a terminated recursion consists of two dis-

tinct actions. The results of performing symbolic execution of the continuation of the

terminated recursion using a generalized return value must be marked as defunct. In

particular, information generated during the process of performing symbolic execution

of the continuation should not be passed to the code generation phase.11

The second aspect of resuming analysis of a recursion is to ensure symbolic exe-

cution of the recursion is initiated starting at the point at which it was terminated.

This is achieved by creating a thread to perform the desired application and placing

it on the queue of 
ows of control requiring analysis. Once all of the resumption

dependences have been considered and the appropriate threads placed on the queue

of pending threads to be analyzed, the only remaining step is for the analysis phase

to return control to the symbolic execution engine to proceed in the fashion outlined

in Section 3.2.1.

Eventually, the symbolic execution engine once again will run out of threads to be

11The results of the analysis may be retained by the analysis phase in case it is later determined
the identical computation needs to be analyzed for some other purpose.
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evaluated. ?PEval use of return values can once again be asserted. This time, both

the new return values generated by resumed symbolic execution and the old return

values for which ?PEval use was previously asserted must be considered. The new

return values are handled identically to the way return values were handled the �rst

time use was asserted about return values. For old return values, it is critical that

the use asserted about the old values be propagated over any new use dependences

created during the second pass of symbolic execution. How this is achieved is an

implementation detail. 12

Once the second pass of asserting use about return values has been completed,

there may or may not be more previously terminated recursions for which renewed

symbolic execution is desired. If no recursions require renewed symbolic execution,

the basic lazy use analysis algorithm has been completed and use annotations are

available for all symbolic values. However, if more symbolic execution is required,

the symbolic execution engine is reactivated and the process continues alternating

between symbolic execution and use propagation until there is no longer any need

indicated for further symbolic execution.

12In my implementation I record every use dependence created linking an unused symbolic value to
a symbolic value that already has a use annotation other than unused. During the use propagation
stage, my system considers every one of those dependences to be a source for a chain of possible use
updates and processes those just as if some new use had been asserted about the sources symbolic
value of those dependences.
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3.2.3 Base Case Analysis13

Keeping track of whether any base cases have been investigated is directly

supported by the infrastructure described in Section 3.2.1. The pseudocode

for perform-sym-exec-throw in Figure 3.27 on page 119, repeated in Fig-

ure 3.36, includes an application of the function add-return-value. Since a

call to perform-sym-exec-throw is made for every value returned by a function,

add-return-value records every value returned for every 
ow of control resulting

from every function application. By tracing the 
ow of control back from the return

of a result to its point of creation, it is possible to determine whether a return value

originated from a generalized return value generated for a terminated recursion (of

the function application from which the value is being returned) or whether the value

represents the result of a base case.

During base case analysis, all of the return values for each function application

initiating a terminated recursion are checked to determine if any of them results from

a base case of the source function. If none of the return values results from a base

case, then further analysis of that recursion is desirable. This is achieved by creating

a thread to renew execution of every terminated recursive application of the function

for which no base case has been investigated. The renewal threads are placed on the

queue of 
ows of control requiring analysis much as was done for the processing of

resumption-dependences as presented in Section 3.2.2.

If at the end of base case analysis, no threads to renew execution of any loops have

been created, then the analysis phase is completed. If base case analysis identi�es

recursions to be analyzed further, symbolic execution is reinitiated. At the end of

symbolic execution, use propagation is once again required. Once both symbolic

execution and use propagation are no longer indicated, base case analysis is once

again performed. This pattern of passes repeats until base case analysis no longer

�nds any recursions requiring further analysis. A 
ow chart for the complete analysis

phase appears in Figure 3.37

13The analysis described in this section has been designed, but has not been implemented as an
integral part of my partial evaluator.
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(define perform-sym-exec-throw

(lambda (cont-symbolic-value arg-symbolic-value stack env thread)

(if (not (repl-continuation? ;If this is not a throw back to the

cont-symbolic-value )) ;repl:

(begin

(add-any->code-dependence ;Set up the dependence between the

(symbolic-value.use-profile ;Return value and

arg-object)

(symbolic-value.use-profile ;The code of the closure that is

(application-desc.closure ;returning the value

(top-appl-desc stack))))

(add-return-value ;Add the return value to the list of

(top-appl-desc stack) ;values returned by this application

arg-symbolic-value

thread)))

(perform-invoke-continuation

cont-symbolic-value

arg-symbolic-value

stack

env

thread))

(schedule-next-thread)))) ;Else, start execution of another thread

Figure 3.36: Pseudocode for symbolic execution of a pe-throw (repeat of portion of

Figure 3.27)
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Base
Case

End
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Required?

Premature
Termination?

Figure 3.37: A 
ow chart for the analysis phase



Chapter 4

Related Work

This chapter discusses related work in the area of partial evaluation. The presen-

tation is divided into three major sections. First, termination mechanisms for both

online and o�ine partial evaluation are described, along with their advantages and

disadvantages. This is followed by a discussion of the role of the continuation passing

style (CPS) transformation in various partial evaluators including my own. Finally,

the pros and cons of delayed commitment partial evaluation of the form utilized by

Osgood and myself is presented.

134



4.1. ALTERNATIVE TERMINATION MECHANISMS 135

4.1 Alternative Termination Mechanisms

Use analysis was developed in response to a small number of common forms of source

code not all handled appropriately by any existing partial evaluator. All existing

termination mechanisms either failed to guarantee convergence or failed to yield ac-

ceptable residual code for at least one of the \problem" cases. This section begins by

presenting two simple programs demonstrating the termination problems motivating

the development of use analysis. It proceeds to discuss di�erent automatic termi-

nation mechanisms used by a variety of online and o�ine partial evaluators. The

systems and termination mechanisms presented are Mix, Finiteness Analysis (and

its extensions), Similix, and Fuse. Why each of the termination mechanisms fails to

handle e�ectively at least one of the sample programs, along with the other advan-

tages and disadvantages of each of the termination mechanisms, is explained. Tables

comparing the di�erent termination mechanisms appear in Figures 4.1 and 4.2. This

discussion does not address termination based on user annotation (e.g., Schism [11]),

termination of partial evaluation of other types of programming languages (e.g., logic

programming [18]), or termination of supercompilation [42, 45].

4.1.1 Termination Problems and Examples

This section includes two examples, each of which presents a termination problem for

some partial evaluators. The �rst example demonstrates a condition called chang-

ing static values under dynamic control that can lead to divergence. Attempts to

prevent divergence in this case are complicated by the fact that premature termina-

tion and therefore poor quality residual code can result for other partial evaluations.

The second example exempli�es a case in which many partial evaluators terminate

prematurely yielding poor quality residual code.

Changing Static Values Under Dynamic Control

Changing static values under dynamic control present a termination problem for many

partial evaluators. This condition can be demonstrated utilizing the iota function

previously shown in Figure 3.35 on page 129 or the factorial function in Figure 2.14
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Termination Limitations Advantages

Mechanism

Mix First-order programs only Computationally e�cient

Functional programs only

Monovariant BTA

No partial statics

Inductive variables for

self recursions only

Can diverge on changing

static values under

dynamic control

Finiteness Analysis First-order programs only1 Computationally e�cient

Functional programs only Guarantees termination

Monovariant BTA

No partial statics

Finiteness limited to

domain of structures

Captures decrease of a

single argument, not

all arguments together

Captures monotonic

decrease, not average

decrease1

Susceptible to premature

termination

Similix 1.0 (see Mix) Handles side-e�ects on

global variables

(see Mix)

Similix 5.0 Monovariant BTA Supports higher-order programs

Lacks partial use Supports partial statics

Is-used analysis is Is-used analysis is an

eager, not lazy improvement over Mix and

Similix 1.0

Handles side-e�ects on

global variables
1 Limitation removed by later extension

Figure 4.1: Table of limitations and advantages of di�erent termination mechanisms

(o�ine)
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Termination Limitations Advantages

Mechanism

Fuse Functional programs only Dynamic analysis (online)

Susceptible to premature Diverges infrequently

termination

Lazy Use Analysis Functional programs only Dynamic analysis (online)

Large resource Supports higher-order programs

consumption Supports partial use

Diverges infrequently

Prematurely terminates

infrequently

Figure 4.2: Table of limitations and advantages of di�erent termination mechanisms

(online)

(define fact

(lambda (n)

(if (zero? n)

1

(let loop ((i 1)

(ans 1))

(if (> i n)

ans

(loop

(1+ i)

(* ans i)))))))

Figure 4.3: Counting up factorial program (repeat of Figure 2.14)

on page 23, repeated in Figure 4.3. Partial evaluation of both of these programs

utilizing a completely unknown value for n initiates symbolic execution of a recursion

based on the loop function. Every iteration applies loop to a new set of completely

computable (i.e., static) values; however, termination of the recursion is controlled

by the value of the predicate of a conditional,dependent on an unknown value of n

and a known value of i. The value of the dynamic expression for the predicate is not

decidable during partial evaluation.

An e�ective termination mechanism ought to prevent divergence when presented

with a recursion exhibiting changing static values under dynamic control. However,
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ensuring termination is complicated by the desire to produce high quality residual

code for an alternative partial evaluation of the same two examples in Figures 3.35

and 4.3. Consider partial evaluation of the factorial function in Figure 4.3 applied

to a speci�ed integer. In this case, the desired result is a residual function that just

returns the value of the factorial computed during partial evaluation. Computing the

return value during partial evaluation requires a termination mechanism allowing the

loop recursion to be executed to completion during partial evaluation. However, the

arguments supplied to loop in both cases are identical, only the value of n di�ers.2

Premature Termination

The second example shows a case in which premature termination can occur, causing

the resulting residual code to be less specialized than desired. The regular expression

matcher in Figures 4.4 and 4.5 is a variant of one �rst utilized in an unpublished paper

by Torben Mogensen to demonstrate the problem of premature termination. Partial

evaluation of match? applied to a known regular expression and unknown input string

ought to produce a residual program that is a minimal decision tree for matching

the speci�ed regular expression. No interpretive overhead or pattern representations

utilized by the regular expression matcher ought to remain in the residual code.

For example, partial evaluation of match? applied to the kleene star expression, a�

(resulting from (make-kleene-star (make-term 'a))), and ? ought to yield the

residual program in Figure 4.6. Unfortunately, many termination mechanisms utilized

by existing partial evaluators prematurely terminate symbolic execution of recursions

of match? or match-pattern? before all the interpretive overhead is removed from

specializations. A more detailed discussion of why this is the case and the residual

code that results will be given as each alternative termination mechanism is explained.

4.1.2 Mix

Mix was one of the �rst o�ine partial evaluators. Its termination mechanism is based

on a monovariant binding time analysis. Both the BTA and the other phases of the

2Even if the value for n were considered an extra virtual argument to loop, its value would not
change from iteration to iteration in either case.
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(define match?

(lambda (pattern input) (match-pattern? pattern null-pattern input)))

(define match-pattern?

(lambda (pattern rest-pattern input)

(cond ((null-pattern? pattern)

(match-null? rest-pattern input))

((term? pattern)

(match-term? pattern rest-pattern input))

((kleene-star? pattern)

(match-star? pattern rest-pattern input))

((concat? pattern)

(match-concat? pattern rest-pattern input)))))

(define match-term?

(lambda (term-pattern rest-pattern input)

(if (and (pair? input)

(equal? (term-symbol term-pattern) (car input)))

(match? rest-pattern (cdr input))

#f)))

(define match-star?

(lambda (star-pattern rest-pattern input)

(or (match? rest-pattern input)

(match-pattern? (kleene-star-expr star-pattern)

(concat star-pattern rest-pattern)

input))))

(define match-concat?

(lambda (concat-pattern rest-pattern input)

(match-pattern? (concat-head concat-pattern)

(concat (concat-tail concat-pattern) rest-pattern)

input)))

(define match-null?

(lambda (rest-pattern input)

(if (null-pattern? rest-pattern)

(null? input)

(match? rest-pattern input))))

Figure 4.4: A program for matching regular expressions (part 1)
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(define concat

(lambda (pattern1 pattern2)

(cond ((null-pattern? pattern1) pattern2)

((null-pattern? pattern2) pattern1)

(#t (make-concat pattern1 pattern2)))))

(define make-concat

(lambda (head tail) (list concat-id head tail)))

(define concat?

(lambda (val) (and (pair? val) (eq? (car val) concat-id))))

(define concat-head cadr)

(define concat-tail caddr)

(define null-pattern (cons '() '()))

(define null-pattern?

(lambda (pattern) (eq? pattern null-pattern)))

(define make-term

(lambda (symbol) (list term-id symbol)))

(define term?

(lambda (val) (and (pair? val) (eq? (car val) term-id))))

(define term-symbol cadr)

(define make-kleene-star

(lambda (expr) (list kleene-star-id expr)))

(define kleene-star?

(lambda (val) (and (pair? val) (eq? (car val) kleene-star-id))))

(define kleene-star-expr cadr)

(define concat-id 'concat)

(define term-id 'term)

(define kleene-star-id 'kleene-star)

Figure 4.5: A program for matching regular expressions (part 2)
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(define match?

(lambda (pattern input)

(or (null? input)

(if (and (pair? input)

(equal? 'a (car input)))

(match? '(kleene-star (term-id a))

(cdr input))

#f))))

Figure 4.6: Optimal residual code for (match? (make-kleene-star (make-term

'a)) ?)

(define iota

(lambda (n)

(loop 1 n)))

(define loop

(lambda (i n)

(if (= i n)

'()

(cons

i

(loop (1+ i) n)))))

Figure 4.7: First-order iota function

Mix partial evaluator are described as a prelude to discussing the pros and cons of

Mix's termination mechanism.

Phases in the Mix Partial Evaluator

There are �ve phases in the Mix partial evaluator: binding time analysis, program

annotation, function specialization, call graph analysis, and call unfolding and reduc-

tion. (The descriptions of the purposes and operations performed in each of these

phases come from [28].) The iota function will be used as a working example for

presenting how Mix operates. However, as Mix only handles a �rst-order language,

the version of iota in Figure 3.35 is replaced by the equivalent �rst-order version of

iota appearing in Figure 4.7.
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Binding Time Analysis Phase: Mix utilizes a monovariant BTA, meaning it

creates one, and only one, binding time annotation for each function in a source

program. Binding time analysis is implemented as an abstract interpretation of the

input program utilizing the two element domain composed of the values static and

dynamic. As explained in Section 2.2.1, static means a value is always known during

partial evaluation and dynamic means the value may or may not be known.

The rules for performing BTA in Mix are very simple. Initially, all variables are an-

notated as static, except those forming the initial function application describing the

inputs for which the program is to be partially evaluated. These inputs are annotated

as either static or dynamic based on the input speci�cation. Abstract interpretation

proceeds with symbolic evaluation of the body of the initial function application. Any

time a dynamic value is computed for a variable previously annotated as static, the

variable is changed to be dynamic and all expressions whose values are dependent on

the variable are recomputed.

BTA is guaranteed to terminate because there are only a �nite number of variables

in any source program, each starts out annotated static and can only change to

dynamic once, and the only operation that causes more analysis to be performed is

the changing of a variable's annotation from a static to dynamic.

The result of each expression is assigned either a static or dynamic annotation

as follows. Known constants are by de�nition static. Variables' annotations are

maintained by the abstract interpretation. All applications and control 
ow operators

yield dynamic results unless all of their arguments are static.

For partial evaluation of iota applied to an unknown value, BTA begins with the

application of iota to a dynamic value. The argument n of iota is initially annotated

dynamic, and all other variables are annotated static. As a result of the application

of iota to the dynamic value, an application of loop to a static (constant) value and

a dynamic value is performed. Since i is static in loop, (1+ i) returns a static value.

This means the recursive call to loop is made using a static and a dynamic value.

