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Abstract

This thesis describes e�cient approximation algorithms for some NP-Hard deterministic

machine scheduling and related problems. An approximation algorithm for an NP-Hard

optimization problem is a polynomial time algorithm which, given any instance of the

problem, returns a solution whose value is within some guaranteed multiplicative factor � of

the optimal solution value for that instance. The quantity � is called the approximation ratio

of the algorithm. A typical problem in machine scheduling consists of a set of jobs that are to

be executed in either preemptive or non-preemptive fashion on a set of available machines

subject to a variety of constraints. Two common objectives are minimizing makespan

(the time to complete all jobs) and minimizing average completion time. Constraints that

we study include precedence constraints between jobs and release dates on jobs. Brief

descriptions of the problems we study and highlights of our results follow.

We study single machine and parallel machine scheduling problems with the objective

of minimizing average completion time and its weighted generalization. We introduce new

techniques that either improve earlier results and/or result in simple and e�cient algorithms.

For the single machine problem with jobs having release dates only we obtain an e
e�1 ' 1:58

approximation. For the parallel machine case we obtain a 2:85 approximation. We then

focus on the case when jobs have precedence constraints. For the single machine problem

we obtain an 2-approximation algorithm that in contrast to earlier algorithms does not rely

on linear programming relaxations. We also give a general algorithm that converts an �-

approximate single machine schedule into a (2�+2)-approximate parallel machine schedule.

The conversion algorithm is simple and yields e�cient and combinatorial constant factor

algorithms for several variants.

We then consider the problem of minimizing makespan on machines with di�erent speeds

when jobs have precedence constraints. We obtain an O(logm) approximation (m is the

number of machines) in O(n3) time. Our approximation ratio matches the best known ratio

v



up to constant factors. However, our algorithm is e�cient and easy to implement and is

based on a natural heuristic.

We introduce a new class of scheduling problems that arise from query optimization in

parallel databases. The novel aspect is in modeling communication costs between operators

in a task system that represents a query execution plan. We address one of the problems

that we introduce, namely, the pipelined operator tree problem. An instance of the prob-

lem consists of a tree with node weights that represent processing times of the associated

operators, and edge weights that represent communication costs. Scheduling two nodes

connected by an edge on di�erent processors adds communication cost equal to the edge

weight to both the nodes. The objective is to schedule the nodes on parallel processors to

minimize makespan. This is a generalization of the well known multi-processor scheduling

problem. We obtain a polynomial time approximation scheme for this problem. We also

obtain e�cient O(n logn) time algorithms that have ratios of 3:56 and 2:58 respectively.

Finally we study multi-dimensional generalizations of three well known problems in

combinatorial optimization: multi-processor scheduling, bin packing, and knapsack. We

study versions of these problems when items are multi-dimensional vectors instead of real

numbers. We obtain several approximability and inapproximability results. For the vector

scheduling problem we obtain a PTAS when d, the dimension of the vectors, is �xed. For d

arbitrary we obtain a O(minflog dm; log2 dg) approximation and also show that no constant

factor approximation is possible unless NP = ZPP. For the vector bin packing problem we

obtain a (1 + �d + O(ln(1=�))) approximation for all d and show APX-Hardness even for

d = 2. The vector version of knapsack captures a broad class of hard integer programming

problems calling packing integer programs. The only general technique known to solve these

problems is randomized rounding. We show that results obtained by randomized rounding

are the best possible for a large class of these problems.

Practical applications motivating some of our problems include instruction scheduling

in compilers and query optimization in parallel databases.
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Chapter 1

Introduction

Sequencing and scheduling problems are motivated by allocation of limited resources over

time. The goal is to �nd an optimal allocation where optimality is de�ned by some problem

dependent objective. Given the broad de�nition above it is no surprise that scheduling is a

vast sub-area of optimization. The work in this thesis falls under the category of determin-

istic machine scheduling. Resources are modeled by machines and activities are modeled by

jobs that can be executed by the machines. Deterministic refers to the scenario in which all

parameters of the problem instance are known in advance. In contrast, stochastic scheduling

is concerned with the case when some or all of the input data is assumed to be from a known

probability distribution (see [88] for details). Another approach to model the uncertainty in

the input data is by considering various adversarial online scenarios [8]. Applications dictate

the most accurate set of assumptions for the problem at hand. Problems in deterministic

machine scheduling are combinatorial optimization problems. Consequently, techniques

from the rich �eld of combinatorial optimization �nd motivation in, and are extensively

applied to scheduling problems.

Most of the early work on scheduling, starting from early 1950's, was motivated by

production planning and manufacturing, and was primarily done in the operations research

and management science community. The advent of computers and their widespread use had

a considerable impact both on scheduling problems and solution strategies. Computers and

related devices are, in a very concrete sense, resources that need to be allocated to various

processes. Many problems in scheduling found new applications in computer science. In

addition, a number of new problems and variations have been motivated by application areas

in computer science such as parallel computing, databases, compilers, and time sharing. The

1



2 CHAPTER 1. INTRODUCTION

advent of computers also initiated the formal study of e�ciency of computation that led to

the notion of NP-Completeness. Karp's seminal work [68] established the pervasive nature of

NP-Completeness by showing that decision versions of several naturally occurring problems

in combinatorial optimization are NP-Complete, and thus are unlikely to have e�cient

(polynomial time) exact algorithms. Following Karp's work, many problems, including

scheduling problems, were shown to be NP-Complete. It is widely believed that P (the set

of languages that can be recognized by Turing machines in deterministic polynomial time)

is a proper subset of NP (the set of languages that can be recognized by Turing machines in

non-deterministic polynomial time). Proving that P 6= NP is the most outstanding problem

in theoretical computer science today.

The practical importance of NP-Hard optimization problems necessitates tractable re-

laxations. By tractable we mean e�cient solvability, and polynomial time is a robust

theoretical notion of e�ciency. A very fruitful approach has been to relax the notion of

optimality and settle for near-optimal solutions. A near-optimal solution is one whose

objective function value is within some small multiplicative1 factor of the optimal value.

Approximation algorithms are heuristics that provide provably good guarantees on the qual-

ity of the solutions they return. This approach was pioneered by the in
uential paper of

Johnson [63] in which he showed the existence of good approximation algorithms for several

NP-Hard optimization problems. He also remarked that the optimization problems that

are all indistinguishable in the theory of NP-Completeness behave very di�erently when it

comes to approximability. Remarkable work in the last couple of decades in both the design

of approximation algorithms and proving inapproximability results has validated Johnson's

remarks. The book on approximation algorithms edited by Hochbaum [54] gives a good

glimpse of the current knowledge on the subject. The methodology of evaluating algo-

rithms by the quality of their solutions is useful in comparing commonly used heuristics,

and often the analysis suggests new and improved heuristics.

Approximation algorithms for several problems in scheduling have been developed in the

last three decades. In fact it is widely believed that the �rst NP optimization problem for

which an approximation algorithm was formally designed and analyzed is multiprocessor

scheduling, by Graham in 1966 [42]. This precedes the development of the theory of NP-

Completeness. Despite the progress made on many problems, the approximability of several

1It is possible to de�ne other notions of near-optimality such as additive error approximations. However

the multiplicative notion is the most robust. See [81] for examples and discussion.
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fundamental problems is still open (see the many surveys available [73, 46, 65]).

In this thesis we develop approximation algorithms for some NP-Hard deterministic

scheduling problems. The problems we consider are primarily motivated by applications

in computer science such as parallel query optimization, code scheduling in compilers, and

task scheduling. Some of the problems we consider are particular to the application at

hand and thus are \new" problems or generalizations of existing problems. Most of the

focus in designing approximation algorithms for optimization problems is in improving the

approximation guarantee, and less so on obtaining the best running time. Many algorithms

are based on rounding linear programming based relaxations. Partly motivated by the

practical applications that gave rise to some of the problems considered here, we focus on

obtaining e�cient and \combinatorial" algorithms(we use the word combinatorial in an

admittedly imprecise manner here). Combinatorial algorithms have two useful properties.

They are typically simpler and e�cient to implement. Further they often provide structural

insights that can be exploited for special cases, as we shall see in Chapters 2 and 3.

In the next section we review relevant background on scheduling theory and approxi-

mation theory, and Section 1.2 outlines the contributions of this thesis.

1.1 Background and Notation

1.1.1 Scheduling Theory

Scheduling theory encompasses a large and diverse set of models, algorithms, and results.

Even a succinct overview of the �eld would take many pages. Hence we review only those

concepts that are directly relevant to this thesis and refer the reader to many excellent

books and surveys available [88, 27, 73]. The problems we consider involve scheduling or

allocating jobs to machines under various constraints. Unless otherwise mentioned n denotes

the number of jobs and m denotes the number of machines. A schedule is non-preemptive if

each job runs uninterrupted on one machine from start to �nish. In a preemptive schedule,

a job may be interrupted or may switch machines at any time. A schedule speci�es for each

time instant, the set of jobs executing at that instant, and the machines on which they are

executing. In this thesis we focus mostly on non-preemptive schedules. However preemptive

schedules play an important role, as relaxations, that can be used in the design and analysis

of algorithms for non-preemptive schedules. We use Cj to denote the completion time of

job j in a schedule. The two objective functions we will be concerned with are makespan
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and average completion time, and our goal will be to �nd schedules that minimize one of

these two objectives. Makespan, denoted by Cmax, is simply the maximum over all jobs of

the completion time of the job (Cmax = maxj Cj). Average completion time as the name

suggests is simply (
P

j Cj)=n. Jobs could have positive weights wj associated with them in

which case we take the average weighted completion time (
P

j wjCj)=n. Without loss of

generality we can ignore the 1=n factor in the objective function. This is frequently done in

the literature and the objective function is also referred to as sum of (weighted) completion

times and we shall use both interchangeably. Jobs can have several constraints on them;

in our work we consider release dates and precedence constraints. If job j has a release

date rj , then it cannot be started before time rj . Precedence constraints, speci�ed in the

form of a directed acyclic graph, model dependencies between jobs. If job j precedes job

i, denoted by j � i, then i cannot be started until j has been �nished. We consider both

single machine scheduling and parallel machine scheduling. For the most part we assume

that machines are identical, except in Chapter 3, where we consider machines with di�erent

speeds. Graham et al. [44] introduced the compact � j � j 
 notation to classify the many

di�erent scheduling problems that arise depending on the machine environment, job types,

and objective function. Not all problems we consider can be described using the above

notation, hence we use it only in Chapters 2 and 3. We give an example that explains some

of the above de�nitions.

1

4

5

6

7

3
2

(1,0) (1,7)
(2,0)

(1,0)

(1,3)

(5,1)(3,0)

Figure 1.1: A problem instance with precedence constraints and release dates.

Figure 1.1 illustrates a problem instance with seven jobs. Jobs J1; : : : ; J7 are represented
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by a rectangle each and the number in bold inside indicates the job number. A job's pro-

cessing time pj , and its release date rj, are indicated as a pair (pj; rj) next to it. Precedence

constraints are shown by directed arrows. Figure 1.2 illustrates a non-preemptive schedule

for the above instance on two identical parallel machines M1 and M2.

1

2
5

3
6

4
7

time

0
1
2
3
4
5
6
7

9
8

M1 M2

Figure 1.2: A schedule on two machines for the instance in Fig 1.1.

In the schedule shown, the completion times C1; : : : ; C7 are 3; 5; 6; 8; 6; 7, and 9 respec-

tively. The makespan of the schedule, Cmax, is 9 and the sum of completion times,
P

j Cj, is

44. Release date constraints force jobs J4 and J5 to wait even though a machine is available.

Since there is a precedence constraint from J4 to J7, job J7 has to wait until J4 completes.

List Scheduling: A popular heuristic in machine scheduling, that is used extensively

both in theory and practice, is list scheduling. Given a set of jobs, a list is simply a total

ordering on them that prioritizes the jobs, and by convention, jobs that come earlier in the

list (order) have higher priority. In the literature, the name list scheduling is used to refer

to di�erent algorithms that have similarities, yet important di�erences as well. Almost all

list scheduling algorithms have the following structure. First, a list or an ordering of the

jobs is computed, typically using a relaxation such as a preemptive schedule or a linear

programming relaxation. Jobs are considered according to the list order and scheduled

on the available machines. Precedence constraints, release dates, and other constraints
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complicate the algorithm since jobs that come later in the list might be ready to execute

before those that are earlier in the list. List scheduling algorithms di�er in the rule used

to pick the next job from the list when a machine is free. We describe two variants that

are most common and useful. They represent two extreme cases. The �rst variant picks

the earliest job in the list among those jobs that are currently ready to execute. Graham

[42, 43] analyzed this rule and showed its e�ectiveness in minimizing makespan on parallel

machines both with and without precedence constraints on the jobs. The second variant

schedules the jobs strictly in the order of the list. In other words, it delays all jobs until the

�rst job on the list has been scheduled. This variant has been used for minimizing average

completion time [47] (and others) in conjunction with orderings produced by preemptive

schedules and linear programming relaxations. We will use both variants in this thesis. In

Chapter 2 we develop a new list scheduling variant called Delay List that combines the

two variants in an interesting way to obtain algorithms for a variety of problems.

1.1.2 Approximation Algorithms and Inapproximability

We brie
y but formally review notions of NP optimization problems and their approxima-

bility. An NP optimization problem (abbreviated by NPO henceforth) is de�ned below.

De�nition 1.1.1 An NPO problem � is a four-tuple (I; sol; obj; goal) such that

� I is the set of input instances of � and is recognizable in polynomial time.

� For any instance x 2 I, sol(x) is the set of feasible solutions for I. Solutions for an

instance x are constrained to be polynomially bounded in jxj the size of x, that is there
exists a polynomial p such that y 2 sol(x) implies that jyj � p(jxj). Further, just as

for NP languages, there should exist a polynomial time computable boolean function f

such that f(x; y) is true if and only if y 2 sol(x).

� For every instance x, the objective function obj assigns a positive value to each solution

y 2 sol(x) and should be polynomial time computable.

� The parameter goal 2 fmin;maxg speci�es whether the objective function should be

minimized or maximized.

Informally, feasible solutions correspond to those solutions that satisfy the constraints of

the given problem. The objective function assigns to each feasible solution a positive real
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value. The goal speci�es whether the problem is a minimization or a maximization problem.

Decision versions of NPO problems are languages in NP. Decision versions are obtained by

considering instances whose objective function values are constrained in some way. For

example, if an optimization problem involves �nding a schedule of minimum makespan, a

decision version is obtained by considering all instances that have a makespan of at most 3.

An NP-Hard optimization problem, for us, is an NPO problem for which there is an NP-

Complete decision version. Thus, tractability of NPO problems is predicated on whether

P = NP or not. Many years of substantial e�ort have failed to resolve the above question.

It is widely believed now that P 6= NP.

Approximation algorithms that provide near optimal solutions while running in polyno-

mial time are clearly very well motivated by the assumed intractability of NPO problems.

Given an instance x of �, let opt(x) denote the the objective function value of an optimal

feasible solution to x. A �-approximation algorithm A, for a minimization problem �, is a

polynomial time algorithm that, on every instance x of �, computes a solution y 2 sol(x)

such that obj(y) � � � opt(x). For maximization problems a �-approximation algorithm

satis�es obj(y) � 1
�
� opt(x). The asymmetry in the de�nition is to ensure that � � 1 for

all approximation algorithms. The value � is called the approximation ratio or the perfor-

mance ratio of A and in general could be a function of jxj, the input size. A polynomial

time approximation scheme (PTAS) for an NPO problem is an algorithm which, for each

�xed � > 0, provides a (1 + �) approximation while running in time polynomial (depending

on �) in the size of the input instance. Assuming P 6= NP, a PTAS is the best result we can

obtain for a strongly NP-Hard problem2.

Understanding the approximability of an NPO problem � involves �nding the minimum

value of � for which there is a �-approximation for �. We denote this minimum value by 
,

the approximability threshold of �. If a problem has a PTAS, � can be made arbitrarily close

to 1. However for most NPO problems 
 is strictly greater than 1 and could also depend

on the size of the instance. A problem is said to be �-hard if there is no �-approximation

algorithm unless P = NP3. Hardness of approximation results provide lower bounds on 
,

in contrast to approximation algorithms that provide upper bounds. We now proceed to

2An NPO problem is strongly NP-Hard if it is NP-Hard even if the input instance is speci�ed in unary

representation.
3Sometimes the hardness is based on weaker assumptions. For example it is \believed" that RP (the set

of languages that can be recognized in randomized polynomial time) is a proper subset of NP. Thus hardness

results can be based on the assumption that RP 6= NP.
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discuss some approaches to showing inapproximability results. Surprisingly, NPO problems,

whose decision versions are all polynomial time reducible to each other (since they are

NP-Complete), behave very di�erently in their approximability. For example, the multi-

processor scheduling problem has a PTAS while it is known that there is no polynomial

factor approximation for the well known traveling salesman problem. This seeming anomaly

is explained by the fact that reductions between NP-Complete problems, that preserve

polynomial time computability, do not preserve the quality of the approximate solutions

between the corresponding NPO problems. To study relationships between NPO problems,

we need a more re�ned notion called an approximation preserving reduction. We will de�ne

one such reduction later that will illustrate the concept. Another useful notion in showing

hardness results is that of complete problems. Completeness is a natural notion associated

with complexity classes. A problem is complete for a class if it is a member of the class,

and all other problems in the class reduce to it under an appropriate notion of reducibility.

A problem is hard for a complexity class if all problems in the class reduce to it (it need not

be a member of the class). For NPO classes we are interested in approximation preserving

reductions. We emphasize that the notion of completeness is strongly tied to the notion of

reducibility used. Complete problems are canonical hard problems in the class. For example,

as their name suggests, NP-Complete problems are complete for the class NP under the

notion of polynomial time reducibility. To show proper containment of a complexity class

A in another larger class B, it is su�cient to show that some problem in B is not contained

in A. Once this is accomplished, to show that a problem � in B is not contained in A, it
is su�cient to show that � is complete for B. However, for such an approach to work, the

reduction used to de�ne completeness should satisfy the following property. If a problem �

reduces to a problem �0, then �0 2 A implies that � 2 A.
Based on known results about the approximability thresholds of various problems, re-

searchers have classi�ed problems into a small number of classes (see [4] for a survey). This

classi�cation is by no means exhaustive but is useful in organizing known results, for proving

new results via reductions, and to understand the underlying structure of NPO problems.

We will be interested in two classes, namely PTAS4, the class of problems that have a poly-

nomial time approximation scheme, and APX, the class of problems problems that have a

constant factor approximation (
 = O(1)). Other classes are similarly de�ned with larger

4We abuse notation by using PTAS to denote both an approximation scheme and the class of problems

that have an approximation scheme.
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thresholds for 
. Clearly PTAS is a subset of APX. It is natural to question whether the

containment is proper. This is indeed the case for there are problems such as the k-center

problem [34] that are in APX but have no PTAS unless P = NP. However, a complete

problem for APX was not known until very recently. Papadimitriou and Yannakakis [85]

de�ned a syntactic class called Max-SNP that is a subset of APX5. They also established

that the well known Max 3-SAT problem, among several other problems, is complete for

Max-SNP under a notion of reduction called L-reduction. In a remarkable line of work that

culminated in [5] (see Arora's thesis [3] for details of the result in [5] and pointers to prior

work), it was shown that Max 3-SAT has no PTAS unless P = NP. Thus, Max 3-SAT is a

complete problem that, via L-reductions, can be used to show that other problems do not

have a PTAS. We formally de�ne an L-reduction below.

De�nition 1.1.2 A problem � L-reduces to a problem �0 if there exist two polynomial time

computable functions f and g, and positive constants � and � such that the following two

conditions hold.

� The function f maps instances x of � to instances x0 of �0 such that

opt(x) � � � opt(x0):

� The function g is a mapping from solutions for x0, sol0(x0), to solutions for x, sol(x),

such that for every y0 2 sol(x0)

jopt(x)� obj(g(y0))j � � � jopt(x0)� obj0(y0)j:

An L-reduction is an approximation preserving reduction that relates the error in the

solutions of the two problems by a constant factor that depends on � and �. It is not hard to

show that if �1 L-reduces to �2, then a PTAS for �2 implies a PTAS for �1. Therefore, from

the result of [5] it immediately follows that if Max 3-SAT L-reduces to a problem �, then �

has no PTAS unless P = NP. In fact we can use any other complete problem for Max-SNP

in place of Max 3-SAT. It was later established by Khanna et al. [70] and Crescenzi et al.

[19, 20] that Max 3-SAT is complete for the larger class of APX under subtler notions of

5It is in fact a proper subset since only maximization problems are considered. The more interesting

aspect is the fact that every problem in Max-SNP, by its syntactic characterization, has a constant factor

approximation.
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reductions. Hence Max 3-SAT is APX-Complete. Using L-reductions or other reductions

from [70, 20], many problems have been shown to be either APX-Complete or APX-Hard,

and thus do not have a PTAS unless P = NP. In this thesis we use only L-reductions.

Hardness of approximation results for other problems (classes) are similarly shown using

appropriate approximation preserving reductions from a canonical hard problem such as

Max 3-SAT.

In addition to using approximation preserving reductions from known hard problems,

there is a more direct approach to showing hardness. This approach has been successful for

some scheduling problems and we brie
y describe it below. Given a minimization problem

�, suppose we can �nd an NP-Complete language A, a polynomial time computable function

f , and two constants � and � with � < � such that the following conditions hold. The

function f maps yes instances of A (the strings that belong to A) to instances x of � such

that opt(x) � �. In addition, f maps no instances of A (the strings that do not belong

to A) to instances x of � such that opt(x) > �. Then it is clear that unless P = NP,

there is no �=� approximation for �. This approach is more problem-speci�c than using

generic approximation preserving reductions outlined earlier, but has been e�ective for

several scheduling problems. See the survey in [75] for examples.

See Papadimitriou's book [86] for more details and related aspects of computational

complexity.

1.2 Organization and Overview of Contributions

We next describe the problems considered in this thesis and our results.

1.2.1 Scheduling to Minimize Average Completion Time

In Chapter 2 we consider the problem of scheduling jobs on machines to minimize the sum

of weighted completion times, that is
P

j wjCj , and the special case when all wj = 1. This

measure has been of interest in operations research since the work of Smith in 1956 [104]

and has several applications. Our motivation for studying sum of weighted completion

times, aside from its intrinsic theoretical interest, comes from applications to compiler

optimizations. Compile-time instruction scheduling is essential for e�ectively exploiting

the �ne-grained parallelism o�ered in pipelined, superscalar, and VLIW architectures (for

example, see [53, 112]). Current research is addressing the issue of pro�le-based compiler
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optimization. In a recent paper, Chekuri et al. [12] show that sum of weighted completion

times is the measure of interest in pro�le-driven code optimization; some of our results are

related to the heuristics described and empirically tested therein.

Despite interest in the objective function for many years, progress on several basic

problems in terms of approximation algorithms has been made only recently. Approximation

algorithms have been developed for several variants [87, 47, 9, 15, 39, 100, 17] in the last

couple of years. Several of these algorithms are based on solving a preemptive or linear

programming relaxation and then using the solution to get an ordering on the jobs.

We introduce new techniques that generalize this basic paradigm. We use these ideas to

obtain an improved e=(e � 1) ' 1:58 approximation algorithm for one-machine scheduling

to minimize average completion time (wj = 1 for all j) with release dates. In the process

we also obtain an optimal randomized on-line algorithm for the same problem that beats

a lower bound for deterministic on-line algorithms. We consider extensions to the case

of parallel machine scheduling, and for this we introduce two new ideas: �rst, we show

that a preemptive one-machine relaxation is a powerful tool for designing parallel machine

scheduling algorithms that simultaneously produce good approximations and have small

running times; second, we show that a non-greedy \rounding" of the relaxation yields

better approximations than a greedy one. This yields a (2:89+ �) approximation algorithm

for minimizing average completion time with release dates in the parallel setting.

When jobs have precedence constraints we obtain a 2 approximation algorithm for the

single machine case that matches the best known ratio for this problem. Our algorithm

however is not based on solving a linear programming relaxation and is currently the most

e�cient constant factor approximation algorithm for the above problem. We also give a

general algorithm that obtains an m-machine schedule using a one-machine schedule when

jobs have release dates and precedence constraints. In particular, given a schedule that

provides an �-approximation to the optimal one machine schedule, we obtain a (2 + 2�)-

approximation6 to the optimal m-machine schedule. In the process we obtain a surprising

generalization of Graham's list scheduling result [42]. Our conversion algorithm is simple

and e�cient. Combined with our 2 approximation result for the single machine problem

we obtain constant factor approximation algorithms for several variants of the problems

that are competitive with the best ratios known while having the advantage of e�ciency

6In fact we obtain a slightly stronger result. See Chapter 2 for details.
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and simplicity. We also apply the conversion algorithm to obtain improved approximation

ratios for restricted precedence graphs such as in-trees, out-trees, and series-parallel graphs.

1.2.2 Minimizing Makespan on Machines with Di�erent Speeds

The problem of scheduling precedence constrained jobs on a set of identical parallel machines

to minimize makespan is one of the oldest problems for which approximation algorithms

have been devised. Graham [42] showed that a simple list scheduling algorithm gives a ratio

of 2 and it is the best known algorithm to date. In Chapter 3 we consider a generalization

of this model in which machines have di�erent speeds. In the scheduling literature such

machines are called uniformly related. We formalize the problem below. We are given a set

of n jobs with precedence constraints between them that are to be scheduled on a set of

m machines. Machine i has a speed factor si and job j has a processing requirement pj .

The uniformity assumption means that job j takes pj=si time units to execute on machine

i. The objective is to �nd a schedule to minimize Cmax, the makespan of the schedule. We

are interested in non-preemptive schedules though our results are valid for the preemptive

case as well. In the scheduling literature [44] where problems are classi�ed in the �j�j

notation, this problem is referred to as QjprecjCmax.

Ja�e [62] gave an approximation algorithm achieving a ratio of O(
p
m) and this was

the �rst algorithm with a ratio independent of the speeds of the processors. Chudak and

Shmoys [17] recently obtained a much improved ratio of O(logm). Their algorithm is based

on rounding a linear programming relaxation of the problem. We provide an alternative

algorithm with provably more e�cient running time while achieving a similar approximation

ratio of O(logm). Our algorithm, in addition to being e�cient, is simple, intuitive, and

combinatorial. Using the results of Shmoys, Wein, and Williamson [103], we can extend

our algorithm to obtain an O(logm) approximation ratio even if jobs have release dates.

We also show that our algorithm achieves an approximation ratio of 4 when the precedence

constraints between the jobs are induced by a collection of chains.

1.2.3 Scheduling Problems in Parallel Query Optimization

In Chapter 4 we introduce a class of novel multiprocessor scheduling problems that arise in

the optimization of SQL queries for parallel machines. The scheduling model is developed

to re
ect the communication costs inherent in a shared-nothing parallel environment where
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independent machines communicate via message passing. The overall goal is to schedule a

tree of inter-dependent communicating operators while exploiting both inter-operator and

intra-operator parallelism. The tree represents the computation of a query in the database

system. We obtain several scheduling variants depending on the constraints allowed. We

concentrate on the speci�c problem of scheduling a pipelined operator tree (POT) in which

all operators run in parallel using inter-operator parallelism. In the POT scheduling problem

the input instance is a tree with weights on both nodes and edges. Node weights represent

cost of operators and edge weights represent cost of remote communication between the

operators. Communication cost between two operators connected by an edge is incurred

only if they are assigned di�erent machines. The scheduling problem is to assign operators

to machines so as to minimize the maximum machine load. We obtain a polynomial time

approximation scheme for this NP-Hard problem. We also develop two other approximation

algorithms that are simple and e�cient. The �rst of these has an approximation ratio of

3:56 and has a running time of O(n log n) while the other has a ratio of 2:87 and the same

running time (albeit with a larger hidden constant).

1.2.4 Approximability of Vector Packing Problems

Chapter 5 examines several variants of vector packing problems. Our main motivation

for studying these problems comes from multi-dimensional resource scheduling problems

encountered in several systems. Consider a task in a system where each task requires CPU

time, disk I/O, and network bandwidth (through a network controller for example). The

requirements of such a task are typically reduced to a single \work" measure that captures

to a certain extent the aggregate requirements. This simpli�cation is done in most cases

to make the problem tractable by reducing the search space complexity. However, for large

tasks, especially those that might have skewed resource requirements, it is advantageous to

model their resource requirements as multi-dimensional vectors. The work in [35, 36, 37, 38]

demonstrates the e�ectiveness of this approach for parallel query processing and scheduling

continuous media databases. We examine the following basic scheduling problem that arises

in the applications mentioned above.

Let J be a set of n d-dimensional real vectors p1; : : : ; pn. Each vector pj represents

a job that has d distinct resource requirements. The quantity pij indicates the resource

requirement of job j for resource i. The goal is to schedule these jobs on a set of m

parallel machines where each machine has each of the d resources required by the jobs. For



14 CHAPTER 1. INTRODUCTION

our purposes a schedule is simply a partition of the jobs into m sets, one for each of the

machines. Given a schedule S, the load on resource i of machine k is simply the sum of

the ith coordinates of all the jobs scheduled on machine k. Our goal is to minimize the

load of the most loaded resource over all machines. The objective function is based on the

assumption that the load, as de�ned above, is a good measure of the schedule length. This

assumption provides a good approximation for large tasks that are typically encountered in

applications such as database systems [36].