Since this is the identical set of annotations utilized in the initial application, BTA

has completed annotation of all the variables used in iota. The result of BTA appears

in Figure 4.8 in which static variables and expressions have a superscript of S and

dynamic variables and expressions a superscript of D.
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(define iota

(lambda (nD)

(Dloop 1S nD)))

(define loop

(lambda (iS nD)

(Dif (D= iS nD)

'()S

(Dcons

iS

(Dloop (S1+ iS) nD)))))

Figure 4.8: BTA of iota applied to a dynamic value

Program Annotation Phase: Program annotation labels each function application

and invocation of a control 
ow operator as either static or dynamic based on the

results of BTA. Primitive applications are labeled as yielding static results if and only

if all of their arguments are static. Control 
ow operators are labeled based on the

arguments in which they are strict. For example, a conditional is labeled as static if

and only if its predicate is static.

Applications of nonprimitive functions are annotated as unfoldable or residual.

These annotations determine whether the partial evaluator terminates. The bodies

of functions applied in unfoldable calls are symbolically evaluated during the function

specialization phase. In�nite unfolding yields divergence.

A nonprimitive application is labeled as unfoldable in only two cases. The �rst

is if all of its arguments are static. Clearly if all the arguments are static then the

partial evaluator ought to be able to compute the result of the application utilizing

the known argument values. The second case is when an application is self recursive

(i.e., the function being applied is the function whose body is being analyzed), there

is at least one inductive argument, and all other static arguments remain unchanged

between the initial application and the recursive call. An inductive argument is one

in which the value utilized in the recursive call is a proper substructure of the value

supplied to the initial call. For example, the lst argument to loop in Figure 2.7 on

page 15, repeated in Figure 4.9, is a recursive argument since the recursive application

of loop always utilizes the cdr of the previous value of lst.
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(define length

(lambda (lst)

(loop lst 0)))

(define loop

(lambda (lst ans)

(if (null? lst)

ans

(loop (cdr lst) (1+ ans)))))

Figure 4.9: A function for computing the length of lists (repeat of Figure 2.7)

Returning to the iota example, the application of loop in iota is annotated resid-

ual because it is an application of a nonprimitive function to a dynamic argument.

The primitive application of 1+ in loop is static since it is applied to a single static

argument; whereas, the primitive application of = is annotated dynamic since one

of its arguments is dynamic. The application of cons is annotated dynamic on the

assumption that the cons primitive is strict in its dynamic argument. The recursive

application of the nonprimitive function loop is annotated residual because it is a di-

rect recursive call, but none of the static arguments is an inductive variable. Finally,

the control 
ow operator if is annotated dynamic since its predicate is dynamic. The

result of the annotation phase appears in Figure 4.10 in which subscripts of S, D,

R, and U have been utilized to represent static, dynamic, residual, and unfoldable,

respectively.

Function Specialization Phase: The function specialization phase creates special-

izations of functions utilizing symbolic evaluation. The algorithm is based on a work

list of specializations still needing to be created and a table of completed special-

izations. The work list begins with a single entry for the initial application of the

function to be specialized applied to the input speci�cation. The algorithm proceeds

by removing items from the work list and creating specializations for them until the

work list is empty. Each time an item is removed from the worklist, a corresponding

entry is created in the table of specializations.

In order to create a specialization for an application from the work list, the function
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(define iota

(lambda (nD)

(D
R
loop 1S nD)))

(define loop

(lambda (iS nD)

(D
D
if (D

D
= iS nD)

'()S

(D
D
cons

iS

(D
R
loop (S

S
1+ iS) nD)))))

Figure 4.10: Result of the annotation phase of Mix for iota applied to a dynamic

value

specializer performs symbolic evaluation of the function's body utilizing the values for

its static arguments. The static results of static primitive applications are computed,

while the results of dynamic primitive applications cannot be determined so residual

applications are created. Static control 
ow operators are removed and replaced by

the results of symbolic evaluation of the appropriate 
ow of control. For dynamic 
ows

of control, residual control 
ow operations remain and all possible 
ows of control

are analyzed. Finally, symbolic evaluation of unfoldable, nonprimitive applications is

performed precisely as is currently being described.

The only remaining case is nonprimitive applications annotated as residual. Resid-

ual applications are compared with those in the table of specializations already cre-

ated. If no specialization already exists for an application of the given function to

identical values for the static arguments, then a speci�cation of the specialization

to be created is placed on the work list. Whether the needed specialization already

exists or not, a residual application applying either the existing or new specialization

is created in this case. Although Jones et. al. do not state in [28] how symbolic

evaluation proceeds after the residual application is created, it is my understand-

ing the analysis proceeds with symbolic execution of the continuation of the residual

application applied to the completely unknown value.

Once again continuing the iota example, function specialization of iota applied to

an unknown argument begins by placing the application (DRiota ?
D) on the work
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list. When this application is removed from the work list, it immediately leads to

symbolic evaluation of the expression (DRloop 1S ?D). Since this is a residual appli-

cation, the application of loop to the static value 1 is placed on the work list. Later,

(DRloop 1S ?D) is removed from the work list and placed in the table of specializa-

tions. The application of the primitive function = in the body of loop is dynamic, so it

produces an unknown result. This is re
ected by the fact that the control 
ow opera-

tor if was annotated dynamic. The consequent of the conditional is a simple constant

and is therefore not particularly interesting. Symbolic evaluation of the alternative

begins with the application of the primitive function 1+ to the static value 1. This

static application is evaluated to yield 2. Symbolic evaluation is then ready to handle

the expression (DRloop 2S ?D). Since (DRloop 2S ?D) is a residual application and

no entry appears in the table of specializations for loop applied to the static value 2,

this application is placed on the work list. When specialization of (DRloop 1S ?D)

completes. (DRloop 2S ?D) is removed from the worklist. Symbolic evaluation of

(DRloop 2S ?D) leads to evaluation of the expression (SS1+ 1S) yielding the value 3.

This in turn leads to the placing of (DRloop 3S ?D) on the work list. The process of

investigating applications of loop to each of the positive integers proceeds ad in�ni-

tum, leading to divergence. As demonstrated, Mix is susceptible to divergence when

processing programs containing changing static values under dynamic control.

Call Graph Analysis Phase: The purpose of the call graph phase is to detect

recursions in the specializations produced by the function specialization phase. A

standard call graph is produced for the program resulting from the function special-

ization phase. A depth �rst walk is performed of the call graph starting with the node

representing the initial application of the program applied to the input speci�cation,

to be referred to as the root node. Each time a node is reached for a second time on

a single path from the root node, a recursive loop has been detected, and the node is

marked as a cutpoint in order to break the recursion.

In order to proceed with the iota example, assume BTA annotated both arguments

of loop dynamic, instead of one static and one dynamic. Then, function specialization

would only have created a single specialization of loop applied to two dynamic values.

This yields a very simple call graph for iota applied to an unknown value. There are



4.1. ALTERNATIVE TERMINATION MECHANISMS 147

two nodes for the two specializations: (DRiota ?
D) and (DRloop ?

D ?D). There is

one arc from (DRiota?
D) to (DRloop?

D ?D), and another arc from (DRloop?
D ?D)

to itself. Call graph analysis annotates (DRloop ?
D ?D) as a cutpoint since the arc

from (DRloop ?
D ?D) to itself forms a loop in the call graph.

Call Unfolding and Reduction Phase: The �nal phase performs further un-

folding (i.e., inlining) of function applications. All function applications are unfolded

unless one of three problems might result: in�nite unfolding, duplication of a function

call, or duplication of a complex expression. Protection against in�nite unfolding is

achieved by choosing not to unfold any applications denoted as cutpoints by the call

graph analysis phase. Duplication of function applications is avoided by checking the

argument values of each application to determine which arguments are pieces of code

containing function applications and only performing unfolding if those arguments

are used at most once in the body of the function being applied.3 Finally, avoidance

of duplication of complex argument expressions is handled identically to the case of

function call duplication.

No unfolding is possible for the continuation of the iota example. The only resid-

ual calls are the ones to loop. Since loop was annotated as a cut point, it is not

unfoldable. However, imagine the function specialization phase had produced two

specializations of loop, one for even values of the �rst argument and the other for

odd values, to be referred to as loop-e and loop-o, respectively. The resulting spe-

cializations would look something like those in Figure 4.11. The resulting call graph

would contain three nodes: one for iota, one for loop-e, and one for loop-o. In

addition to the arc from iota to loop-o, there would be an arc from loop-o to

loop-e and one from loop-e to loop-o. Call graph analysis would annotate loop-o

as a cutpoint. Now, the call to loop-e in the body of loop-o would be unfoldable

during the call unfolding phase, assuming the duplicated expression (1+ i) is not

considered too expensive to be replicated. However, applications of loop-o would

not be unfolded since loop-o is a cutpoint. The resulting residual program would

look something like the one shown in Figure 4.12.

3For reasons that are not speci�ed, Mix does not address the problem of duplicating function
applications through the creation of a temporary location to store the result of the potentially
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(define iota

(lambda (n)

(loop-o 1 n)))

(define loop-o

(lambda (i n)

(if (= i n)

'()

(cons

i

(loop-e (1+ i) n)))))

(define loop-e

(lambda (i n)

(if (= i n)

'()

(cons

i

(loop-o (1+ i) n)))))

Figure 4.11: Hypothetical function specialization from Mix

(define iota

(lambda (n)

(loop-o 1 n)))

(define loop-o

(lambda (i n)

(if (= i n)

'()

(cons

i

(if (= (1+ i) n)

'()

(cons

(1+ i)

(loop-o (1+ (1+ i)) n)))))))

Figure 4.12: Hypothetical residual code from Mix for iota
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Advantages and Disadvantages of Mix's Termination Mechanism

The termination mechanism utilized by Mix has both advantages and disadvantages

when compared with a termination mechanism based on lazy use analysis. First

the limitations with the Mix approach will be presented and then its advantages are

discussed.

Limitations of Mix

Mix's termination mechanism has �ve signi�cant limitations. It only supports a �rst-

order source language, uses a monovariant BTA, does not support partial statics in

its BTA, only handles inductive variables in self recursions, and fails to terminate on

one of the motivating examples. Each of these limitations is discussed in order.

First-Order Source Language: Mix's termination mechanism di�ers from lazy use

analysis being only applicable to �rst-order source languages. Lazy use analysis has

as one of its goals the ability to handle higher-order languages and the programming

paradigms commonly utilized by programmers using higher-order languages such as

Scheme. While later research has developed versions of several passes of Mix that

handle higher-order languages (e.g., higher-order BTA [13]), other aspects of the

algorithm require major reworking in order to apply Mix's approach to termination

to higher-order languages.

Monovariant BTA: Utilization of a monovariant BTA causes Mix to produce subop-

timal code in some cases. For example, consider the function for computing binomial

coe�cients in Figure 4.13. Partial evaluation by Mix of binomial-coeff for a known

value of n and an unknown value of k yields unnecessarily ine�cient residual code.

binomial-coeff applies fact to two di�erent types of arguments. In the �rst appli-

cation, the argument is a known constant value during specialization. In the second

and third applications, the value of the argument to fact is not known until runtime.

Ideally, the value of the �rst factorial ought to be computed during partial evaluation

and the constant result placed in the residual code, while the other two factorial com-

putations must be performed at runtime. However, monovariant BTA can only label

duplicated function application.
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(define binomial-coeff

(lambda (n k)

(/ (fact n)

(* (fact k) (fact (- n k))))))

Figure 4.13: Function to compute binomial coe�cients

factorial with one set of annotations. Since the argument is static in one location and

dynamic in the other two locations, the annotation created for the argument to fact

is dynamic. This prevents computing the result of factorial applied to the static value

during partial evaluation.

Lazy use analysis is inherently polyvariant. A partial evaluator utilizing a termi-

nation mechanism based on lazy use analysis computes factorial of the static value in

binomial-coeff during partial evaluation. A potential specialization of fact for an

unknown input is created for the other two application.

Limitations in Mix's termination mechanism resulting from the monovariance of

its BTA are easily corrected by replacing the monovariant BTAwith a polyvariant one.

Therefore, the monovariance of the BTA utilized by Mix ought not to be considered

a signi�cant limitation, as polyvariant BTAs are now available (e.g., [12]).

Unable to Represent Partially Known Values: Mix's BTA can only annotate

values as static or dynamic. It lacks the ability to characterize a value as partially

known and partially unknown. The rami�cations of this limitation are demonstrated

by a simple data abstraction for modeling stores shown in Figure 4.14, similar to one

used by Ruf in [37]. The store is represented as an association list of name/value pairs.

The implementation is functional so operations adding values to the store return a

new store.

Consider the strange version of the identity function implemented using a store

shown in Figure 4.15. Specialization of store-and-lookup on an unknown input

ought to yield the traditional identity function (lambda (value) value); however,

Mix does not produce this simple residual program because its monovariant BTA is

unable to represent that the entry placed in the store has a known, static name and

an unknown, dynamic value. As a result, the entire store passed to lookup-in-store
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(define in-store?

(lambda (name store)

(cond ((null? store) #f)

((eq? name (entry-name (first-entry store))) #t)

(#t (in-store? name (rest-entrys store))))))

(define lookup-in-store

(lambda (name store)

(if (eq? name (entry-name (first-entry store)))

(entry-value (first-entry store))

(lookup-in-store name (rest-entrys store)))))

(define update-store

(lambda (store name new-value)

(let ((binding (first-entry store)))

(if (eq? (entry-name binding) name)

(cons (cons name new-value) (rest-entrys store))

(cons binding (update-store (rest-entrys store) name new-value))))))

(define add-to-store

(lambda (store name new-value)

(cons (cons name new-value) store)))

(define empty-store '())

(define first-entry

(lambda (store)

(car store)))

(define rest-entrys

(lambda (store)

(cdr store)))

(define entry-name

(lambda (entry)

(car entry)))

(define entry-value

(lambda (entry)

(cdr entry)))

Figure 4.14: Functions to access and update (functionally) a store
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(define store-and-lookup

(lambda (value)

(lookup-in-store

'a

(add-to-store empty-store 'a value))))

Figure 4.15: Identity function based on a store

is annotated dynamic and virtually no optimization is performed.

Mix's solution to the problem of partially static data structures is to require

the user to rewrite their program to separate the static portions of data structures

from the dynamic ones. Mix's BTA is then able to better analyze the program

and to produce better residual code. Subsequent to Mix, partially static BTAs were

developed by Mogensen [21] and Consel [12]. These BTAs are able to annotate values

as not only static or dynamic, but, in the case of aggregates, as being composed of

some known pieces annotated static and other unknown pieces annotated dynamic.

Lazy use analysis by its very nature is able to represent that some parts of an

aggregate are known and other parts are unknown, as is apparent from the domains

in Figure 2.22 on page 31, repeated as Figure 4.16. However, lazy use analysis goes

beyond the realm of partially static structures. Lazy use analysis incorporates the

more more general concept of partial information of which partially static structures

are just one example. Much as an aggregate is a union of a number of separable pieces

of information, each of which can be known or unknown during partial evaluation,

scalars are also composed of many separable pieces of information. The value 3 is

a member of the sets {3}, integers, and numbers, each based on successively less

information about 3. Elements of the domains in Figure 4.16 are able to represent

both that 3 is a member of the set {3} and that it is an integer. The ability to

represent the partial information that a value is an integer, without knowing its

precise numerical value, is a form of partial information not captured by partially

static BTA.

Inductive Variables Limited to Self Recursions: In addition to annotating

as unfoldable function applications for which all of the arguments are static, self-

recursive applications with inductive variables are also annotated as unfoldable by
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Int = 0+�1+�2+ � � � integers

?Int unspeci�ed integer

Bool = true+ false booleans

?Bool unspeci�ed boolean

Sym = 0a+ 0b+ � � � symbols

?Sym unspeci�ed symbol

Nil = nil empty list

Pair = PEval� PEval pairs

?Pair � ?PEval �?PEval unspeci�ed pair

Closure = Lambda� Env closure values

?Clos unspeci�ed closure

Env = (Id! PEval)
?

environments

Kval = Int+Bool +Nil + Pair + Closure known values

Bots = ?Int +?Bool +?Pair +?Clos bottom values

PEval = Kval+ Bots +?PEval partial evaluation values

?PEval unspeci�ed value

Figure 4.16: Value domains for partial evaluation of a pure subset of Scheme (repeat

of Figure 2.22)

Mix. The limitation of the inductive variable heuristic to self-recursive functions is

fairly signi�cant. Any recursion having a static argument that is an inductive variables

may be safely unfolded by a partial evaluator, even if the recursion is not based on a

self-recursive function. Furthermore, inductive variables are just one special case of a

monotonic progression through the elements of a well-founded set. It is safe to unfold

applications any time a variable is maintaining a monotonic progression through the

elements of a well-founded set. The key is being able to detect that this is happening.