For the scheduling problem above we obtain a polynomial time approximation scheme

for every �xed d. We generalize the ideas of Hochbaum and Shmoys [55] for multi-processor

scheduling in a non-trivial way to obtain our algorithm. For arbitrary d we obtain an

O(min(log dm; log2 d)) approximation. Further we show that for arbitrary d unless NP =

ZPP there is no constant factor approximation algorithm.

Our vector scheduling problem is closely related to other vector packing problems,

namely vector bin packing (or multi-dimensional bin packing) [33, 23] and packing inte-

ger programs (PIPs) [93, 105]. We obtain several interesting approximation algorithms and

inapproximability results for these variants as well.

The work described in this thesis is mostly contained in papers published earlier [11, 12,

15, 10] and some others in preparation [13, 14].



Chapter 2

Minimizing Average (Weighted)

Completion Time

2.1 Introduction

In this chapter1 we present new approximation results for scheduling to minimize average

(weighted) completion time (equivalently sum of (weighted) completion times). We are

given n jobs J1; : : : ; Jn, where job Jj has processing time pj and a positive weight wj . We

consider several variants but the objective in all of them is to �nd schedules to minimize

either
P

j Cj (average completion time) or
P

j wjCj (average weighted completion time)

where Cj is the completion time of job j in the schedule. We are primarily interested in

non-preemptive schedules. A simple variant is when jobs have no other constraints and the

goal is to schedule them on a single machine. For this case, the weighted completion time

problem can be solved optimally in polynomial time [104] using what is known as Smith's

rule. Smith's rule states that scheduling the jobs in non-increasing order of wj=pj is optimal.

We are interested in a more general setting with release dates, precedence constraints, and

multiple machines any of which make the problem NP-hard [73]. Thus, we will consider

approximation algorithms, or, in an on-line setting, competitive ratios.

Recent work has led to constant-factor approximations for sum of weighted completion

times for a variety of these NP-hard scheduling problems [87, 47, 9, 39, 17, 100]. Most of

1This chapter is joint work with Rajeev Motwani, Balas Natarajan, and Cli� Stein and appears in [15]

and [14].

15
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these algorithms work by �rst constructing a relaxed solution, either a preemptive schedule

or a linear-programming relaxation. These relaxations are used to obtain an ordering of the

jobs, and then the jobs are list scheduled as per this ordering.

We contribute in two ways. First we introduce several new techniques which generalize

the above mentioned basic paradigm. Second we also give the �rst constant factor algo-

rithms for several variants that do not rely on solving a linear programming relaxation. We

are thus able to obtain simple, e�cient, and competitive algorithms.

We use our techniques to obtain an improved approximation algorithm for one-machine

scheduling to minimize average completion time with release dates. Our main result here

is a e
e�1

� 1:58-approximation algorithm. This algorithm can be turned into a randomized

on-line algorithm with the same bound, where an algorithm is on-line if before time rj it

is unaware of Jj , but at time rj it learns all the parameters of Jj . This randomized on-

line algorithm is particularly interesting as it beats a lower bound for deterministic on-line

algorithms [60], and matches a recent lower bound for randomized on-line algorithms [108].

We then consider the case when jobs have precedence constraints. We give a 2 approximation

algorithm for this problem that matches the best ratio prior to our work. In contrast to

earlier work based on linear programming relaxations our algorithm is combinatorial. We

use our algorithm to obtain combinatorial algorithms for the parallel machine case as well.

We then consider extensions to parallel machine scheduling, and introduce two new ideas:

�rst, we show that a preemptive one-machine relaxation is a powerful tool for designing par-

allel machine scheduling algorithms that simultaneously produce good approximations and

have small running times; second, we show that a non-greedy \rounding" of the relaxation

produces better approximations than simple list scheduling. In fact, we prove a general

theorem relating the value of one-machine relaxations to that of the schedules obtained for

the original m-machine problems. This theorem applies even when there are precedence

constraints and release dates. Using this theorem, we can obtain simple combinatorial al-

gorithms for many variants while achieving constant factor approximation ratios that are

competitive with those obtained by less e�cient algorithms. We also obtain improved ap-

proximations for precedence graphs such as in-trees, out-trees, and series-parallel graphs,

which are of interest in compiler applications that partly motivated our work.

We begin with a more detailed discussion of our results and their relation to earlier

work.
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One-Machine Scheduling with Release Dates

The �rst constant-factor approximation algorithm for minimizing the average completion

time on one machine with release dates was the following 2-approximation algorithm of

Phillips, Stein and Wein [87]. First, an optimal preemptive schedule P is found using the

shortest remaining processing time (SRPT) algorithm [73] which, at any time, runs an

available job that has the least processing time left; note that this is an on-line algorithm.

Given P , the jobs are ordered by increasing completion times, CP
j , and are scheduled non-

preemptively according to that ordering, introducing idle time as necessary to account for

release dates. A simple proof shows that each job Jj completes at time no later than 2CP
j ,

implying a 2-approximation. Two other 2-approximation algorithms have been discovered

subsequently [60, 107], and it is also known that no deterministic on-line algorithm has

approximation ratio better than 2 [60, 107]. This approximation technique has been gen-

eralized to many other scheduling problems, and hence �nding better approximations for

this basic problem is believed to be an important step towards improved approximations

for more general problems.

One of the main results of this chapter is a deterministic o�-line algorithm for this

basic problem that gives an e
e�1 -approximation ( e

e�1 � 1:58). We also obtain an optimal

randomized on-line algorithm(in the oblivious adversary model) with expected competitive

ratio e
e�1

. This beats the deterministic on-line lower bound. Our approach is based on

what we call �-schedules (this notion was also used by [87] and [48] in a somewhat di�erent

manner). Given a preemptive schedule P and � 2 [0; 1], we de�ne CP
j (�) to be the time at

which �pj , an �-fraction of Jj , is completed. An �-schedule is a non-preemptive schedule

obtained by list scheduling jobs in order of increasing CP
j (�), possibly introducing idle

time to account for release dates. Clearly, an �-schedule is an on-line algorithm; moreover,

for � = 1, the �-scheduler is exactly the algorithm of Phillips et al. [87] and hence a 2-

approximation. We show that for arbitrary �, an �-scheduler has a tight approximation

ratio of 1 + 1=�. Given that 1 + 1=� � 2 for � 2 [0; 1], it may appear that this notion of

�-schedulers is useless for obtaining ratios better than 2.

A key insight is that a worst-case instance with performance ratio 1+1=� for one value of

� is not a worst-case instance for many other values of �. This suggests that a randomized

algorithm which picks � at random, and then behaves like an �-scheduler, may lead to an

approximation better than 2. Unfortunately, we show that choosing � uniformly at random

gives an expected approximation ratio of 2, and that this is tight. However, this leaves
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open the possibility that for any given instance I, there exists a choice �(I) for which the

�(I)-schedule yields an approximation better than 2. We refer to the resulting deterministic

o�-line algorithm which, given I, chooses � to minimize �(I), as Best-�.

It turns out, however, that the randomized on-line algorithm which chooses � to be

1 with probability 3=5 and 1=2 with probability 2=5 has competitive ratio 1:8; conse-

quently, for any input I, either the 1-schedule or the 1
2
-schedule is no worse than an

1:8-approximation. The non-uniform choice in the randomized version suggests the pos-

sibility of de�ning randomized choices of � that may perform better than 1:8 while being

easy to analyze. In fact, our result here is that it is possible to de�ne a distribution for

� that yields a randomized on-line e
e�1 -approximation algorithm implying that Best-� is

an e
e�1 -approximation algorithm. It should be noted that Best-� can be implemented in

O(n2 log n) time. We also establish some lower bounds on the performance ratios of the

algorithms described above. Torng and Uthaisombut [110] recently showed that our anal-

ysis of Best-� is tight by giving instances on which the approximation ratio achieved by

Best-� is arbitrarily close to e=(e � 1).

Our bounds are actually job-by-job, i.e., we produce a schedule N in which E[CN
j ] �

e
e�1C

P
j for all j where E[CN

j ] is the expected completion time of Jj in the non-preemptive

schedule. Thus, our conversion results generalize to weighted completion time. However,

since for the weighted case even the preemptive scheduling problem is NP-hard (given

release dates), we must use an approximation for the relaxation. There is a 2-approximation

for the preemptive case [47], which yields a 3:16-approximation for the non-preemptive case.

However this does not improve earlier results.

Independently, Goemans [39] has used some related ideas to design a 2-approximation

algorithm for the problem of non-preemptive scheduling on one machine so as to minimize

the average weighted completion time. His algorithm is also a Best-� algorithm, but it

works o� of a linear programming relaxation rather than a preemptive schedule. Schulz

and Skutella [100] improved the results of Goemans for the weighted case to obtain a ratio

of 1:693. Their improvement is obtained by extending the idea of using a single random �

for all jobs to using independent random � values for each job.

One-Machine Scheduling with Precedence Constraints

Scheduling with precedence constraints is NP-Hard even without release dates [72] if all

wj = 1 and pj are allowed to be arbitrary or if all pj = 1 and wj are allowed to be arbitrary.
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Polynomial time solvable cases include precedence constraints induced by forests (in and out

forests) and generalized series-parallel graphs [72, 1, 109]. The �rst approximation algorithm

for this problem was given by Ravi et al. [94] and had a guarantee of O(log n logL) where

L =
P

j pj . They in fact solve a more general problem called the storage time product

problem. Hall et al. and Schulz [48, 98] gave the �rst constant factor approximations using

linear programming relaxations. It is interesting to note that several di�erent formulations

[47] give the same bound of 2.

We give an e�cient combinatorial 2 approximation algorithm for the single machine

problem which matches the ratio achieved in [47]. Our algorithm has two advantages.

First, the algorithms in [47] are based on solving linear programming relaxations while

ours is based on solving a minimum cut, and hence is simpler and more e�cient. Second,

combining this new algorithm with the conversion algorithm to be discussed below, we get an

e�cient combinatorial algorithm for the multiple machine case as well. Margot, Queyranne,

and Wang [79] have independently obtained the same 2 approximation algorithm that we

present here.

In a recent paper, Chudak and Hochbaum [16] show a half integral linear programming

relaxation for the same problem. They also achieve an approximation ratio of 2. The

half-integral program can be solved using minimum cut computations, and thus also yields

a combinatorial algorithm. However the running time obtained is worse than that of our

algorithm by a factor of n. Their relaxation is a slight modi�cation of Potts's linear ordering

relaxation [90]. Hall et al. [47] showed that Potts's relaxation is feasible for their completion

time relaxation, and hence also provides a 2 approximation. Though factor 2 integrality

gaps have been demonstrated for both the completion time relaxation and the time indexed

relaxation [47], no such gap had been shown for the linear ordering relaxation. We show

a factor 2 integrality gap for the linear ordering relaxation thus establishing that it is no

stronger than the other relaxations from a worst case analysis point of view. Surprisingly,

the instance on which we show the gap uses expander graphs. Our proof also establishes

the same integrality gap for the parallel and series inequality formulation of Queyranne and

Wang [91] via the results of Schulz [97].

Scheduling Parallel Machines with Release Dates

We consider the generalizations of the single machine problems to the case of m identical

parallel machines. We �rst consider the problem of minimizing average completion time with



20 CHAPTER 2. MINIMIZING AVERAGE COMPLETION TIME

release dates and no precedence constraints. Extending the techniques to the m-machine

problem gives rise to two complications: the problem of computing an optimal m-machine

preemptive schedule is NP-hard [26], and the best known approximation ratio is 2 [87]; fur-
ther, the conversion bounds from preemptive to non-preemptive schedules are not as good.

Chakrabarti et al. [9] obtain a bound of 7=3 on the conversion from preemptive to non-

preemptive case, yielding a 14=3-approximation for scheduling on m machines with release

dates. Several other algorithms don't use the preemptive schedule but use a linear pro-

gramming relaxation. Phillips et al. [87] gave the �rst such algorithm, a 24-approximation

algorithm. This has been greatly improved to 4 + � [48], 4 � 1
m

[47], and 3:5 [9]. Using a

general on-line framework [9], one can obtain an algorithm with an approximation ratio of

2:89 + �. Unfortunately, the algorithm with the best approximation is ine�cient, as it uses

the polynomial approximation scheme for makespan due to Hochbaum and Shmoys [56].

We give a new algorithm for this problem. First we introduce a di�erent relaxation { a

preemptive one-machine relaxation. More precisely, we maintain the original release dates

and allow preemptions, but divide all the processing times by m. We then compute a one-

machine schedule. The resulting completion time ordering is then used to generate a non-

preemptivem-machine schedule that is a 3-approximation. Our algorithm is not only on-line

but is also e�cient and runs in O(n logn) time. We then show that the approximation ratio

can be improved to 2.85, using the general conversion algorithm described below. This

improves on the approximation bounds of previous algorithms and gives a much smaller

running time of O(n log n). Subsequent to our work, Schulz and Skutella [100] using some

of our ideas have obtained an approximation ratio of 2 for the more general case of sum of

weighted completion times.

A General Conversion Algorithm for Scheduling with Precedence Constraints

We now consider the weighted completion time problem with precedence constraints and

release dates on parallel machines; for the time being, we assume that all release dates are

0, but our results apply unchanged for arbitrary release dates. For arbitrarym, the problem

is NP-hard even without precedence constraints, unless the weights are all equal (without

release dates); on the other hand, the problem is strongly NP-hard even when all weights

are identical and the precedence graph is a union of chains [26]. An approximation ratio

of 5:33 + � is achievable with release dates and precedence constraints [9]. This has been

recently improved to 4 in [82].
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We obtain a fairly general algorithm for m-machine problems with precedence con-

straints, in addition to release dates and job weights. To do so, we �rst solve a one-machine

preemptive relaxation, and apply an algorithm we call Delay List to get an m-machine

non-preemptive schedule. Since, in general, the one-machine preemptive relaxation is also

NP-hard, we would have to settle for a �-approximation for it; then, our algorithm would

give a (2� + 2)-approximation for the m-machine case. Using the above algorithm we ob-

tain improved approximation algorithms for special cases of precedence constraints induced

by trees and series parallel graphs. While we do not, at present, improve the best known

bounds for the most general version, we feel that our general theorem is of independent

interest and likely to �nd applications in the future. Further, our conversion algorithm has

the advantage of being extremely simple and combinatorial. Note that in applications such

as compilers [12], speed and simplicity are sometimes more important than getting the best

possible ratio. Finally, our algorithm has a surprising property: it gives schedules that are

good for both makespan and average completion time (Chakrabarti et al. [9], and Stein and

Wein [106] also have shown the existence of such schedules).

We also show that a similar but simpler technique gives a 2-approximation if the

precedence graph is an in-tree; note that the optimal one-machine schedule for in-trees

is polynomial-time computable. The idea is to use list scheduling with a one-machine

schedule as the \list," which is a natural heuristic for makespan [43].

The rest of this chapter is organized in two sections. In Section 2.2 we give the algorithms

for the one-machine case and in Section 2.3 we treat the parallel machine case.

2.2 Scheduling on a Single Machine

2.2.1 One-Machine Scheduling with Release Dates

In this section, we present our results for one-machine scheduling with release dates to

minimize average completion time. Let P be a preemptive schedule, and let CP
i and C�

i

denote the completion time of Ji in P and in the non-preemptive �-schedule derived from

P , respectively. We begin by analyzing simple �-schedules. Techniques from [87, 47] are

easily generalized to yield the following:

Theorem 2.2.1 Given an instance of one-machine scheduling with release dates, for any

� 2 [0; 1], an �-schedule has
P

j C
�
j � (1 + 1=�)

P
j C

P
j , and this is tight.
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Proof. Index the jobs by the order of their �-points in the preemptive schedule P . Let

rmax
j = max1�k�j rj be the latest release date among jobs with � points no greater than

that of j. By time rmax
j , jobs 1 through j have all been released, and hence

C�
j � rmax

j +

jX
k=1

pj : (2.1)

We know that CP
j � rmax

j , by de�nition j cannot �nish earlier than rmax
j . We also know that

CP
j � �

Pj
k=1 pj, since the � fractions of jobs 1; : : : ; j must run before time CP

j . Plugging

these last two inequalities into (2.1) yields C�
j � (1 + 1

�)C
P
j . Summing over all j yields the

lemma.

To see that this is tight, consider the following class of instances. Let � be a small

positive number. We will also allow jobs with processing time 0, although the proof can

be modi�ed even if these are not allowed. At time 0, we release a job with processing time

1. At time � � �, we release a job with processing time � and at time � + �, we release x

jobs of processing time 0. The optimal preemptive completion time is x(�+ �) +�+1+ �,

while the completion time of the �-schedule is 1 + 2� + x(1 + �). As x gets large and �

goes to 0, the ratio between the two goes to 1 + 1
� . The same instance also shows that the

approximation ratio is tight. 2

This theorem, in and of itself, always yields approximation bounds that are worse than

2.

We thus introduce a new fact that ultimately yields better algorithms. We will show

that the makespan of an �-schedule is within a (1 + �)-factor of the makespan of the

corresponding preemptive schedule; in fact, we will prove a stronger result in Lemma 2.2.3

below. Thus, the idle time introduced in the non-preemptive schedules decreases as � is

reduced from 1 to 0. On the other hand, the (worst-case) bound on the completion time

of any speci�c job increases as � goes from 1 to 0. It is the balancing of these two e�ects

that leads to better approximations. In the following discussion we do not assume that

the preemptive schedule is the optimal preemptive schedule found using SRPT. In fact our

results on converting preemptive schedules to non-preemptive schedules apply in general

but when we want to prove upper bounds on the performance ratio for sum of completion

times, we assume that the preemptive schedule is the optimal preemptive schedule which is

a lower bound on the optimal non-preemptive schedule.
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Let SPi (�) denote the set of jobs which complete exactly � fraction of their processing

time before CP
i in the schedule P (note that Ji is included in S

P
i (1)). We overload notation

by using SPi (�) to also denote the sum of processing times of all jobs in the set SPi (�);

the meaning should be clear from the context. Let Ti be the total idle time in P before Ji

completes.

The preemptive completion time of Ji can be written as the sum of the idle times and

processing times of jobs that ran between CP
i . This yields the following lemma:

Lemma 2.2.2 CP
i = Ti +

P
0<��1 �S

P
i (�).

We next upper bound the completion time of a job Ji in the �-schedule.

Lemma 2.2.3

C�
i � Ti + (1 + �)

X
���

SPi (�) +
X
�<�

�SPi (�):

Proof. Let J1; : : : ; Ji�1 be the jobs that run before Ji in the � schedule. We will give

a procedure which converts the preemptive schedule into a schedule in which

(C1) jobs J1; : : : ; Ji run non-preemptively in that order,

(C2) the remaining jobs run preemptively, and

(C3) the completion time of Ji obeys the bound given in the lemma.

Since the actual C�
i is no greater than the completion time of Ji in this schedule, the lemma

will be proven.

Splitting up the second term in the bound from Lemma 2.2.2, we get the following

equation:

CP
i = Ti +

X
�<�

�SPi (�) +
X
���

�SPi (�) +
X
���

(� � �)SPi (�):

Let JB =
S
��� S

P
i (�) and JA = J � JB . We can interpret the four terms in the above

equation as (1) the idle time in the preemptive schedule before CP
i , (2) the pieces of jobs in

JA that run before CP
i , (3) for each job Jj 2 JB , the pieces of Jj that run before C

P
j (�), and

(4) for each job Jj 2 JB , the pieces of Jj that run between C
P
j (�) and C

P
i . Let xj be the �

for which Jj 2 SPi (�). Then
P

���(���)SPi (�) can be rewritten as
P

Jj2JB
(xj ��)pj and

observe that (xj � �)pj is the amount of processing of job Jj that occurs between CP
j (�)

and CP
i .
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Let JC =
S
j�ifJjg. Clearly JC is a subset of JB . Now think of schedule P as an

ordered list of pieces of jobs (with sizes). For each Jj 2 JC modify the list by (1) removing

all pieces of jobs that run between CP
j (�) and C

P
i and (2) inserting a piece of size (xj��)pj

at the point corresponding to CP
j (�). In this schedule, we have pieces of size (xj � �)pj of

jobs J1; : : : ; Ji in the correct order (plus other pieces of jobs). Now convert this ordered list

back into a schedule by scheduling the pieces in the order of the list, respecting release dates.

We claim that job i still completes at time CP
i . To see this observe that the total processing

time before CP
i remains unchanged and that other than the pieces of size (xj � �)pj , we

only moved pieces later in time, so no additional idle time need be introduced.

Now, for each job Jj 2 JC , extend the piece of size (xj � �)pj to one of size pj by

adding pj � (xj ��)pj units of processing and replace the pieces of Jj that occur earlier, of

total size �pj , by idle time. We now have a schedule in which J1; : : : Ji are each scheduled

non-preemptively for pj units of time and in which the completion time of Ji is

CP
i +

X
Jj2JC

(pj � (xj � �)pj) � CP
i +

X
Jj2JB

(pj � (xj � �)pj)

= CP
i +

X
���

(1� � + �)SPi (�)

= Ti + (1 + �)
X
���

SPi (�) +
X
�<�

�SPi (�);

where the second equality just comes from re-indexing terms by � instead of j, and the

third comes from plugging in the value of CP
i from Lemma 2.2.2. To complete the proof,

we observe that the remaining pieces in the schedule are all from jobs in J � JC , and we

have thus met the conditions (C1), (C2) and (C3) above. 2

Although we will not use it directly, applying Lemma 2.2.3 to the last job yields:

Corollary 2.2.4 The makespan of the �-schedule is at most (1 + �) times the makespan

of the corresponding preemptive schedule, and there are instances for which this bound is

tight.

Having analyzed completion times as in Lemma 2.2.3, we see that the approximation

ratio is going to depend on the distribution of the di�erent sets SPi (�). To avoid the worst

case �, we choose � randomly, according to some probability distribution. We now give a

very general bound on this algorithm, which we call Random-�.
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Lemma 2.2.5 Suppose � is chosen from a probability distribution over [0; 1] with a density

function f . Then, the E[
P

iC
�
i ] � (1 + �)

P
iC

P
i , where

� = max
0<��1

Z �

0

1 + �� �

�
f(�) d�:

Proof. We will show that the expected completion time of any job Ji is within (1 + �)

of its preemptive completion time. From Lemma 2.2.3 it follows that for any given �,

C�
i � Ti + (1 + �)

X
���

SPi (�) +
X
�<�

�SPi (�):

Therefore, when � is chosen according to f , the expected completion time of Ji, E[C
�
i ] =R 1

0 f(�)C
�
i d�, is bounded by

Ti +

Z 1

0

f(�)

0
@(1 + �)

X
���

SPi (�) +
X
�<�

�SPi (�)

1
A d�

since Ti is independent of �. We now bound the second term in the above expression

Z 1

0

f(�)

0
@(1 + �)

X
���

SPi (�) +
X
�<�

�SPi (�)

1
A d�

=
X

0<��1

SPi (�)

 Z �

0

(1 + �)f(�) d� +

Z 1

�
�f(�) d�

!

=
X

0<��1

�SPi (�)

 
1 +

Z �

0

1 + �� �

�
f(�) d�

!

�
 
1 + max

0<��1

Z �

0

1 + �� �

�
f(�) d�

! X
0<��1

�SPi (�)

� (1 + �)
X

0<��1

�SPi (�):

It follows that

E[C�
i ] � Ti + (1 + �)

X
0<��1

�SPi (�) � (1 + �)CP
i :

Using linearity of expectations, it is easy to show that the expected sum of completion

times of the schedule is within (1+�) of the preemptive schedule's sum of completion times.

2
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With the above lemma in place, we can simply choose di�erent pdf's to establish di�erent

bounds.

Theorem 2.2.6 For the problem of scheduling to minimize weighted completion time with

release dates, Random-� performs as follows:

1. If � is chosen uniformly, the expected approximation ratio is at most 2.

2. If � chosen to be 1 with probability 3=5 and 1=2 with probability 2=5, the expected

approximation ratio is at most 1:8.

3. If � chosen with the density function f(�) = e�

e�1
, the expected approximation ratio is

at most e
e�1

� 1:58.

Proof.

1. Choosing � uniformly corresponds to the pdf f(�) = 1. Plugging into the bound from

Lemma 2.2.5, we get an approximation ratio of

1 + max
0<��1

Z �

0

1 + �� �

�
d� = 1 + max

0<��1

1

�

 
(1� �)� +

�2

2

!

= 1 + max
0<��1

�
1� �

2

�
� 2:

2. Omitted.

3. If f(�) = e�

e�1 then

1 + max
0<��1

Z �

0

�
1 + �� �

�

��
e�

e� 1

�
d� = 1 + max

0<��1

1

�(e� 1)
((1 � �)e�

+(� � 1)e� � ((1 � �)� 1))

= 1 + max
0<��1

1

e� 1

=
e

e� 1
:

2

In the o�-line setting, rather than choosing � randomly, we can try di�erent values of

� and choose the one that yields the best schedule. We call the algorithm which computes

the schedule of value min�
P

j C
�
j , Best-�.
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Theorem 2.2.7 Algorithm Best-� is an e=(e � 1)-approximation algorithm for nonpre-

emptive scheduling to minimize average completion time on one machine with release dates.

It runs in O(n2 logn) time.

Proof. The approximation bound follows from Theorem 2.2.6. For the running time,

we observe that given a preemptive SRPT schedule we can e�ciently determine the best

possible choice of �. The SRPT schedule only preempts at release dates. Thus it has at

most n� 1 preemptions and including 0 and 1 there are are at most n+1 \combinatorially

distinct" values of � for a given preemptive schedule. 2

In the on-line setting, we cannot implement Best-�. However, if we choose � randomly

we get the following:

Theorem 2.2.8 There is a polynomial-time randomized on-line algorithm with an expected

competitive ratio e=(e�1) for the problem of non-preemptive scheduling to minimize average

completion time on one machine in the presence of release dates.

Proof. The randomized on-line algorithm is the following. The algorithm picks an

� 2 (0; 1] at random according to the density function f(x) = ex

e�1 before receiving any

input (this is the only randomness used in the algorithm). The algorithm simulates the

o�-line preemptive SRPT schedule and a job is scheduled in the non-preemptive schedule

at the exact time when it �nishes � fraction of its processing time in the simulated SRPT

schedule. Observe that this rule leads to a valid on-line non-preemptive schedule and that

in fact the order of the jobs scheduled is exactly the same as in the �-schedule. To show

the bound on the expected competitive ratio, we claim that the bounds in Lemma 2.2.3

(and hence Theorem 2.2.6 also) hold for the non-preemptive schedule created by the on-line

algorithm. A careful examination of the proof of Lemma 2.2.3 makes this clear. 2

We give some negative results in the following theorem.

Theorem 2.2.9 For the problem of scheduling to minimize average completion time with

release dates, Random-� performs as follows:

1. If � is chosen uniformly, the expected approximation ratio is at least 2.

2. For the Best-� algorithm, the approximation ratio is at least 4=3.

Proof. We will use a set of parameterized instances to show all the above bounds.

We de�ne an instance I(�; �; n) as follows. At time 0 a job of size 1 is released and at time
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� < 1, n jobs of size � = o(1=n2) each are released. The optimal preemptive schedule for this

instance has a total completion time of 1 + n�+ n(� + n+1
2
�). The optimal non-preemptive

schedule for this instance can be obtained by �rst completing all the small jobs and running

the large job after them for a total completion time of 1 + � + n� + n(� + n+1
2
�). It is

easy to see that there are only two combinatorially distinct values for �, � � � and � > �

and we can restrict our attention to the two corresponding schedules and the probability

with which they are chosen. Let S1 and S2 be the two schedules and C1 and C2 be their

total completion times respectively. It is easy to see that C1 = 1 + n(1 + (n + 1)�=2) and

C2 = n(� + (n+ 1)�=2) + 1 + � + n�.

1. If � is chosen uniformly at random, S1 is chosen with probability � and S2 is chosen

with probability (1 � �) and a simple calculation shows that if we choose n� 1 and

1� � � �, the expected approximation ratio approaches 2.

2. Consider an instance I in which in addition to the jobs of I(1=2; �; n) we release n

more jobs of size � at time 1 + n�. The optimal preemptive schedule for I consists

of the preemptive schedule for I(1=2; �; n) followed by the additional n small jobs.

The completion time of the optimal preemptive schedule is dominated by the term

3n=2. An optimal non-preemptive schedule which runs the size 1 job last after the

small jobs has a total completion time 3n=2 + 2. It is easy to see that there are only

two combinatorially distinct �-schedules one corresponding to � � 1=2 and the other

corresponding to � > 1=2. In both cases it is easy to verify that the completion time

of the schedule is 2n plus smaller order terms. Thus the approximation ratio of the

Best-� cannot be better than 4=3.

2

After learning of our results, Stougie and Vestjens [108] improved the lower bound

for randomized on-line algorithms to e=(e � 1). This implies that our randomized on-

line algorithm is optimal. Torng and Uthaisombut [110] have shown that for the Best-�

algorithm, there are instances on which the approximation ratio is arbitrarily close to e
e�1 .

This implies that our analysis is tight up to lower order terms.