Holst's Finiteness Analysis [26], discussed in the next section, is an improvement

on the inductive variables of Mix. However, sticking for the time being to the ter-

mination mechanism utilized by Mix, lazy use analysis o�ers a better solution to

inductive variables than Mix. Any time Mix unfolds a self-recursive application due

to an inductive variable, lazy use analysis creates a new potential specialization for

the application, so long as the information in the inductive variable is utilized by the

recursive application. Lazy use analysis allows for unfolding of recursions any time

Mix allows for unfolding and the unfolding is e�ectively improving the quality of the

residual code. Furthermore, lazy use analysis enables unfolding for all recursions, not
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just self recursions.

Divergence: The �nal limitation of Mix's termination mechanism is divergence in

some cases of changing static values under dynamic control. Whereas lazy use analysis

terminates when partially evaluating the iota function in Figure 4.7 on page 141, Mix

diverges. In this regard, lazy use analysis is clearly a superior termination mechanism

to the one utilized by Mix.

Advantages of Mix

The major advantage of Mix's termination mechanism over lazy use analysis is e�-

ciency. All �ve phases of Mix operate quite rapidly and use a small amount of memory

in comparison with lazy use analysis. As a result of the large resource consumption

of lazy use analysis, it has not been applied to anything but very small programs.

Mix, on the other hand, has been utilized to optimize some reasonable size programs.

Whereas Mix can be utilized to optimize some real programs, lazy use analysis is

unable to handle real programs as currently implemented.

4.1.3 Finiteness Analysis

Holst's �niteness analysis, as presented in [26], is an addition to an o�ine partial

evaluator for a �rst order language that modi�es the BTA annotations of applications

in order to insure termination of partial evaluation of convergent input programs.

Termination is guaranteed by systematically converting static annotations to dynamic

until �niteness analysis can prove only a �nite number of applications of functions

to di�erent sets of static arguments will take place during the specialization phase of

partial evaluation. The proof of �niteness is based on modeling whether the size of

di�erent arguments is growing or shrinking during recursions. The intuitive basis of

the algorithm is that in�nite looping can only take place during partial evaluation if

some argument grows an unbounded number of times.

This presentation of �niteness analysis proceeds with a more detailed discussion

of the principles behind the analysis. Once the concepts have been illuminated, how

the analysis operates in practice is explained. This is followed by a discussion of the
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limitations and advantages of �niteness analysis. The section concludes with a brief

presentation of two extensions to �niteness analysis.

A complete presentation of �niteness analysis requires building up a vocabulary

of terms and concepts utilized in formulating the analysis. Therefore, this discussion

proceeds through a series of de�nitions, culminating in the �nal theorem central to

�niteness analysis.

A program is said to be quasi-terminating if it enters at most a �nite number of

distinct states. A quasi-terminating program does not necessarily terminate since it

might loop in�nitely amongst some subset of the �nite number of states. However,

partial evaluation of a quasi-terminating input program is guaranteed to terminate,

as explained below.

During the specialization phase of an o�ine partial evaluator, the functions ap-

plied and the static arguments to which they are applied serve as a reasonable rep-

resentation of the states of the analysis. If an input program is quasi-terminating,

in order for partial evaluation of the program to diverge, the partial evaluator must

pass through at least one state an in�nite number of times. However, any time an

o�ine partial evaluator reaches an identical state (i.e., the same function applied to

identical static arguments) a second time, symbolic execution of that 
ow of control

is terminated and a residual application of the specialization for that state is cre-

ated. This prevents an in�nite loop through the identical set of states and thereby

guarantees termination.

The next important concept in �niteness analysis is the size of values. Each

argument of a function application can be compared with each of the arguments of the

preceding application in the execution sequence of a program. Each of the arguments

in the later application can be classi�ed as decreasing, constant, or increasing in size

in comparison to each of the arguments of the former. An argument is said to be

decreasing in comparison with a previous argument if it is strictly smaller than that

argument; it is constant, if it is identical to it; and, it is weakly decreasing, if it is

either smaller or identical. Finally, �niteness analysis is conservative; so, any time

an argument cannot be shown to be decreasing, constant, or weakly decreasing, it is

considered to be increasing.

All of the above de�nitions are based on a concept of size. While there are many
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domains for which a concept of size is meaningful, �niteness analysis as implemented

only seems to apply the concept of size to the domain of structures composed of

cons cells.4 For the domain of cons cells, the concept of size ought to be intuitively

obvious. Application of �niteness analysis to other domains of values (e.g., numbers)

probably ran into problems with the boundedness criteria, to be presented once the

current discussion of size is completed.

Because �niteness analysis is only able to assign relative sizes to structures com-

posed of cons cells, the analysis is unable to determine whether other data types are

increasing or decreasing in size. One consequence of this limitation is that �nite-

ness analysis unnecessarily reannotates some static parameters as dynamic, leading

to premature termination. For example, partial evaluation of the factorial function in

Figure 2.14 on page 23 applied to a known, constant input yields a recursive residual

program, rather than a program just returning the result computed during partial

evaluation. This happens because �niteness analysis reannotates one of the arguments

to loop as dynamic in order for it to be able to prove the loop terminates.

Once the concept of size has been de�ned across a single function application

boundary, it can be generalized for multiple applications by de�ning how size changes

are combined. Combining two decreases, a decrease and a constant, or a decease and a

weak decrease all produce a decrease. Combining two constants produces a constant.

Combining two weak decreases, a weak decrease and a decrease, or a week decrease

and a constant all produce a weak decrease. All other combinations are conservatively

approximated as an increase.

The important case for �niteness analysis is changes in size of arguments during

recursions. Based on the above de�nitions for decreasing, constant, and increasing

arguments, it is possible to characterize changes in the size of each argument between

an initial application of a function and a later recursive application of the same

function. These characterizations of changes in size of each argument form the basis

of the central theorem of �niteness analysis.

The �nal concept behind �niteness analysis is that of boundedness. An argument

position of a function is said to be bounded if there are only a �nite number of

4This limitation of the implementation is inferred from Holst's paper and is not explicitly stated
anywhere.
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values the corresponding formal parameter of the function can assume during partial

evaluation of an input program. If it cannot be proven an argument is bounded, it is

considered to be unbounded.

The central theorem of �niteness analysis states that any recursion with an in-

creasing argument position is quasi-terminating so long as there is another argument

position that is bounded and decreasing. Intuitively, if one argument of a recursion

can assume at most a bounded number of values and will assume values in a strictly

decreasing fashion, the recursion must eventually terminate. Otherwise, the recursion

would run out of successively smaller values for the argument to assume. A conse-

quence of this theorem is that termination of partial evaluation can be guaranteed

by reannotating static increasing argument positions as dynamic whenever there is

no other argument position of the same application that is bounded and decreas-

ing. This su�ces to guarantee termination since any recursion with no increasing

argument positions is quasi-terminating.

Limitations of Finiteness Analysis

There are �ve primary limitations of �niteness analysis as originally developed: ap-

plicability only to �rst-order input languages, inability to work in conjunction with

partially static BTA's, implementation only for domains of structures, inability to

consider whether a collective set of arguments is decreasing in size even though a

single argument may be temporarily increasing, and inability to detect arguments

that temporarily increase in size but on the average are decreasing. Each of these

limitations is discussed in order. Particular emphasis is given to the third and fourth

limitations that lead to premature termination and the generation of poor residual

code for partial evaluation of iota and the regular expression matcher, respectively.

First-Order Source Language: Applicability only to �rst-order source languages

was actually only a limitation of the initial design of �niteness analysis. Andersen

and Holst in [3] extended �niteness analysis to handle higher-order languages.

Incompatibility with Partially Static BTA: Finiteness analysis is not compatible

with partially static BTA. In order to achieve the bene�ts of guaranteed termination
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yielded by �niteness analysis, a partial evaluator must give up the advantages of par-

tial statics. In particular, a partial evaluator loses the ability to form specializations

based on the static portions of arguments when other parts of the same data struc-

tures are dynamic. A BTA unable to represent partial statics is forced to annotate

the entire structure as dynamic. The consequence is less specialized and therefore

often less highly optimized residual code.

Only Implemented for Domains of Structures: While it is not explicitly stated

anywhere in [26], it seems the concept of size in �niteness analysis has only been

applied to domains of structures. This assumption is reinforced by the fact that all

of the examples in Holst's paper requiring analysis of numeric domains are presented

using unary numbers represented by lists whose lengths are the values being repre-

sented. Unfortunately, this encoding does not solve the general problem of analysis

of numeric domains, not even the subdomain of non-negative integers.

Since the concept of size has only been applied to domains of structures, any time

an argument assumes two di�erent non-structure values during a recursion it must be

annotated as increasing. Resulting reannotation of static arguments as dynamic can

lead to premature termination of recursions based on data types other then structures.

For example, partial evaluation of the iota function in Figure 4.7 on page 141 applied

to a known, constant value is desired to produce straight line residual code to generate

the return value. However, �niteness analysis yields a less desirable result.

The argument i of loop is annotated as increasing by �niteness analysis. Since the

argument n of loop is annotated constant, the static annotation of i is converted to

dynamic by �niteness analysis. The net result is that a single, recursive specialization

of loop is created, specialized for the constant value of n. This is clearly a highly

unoptimized result, far poorer than the one produced by lazy use analysis.

One Argument Increasing in Size, Collection of Arguments Decreasing:

Another limitation of �niteness analysis results from its concept of size being limited

to single argument positions. If all of the arguments to a function in aggregate

are getting smaller, termination is guaranteed, even though a single argument may

be increasing in size and there is no bounded, decreasing argument. The inability

of �niteness analysis to recognize this condition results in poor residual code when
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performing partial evaluation of the regular expression matcher in Figures 4.4 and 4.5

on pages 139 and 140, repeated in part in Figure 4.17.

Consider partial evaluation of the regular expression matcher applied to a static

pattern and a dynamic input string. One 
ow of control analyzed by �niteness

analysis for a kleene star pattern proceeds through applications of match-pattern?,

match-star?, match? and then match-pattern? again. Input remains constant in

size around this recursion; pattern is annotated as increasing; and, rest-pattern is

annotated as increasing.

Since input is just passed from one application to the next it is obvious that it

must be constant. The simplest means of explaining why pattern is annotated as

increasing is through an example demonstrating a case in which pattern increases in

size. Assume the �rst application of match-pattern? starts with pattern bound to

a simple kleene star expression like a� and rest-pattern bound to a large, complex

expression. In this case, match? is applied to the large complex rest pattern and the

original input. As a consequence, match-pattern? is applied to the large complex

expression, a null pattern, and the original input string. Since the large, complex

expression is larger in size than a�, pattern has increased in size and therefore it

must be annotated as increasing if �niteness analysis is to produce correct results.

Since pattern is annotated as increasing, �niteness analysis must reannotated

pattern as dynamic unless some other argument is bounded and decreasing. Since

input is constant, the only possibility is rest-pattern. However, another simple

example demonstrates that rest-pattern can remain constant in size through the

recursion being considered and therefore cannot correctly be annotated as decreasing.

Assume, rest-pattern starts o� as the null pattern. Match? is then applied to

the null pattern and the original input. The recursive application of match-pattern?

is made to two null patterns and the original input. Since one null pattern cannot be

smaller than another null pattern, pattern clearly cannot be annotated as decreasing.

Finiteness analysis reannotates the pattern and rest-pattern arguments to

match-pattern? as dynamic. Based on these reannotations, all of the variables in

the regular expression matcher end up annotated dynamic. Clearly, partial evaluation

of the regular expression matcher based on completely dynamic annotations yields

residual code roughly equivalent to the source program and far less optimized than
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(define match?

(lambda (pattern input) (match-pattern? pattern null-pattern input)))

(define match-pattern?

(lambda (pattern rest-pattern input)

(cond ((null-pattern? pattern)

(match-null? rest-pattern input))

((term? pattern)

(match-term? pattern rest-pattern input))

((kleene-star? pattern)

(match-star? pattern rest-pattern input))

((concat? pattern)

(match-concat? pattern rest-pattern input)))))

(define match-term?

(lambda (term-pattern rest-pattern input)

(if (and (pair? input)

(equal? (term-symbol term-pattern) (car input)))

(match? rest-pattern (cdr input))

#f)))

(define match-star?

(lambda (star-pattern rest-pattern input)

(or (match? rest-pattern input)

(match-pattern? (kleene-star-expr star-pattern)

(concat star-pattern rest-pattern)

input))))

(define match-concat?

(lambda (concat-pattern rest-pattern input)

(match-pattern? (concat-head concat-pattern)

(concat (concat-tail concat-pattern) rest-pattern)

input)))

(define match-null?

(lambda (rest-pattern input)

(if (null-pattern? rest-pattern)

(null? input)

(match? rest-pattern input))))

Figure 4.17: A program for matching regular expressions (repeat of Figure 4.4)
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(define match?

(lambda (pattern input)

(or (null? input)

(if (and (pair? input)

(equal? 'a (car input)))

(match? '(kleene-star (term-id a))

(cdr input))

#f))))

Figure 4.18: Optimal residual code for (match? (make-kleene-star (make-term

'a)) ?) (repeat of Figure 4.6)

the desired result produced by lazy use Analysis shown in Figure 4.6 on page 141,

repeated in Figure 4.18.

One interesting fact to note about the regular expression matcher is that if all the

arguments of each function are considered as a group, their collective size decreases

with each recursive application made by the program. In every instance, either a

symbol of the input stream is consumed in the matching process or the joint size

of the two pieces of the pattern is reduced. Finiteness analysis fails to capture this

form of reduction in size and consequently generates poor residual code for the regular

expression matcher. It trades o� guaranteed termination against residual code quality.

Temporary Increase in Size, But Average Decrease: The last limitation is the

inability of �niteness analysis to recognize a condition in which an argument tem-

porarily increases in size, but on the average is continually decreasing. For example,

consider the code in Figure 4.19. Each call to increase increases the size of the ar-

gument by one cons cell; but, each call to decrease reduces the size of the argument

by two cons cells. Therefore, each recursive application of increase utilizes an argu-

ment that is one cons cell smaller than the one in the previous application. However,

�niteness analysis annotates arg as increasing in both function de�nitions since it

does not represent the amount by which something has increased or decreased. It is

therefore unable to recognize that an increase plus a larger decrease represents a net

decrease in size.

Das and Reps in [17] extend Holst's original work in �niteness analysis, a well
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(define increase

(lambda (arg)

(if (not (null? arg))

(decrease (cons 1 arg)))))

(define decrease

(lambda (arg)

(increase (cddr arg))))

Figure 4.19: Argument temporarily increases in size, but on average continually de-

creases

as the work of Andersen and Holst [3] and Glenstrup and Jones [22], in order to

handle the problem of arguments temporarily growing in size, but having a net de-

crease by the time a recursive application is performed. The Das and Reps approach

also addresses a subtle condition in the original Holst system relating to symbolic

execution of error conditions during partial evaluation. In all other regards, Das

and Reps's extensions to �niteness analysis share the termination properties of the

original analysis.

Advantages of Finiteness Analysis

The major advantage of �niteness analysis is guaranteed termination of partial eval-

uation for all terminating source programs. It is the only termination mechanism

presented herein able to make this claim. Whether degradation in residual code qual-

ity in some cases resulting from premature termination is a good trade-o� against

guaranteed termination continues to be a source of some debate in the partial evalu-

ation community.