2.2.2 One-Machine Scheduling with Precedence Constraints

We now look at the case when jobs have precedence constraints between them and all release

dates are 0. Let G = (V;E) denote the precedence graph where V is the set of jobs. We will
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use jobs and vertices interchangeably. We say that i precedes j, denoted by i � j, if and

only if there is a path from i to j in G. For any vertex i 2 V , let Gi denote the subgraph

of G induced by the set of vertices preceding i.

De�nition 2.2.10 The rank of a job Ji, denoted by qi, is de�ned as qi = pi=wi. Similarly,

the rank of a set of jobs A denoted by q(A) is de�ned as q(A) = p(A)=w(A), where p(A) =P
Ji2A

pi and w(A) =
P

Ji2A
wi.

De�nition 2.2.11 A subdag G0 of G is said to be precedence closed if for every job Ji 2 G0,

Gi is a subgraph of G0.

The rank of a graph is simply the rank of its node set.

De�nition 2.2.12 We de�ne G� to be a precedence-closed subgraph of G of minimum rank,

i.e., among all precedence-closed subgraphs of G, G� is of minimum rank.

Note that G� could be the entire graph G.

A Characterization of the Optimal Schedule

Smith's rule for a set of independent jobs states that there is an optimal schedule that

schedules jobs in non-decreasing order of their ranks. We generalize this rule for the case

of precedence constraints in a natural way. A version of the following theorem was proved

by Sydney in 1975 [109] but we rediscovered it. We present our own proof for the sake of

completeness.

De�nition 2.2.13 A segment in a schedule S is any set of jobs that are scheduled consec-

utively in S.

Theorem 2.2.14 There exists an optimal sequential schedule where the optimal schedule

for G� occurs as a segment that starts at time zero.

Proof. The theorem is trivially true if G� is the same as G. We consider the case

when G� is a proper subdag of G. Suppose the statement of the theorem is not true. Let

S be some optimal schedule for G in which G� does not occur as a segment that starts at

time zero. For k � 1, let A1; A2; : : : ; Ak be the segments of G
� in S, in increasing order of

starting times. For i � 2 let the segment between Ai�1 and Ai be denoted by Bi and let B1
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be the segment before A1 that starts at time zero. For convenience we assume that B1 is

non-empty (we can always use a dummy segment with p(B1) = w(B1) = 0). Let q(G�) = �

and for 1 � j let Bj denote the union of the segments B1; B2; : : : ; Bj . For 1 � j it follows,

from the de�nition of G�, that q(Bj) � �, for otherwise the union of Bj and G� would

be precedence closed and have rank less than �. Let Aj similarly denote the union of the

segments A1; A2; : : : ; Aj . We also claim that q(Ak �Aj) � � for otherwise q(Aj) < �.

Let S0 be the schedule formed from S by moving all the Ai's ahead of Bj's while

preserving their order within themselves. The schedule S0 is legal since G� is precedence

closed. Let � denote the di�erence in the sum of weighted completion times of S and S0.

We will show that � � 0 which will complete the proof. While comparing the two schedules,

we can ignore the contribution of the jobs that come after Ak since their status remains the

same in S0. Let �(Aj) and �(Bj) denote the di�erence in weighted completion time of Aj

and Bj respectively in S and S0. Therefore � =
P

j�k�(Aj) +
P

j�k�(Bj). It is easy to

see that

�(Aj) = w(Aj)p(B
j)

and

�(Bj) = �w(Bj)p(A
k �Aj�1):

From our earlier observations on q(Bj) and q(Ak � Aj) we have p(Bj) � �w(Bj) and

p(Ak �Aj) � �w(Ak �Aj). Therefore

� =
X
j�k

�(Aj) +
X
j�k

�(Bj)

=
X
j�k

w(Aj)p(B
j)�

X
j�k

w(Bj)p(A
k �Aj�1)

� �
X
j�k

w(Aj)w(B
j)� �

X
j�k

w(Bj)w(A
k �Aj�1)

= �
X
j�k

w(Aj)
X
i�j

w(Bj)� �
X
j�k

w(Bj)
X
i�j

w(Ai)

= 0:

The third inequality above follows from our observations about q(Bj) and q(A � Aj) and

the last equality follows from a simple change in the order of summation. 2

Note that when G� is the same as G this theorem does not help in reducing the problem.
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A 2 approximation

Theorem 2.2.14 suggests the following natural algorithm. Given G, compute G� and sched-

ule G� and G�G� recursively. It is not apriori clear that G� can be computed in polynomial

time, however we will reduce this problem to that of computing a maximum 
ow in an as-

sociated graph. The second and more important problem that needs to be solved is to take

care of the case when G� is the same as G. We have to settle for an approximation in this

case, for otherwise we would have a polynomial time algorithm for to compute the optimal

schedule.

The following lemma establishes a strong lower bound on the optimal schedule value

when G� = G.

Lemma 2.2.15 If G� is the same as G, opt � w(G) � p(G)=2.

Proof. Let � = q(G). Let S be an optimal schedule for G. Without loss of generality

assume that the ordering of the jobs in S is J1; J2; : : : ; Jn. For any j, 1 � j � n, observe that

Cj =
P

1�i�j pi � �
P

1�i�j wi. This is because the set of jobs J1; J2; : : : ; Jj form a prece-

dence closed subdag, and from our assumption on G� it follows that
P

i�j pj=
P

i�j wi � �.

We bound the value of the optimal schedule as follows.

opt =
X
j

wjCj

�
X
j

wj
X
i�j

�wi

= �

0
@X

j

w2
j +

X
i<j

wiwj

1
A

= �

0
@(X

j

wj)
2 �

X
i<j

wiwj

1
A

� �
�
w(G)2 � w(G)2=2

�
= �w(G)2=2

= w(G)p(G)=2

The last equality is true because q(G�) = q(G) = p(G)=w(G) = �. 2

Lemma 2.2.16 Any feasible schedule with no idle time has a weighted completion time of

at most w(G) � p(G).
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Proof. Obvious. 2

Theorem 2.2.17 If G� for a graph can be computed in time O(T (n)), then there is a 2

approximation algorithm for computing the minimum weighted completion time schedule

that runs in time O(nT (n)).

Proof. Given G, we compute G� in time O(T (n)). If G� is the same as G we schedule G

arbitrarily and Lemmas 2.2.15 and 2.2.16 guarantee that we have a 2 approximation. If G�

is a proper subdag we recurse on G� and G�G�. From Theorem 2.2.14 we have opt(G) =

opt(G�) + p(G�) � w(G�G�) + opt(G�G�). Inductively if we have 2 approximations for

G� and G � G� it is clear that we have a 2 approximation of the overall schedule. Now

we establish the running time bound. We observe that G�� = G�, therefore it su�ces to

recurse only on G�G�. It follows that we make at most n calls to the routine to compute

G� and the bound follows. 2

All that remains is to show how to compute G� in polynomial time.

Computing G�

An algorithm to compute G� using a maximum 
ow computation is presented in Lawler's

book [71]. We describe the algorithm, its proof, and some recent running time improvements

for the sake of completeness. To computeG� we consider the more general problem of �nding

a subdag of rank at most � > 0, if one exists. We reduce the latter problem to the problem

of computing an s-t mincut in an associated graph. The following de�nes the associated

graph.

De�nition 2.2.18 Given a dag G = (V;E), and a real number � > 0, we de�ne a

capacitated directed graph G� = (V [ fs; tg; E0; c) where the edge set E0 is de�ned by

E0 = f(s; i); (i; t) j 1 � i � ng [ f(i; j) j j � ig and the capacities are de�ned by

c(e) =

8>>><
>>>:

pi if e = (i; t)

�wi if e = (s; i)

1 otherwise

Lemma 2.2.19 Given a dag G, there is a subdag of rank less than or equal to � if and

only if the s-t mincut in G� is at most �w(G). If (A;B) is a cut whose value is bounded by

�w(G), q(A� fsg) � � and A� fsg is precedence closed in G.
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Proof. Let (A;B) be an s-t cut in G� whose value is bounded by �w(G). We �rst claim

that A� fsg is precedence closed in G. Suppose not. Then there is a pair of vertices (i; j)

such that i � j and j 2 A and i =2 A. But then c(j; i) = 1 which is a contradiction since

c(A;B) � �w(G). From this fact and the de�nition of G�, it follows that

c(A;B) =
X
i2A

pi +
X
i=2A

�wi

=
X
i2A

(pi � �wi) +
X
i2V

�wi

=
X
i2A

(pi � �wi) + �w(G)

Since c(A;B) � �w(G) it follows that
P

i2A(pi��wi) � 0 which implies that q(A�fsg) � �.

Using similar arguments as above, a precedence closed subdag A in G whose rank is less

than � induces a cut of value at most �w(G) in G�. 2

Lemma 2.2.20 G� can be computed in strongly polynomial time O(n3), or in O(n8=3 logU)

time where U = maxi(pi +wi).

Proof. Computing the minimum cut in G� for each � > 0 can be viewed as a para-

metric max
ow computation. There are at most n values of � for which the minimum

cut changes in the graph. Gallo et al. [30] show that all the distinct values of � can be

computed in asymptotic time equal to that needed for one maximum 
ow computation

using the push-relabel algorithm. Goldberg and Tarjan's [41] push-relabel algorithm runs

in O(nm log(n2=m)) time. Recently, Goldberg and Rao [40] improved the maximum 
ow

running time to O(minfn2=3;m1=2gm log(n2=m) logU) where U is the maximum capacity,

and also showed that their bound applies for the parametric 
ow techniques of Gallo et

al. [30]. The associated graph we construct has 
(n2) edges, therefore the claimed bounds

follow. 2

Integrality Gap of the Linear Ordering Relaxation

In this section we show that the linear ordering relaxation of Potts [90] has a factor 2 integral-

ity gap. The gap also applies to the half integral formulation of Chudak and Hochbaum [16]

which is a slight modi�cation of the Potts's formulation, and the formulation of Queyranne

and Wang [91]. We �rst describe the linear ordering relaxation of Potts. For each pair of
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jobs i and j there is a f0; 1g-variable �ij that is 1, if i is scheduled before j, and 0 otherwise.
Either i is scheduled before j or vice versa, therefore

�ij + �ji = 1; 1 � i < j � n: (2.2)

Precedence constraints imply that

�ij = 1; i � j: (2.3)

Transitive relations in a feasible schedule are captured by the following set of inequalities.

They state that if i is scheduled before j and j is scheduled before k, then i is scheduled

before k.

1 + �ik � �ij + �jk; 1 � i; j; k � n; i 6= j 6= k 6= i: (2.4)

The completion time of job j, indicated by the variable Cj , is given by

Cj = pj +
X
k 6=j

�kj pk; 1 � j � n: (2.5)

The linear ordering relaxation is simply

min
X
j

wjCj

subject to (2.2){(2.5)

�ij 2 f0; 1g:

Potts showed that the above system of inequalities is a complete formulation for the single

machine scheduling problem. We obtain a linear relaxation by replacing the integrality

constraints on �ij by the following inequalities.

�ij � 0; 1 � i 6= j � n: (2.6)

Chudak and Hochbaum obtained a half integral formulation by replacing the transitive

inequalities (2.4) by the following inequalities,

�ki � �kj; if i � j; k 6= j; k 6= i: (2.7)
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Now we give an instance of the scheduling problem for which the integrality gap of

Potts's formulation is a factor of 2. We use a certain family of strongly expanding graphs.

For n su�ciently large there exists an undirected bipartite graph G = (L;R;E) such that

the following three conditions hold.

� jLj = jRj = n.

� Every vertex in R has degree n3=4, and every vertex in L has degree at most 3n3=4.

� Every subset of n3=4 vertices in R has at least n� n3=4 neighbors in L.

The existence of such a graph can be shown by the probabilistic method (see Problem 5.5

in [80]). Let the vertices in L be numbered 1 to n, and those in R, (n + 1) to 2n. We

construct an instance of the scheduling problem as follows. For each vertex i in G, we have

a corresponding job Ji, for a total of 2n jobs. For each edge (i; j) 2 E where i 2 L and

j 2 R, we add the precedence constraint i � j. We set pi = 1 for 1 � i � n and pi = 0 for

(n+ 1) � i � 2n. The weights are de�ned by wi = 1� pi. Let I be the instance obtained.

Two jobs i and j are unrelated, denoted by i �� j, if neither i � j nor j � i is true.

Lemma 2.2.21 Setting �ij = 1 if i � j and �ij = 1=2 if i �� j gives a feasible solution to

the linear ordering relaxation for I.

Proof. It is easy to verify that equations (2.2)-(2.4) are satis�ed by the stated assign-

ment. 2

Lemma 2.2.22 The optimum value of the linear ordering relaxation for I is at most (n2+

n7=4)=2.

Proof. We will show that the value of the relaxation for the feasible schedule obtained

by setting the �ij as in Lemma 2.2.21 has a value at most (n
2+n7=4)=2. We can ignore jobs

1; : : : ; n since their weights are 0. Consider a job j > n. We have

Cj = pj +
X
k 6=j

�kj pk

=
X

k�j;k�n

1 +
X

k��j;k�n

1=2

= n3=4 + (n� n3=4)=2

= (n+ n3=4)=2:
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Summing up gives

X
j

wjCj =
X
j>n

Cj

=
X
j>n

(n+ n3=4)=2

= (n2 + n7=4)=2:

This proves the lemma. 2

Lemma 2.2.23 Any valid schedule for I has a weighted completion time of at least (n �
n3=4)2.

Proof. Let S be any valid schedule for I. Assume with out loss of generality that

the jobs (n + 1) to 2n are ordered in increasing order of completion times in S. We claim

that C(n+n3=4) � (n � n3=4). To prove this consider the jobs (n + 1) to (n + n3=4). Let

A = fi j i � j for some (n+ 1) � j � (n+ n3=4)g. A is the set of all predecessors of

jobs (n+ 1); : : : ; (n+ n3=4). From the properties of the expander graph from which I was

constructed, jAj � (n� n3=4). Since each job in A is completed before C(n+n3=4) the claim

follows. Therefore Cj � (n� n3=4) for all (n+ n3=4) � j � 2n and the lemma is proved. 2

The following theorem follows from Lemmas 2.2.22 and 2.2.23.

Theorem 2.2.24 The integrality gap of the linear ordering relaxation on I is 2� o(1).

2.3 Scheduling on Parallel Machines

2.3.1 Parallel Machine Scheduling with Release Dates

We now turn to the problem of minimizing average completion time on parallel machines,

in the presence of release dates. In this section, we give a 3-approximation algorithm

for the problem. Our algorithm is simple and does not use linear programming, or slow

dynamic programming. It introduces the notion of a one-machine preemptive relaxation.

The algorithm is also on-line. We will show later in the chapter how to improve this to a

2:85-approximation algorithm, using more involved techniques.

Given an instance I for non-preemptive scheduling onmmachines, we de�ne a relaxation

I1 in which we have processing times p0j = pj=m and release dates r0j = rj . We call
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a relaxation valid if it maps feasible m-machine schedules for I to feasible one-machine

schedules for I1 such that the average completion time of a schedule for I1 is no more than

that of the corresponding schedule for I.

Lemma 2.3.1 Instance I1 is a valid one-machine preemptive relaxation of the m-machine

problem I.

Proof. We will show how to convert a feasible schedule N , for input I, to a feasi-

ble schedule P1, for input I1, without increasing the average completion time. Take any

schedule N and consider a particular time unit t. Let the k � m jobs that are running

during that time be J1; : : : ; Jk. In P1, at time t, run 1=m units of each of jobs J1; : : : ; Jk,

in arbitrary order. The completion time of job Jj in P1, C
P1
j is clearly no greater than CN

j ,

the completion time of Jj in N . 2

Given a solution to P1, we form N by ordering jobs by CP1
j and then scheduling them

non-preemptively in that order, respecting release dates. Let C�
j be the completion time

of Jj in an optimal schedule for I. I1 may be a bad relaxation, in the sense that
P
CI1
j

may be much less than
P
C�
j . However, we can still use this relaxation to obtain a good

non-preemptive schedule.

Lemma 2.3.2
P

j C
N
j � (3� 1

m
)
P

j C
�
j .

Proof. We �rst focus on a particular job Jj . For convenience, we assume that the

jobs are ordered according to their completion times in P1. Thus Jj is the jth job to

complete in P1. We now derive three lower bounds on CP1
j . First, we have the trivial

bound CP1
j � r0j + p0j. Further, CP1

j is at least as big as the processing times of the jobs

that precede it. Therefore,

CP1
j �

jX
k=1

p0k =

jX
k=1

pk

m
: (2.8)

Let rmax
j = max1�k�j r

0
k be the latest release date among jobs that complete before j; then,

CP1
j � rmax

j .

Now consider the list schedule N . Clearly by time rmax
j all jobs J1; : : : Jj have been

released. Even if no job starts before time rmax
j , by standard makespan arguments Jj will

complete by

CN
j � rmax

j +

j�1X
k=1

pk

m
+ pj
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� CP1
j + CP1

j + pj

�
1� 1

m

�
; (2.9)

where the second inequality follows from (2.8) and CP1
j � rmax

j above. Summing (2.9) over

all jobs, we get a total completion time of

X
j

CN
j � 2

X
j

CP1
j +

�
1� 1

m

�X
j

pj : (2.10)

By Lemma 2.3.1,
P

j C
P1
j �Pj C

�
j , and trivially the optimal solution to I must have total

completion time
P

j C
�
j �

P
pj, so this algorithm is a (3� 1

m
)-approximation.

2

The running time is just the time to run SRPT on the one machine relaxation and

the time to list schedule, for a total of O(n logn). This algorithm can be made on-line by

simulating the preemptive schedule and adding a job to the list when it completes in the

preemptive schedule.

2.3.2 Precedence Constraints and a Generic Conversion Algorithm

We now give a very general conversion technique to obtain parallel machine schedules from

single machine schedules. Our algorithm works in the presence of precedence constraints

and release dates. Given an average weighted completion time scheduling problem, we

will show that if we can approximate the one-machine preemptive variant, then we can

also approximate the m-machine non-preemptive variant, with a slight degradation in the

quality of approximation.

Precedence constraints will be represented in the usual way by a directed acyclic graph

(DAG) whose vertices correspond to jobs, and whose edges represent precedence constraints.

In this section, we use a slightly di�erent one-machine relaxation from the previous

section, namely, we do not divide the processing times by m. We use the superscript m to

denote the number of machines; thus, Sm denotes a schedule for m machines, Cm denotes

the completion time of Sm, and Cm
j denotes the completion time of job Jj under schedule

Sm. The subscript opt refers to an optimal schedule; thus, an optimal schedule is denoted

by Smopt, and its weighted completion time is denoted by Cm
opt. For a set of jobs A, p(A)

denotes the sum of processing times of jobs in A.

De�nition 2.3.3 For any vertex j, recursively de�ne the quantity �j as follows. For a



CHAPTER 2. MINIMIZING AVERAGE COMPLETION TIME 39

vertex j with no predecessors �j = pj + rj. Otherwise de�ne �j = pj +maxfmaxi�j �i; rjg.
Any path Pij where p(Pij) = �j is referred to as a critical path to j.

Conversion algorithm Delay List

We now describe the Delay List algorithm. Given a one-machine schedule which is a

�-approximation, Delay List produces a schedule for m � 2 machines whose value is

within a factor (k1� + k2) of the optimal m-machine schedule, where k1 and k2 are small

constants. We will describe a variant of this scheduling algorithm which yields k1 = (1+�)

and k2 = (1 + 1=�) for any � > 0. Therefore, for cases where we can �nd optimal one-

machine schedules (trees, series-parallel), we obtain a 4-approximation for m-machines by

setting � = 1. To our knowledge, these are the best results for these special cases2

The main idea is as follows. The one-machine schedule taken as a list provides some

priority information on which jobs to schedule earlier 3. Unlike with makespan, the comple-

tion time of every job is important for weighted completion time. When trying to convert

the one-machine schedule into an m-machine one, precedence constraints prevent complete

parallelization. Thus, we may have to execute jobs out-of-order from the list to bene�t

from parallelism. If all pi are identical (say 1), we can a�ord to use naive list scheduling

4. If there is an idle machine and we schedule some available job on it, it is not going to

delay jobs which become available soon, since it completes in one time unit. On the other

hand if pi's are di�erent, a job could keep a machine busy, delaying more pro�table jobs

that become available soon. At the same time, we cannot a�ord to keep machines idle for

too long if there are jobs ready to be scheduled. We strike a balance between the two ex-

tremes: schedule a job out-of-order only if there has been enough idleness already to justify

scheduling it. To measure whether there has been enough idleness, we introduce a charging

scheme.

Assume, for ease of exposition, that all processing times are integers and time is discrete.

This restriction can be removed without much di�culty and we use it only in the interests

of clarity and intuition. With this assumption we can use discrete time units. A job is ready

2Very recent work [82] has matched these results using LP relaxations.
3In the rest of the paper we assume without loss of generality that a list obeys the precedence constraints,

that is, if i � j then i comes earlier in the list than j.
4In this section, by list scheduling we mean the algorithm which schedules the �rst available job in the

list if a machine is free. This is in contrast to another variant considered in earlier sections in which jobs

are scheduled strictly in the order of the list.
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if it has been released and all its predecessors have �nished. Let � > 0 be some constant.

At each time step t, the algorithm applies one of the following three cases:

1. there is an idle machine M and the �rst job Jj in the list is ready at time t| schedule

Jj on M ;

2. there is an idle machine and the �rst job Jj in the list is not ready at t but there is

another ready job on the list | focusing on the job Jk which is the �rst in the list

among the ready jobs, schedule it if there is at least �pk uncharged idle time among

all machines, and charge �pk idle time to Jk;

3. there is no idle time or the above two cases do not apply | do not schedule any job,

merely increment t.

De�nition 2.3.4 A job is said to be scheduled in order if it is scheduled when it is at the

head of the list (that is using Case 1 in the algorithm). Otherwise it is said to be scheduled

out of order. The set of jobs which are scheduled before a job Ji but which come later in the

list than Ji is denoted by Oi. The set of jobs which come after Ji in the list is denoted by

Ai and those which come before Ji by Bi (includes Ji).

De�nition 2.3.5 The time at which job Ji is ready in a schedule S is denoted by qi and

time at which it starts is denoted by si.

De�nition 2.3.6 For each job Ji, de�ne a path P 0
i = Jj1 ; Jj2 ; : : : ; Jj`, with Jj` = Ji with

respect to the schedule Sm as follows. The job Jjk is the predecessor of Jjk+1
with the

largest completion time (in Sm) among all the predecessors of Jjk+1
such that Cm

jk
� rjk+1

;

ties are broken arbitrarily. Jj1 is the job where this process terminates when there are no

predecessors which satisfy the above condition. The jobs in P 0
i de�ne a disjoint set of time

intervals (0; rj1 ]; (s
m
j1
; Cm

j1
]; : : : ; (smj` ; C

m
j`
] in the schedule. Let �0i denote the sum of the lengths

of the intervals.

The two facts below follow easily from the above de�nitions.

Fact 2.3.7 �0i � �i.

Fact 2.3.8 The idle time charged to each job Ji is less than or equal to �pi.
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A crucial feature of the algorithm is that when it schedules jobs, it considers only the

�rst job in the list that is ready, even if there is enough idle time for other ready jobs that

are later in the list.

Lemma 2.3.9 For every job Ji, there is no uncharged idle time in the interval (qmi ; s
m
i ),

and furthermore all the idle time is charged only to jobs in Bi.

Proof. By the preceding remarks, it is clear that no job in Ai is scheduled in the time

interval (qmi ; s
m
i ) since Ji was ready at qmi . From this we can conclude that there is is no

idle time charged to jobs in Ai in that time interval. Since Ji is ready in that interval and

was not scheduled, there cannot be any uncharged idle time.

2

The following lemma shows that for any job Ji, the algorithm does not schedule too

many jobs from Ai before scheduling Ji itself.

Lemma 2.3.10 For every job Ji, the total idle time charged to jobs in Ai, in the interval

(0; smi ), is bounded by (�0i � pi)m. It follows that p(Oi) � (�0i � pi)m=� � (�i � pi)m=�.

Proof. Consider a job Jjk in P
0
i . The job Jjk+1

is ready to be scheduled at the completion

of Jjk , that is q
m
ik+1

= Cm
ik
. From Lemma 2.3.9, it follows that in the time interval between

(Cm
jk
; smjk+1

) there is no idle time charged to jobs in Ajk+1
. Since Ajk+1

� Ai it follows that

all the idle time for jobs in Ai has to be accumulated in the intersection between (0; smi )

and the time intervals de�ned by P 0
i . This quantity is clearly bounded by (�0i � pi)m. The

second part follows since the total processing time of the jobs in Oi is bounded by 1=� times

the total idle time that can be charged to jobs in Ai (recall that Oi � Ai). 2

Theorem 2.3.11 Let Sm be the schedule produced by the algorithm Delay List using a

list S1. Then for each job Ji, C
m
i � (1 + �)p(Bi)=m+ (1 + 1=�)�

0

i � pi=�.

Proof. Consider a job Ji. We can split the time interval (0; Cm
i ) into two disjoint sets

of time intervals T1 and T2 as follows. The set T1 consists of all the disjoint time intervals

de�ned by P 0
i . The set T2 consists of the time intervals obtained by removing the intervals

in T1 from (0; Cm
i ). Let t1 and t2 be the sum of the times of the intervals in T1 and T2

respectively. From the de�nition of T1, it follows that t1 = �0i � �i. From Lemma 2.3.9,

in the time intervals of T2, all the idle time is either charged to jobs in Bi and, the only
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jobs which run are from Bi [ Oi. From Fact 2.3.8, the idle time charged to jobs in Bi

bounded by �p(Bi). Therefore the time t2 is bounded by (�p(Bi) + p(Bi) + p(Oi))=m.

Using Lemma 2.3.10 we see that t1+ t2 is bounded by (1+�)p(Bi)=m+(1+1=�)�
0

i� pi=�.

2

Remark 2.3.12 In the above theorem the only requirement is that S1 be a list that obeyed

the precedence constraints. In particular we can ignore release dates in computing the one

machine schedule.

One Machine Relaxation

In order to use Delay List, we will need to start with a one machine schedule. The

following two lemmas provide lower bounds on the optimal m-machine schedule in terms of

the optimal one-machine schedule. This one-machine schedule can be either preemptive or

non-preemptive, the bounds hold in either case.

Lemma 2.3.13 Cm
opt � C1

opt=m.

Proof. Given a schedule Sm on m machines with sum of weighted completion times

Cm, we will construct a one-machine schedule S1 with sum of weighted completion times

at most mCm as follows. Order the jobs according to their completion times in Sm with

the jobs completing early coming earlier in the ordering. This ordering is our schedule

S1. Note that there could be idle time in the schedule due to release dates. If i � j then

Cm
i � smj < Cm

j (assuming that pj > 0) which implies that there will be no precedence

violations in S1. We claim that C1
i � mCm

i for every job Ji. Let P be the sum of the

processing times of all the jobs which �nish before Cm
i (including Ji) in Sm. Let I be the

total idle time in the schedule Sm before Cm
i . It is easy to see that mCm

i � P + I. We

claim that C1
i � P + I. The idle time in the schedule S1 can be charged to idle time in

the schedule Sm and P is the sum of all jobs which come before Ji in S
1. This implies the

desired result. 2

Lemma 2.3.14 Cm
opt �

P
iwi�i = C1

opt.

Proof. The length of the critical path �i, is an obvious lower bound on the completion

time Cm
i of job Ji. Summing up over all jobs gives the �rst inequality. It is also easy to

see that if the number of machines is unbounded that every job Ji can be scheduled at the

earliest time it is available and will �nish by �i. Thus we obtain the equality. 2
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Obtaining generic m-machine schedules

In this section we derive our main theorem relating m-machine schedules to one-machine

schedules.

We begin with a corollary to Theorem 2.3.11.

Corollary 2.3.15 Let Sm be the schedule produced by the algorithm Delay List using a

one-machine schedule S1 as the list. Then for each job Ji, C
m
i � (1+�)C1

i =m+(1+1=�)�i.

Proof. Since all jobs in Bi come before Ji in the one-machine schedule, it follows that

p(Bi) � C1
i . Plugging this and Fact 2.3.7 into the bound in Theorem 2.3.11, we conclude

that Cm
i � (1 + �)C1

i =m+ (1 + 1=�)�i. 2

Theorem 2.3.16 Given a one-machine schedule that is within a factor � of an optimal

one-machine schedule, Delay List gives a m-machine schedule that is within a factor

(1 + �)�+ (1 + 1=�) of an optimal m-machine schedule.

Proof. Let S1 be a schedule which is within a factor � of the optimal one-machine

schedule. Then C1 =
P

i wiC
1
i � �C1

opt. By Theorem 2.3.11, the schedule created by the

algorithm Delay List satis�es,

Cm =
X
i

wiC
m
i

�
X
i

wi

 
(1 + �)

C1
i

m
+

�
1 +

1

�

�
�i

!

� 1 + �

m

X
i

wiC
1
i +

�
1 +

1

�

�X
i

wi�i:

From Lemmas 2.3.13 and 2.3.14 it follows that

Cm � (1 + �)�C1
opt

m
+

�
1 +

1

�

�
C1
opt

�
�
(1 + �)�+

�
1 +

1

�

��
Cm
opt:

2

Corollary 2.3.17 There is a simple O(n log n) time 4-approximation algorithm for sum of

weighted completion times on parallel machines when the precedence graphs are restricted

to be trees or series-parallel graphs and the jobs have release dates.
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Proof. Applying the Delay List algorithm with � = 1 to the optimal single machine

schedule that ignores release dates (which can be computed in O(n log n) time [1]) gives the

desired result. By Remark 2.3.12 we can ignore the release dates in computing the single

machine schedule. 2

Remark 2.3.18 Since the bounds in our conversion algorithm are job-by-job, the algo-

rithm is applicable to other objective functions that are linear combinations of functions of

individual completion times.

Applying conversion to in-tree precedence

We obtain stronger results for in-tree precedence without release dates. This restricted

problem is already strongly NP-Hard. We analyze the standard list scheduling algorithm

which starts with an ordering on the jobs (the list), and greedily schedules each successive

job in the list at the earliest possible time. We use the optimal one-machine schedule as

the list. We show that this algorithm gives a 2-approximation for in-trees. Recall that smi

is the start time of Ji in the schedule Sm.

Lemma 2.3.19 If Sm is the list schedule using a one-machine schedule S1 as the list, then

for any job Ji, C
m
i � �i + C1

i =m.

Proof. Since there are no release dates, we can assume that the schedule S1 has no idle

time. Without loss of generality assume that J1; : : : ; Jn is the ordering of the jobs ordered

according to their start times smi in Sm (we break ties arbitrarily). We will prove the

lemma by induction on i. We strengthen the hypothesis by adding the following invariant.

If Cm
i > Cm

j + pi where Jj is the last predecessor of Ji to �nish in Sm, then all the jobs

scheduled before smi in Sm are ahead of Ji in the list S1 and there is no idle time in the

schedule, before time smi . In this case it follows that Cm
i � pi + C1

i =m. The base case is

trivial since �1 = p1 and the �rst job �nishes at time p1. Suppose that the hypothesis holds

for all jobs Jk, k < i, we will prove it holds for Ji. Let Jj, j < i be the last predecessor of

Ji to �nish in the schedule Sm. We consider two cases.

1. Cm
i = Cm

j +pi. By the hypothesis, C
m
j � �j+C1

j =m. It follows that Cm
i � �i+C1

i =m

since �i � �j + pi and C1
j < C1

i .

2. Cm
i > Cm

j + pi. Let t = Cm
j . Let P be the set of jobs which �nish exactly at time t

and P 0 be the set of jobs which had their last predecessor running until time t. Note
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that Ji 2 P 0, Jj 2 P , and all the jobs in P 0 are ready to be run at time t. In an

in-tree a node has at most one immediate successor therefore jP 0j � jP j. Therefore

the number of jobs that are ready at t but were not ready at t� is at most jP j. If

Ji was not scheduled at t there must exist a job Jl =2 P 0 which is scheduled at t.

This implies that Jl occurs before Ji in the list S1. Since no immediate predecessor

of Jl �nished at t, by the induction hypothesis we conclude that there was no idle

time and no job which comes later than Jl in S
1 is scheduled before time t. Since Ji

was ready at time t, it follows that there is no idle time and no job later than Ji in

S1 is scheduled between time t and the smi . From these observations it follows that

Cm
i � pi + C1

i =m � �i + C1
i =m.

In both cases we see that the induction hypothesis is established for Ji and this �nishes the

proof. 2

Theorem 2.3.20 There is an O(n log n)-time algorithm with approximation ratio 2 for

minimizing sum of weighted completion times on m machines for in-tree precedence without

release dates.

Proof. The proof is similar to that of Theorem 2.3.16 except that we use the stronger

bounds from Lemma 2.3.19. The running time is dominated by the time to compute the

optimal one machine schedule which can be done in O(n log n) time [1]. 2

A 2:85-approximation for scheduling without precedence constraints

We now improve the approximation bound for parallel machine scheduling with release

dates to 2:85 using the ideas developed in this section, which improves the the earlier ratio

of 2:89+� [9]. We combine the ideas of the one machine relaxation developed in Section 2.3.1

and the idea of using delay based list scheduling to derive an alternate algorithm which has

worse ratio than the algorithm in Section 2.3.1. But we observe that the bounds we get

from the analysis of these two algorithms can be combined to get an improved lower bound

on the optimal which leads to the improvement.

Lemma 2.3.21 If we apply Delay List to P1 with parameter �, the resulting schedule D

has total completion time

X
CD
j � (2 + �)C�

j +
1

�

X
j

rj :
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Proof. We focus on a particular job Jj . From Theorem 2.3.11 we conclude that

CD
j � (1 + �)t(Bj)=m + (1 + 1=�)�j � pj=�. Since we do not have precedence constraints

on the jobs, �j = rj + pj. From the de�nition of Bj and the fact that the list is the order

in which jobs �nish in P1, it follows that t(Bi)=m � CP1
j . We therefore conclude that

CD
j � (1 + �)CP1

j + pj + rj=�. Summing this over all jobs we obtain

X
j

CD
j � (1 + �)

X
j

CP1
j +

X
j

pj +
1

�

X
j

rj

Since both
P

j C
P1
j and

P
j pj are lower bounds on the optimal schedule value, it follows

that X
j

CD
j � (2 + �)

X
j

C�
j +

1

�

X
j

rj:

2

We now show that we can balance the two algorithms, list scheduling and Delay List

to achieve an approximation ratio of 2:85.

Lemma 2.3.22 For any input I, either list scheduling from P1 or using Delay List on

P1 produces a schedule with
P

j Cj � 2:85
P

j C
�
j and runs in O(n log n) time.

Proof. By (2.10), we know that

X
j

CN
j � 2

X
j

CP1
j +

X
j

pj : (2.11)

If, for some �, we know that
P

j pj � �
P

j C
�
j , then the list scheduling algorithm is a 2+�

approximation algorithm.

Now consider the case when
P

j pj > �
P

j C
�
j . If we combine this equation with the

simple bound that
P

j C
�
j �

P
j(pj + rj), we get that

P
j pj � �

P
j(pj + rj), which implies

that X
j

rj � 1� �

�

X
j

pj � 1� �

�

X
C�
j : (2.12)

We can now plug (2.12) into the upper bound on CD
j from Lemma 2.3.21 to get

X
j

CD
j �

�
2 + � +

1� �

��

�X
j

C�
j :
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We do not know the value of �, but for each possible � we can choose the � that

minimizes the two terms. Simple algebra and calculus shows that given �, we can choose �

to be
q

1��
� . Thus, trying all possible � yields the result.

We can obtain a running time of O(n log n) by observing that the analysis of the 3-

approximation algorithm allows us to estimate C�
j to within a factor 3. We can then

perform a binary search on �.

2

2.4 Concluding Remarks

We considered several scheduling variants with the goal of minimizing sum of completion

times and provided new techniques and algorithms. Subsequent to our work improved

results [100, 99, 82] for some of the problems considered here have been obtained. Much

of the work on this topic has focused on obtaining improved approximation algorithms but

not much is known on the hardness of approximation of several variants. Recent work by

Hoogeveen et al. [59] shows APX hardness for some parallel machine variants. The results

in [59] are based on the hardness of approximation results that are known for minimizing

makespan. However it is surprising that while minimizing sum of completion times seems

harder than minimizing makespan (the approximation ratios are typically larger than those

for the makespan counterparts), the hardness of approximation results are weaker.

The techniques in [59] do not apply to the one machine problems. For the problem of

minimizing average completion time on a single machine with release dates we conjecture

the following.

Conjecture 2.4.1 There is a PTAS for non-preemptive scheduling to minimize average

completion time on a single machine with jobs having release dates and no precedence con-

straints.

The weighted version seems harder since even the preemptive case in NP-Hard.

For single machine scheduling with precedence constraints, several di�erent LP formu-

lations and algorithms give a tight 2 approximation. An obvious open problem is to obtain

an algorithm with an improved approximation ratio. We have the following conjecture

regarding the hardness of approximation for this problem.
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Conjecture 2.4.2 The problem of minimizing sum of weighted completion times on a sin-

gle machine when jobs have precedence constraints is APX-Complete.

Our results in this chapter might help in addressing the above questions. Theorem 2.2.14

shows that it is su�cient to improve the approximation ratio for the case when G� = G.

This is a more structured and smaller set of instances to look at. In Section 2.2.2 we used

expanders to construct speci�c instances with a factor of 2 integrality gap for the linear

ordering relaxation of Potts [90]. We believe that understanding the role of expanders in

the instances created as above is crucial for both improving the approximation ratio and

proving hardness of approximation results.

Recent work of Munier et al. [82] has improved the approximation ratio for parallel

machine scheduling with precedence constraints and release dates form 5:33 [9] to 4. The

improved algorithm uses list scheduling based on the ordering provided by a linear pro-

gramming relaxation. The interesting aspect of the algorithm is that the list scheduling

is based strictly on the ordering provided by the LP while we use arti�cial delays in our

conversion algorithm. Using LP relaxations directly for the parallel machine problem gives

stronger results than that are obtained by us using Delay List. However our algorithm is

more e�cient. We also believe that Delay List and its analysis can be improved to obtain

improved results. Munier et al. [82] show that their algorithm gives the same ratio even

when there are delays between jobs. A delay dij between a pair of jobs i and j constrains

job j to start dij units after the completion of i. Delay constraints can be thought of laten-

cies on the precedence edges. We remark that our conversion algorithm Delay List also

gives the same approximation ratio even in the presence of delays. The modi�cations are

straightforward.



Chapter 3

Makespan on Machines with

Di�erent Speeds

3.1 Introduction

In this chapter we1 consider the problem of scheduling precedence constrained jobs on

machines that have di�erent speeds. We formalize the problem below. We are given a set

of n jobs 1; : : : ; n, with job j requiring pj units of processing time. The jobs are to be

scheduled on a set of m machines. Machine i has a speed factor si. Job j with a processing

requirement pj takes pj=si time units to run on machine i. In the scheduling literature

such machines are called uniformly related and the problem we consider is referred to as

QjprecjCmax [44]. Let Cj denote the completion time of job j. The objective is to �nd a

schedule to minimize Cmax = maxj Cj , the makespan of the schedule. We restrict ourselves

to non-preemptive schedules where a job once started on a machine has to run to completion

on the same machine. Our results carry over to the preemptive case as well.

Liu and Liu [77] analyzed the performance of Graham's list scheduling algorithm for the

case of di�erent speeds and showed that it has an approximation ratio of (1+maxi si=mini si�
maxi si=

P
i si). This ratio depends on the ratio of the largest to the smallest speed and

could be arbitrarily large even for a small number of machines. The �rst algorithm to have

an approximation ratio independent of the speeds was given by Ja�e [62]. By generalizing

the analysis of Liu and Liu he showed that list scheduling restricted to the set of machines

1Parts of this chapter are joint work with Michael Bender and appeared in [10].

49
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with speeds that are within a factor of 1=
p
m of the fastest machine speed results in an

O(
p
m) approximation ratio. More recently, Chudak and Shymoys [17] improved the ratio

considerably and gave an algorithm with an approximation ratio of O(logm). At a more

basic level their algorithm has an approximation ratio of O(K) where K is the number of

distinct speeds. Their algorithm relies on solving a linear programming relaxation and uses

the information obtained from the solution to allocate jobs to machines. We obtain a new

algorithm that �nds an allocation without solving a linear program. The approximation

ratio of our algorithm is also O(logm) but is advantageous for the following reason. Our

algorithm runs in O(n3) time and is combinatorial, hence is more e�cient than the algo-

rithm in [17]. Further, the analysis of our algorithm relies on a new lower bound which is

very natural, and might be useful in other contexts. In addition we show that our algorithm

achieves a constant factor approximation when the precedence constraints are induced by

a collection of chains. We also obtain a similar ratio even if jobs have release dates by the

result in [103]. Our work uses several of the basic ideas from [17]. A linear programming

relaxation that gives an O(logm) approximation ratio for the more general problem of min-

imizing sum of weighted completion times (QjprecjPj wjCj) is also presented in[17]. Our

ideas do not generalize for that problem.

The rest of this chapter is organized as follows. Section 3.2 contains ideas from the

paper of Chudak and Shmoys [17] that are useful to us. We present our lower bound in

Section 3.3, and give the approximation algorithm and its analysis in Section 3.4.

3.2 Preliminaries

We summarize below the basic ideas in the work of Chudak and Shmoys [17]. Their

main result is an algorithm that gives an approximation ratio of O(K) for the problem

of QjprecjCmax where K is the number of distinct speeds. They also show how to reduce

the general case with arbitrary speeds to one in which there are only O(logm) distinct

speeds, as follows.

� Ignore all machines with speed less than 1=m times the speed of the fastest machine.

� Round down all speeds to the nearest power of 2.

They observe that the above transformation can be done while losing only a constant factor

in the approximation ratio. We will therefore restrict ourselves to instances with K distinct
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speeds with the implicit assumption that K = O(logm). The above ideas also imply

an O(log(maxi si=mini si)) approximation ratio instead of an O(logm) ratio. For some

instances this is a large improvement.

When all machines have the same speed (K = 1), Graham [42] showed that list schedul-

ing gives a 2 approximation. His analysis shows that in any schedule produced by list

scheduling, we can identify a chain of jobs j1 � j2 : : : � jr such that a machine is idle only

when one of the jobs in the above chain is being processed. The time spent processing the

chain is clearly a lower bound for the optimal makespan. In addition, the sum total of time

intervals during which all machines are busy is also a lower bound via arguments about

the average load. These two bounds provide an upper bound of 2 on the approximation

ratio of list scheduling. One can apply a similar analysis for the multiple speed case. As

observed in [17], the di�culty is that the time spent in processing the chain, identi�ed from

the list scheduling analysis, is not a lower bound for the optimal makespan value. The only

claim that can be made is that the processing time of any chain on the fastest machine is

a lower bound. However the jobs in the chain guaranteed by the list scheduling analysis do

not necessarily run on the fastest machine. Based on this observation, the algorithm in [17]

tries to �nd an assignment of jobs to speeds (machines) that ensures that the processing

time of any chain is bounded by some factor of the optimal.

We will follow the notation of [17] for sake of continuity and convenience. Recall that

we have K distinct speeds. Let mk be the number of machines with speed sk, k = 1; : : : ;K,

where s1 > : : : > sK . Let M
v
u denote the sum

Pv
k=umk. In the sequel we will be interested

in assigning jobs to speeds. For a given assignment, let k(j) denote the speed at which job

j is assigned to be processed. The average processing allocated to a machine of a speci�c

speed k, denoted by Dk, is the following.

Dk =
1

mksk

X
j:k(j)=k

pj :

A chain is simply a subset of jobs that are totally ordered by the precedence constraints. Let

P be the set of all chains induced by the precedence constraints. For a given job assignment

we can compute a quantity C de�ned by the following equation.

C = max
P2P

X
j2P

pj

sk(j)
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For a chain P the quantity
P

j2P
pj
sk(j)

denotes the minimum time required to �nish the jobs

in the chain if they are scheduled according to the given assignment of jobs to speeds. Thus

C represents a lower bound on the makespan for the given assignment of jobs to speeds.

A natural variant of list scheduling called speed based list scheduling developed in [17]

is constrained to schedule according to the speed assignments of the jobs. In classical list

scheduling, the �rst available job from the list is scheduled as soon as a machine is free. In

speed based list scheduling, an available job is scheduled on a free machine provided the

speed of free machine matches the speed assignment of the job. The proof of the following

theorem follows from a simple generalization of Graham's analysis of list scheduling.

Theorem 3.2.1 (Chudak & Shmoys [17]) For any job assignment k(j), j = 1; : : : ; n,

the speed-based list scheduling algorithm produces a schedule of length

Cmax � C +
KX
k=1

Dk:

In [17] a linear programming relaxation of the problem is used to obtain a job assignment

that satis�es the following two conditions:
PK

k=1Dk � (K +
p
K)C�

max, and C � (
p
K +

1)C�
max, where C

�
max is the optimal makespan. Plugging these in Theorem 3.2.1 results in an

O(K) approximation ratio. We use an alternative method based on chain decompositions

to obtain an assignment satisfying similar properties.

3.3 A New Lower Bound

In this section we develop a simple and natural lower bound that will be used in the analysis

of our algorithm. Before formally stating the lower bound we provide some intuition. The

two lower bounds used in Graham's analysis for identical parallel machines are the maximum

chain length (a chain's length is sum of processing times of jobs in it) and the average load.

As discussed in the previous section, a naive generalization of the �rst lower bound implies

that the maximum chain length divided by the fastest speed is a lower bound. However

it is easy to generate examples where the maximum of this bound and the average load is

O(1=m) times the optimal. We describe the general nature of such examples to motivate

our new bound. Suppose we have two speeds with s1 = D and s2 = 1. The precedence

constraints between the jobs are induced by a collection of ` > 1 chains, each of the same

length D. Suppose m1 = 1, and m2 = ` � D. The average load for the instance is upper
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bounded by 1. In addition the time to process any chain on the fastest machine is 1.

However if D � ` it is easy to see that the optimal is 
(`) since only ` machines can be

busy at any time instant. The key insight we obtain from the above example is that the

amount of parallelism in an instance restricts the number of machines that can be used.

We capture this insight in our lower bound in a simple way. We need a few de�nitions to

formalize the intuition. We view the precedence relations between the jobs as a weighted

poset where each element of the poset has a weight associated with it that is the same as the

processing time of the associated job. We will further assume that we have the transitive

closure of the poset.

De�nition 3.3.1 A chain P is a set of jobs j1; : : : ; jr such that for all 1 � i < r, ji � ji+1.

The length of a chain P , denoted by jP j, is the sum of the processing times of the jobs in

P .

De�nition 3.3.2 A chain decomposition P of a set of precedence constrained jobs is a

partition of the poset into a collection of chains fP1; P2; : : : ; Prg. A maximal chain de-

composition is one in which P1 is a longest chain and fP2; : : : ; Prg is a maximal chain

decomposition of the poset with elements of P1 removed.

Though we de�ne a maximal chain decomposition as a set of chains, we will implicitly

assume that it is an ordered set, that is jP1j � jP2j � : : : jPrj.

De�nition 3.3.3 Let P = fP1; P2; : : : ; Prg be a maximal chain decomposition of the given

set of jobs. We de�ne a quantity called LP associated with P and the machine speeds as

follows.

LP = max
1�j�minfr;mg

Pj
i=1 jPijPj
i=1 si

:

Note that in De�nition 3.3.3 the index of summation is over the machines and not the

speed classes. With the above de�nitions in place we are ready to state and prove the new

lower bound.

Theorem 3.3.4 Let P = fP1; : : : ; Prg be any chain decomposition (in particular any maxi-

mal chain decomposition) of the precedence graph of the jobs. Let AL = (
Pn

j=1 pi)=(
Pm

i=1 si)

denote the average load. Then

C�
max � maxfAL;LPg:
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Moreover the lower bound is valid for the preemptive case as well.

Proof. It is easy to observe that C�
max � AL. We will show the following for 1 � j � m

C�
max �

Pj
i=1 jPijPj
i=1 si

which will prove the theorem. Consider the �rst j chains. Suppose our input instance was

modi�ed to have only the jobs in the �rst j chains. It is easy to see that a lower bound

for this modi�ed instance is a lower bound for the original instance. Since it is possible

to execute only one job from each chain at any time instant, only the fastest j machines

are relevant for this modi�ed instance. The expression (
Pj

i=1 jPij)=(
Pj

i=1 si) is simply the

average load for the modi�ed instance, which as we observed before, is a lower bound. Since

the average load is also a lower bound for the preemptive case, the claimed lower bound

applies even if preemptions are allowed. 2

Horvath, Lam, and Sethi [61] proved that the above lower bound gives the optimal

schedule length for preemptive scheduling of chains on uniformly related machines. The

idea of extending their lower bound to general precedence graphs using maximal chain

decompositions is natural but does not appear to have been e�ectively used before.

Theorem 3.3.5 A maximal chain decomposition can be computed in O(n3) time. If all pj

are the same, the running time can be improved to O(n2
p
n).

Proof. It is necessary to �nd the transitive closure of the given graph of precedence

constraints. This can be done in O(n3) time using a BFS from each vertex. From a

theoretical point of view this can be improved to O(n!) where ! � 2:376 using fast matrix

multiplication [18]. A longest chain in a weighted DAG can be found in O(n2) time using

standard algorithms. Using this at most n times, a maximal chain decomposition can be

obtained in O(n3) time. If all pj are the same (without loss of generality we can assume

they are all 1), the length of a chain is the same as the number of vertices in the chain.

We can use this additional structure to obtain an improved time bound as follows. We

remove longest chains using the O(n2) algorithm as long as the longest chain is at least
p
n. The total running time for this phase of the algorithm is clearly bounded by O(n2

p
n).

Once the length of the longest chain falls below
p
n we run a di�erent algorithm that is

outlined in the proof of Lemma 3.3.6 below. That algorithm yields computes a maximal

chain decomposition for unit weight jobs in O(n2 � d) time where d is the maximum chain
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length. Thus if d � p
n we obtain an O(n2

p
n) time for the second phase. Combining the

two phases gives an algorithm with the desired bound. 2

Lemma 3.3.6 Given a DAG with all pj = 1, and the longest chain length bounded by d,

there is an algorithm to compute a maximal chain decomposition in time O(n2 � d).

Proof. We assume we have the transitive closure of the DAG. We partition the vertices

into (d+ 1) layers L0; L1; : : : ; Ld. Layer Li is the set of all vertices v such that the longest

chain ending at v is of length i. Let `(v) denote the layer of a vertex v. For each vertex v we

maintain its predecessors in (d+1) classes corresponding to the layer to which they belong.

Given the transitive closure it is easy to construct this partition and the predecessor classes

in O(n2) time. Given a layered representation we can �nd a longest chain in O(d) time

by taking an arbitrary vertex in the highest numbered non-empty layer and walking down

the layers looking for predecessors. Once we �nd a longest chain we remove the vertices in

the chain and all the edges incident on them. We update the layered data structure and

repeat the process. The update happens as follows. For each edge removed we change the

predecessor structure of the vertex incident on it. Let S be the vertices that are incident on

the edges removed. We examine vertices in S in increasing order of `(v). We �rst update

`(v) to its new value. If `(v) does not change by the removal of the chain we remove v

from S. If `(v) is reduced, we examine all the successors of v, update their predecessor

data structure and add them to S. This takes time proportional to the out-degree of v. We

continue this process as long as S is non-empty. We analyze the running time as follows.

The time to �nd the chain, remove the vertices and the associated edges, and form the

initial set S can be amortized to total number of edges removed. Thus this time is bounded

over all by O(n2). The time to update the layer information is amortized as follows. We

examine the successors of a vertex v only if `(v) is reduced. Since `(v) can change at most

(d+ 1) times the total time is bounded by (d+ 1)
P

v deg(v) which is O(n2 � d). 2

3.4 The Approximation Algorithm

The approximation algorithm we develop in this section is based on the maximal chain

decompositions de�ned in the previous section. As mentioned in Section 3.2, our algorithm

produces an assignment of jobs to speeds. Then we use the speed based list scheduling of

[17] with the job assignment produced by our algorithm.
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1. compute a maximal chain decomposition of the jobs P = fP1; : : : ; Prg.
2. set B = maxfAL;LPg.
3. set ` = 1.

4. foreach speed 1 � i � K do

(a) let t � r be the maximum index such that
P

`�j�t jPj j=(misi) � 4B.

(b) assign jobs in chains P`; : : : ; Pt to speed i.

(c) set ` = t+ 1. If ` > r return.

5. return.

Figure 3.1: Algorithm Chain-Alloc

Algorithm Chain-Alloc is described in Figure 3.1. It �rst computes a lower bound B

on the optimal using Theorem 3.3.4. Then it orders the chains in non-increasing lengths

and allocates the chains to speeds such that no speed is loaded by more than four times the

lower bound. We now prove several properties of the described allocation. Recall that Di

is the average load on a machine in speed class i.

Lemma 3.4.1 Let P`(u); : : : ; Pr be the chains remaining when Chain-Alloc considers speed

u in step 4 of the algorithm. Then

1. jP`(u)j=su � 2B and

2. Either P`(u); : : : ; Pr are allocated to speed u or Du > 2B.

Proof.2 We prove the above assertions by induction on u. Consider the base case when

u = 1 and `(1) = 1. From the de�nition of LP it follows that jP1j=s1 � B. Since P1 is

the longest chain, it also follows that jPj j=s1 � B for 1 � j � r. Let t be the last chain

allocated to s1. If t = r we are done. If t < r, it must be the case that adding P(t+1)

increases the average load on s1 to more than 4B. Since P(t+1)=s1 � B, we conclude that

D1 =
Pt

j=1 jPj j=m1s1 > 3B > 2B.

2We thank Monika Henzinger for simplifying an earlier version of this proof.
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Assume that the conditions of the lemma are satis�ed for speeds s1 to su�1 and consider

speed su. We will assume that `(u) < r for otherwise there is nothing to prove. We observe

that the second condition follows from the �rst using an argument similar to the one used

above for the base case. Therefore it is su�cient to prove the �rst condition. Suppose

jP`(u)j=su > 2B. We will derive a contradiction later. Let j = `(u) and let v be the index

such that Mv�1
1 < j � Mv

1 (recall that Mv
1 =

Pv
k=1mk). If j > m, no such index exists

and we set v to K, the slowest speed. If j � m, for convenience of notation we assume

that j = Mv
1 simply by ignoring other machines of speed sv. It is easy to see that v � u

and j > Mu�1
1 . From the de�nition of LP , AL, and B, we get the following two facts. If

j � m then LP � (
Pj

i=1 jPij)=(
Pv

k=1mksk). If j > m then AL � (
Pj

i=1 jPij)=(
PK

k=1mksk).

Combining them we obtain the following,

Pj
i=1 jPijPv

k=1mksk
� maxfLP ; ALg = B: (3.1)

Since jPj j=su > 2B, it is the case that jPij=su > 2B for allMu�1
1 < i � j. This implies that

jX
Mu�1

1 <i

jPij > 2B(j �Mu�1
1 )su

� 2B
vX

k=u

mksk

)
jX
i=1

jPij > 2B
vX

k=u

mksk (3.2)

The last inequality follows since we are summing up more terms on the left hand side. From

the induction hypothesis it follows that speeds s1 to su�1 have an average load greater than

2B. From this we obtain

j�1X
i=1

jPij > 2B
u�1X
k=1

mksk (3.3)

)
jX
i=1

jPij > 2B
u�1X
k=1

mksk (3.4)
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Combining Equations 3.2 and 3.4 we obtain the following.

2

jX
i=1

jPij > 2B
u�1X
k=1

mksk + 2B
vX

k=u

mksk

> 2B
vX

k=1

mksk

)
jX
i=1

jPij > B
vX

k=1

mksk (3.5)

Equation 3.5 contradicts Equation 3.1. 2

Corollary 3.4.2 If chain Pj is assigned to speed i, then
jPj j
si

� 2B.

Corollary 3.4.3 Algorithm Chain-Alloc allocates all chains.

Lemma 3.4.4 For 1 � k � K, Dk � 4C�
max.

Proof. Since B � C�
max and the algorithm never loads a speed by more than an average

load of 4B, the bound follows. 2

Lemma 3.4.5 For the job assignment produced by Chain-Alloc C � 2KC�
max.

Proof. Let P be any chain. We will show that
P

j2P pj=sk(j) � 2KC�
max where k(j)

is the speed to which job j is assigned. Let Ai be the set of jobs in P which are assigned

to speed i. Let P` be the longest chain assigned to speed i by the algorithm. We claim

that jP`j �
P

j2Ai
pi. This is because the jobs in Ai form a chain when we picked P` to be

the longest chain in the maximal chain decomposition. From Corollary 3.4.2 we know that

jP`j=si � 2B � 2C�
max. Therefore it follows that

X
j2P

pj

sk(j)
=

KX
i=1

jAij
si

� 2KC�
max:

2

Theorem 3.4.6 Using speed based list scheduling on the job assignment produced by Al-

gorithm Chain-Alloc gives a 6K approximation where K is the number of distinct speeds.

Furthermore the algorithm runs in O(n3) time. The running time can be improved to

O(n2
p
n) if all pj are the same.
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Proof. From Lemma 3.4.4 we have Dk � 4C�
max for 1 � k � K and from Lemma 3.4.5

we have C � 2KC�
max. Putting these two facts together, for the job assignment produced

by the algorithm Chain-Alloc, speed based list scheduling gives the following upper bound

by Theorem 3.2.1.

Cmax � C +
KX
k=1

Dk � 2KC�
max + 4KC�

max � 6KC�
max:

It is easy to see that the speed based list scheduling can be implemented in O(n2) time.

The running time is dominated by the time to compute a maximal chain decomposition.

Theorem 3.3.5 gives the desired bounds. 2

Corollary 3.4.7 There is an algorithm which runs in O(n3) time and gives an O(logm)

approximation ratio for the problem of scheduling precedence constrained jobs on uniformly

related machines to minimize makespan.

Remark 3.4.8 The maximal chain decomposition depends only on the jobs of the given

instance and is independent of the machine environment. If a maximal chain decomposition

is given the schedule can be computed in O(n logn) time.

We note here that the leading constant in the LP based algorithm in [17] is better.