4.1.4 Similix

There have been �ve major releases of Similix to date. As the Similix system has

evolved, its termination mechanism has changed. The termination mechanisms of

two representative versions of Similix on which papers have been published will be

discussed herein. The limitations and advantages of the latter version of Similix are

then discussed
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Similix 1.0

Similix 1.0 is a three phase, o�ine partial evaluator for a �rst-order subset of Scheme

supporting side e�ects only on global variables. The three phases of the partial evalu-

ator are preprocessing of the source (including binding time analysis), specialization,

and post unfolding. The only portion of the preprocessing impacting termination in

any signi�cant way is the BTA, which is monovariant. There are no termination is-

sues in the post unfolding. Consequently, this discussion concentrates on termination

of the specialization phase as presented in [8].

One major di�erence between Similix and other partial evaluators is its selection

of di�erent specialization points. Whereas most partial evaluators utilize function

applications as specialization points, Similix uses dynamic conditionals as its special-

ization points. This has a small and not terribly signi�cant impact on the termination

properties of Similix, but a signi�cant impact on its performance.

The �rst step in the specialization phase is the introduction of dummy procedure

calls at the point of each dynamic conditional. These dummy applications act as

specialization points and also function as the points at which termination decisions

are made. Each dynamic conditional becomes the body of a new function. The

arguments to the function are all of the free variables referenced in the predicate,

consequent, or alternative of the conditional. The arguments of the new function

are annotated as static or dynamic based on the annotations of the corresponding

variables in the source program. The new function is applied to the appropriate values

at the location in the input program at which the conditional previously appeared.

During the specialization phase Similix operates in a fashion very similar to Mix.

However, specialization and termination decisions are only made at application sites

for the newly introduced applications. Each time symbolic execution reaches one of

the applications introduced for dynamic conditionals, the values of all of the static

arguments of the application are compared with the corresponding values of any pre-

vious applications of the same function. If no matching set of arguments is found then

creation of a new specialization is initiated. Otherwise, a specialization already exists

for the speci�ed static arguments so symbolic execution of the thread is e�ectively

terminated with the application.
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The termination properties of Similix di�er from those of Mix in two ways. First,

the Similix 1.0 termination mechanism does not include the second order heuristic

of Mix for self-recursive procedures with an argument that is shrinking in size. As

a result, Similix terminates some recursions more rapidly than Mix, producing less

specializations. However, the Mix heuristic is guaranteed not to e�ect whether the

partial evaluator eventually terminates for any given input a program.

Similix diverges for some inputs on which Mix converges. Since the only spe-

cialization points at which termination decisions are made are dynamic conditionals,

Similix can diverge specializing statically controlled loops that propagate at least

one dynamic value. This is a special case of what Weise and I called hidden di-

vergence in [31]. That Mix terminates when processing some programs with hidden

divergences, while Similix 1.0 does not, is not terribly signi�cant.

The termination mechanisms of Mix and Similix 1.0 pretty much share all the

same limitations and advantages. Just like Mix, Similix 1.0 diverges performing

partial evaluation of iota applied to an unknown argument. However, both handle the

regular expression matcher example as desired. The one main advantage of Similix 1.0

over Mix is that the use of specialization points introduced for dynamic conditionals

yields a more e�cient partial evaluator.

Similix 5.0

Several signi�cant changes were made in Similix between version 1.0 and version 5.0.

Version 2.0 extended version 1.0 with higher-order functions using a combination of

Sestoft's closure analysis and Reynolds's defunctionalization [4, 6, 41, 35]. Version

3.0 extended version 2.0 with partially static values [5]. The specializer of version

4.0 is continuation-based [7, 14, 16]. The analyses of version 5.0 are constraint-based

[9, 25]. This description of version 5.0 is based on [9]. It concentrates on a new

is-used analysis added to version 5.0 that modi�es the binding times of some terms

and results in improved termination properties.

The concept behind is-used analysis is to identify static values and expressions not

contributing to making control 
ow decisions. Static expressions not used in this sense

are reannotated as dynamic prior to the specialization phase of partial evaluation.

Conversion of annotations for some arguments of functions from static to dynamic
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can result in termination of the specialization phase of partial evaluation when it

previously diverged. Two applications di�ering only in the value of an argument

reannotated as dynamic are treated as equivalent after the reannotation.

Similix 5.0 performs is-used analysis utilizing a constraint satisfaction system.

Is-used constraints are created for the following four types of expressions. Static

constants are all annotated as used. If the predicate of a conditional is static, then it is

annotated as used. Static applications of Similix's type predicates for its record types

are annotated as used. Finally, static applications of what Similix calls transparent

(always reducible) primitive functions are annotated as used.

The last case requires some explanation. Similix divides all primitive operators

into two classes: transparent and non-transparent. Applications of transparent op-

erators to all static arguments are annotated static by BTA and are reduced during

partial evaluation by applying the function to the set of known, static arguments. Ap-

plications of non-transparent operators are always annotated dynamic and are never

reduced. In general all operators that can be correctly reduced during partial eval-

uation are considered transparent. The exceptions are side-e�ecting operators and

I/O operators. However, the Similix user can modify the default classi�cations of

operators as transparent or non-transparent.

Similix 5.0 further subdivides the transparent operators into two groups: trans-

parent and transparent-if-needed. Transparent-if-needed are operators only reduced

if the reductions are necessary to compute the value of the predicate of a conditional.

Otherwise, transparent-if-need operators function just like non-transparent operators.

Transparent operators are reclassi�ed as transparent-if-needed if their output can

increase in the size of the input. For example, cons, list, append, +, -, *, and /

are all transparent-if-needed; whereas, cdr, ..., cddddr, pair?, null?, list?, equal?,

reverse, list-ref, and member are transparent. As for the original division between

transparent and non-transparent operators, the Similix 5.0 user can override the de-

faults as to which operators are transparent and which are transparent-if-needed.

The addition of is-used analysis to Similix 5.0 enables it to terminate when per-

forming partial evaluation of the iota function in Figure 4.7 on page 141, repeated

as Figure 4.20, applied to an unknown input. Is-used analysis annotates the variable

i as not being used. As a result, the BTA annotation of i is converted from static
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(define iota

(lambda (n)

(loop 1 n)))

(define loop

(lambda (i n)

(if (= i n)

'()

(cons

i

(loop (1+ i) n)))))

Figure 4.20: First-order iota function (repeat of Figure 4.7)

to dynamic in the dummy function application inserted for the dynamic conditional.

Since both arguments of the inserted application are dynamic, only one specialization

is created. Partial evaluation terminates after creating the single specialization.

Limitations and Advantages of Similix 5.0

Similix 5.0 overcomes most of the limitations of the termination mechanism of Mix. It

handles a source language including higher-order functions, utilizes a BTA supporting

partially static structures, and due to is-used analysis terminates when processing

iota applied to an unknown input value. However, Similix continues to su�er the

limitations of a monovariant BTA. Furthermore, Similx 5.0 fails to terminate in some

cases in which lazy use analysis yields termination.

Is-used analysis is limited in two regards. It lacks the concept of a value being

partially used in a sense akin to a partially static value being partially known. And, it

records values as being used even if they contribute to making control 
ow decisions

that do not e�ect the result of a program. Each of these limitations is addressed in

order.

Partial Use: Partially static BTA was invented in order to produce better results

when analyzing programs containing values partially known and partially unknown

during partial evaluation. Similarly, partial use is needed in order to produce better
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(define iota

(lambda(n cons-or-vector)

(loop (cons 1 cons-or-vector) n)))

(define loop

(lambda (i-and-cons-or-vector n)

(if (= (car i-and-cons-or-vector) n)

'()

(if (equal? (cdr i-and-cons-or-vector) 'cons)

(cons

(car i-and-cons-or-vector)

(loop (cons (+ 1 (car i-and-cons-or-vector))

(cdr i-and-cons-or-vector))

n))

(vector

(car i-and-cons-or-vector)

(loop (cons (+ 1 (car i-and-cons-or-vector))

(cdr i-and-cons-or-vector))

n))))))

Figure 4.21: An unusual version of iota that returns the result composed of either

cons cells or vectors and passes two arguments as a pair

results when is-used analysis is applied to a program with values that are only par-

tially used in making control 
ow decisions. Take for example the unusual version of

iota in Figure 4.21. This version of iota returns a result either composed of cons cells

or vectors. Loop passes two conceptual arguments as a pair, the index of the iteration

and a 
ag telling whether to use cons cells or vectors. Imagine partial evaluation of

this version of iota applied to an unknown value and 'cons. Because half of the argu-

ment to loop, the type of structure utilized to build the result, is used in evaluating

the predicate of the inner conditional, the entire variable i-and-cons-or-vector is

annotated as being used by is-used analysis. Consequently, i-and-cons-or-vector

remains static even after is-used analysis. This causes partial evaluation to diverge

since each iteration of the loop recursion produces a new value for the i portion of

i-and-cons-or-vector.

The version of iota in Figure 4.21 presents a problem for is-used analysis be-

cause two portions of a value that serve di�erent purposes have been combined into

a single object. A version of is-used analysis supporting partial use would annotate
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the variable i-and-cons-or-vector as being partially used. The car of the cons

cell would be annotated as unused and the cdr as used. As a result, the car of

i-and-cons-or-vector would be reannotated as dynamic by is-used analysis. This

would result in convergence of partial evaluation. Lazy use analysis inherently cap-

tures this form of partial use.

What Does It Mean To Be Used?: The second limitation of is-used analysis is

illuminated by considering the evolution of use analysis. I �rst developed what was

later to be called eager use analysis. Eager use analysis often diverged due to use

of information in performing delta reductions as part of computations that ought to

have been dead code eliminated, in whole or part. The next step in the evolution

was the design of an analysis that functioned very similar to lazy use analysis, but

asserted use of information any time it was utilized in making a control 
ow decision.

This analysis similarly was found to diverge due to information being used in making

control 
ow decision that ought to have been dead code eliminated. The �nal step in

the process was the creation of lazy use analysis.

Is-used analysis might aptly be described as a static version of the intermediate

use analysis described above.5 It shares with that analysis the inability to enforce

termination for the strange version of the iota function shown in �gure 4.22. Consider

partial evaluation of iota applied to an unknown input. The entire inner conditional

can be dead code eliminated. However, is used analysis annotates j as used because

of the predicate of the inner conditional. As a result, the inserted specialization point

for the outer conditional retains j as a static parameter. As the value of j changes

for each recursive call to loop, an in�nite number of specializations are created.

Advantages of Similix 5.0

The major advantage of Similix's termination mechanism is its computational ef-

�ciency. All three analyses, 
ow analysis, BTA, and is-used analysis, have been

demonstrated to have good complexity bounds and e�cient run times. Furthermore,

5These two analyses were developed during the same time period and independently. Eager use
analysis was published prior to the design of either of these analyses and is referenced in publications
presenting is-used analysis.
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(define loop

(lambda (i n j)

(if (= i n)

((lambda (a b) a)

'()

(if (> j 3)

'()

#t))

(cons

i

(loop (+ 1 i) n (+ 1 j))))))

Figure 4.22: An unusual version of iota ends the result with either the empty list or

#t

with the addition of is-used analysis, Similix terminates on a su�ciently broad class of

programs to make it a reasonably useful tool, as opposed to just a research curiosity.

Similix may be unique in this regard.

4.1.5 Fuse

Fuse is an online partial evaluator. Its termination mechanism, as described in [48],

is very simple and fairly aggressive. While Fuse terminates on all input programs not

containing in�nite loops, it is susceptible to premature termination.6

Fuse's termination mechanism is based on two primary data structures, a cache of

specializations created for each source function and a stack of pending applications.

The cache is indexed by the source function and the arguments for which the asso-

ciated specializations are created. The stack contains a description of each pending

application as well as a marker designating each point in the execution sequence at

which a dynamic conditional was encountered.

When symbolic execution of an application is about to be performed in Fuse, the

cache is �rst checked to see if a specialization already exists for the given function

and argument values. If one does, then a residual application is created that applies

the specialization found in the cache, and symbolic execution of the current thread

6Later versions of Fuse included other approaches to termination including manual �niteness an-
notations, capturing the creation-time stack in closures [37], and detection of static sized structures.
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of execution is completed. If there is not a hit in the cache, the stack is searched

in order to determine whether a recursive call is about to be performed. The search

starts with the most recent application and proceeds backwards in time.

If the pending application is not determined to be a recursive call, symbolic exe-

cution of the application is performed. If the application is a recursive call and the

recursion does not span a dynamic conditional, symbolic execution of the pending ap-

plication is also performed. A recursion not spanning a dynamic conditional can only

diverge if the source program would diverge at runtime if it reached the entry to the

recursion. However, if a recursive loop spans a dynamic conditional, Fuse terminates

the recursion.

Once Fuse terminates a recursion, it needs to �nd a specialization for the recursive

loop. Fuse starts by taking the corresponding arguments of the initial application and

the recursive application and generalizing them to form a new argument set. The

cache is then checked to see if a specialization already exists for an application of the

pending function to the generalized argument set. If one does, then a residual call

to the specialization in the cache is created. Otherwise, symbolic execution of the

application of the the given function to the generalized argument set is performed in

order to create the needed specialization.

Limitations and Advantages of of Fuse

The major limitation of Fuse's termination mechanism is premature termination.

Fuse can produce suboptimal residual code due to the failure to create some desirable

specializations. It can also fail to produce the most highly optimized code for certain

specializations.

Consider once again the regular expression matcher from Figures 4.4 and 4.5 on

pages 139 and 140, repeated in part in Figure 4.23. Partial evaluation of match? ap-

plied to the pattern kleene star of a and an unknown input string initiates symbolic

execution of match?. This leads to an application of match-pattern? to the kleene

star pattern, a null pattern, and an unspeci�ed input. The cond in match-pattern?

executes the kleene star case applying match-star? to the identical set of inputs.

Since the input is unknown, the conditional in match-star? is dynamic. When the

second branch of the conditional is executed, match-pattern? is applied to the term
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a, the original kleene star pattern, and an unknown input. Fuse detects this recursive

application of match-pattern? spanning a dynamic conditional and terminates. Gen-

eralization of the corresponding arguments of the two applications results in creation

of a specialization of match-pattern? for two unknown patterns and an unknown in-

put string. The specialization created and the residual program produced are largely

unoptimized due to the unknown nature of the generalized arguments.

Fuse's termination mechanism is limited by its assumption that all recursive ap-

plications are equivalent. It has no way of di�erentiating amongst di�erent recursive

applications of the same function. It is unable to decide, for example, that the �rst

recursive application is distinct from the original application, but the second recursive

application is equivalent to the original application. This di�erence between Fuse's

termination mechanism and use analysis leads Fuse to terminate prematurely on the

regular expression matcher, whereas use analysis proceeds until a su�cient number

of iterations of the recursion are performed in order to produce better residual code.

The major advantage of Fuse's termination mechanism is that by aggressively

terminating, it terminates on some programs on which use analysis does not. Neither

Fuse nor use analysis, however, guarantees termination for all input programs, unlike

�niteness analysis.

4.1.6 Conclusion

Lazy use analysis has been compared with the signi�cant alternative termination

mechanisms of Mix, Finiteness Analysis, Similix, and Fuse. Each of the alternatives

has been shown to fail to handle appropriately one or more of the types of source

code motivating the development of use analysis. However, each of the alternatives

is signi�cantly more e�cient than use analysis. The basis of use analysis' e�ciency

problems and some potential solutions to them are addressed in Chapter 5.
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(define match?

(lambda (pattern input) (match-pattern? pattern null-pattern input)))

(define match-pattern?

(lambda (pattern rest-pattern input)

(cond ((null-pattern? pattern)

(match-null? rest-pattern input))

((term? pattern)

(match-term? pattern rest-pattern input))

((kleene-star? pattern)

(match-star? pattern rest-pattern input))

((concat? pattern)

(match-concat? pattern rest-pattern input)))))

(define match-term?

(lambda (term-pattern rest-pattern input)

(if (and (pair? input)

(equal? (term-symbol term-pattern) (car input)))

(match? rest-pattern (cdr input))

#f)))

(define match-star?

(lambda (star-pattern rest-pattern input)

(or (match? rest-pattern input)

(match-pattern? (kleene-star-expr star-pattern)

(concat star-pattern rest-pattern)

input))))

(define match-concat?

(lambda (concat-pattern rest-pattern input)

(match-pattern? (concat-head concat-pattern)

(concat (concat-tail concat-pattern) rest-pattern)

input)))

(define match-null?