We also observe that the above bound is based on our lower bound which is valid for

preemptive schedules as well. Hence our approximation ratio is also valid for preemptive

schedules. In [17] it is shown that the lower bound provided by the LP relaxation is a

factor of 
(logm= log logm) away from the optimal. Surprisingly it is easy to show using

the same example as in [17] that our lower bound from Section 3.3 is also a factor of


(logm= log logm) away from the optimal.

Theorem 3.4.9 There are instances where the lower bound given in Theorem 3.3.4 is a

factor of 
(logm= log logm) away from the optimal.

Proof. The proof of Theorem 3:3 in [17] provides the instance and it is easily veri�ed

that any maximal chain decomposition of that instance is a factor of 
(logm= log logm)

away from the optimal. 2
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3.4.1 Release Dates

Now consider the scenario where each job j has a release date rj before which it cannot be

processed. By a general result of Shmoys, Wein, and Williamson [103] an approximation

algorithm for the problem of minimizing makespan without release dates can be transformed

to one with release dates losing only a factor of 2 in the process. Therefore we obtain the

following.

Theorem 3.4.10 There is an O(logm) approximation algorithm for scheduling to mini-

mize makespan of jobs with precedence constraints and release dates on uniformly related

machines (Qjprec; rj jCmax) that runs in time O(n3).

3.4.2 Scheduling Chains

In this subsection we show that Chain-Alloc followed by speed based list scheduling gives

a constant factor approximation if the precedence constraints are induced by a collection

of chains. We �rst observe that any maximal chain decomposition of a collection of chains

is simply the collection itself. The crucial observation is that the algorithm Chain-Alloc

allocates all jobs of any chain to the same speed class. The two observation together imply

that there are no precedence relations between jobs allocated to di�erent speeds. Suppose

we run Chain-Alloc with m speed classes where each machine is in its own distinct speed

class. Lemma 3.4.4 implies that max1�k�K Dk � 4B. Since each machine is in its own speed

class it follows that the load on each machine is at most 4B. But if chains are allocated

whole, each machine can process the jobs assigned to it in a serial fashion and �nish them

in time equal to its load. It follows that the makespan of the schedule is at most 4B.

Theorem 3.4.11 There is a 4 approximation for the problem QjchainsjCmax and a 8 ap-

proximation for the problem Qjchains; rj jCmax.

Computing the maximal chain decomposition of a collection of chains is trivial and the

above algorithm can be implemented in O(n log n) time.

3.5 Concluding Remarks

Chudak and Shmoys [17] provide an O(logm) approximations for the more general problem

of minimizing the sum of weighted completion times (QjprecjPwjCj) using linear program-

ming relaxations. Obtaining a simpler algorithm for that problem as well is an interesting
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problem. It is known that the problem of minimizing makespan is hard to approximate to

within a factor of 4=3 even if all machines have the same speed [74]. However, for the single

speed case Graham's list scheduling gives a 2 approximation, while we are able to obtain

only an O(logm) ratio for the multiple speed case. We conjecture the following.

Conjecture 3.5.1 There is a O(1) approximation algorithm for the problem QjprecjCmax

and even for the more general problem QjprecjPwjCj.

Improving the hardness of 4=3 for the multiple speed case is also an interesting open problem.
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Chapter 4

Scheduling Problems in Parallel

Query Optimization

4.1 Introduction

Large database systems1 with sophisticated query processing capabilities are of growing

importance in todays computing environment. Their importance will continue to grow in

the near future fueled by the explosive growth in the data available for processing and

concomitant applications such as data mining, full text searching, and many others. Par-

allel machines assembled from commodity hardware are o�ering cost-performance bene�ts

that rival or beat those provided by sequential mainframes. All the major commercial

database vendors o�er parallel database solutions today. Thus exploiting parallel comput-

ing for speeding up large database queries is an important problem. The shared-nothing

architecture in particular o�ers 
exibility and scalability and and seems to be the favored

architecture for parallel database systems [24].

Database queries are almost always written in a high level declarative language such

as SQL. It is the job of the underlying database management system (DBMS) to translate

the users queries into a query execution plan that can be run on the underlying hardware

environment to produce the query results. The declarative nature of the query language

leaves several choices for the DBMS to execute the query, and query optimization refers to

the process of obtaining the best query execution plan for a given query. A DBMS is a large

1This chapter (except Section 4.6) is joint work with Waqar Hasan and Rajeev Motwani [11].
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system with many components and query optimization even for a sequential machine is an

involved process. Query optimization for parallel databases o�ers many more challenges

and is still a relatively less understood area.

An aspect of query optimization that is novel in the parallel setting is the cost of

communication incurred between processes running on di�erent processors. Ignoring com-

munication in parallel databases could lead to query plans that unnecessarily transfer very

large relations between processors resulting in very poor performance. Thus exploiting par-

allel execution to speed up database queries presents a parallelism-communication trade-

o� [24, 111]. While work is divided among processors, the concomitant communication

increases total work itself [45, 89]. To reduce the complexity of the parallel query optimiza-

tion problem a natural two-phase approach [57, 51] is used. The �rst phase transforms the

given query into an equivalent one that minimizes the overall query execution cost, and is

similar to query optimization for sequential machines. The output of the �rst phase is an

annotated query tree. The second phase parallelizes the plan produced by the �rst phase

and schedules the execution on the parallel machine. In this work we study only with the

scheduling phase. We postpone to Section 4.2 detailed description of the phases. The task

to be scheduled is represented as a weighted operator tree [57, 95, 50] in which nodes rep-

resent atomic units of execution (operators) and directed edges represent the 
ow of data

as well as timing constraints between operators. Weight of a node represents the time to

process the operator and weight of an edge represents the communication cost between the

operators connected by the edge.

Scheduling a weighted operator tree on a parallel machine poses a class of novel multi-

processor scheduling problems that di�er from the classical ones [44] in several ways. First,

edges represent two kinds of timing constraints | parallel and precedence. Second, since

data is transmitted in long streams, the important aspect of communication is the CPU

overhead of sending/receiving messages and not the delay for signal propagation (see [83, 84]

for models of communication as delay). Third, the set oriented nature of queries has led to

intra-operator parallelism (relations are horizontally partitioned and a clone of the operator

applied to each partition) in addition to inter-operator parallelism [24].

We introduce several problems and focus on the speci�c problem of scheduling a pipelined

operator tree (POT scheduling). All edges in such a tree represent parallel constraints, i.e.,

all operators run in parallel. A schedule is simply an assignment of operators to processors.

Since edge weights represent the cost of remote communication, this cost is saved if adjacent
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operators share a processor. Given a schedule, the load on a processor is the sum of the

weights of nodes assigned to it and the weights of all edges that connect nodes on the

processor to nodes on other processors. The response time (makespan) of a schedule is the

maximum processor load and the optimization problem is to �nd a schedule with minimum

response time.

POT scheduling is NP-Hard since the special case in which all communication costs

are zero is classical multi-processor scheduling problem [34]. We assess algorithms by their

performance ratio which is the ratio of the response time of the generated schedule to that

of an optimal schedule. We give two constant factor algorithms that run in O(n logn)

time. The �rst algorithm LocalCuts has a ratio of 3:56 while the second algorithm

BoundedCuts has ratio of (1 + �)2:87. BoundedCuts runs in time O(log(1=�)n log n)

and thus has a larger hidden constant. We then show that we can obtain a polynomial

time approximation scheme2 for the problem by generalizing the ideas for multi-processor

scheduling [55]. Though the PTAS is not very practical, it settles the approximability of

the problem.

In Section 4.2, we provide an overview of parallel query optimization and develop a

model for scheduling problems. In Section 4.3, we review past work on the POT problem

and describes our two-stage approach to the development of approximation algorithms for

POT. In Section 4.4, we develop the LocalCuts algorithm and show it to have a perfor-

mance ratio of 3:56. In Section 4.5, this algorithm is modi�ed to yield the BoundedCuts

algorithms which is shown to have a performance ratio of 2:87. We give our PTAS in Section

4.6.

4.2 A Model for Scheduling Problems

Figure 4.1 shows a two-phase approach [57, 51] for parallel query optimization. The �rst

phase, JOQR (for Join Ordering and Query Rewrite), minimizes total cost and produces

an annotated query tree that �xes aspects such as the order of joins and the strategy for

computing each join. The second phase, parallelization, converts the annotated query tree

into a parallel plan. Parallelization itself has two steps. The �rst converts the annotated

query tree to an operator tree [31, 57, 95]. The second schedules the operator tree on a

2A PTAS for the problem was �rst obtained by Schuurman and Woeginger [101]. We obtained ours

independently after hearing about their result.



66 CHAPTER 4. SCHEDULING PROBLEMS IN QUERY OPTIMIZATION

parallel machine.

Several approaches exist for the �rst phase; Hong and Stonebraker [58] used a conven-

tional query optimizer while Hasan and Motwani [50] develop algorithms that incorporate

communication costs. In this work we are only concerned with the second phase.
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Figure 4.1: Parallel Query Processing:Software Architecture

We will �rst discuss the forms of available parallelism and how they are captured by

the operator tree representation. We then describe how we model communication. Finally,

we describe a variety of scheduling problems. The reader is referred to the thesis of Waqar

Hasan [51] for more details and related issues.

4.2.1 Forms of Parallelism

Parallel database systems speed-up queries by exploiting independent and pipelined forms of

inter-operator parallelism as well as intra-operator or partitioned parallelism. Independent

parallelism simultaneously runs two operators with no dependence between them on distinct

processors. Pipelined parallelism runs a consumer operator simultaneously with a producer

operator on distinct processors. Partitioned parallelism uses several processors to run a

single operator. It exploits the set-oriented nature of operators by partitioning the input

data and running a copy of the operator on each processor.

4.2.2 Operator Trees

Available parallelism is represented as an operator tree T = (V;E) with V = f1; : : : ; ng.
Nodes represent operators. Functionally, an operator takes zero or more input sets and



CHAPTER 4. SCHEDULING PROBLEMS IN QUERY OPTIMIZATION 67

produces a single output set. Physically, it is a piece of code that is deemed to be atomic.

Edges between operators represent the 
ow of data as well as timing constraints. As argued

in [50], operators may be designed to ensure that any edge represents either a parallel or a

precedence constraint.

Example 4.2.1 Figure 4.2 shows a query tree and the corresponding operator tree. Edges

with un�lled arrow heads are pipelining edges, edges with �lled arrow heads are blocking.

A simple hash join is broken into Build and Probe operators. Since a hash table must be

fully built before it can be probed, the edge from Build to Probe is blocking. A sort-merge

join sorts both inputs and then merges the sorted streams. The merging is implemented

by the Merge operator. In this example, we assume the right input of sort-merge to be

pre-sorted. The operator tree shows the sort required for the left input broken into two

operators FormRuns and MergeRuns. Since the merging of runs can start only after run

formation, the edge from FormRuns to MergeRuns is blocking. 2

S.empNum = E.empNum
simple-hash

sort-merge

AVG

EMPSKILLS S EMP E

EMP M
scan

inde-scan clustered
index-scan

E.mgr = M.empNum

(A)

Merge

Probe

Scan(M) IndexScan(E)

ClusteredScan(E

Avg

FormRuns

MergeRuns

Build

(B)

Figure 4.2: Macro-Expansion of Query Tree to Operator Tree (Parallelism Extraction)

The operator tree exposes the available parallelism. Partitioned parallelism may be used

for any operator. Pipelined parallelism may be used between two operators connected by

a pipelining edge. Two subtrees with no (transitive) timing constraints between them may

run independently (eg: subtrees rooted at FormRuns and Build).

De�nition 4.2.2 A pipelining edge from operator i to j represents a parallel constraint

that requires i and j to start at the same time and terminate at the same time. A blocking

edge from i to j represents a precedence constraint that requires j to start after i terminates.
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A pipelining constraint is symmetric in i and j. The direction of the edge indicates the

direction in which tuples 
ow but is immaterial for timing constraints. Since all operators in

a pipelined subtree start and terminate simultaneously3, operators with smaller processing

times use a smaller fraction of the processor on which they run.

4.2.3 Model of Communication

The weight pi of node i in an operator tree is the time to run the operator in isolation

assuming all communication to be local. The weight cij of an edge from node i to j is the

additional CPU overhead that both i and i would incur for inter-processor communication

if they are scheduled on di�erent processors. A speci�c schedule incurs communication

overheads only for the fraction of data that it actually communicates across processors. As

discussed in [50], conventional cost models (such as System R [102]) that estimate the sizes

of the intermediate results can be adapted to estimate node and edge weights.

Figure 4.3 shows the extreme cases of communication costs of blocking and pipelining

edges. In the �gure the thick edge represents a blocking edge and the thin edge represents a

pipelining edge. Communication is saved when the two operators are on the same processor

and totals to twice the edge weight when they are on distinct processors. For a blocking edge,

communication occurs after the producer terminates and before the consumer starts. For a

pipelined edge, communication is spread over the execution time of the entire operator. Note

that since all operators in a pipeline start and terminate simultaneously, heavier operators

use a larger fraction of the CPU of the processor they run on.

4.2.4 Scheduling Problems

We assume a parallel machine to consist of m identical processors. A schedule is an assign-

ment of operators to processors. We model partitioned parallelism as permitting processors

to execute fractions of an operator. Depending on whether partitioned parallelism is allowed

or not, the assignment of operators to processors is a fractional or 0-1 assignment. Since

the goal of a parallel database system is to speedup queries, we are interested in �nding

3Pipelining in other contexts (such as instruction pipelining) connotes a sequential form of execution.

In the database context, even though individual tuples (or blocks of them) are processed sequentially

in a pipeline, the data is assumed to be large enough that all operators in a pipeline start and �nish

simultaneously.
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Figure 4.3: Communication Costs for Blocking and Pipelining Edges: Gantt Charts

schedules with minimal response time. The response time of a schedule is the elapsed time

between starting query execution and fully producing the result.

Figure 4.4 shows the division of the problem of scheduling operator trees into subprob-

lems along two dimensions: the kinds of edges in an operator and whether schedules allow

fractional assignment.

No Partitioned Parallelism With Partitioning

Pipelined Edges Only Pipelined Operator Tree (POT) (POTP)

Blocking Edges Only Blocking Operator Tree (BOT) (BOTP)

Pipelining & Blocking Operator Tree (OT) (OTP)

Figure 4.4: Classi�cation of Scheduling Problems

In the rest of this chapter we address only one of the above problems namely the POT

scheduling problem. Even though POT scheduling is a restricted version of the most gen-

eral problem we still need non-trivial techniques and analysis to obtain e�cient and good

approximation algorithms.
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4.3 POT Scheduling

We begin by reviewing relevant de�nitions and results from earlier work on POT scheduling

by Hasan and Motwani [50] where algorithms were designed for restricted shapes of trees.

We then describe a two-stage approach that we shall use in developing and analyzing our

algorithms.

4.3.1 Problem De�nition and Prior Results

In the POT scheduling problem the given tree T = (V;E) is restricted to have only pipelining

edges. The following de�nitions make the problem precise.

De�nition 4.3.1 Given m processors and an operator tree T = (V;E), a schedule is a

partition of V , the set of nodes, into m sets F1; : : : ; Fm with set Fk allocated to processor k.

De�nition 4.3.2 The load Lk on processor k is the cost of executing all nodes in Fk plus

the overhead for communicating with nodes on other processors, Lk =
P

i2Fk
(pi+

P
j =2Fk

cij).

De�nition 4.3.3 The response time of a schedule is the maximum processor load, Lmax =

max1�k�m Lk.

Example 4.3.4 Figure 4.5 shows a 2-processor schedule. Sets F1 and F2 are encircled. F1

results in a load of L1 = 31 on processor 1 since the processor must pay for the three nodes

in F1 (5+5+10) as well as for the edges that connect to nodes on the other processor (5+6).

Similarly L2 = 34. The response time of the schedule is Lmax = max(L1; L2) = 34. The

edges are shown undirected since the stream direction is not relevant for communication

costs. 2

Prior work [50] showed that any given tree can be transformed into what is called a

monotone tree, and therefore it su�ces to consider algorithms for these restricted trees. It

is also shown that the transformation can be accomplished by a simple algorithm called

GreedyChase. Further, a schedule for the original tree can be easily obtained from a

schedule for the monotone tree. The cost of a set of nodes A denoted by cost(A) is de�ned

to be
P

i2A(pi +
P

j =2A cij). A set of nodes is connected if the vertices in the set induce a

connected subtree of T .
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De�nition 4.3.5 An operator tree is monotone if and only if, for any two connected sets

of nodes, X and Y such that X � Y , cost(X) < cost(Y ).

De�nition 4.3.6 An edge eij is worthless if and only if (cij � pi +
P

k 6=j cik) or (cij �
pj +

P
k 6=i cjk).

Another interpretation of monotone trees is that they do not contain any worthless

edges. These are edges whose communication cost is high enough to o�set any bene�ts of

using parallel execution for the two end points. The following lemma shows the equivalence.

Lemma 4.3.7 ([50]) A tree is monotone if and only if it does not have worthless edges.

The GreedyChase algorithm converts any tree into a monotone tree by repeatedly

collapsing worthless edges. The following theorem shows that instead of scheduling a given

tree, we may schedule the corresponding monotone tree. We prove it for the sake of com-

pleteness.

Theorem 4.3.8 ([50]) For any operator tree T with a worthless edge (i; j), there exists an

optimal schedule for T in which nodes i and j are assigned to the same processor.

Proof. Let (i; j) be a worthless edge and let S be an optimal schedule in which i and j

are scheduled on di�erent processors, say 1 and 2. Assume without loss of generality that



72 CHAPTER 4. SCHEDULING PROBLEMS IN QUERY OPTIMIZATION

(cij � pj +
P

k 6=i cjk). Suppose we move j to processor 1 on which i is scheduled, in the

process obtaining a new schedule S0. Then it is easy to see that the increase in L1, the load

of i's processor, is bounded by (pj +
P

k 6=i cjk) � cij. The increase in L2, the load of j's

processor, is bounded by
P

k 6=i cjk� pj � cij. Since (cij � pj +
P

k 6=i cjk), both increases are

negative. Thus S0 is at least as good a schedule as S. 2

Example 4.3.9 In Figure 4.5, the edge between Probe and ClusteredScan is worthless

since its weight exceeds the weight of ClusteredScan. The corresponding monotone tree is

created by collapsing Probe and ClusteredScan into a single node of weight 10. 2

Monotone trees have the property that, for any node, the sum of its weight and the

weights of edges incident on it, is a lower bound on the optimal response time. This lower

bound is useful in proving the performance ratios achieved by our algorithms.

Lemma 4.3.10 ([50]) The response time of any schedule (independent of number of pro-

cessors) for a monotone operator tree has a lower bound of maxi2V (pi +
P

j2V cij).

Proof. Consider any optimal schedule S. In S, let Xi be the connected set of nodes

that i is scheduled with. Since the tree is monotone it follows that cost(Xi) � cost(fig) =
(pi +

P
j2V cij). 2

In the remainder of the chapter, we will assume operator trees to be monotone.

4.3.2 A Two-stage Approach

We divide the POT scheduling problem into two stages, fragmentation followed by schedul-

ing. Fragmentation partitions the tree into connected fragments by cutting some edges.

A cut edge is deleted from the tree. This should be interpreted as a decision to allocate

the two end-points to distinct processors. The additional communication cost is captured

by adding the weight of the deleted edge to the weights of both its end-points. Any edge

which is not cut is collapsed. This should be interpreted as a decision to schedule the two

end-points on the same processor. Collapsing merges the two end-points into a single node

which is assigned all the incident edges of the merged nodes and has weight equal to the

sum of the weights of the merged nodes. We view the result of fragmentation as a set of

fragments that are free to be scheduled independently of each other. The scheduling stage

assigns the fragments produced by the �rst stage to processors.
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The two stage approach o�ers conceptual simplicity and does not restrict the space of

schedules. Any schedule de�nes a natural fragmentation corresponding to cutting exactly

the inter-processor edges. For any given schedule, some scheduling algorithm will produce it

from its natural fragmentation. Notice that the scheduling stage may assign two fragments

that were connected by a cut edge to the same processor thus \undoing" the cutting. Thus,

several fragmentations may produce the same schedule. In our analysis, we will ignore

the decrease in communication cost caused by this implicit undoing of an edge cutting

operation. This can only over-estimate the cost of our solution.

The two-stage approach allows us to use standard multi-processor scheduling algorithms

for the second stage. For the constant factor approximation algorithms in Sections 4.4 and

4.5 we use the classical LPT algorithm (largest processing time �rst) [43]. This is a greedy

algorithm that assigns the largest unassigned job to the least loaded processor. For the

PTAS in Section 4.6 we use a di�erent approach, the details of which we defer to that

section.

We �rst develop conditions on fragmentation that when combined with LPT for the

scheduling stage yield a good approximation ratio. There is an inherent tradeo� between

total load and the weight of the heaviest connected fragment. If an edge is cut, communi-

cation cost is incurred thus increasing total load. If an edge is collapsed, a new node with

a larger net weight is created, potentially increasing the weight of the largest connected

fragment. Lemma 4.3.16 captures this trade-o�. Before proceeding further, we de�ne a few

quantities.

De�nition 4.3.11 Let Ri = cost(fig) = pi +
P

j cij denote the cost of node i and let

R = maxiRi. W =
P

i pi is the sum of the weights of all nodes. Wavg = W=m is the

average node weight per processor.

Assuming fragmentation to produces q fragments with costs M1; : : : ;Mq, we make the

following de�nitions.

De�nition 4.3.12 Let M = maxiMi denote the weight of heaviest fragment. Let C be

the the total communication cost incurred, which is twice the sum of the weights of the cut

edges. We de�ne Lavg = (W + C)=m to be the average load per processor.

We use the superscript � to denote the same quantities for the natural fragmentation

corresponding to some �xed optimal schedule. For example, M� denotes the weight of the

heaviest fragment in the optimal fragmentation.
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Example 4.3.13 Figure 4.6 shows the natural fragmentation for the schedule of Exam-

ple 4.3.4. After the remaining edges are collapsed, we get three nodes with weightsM1 = 14,

M2 = 20, and M3 = 31. Thus M = maxfM1;M2;M3g = 31. C = 22 since the fragmenta-

tion cuts two edges with weights 5 and 6. Since the total node weight in the original tree is

W = 43, we have Lavg = (W + C)=m = (43 + 22)=2. 2

Probe
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ClusteredScan(E)
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5
7

4
Merge

MergeRuns
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20
21

Figure 4.6: Fragments

The following two propositions provide lower bounds on the value of the optimal solution.

The proofs are straightforward.

Proposition 4.3.14 For any schedule Wavg � Lavg � Lmax. In particular, Wavg � L�avg �
L�max.

Proposition 4.3.15 For any schedule R �M � Lmax. In particular, R �M� � L�max.

In the following lemma, k1 captures the e�ect of size of the largest fragment and k2 the

load increase due to communication.

Lemma 4.3.16 Given a fragmentation with M � k1L
�
max and Lavg � k2L

�
avg, scheduling

using LPT yields a schedule with Lmax=L
�
max � maxfk1; 2k2g.

Proof. For a fragmentation with the stated properties, let P be a heaviest loaded

processor in an LPT schedule, with response time Lmax. Let Fj be the last fragment, of

cost Mj, that is assigned to P . We divide the analysis into two cases based on whether Fj

is the only fragment on P or not.
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If Fj is the only fragment on P , Lmax =Mj , and by our assumption on the fragmenta-

tion,

Lmax =Mj �M � k1L
�
max:

Now consider the case when the number of fragments on P is at least two. Since LPT

assigns the current job to the least loaded processor at that point, when Fj is assigned to

P , the load on each processor is at least Lmax�Mj. The total load
P

k Lk may be bounded

as

X
k

Lk � m � (Lmax �Mj) +Mj

) Lmax � 1

m

X
k

Lk +

�
1� 1

m

�
Mj

) Lmax � Lavg +Mj:

LPT schedules the largest m jobs on distinct processors. Since there was at least one other

fragment on P beforeMj , there are at least (m+1) fragments, each of them no lighter than

Mj . Thus,

X
k

Lk � (m+ 1)Mj

) Mj � 1

m+ 1

X
k

Lk < Lavg:

Combining the two observations and using the assumption Lavg � k2L
�
avg, we obtain

Lmax � Lavg +Mj

< 2Lavg

< 2k2L
�
avg

< 2k2L
�
max:

Combining the two cases, we conclude Lmax=L
�
max � maxfk1; 2k2g. 2

Using the above lemma, the best we can do is to �nd a fragmentation with k1 = k2 = 1

which would guarantee a performance ratio of 2. A star is a tree with only one non-leaf

node. We show that even for this simple case, the problem of �nding the best fragmentation
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is NP-Complete.

Theorem 4.3.17 Given a star T = (V;E), bounds B and C, the problem of determining

whether there is a partition of V such that no fragment is heavier than B and the total

communication is no more than C is NP-Complete.

Proof. We reduce the classical knapsack problem [34] to the above problem. Let an

instance of the knapsack problem be speci�ed by a bag size S and n pairs (wi; pi) where

each pair corresponds to an object of weight wi with pro�t pi. By scaling appropriately we

can assume without loss of generality that pi � wi for 1 � i � n. We construct a star T

with n+1 nodes from the knapsack instance. We label the nodes of T from 0 to n with the

center as 0. For 1 � i � n, we set ci0 = pi=2 and pi = wi + ci0 and B = S +
P

i ci0. We set

p0 = 0. We claim that the minimum communication cost for the star instance is C if and

only if the maximum pro�t for the knapsack instance is
P

i pi �C. 2

We remark that the problem is polynomial time solvable when the tree is restricted

to be a path. Moreover we can obtain a pseudo-polynomial time algorithm for the above

problem even on a tree. We will use this observation in Section 4.6. The next two section

focus on algorithms to �nd good fragmentations that guarantee low values for k1 and k2.

4.4 The LocalCuts Algorithm

We now develop a linear time algorithm for fragmentation called LocalCuts. We show

bounds on the weight of the heaviest fragment as well as on the load increase due to

communication. Application of Lemma 4.3.16 shows the algorithm to have a performance

ratio of 3:56.

LocalCuts repeatedly picks a leaf and determines whether to cut or collapse the edge

to its parent. It makes the decision based on local information, the ratio of the leaf weight

to the weight of the edge to its parent. The basic intuition is that if the ratio is low,

then collapsing the edge will not substantially increase the net weight of the parent. If the

ratio is high, the communication cost incurred by cutting will be relatively low and can be

amortized to the weight of the node cut o�. One complication is that cutting or collapsing

an edge changes node weights. Our analysis amortizes the cost of cutting an edge, over the

total weight of all nodes that were collapsed to produce the leaf.
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In the following discussion we assume that the tree T has been rooted at some arbitrary

node. We will refer to the fragment containing the root as the residual tree. A mother node

in a rooted tree is a node all of whose children are leaves. The algorithm uses a parameter

� > 1. We will later show (Theorem 4.4.3) how this parameter may be chosen to minimize

the performance ratio.

Algorithm 1 The LocalCuts Algorithm

Input: Monotone operator tree T , parameter � > 1.

Output: Partition of T into fragments F1; : : : ; Fk.

1. while there is a mother node s with a child j do

2. if pj > �cjs then cut ejs

3. else collapse ejs

4. end while

The running time of the LocalCuts algorithm is O(n). The following lemma shows a

bound on the weight of the resulting fragments.

Lemma 4.4.1 For the fragmentation produced by LocalCuts M < �R.

Proof. Consider an arbitrary fragment produced in the course of the algorithm. Let

s be the highest level node in the fragment, and assume that its children are numbered

1; : : : ; d. The node s is picked as a mother node at some stage of the algorithm. Now,

Rs = c0+ps+cs1+: : :+csd where c
0 is the weight of the edge from s to its parent. Collapsing

child j into s, corresponds to replacing csj by pj. Since the condition for collapsing is

pj � �csj , collapsing children can increase Rs to at most �Rs which is no greater than �R.

2

We now use an amortization argument to show that the communication cost incurred

by the LocalCuts algorithm is bounded by W , the total node weight, times a factor

depending on �.

Lemma 4.4.2 The total communication cost of the partition produced by the LocalCuts

algorithm is bounded by 2
��1W , that is C � 2

��1W .

Proof. We associate a credit qi with each node i and credit qjk with each edge ejk.

Initially, edges have zero credit and the credit of a node equals its weight; thus, the total

initial credit is W . The total credit will be conserved as the algorithm proceeds. When a
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node is cut or collapsed, its credit is taken away and either transferred to another node or

to an edge that is cut. The proof is based on showing that when the algorithm terminates,

every edge that is cut has a credit equal to (� � 1) times its weight. This allows us to

conclude that the total weight of the cut edges is bounded by W=(�� 1). This would then

imply that C � 2
��1W . We abuse notation by using pi for the current weight of a node

in the residual tree. We now prove the following invariants by induction on the number of

iterations in LocalCuts.

1. Each node has a credit greater than or equal to its current weight in the residual tree,

i.e., qi � pi.

2. Each cut edge eis has a credit equal to (�� 1) times its weight, i.e., qis = (�� 1)cis.

To take care of the base case we observe that the invariants are trivially true at the

beginning of the algorithm. For the inductive step, assume that the invariants are true

up to k iterations. Consider a leaf node j with mother s in the (k + 1)st iteration. We

use the superscript NEW to indicate the values at the next iteration. If j is collapsed,

pnews = ps + pj. By transferring the credit of j to s, we get qnews = qj + qs. By the

inductive hypothesis qj � pj and qs � ps. Therefore q
new
s � pnews and both invariants are

preserved.

If j is cut, pnews = ps+ cjs. We need to transfer a credit of cjs to s to maintain the �rst

invariant. The remaining credit qj�cjs may be transferred to the edge ejs. By the induction
hypothesis, we have qj � cjs � pj � cjs and since edge ejs was cut, qj � cjs > (� � 1)cjs.

Thus su�cient credit is available for the second invariant as well. 2

The previous two lemmas combined with Lemma 4.3.16, allow us to bound the perfor-

mance ratio guaranteed by LocalCuts. The following theorem states the precise result

and provides a value for the parameter �.

Theorem 4.4.3 Using LPT to schedule the fragments produced by LocalCuts with � =

(3 +
p
17)=2 gives a performance ratio of (3 +

p
17)=2 � 3:56.

Proof. From Lemma 4.4.2 and Proposition 4.3.14,

Lavg =
W + C

m
� �+ 1

�� 1
Wavg � �+ 1

�� 1
L�avg:
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Combining this with Lemma 4.4.1 and using Lemma 4.3.16 we conclude that

Lmax

L�max

� max

�
�;

2(� + 1)

�� 1

�
:

The ratio is minimized when � = 2(�+ 1)=(� � 1), that is when � = (3 +
p
17)=2. Thus

we obtain Lmax=L
�
max � (3 +

p
17)=2. 2

The performance ratio of LocalCuts is tight. Consider a star in which the center node

with weight � is connected by edges of weight 1 to n � 1 leaves, each of weight � = 3:56.

Suppose the star is scheduled on m = n processors. LocalCuts will collapse all leaves and

produce a single fragment of weight (n� 1)�+ �. The optimal schedule consists of cutting

all edges to produce n� 1 fragments of weight 1 +� and one fragment of weight n� 1 + �.

When n > 5, the performance ratio is ((n� 1)� + �)=(n � 1 + �) which approaches � as �

goes to zero.

4.5 The BoundedCuts Algorithm

The LocalCuts algorithm determines whether to collapse a leaf into its mother based

on the ratio of the leaf weight to the weight of the edge to its mother. The decision is

independent of the current weight of the mother node. From the analysis of LocalCuts,

we see that the weight of the largest fragment is bounded by �Rs, where s is the highest level

node in the fragment (Lemma 4.4.1). If Rs is small compared toM
�, we may cut expensive

edges needlessly. Intuitively, using a uniform bound that is larger than M� should help in

reducing communication cost. The analysis of LocalCuts showed the trade-o� between

total communication (C � 2
��1W ) and the bound on fragment size (M < �R). Reduced

communication should allow us to a�ord a lower value of �, thus reducing the largest

fragment size and the performance ratio.

We now discuss a modi�ed algorithm called BoundedCuts that uses a uniform bound

B at each mother node. It also cuts o� light edges in a manner similar to LocalCuts.

Our analysis of communication costs uses lower bounds on C�, the communication incurred

in some �xed optimal schedule. The algorithm below is stated in terms of three parameters

�; � and B that are assumed to satisfy � � � > 1, and M� � B � L�max. Our analysis

uses these conditions and we shall later show how the values of these parameters may be

obtained.
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Algorithm 2 The BoundedCuts Algorithm

Input: Monotone tree T , parameters �; �, and B where � � � > 1 and M� � B � L�max.

Output: Partition of T into connected fragments F1; : : : ; Fk.

1. while there exists a mother node s

2. partition children of s into sets N1; N2 such that child j 2 N1 if and only if pj=csj � �;

3. cut esj for j 2 N1; (� rule)

4. if Rs +
P

j2N2
(pj � csj) � �B then

5. collapse esj for all j 2 N2

6. else cut esj for all j 2 N2; (� rule)

7. end while

8. return resulting fragments F1; : : : ; Fk.

Lemma 4.5.1 Any fragment produced by BoundedCuts has weight at most �B. As a

consequence, M � �B � �L�max.

Proof. Since the weight of a fragment increases only when some edge is collapsed, the

explicit check in line 4 ensures the lemma. 2

Let C denote the set of edges cut by BoundedCuts. We cut edges using two rules,

the � rule in Step 3 and the � rule in Step 6. Let C� and C� denote the edges cut using

the respective rules. C� and C� are disjoint and C� [ C� = C. Let C� and C� denote the

communication cost incurred due to edges in C� and C� respectively. We bound C� and

C� in Lemmas 4.5.2 and 4.5.4.

We need a few de�nitions. Let Ti denote the subtree rooted at node i and let Wi denote

the sum of the node weights of Ti. Let C�i denote the set of edges cut in Ti using the � rule

(the set is empty if the rule is not applied in Ti) and let C�
i be twice the sum of the weights

of the edges in C�i . Similar de�nitions apply for the � rule. Let C�i denote the set of edges

cut in some optimal schedule in Ti and let C�
i denote twice the sum of the weights of the

edges in C�i .

Lemma 4.5.2 C� � � � 1

�� 1
C�.

Proof. Let s be the �rst node where the � rule is applied. This implies that the � rule

is not applied at any descendent of s.

Claim 4.5.3 C�
s � ��1

��1C
�
s .
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We �rst prove the above claim and then show why the lemma follows from it. Let X be twice

the sum of the weights of edges in C�s �C�s . We prove a stronger claim, that C�
s � ��1

��1X. In

order to prove this stronger claim, we assume that the optimal is allowed to cut the edges

in C�s free of cost (this is for purposes of the proof only). In other words we can assume

that no edges were cut in Ts using the � rule. This also implies that the only edges cut in

Ts are by the � rule at s.

Let the set C�s consist of q edges es1z1 ; : : : ; esqzq . These edges partition Ts into (q + 1)

fragments. Let Fs be the fragment that contains s and without loss of generality assume

that s1; : : : ; s` (some of these may be the same as s) belong to Fs. Let F1; : : : ; F` be the

fragments that contain nodes z1; : : : ; z` respectively. From the de�nitions we have

C�
s = 2

X
1�j�q

csjzj � 2
X

1�j�`

csjzj :

Since no fragment in the optimal is larger than M�, the total node weight in fragment Fs is

at most M� � csk �
P

1�j�` csjzj where esk is the edge from s to its parent. Thus, we have

M� � csk �
X

1�j�`

csjzj +
X

1�j�`

Wj �Ws:

The � rule was applied at s. Therefore it follows that Ws + csk > �B. Since B � M�, we

have Ws + csk > �M� which reduces the above equation to the following.

X
1�j�`

(Wj � csjzj ) > (�� 1)M�

Since no edge in Ts was cut by the � rule, Wj < �csjzj for 1 � j � `. Therefore

X
1�j�`

(� � 1)csjzj > (�� 1)M�

) M� <
� � 1

�� 1

X
1�j�`

csjzj �
� � 1

�� 1
C�
s=2:

Since C�
s < 2Rs � 2M�, we have proved our claim:

C�
s �

� � 1

�� 1
C�
s :

We can inductively apply the claim to the rest of the tree to obtain the lemma. There is
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a small subtlety in applying the induction. BoundedCuts cuts all the edges incident on

s when it applies the � rule. The optimal fragmentation might collapse some edges into s.

Therefore the weight of s in T1, the tree obtained after BoundedCuts processes nodes in

the subtree Ts, is no more than in T2, the tree obtained after the optimal fragmentation

processes Ts. However this can only help the analysis in favor of BoundedCuts in the

later stages of the induction. 2

Using techniques similar to those in the proof of Lemma 4.4.2, we show the following

bound on C�.

Lemma 4.5.4 C� � 2

� � 1
W � �� 1

� � 1
C�.

Proof. We use a credit based argument similar to that of Lemma 4.4.2. For each edge

in C� we associate a credit of (� � 1) times its weight and for each C� edge we maintain a

credit of (�� 1) times its weight. The proof for C� edges is similar to that in Lemma 4.4.2.

For C� edges, we cannot use a similar argument since the weight of the leaf being cut o�,

is not necessarily � times the weight of the edge to its parent. But consider all the edges

cut o� at a mother node s. From the algorithm we have Rs+
P

j2N2
(pj � csj) > �B. From

this we see that even though each leaf is not heavy enough, the combined weight of all the

leaves being cut o� at a mother node is su�cient for a credit of (�� 1) times the weight of

the edges cut. Since we start with an initial credit of W , the result follows. 2

Combining Lemmas 4.5.2 and 4.5.4, we obtain the following.

Lemma 4.5.5 C = C� +C� � 2

� � 1
W +

� � �

�� 1
C�.

We need the following technical lemma before we prove the main theorem.

Lemma 4.5.6 For � � � > 1, the function

`(�; �) = max

�
�;

2(� + 1)

� � 1
;
2(� � �)

�� 1

�

is minimized when

� =
2(� + 1)

� � 1
=

2(� � �)

�� 1

The minimum value is 2:87 when � � 2:87 and � � 5:57.

Proof. We observe that f(�; �) = � is strictly increasing in �, h(�; �) = 2(� � �)=(��
1) is strictly decreasing in �, g(�; �) = 2(� + 1)=(� � 1) is strictly decreasing in �, and h
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is strictly increasing in �. From this it is easy to verify that at the optimum point, both f

and g must be equal to the optimum value. If either them is not the max-value of the max,

then appropriately change �=� to make this happen, and note that this can only reduce the

value of h. From this it follows that all three terms are equal at the optimum. Eliminating

� from the above two equations gives us

�3 � �2 � 4� � 4 = 0

which on solving yields the claimed values for �; � and the minimum. 2

Theorem 4.5.7 Using LPT to schedule the fragments produced by BoundedCuts with

� = 2:87, and � = 5:57 gives a performance ratio of 2:87.

Proof. Using Lemma 4.5.5, we have

Lavg =
W + C

m
�

�
W +

2

� � 1
W +

� � �

� � 1
C�

�
=m

� max

�
� + 1

� � 1
;
� � �

�� 1

�
� (W + C�)=m

� max

�
� + 1

� � 1
;
� � �

�� 1

�
� L�avg:

The above equation upper bounds Lavg and Lemma 4.5.1 upper bounds M (M � �L�max).

Plugging these bounds in Lemma 4.3.16 we obtain

Lmax

L�max

� max

�
�; 2

�
max

�
� + 1

� � 1
;
� � �

�� 1

���

� max

�
�;

2(� + 1)

� � 1
;
2(� � �)

�� 1

�
:

From Lemma 4.5.6, the right hand side of the above inequality is minimized at the values

stated in the theorem, and this shows that Lmax=L
�
max � 2:87. 2

The performance ratio of BoundedCuts is tight. The example is similar to that for

LocalCuts i.e. a star in which the center node with weight � is connected by edges of

weight 1 to n� 1 leaves each of weight � = 2:87. Suppose the star is scheduled on m = n

processors. The optimal schedule consists of cutting all edges to produce n�1 fragments of

weight 1 + � and one fragment of weight n� 1 + �. Taking n > 4, M� = L�max = n� 1 + �.

BoundedCuts will collapse all leaves and produce a single fragment of weight (n�1)�+ �
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(since B = L�max, this does not exceed �B). The performance performance ratio is therefore

((n� 1)� + �)=(n � 1 + �) which approaches � as � goes to zero.

The results in this section rely on the fact that the bound B used in BoundedCuts

satis�es M� � B � L�max. Since we do not know the optimal partition, we do not know M�

or L�max. However, we can ensure that we try a value of B that is as close as we want to

L�max. The following theorem makes the idea more precise.

Theorem 4.5.8 For any � > 0, we can ensure that we run BoundedCuts with a bound

B satisfying L�max � B � (1 + �)L�max. This yields a performance ratio of (1 + �)2:87 with

a running time of O(1�n logn).

Proof. From Propositions 4.3.14 and 4.3.15, maxfW=m;Rg is a lower bound on L�max.

Analysis of LocalCuts establishes that L�max � 3:56maxfW=m;Rg. Thus, A � L�max �
3:56A where A = maxfW=m;Rg. The quantity A can easily be computed in linear time.

For each integer i such that 1 � i � d(ln 3:56)=�e we run BoundedCuts with B = (1 +

�)i followed by LPT. Among all the schedules found we choose the best schedule. This

guarantees that in some iteration L�max � B � (1 + �)L�max. From the previous analysis, if

we use such a bound, we get a performance ratio of (1+�)2:87. Each run of BoundedCuts

followed by LPT takes O(n logn) time. O(1=�) runs take O(1
�
n logn) time. 2

4.6 An Approximation Scheme for POT Scheduling

In this section we describe a polynomial time approximation scheme (PTAS) for the POT

scheduling problem. The basic idea is to obtain a fragmentation that closely approximates

the fragmentation of the optimal schedule. We can then use the PTAS for multi-processor

scheduling of Hochbaum and Shmoys [55] on the approximate fragmentation.

For every �xed � > 0 we will describe an algorithm A� that achieves a (1 + �) approx-

imation. For the rest of the section we will assume that we know L�max. As discussed in

the proof of Theorem 4.5.8 we can guess L�max to within an � precision. The algorithm A�

breaks the interval (�; 1] into s = d(log 1=�)=�e intervals (� = l1; l2]; (l2; l3]; : : : ; (ls; ls+1 = 1]

where li = (1 + �) � li�1. For a fragmentation F , let nFi denote the number of fragments

with weight in the interval (li � L�max; li+1 � L�max]. Algorithm A� \guesses" nopti for each

1 � i � s. In e�ect it enumerates all tuples (k1; : : : ; ks) where 1 � ki � n and
P

i ki � n.



CHAPTER 4. SCHEDULING PROBLEMS IN QUERY OPTIMIZATION 85

There are at most ns such tuples to enumerate over and for each �xed � this is polynomial

in n. The following lemma establishes the requirements of an approximate fragmentation.

De�nition 4.6.1 Two fragmentations F and G are said to be �-equivalent if nFi = nGi for

1 � i � s.

Lemma 4.6.2 Let F be a fragmentation that is �-equivalent to some optimal fragmentation

and satis�es C � C�. Then the maximum load of an optimal schedule for the fragments of

F is at most (1 + �)L�max.

Proof. Let S be an optimal schedule for the tree T , and let G be its natural fragmen-

tation. We assume that F is �-equivalent to G. We create a schedule S0 for F as follows.

Replace each fragment in S, of weight greater than �, with a fragment from F from the

same interval. Since F is �-equivalent to G this step succeeds. We schedule the rest of the

fragments of F on top of this schedule in a greedy fashion using standard list scheduling [42].

We claim that the maximum load of S0 is at most (1+ �)L�max. Our �rst observation is that

after scheduling the large fragments the maximum load of S0 is at most (1 + �)L�max. This

is because we replace each fragment of weight x by a fragment of weight at most (1 + �)x.

Suppose scheduling the small fragments violates the required condition. Consider the �rst

fragment, the scheduling of which, increases the maximum load to more than (1 + �)L�max.

Since this fragment is of weight at most �L�max, the processor on which it is scheduled must

have already had a load of more than L�max. Since list scheduling schedules the current job

on the least loaded processor, the above fact implies that every processor has a load of more

than L�max. Therefore Lavg > L�avg which contradicts the assumption of the lemma. Note

that Lavg = (W + C)=m � (W + C�)=m = L�avg. 2

We can use the PTAS for multi-processor scheduling [55] to schedule the fragments

produces by F . We can obtain a (1 + �) approximation for any �xed � in polynomial time

and by choosing � to be �, we obtain an overall (1 + �)2 approximation. Now we describe a

pseudo-polynomial time algorithm that, given an �, a guess for L�max, and a guess (n1; : : : ; ns)

for an optimal fragmentation, �nds a minimum communication cost fragmentation that is

�-equivalent, or decides that there is no such fragmentation. Using standard techniques we

will show how we can modify our original instance to have polynomially bounded weights.

We assume without loss of generality that the tree is binary and that all weights in the

input are integers. As before let W =
P

i pi.
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We �rst root the tree at some arbitrary node. The algorithm examines the nodes of the

tree bottom up and computes a table at each node. The table at node v denoted by Xv is

(s + 1) dimensional and has a total of (ns �W ) entries (note that W is assumed to be an

integer). The entry Xv(k1; : : : ; ks; B) stores the minimum communication cost necessary to

fragment Tv (the subtree root rooted at v) such that

� the weight of the fragment containing v is at most B, and

� the number of fragments in each interval (li � L�max; li+1 � L�max] is at most ki.

We store a value 1 if such a fragmentation is not feasible. Let u and v be the children

of a node r. Given tables Xv and Xu we claim that computing the table Xr is simple.

There are 4 possibilities at r with regard to cutting or collapsing the edges eru and erv.

For each of these possibilities we can compute the table Xr by examining all pairs of

entries in Xu and Xv. We describe the computation when eru is collapsed and erv is

cut. We initialize all entries of Xr to be 1. Let C1 = Xu(g1; : : : ; gs; Bu) and C2 =

Xv(h1; : : : ; hs; Bv). Let (li; li+1]L
�
max be the interval in which (Bv + crv) lies. Let t be the

tuple (g1 + h1; : : : ; gi + hi + 1; : : : ; gs + hs; Bu + pr + crv). We set

Xr(t) = min(Xr(t); C1 + C2 + 2crv):

The justi�cation for the above should be clear from our earlier de�nitions. The entries for

the other possibilities are similarly computed. Given the table at the root we look up each

entry and compute the fragmentation implied by the entry. This involves adding a 1 to the

number of fragments in the interval that contains the size of the root's fragment. Thus we

obtain the following lemma.

Lemma 4.6.3 A minimum communication cost �-equivalent fragmentation can be com-

puted in O(n2s+1W 2) time.

Proof. From the above discussion it follows that the table at each node can be computed

in time proportional to the product of the table sizes of its children which is O(n2sW 2).

Thus the table at the root can be computed in O(n2s+1W 2) time. 2

Corollary 4.6.4 A minimum communication cost �-equivalent fragmentation for each pos-

sible valid tuple (k1; : : : ; ks) can be computed in O(n2s+1W 2) time.
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Proof. The table at the root computes the cost for each tuple so we can obtain all the

values in the same time. 2

We now describe the global steps of the algorithm A� and prove its correctness.

1. Round each pi to p
0
i = bpi � 2n

�Wavg
c. Round each cij similarly to c0ij = bcij � 2n

�Wavg
c. Let

T 0 be the modi�ed tree.

2. Guess L�
0

max.

3. Guess (n1; : : : ; ns), the fragmentation used by the optimal for T 0. Compute the min-

imum communication cost �-equivalent fragmentation.

4. Using the algorithm in [55] compute a (1+ �) approximate schedule for the fragments

produced.

5. Use the schedule computed for T 0 for T .

Lemma 4.6.5 Algorithm A� can be implemented to run in nO(log(1=�)=�) time.

Proof. We observe that W 0 =
P

i p
0
i is O(nm=�). Thus the running time for �nding

the minimum communication cost fragmentation for all possible fragmentations, by Lemma

4.6.3, is O(n2s+1(nm=�)2)) which is nO(log(1=�)=�). Since L�
0

max � W 0, to guess L�
0

max we

enumerate over each of the W 0 = O(nm=�) values. The running time of the multi-processor

scheduling PTAS to obtain a (1 + �) approximation is also nO(log(1=�)=�) and we use it

nO(log(1=�)=�) times. Thus the overall running time for A� is n
O(log(1=�)=�). 2

Lemma 4.6.6 Algorithm A� yields a (1 + 4�) approximation ratio.

Proof. Let T 0 be the tree obtained after rounding the weights as in Step 2. Let L0max be

the value of a schedule S for T 0. Then for the same schedule (that is the same assignment

of nodes to processors) we claim that Lmax, the value of the schedule for T , is at most
�Wavg

2n
L0max+ �L�max. To prove this, let Sk be the set of nodes assigned to processor k. Then

L0k =
X
i2Sk

p0i +
X

(i;j)2(Sk;V�Sk)

c0ij

But then

Lk =
X
i2Sk

pi +
X

(i;j)2(Sk;V�Sk)

cij
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�
X
i2Sk

(p0i + 1)
�Wavg

2n
+

X
(i;j)2(Sk;V�Sk)

(c0ij + 1)
�Wavg

2n
(4.1)

� �Wavg

2n
L0k +

�Wavg

2n
(
X
i2Sk

1 +
X

(i;j)2(Sk;V�Sk)

1)

� �Wavg

2n
L0k +

�Wavg

2n
2n (4.2)

� �Wavg

2n
L0k + �Wavg

� �Wavg

2n
L0k + �L�max

We use the fact that bxc � x � 1 in 4.1, and in 4.2 we use the fact the total number

of nodes and edges in a tree is bounded by 2n. The last inequality uses the fact that

L�max � Wavg. For any schedule of T with value Lmax, the equivalent schedule for T 0

satis�es L0max � 2n
�Wavg

Lmax. This follows from our rounding procedure. In particular this

implies

L�
0

max �
2n

�Wavg

L�max (4.3)

Now we put things together to obtain our result. Let L0max be value of the schedule obtained

for T 0. From Lemma 4.6.2 the optimal schedule value for the fragmentation in Step 3 is

at most (1 + �)L�
0

max. We obtain a (1 + �) approximation in Step 4. Therefore L0max �
(1 + �)2L�

0

max � (1 + 3�)L�
0

max. From our observations above, the schedule for T obtained

using the schedule for T 0 satis�es

Lmax � �Wavg

2n
L0max + �L�max

� �Wavg

2n
(1 + 3�)L�

0

max + �L�max

� (1 + 3�)L�max + �L�max

� (1 + 4�)L�max:

2

Theorem 4.6.7 There is a polynomial time approximation scheme for POT scheduling.
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4.7 Concluding Remarks

Parallel query optimization poses a variety of novel scheduling problems. We have developed

a clean model that takes communication costs into account. In addition we have obtained

approximation algorithms for a class of problems that have pipelined parallelism but no

partitioned parallelism. The practical importance of the problems presented in this paper

rests on the premise that communication is a signi�cant component of the cost of processing

a query in parallel. The reader is referred to Pirahesh et al. [89], Gray [45] and Hasan et

al. [50] for such evidence.

It is possible to extend the ideas in this chapter to obtain a constant approximation

ratio even if the tree has blocking edges, provided there are no communication costs on

the blocking edges. Designing algorithms for the general case with communication costs on

blocking edges presents the following di�culty. If an operator i precedes an operator j, i will

need to communicate to j when j is scheduled even though the computation of i is over. For

example i could compute a temporary table that j needs later. Existing techniques are not

sophisticated enough to obtain provable good algorithms for such problems. Partitioned

parallelism is widely used in parallel database systems and o�ers substantial speedups.

Further it is necessary since the data is usually partitioned over several disks. Due to its

importance it is worth while for future work to develop and analyze algorithms that allow

this form of parallelism. See [51] for some preliminary observations on the complexity of

the problem.

The parallelism-communication trade-o� is not the only concern in parallel query op-

timization. We have assumed that a parallel machine consists of a set of processors that

communicate over an inter-connect. Enhancing the machine model to incorporate disks and

memories presents challenging problems. Hong [57] develops a method for balancing CPU

and disk while ignoring communication costs. Garofalakis and Ionnadis [36, 37] use multi-

dimensional work vectors to take into account the variety of resources required by database

tasks. We address a basic scheduling problem that arises in their approach in Chapter 5.
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Chapter 5

Approximability of Vector Packing

Problems

5.1 Introduction

Multi-processor scheduling, bin packing, and the knapsack problem are three very well

studied problems in combinatorial optimization. Their study has had a large impact on the

�eld of approximation algorithms. In addition to their theoretical importance they have

several applications such as load balancing, cutting stock, resource allocation to name a few.

All of these problems involve packing items of di�erent sizes into capacitated bins. In this

chapter1 we study multi-dimensional generalizations of these problems where the items to

be packed are d-dimensional vectors and bins are d-dimensional as well. We obtain several

approximability and inapproximability results that improve on earlier results. Though our

primary motivation is multi-dimensional resource scheduling, an underlying problem that

arises is the problem of maximizing the numbers of vectors that can be packed into a bin

of �xed size. This is a special case of the the multi-dimensional knapsack problem that

is equivalent to packing integer programs (PIPs) [93, 105]. PIPs are an important class

of integer programs that capture several NP-Hard combinatorial optimization problems

in graphs and hypergraphs including maximum independent set, hypergraph matchings,

disjoint paths and so on.

A starting motivation for studying these problems came from recent interest [36, 37, 38]

1This chapter is joint work with Sanjeev Khanna [13].
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in multi-dimensional resource scheduling problems in parallel query optimization. A favored

architecture for parallel databases is the so called shared-nothing environment [24] where

the parallel system consists of a set of independent processing units each of which has

a set of time-shareable resources such as CPU, one or more disks, network controllers

and others. No global resources are assumed and tasks communicate via messages on the

interconnecting network. A task executing on one of these units has requirements from each

of these resources and is best described as a multi-dimensional load vector. The resources

on a machine are assumed to be preemptive and are time-shared by the set of tasks assigned

to the machine. In most scheduling models, both in theory and practice, it is assumed that

the load of a task is described by a single aggregate work measure. This simpli�cation is

done both to reduce the complexity of the scheduling problem and to overcome the di�culty

of specifying the load vector accurately. However for large task systems that are typically

encountered in database applications, ignoring the multi-dimensionality could lead to bad

performance. This is especially so because tasks in these systems are typically large and

could have skewed resource requirements. The work in [35, 36, 37, 38] demonstrates the

practical e�ectiveness of the multi-dimensional approach for parallel query processing and

scheduling continuous media databases.

A basic resource allocation problem that is considered in the above papers is the problem

of scheduling d-dimensional vectors (tasks) on d-dimensional bins (machines) to minimize

the maximum load on any dimension (the load on the most loaded resource). The load

vector of a task describes its normalized resource requirements for each of the available

resources. For a given assignment of tasks to machines, the load on a particular resource

of a machine is de�ned to be the sum of the requirements for that resource, of all the tasks

assigned to that machine. The objective function is based on the uniformity assumption that

views tasks as requiring resources at a uniform rate described by the load. This assumption

is applicable for large tasks when the resources are preemptable and was suggested by

the work of Ganguly et al. [31] and Garofalakis et al. [36] where they show its empirical

usefulness. Surprisingly, despite the large body of work on approximation algorithms for

multi-processor scheduling and several variants [42, 73], the authors in [35] had to settle for

a naive (d+1) approximation for the above problem. For this problem we obtain a PTAS for

every �xed d and a simpler O(log d) approximation that performs better than (d+1) for all

d � 2. The database application requires a solution to a more general problem where there

are other constraints such as precedence constraints between the tasks [36]. Heuristics for
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the general problem are all based on using the basic problem that we solve as a subroutine,

and our work addresses it as a �rst step.

Earlier work on resource constrained multi-processor scheduling [32] is based on a di�er-

ent resource usage model. In that model, each job j requires s resources and takes pj units

of processing time on a machine. It is assumed that there is a �xed amount of each resource,

and that schedules are constrained in the following way. At all times, for any particular

resource, the sum of the requirements for that particular resource of the jobs executing at

that time is at most the resource bound. The goal is to schedule the jobs on a set of parallel

machines to minimize makespan subject to the resource constraints mentioned above. In

this model resources are global and are common to all machines. This model is appropriate

for non-preemptable resources in a shared-everything environment, and is not applicable

to shared-nothing systems with preemptable resources. Non-preemptable resources such as

memory requirements of a job can be modeled as above and some theoretical and empirical

work as applicable to databases on combining both types of resources is presented in [37].

The close relationship between multi-processor scheduling and bin packing extends to

the multi-dimensional case. Thus we also consider the generalized bin packing problem or

vector bin packing problem [33, 67] in which each item is a vector in [0; 1]d and the objective

is to pack the items into the minimum number of bins of capacity 1d. In what follows, we

formally de�ne the problems that we study and provide a detailed description of our results.

5.1.1 Problem De�nitions

We start by de�ning the vector scheduling problem. For a vector x, the quantity kxk1
denotes the standard `1 norm.

De�nition 5.1.1 (Vector Scheduling (VS)) We are given a set J of n d-dimensional

vectors p1; : : : ; pn from [0;1)d and a number m. A valid solution is a partition of J into

m sets A1; : : : ; Am. The objective is to minimize max1�i�m k �Aik1 where �Ai =
P

j2Ai
pj is

the sum of the vectors in Ai.

De�nition 5.1.2 (Vector Bin Packing (VBP)) Given a set of n vectors p1; : : : ; pn in

[0; 1]d, �nd a partition of the set into sets A1; : : : ; Am such that k �Aik1 � 1 for 1 � j � m.

The objective is to minimize m, the size of the partition.

The following de�nition of PIPs is from [105]. In the literature this problem is also

referred to as the d-dimensional 0-1 knapsack problem [29].
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De�nition 5.1.3 (PIP) Given A 2 [0; 1]d�n, b 2 [1;1)d, and c 2 [0; 1]n with maxj cj = 1,

a packing integer program (PIP) seeks to maximize cT �x subject to x 2 f0; 1gn and Ax � b.

Furthermore if A 2 f0; 1gd�n, b is assumed to be integral. Finally B is de�ned to be mini bi.