(lambda (rest-pattern input)

(if (null-pattern? rest-pattern)

(null? input)

(match? rest-pattern input))))

Figure 4.23: A program for matching regular expressions (repeat of Figure 4.4)
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4.2 CPS Conversion

Fisher and Plotkin's continuation-passing-style (CPS) conversion [19, 33] has played

a central role in the compilation of Scheme starting with Steele's �rst Scheme com-

piler [44]. Danvy advocates CPS conversion as a stage in o�ine partial evaluation

in [14]. He observes that abstract interpretation after CPS conversion yields more

precise results, improving the precision of BTA and therefore the quality of residual

code produced.

Ruf identi�es several sources of loss of information causing decreased residual

code quality in most partial evaluators in [37]. These include failure to represent the

return values of residual applications of specializations as anything but completely

unknown values, generalization of the results of both branches of a conditional, and

generalization of argument values from multiple iterations of a recursion in order to

build a specialization. CPS conversion participates in the amelioration or elimination

of each of these sources of loss of information.

All three of the above sources of information loss result from coalescing and ap-

proximating values created along multiple 
ows of control into a single value correct

for all the 
ows of control. The unknown value is clearly a correct approximation

for all return values from a specialization. Analyzing the continuation of a condi-

tional using a generalization of the results of the two 
ows through a conditional,

one for the consequent and the other for the conditional, is a correctness preserving

approximation to analyzing the continuation of the conditional separately using the

result of each 
ow of control through the conditional. Finally, a generalization of the

argument values for di�erent iterations of a recursion for the purpose of creating a

recursive specialization is an approximation to the e�ect of analyzing every possible

iteration of the recursion as a separate 
ow of control.

How CPS conversion lessons the e�ect of each of the three sources of information

loss will be discussed separately. This is followed by a presentation of the costs of

CPS conversion. Finally, the role of CPS conversion in lazy use analysis, its bene�ts,

and its costs are outlined.
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4.2.1 Bene�ts of CPS Conversion

CPS conversion e�ectively eliminates returning values from functions. Consequently,

approximation of return values of specializations is no longer an issue. However, the

values previously returned by functions become arguments passed to continuations.

In some cases, there may be losses of information in approximating the new arguments

introduced by CPS conversion, so the loss of information previously taking place is

not necessarily eliminated.

When a specialization is recursive, the approximation of the return value of the

specialization is replaced by an approximation of an argument to a continuation.

If the approximation algorithm for arguments for recursive specializations is more

accurate than utilization of the completely unknown value, which it is for many partial

evaluators, then the loss of information during partial evaluation of the CPS converted

program is often less than for the original source program. This improvement in

precision comes in addition to those resulting from the increased precision of BTA,

for o�ine systems, addressed by Danvy.

CPS conversion does eliminate the loss of information about return values exhib-

ited by most partial evaluators when applying non-recursive specializations. There

is no approximation of the argument to the continuation replacing the return value

of the specialization, so the previous complete lack of information regarding the re-

turn value is replaced by more complete information about the value passed to the

continuation. Again, this improvement in precision comes in addition to any other

improvements resulting from BTA being performed on a CPS converted source pro-

gram.

CPS conversion eliminates the loss of information resulting from approximating

the results of separate 
ows of control through a conditional by a single value. Each

branch of a conditional applies the continuation of the conditional to the result of

that branch. Separate analysis of the continuation of the conditional is performed for

each 
ow of control through the conditional. This improvement in accuracy comes

naturally as a result of CPS conversion. Special e�ort is required in order to combine

the two 
ows of control after CPS conversion.

Separate analysis of the continuation of a conditional for each 
ow of control
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through the conditional could be achieved without CPS conversion. However, most

partial evaluators consider the exit from a conditional to be a join point for the

analysis, much as is the case for most traditional compiler analyses. They do not

choose to analyze separately the continuation of the conditional for each 
ow of

control into the continuation.

A more precise approximation of the argument values for creating specializations

is a second order e�ect of CPS conversion directly resulting from the previously de-

scribed bene�ts. More precise approximations of the return value of specializations

contribute to computing more precise approximations of all computations involving

those return values. The more precise results of these computations are often involved

in the computation of argument values that are consequently also more precise. Sim-

ilarly, the separating out of the analysis of di�erent 
ows of control often leads to

di�erent recursions involving the same function no longer being con
ated in the anal-

ysis. By separating di�erent function applications into separate groups, the argument

approximations for each group only need be correct for the applications belonging to

that particular group. The approximations utilized for a single group often may be

more precise than those resulting from considering all the applications in all of the

groups as a whole.

4.2.2 Costs of CPS Conversion

The analysis bene�ts of CPS conversion come at the expense of increased computa-

tional cost to perform the analysis. Utilization of CPS conversion to separate out

analysis of di�erent 
ows of control yields more precise results because more analysis

is being performed. Each join point in an analysis prior to CPS conversion eliminated

as a result of CPS conversion doubles the amount of analysis performed of the con-

tinuation representing the rest of a computation starting at the previous join point.

The total amount of increased computation is therefore exponential in the number

of join points removed. While some of the theoretical increase in complexity may

be eliminated in practice by detecting pieces of the analysis that are identical and

therefore need not be replicated, in the worst case the increase in complexity is still

exponential.
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4.2.3 CPS and Lazy Use Analysis

CPS conversion is used as a prepass in a partial evaluator whose termination mecha-

nism is based on lazy use analysis. Neither the exits from conditionals nor those from

function applications are join points for lazy use analysis. The only conceptual7 join

points for lazy use analysis are those resulting from termination of recursions.

Lazy use analysis bene�ts from all of the advantages of increased precision of anal-

ysis resulting from CPS conversion described above. In addition, increased precision

of the analysis aids lazy use analysis in making termination decisions. More precise

uses can be computed for the more precise values generated during symbolic execu-

tion. These in turn yield improved termination, both in terms of detecting equivalent

iterations and those that are distinct.

Not surprisingly, the �rst implementation of a partial evaluator based on lazy use

analysis su�ers from performance problems resulting from the exponential number of


ows of control that are considered by the analysis. This and related problems are

discussed in more detail in Chapter 5.

7The implementation does join equivalent pieces of the analysis in order to increase e�ciency as
described in Chapter 5.
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4.3 Two Phase Partial Evaluation8

Both Osgood [32] and I independently discovered the idea and bene�ts of what I call

two phase partial evaluation. Two phase partial evaluators separate the analysis phase

in which potential specializations are analyzed from a later code generation phase in

which residual code is produced utilizing the potential specializations characterized by

the analysis phase. This partitioning of partial evaluation enables analysis decisions,

such as termination, to be separate from code generation decisions, such as what

potential specialization to include in the residual code, what potential specialization

to apply at each call site, and when to inline a specialization.

Two phase partial evaluation is di�erent than the partitionings utilized by o�ine

partial evaluators. The separation of BTA into a separate phase by o�ine partial

evaluation is really a partitioning of the analysis into two passes, as opposed to a

separation of analysis from code generation. BTA serves to enhance the execution

time of partial evaluation; however, it does this at the expense of a decrease in

the quality of residual code in some cases. This is signi�cantly di�erent from the

partitioning in two phase partial evaluation designed to increase both the quality of

residual code and the termination properties of partial evaluation, but not concerned

with execution e�ciency of partial evaluation.

Postunfolding, a phase present in many o�ine partial evaluators, is also somewhat

di�erent than the code generation phase of two phase partial evaluation. Most code

generation decisions are made in o�ine partial evaluators prior to post unfolding.

Postunfolding might best be thought of as a peephole optimization run after the

completion of most of the code generation and designed to improve the residual code

quality. By the time the postunfolding phase is run, it is too late to make most

of the code generation decisions outline above that are performed during the code

generation phase of a two phase partial evaluator.

Osgood observes that single phase partial evaluators tend to use greedy code gen-

eration algorithms. These might aptly be compared to hill climbing algorithms that

perform local optimization at each point in their execution, possibly resulting in local,

8The second phase of my partial evaluator was designed, but never implemented.
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but not global, optimization. Osgood further states these approaches often lead to

residual code explosion and resulting performance degradation. Attempts to elimi-

nate this problem often lead instead to an inappropriate or insu�cient selection of

specializations.

Among the optimizations performed by PARTICLE, Osgood's partial evaluator,

are the following types of optimizations that cannot be performed at all, or as e�ec-

tively, by a one phase system: call site retargeting, multispecialization optimization,

and selecting specializations based on accurate global cost/bene�t information. Call

site retargeting is the decision to call a specialization that is correct for more general

arguments than those supplied at a given call site in order to obviate the need to

create residual code for the more speci�c specialization. This optimization chooses to

trade o� the runtime e�ciency of the more speci�c specialization against the costs of

increased residual code. Successful implementation of this optimization is dependent

on a knowledge of the execution costs of the alternative specializations, the size of

the residual code for each specialization, and the relative frequency with which the

specializations will be called at runtime. None of these values tend to be available on

the 
y during one phase partial evaluation.

Multispecialization optimization is a global technique in which decisions regarding

what specializations to include in a residual program and which to apply at each call

site are not made independently, but collectively based on a global analysis of the

costs and bene�ts. By de�nition, this type of global optimization cannot be performed

on the 
y since all the necessary information is not available until analysis has been

performed of all possible specializations to be utilized in a residual program.

Finally, even simple decisions like whether to inline specializations cannot be made

without global cost/bene�t information. For example, it nearly always improves

performance to inline a specialization that is only applied at a single call site since

residual code size is reduced as well as the runtime cost of applying the specialization.9

Again, any optimizations requiring global information cannot be performed by one

phase systems.

9The only exception is in rare cases in which the inlining causes pernicious cache e�ects on the
target machine.
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To date no implementation of the code generation phase exists for any partial eval-

uator whose termination mechanism is based on lazy use analysis. Consequently, it is

impossible to make any comparative claims to those of Osgood regarding two phase

partial evaluation. What can be observed is that partitioning of partial evaluation

into two phases enables all of the code generation optimization techniques developed

by both the partial evaluation and traditional compiler communities to be brought to

bear on the partial evaluation code generation problem, unfettered by considerations

of the analysis phase such as termination.



Chapter 5

Large Resource Consumption

Lazy use analysis as currently implemented su�ers from large resource consumption.

Most serious is the huge amount of memory consumed when partially evaluating even

reasonably small source programs. For example, partial evaluation of the regular ex-

pression matcher in Figures 4.4 and 4.5 on pages 139 and 140 applied to the pattern

a� and an unknown input string cannot be completed on any machine to which I

have access. Based on an evaluation of the partially completed analysis, a machine

with roughly 12-16 Gbytes of swap space would be required to complete the analysis

utilizing the present implementation. During the analysis tens of thousands of ap-

plications and throws would be analyzed, creating tens of thousands of application

records, as well as hundreds of thousands of symbolic values and use dependences.

This chapter begins by describing the most important sources of large resource

consumption by lazy use analysis. Both those sources inherent in the lazy use analysis

algorithm and those resulting from the implementation strategy selected are discussed.

This is followed by a presentation of the approaches taken so far to decrease the

resource consumption of the current implementation. The discussion concludes with

an outline of some untested ideas potentially yielding a further reduction in resource

consumption. A table including all sources of large resource consumption discussed

appears in Figure 5.1. It speci�es whether the problem is inherent to the use analysis

algorithm or results from an implementation de�ciency, any ideas for reducing the

resource consumption, and whether the ideas have already been implemented and

tested or not.

180
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Source Inherent/ Solution Implemented/

Implementation Untested

Separate analysis of Inherent Join identical threads Implemented

distinct 
ows of Reuse of analysis Untested

control Static analysis Untested

Expanded argument Inherent Avoiding copying Implemented

sets Static analysis Untested

Computing generlized Inherent

return values

Retention of Inherent

intermediate data

structures

Non-generational Implementation Di�erent GC Untested

stop & copy GC

Ine�cient Implementation Change representations Untested

representations Reimplement in Untested

another language

Figure 5.1: Table of sources of large resource consumption

5.1 Sources of Large Resource Consumption

The sources of large resource consumption by lazy use analysis can be partitioned into

two categories: those resulting from inherent aspects of the algorithm and those re-

sulting from de�ciencies in the implementation. This discussion begins by presenting

the former and then proceeds to the later.

5.1.1 Inherent Costs of Lazy Use Analysis

There are four primary inherent sources of large computational resource consumption

by lazy use analysis. All result from the attempt to perform more precise analysis

than other partial evaluators in order to yield a better combination of termination

and residual code quality. The �rst source of large resource consumption is the very

aggressive approach taken to separate analysis of distinct 
ows of control. The second

is expanding the e�ective argument set of every function and application to include

not only the actual arguments, but also all the lexically apparent values referenced

from the body of the function. The third is computing generalized return values for
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terminated recursions. And, the fourth is the need to retain most intermediate data

structures created during the analysis until the entire analysis has been completed.

Each of these sources of resource consumption is discussed in order.

Separate Analysis of Distinct Flows of Control

One of the limitations on the precision of the analysis performed by any partial

evaluator is the selection of the join points in the analysis. A join is performed any

time the results of two separate 
ows of control are combined and subsequent analysis

is performed using the combined result, instead of being performed separately for the

results of each 
ow of control. The types of join points utilized by di�erent analyses

can be broken into a number of categories: applications, exits from conditionals, and

exits from applications, amongst others. Each of these cases is discussed in principal,

followed by a presentation of in what cases lazy use analysis performs a join for each

category.

Every function application is a join point for monovariant partial evaluators. Since

only a single specialization is created for each source function, all analysis of applica-

tions of each function is combined. Polyvariant partial evaluators don't join analysis

of all applications of each function together, but selectively join applications based

on the termination mechanism utilized.

Exits from conditionals are join points for most partial evaluators. The continu-

ation of the conditional is analyzed based on the combined results of the analysis of

the consequent and the alternative, rather than being analyzed separately based on

which one of the consequent and alternative is passing control to the continuation.

When an N -way conditional appears in a function, N di�erent 
ows of control result.

Since lazy use analysis analyzes at least two iterations of all recursions before

making a termination decision, at least N2 
ows of control are analyzed for a recursive

the function containing an N -way branch. Computation of a generalized return value

entails analysis of at least another two iterations of the recursion. The net result is

analysis of at least N4 
ows of control. This represents signi�cantly more analysis,

and therefore greater resource consumption, than is utilized by an algorithm for which

exits from conditionals are join points.

Most partial evaluators only analyze the continuation of a function application
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once for each application. Some analyze the continuation separately for each 
ow of

control within the function returning a distinct result. Much as for conditionals, N

di�erent return values implies N times the analysis of the continuation when func-

tion returns are not join points. When multiple conditionals are considered and/or

recursions are analyzed more than two iterations deep, the number of 
ows of control

to be analyzed can grow exponentially in the number of branch points and the depth

of recursion analyzed.

Lazy use analysis as implemented strives to maximize the precision of the analysis

by taking a very aggressive approach to performing separate analysis for di�erent 
ows

of control. Joins are only performed when the analysis believes them to be required in

order to facilitate termination. Exits from dynamic conditionals are never join points.

The continuations of dynamic conditionals are always separately analyzed based on

whether control is passed to the continuation by the consequent or the alternative.

Function exits are also never join points. The continuations of function applications

are separately analyzed for each 
ow of control within a function producing a return

value from the application. Function applications are only join points when lazy use

analysis' termination mechanism decides a recursion needs to be terminated. In this

case, the join is between the two applications deemed equivalent.

A polyvariant partial evaluator utilizing exits from conditionals and function ap-

plications as join points e�ectively loses these join points if its source programs are

CPS converted prior to partial evaluation. This is because the exits become new

function applications implementing the throws to the continuations. So long as the

polyvariant specializer does not perform a join at the function application points, the

joins for the exits e�ectively disappear. This explains why performing CPS conversion

prior to many analyses improves the precision of those analyses.

Lazy use analysis performs CPS conversion during preprocessing of the source

program in order to achieve the increased precision yielded by eliminating exits from

conditionals and functions as join points. The downside of this approach is the

signi�cant increase in the number of total expressions processed by the analysis.

In the worst case, the time complexity of the analysis increases exponentially in the

number of potential join points removed. Since the memory consumption of lazy use

analysis is also roughly linear in the number of expressions analyzed, this explains
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one source of very large memory consumption by lazy use analysis in comparison with

analyses utilizing exits as join points.

Most partial evaluators consider any two applications of the same function to

equivalent arguments to be equivalent. Some partial evaluators only consider a sub-

set of the arguments or a subset of the information present in each argument when

making equivalence decisions regarding applications. In all of these partial evalua-

tors, the equivalent applications serve as join points of the analysis. Since lazy use

analysis is based on the CS-DOS, two applications with identical arguments are not

necessarily deemed equivalent unless their continuations utilize their return values in

an equivalent fashion. This means identical function calls are separately analyzed

by use analysis when they have nonidentical contexts. This leads to a considerable

amount of additional analysis for many programs.

For example, partial evaluation of the regular expression matcher in Figures 4.4

and 4.5 on pages 139 and 140, repeated in part in Figure 5.2, for the pattern a� and

an unknown input eventually leads to symbolic execution of match-star? applied

to a�, the null pattern, and the unknown input. Continued symbolic execution of

match-pattern? in the body of match-star? eventually leads to an identical appli-

cation of match-star? applied to a�, the null pattern, and the unknown input. Most

partial evaluators would perform a join at this point. However, lazy use analysis does

not perform a join because the two applications of match-star? have non-identical

continuations.

Expanded Argument Sets

Correct termination of higher-order programs requires considering not only the ar-

guments to functions, but also all lexically apparent values utilized in the body of a

function. Lazy use analysis performs an implicit lambda lifting [27], removing the lex-

ical hierarchy and making all passing of information explicit, in order to address this

need. This yields between a two and �ve times increase in the arity of most functions.

The increased arity adds a signi�cant constant factor to the memory required to store

the use dependence graph and represent function applications. It also increases the

computational cost of processing every application, propagating use information, etc.
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(define match?

(lambda (pattern input) (match-pattern? pattern null-pattern input)))

(define match-pattern?

(lambda (pattern rest-pattern input)

(cond ((null-pattern? pattern)

(match-null? rest-pattern input))

((term? pattern)

(match-term? pattern rest-pattern input))

((kleene-star? pattern)

(match-star? pattern rest-pattern input))

((concat? pattern)

(match-concat? pattern rest-pattern input)))))

(define match-term?

(lambda (term-pattern rest-pattern input)

(if (and (pair? input)

(equal? (term-symbol term-pattern) (car input)))

(match? rest-pattern (cdr input))

#f)))

(define match-star?

(lambda (star-pattern rest-pattern input)

(or (match? rest-pattern input)

(match-pattern? (kleene-star-expr star-pattern)

(concat star-pattern rest-pattern)

input))))

(define match-concat?

(lambda (concat-pattern rest-pattern input)

(match-pattern? (concat-head concat-pattern)

(concat (concat-tail concat-pattern) rest-pattern)

input)))

(define match-null?

(lambda (rest-pattern input)

(if (null-pattern? rest-pattern)

(null? input)

(match? rest-pattern input))))

Figure 5.2: A program for matching regular expressions (repeat of Figure 4.4)
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(define (fact n)

(if (zero? n)

1

(mult 1 n)))

(define (mult i j)

(if (= i j)

i

(let ((mid (truncate (/ (+ i j) 2))))

(* (mult i mid)

(mult (1+ mid) j)))))

Figure 5.3: Divide and Conquer Factorial

Computing Generalized Return Values

Lazy use analysis computes generalized return values in order to improve the pre-

cision of the analysis of the continuation of terminated recursions. The decision to

use the lazy use analysis framework in order to compute a generalized return value

tailored to the context in which a terminated recursion is applied increases the com-

putational complexity of the analysis and therefore the amount of resources utilized.

Ruf computed generalized return values independent of the context in which a recur-

sive function is applied [37]. Consequently, he only needed to analyze each distinct

generalized application at most once. My system must reanalyze each generalized

application for each context in which a recursive function is applied.

For example, consider partial evaluation of the divide and conquer version of fac-

torial in Figure 5.3 applied to an unknown argument value. Because there are two

recursive calls to mult, in its body, symbolic execution of recursive calls to mult will

be terminated several di�erent times. For each terminated recursion, a generalized

return value is required. Many of the terminated recursions are of generalized ap-

plications of mult applied to two unknown values. Despite each of the generalized

applications having identical arguments, analysis to compute a generalized return

value is performed multiple di�erent times since the continuations are not identical

in all cases.
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As stated earlier, computation of generalized return values is performed by sym-

bolic execution of generalized applications. Since lazy use analysis is utilized to

terminate the computation of the generalized return value, all the factors outlined

in the previous section leading to large resource consumption apply to these calcu-

lations as well. In fact, since generalized applications utilize less speci�c arguments,

they tend to lead to a greater number of 
ows of control. The result is often even

greater resource consumption to compute generalized return values than to perform

the rest of the analysis.

The reasons for huge resource costs become clear when one realizes the di�erent

sources of resource consumption tend to combine multiplicatively, not additively.

Computing generalized return values utilizing lazy use analysis means the analysis

must symbolically execute at least four iterations of any terminated recursion. At

least two iterations are required before an initial termination decision is possible.

At least two additional iteration are required to terminate the recursion initiated by

symbolic execution of the generalized application. And, the two additional iterations

for computing a generalized return value are performed for each 
ow of control in

which a recursive call is made.

Consider partial evaluation of the regular expression matcher in Figure 5.2 applied

to an unknown regular expression and pattern. Each application of match-pattern?

generates four 
ows of control for the four branches of the cond. Each of these 
ows

of control symbolically executes four iterations of the main recursion in order both to

terminate the initial recursion and the computation of the generalized return values.

The net result is analysis of 256 (i.e., 44) 
ows of control.

Retention of Intermediate Data Structures

Symbolic execution performed by lazy use analysis is a top down processes beginning

with an initial function application initiating execution of a program and proceeding

through return of one or more results. Assignment of use annotations to values

utilized by symbolic execution and the termination mechanism is a bottom up process,

starting with the return values and working backwards towards the initial inputs to a

program. Since lazy use analysis switches back and forth between symbolic execution

and propagation of use information as the analysis is performed, the use dependence
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graph, use annotations, symbolic values, and symbolic execution state information all

must be retained until the analysis is completed.

State information about symbolic execution is necessary so symbolic execution of

any terminated recursion can be reinitiated, if required. This also necessitates reten-

tion of symbolic values needed to reinitiate symbolic execution. The use dependence

graph and use annotations are required so any changes in use annotations can be

propagated to all appropriate values. Addition of new nodes to the use dependence

graph requires retention of those nodes to which the new nodes are to be attached

and retention of the use annotations on those nodes so those annotations can be

propagated over the new dependences.

5.1.2 Unnecessary Resource Consumption

There are two main sources of unnecessary memory consumption by my current im-

plementation of lazy use analysis. The Scheme system being used to execute my

partial evaluator utilizes a non-generational stop-and-copy garbage collector. This

form of garbage collection doubles the virtual address space required to execute a

program, as it requires two equal sized heaps, only one of which is being utilized to

store live data objects at any point in time.

The representations of symbolic values, use annotations, and use dependences

were all selected to maximize 
exibility, debugability, and e�ciency of execution.

Signi�cantly more concise representations are certainly possible, but in some cases at

the cost of decreased speed of symbolic execution. It appears the memory consump-

tion of the data structures could be reduced by at least a factor of four. Combining

this with the factor of two lost due to the form of garbage collection utilized, the

memory image of lazy use analysis ought to be reducible by a factor of eight without

signi�cant conceptual e�ort. With somewhat more e�ort a port of the algorithm

to a language not requiring 8 byte words (on a 64-bit architecture) to represent the

smallest denotable values would signi�cantly reduce the memory requirements.
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5.1.3 Steps Taken to Reduce Memory Consumption

Two major approaches have been taken to reduce the memory consumption of lazy use

analysis: joining identical computations to avoid redundant analysis and representa-

tion and elimination of copying symbolic values when the two copies are guaranteed

to have identical use annotations. Each of these optimizations is explained below,

including an analysis of the e�ectiveness of each optimization.

Avoiding Redundant Analysis

Any time two computations are identical, they need not be analyzed separately. Most

partial evaluators keep a cache of specializations in order to avoid redundant analysis.

When symbolic execution reaches an application, the function and arguments are

compared with all the specializations in the cache in order to determine whether an

identical application has already been analyzed. If it has, the results of the previous

analysis are reused.

As explained previously, the de�nition of an identical application is less general for

lazy use analysis than for algorithms based on approximating the CF-DOS. Not only

must functions be equivalent and all the actual and inherited arguments be identical,

but also the continuation must be identical. This signi�cantly limits the opportunities

to perform this optimization. In practice, it is rarely, if ever, applicable.

A related optimization is the detection of identical throws. These are cases in

which a throw is performed to the same continuation utilizing an identical argument

and identical inherited values. Identical throws occur slightly more frequently than

identical applications, but still not that often. In most cases they result at locations

in the analysis that would be join points for other algorithms. For example, at exits

from conditionals when both 
ows of control through the conditional return identical

values or at exists from functions when more than one 
ow of control through the

function returns an identical value.

Avoiding Creating Identical Symbolic Values

The use analysis algorithm speci�es that each time a function application is per-

formed, each argument is copied, an identity use dependence is created between the
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originals and the copies, and symbolic execution of the function body is performed

utilizing the copies. Copying takes place in order to ensure di�erent uses of the same

value by di�erent functions are not con
ated. However, con
ating of uses can only

occur when the same value is utilized in more than one computation.

The copy avoidance optimization is based on statically detecting during prepro-

cessing variables only referenced in one location in the preprocessed source code. The

values stored in such variables never need to be copied prior to being passed as an

argument to a function since they by de�nition can only be utilized in a single compu-

tation. In order for a value to be used in more than one computation, some variable

bound to the value at some point must be referenced in more than one location in

the source code. The symbolic value is copied only when accessed through one of the

multiple references to the same variable.

The copy avoidance optimization based on detecting single use variables has a

signi�cant e�ect on the number of symbolic values, use annotations, and use depen-

dences created. It also signi�cantly reduces the computational cost of propagating

use information over the use dependence graph due to the reduced size of the graph.

On an ensemble of programs tested, well over 80% of variable references were marked

as single reference by the preprocessor and the creation of well over 80% of potential

copies of symbolic values were avoided. In particular, most of the inherited arguments

added to function de�nitions are annotated as single use, greatly reducing the cost

of the increased arity. However, the representations of the applications continue to

require slots in which to store every one of the arguments, whether copied or not.

Therefore, copy avoidance does not completely do away with the memory costs of

increased arity.

5.2 Untested Ideas to Reduce Resource Con-

sumption

I have developed two additional untested idea for reducing the resource consumption

of lazy use analysis. The �rst is an approach to reusing the results of analysis of

similar applications in order to avoid creation of redundant data structures. The
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second is the use of static analysis prior to lazy use analysis in order to eliminate

the need to perform some of the dynamic analysis. Each of these two possibilities is

presented below.

5.2.1 Reusing Analysis

The objective of this optimization is to identify function applications symbolic exe-

cution of which will perform the identical reductions as those performed for symbolic

execution of some other application. In this case, the two applications will produce

identical use dependence graphs, so both execution time and memory utilization can

be reduced by reusing the results of symbolic execution of one application.

Detection of applications producing equivalent symbolic execution is facilitated

by an eager use analysis for reuse. As was explained in Chapter 2, eager use anal-

ysis records the information utilized in performing reductions during symbolic exe-

cution. Since performance of identical reductions implies production of identical use

dependences, symbolic execution of two applications generating identical eager use

characterizations must also create identical use dependence graphs.

For any use, there is some set of values compliant with that use. These are the

values that can correctly supply the information re
ected in the use. If the same

domains of values are used for values and uses, then the values, c, compliant with a

use, u, are those values such that u � c, for the � operator de�ned in Chapter 2.

For example, any integer and ?Int are both compliant with the use ?Int. However,

#t is not compliant with the use ?Int. Similarly, all values are compliant with the

use ?PEval.

An eager or lazy use analysis overspecifying use when it must approximate charac-

terizes the class of specializations that can correctly be used for any set of argument

values compliant with the use annotations computed. What the analyses do not do

is specify when separate analysis of a compliant function application might produce

more detailed information about a new function application, yielding a better spe-

cialization. Use compliance ensures the information collected is correct for any use

compliant application, but not that the description is the most precise one possible.

For example, symbolic execution and eager use analysis of (+ ?Int ?Int) produces the
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result ?Int and a use annotation of ?Int for each argument. The function application

(+ 2 3) is use compliant with the potential specialization generated for (+ ?Int ?Int)

and the analysis for (+ ?Int ?Int) correctly characterizes the result of (+ 2 3) as an

integer, but that characterization is not as precise as the one resulting from perform-

ing a separate analysis of (+ 2 3). A separate analysis yields the result 5 and uses of

the integer values of the arguments 2 and 3.

A way of classifying those applications that are both use compliant and for which

performing a separate analysis would not yield more detailed information is needed.

Demand analysis, to be discussed in more detail below, is designed to achieve this

end. Demand analysis is in some sense the dual of use analysis. Whereas use analysis

represents the information utilized in performing symbolic execution of a computa-

tion, demand analysis represents the least amount of additional information necessary

for symbolic execution to yield a more precise result.1

In general, performing eager use analysis of a function application requires per-

forming symbolic execution of the application; so, it might not appear that eager use

analysis helps reduce the amount of analysis and memory necessary. However, there

are some special cases in which the results of eager use analysis can be determined

without performing symbolic execution. Referring back to Figure 2.48 on page 73,

repeated in Figure 5.4, eager use analysis always records utilization of some subset of

the information present in the value of each argument in an application. Let's assume

use analysis has already been performed for some application. Symbolic execution of

a new application of the same function for which all of the argument values fall be-

tween the values in the original application and their corresponding use annotations,

as represented by EUreuse, generates identical EUreuse annotations and an identical

potential specialization, so long as the same termination decisions are made for all

recursions.

The optimization I propose, which is the same as that in [37], is to compare

the function and arguments of each application, before it is symbolically executed,

with every application already analyzed. If the arguments of the new application all

fall between the values of the arguments in the previous application and eager use

1Demand analysis was �rst implemented and utilized for optimizing reuse decisions by Ruf [37].
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V alue

LUterm

EUreuse

LUreuse EUterm

?

Figure 5.4: Relative amount of use information recorded by di�erent analyses (repeat

of Figure 2.48)

annotations of those arguments, then the new application need not be symbolically

executed. The results of the previous analysis can be reused. The arguments of

the new application and its continuation just need to be tied to the existing use

dependence graph. In addition, the continuation of the new application must be

analyzed for each of the results returned by the previously analyzed application.

There are three subtleties in reusing previous analysis. The �rst involves the way

return values passed to the new continuation are created; the second, with how to

handle the case when the new continuation utilizes the results in a di�erent manner

than the original continuation; and, the third with nonmonotonicity that can be in-

troduced into the creation of generalized return values. Each of these subtleties is

discussed in order. Finally, a proposal for increasing the cases in which this optimiza-

tion is applicable by utilizing demand analysis is presented.

Generating Return Values When Reusing Analysis

Symbolic execution of multiple di�erent applications of the same function can

return very di�erent results even though the eager use annotations and potential
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(define id

(lambda (val) val))

Figure 5.5: Identity Function

specializations produced by the analysis are identical for all of the applications. Eager

use analysis only records information as being used when a computation is performed

utilizing a value. Information may appear in a result, yet not be recorded as being

used, if it is contained in a result value, but not used in any computation. For example,

eager use analysis of the identity function in Figure 5.5 yields a use annotation of

?PEval for val. The argument value is unused, but must be produced, since a later

computation might utilize the result. Furthermore, the result of the identity function

is very di�erent for di�erent arguments.