The restrictions on A,b, and c in the above de�nition are without loss of generality: an

arbitrary packing problem can be reduced to the above form (see [105]). We are interested

in PIPs where bi = B for 1 � i � d. When A 2 f0; 1gd�n this problem is known as the

simple B-matching in hypergraphs [78]: given a hypergraph with non-negative edge weights,

�nd a maximum weight collection of edges such that no vertex occurs in more than B of

them. When B = 1 this is the usual hypergraph matching problem. We note that the

maximum independent set problem is a special case of the hypergraph matching problem

with B = 1.

5.1.2 Related Work and Our Results

All the problems we consider are NP-Complete for d = 1 (multi-processor scheduling, bin

packing, and the knapsack problem). The dimension of the vectors, d, plays an important

role in determining the complexity. We concentrate on two cases, when d is �xed constant

and when d is part of the input and can be arbitrary. Below is an outline of the various

positive and negative results that we obtain for these problems.

Vector Scheduling: For the vector scheduling problem the best approximation algorithm

[37] prior to our work had a ratio of (d+1). When d is a �xed constant (a case of practical

interest) we obtain a polynomial time approximation scheme (PTAS), thus generalizing the

result of Hochbaum and Shmoys [55] for multi-processor scheduling. In addition we obtain a

simpler O(log d) approximation algorithm that is better than (d+1) for all d � 2. When d is

large we give an O(log2 d) approximation that uses as a subroutine, known approximation

algorithms for PIPs. We also give a very simple O(log dm)-approximation. Finally, we

show that it is hard to approximate the VS problem to within any constant factor when d

is arbitrary.

Vector Bin Packing: The previous best known approximation algorithms for this prob-

lem gave a ratio of (d + �) for any �xed � > 0 [23] and (d + 7=10) [33]; the latter result

holds even in an on-line setting. All the ratios mentioned are asymptotic, that is there

is an additive term of d. Karp et al. [67] do a probabilistic analysis and show bounds on
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the average wastage in the bins. We design an approximation algorithm that for any �xed

� > 0, achieves a (1+ � �d+O(ln ��1))-approximation in polynomial time, thus signi�cantly

improving upon the previous guarantees. One useful corollary of this result is that for a

�xed d, we can approximate the problem to within a ratio of O(log d). Moreover, we show

that even for d = 2 the problem is APX-Hard; an interesting departure from classical bin

packing problem (d = 1) which exhibits an asymptotic FPTAS. Our hardness reduction

also gives us an APX-Hardness result for the so-called vector covering problem (also known

as the \dual vector packing" problem). Only NP-Hardness was known for these problems

prior to our work.

Packing Integer Programs: For �xed d there is a PTAS for PIPs [29]. For large d

randomized rounding technique of Raghavan and Thompson [93] yields integral solutions of

value t1 = 
(OPT=d1=B) and t2 = 
(OPT=d1=(B+1)) respectively, if A 2 [0; 1]d�n and A 2
f0; 1gd�n. Srinivasan [105] improved these results to obtains solutions of value 
(t

B=(B�1)
1 )

and 
(t
(B+1)=B
2 ) respectively (see discussion at the end of Section 5.4.1 concerning when

these values are better). Thus the parameter B plays an important role in the approximation

ratio achieved, with better ratios obtained as B gets larger (recall that entries in A are upper

bounded by 1). It is natural to question if the dependence of the approximation ratio on

B could be any better. We show that PIPs are hard to approximate to within a factor

of 
(d
1

B+1
��) for every �xed B, thus establishing that randomized rounding essentially

gives the best possible approximation guarantees. Hardness was known only for the case

B = 1 earlier. An interesting aspect of our reduction is that the hardness result holds

even when the optimal is restricted to choosing a solution that satis�es Ax � 1d while the

approximation algorithm is only required to satisfy the relaxed constraint of Ax � Bd. We

use Hast�ad's recent result [52] on approximating the independent set.

5.1.3 Organization

The rest of this chapter is organized as follows. Sections 5.2 and 5.3 present our approxi-

mation algorithms for the vector scheduling problem and the vector bin packing problem

respectively. In Section 5.4 we present our hardness of approximation results for packing

integer programs, vector scheduling, and vector bin packing and covering.
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5.2 Approximation Algorithms for Vector Scheduling

In this section we describe our approximation algorithms for the vector scheduling problem.

For any set of jobs A, we de�ne �A to be the vector sum
P

j2A pj. The quantity
�Ai denotes

component i of the vector �A. The sum of the components of a vector plays a role in our

algorithms. We de�ne the volume of a vector to be sum of its coordinates, and the volume

of a set of vectors A, denoted by V(A), to be the sum of the volumes of the vectors in A.

5.2.1 Preliminaries

We �rst describe some simple lower bounds on the schedule length. For a given instance let

opt denote the optimal schedule length. We observe that the in�nity norm of each of the

job vectors is clearly a lower bound.

opt � max
j2J

kpjk1 (5.1)

The second lower bound is obtained by using the average volume per dimension.

opt � V(J)
m � d (5.2)

We can strengthen the above bound by splitting the sum dimension wise.

opt � d
max
i=1

�J i

m
: (5.3)

A very naive and simple algorithm for our problem is to ignore the multi-dimensional

aspect of the jobs and treat them as a one dimensional vectors of size equal to the sum of

their components. The dimensionality of the bins is also ignored. Then one can apply the

standard list scheduling algorithm of Graham [43] for multi-processor scheduling to obtain

the following theorem that uses the simple lower bounds developed above.

Theorem 5.2.1 Applying list scheduling on the volumes of the vectors results in a schedule

of height Lmax where

Lmax � V(J)
m

+max
j2J

kpjk1

This yields a (d+ 1) approximation.
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Proof. The upper bound follows from standard analysis of list scheduling. The approx-

imation ratio follows from the lower bounds in Equations 5.1 and 5.2. 2

It is easy to construct examples that show that the above algorithm's analysis is tight.

We describe two heuristics below that also have a worst case ratio of (d + 1) but are more

intelligent than naive list scheduling based on volumes. They can be augmented with

di�erent tie breaking rules.

� Order jobs in some way. Schedule the next job in the order on the machine that

results in the least increase in the schedule height.

� Among the unscheduled jobs schedule the job that results in the least increase in

schedule height.

The above algorithms should perform reasonably well in practice especially for small d since

they take the dimensionality of the jobs into account. This is in contrast to list scheduling

based only on volumes.

Our goal is to obtain algorithms with improved theoretical guarantees. In the rest of the

chapter we assume without loss of generality that the optimal schedule value is 1. We can

guess the optimal value to an arbitrary precision via binary search since we have an upper

and lower bound on the optimal schedule length that are within a multiplicative factor of

d (using Theorem 5.2.1).

5.2.2 A PTAS for �xed d

Hochbaum and Shmoys [55] gave a PTAS for the multi-processor scheduling problem (VS

problem with d = 1) using dual approximation schemes. We now show that a non-trivial

generalization of their ideas yields a PTAS for arbitrary but �xed d.

The basic idea used in [55] is a primal-dual approach whereby the scheduling problem

is viewed as a bin packing problem. If optimal solution can pack all jobs with load not

exceeding some height h, assume h = 1 from here on, then the scheduling problem is to

pack all the jobs into m bins (machines) of height 1. The authors then give an algorithm

to solve this bin packing problem with bin height relaxed to (1 + �) for some �xed � > 0.

In order to do so, they classify jobs into large or small depending on whether their size is

greater than � or not. Only a �xed number of large jobs can be packed into any bin. The

sizes of the large jobs are discretized into O(log 1=�) classes and dynamic programming is
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used to pack all the large jobs into the m bins such that no bin exceeds a height of (1 + �).

The small jobs are then greedily packed on top of the large jobs.

We take a similar view of the problem, our dual problem is vector bin packing. The

primary di�culty in generalizing the above ideas to the case of vectors of d � 2 dimensions

is the lack of a total order on the \size" of the jobs. It is still possible to classify vectors

into large or small depending on their `1 norm but the scheme of [55] does not apply. We

need to take into account the interaction between the packing of large and small vectors.

In addition the packing of small vectors is non-trivial. In fact we use a linear programming

relaxation and a careful rounding to pack the small jobs. We describe our ideas in detail

below. Following the above discussion we will think of machines as d-dimensional bins and

the schedule length as bin capacity (height). Given an � > 0 and a guess for the optimal

value (that we assume is normalized to 1), we describe an �-relaxed decision procedure A�

that either returns a schedule of height (1 + 5�) or proves that the guess is incorrect. We

can use A� to do a binary search for the optimal value. Let us de�ne � to be �=d.

Preprocessing Step: Our �rst idea is to reduce to zero all coordinates of the vectors

that are too small relative to the largest coordinate. This allows us to bound the ratio of

the largest coordinate to the smallest non-zero coordinate.

Lemma 5.2.2 Let I be an instance of the VS problem. Let I 0 be a modi�ed instance where

we replace each pj in I with a vector qj as follows. For each 1 � i � d, qij = pij if

pij � �kpjk1 and qij = 0 otherwise. Then replacing the vector qj by the vector pj in any

valid solution to I 0 results in a valid solution to I of height at most a factor of (1 + �) that

of I 0.

Proof. Let S be the index set of a subset of vectors of I 0. For a dimension i, let

Ai =
P

j2S q
i
j. Without loss of generality assume that A1 � A2 : : : � Ad. Then

P
j2S p

i
j � P

j2S q
i
j +

P
j2S � � kpjk1 (from de�nition of qj)

= Ai +
P

j2S � � kqjk1 (kqjk1 = kpjk1)
� Ai +

P
j2S �

P
1�k�d q

k
j

= Ai + �
P

1�k�dA
k (by change of order of summation)

� A1 + � � d � A1 (Ak � A1 for 1 � k � d)

� (1 + �)A1 (� = �=d):
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If S is the subset of vectors in some bin, from the above equations it follows that replacing

the qj by pj increases the height by only a multiplicative factor of (1+ �). Since this is true

for all bins we obtain the desired result. 2

Assume that we have transformed our instance as described in the above lemma.

Large versus Small Vectors: The second step in the algorithm is to partition the vectors

into two sets L and S corresponding to large and small. L consists of all vectors whose `1

norm is greater than � and S is the rest of the vectors. The algorithm A� will have two

stages; the �rst stage packs all the large jobs, and the second stage packs the small jobs.

Unlike the case of d = 1, the interaction between the two stages has to be taken in to account

for d � 2. We show that the interaction can be captured in a compact way as follows. Let

(a1; a2; : : : ; ad) be a d-tuple of integers such that 0 � ai � d1=�e for 1 � i � d. We will call

each such distinct tuple a capacity con�guration. There are at most t = (1 + d1=�e)d such
con�gurations. Assume that the t capacity con�gurations are ordered in some way and let

aki be the value of coordinate i in tuple k. A space con�guration approximately describes

how a bin is �lled. However we have m bins. A t-tuple (m1; : : : ;mt) where 0 � mi � m

and
P

imi = m is called a bin con�guration that describes the number of bins of each

capacity con�guration. The number of possible bin con�gurations is clearly O(mt). Since

there are only a polynomial number of such con�gurations for �xed d and � we can \guess"

the con�guration used by a feasible packing. A packing of vectors in a bin is said to respect

a bin con�guration (a1; : : : ; ad) if the the height of the packing is each dimension i is less

than �ai. Given a capacity con�guration we can de�ne the corresponding empty capacity

con�guration as the tuple obtained by subtracting each entry from (d1=�e + 1). For a bin

con�guration M we denote by �M the corresponding bin con�guration as the one obtained

by taking the empty capacity con�gurations for each of the bins in M .

Overview of the Algorithm: Algorithm A� performs the following steps for each bin

con�guration M :

{ decide if vectors in L can be packed respecting M .

{ decide if vectors in S can be packed respecting �M .

If both Steps 2 and 3 succeed for some M we have a packing of height at most (1 + �).

If the decision procedure fails for allM we will prove that our guess for the optimal is false.
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Packing the large vectors: The �rst stage consists of packing the vectors in L. Observe

that the smallest non-zero coordinate of the vectors in L is at least �2. We partition the inter-

val [�2; 1] into q = d2� log ��1e intervals of the form (x0; (1+�)x0]; (x1; (1+�)x1]; : : : ; (xq�1; 1]

where x0 = �2 and xi+1 = (1 + �)xi. We discretize every non-zero coordinate of the vectors

in L by rounding the coordinate down to the left end point of the interval in which it falls.

Let L0 be the resulting set of vectors.

Lemma 5.2.3 Let I 0 be an instance obtained from the original instance I by rounding

vectors in L as described above. Then replacing each vector in L0 by the corresponding

vector in L in any solution for I 0 results in a solution for I of height at most (1 + �) times

that of I 0.

Proof. Each coordinate of a vector in L0 is at least (1 + �)�1 times the coordinate of

the corresponding vector in L. The lemma follows trivially. 2

Vectors in L0 can be classi�ed into one of s = (1 + d2� log ��1e)d distinct classes. Any

packing of the vectors into one bin can be described as a tuple (k1; k2; : : : ; ks) where ki

indicates the number of vectors of the ith class. Note that at most d=� vectors from

L0 can be packed in any bin. Therefore
P
ki � d=�. Thus there are at most (d=�)s

con�gurations. A con�guration is feasible for a capacity con�guration if the vectors described

by the con�guration can be packed without violating the height constraints described by

the capacity con�guration. Let Ck denote the set of all con�gurations of the discretized

jobs in L that are feasible for the kth capacity con�guration. From our discussion earlier

jCkj � (d=�)s.

Lemma 5.2.4 Let M = (m1;m2; : : : ;mt) be a bin con�guration. There exists an algorithm

with running time O((d=�)smns) to decide if there is a packing of the jobs in L0 that respects

M .

Proof. We use a simple dynamic programming based algorithm. Observe that number

of vector classes in L0 is at most s. Thus any subset of vectors from L0 can be speci�ed by

a tuple of size s and there are O(ns) distinct tuples. The algorithm orders bins in some

arbitrary way and with each bin assigns a capacity con�guration from M . For 1 � i � m,

the algorithm computes all possible subsets of vectors from L0 (tuples) that can be packed

in the �rst i bins. For each i this information can be maintained in O(ns) space. Given

the tuples for bin i, the tuples for bin (i + 1) can be computed in O(d=�)s time per tuple
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since that is an upper bound on the number of feasible con�gurations for any capacity

con�guration. Thus for each bin i, in O(d=�)sns) time, we can compute the tuples that can

packed into the �rst i bins given the information for bin (i � 1). The number of bins is m

so we get the required time bound. 2

Packing the small vectors: We now describe the second stage, that of packing the

vectors in S. For the second stage we write an integer programming formulation and

round the resulting LP relaxation to �nd an approximate feasible solution. Without loss of

generality assume that the vectors in S are numbered 1 to jSj. The IP formulation has 0-1

variables xij for 1 � i � jSj and 1 � j � m. Variable xij is 1 if pi is assigned to machine j.

Every vector has to be assigned to some machine. This results in the following equation.

X
j

xij = 1 1 � i � jSj (5.4)

Given a bin con�guration M we can de�ne for each machine j and dimension k a height

bound bkj that an assignment should satisfy such that no bin exceeds a height of 1. Thus

we obtain X
i

pki � xij � bkj 1 � j � m; 1 � k � d: (5.5)

In addition we have the integrality constraints, namely, xij 2 f0; 1g. We obtain a linear

program by replacing these constraints by the following.

xij � 0 (5.6)

Proposition 5.2.5 Any basic feasible solution to the LP de�ned by Equations 5.4, 5.5,

and 5.6 has at most d �m vectors that are assigned fractionally to more than one machine.

Proof. The number of variables in our LP is n�m. The number of non-trivial constraints

(those that are other than xij � 0) is (n + d �m). From standard polyhedral theory [96]

any basic (vertex) solution to our LP has n �m tight constraints. Therefore by a simple

counting argument at most (n+ d �m) variables can be strictly positive. Since each vector

is assigned to at least one machine, the number of vectors that are fractionally assigned to

more than one machine is at most d �m. 2

We can solve the above linear program in polynomial time and obtain a basic feasible

solution. Let S0 be the set of vectors that are not assigned integrally to any machine. By



102 CHAPTER 5. APPROXIMABILITY OF VECTOR PACKING PROBLEMS

the above lemma jS0j � d �m. We assign the vectors in S0 in a round robin fashion to the

machines that ensures that no machine gets more than d vectors each from S0. However

since kpjk1 � � = �=d for every pj 2 S0, the above step does not violate the height by more

than � in any dimension.

Putting it Together: We are now ready to prove our main theorem.

Lemma 5.2.6 If a bin height of 1 is feasible, A� returns a packing with height at most

(1 + 5�).

Proof. Consider the instance modi�ed according to Lemma 5.2.2 and Lemma 5.2.3. A

feasible schedule of height 1 is still feasible for the modi�ed instance. Let M be the bin

con�guration induced by the packing of the large jobs L in a feasible packing. Since we use

discrete sizes, a bin con�guration approximates the packing requirements of L to within an

additive error of �. Further the packing of the small vectors S is feasible for �M . Therefore

for the choice of M we can pack both L and S. We have an additive error of � in packing

S. Thus A� packs the modi�ed instance with a bin height of (1 +2�). By Lemma 5.2.2 and

Lemma 5.2.3, a packing of the modi�ed instance with height (1 + 2�), implies a packing of

the original instance in height (1 + 2�) � (1 + �)2 which is less than (1 + 5�) for su�ciently

small �. 2

Lemma 5.2.7 The running time of A� is (nd=�)
O(s) where s = O((

log(d=�)
�

)d).

Proof. The running time is clearly dominated by the time to pack the large vectors L.

There are at most mt = O(nO(��d)) bin con�gurations and for each of those con�gurations,

using Lemma 5.2.4, feasibility can be checked in (nd=�)O(s) time. The claim follows. 2

Theorem 5.2.8 For every �xed d there is a PTAS for the vector scheduling problem.

Proof. We can use A� do a binary search for the optimal value. The naive list scheduling

algorithm gives an estimate of the optimal to within a factor of (d+1). Thus in O(log(d=�))

calls to A� we obtain a (1 + �) approximation. The running time is polynomial for every

�xed d and � and therefore we have the required PTAS. 2

We have not attempted to obtain the best possible running time for the PTAS for two

reasons. First, we do not believe that an approximation scheme is practically useful directly,

especially for the database application that motivated it. Second, from a theoretical point
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of view our main goal was to understand the approximability of the problem and the best

possible polynomial running time is not necessary for that goal.

5.2.3 The General Case

We now consider the case when d is arbitrary and present two approximation algorithms

for this case. The �rst algorithm is deterministic and has an approximation ratio that is

only a function of d (O(log2 d)) while the second algorithm is randomized and achieves an

approximation ratio that is a function of both d and m (O(log dm)). We once again assume

that the optimal schedule height is 1.

An O(log2 d) Approximation

The basic ideas underlying our approximation algorithm are the following. Recall that the

volume of a vector is de�ned to be the sum of its coordinates and similarly the volume of a

set of vectors A denoted by V(A) is simply sum of the volumes of the vectors in A. Consider

an optimal schedule for a given instance. By simple averaging arguments, some machine k

in that schedule satis�es the condition

V(J(k)) � V(J)=m;

where J(k) is the set of vectors assigned to machine k. We use approximation algorithms

for PIPs to �nd a set of jobs of total volume V(J)=m that can be packed on a machine in

height close to 1. We then remove these jobs and �nd another set of jobs to pack in the

second machine, and so on (that is if jobs are left). A stage ends when we have used all the

m machines. Standard arguments allow us to argue that the volume of the jobs left after a

stage is at most a constant factor of the initial volume. We repeat the stages 
(log d) stages

to reduce the volume of the jobs not scheduled to less than V(J)=d. Then we use the naive

list scheduling algorithm on the remaining jobs. Before we state the algorithm formally we

need a couple of de�nitions. The following problem is a special case of a general PIP.

De�nition 5.2.9 Given a set J of n vectors in [0; 1]d, the largest volume packing problem

is the problem of �nding a subset S such that k �Sk1 � 1 and V(S) is maximized. Let Vmax

denote the value of the optimal solution.
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De�nition 5.2.10 An (�; �) approximation to the largest volume packing problem is a

subset S that satis�es the conditions k �Sk1 � � and V(S) � �Vmax.

We give below a pseudo-code description of our algorithm.

Algorithm Greedy-Pack

1. repeat for t stages

(a) foreach machine 1 � k � m do

i. Find an (�; �) approximation to the largest volume packing problem with

the current set of job vectors.

ii. Allocate jobs in packing to machine i and remove them.

2. Find an independent schedule for the remaining jobs using naive volume based list

scheduling and allocate them to the machines on which they are scheduled.

We now prove several simple lemmas to analyze the performance of Greedy-Pack. Ob-

serve that � � 1 in the above algorithm.

Lemma 5.2.11 Let J i be the set of jobs remaining at the beginning of the ith stage with

J1 = J . Let J ik+1 be the set of jobs remaining after machine (k + 1) has been packed in

stage i. Then

V(J ik+1) � V(J i) � (1� �=m)k+1

Proof. We prove the lemma by induction on k. The claim is trivially true for k = 0.

Suppose the claim is true up to machine k. We will show that the claim is true for machine

(k+1). Since all jobs in J can be scheduled on m machines with height 1 it follows that all

jobs in J ik can be likewise scheduled. By a simple averaging argument we can infer that there

exists a set of jobs in J ik with volume at least V(J ik)=m that can be packed in a machine

with height at most 1. Since we obtain a � approximation to largest volume packing, we

pack jobs a volume of at least � � V(J ik)=m. Therefore V(J i
(k+1)

) � V(J ik) � (1 � �=m). By

our induction hypothesis V(J ik) � V(J i) � (1� �=m)k. The lemma follows. 2

Corollary 5.2.12 If J i be the set of jobs remaining at the beginning of stage i then

V(J i) � V(J)=e(i�1)� :
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Proof. From our de�nitions J (i+1) = N i
m. From Lemma 5.2.11, V(J im) � V(J i) � (1 �

�=m)m. Since (1 + t=n)n � et for any t we get the required bound. 2

Theorem 5.2.13 Greedy-Pack yields a schedule of height at most (t � �+ d
et�

+ 1).

Proof. Let J1(k) and J2(k) be the set of jobs allocated to machine k in the packing

stage and the list scheduling stage respectively. From the packing property it is easy to

see that the height of machine k due to jobs in J1(k) is at most t�. Let J 0 be the set of

jobs remaining after the t stages of packing that are scheduled using list scheduling. From

Corollary 5.2.12 we have that

V(J 0) � V(J)=et� :

From Theorem 5.2.1, the height increase of machine k due to jobs in J2(k) is at most

V(J 0)=m+max
j
kpjk1 � d

et�
� V(J)=(dm) + 1 � d

et�
+ 1:

In the above inequality we are using the fact that the two lower bounds are less than 1, the

optimal value. Combining the two equations gives us the desired bound. 2

The parameter t in the algorithm can be chosen as a function of � and � to obtain the

best ratio. Note that the largest volume packing problem is a special case of a PIP where ci

is simply the volume of vector i. PIPs have a (1=2; O(log d)) approximation via randomized

rounding [93, 105] that can be derandomized by techniques from [92]. When d is �xed there

is a (1; 1 � �) approximation [29] that runs in time polynomial in nd=�. These observations

lead to the following two corollaries.

Corollary 5.2.14 There is an O(log2 d) approximation algorithm for the VS problem.

Corollary 5.2.15 There is an O(log d) approximation algorithm for the VS problem that

runs in time polynomial in nd.

An O(log dm) approximation

The approximations in Corollary 5.2.14 are good when d is small compared to m, that is

when log d = o(
p
logm). However when d is large we can obtain a O(log dm) approximation

by a simple randomized algorithm that assigns each vector independently to a machine

chosen uniformly at random from the set of m machines. We call this algorithm Random.
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Theorem 5.2.16 Random gives an O(log dm) approximation with high probability.

Proof. Consider the �rst machine. Let Xj be the indicator random variable that is

1 if vector j is assigned to the �rst machine. The Xj are independent. By uniformity

Pr [Xj = 1] = 1=m. Let P =
P

j pjXj. Note that P is a vector since each pj is a vector:

let P i denote the ith coordinate of P . By linearity of expectations E[P i] =
P

j p
i
j=m �

opt (using Equation 5.2). Also observe that maxj p
i
j � opt (using Equation 5.1). Now

we estimate the probability that P i deviates signi�cantly from its expected value. By

Cherno� bounds Pr
h
P i > (E[P i] + maxj p

i
j)(1 + c) log dm

i
� (dm)�c. Thus with high

probability P i is O(log dm) � opt. If Ai
k is the event that the ith dimension of machine k

is greater than 2(1 + c) log dm � opt, then from above we know that Pr
�
Ai
k

� � (dm)�c.

Thus Pr
h
(A = [di=1 [mk=1 A

i
k) � dm(dm)�c

i
. By choosing c su�ciently large we can ensure

that Pr [A] is less than an inverse polynomial factor. But the complement of A is the event

that the schedule length is O(log dm) �opt. Thus with high probability we get a O(log dm)

approximation. 2

5.3 Vector Bin Packing

We now examine the problem of packing a given set of vectors into smallest possible number

of bins. Our main result here is as follows:

Theorem 5.3.1 For any �xed � > 0, we can obtain in polynomial time a (1 + � � d +
O(ln(��1))-approximate solution for vector bin packing.

This improves upon the long standing (d + �)-approximation algorithm of [23]. Our

approach is based on solving a linear programming relaxation for this problem. As in

Section 5.2.2, we use a variable xij to indicate if vector pi is assigned to bin j. We guess

the least number of bins m (easily located via binary search) for which the following LP

relaxation is feasible; clearly m � opt.

X
j

xij = 1 1 � i � n

X
i

pki � xij � 1 1 � j � m ; 1 � k � d

xij � 0 1 � i � n ; 1 � j �m
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Once again, we use the fact that a basic feasible solution would make fractional bin

assignments for at most d �m vectors. Thus at this point, all but a set S of at most d �m
vectors have integral assignments in m bins. To �nd a bin assignment for S, we repeatedly

�nd a set S0 � S of up to k = d1=�e vectors that can all be packed together and assign

them to a new bin. This step is performed greedily, i.e. we seek to �nd a largest possible

such set in each iteration. We can perform this step by trying out all possible sets of

vectors of cardinality less than (k + 1). We now claim that this procedure must terminate

in � � d �m+O(ln ��1) �opt steps. To see this, consider the �rst time that we pack less than

k vectors in a bin. The number of bins used thus far is bounded by (d �m)=k. Moreover,

the total number of vectors that remain at this point is at most (k � 1)opt; let S0 denote

this remaining set of vectors. Since the optimal algorithm can not pack more than (k � 1)

vectors of S0 in one bin, our greedy bin assignment procedure is identical to a greedy set

cover algorithm where each set has size at most (k�1). Thus the total number of bins used

in packing vectors in S0 is bounded by Hk�1 � opt [49] (Hi is the ith harmonic number).

Putting things together, we obtain that the number of bins used by our algorithm, A, is

bounded as follows:

A � m+ (d �m)=k +Hk�1 � opt � (1 + � � d+O(ln ��1)) � opt:

This completes the proof of Theorem 5.3.1. Substituting � = 1=d, we obtain the following

simple corollary:

Corollary 5.3.2 For any arbitrary but �xed d, vector bin packing can be approximated to

within O(ln d) in polynomial time.

Using a simple argument, the result of the previous theorem can be strengthened to an

O(
p
d)-approximation when the vectors are drawn from the space f0; 1gn. We study this

special case since it essentially captures hard instances of VBP for large values of d.

Theorem 5.3.3 If each vector pi 2 f0; 1gn, then we can obtain a (2
p
d)-approximation for

vector bin packing.

Proof. Partition the vectors into two sets S and L where the set S contains vectors

which have a 1 in at most
p
d dimensions while L contains the rest. Denote by optS

(optL) the number of bins needed for an optimal packing of jobs in S (L); clearly opt �
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(optS+optL)=2, and optL � jLj=pd. Now consider a greedy packing of jobs in S, followed

by a greedy picking of jobs in L. Since each job in S has a 1 in at most
p
d dimensions, it

rules out up to
p
d other jobs from being packed. Thus S can be greedily packed in at most

optS
p
d bins. On the other hand, the greedy procedure uses at most jLj bins to pack jobs

in L. Combining the two observations, we obtain that the total number of bins used is at

most 2
p
d � opt. 2

The above result is essentially tight for arbitrary d, since via a reduction from graph

coloring, we can show a d1=2��-hardness for this problem, for any �xed � > 0.

5.4 Inapproximability Results

In this section we show hardness of approximation results the three problems we consider,

vector scheduling, vector bin packing, and packing integer programs.

5.4.1 Packing Integer Programs

Randomized rounding techniques of Raghavan and Thompson [93] yield integral solutions

of value t1 = 
(OPT=d1=B) and t2 = 
(OPT=d1=(B+1)) respectively, if A 2 [0; 1]d�n

and A 2 f0; 1gd�n. Srinivasan [105] improved these results to obtains solutions of value


(t
B=(B�1)
1 ) and 
(t

(B+1)=B
2 ) respectively. We show that PIPs are hard to approximate to

within a factor of 
(d
1

B+1
��) for every �xed integer B. We start by focusing on the case

A 2 f0; 1gd�n and then indicate how our result extends to A 2 [0; 1]d�n. Our reduction

uses the recent result of Hast�ad [52] that shows that independent set is hard to approximate

within a factor of n1�� for any �xed � > 0, unless NP = ZPP . Since the upper bounds are

in terms of d, from here on, we will express the inapproximability factor only as a function

of d.

To motivate our reduction, we start by sketching an elementary reduction that shows

hardness of the problem when B = 1. This case is equivalent to stating the well-known fact

that PIPs capture the maximum independent set problem. Given a graph G = (V;E) with

n vertices v1; : : : ; vn we create an instance of a PIP IG as follows. We create a d�n matrix

A with zero-one entries that has d = n2 rows, one for each pair of vertices of G, and n

columns, one for each vertex of G. Let ri = (vi1 ; vi2) be the pair associated with row i. Let

aij denote the entry in the ith row and jth column of A. We set aij to 1 if (vi1 ; vi2) is an

edge of G and vj is incident on that edge. Otherwise we set aij to 0. Thus A is essentially
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the incidence matrix of G. We set the vectors c and b to be the all ones vector. It is clear

that given G, IG can be constructed in polynomial time. If we interpret the PIP in our

vector terminology, we have vectors of n2 dimensions one for each of the n vertices. The

goal is to pack as many vectors as possible (since c is the all ones vector) in a d-dimensional

bin of height 1.

Proposition 5.4.1 There is a 1-1 correspondence between independent sets of G and fea-

sible integer solutions for IG where the value of a feasible solution is equal to the size of its

corresponding independent set size.

Corollary 5.4.2 Unless NP = ZPP , PIPs with B = 1 are hard to approximate to within a

factor of n1�� for every �xed � > 0. Alternatively, PIPs with B = 1 are hard to approximate

to within a factor of d1=2��.

Proof. Follows from Proposition 5.4.1 and the hardness of independent set [52]. 2

Since the upper bounds are in terms of d, from here on, we will express the inapprox-

imability factor only as a function of d. Our goal now is to extend the above result for

larger values of B. Notice that in the above construction if we used B = 2 instead of 1, it

is possible to pack all the vertices. Thus we need a di�erent construction, one that enforces

stronger constraints on vertices connected together in G. Our starting point is once again

the maximum independent set problem.

Given a graph G and a positive integer B, we construct an an instance of a PIP IG as

follows. Create a d� n zero-one matrix A with d = n(B+1) such that each row corresponds

to an element from V (B+1). Let ri = (vi1 ; : : : ; vi(B+1)
) denote the tuple associated with the

ith row of A. We set aij to 1 if and only if the following conditions hold, otherwise we set

it to 0:

{ the vertex vj occurs in ri, and

{ the vertices in ri induce a clique in G.

We set c to f1gn and b to fBgd. For any �xed integer B, the reduction can be done in

polynomial time. Note that a feasible solution to IG can be described as a set of indices

S � f1; : : : ; ng.
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Lemma 5.4.3 Let S be any feasible solution to IG and let GS be the subgraph of G induced

by the set of vertices vi such that i 2 S. Then !(GS) � B where !(GS) is the clique number

of GS.

Proof. Suppose there is a clique of size (B+1) inGS ; w.l.o.g. assume that v1; : : : ; v(B+1)

are the vertices of that clique. Consider the tuple (v1; v2; : : : ; v(B+1)) and let i be the row of

A corresponding to the above tuple. Then by our construction, aij = 1 for 1 � j � (B+1).

There are (B + 1) vectors in S with a 1 in the same dimension i, violating the ith row

constraint. This contradicts the feasibility of S. 2

Lemma 5.4.4 Let X � V be an independent set of G. Then S = fi j vi 2 Xg is a feasible

solution to IG of value jSj = jXj. Furthermore S can be packed with a height bound of 1.

Proof. Suppose that in some dimension the height induced by S is greater than 1. Let

r be the tuple associated with this dimension. Then there exist i; j 2 S such that vi; vj 2 r

and (vi; vj) 2 E. This contradicts the assumptions that X is an independent set. 2

The following is a simple Ramsey type result; we prove it here for the sake of complete-

ness.

Lemma 5.4.5 Let G be a graph on n vertices with !(G) � k. Then �(G) � n1=k where

�(G) is the size of a maximum independent set in G.

Proof. By induction on k. Base case with k = 1 is trivial. Assume hypothesis is true

for integers up to k�1. Consider a graph with !(G) = k. If the degree of every vertex in G

is less than n(k�1)=k, then any maximal independent set has size at least n1=k. Otherwise,

consider a vertex v in G that has degree at least n(k�1)=k. Let G0 be the subgraph of

G induced by the neighbors of v. Since !(G0) � k � 1, by the induction hypothesis,

�(G0) � (n(k�1)=k)1=(k�1) � n1=k. 2

Corollary 5.4.6 Let S be any valid solution to IG of value t = jSj. Then �(G) � t1=B.

Proof. Follows from Lemmas 5.4.4 and 5.4.5. 2

Theorem 5.4.7 Unless NP = ZPP , for every �xed integer B and �xed �0 > 0, PIPs

with bound b = fBgd and A 2 f0; 1gd�n are hard to approximate to within a factor of

d
1

B+1
��0. PIPs with A 2 [0; 1]d�n and B rational are hard to approximate to within a factor

of d
1

bBc+1
��0.



CHAPTER 5. APPROXIMABILITY OF VECTOR PACKING PROBLEMS 111

Proof. We �rst look at the case of PIPs with A 2 f0; 1gd�n. Notice that our reduction
produces only such instances. Suppose there is a polynomial time approximation algorithm

A for PIPs with bound B that has an approximation ratio d
1

B+1
��0 for some �xed �0 > 0.

This can be reinterpreted as a d
1��
B+1 -approximation where � = �0(B+1) is another constant.

We will obtain an approximation algorithm G for the maximum independent set problem

with a ratio n1�� for � = �=B. The hardness of maximum independent [52] will then imply

the desired result. Given a graph G, the algorithm G constructs an instance IG of a PIP

as described above and gives it as input to A. G returns max(1; t1=B) as the independent

set size of G where t is the value returned by A on IG. Note that by Corollary 5.4.6,

�(G) � t1=B which proves the correctness of the algorithm. Now we prove the approximation

guarantee. We are interested only in the case when �(G) � n1�� for otherwise a trivial

independent set of size 1 gives the required approximation ratio. From Lemma 5.4.4 it

follows that the optimal value for IG is at least �(G). SinceA provides a d
1��
B+1 approximation

t � �(G)=d
1��

(B+1) . In the construction of IG d = n(B+1). Therefore t � �(G)=n(1��). Simple

algebra veri�es that t1=B � �(G)=n1�� when �(G) � n1��.

Now we consider the case of PIPs with A 2 [0; 1]d�n. Let B be some real number.

For a given B we can create an instance of a PIP as before with B0 = bBc. The only

di�erence is that we set b = Bd. Since all entries of A are integral, e�ectively the bound is

B0. Therefore it is hard to approximate to within a factor of d(1��)=(B
0+1) = d(1��)=(bBc+1) .

If (bB + 1=dc+ 1) = B + 1 then d(1��)=(bBc+1) = �(d(1��)=B). 2

Discussion: An interesting aspect of our reduction above is that the hardness results

holds even when the optimal algorithm is restricted to a height bound of 1 while allowing a

height bound of B for the approximation algorithm. Let an (�; �)-bicriteria approximation

be one that satis�es the relaxed constraint matrix Ax � �b and gets a solution of value at

least opt=�, here opt satis�es Ax � b. Then we have the following corollary:

Corollary 5.4.8 Unless NP = ZPP , for every �xed integer B and �xed � > 0, it is hard

to obtain a (B; d
1

B+1
��) bicriteria approximation for PIPs.

For a given B, we use d = nB+1, and a hardness of d
1

B+1
�� is essentially the hardness

of n1�� for independent set. This raises two related questions. First, should d be larger

than n to obtain the inapproximability results? Second, should the approximability (and

inapproximability) results be parameterized in terms of n instead of d? These questions
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are important to understand the complexity of PIPs as d varies from O(1) to poly(n). We

observe that the hardness result holds as long as d is 
(n�) for some �xed � > 0. To see this,

observe that in our reduction, we can always add poly(n) dummy columns (vectors) that

are either useless (their cj value is 0) or cannot be packed (add a dummy dimension where

only B of the dummy vectors can be packed). Thus we can ensure that n � poly(d) without

changing the essence of the reduction. We have a PTAS when d = O(1) and a hardness

result of d1=(B+1) when d = poly(n). An interesting question is to resolve the complexity of

the problem when d = polylog(n).

As remarked earlier, Srinivasan [105] improves the results obtained using random-

ized rounding to obtain solutions of value 
(t
(B+1)=B
2 ) where t2 = 
(y�=d1=(B+1)) for

A 2 f0; 1gd�n. In the above y� is the optimal fractional solution to the PIP. It might

appear that this contradicts our hardness result but a careful examination will reveal that

for the instances we create in our reduction y�=d1=(B+1) � 1. For such instances Srinivasan's

bounds do not yield an improvement over randomized rounding.

5.4.2 Vector Scheduling

We now extend the ideas used in the hardness result for PIPs to show hardness results for

the vector scheduling problem. Our result here uses the hardness of graph coloring; Feige

and Kilian [28], building on the work of Hast�ad [52], show that graph coloring is n1��-hard

unless NP = ZPP . Our reduction is motivated by the observation that graph coloring is

basically partitioning the graph into independent sets. We need the following elementary

lemma.

Lemma 5.4.9 Let G be a graph on n vertices with !(G) � k. Then �(G) � O(n1�1=k logn)

where �(G) is the chromatic number of G.

Proof. From Lemma 5.4.5 �(G) � n1=k. Let G0 be the graph obtained by removing a

largest independent set from G. It is easy to see that !(G0) � k. Thus we can apply Lemma

5.4.5 again to G0 to remove another large independent set. We can repeat this process until

we are left with a single vertex and standard arguments show that the process terminates

after O(n1�1=k logn) steps. Thus we can partition V (G) into O(n1�1=k logn) independent

sets and the lemma follows. 2
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Theorem 5.4.10 Unless NP = ZPP , for every constant 
 > 1, there is no polynomial

time algorithm that approximates the schedule height in the vector scheduling problem to

within a factor of 
.

Let B = d
e; we will show that it is hard to obtain a B-approximation using a reduction

from chromatic number. Given graph G we construct an instance I of the VS problem as

follows. We construct n vectors of nB+1 dimensions as in the proof of Theorem 5.4.7. We

set m, the number of machines, to be n
1
2B .

Lemma 5.4.11 If �(G) � m then the optimal schedule height for I is 1.

Proof. Let V1; : : : ; V�(G) be the color classes. Each color class is an independent set

and by Lemma 5.4.4 the corresponding vectors can be packed on one machine with height

at most 1. Since �(G) � m the vectors corresponding to each color class can be packed in

a separate machine. 2

Lemma 5.4.12 If the schedule height for I is bounded by B then �(G) � �n1�1=2B logn

for some �xed constant �.

Proof. Let V1; V2; : : : ; Vm be the partition of vertices of G induced by the assign-

ment of the vectors to the machines. Let Gi be the subgraph of G induced by the ver-

tex set Vi. From Lemma 5.4.3 we have !(Gi) � B. Using Lemma 5.4.9 we obtain that

�(Gi) � �n1�1=B logn for 1 � i � m. Therefore it follows that �(G) � P
i �(Gi) �

m � �n1�1=B logn � �n1�1=2B logn. 2

Proof of Theorem 5.4.10. Feige and Kilian [28] showed that unless ZPP = NP , for

every � > 0 there is no polynomial time algorithm to approximate the chromatic number to

within a factor of n1��. Suppose there is a B approximation for the VS problem. Lemmas

5.4.11 and 5.4.12 establish that if �(G) � n1=2B then we can infer by running the B-

approximation algorithm for the VS problem that �(G) � �n1�1=2B logn. This implies a

�n1�1=2B logn approximation to the chromatic number. From the result of [28] it follows

that this is not possible unless NP = ZPP . 2
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5.4.3 Vector Bin Packing

In this section we prove that the vector bin packing problem is APX hard even for d = 2. In

contrast the standard bin packing problem with d = 1 has an asymptotic PTAS2 [23, 66].

Thus our result shows that bin packing with d > 1 has no PTAS and in particular no

asymptotic PTAS. Using a similar reduction we obtain APX hardness for the vector covering

problem [2] as well. We use a reduction from the optimization version of bounded 3-

Dimensional matching (3DM) problem [34]. We de�ne the problem formally below.

De�nition 5.4.13 (3-bounded 3DM (3DM-3)) Given a set T � X�Y �Z. A match-

ing in T is a subset M � T such that no elements in M agree in any coordinate. The goal

is to �nd a matching in T of largest cardinality. A 3-bounded instance is one in which the

number of occurrences of any element of X [ Y [ Z in T is at most 3.

Kann [64] showed this problem is Max-SNP Complete (hence also APX-Complete). Our

reduction is based on the ideas used in the NP-Completeness reduction for showing that

the 3DM problem reduces to the 4-Partition problem [34]. We now describe the reduction.

Let q = maxfjXj; jY j; jZjg, u = jX [ Y [ Zj and t = jT j. We create a total of (u + t)

2-dimensional vectors. We have one vector each for the elements of T and one for each of

the elements of X [ Y [ Z. Let xi; yj; zk; wl denote the corresponding vectors for X;Y;Z,
and T respectively. The �rst coordinates are assigned as as follows.

x1i = q4 + i 1 � i � jXj
y1j = q4 + jq 1 � j � jY j
z1k = q4 + kq2 1 � k � jZj

The �rst dimension of the an element l = (i; j; k) in T is assigned as follows

w1
l = q4 � kq2 � jq � i:

The second dimension of each of the vectors is obtained simply by subtracting the �rst

dimension from 2q4. We will assume without loss of generality that q � 4 in which case

2An asymptotic PTAS for a minimization problem implies that for every �xed � > 0 there is an approx-

imation algorithm that guarantees a solution of value (1 + �)opt + c where c is an absolute constant that

does not depend on the instance. This di�ers from the standard de�nition of a PTAS in that a �xed additive

term is allowed in addition to the multiplicative factor. See [81] for more details and discussion.
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all coordinates are positive. Our goal is to pack these vectors in two dimensional bins with

capacity 4q4.

Proposition 5.4.14 Any three vectors in the instance can be packed in a bin.

Proof. It is clear from the construction that the largest vector coordinate is bounded

by (q4 + q3 + q2 + q). For q � 4 it is easily veri�ed that 3(q4 + q3 + q2 + q) � 4q4. 2

An element of T is referred to as a hyper-edge. The elements of a hyper-edge e are the

elements of X [ Y [ Z that form the tuple e.

Proposition 5.4.15 Four vectors can be packed in a bin if and only if they correspond to

a hyper-edge and its elements.

Proof. It is easy to verify that the vectors corresponding to a hyper-edge and its

elements can be packed in a bin. To prove the only if direction, assume that the coordinates

of four vectors that are packed are (a1; 2q
4 � a1); : : : ; (a4; 2q

4 � a4). The four vectors

satisfy the capacity constraints of the bin. Therefore we obtain that
P

i ai � 4q4 andP
i(2q

4�ai) � 4q4. These two inequalities imply that
P

i ai = 4q4. It is a simple observation

from our construction that such an equality hold only for the vectors corresponding to a

hyper-edge and its elements. 2

Proposition 5.4.15 establishes that bins with four vectors each correspond to a matching.

The proof of the following theorem provides a quantitative relationship between the size of

an optimal matching and an optimal packing of the vectors.

Theorem 5.4.16 Vector bin packing in 2 dimensions is APX-Complete.

Proof. VBP in 2 dimensions is in APX by Theorem 5.3.1. We will show APX hardness

via an L-reduction [85] (recall De�nition 1.1.2) from 3-bounded 3DM to VBP with d = 2.

Let I be an instances of 3DM-3. We map I to an instance I 0 of VBP as described in our

reduction above. Let m� be the size of the largest matching in I and let b� be the smallest

number of bins needed for I 0. By Propositions 5.4.15 and 5.4.14 it is easily veri�ed that

b� = d(t+ u�m�)=3e. We claim that there exists a constant � > 0 such that b� � �m� for

any instance of 3DM-3. This follows from the fact that u = O(t) (due to 3-boundedness)

and t = O(m�) (due to membership in Max-SNP). Now to map a solution for I 0 to a solution
for I, we de�ne the matching to be the hyper-edges corresponding to the vectors in T that
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are packed in bins with 4 vectors each. Proposition 5.4.15 guarantees the correctness of

the solution. We assume without loss of generality that all bins except one have at least

three vectors each. Thus if m is the number of bins with 4 vectors packed, then b, the total

number of bins, is d(t+ u�m)=3e. Thus we obtain that

b� b� = d(t+ u�m)=3e � d(t+ u�m�)=3e
� (t+ u�m)=3� (t+ u�m�)=3 + 1

� (m� �m)=3 + 1

In other words, there exists a constant � such that for all instances jm� �mj � �jb� � bj.
It follows that 3DM-3 L-reduces to VBP. 2

Vector Covering

A similar reduction as above shows hardness of the vector covering problem de�ned below.

De�nition 5.4.17 (Vector Covering (VC)) Given a set of n rational vectors p1; : : : ; pn

from [0; 1]d, �nd a partition of the set into sets A1; : : : ; Am such that �Ai
j � 1 for 1 � i � d

and 1 � j � m. The objective is to maximize m, the size of the partition.

The vector covering problem is also referred to as the dual bin packing problem and

the one-dimensional version was �rst investigated in the thesis of Assman [6]. Both on-line

and o�-line versions have been studied in various papers [7, 22, 21, 2, 113] mostly for the

one-dimensional case. We concentrate on the o�-line approximability of the problem. For

d = 1, a PTAS was obtained by Woeginger [113] that improved upon the constant factor

algorithms of Assman et al. [7]. Alon et al. [2] gave a minfd; 2 ln d=(1+o(1))g approximation
algorithm for arbitrary d. However no hardness of approximation results were known prior

to our work. We will use the bin packing terminology: a partition corresponds to bins that

are covered by the vectors. The basic idea of the reduction is the same as the one above for

bin packing. The following proposition is analogous to Proposition 5.4.14.

Proposition 5.4.18 Any �ve vectors can cover a bin.

Proof. The smallest coordinate in our construction is at least (q4 � q3). For q � 5,

5(q4 � q3) � 4q4. 2
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The proof of the following proposition is very similar to that of Proposition 5.4.15, hence

we omit it.

Proposition 5.4.19 Four vectors can cover a bin if and only if they correspond to a hyper-

edge and its elements.

Theorem 5.4.20 The Vector covering problem is APX-Complete for d = 2.

Proof. Membership in APX follows from the result of Alon et al. [2]. To show hardness

we use the same reduction as the one for vector bin packing. If b is the solution value for

the VC instance I 0 that corresponds to an instance I of 3DM-3, we claim that there is a

matching of size m in I where m is the largest value that satis�es b = b(t + u +m)=5c.
Using Proposition 5.4.18 we assume without loss of generality that the solution for I 0 is
maximal in that every bin that is covered has at most �ve vectors and that at most four

vectors are left out of the solution. We simply take the hyper-edges corresponding to those

bins that are covered by exactly four vectors. Proposition 5.4.19 guarantees that we have

a valid matching. Simple algebra veri�es that if m is the number of bins covered by four

vectors then b = m+ b(t+ u� 4m)=5c = b(t+ u+m)=5c.
Let m� and b� be the optimal solution values to I and I 0 respectively. The arguments

above show that b� = b(t + u +m�)=5c. As in the proof of Theorem 5.4.16 we claim that

there is a constant � > 0 such that b� � �m� using the 3-boundedness and Max-SNP

membership of 3DM-3. We can relate the gap in b and b� to that in m and m� as

b� � b = b(t+ u+m�)=5c � b(t+ u+m)=3c
� (t+ u+m�)=5� (t+ u+m)=5� 1

� (m� �m)=5� 1

In other words, there exists a constant � > 0 such that for all instances jm��mj � �jb��bj.
It follows that 3DM-3 L-reduces to the VC problem with d = 2. 2

5.5 Concluding Remarks

We obtained several results on the approximability of natural vector packing problems.

However many interesting questions remain. Though we obtained a PTAS for the vector



118 CHAPTER 5. APPROXIMABILITY OF VECTOR PACKING PROBLEMS

scheduling problem for every �xed d, the running time is impractical. Although desirable, we

do not believe that a running time of the form f(d)�poly(n1=�), for a (1+�) approximation, is
achievable. Some investigation into the �xed parameter tractability [25] of the problem may

shed light on this issue. For small values of d we believe that a constant factor approximation

with much improved running times is possible using the ideas in the PTAS. As mentioned

earlier the database application requires a solution to the problem where tasks have tree

like precedence constraints. There are further constraints on the assignment of tasks to

machines that depend on the assignment of a task's predecessors (see [36] for more details).

If we have only precedence constraints a (d + 1) approximation follows from standard list

scheduling analysis but we do not know if a constant factor approximation independent

of d can be obtained for this problem. For the vector bin packing problem an algorithm

with a running time polynomial in nd that gives a constant factor approximation ratio,

independent of d, is of interest. Currently we have only an O(log d) approximation. Our

hardness results for PIPs apply when B is a �xed constant. The main di�culty in extending

the result to larger values of B is in extending the Ramsey type result we use to show the

existence of a large independent set in a graph that excludes small cliques. We believe that,

by using stronger graph products, it is possible to extend the result to values of B up to


(log n= log log n). Finally, for the problems we considered, our results shed light on the

extreme cases of d �xed and d large (that is polynomial in n). However we do not yet know

the complexity of the problems for an intermediate case when d is logarithmic in n.



Chapter 6

Conclusions

We presented approximation algorithms for several NP-Hard scheduling problems. The

problems considered in Chapter 4 and Chapter 5 are new problems suggested by practical

applications. Our work on the problem of minimizing average completion time in Chapter

2 is also motivated by the practical problem of pro�le driven instruction scheduling in com-

piler optimization. We were able to use intuition from theoretically sound approximation

algorithms to develop heuristics that performed well in the real application [12]. Our quest

for obtaining simpler and more e�cient algorithms that did not use linear programming

relaxations was also partly due to the motivating application. We believe that this has led

to a better understanding of the approximability of the problem.

Scheduling issues are fundamental in many diverse applications and novel problems,

variants, and models will continue to come up. A good understanding of the complexity of

basic scheduling problems is both necessary and useful for future applications. For example

our approximation schemes for the problems in Chapters 4 and 5 are based on earlier ideas

in the PTAS for multi-processor scheduling [55]. Scheduling theory has been an active

area of research for the last four decades and impressive progress has been made on several

fundamental problems. Despite that many open problems and challenges remain (see the

survey articles [73, 46, 65]). At the end of each chapter we point out speci�c open problems

related to the topics addressed in that chapter. Here we point out some broader directions

for future research.

A broad class of challenging scheduling problems whose complexity is not well under-

stood is that of scheduling jobs in the presence of precedence constraints. Many scheduling

variants are well solved (have small constant factor approximations or a PTAS) when there

119
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are no precedence constraints. These include scheduling to minimize makespan or average

completion time on a variety of machine environments (single machine, parallel identical

machines, uniformly related machines, and unrelated machines). An exception is the prob-

lem of scheduling to minimize 
ow time [69, 76]. When jobs have precedence constraints,

the same problems become harder to approximate and harder to design approximation algo-

rithms for (the two notions are not necessarily the same). For example, there is a PTAS for

multiprocessor scheduling while there is a lower bound of 4=3 on the approximability for the

same problem when jobs have precedence constraints. A 2 approximation for precedence

constraints is simple using Graham's list scheduling while the PTAS involves sophisticated

ideas. On the other hand, for minimizing makespan on unrelated machines, a 2 approxima-

tion and a 3=2 hardness result for independent jobs are known, while nothing but a trivial

n approximation is known if jobs have precedence constraints.

To understand the main bottleneck in the design of approximation algorithms for these

problems, we look at the analysis of the well known Graham's list scheduling algorithm [43]

for minimizing makespan on parallel identical machines. His analysis shows that, in any

schedule produced by list scheduling, we can identify a chain of jobs j1 � j2 : : : � jr such

that, a machine is idle only when one of the jobs in the above chain is being processed. The

time spent processing the chain is a lower bound for the optimal makespan. In addition,

the sum total of time intervals during which all machines are busy is also a lower bound

via arguments about the average load. These two bounds provide an upper bound of 2 on

the approximation ratio of list scheduling. Three decades after Graham's simple analysis

appeared we still do not have an algorithm with a better ratio. It is easy to show that the

two lower bounds used in the above analysis cannot provide a ratio better than 2. The

lower bounds cannot distinguish between the following two types of instances: those for

which the optimal schedule keeps all machines busy most of the time and those for which

the optimal schedule has a lot of idle time because of precedence constraints. Thus we need

a stronger lower bound, potentially via some linear programming relaxation, that is more

sensitive to the given instance than the gross lower bounds above. In a more direct way

the same bottleneck hinders better algorithms for more complicated parallel environments

such as uniformly related machines and unrelated machines. In these environments, since

the machines are not identical, in addition to ordering jobs according to their priority, the

algorithm also has to decide for each job the machine on which to execute it. Until the

algorithm of Chudak and Shmoys [17] and subsequently ours in Chapter 3, algorithms for
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scheduling on uniformly related machines were all list scheduling based, and the best of

them achieved a ratio of O(
p
m) [62]. Though the algorithm in [17] and ours have an

improved O(logm) ratio, the lower bounds provide only partial information for scheduling.

We believe that there exists a constant factor approximation for this problem. The situation

for unrelated machines is worse and only a trivial n approximation is known. Similar

di�culties exist for job shop and 
ow shop scheduling problems.

Thus an important direction for future work is to �nd stronger lower bounds for schedul-

ing problems with precedence constraints. In this direction the work of Schulz [98, 97] and

subsequently others [47, 17, 82] on completion time variables seems promising. Completion

time formulations have a variable Cj for each job j that denotes the completion time of job

j. Jobs are ordered according to their completion times and this ordering is used in the

scheduling algorithm. This approach has been successful in obtaining good approximation

algorithms for minimizing sum of weighted completion times. However, as remarked earlier

we need more than on ordering for complex machine models. For the related machines case

Chudak and Shmoys [17] use additional variables in their formulation that provide partial

information on the assignment of jobs to machines. Future work in this direction using

stronger linear programming or semi-de�nite relaxations might yield improved algorithms.

As an intermediate step towards solving the unrelated machine scheduling problem, the fol-

lowing special case is interesting. We are given n jobs to be scheduled on m machines. The

machines are partitioned into K sets S1; : : : ; Sk. The instance also speci�es, for each job j,

an assignment k(j) and the job j is constrained to run on a machine from set Sk(j). All the

machines in each partition are identical. Assuming all jobs are unit length (arbitrary length

jobs can also be considered), the objective is to �nd a schedule of minimum makespan. This

problem appears as a sub-problem in [17] although for a di�erent purpose. In addition to

its appealing simplicity it has applications to instruction scheduling in compilers. Modern

CPUs have di�erent functional units such as integer, 
oating point, and load/store and each

of them executes the appropriate set of instructions in parallel. Dependencies between in-

structions force precedence constraints and the correspondence between the abstract model

and the application should be clear. A simple generalization of Graham's list scheduling

yields a (K + 1) approximation for this problem. Improving the ratio for this problem will

yield insights for other problems as well.

Designing approximation algorithms with improved ratios is only one side of the coin

in understanding the approximability of a problem. Proving hardness of approximation



122 CHAPTER 6. CONCLUSIONS

bounds is the other side. For most problems proving hardness of approximation results

is harder than proving approximation bounds. Breakthrough work in the recent past by

several authors, based on new characterizations of NP via interactive proof systems, has

led to a better understanding of the hardness of some basic optimization problems. These

results also established canonical hard problems that enable new results via approximation

preserving reductions. Surprisingly, many of the known hardness of approximation results

for scheduling problems are based on direct reductions to NP-Hard problems. However,

for several fundamental problems such as precedence constrained scheduling to minimize

makespan on related and unrelated machines, job shop and 
ow shop scheduling, and others

that we mentioned in the concluding remarks of earlier chapters, the known results are

weak. It might be possible that the lack of progress in obtaining better approximation

algorithms can be explained by improved hardness results. It is worthwhile to explore if

the sophisticated techniques based on PCP and others yield improved hardness results for

scheduling problems.

Finally, we have an observation regarding average completion time scheduling. Minimiz-

ing makespan is a special case of the problem of minimizing average weighted completion

time, and thus the latter problem is harder to approximate. Several single machine variants

are NP-Hard for average completion time but are trivially solvable for makespan. How-

ever, for many scheduling models, the approximation ratio for minimizing average weighted

completion time is no more than a constant multiplicative factor away from the ratio for

minimizing makespan. Further Stein and Wein [106] show that, for a very general class of

scheduling models, there exists a schedule that is simultaneously within a factor of 2 of the

optimal schedule values for both average weighted completion time and makespan. Their

proof is based on transforming an optimal schedule for average completion time to a sched-

ule that is approximately good for both objective functions. Is there a converse to their

transformation? That is, is there a polynomial time algorithm that uses as a subroutine a

procedure for minimizing makespan and outputs an approximate schedule for minimizing

average weighted completion time?
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