E�cient reuse of symbolic execution performed as part of eager analysis is achieved

by parameterizing the analysis over those portions of the argument values unused

during the analysis. The arguments to an application are annotated to encode from

which application and argument position they originate. The portions of the return

value(s) of a function originating from copies of pieces of arguments, rather than

from some computation performed by the function, remain annotated in the return

result(s). Correct return results for a di�erent set of arguments can be created by

copying the return results of the previous application, only with the correct portions

of the new arguments substituted for the appropriate pieces if the old results.

For the identity function, achieving this result is simple. The single result is anno-

tated as being the �rst argument of the application. When a new application of the

identity function must be analyzed, all that is required is to substitute the argument

of the new application as the result. However, when the body of a function utilizes

many constructors and accessors, the process of substituting in the correct pieces of

new arguments becomes somewhat more complex, but appears to be fairly straight-

forward and reasonably e�cient. While multiple implementations are possible, the

costs of this approach seem to include a small bookkeeping cost in implementing

symbolic execution of each accessor and constructor, as well as the need to compute

the pieces of the arguments to be substituted into the return results when generating
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new copies of the results.

Di�erent Uses by Di�erent Continuations

How to handle the case when the continuations of two applications for which a sin-

gle symbolic execution of the function body has been performed utilize the results

of the function applications di�erently presents two problems. On the pragmatic,

implementation side there is the issue of how to percolate the di�erent uses over a

shared piece of a use dependence graph so the arguments for each of the di�erent

applications receive the appropriate use annotations. On the algorithmic side, there

is the question of how to undo the sharing when the di�erent uses result in the need

to make di�erent termination decisions for recursive applications in the body of a

function. When di�erent termination decisions are made, the two applications do not

yield equivalent potential specializations so sharing of analysis is no longer possible.

Each of these considerations is discussed in order.

The best approach for propagating di�erent use annotations for di�erent continu-

ations over the same portion of a use dependence graph is not immediately obvious,

but also does not appear to be a fundamentally di�cult problem. One of many

possible approaches is to dynamically create di�erent memoization cells for lazy use

annotations for each symbolic value any time di�erent annotations are required for

di�erent 
ows of control sharing a piece of the use dependence graph. It appears at

�rst blush this could be achieved both fairly simply and e�ciently. Updating of the

correct memoization cell could be ensured by tagging the use information as it travels

over the use dependences based on the continuation from which it originates. While

in theory, the tagging could become long and unwieldy, in practice I expect the tag

lists would be short and easy to process. Finally, multiple memoization cells might

be created for some symbolic values due to use information about di�erent 
ows of

control traveling through the use dependence graph sequentially and therefore not ar-

riving at every node at the same times. To the extent nodes end up having multiple

memoization cells containing identical annotations, these could be coalesced by the

use propagation process and garbage collection could be used to reclaim the unneeded

cells.

The splitting of shared analysis is slightly more complex problem. Use change
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daemons must be augmented so they handle the multiple memoization cells now

possible for each symbolic value and detect changes in any of the memoization cells

for a value. When activated, the daemons must not only detect whether symbolic

execution of a recursion should be reinitiated, but also, whether a piece of shared

analysis must be split as a result of changes in one memoization cell, but not another.

Actual splitting of analysis is fairly simple. An ine�cient, but straightforward,

approach is just to separate out the problematic application and perform symbolic

execution of that application from scratch, generating new, unshared results. Slightly

more e�cient is to terminate the reanalysis when it throws to its continuation and

graft the result onto the appropriate existing analysis of that continuation. Yet one

step better is to just copy all the data structures created by previous analysis and

attach the arguments and results of the problematic application to the new copy.

The precise details of implementing this optimization remain unknown. However,

it appears both to o�er the promise of a signi�cant improvement in memory con-

sumption and to be computationally feasible. On the other hand, it does require the

addition of a substantial amount of new mechanism and complexity to the implemen-

tation of the analysis.

Nonmonotonicity in Creating Generalized Return Values

Termination of computation of generalized return values is dependent on a mono-

tonicity property. The property is that application of a function to a set of arguments

containing less information produces a result with the same amount or less informa-

tion. This property is true for symbolic execution of all functions and special forms

in Scheme as long as no analysis is reused.

Nonmonotonicity can result from reuse of the incomplete analysis of a potential

specialization. During the computation of a generalized return value the amount

of information in the return value progressively increases as the di�erent possible


ows of control and return values are analyzed. Until the analysis is completed, the

representation of the generalized return value may contain more information than it

eventually will. In fact, the intermediate value for the generalized return value of an

application might contain less information than the return value for an applications

of the same function to arguments containing less information. Therefore, if the
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intermediate value of the generalized return value is utilized in a computation due to

reuse of analysis of a potential specialization before it has been completed, a violation

of the monotonicity property can result.

Ruf in Section 4.4.2 of [37] discusses in greater detail how nonmonotonicity can

result in divergence when computing a generalized return value. He also presents an

approach to ensuring monotonicity even if analysis is reused before computation of

a generalized return value has been completed. How best to address the problem

of ensuring monotonicity when reusing analysis within lazy use analysis remains an

open question at this time.

Increasing Applicability of This Optimization

So far it has been explained that analysis of an application may be reused when

a new application of the same function is performed utilizing arguments containing

an amount of information between that of the original arguments and the amount

utilized during symbolic execution based on those arguments. It is also possible in

some cases to reuse analysis when the amount of information supplied in arguments

is a superset of that supplied in a previously analyzed application. Whereas use

analysis presents a lower bound on the amount of information needing to be supplied

for analysis to be reused, demand analysis yields an upper bound of the amount of

additional information supplied before reanalysis is desired.

Demand analysis is in some sense the dual of use analysis. Whereas use analysis

represents the information utilized in performing symbolic execution of a computa-

tion, demand analysis represents the least amount of additional information necessary

for symbolic execution to yield a more detailed result. As with use analysis, it is sim-

plest to begin by explaining eager demand analysis and then move on to the lazy

version.

Eager Demand Analysis

The same domains of values in Figure 2.22 on page 31, repeated as Figure 5.6, uti-

lized for values during symbolic execution and for use annotations can also be utilized
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for demand annotations. A number of expressions and their corresponding eager de-

mand annotations appear in Figure 5.7. No computation is possible for (car?PEval).

Any amount of additional information about the argument at the very least would

allow the type check of the argument to be performed during symbolic execution.

The demand annotation ?PEval signi�es that any value containing some informa-

tion enables more computation to be performed by the analysis. For the expression

(integer? ?Int), there is no amount of additional information about the argument

enabling additional computation to be performed. All use compliant applications are

guaranteed to produce the identical analysis. In the expression (1+ ?Int), the actual

integer value of the argument would be needed to perform additional computation.

In the expression (+ ?Int?Int), the integer values of both arguments would be needed

to perform more computation. However, demand analysis must be conservative so

demand annotations are created stating that availability of the integer value of either

argument should result in separate analysis. Of course, if the integer value of only one

argument is supplied, the resulting analysis produces the identical result. Finally, for

the expression (+ ?PEval?Int), there is no amount of additional information about

the second argument enabling additional computation to be performed unless at least

the type of the �rst argument is known.

Eager demand analysis can be implemented by adding an extra �eld to every sym-

bolic value, much as for use analysis. Demand annotations are initialized to > when

symbolic values are created signifying that initially there is no amount of additional

information about the corresponding value that would allow additional computation

to be performed. As delta reductions and control 
ow operations are performed,

new demand annotations are generated by taking the greatest lower bound (GLB)

of existing demand annotations and the demands made by an operation currently

being analyzed. The greatest lower bound is utilized for demand because a demand

represents the least amount of additional information needed to yield a more detailed

result. Lower points in an information lattice represent lesser amounts of information.

Demand is the dual of use in the sense that it uses the GLB as opposed to the LUB.
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Int = 0+�1+�2+ � � � integers

?Int unspeci�ed integer

Bool = true+ false booleans

?Bool unspeci�ed boolean

Sym = 0a+ 0b+ � � � symbols

?Sym unspeci�ed symbol

Nil = nil empty list

Pair = PEval� PEval pairs

?Pair � ?PEval �?PEval unspeci�ed pair

Closure = Lambda� Env closure values

?Clos unspeci�ed closure

Env = (Id! PEval)
?

environments

Kval = Int+Bool +Nil + Pair + Closure known values

Bots = ?Int +?Bool +?Pair +?Clos bottom values

PEval = Kval+ Bots +?PEval partial evaluation values

?PEval unspeci�ed value

Figure 5.6: Value domains for partial evaluation of a pure subset of Scheme (repeat

of Figure 2.22)

Expression Argument Demand Pro�les

(car ?PEval) ?PEval

(integer? ?Int) >

(1+ ?Int) ?Int

(+ ?Int?Int) ?Int,?Int

(+ ?PEval?Int) ?PEval,>

Figure 5.7: Eager demand annotations
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Lazy Demand Analysis

Laziness is incorporated into demand analysis in the same manner it is for use. Each

delta reduction or conditional control 
ow operation generates demand dependences

re
ecting how demands of results imply demands of the inputs. The result is a demand

dependence graph. Demand annotations are generated by asserting demands of the

result(s) of programs and propagating the demands through the demand dependence

graph. What demands to assert about results depends on whether an underspecifying

or overspecifying analysis is desired. Both alternatives are discussed below.

Figure 5.8 shows the relative amount of demand and use information recorded for

V alue based on performing di�erent types of demand and use analysis. The bottom

half of the diagram is identical to the one in Figure 5.4 on page 193, which compares

di�erent types of use analyses. The top half of the diagram is a mirror image of

the bottom half, with use analyses replaced by corresponding demand analyses and

overspecifying analyses replaced by underspecifying analysis.

What it means to overspecify or underspecify demand is slightly less obvious than

for use. I de�ne overspeci�cation of demand to mean a lower point in the lattice

and underspeci�cation to mean a point higher in the lattice.2 This is because over-

specifying demand implies stating that more information is demanded than is really

necessary when no precise representation for a demand exists. Similarly, underspeci-

fying demand means stating that there is less \desire" for more information. Stated

another way, underspecifying demand implies the information threshold enabling a

greater amount of computation is higher.

Based on the de�nitions above, LDreuse and EDreuse are the lazy and eager vari-

ants, respectively, of an analysis overspecifying demand when a precise demand an-

notation is not available. These analyses are demarcated using the reuse subscript

because of their utility in making reuse decisions. Any time a function application

is reached whose arguments are compliant with reuse subscripted use annotations

of a previously analyzed application, but are not compliant with the corresponding

reuse subscripted demand analysis, analysis of the new application is guaranteed to

2This is the opposite de�nition as for use.
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produce the same results and annotations as those of the previously analyzed appli-

cation. There is no point in performing symbolic evaluation of an application use

compliant with a previously analyzed application unless it is also demand compliant

with that application. The reuse subscripted demand analyses allow for optimization

of the analysis phase through elimination of redundant symbolic execution of function

applications for which an equivalent analysis has already been performed.

It is not obvious what value, if any, the ? subscripted demand analyses based

underspeci�cation serve. Clearly, two specializations of the same function for which

the arguments to one application are compliant with the ED? of the other will produce

non-identical code for any naive, straight forward code generator. However, the value

of this observation is not immediately clear.

Applying Demand Analysis

If eager demand analysis for reuse is performed during symbolic execution, then

analysis can be reused any time the information available about all arguments in a new

application falls within the range delimited by eager use analysis for reuse and eager

demand analysis for reuse as shown in Figure 5.8. None of the earlier descriptions of

how the reuse optimization would be implemented or its general e�ects is changed by

the expansion of the applicability of the optimization enabled by demand analysis.

The only net change is that increased applicability implies greater gains from the

optimization.

In closing, performing eager use and demand analyses for reuse does not necessarily

obviate the need or desirability of performing the corresponding lazy versions of these

analyses. Lazy reuse analysis is needed to generate the most e�cient code during the

code generation phase. Lazy analyses classify a broader set of conditions under which

the same potential specialization can be utilized for multiple di�erent call sites than

do eager analyses. This greater reuse may yield tighter residual code than is possible

with only eager versions of the analysis.



202 CHAPTER 5. LARGE RESOURCE CONSUMPTION

ED?LDreuse

LD?

LUreuse EUterm

LUterm

EUreuse

?

V alue

>

EDreuse

Figure 5.8: Relative amounts of demand and use information recorded by di�erent

analyses
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5.2.2 Static Analysis

A possible means of reducing both the memory consumption and computational com-

plexity of lazy use analysis is the utilization of some type of static analysis prior to

lazy use analysis. Annotating single reference variables is one very simple example

of this approach. A ternary BTA partitioning all values into static, dynamic, and

unknown (e.g., [43]) might be used to reduce the number of variables needing to

be considered during lazy use analysis, without modifying the semantics of lazy use

analysis in any way. Dynamic variables never need to be considered in the analysis.

The di�erentiation between purely static and unknown might also prove useful. An-

other approach is to perform a conservative, static version of lazy use analysis. Static

approximations to use and demand might prove useful in reducing the complexity of

performing dynamic analysis.

5.3 Conclusion

Large resource consumption, particularly memory, presents a serious obstacle to uti-

lization of lazy use analysis as the basis of a production partial evaluator. Those

approaches taken so far to reduce resource consumption have been insu�cient to

solve the problem. One, or both, of the untested ideas, or some new approach, is

needed in order to make lazy use analysis a viable partial evaluation tool. In the

absence of a true solution to the resource problem, it is possible some approximation

to lazy use analysis might be identi�ed that is more computationally feasible, yet

produces nearly as good results.



Chapter 6

Conclusions and Future Work

6.1 Conclusion

E�ective termination remains one of the most signi�cant challenges for the partial

evaluation community. Deciding when to perform additional analysis and when to

terminate impacts many aspects of partial evaluation. Aggressively performing too

much analysis can lead to divergence. Even when a partial evaluator terminates, ana-

lyzing too many potential specializations can yield overly verbose and therefore poor

quality residual code. A conservative approach to termination, striving to minimize

divergence, also often yields poor residual code due to the failure to create enough

specializations. Creation of the correct, �nite set of specializations is the key.

The motivation behind my work is the desire to develop a partial evaluator pro-

ducing a better combination of reliable termination and quality residual code. I began

my work by identifying a set of simple examples for which all existing partial evalua-

tors produced suboptimal results in at least one case. As described in Chapter 4, the

examples test a partial evaluator's ability to achieve all of the following: complete

execution of expressions in order to produce a result value during partial evaluation

whenever this is possible, termination of recursions exhibiting changing dynamic val-

ues under static control whenever the loops cannot be executed to completion during

partial evaluation, and avoidance of premature termination of analysis leading to poor

quality residual code of the form exhibited by many partial evaluators for programs

like the regular expression matcher shown in chapter 4.

204
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In order to achieve leverage on the dual goals of reliable termination and high qual-

ity residual code, I propose in Chapter 1 separating partial evaluation into two phases:

analysis and code generation. This partitioning virtually eliminates the problem of

poor quality residual code due to creation of too many specializations. It achieves

this end by decoupling a decision to investigate a potential specialization during the

analysis phase from the decision to generate code for a potential specialization during

the code generation phase. The termination question is thereby limited to ensuring a

su�cient number of potential specializations are analyzed while still terminating on

a broad enough class of programs. Too much analysis is no longer a problem except

from the standpoint of how long a partial evaluator takes to execute.

I frame the termination problem in terms of ensuring only a �nite number of

potential specializations are investigated by a partial evaluator in Chapter 2. In one

form or another this is the underlying goal of every termination mechanism. I suggest

using equivalence classes as a framework for categorizing potential specializations and

deciding when to analyze di�erent potential specializations. So long as the number of

equivalence classes is �nite and only a �nite number of potential specializations are

investigated for each equivalence class, the total number of potential specializations

analyzed is also �nite. All that remains is to de�ne some �nite set of equivalence

classes and develop an algorithm for determining to which equivalence class each

potential specializations belongs. Of course, while many di�erent sets of equivalence

classes may result in termination, not all yield high quality residual code.

The equivalence classes utilized in this work are based on use analysis. I claim in

Chapter 2 that use analysis captures a fundamental characteristic of potential spe-

cializations, di�erentiating amongst them based on inherent semantic content. The

equivalence classes are based on the information utilized in creating a potential spe-

cialization, not the information available to the specializer as is the case for many

other termination mechanisms. As such, I argue the equivalence classes evolving from

use analysis are not only e�ective for termination, but also yield potential specializa-

tions resulting in high quality residual code.

The initial concept of use of information by symbolic execution in creating po-

tential specializations led to the broader concept of use of information by a program

in performing computation, as represented by lazy use analysis. While eager use
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analysis is an approximation to the context free domain of specialization (CF-DOS),

lazy use analysis is an approximation to the context sensitive domain of specialization

(CS-DOS). Context sensitivity enables a �ner distinction between di�erent potential

specializations based not only on the specializations created, but also on the context

within which each is utilized. Di�erent contexts use the results of applying a potential

specialization in di�erent ways. Di�erences in the uses of results further limit those

aspects of a potential specialization of importance in a given context and therefore of

fundamental interest in deciding equivalence with respect to that context.

Lazy use analysis initially su�ered from premature termination. The equivalence

classes produced were too large. Too many potential specializations were members

of the same equivalence classes. As a result, an insu�cient number of appropriate

potential specializations were investigated.

The addition of base case analysis to lazy use analysis as presented in Chapter 2

appears to have solved the problem of premature termination for the small set of

programs tested. Base case analysis is grounded in the observation that all termi-

nating recursions must eventually execute a base case. Consequently, if a recursion

in a residual program is to terminate at runtime, the partial evaluator must produce

residual code for the base case. In order to produce residual code for a base case, a

partial evaluator must analyze the base case. The contrapositive of this statement

is, if a partial evaluator has not investigated a base case for a recursion, it cannot

produce terminating residual code for the recursion. A direct consequence is that

premature termination has taken place if a partial evaluator has not investigated at

least one base case for each recursion.

Base case analysis detects those cases in which use analysis has terminated a

recursion prior to investigation of at least one base. The results of base case analysis

are utilized to cause additional symbolic execution to be performed of prematurely

terminated recursions. Additional iterations of prematurely terminated recursions

are investigated until at least one base case is analyzed. While base case analysis

does not eliminate all cases of premature termination, it appears to go a long way

towards mitigating this problem. A good compromise between e�ective termination

and residual code quality appears to result.

The major shortcoming of lazy use analysis as described in Chapter 5 is the large
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amount of memory utilized in analyzing even very small programs. As currently

implemented, lazy use analysis is not a practical termination mechanism on which to

base a partial evaluator for optimizing real world programs. The reasons for the large

resource consumption and some possible solutions to the problem appear in Chapter 5.

Implementing and testing some of the untested approaches presented in that chapter

remain a �rst critical step in the future development of use analysis. Unless the

resources required for lazy use analysis can be drastically reduced, this analysis will

remain a laboratory curiosity. Its contribution will largely be any in
uence it has on

the future direction of research on termination.

At the moment, e�ective termination remains a core challenge that must be sur-

mounted before partial evaluators can move from being research curiosities to widely

utilized, productive tools. Neither the approach described herein nor any other work

published has transitioned the state of the art to a point where partial evaluation can

realistically become a part of standard, production compilers. Leaving aside the ques-

tion of whether users are willing to accept compilers potentially failing to terminate,

at the present time, partial evaluators do not produce a su�ciently good combination

of high enough quality residual code and frequent termination in order to justify their

widespread use.

6.2 Future Work

The �rst piece of future work is reimplementation of lazy use analysis with an eye to-

wards reduction of resource consumption. The untested ideas presented in Chapter 5

ought to serve as a starting point for this process. Due to the global nature of the al-

gorithms involved, unless an implementation can be found the resource consumption

of which is closer to linear than to exponential, lazy use analysis will never be of any

practical use.

Assuming a more e�cient implementation technique is found, the next step is

the implementation of base case analysis. Once base case analysis is operational, the

complete analysis phase ought to be able to be tested on a broad class of programs to

ensure it performs as expected and desired. Since it has never been proven on what

classes of programs lazy use analysis converges, it will be at this point that more,
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albeit still anecdotal, information can be collected.

The �nal major step is the implementation of a code generation phase utilizing the

use information supplied by the analysis phase. Until a full partial evaluator generat-

ing executable residual code is completed, the bene�ts of both lazy use analysis and

two phase partial evaluation remain incompletely substantiated claims. Of particular

interest will be an investigation of how e�ectively lazy use analysis can be utilized in

order to allow specializations to be called from contexts most other analyses would

not allow. Specializations not appearing to be correctness preserving based on the

CF-DOS may none the less be correctness preserving and recognized as such based

on the CS-DOS.

Even if better implementation technology is developed, it is unlikely the result will

be a lazy use analysis executing in roughly linear resource consumption in the size of

input programs. Consequently, another important avenue of future investigation is

likely to be identifying more e�ciently computed approximations to lazy use analysis

yielding nearly as good termination properties and residual code.

Finally, use analysis was designed with an eye towards imperative languages.

While the current formalization cannot handle imperative constructs, one of the mo-

tivations for use analysis was the fact it only characterizes potential specializations

based on the subset of supplied information used during symbolic execution. For

an imperative language, much of the heap is often a possible source of information

during symbolic execution of a function, but only a very small portion of the infor-

mation is actually used. Use analysis appears to o�er leverage on the problem of

e�ciently deciding equivalence amongst applications in an imperative language. Of

course, lazy use analysis of an imperative language would only exacerbate the resource

problems from which the analysis already su�ers. In addition, it would necessitate

incorporation of other analyses, like alias analysis, many of which are themselves very

computationally complex.
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6.3 O� the Wall Thoughts by the Author

6.3.1 Partial Evaluation and Traditional Analyses

Lazy use analysis might be used as a means of characterizing di�erent variants of

functions for utilization by other analysis algorithms. The factor limiting precision

of many analysis algorithms is the con
ation of di�erent variant uses of the same

procedure. This happens in many of the standard compiler analyses presented in [2].

One possible use of lazy use analysis is as a means of distinguishing di�erent variant

uses of the same procedure so other analyses can separate out collection of information

for the di�erent variants and thereby produce more precise results.

6.3.2 Partial Evaluation and Optimization of Multilisp

Use analysis plus the partial evaluation framework is potentially applicable to some

optimization problems that on the surface appear largely unrelated. At one point in

the past I looked at the problem of automatically removing unnecessary touches of

futures when compiling Multilisp [36], Halstead's multiprocessor version of Lisp. In

Halstead's language, a future is a placeholder object into which a process stores its

result once it is computed. Other processes can pass futures and store them in and

retrieve them from data structures even before they are assigned values. However, a

process attempting to utilize the value of a future before it is computed is suspended

pending the calculation of the value.

Touch is the operation performed to check whether an argument is a future and

if it is a future whether it has already been assigned a value. One of the major

overheads of Multilisp is the need for every primitive function utilizing the value of

one of its arguments to touch the argument prior to using it in a computation. To the

extent a compiler is able to prove either that an argument cannot be a future or that

the argument is a future with a known value, the overhead of futures can be greatly

reduced.

I propose lazy use analysis and partial evaluation as a potentially e�ective ap-

proach to removing touches of futures. The domain of values of the partial evaluator

would be expanded to include a non-future and a potentially future version for each
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type. Touch would become an operator coercing potentially future types to their

respective non-future types. Partial evaluation would create appropriate versions of

various primitives for future and non-future versions of their arguments. The partial

evaluator would also create specializations of other procedures utilizing the appropri-

ate versions of the primitives.

6.3.3 Deforestation and Driving

Wadler's work in deforestation [47] and Turchin's work in driving [46] are both ap-

proaches to fusing nested loops into single more e�cient loops. With the exception

of Turchin, no partial evaluator has been able to achieve this form of optimization. I

believe the key to performing loop fusion in a standard partial evaluation framework

is augmenting symbolic values so they include a richer representation of the computa-

tions needing to be performed at runtime to calculate the portions of values unknown

during partial evaluation.

Weise's symbolic values are a combination of an abstract value and the residual

code needed to compute the part of a value unknown until runtime. The residual

code is the remainder of the source code not executable during partial evaluation.

Alternatively, symbolic values could represent the part of the value known during

partial evaluation and a more abstract representation of the computation needing to

be performed at runtime in order to calculate the rest of the value at runtime. If the

second part of a symbolic value were a more abstract description of a computation

instead of code, I feel more powerful optimizations would be possible. During symbolic

execution, representations of computations could be manipulated in ways not as easily

performed with code. During the code generation phase, descriptions of computations

would be converted into code, as opposed to the residual code for the return values

simply being output.

While the details are obviously uncertain, I propose that something along the

following lines might yield loop fusion. The domain of values of a partial evaluator

would be extended to included recursive data types. When recursions were termi-

nated during partial evaluation, the return values generated would be recursive data

structures. In the case of nested loops, the inner loop would generate a recursive data
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structure as its result. The outer loop would consume this recursive data structure

and produce another recursive data structure as its result. In many of those cases

in which deforestation or driving produces a single loop, the recursive data structure

produced for the outer recursion by the partial evaluator would be a simple recursive

structure for which the code generation phase could create a single loop in the residual

program.

Expanding the domain of values to include recursive data structures might have

other advantages as well. Representing return values of recursions as recursive data

structures, as opposed to 
at data structures generated by generalization, might retain

more information about the recursion for use in optimizing the continuation of the

recursion. The additional information might enable better termination decisions to be

made when analyzing the continuation, improving termination, residual code quality,

or both.



Appendix A

Preprocessing of Factorial

This appendix shows how the three passes of the preprocessor transform the factorial

program in Figure 2.17 on page 26 and repeated below.

(define fact

(lambda (n)

(if (zero? n)

1

(* n (fact (-1+ n))))))

A.1 Pass 1: Result of the Front End

(define

fact

(lambda

(named: (fact))

(n)

(if

(application: (reference: not)

(application: (reference: zero?) (reference: n)))

(application: (reference: *)

(reference: n)

(application: (reference: fact)

(application: (reference: -1+)

(reference: n))))

(constant: 1))))

212
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A.2 Pass 2: Result of CPS conversion

(define

fact

(lambda

(named: (fact))

(n cont-328)

(application: ;(zero? n)

(reference: zero?)

(reference: n)

(clambda

(named: (cont-arg-864 fact))

(cont-arg-864)

(application: ;(not (zero? n))

(reference: not)

(reference: cont-arg-864)

(clambda

(named: (cont-arg-856 fact))

(cont-arg-856)

(application:

(lambda ;Lambda introduced by

(named: (cont-329 fact)) ;CPS conversion

(cont-329)

(if ;(if (not (zero? n)) ... )

(reference: cont-arg-856)

(application: ;(-1+ n)

(reference: -1+)

(reference: n)

(clambda

(named: (cont-arg-861 fact))

(cont-arg-861)

(application: ;(fact (-1+ n))

(reference: fact)

(reference: cont-arg-861)

(clambda

(named: (cont-arg-859 fact))

(cont-arg-859)

(application: ;(* (fact -1+ n) n)
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(reference: *)

(reference: n)

(reference: cont-arg-859)

(clambda

(named: (cont-331))

(cont-arg-858)

(exit-conditional ;Return (* (fact -1+ n) n)

(clambda ;from conditional

(named: (cont-330))

(cont-arg-857)

(throw (reference: cont-329) ;Return (* (fact -1+ n) n)

(reference: cont-arg-857))) ;from introduced lambda

(reference: cont-arg-858))))))))

(application:

(clambda

(named: (cont-331))

(cont-arg-858)

(exit-conditional ;Return 1 from conditional

(clambda

(named: (cont-330))

(cont-arg-857)

(throw (reference: cont-329) ;Return 1 from introduced

(reference: cont-arg-857))) ;lambda

(reference: cont-arg-858)))

(constant: 1))))

(clambda ;Argument to lambda

(named: (cont-328 fact)) ;introduced by CPS

(cont-arg-855) ;conversion

(throw (reference: cont-328) ;Return result of fact

(reference: cont-arg-855))))))))))
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A.3 Pass 3: Result of Alpha Conversion

(define

(fact 86)

(lambda

(named: (fact))

(formals: (n cont-332))

(inheriteds:

((local-reference: * 29 ())

(local-reference: fact 86 ())

(local-reference: -1+ 41 ())

(local-reference: not 42 ())

(local-reference: zero? 21 ())))

(application: ;(zero? n)

(inherited-reference: zero? 4 #t)

(local-reference: n 0 ())

(clambda

(named: (cont-arg-876 fact))

(formal: (cont-arg-876 0))

(inheriteds:

((local-reference: cont-332 1 #t)

(local-reference: n 0 ())

(inherited-reference: * 0 #t)

(inherited-reference: fact 1 #t)

(inherited-reference: -1+ 2 #t)

(inherited-reference: not 3 #t)))

(application: ;(not (zero? n))

(inherited-reference: not 5 #t)

(local-reference: cont-arg-876 0 #t)

(clambda

(named: (cont-arg-868 fact))

(formal: (cont-arg-868 0))

(inheriteds:

((inherited-reference: cont-332 0 #t)

(inherited-reference: n 1 #t)

(inherited-reference: * 2 #t)

(inherited-reference: fact 3 #t)

(inherited-reference: -1+ 4 #t)))
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(application:

(lambda ;Introduced lambda

(named: (cont-333 fact))

(formals: (cont-333))

(inheriteds:

((local-reference: cont-arg-868 0 #t)

(inherited-reference: n 1 #t)

(inherited-reference: * 2 #t)

(inherited-reference: fact 3 #t)

(inherited-reference: -1+ 4 #t)))

(if ;Conditional

(inherited-reference: cont-arg-868 0 #t)

(application: ;(-1+ n)

(inherited-reference: -1+ 4 #t)

(inherited-reference: n 1 ())

(clambda

(named: (cont-arg-873 fact))

(formal: (cont-arg-873 0))

(inheriteds:

((local-reference: cont-333 0 ())

(inherited-reference: n 1 ())

(inherited-reference: * 2 #t)

(inherited-reference: fact 3 #t)))

(application: ;(fact (-1+ n))

(inherited-reference: fact 3 #t)

(local-reference: cont-arg-873 0 #t)

(clambda

(named: (cont-arg-871 fact))

(formal: (cont-arg-871 0))

(inheriteds:

((inherited-reference: cont-333 0 #t)

(inherited-reference: n 1 #t)

(inherited-reference: * 2 #t)))

(application: ;(* (fact (-1+ n)))

(inherited-reference: * 2 #t)

(inherited-reference: n 1 #t)

(local-reference: cont-arg-871 0 #t)

(clambda
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(named: (cont-335))

(formal: (cont-arg-870 0))

(inheriteds:

((inherited-reference: cont-333 0 #t)))

(exit-conditional ;Return (* ... )

(clambda ;from conditional

(named: (cont-334))

(formal: (cont-arg-869 0))

(inheriteds:

((inherited-reference: cont-333 0 #t)))

(throw ;Return (* ... )

(inherited-reference: cont-333 0 #t) ;from introduced

(local-reference: cont-arg-869 0 #t))) ;lambda

(local-reference: cont-arg-870 0 #t))))))))

(application:

(clambda

(named: (cont-335))

(formal: (cont-arg-870 0))

(inheriteds:

((local-reference: cont-333 0 ())))

(exit-conditional ;Return 1 from

(clambda ;conditional

(named: (cont-334))

(formal: (cont-arg-869 0))

(inheriteds:

((inherited-reference: cont-333 0 #t)))

(throw ;Return 1 from

(inherited-reference: cont-333 0 #t) ;introduced

(local-reference: cont-arg-869 0 #t))) ;lambda

(local-reference: cont-arg-870 0 #t)))

(constant: 1))))

(clambda ;Argument to

(named: (cont-332 fact)) ;lambda introduced

(formal: (cont-arg-867 0)) ;by CPS conversion

(inheriteds:

((inherited-reference: cont-332 0 #t)))

(throw ;Return result

(inherited-reference: cont-332 0 #t) ;of fact
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(local-reference: cont-arg-867 0 #t))))))))))
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