Pleiades Project

Collected Work
1997- 1998

Multidisciplinary Research Initiative

Semantic Consistency in Information Exchange

Organization of Naval Research Grant N00014-97-1-0505

Edited by Iliano Cervesato and John C. Mitchell

Pref ace

This report collects the papers that were written by the participants of the
Pleiades Project and their collaborators from April 1997 to August 1998. Its
intent is to give the reader an overview of our accomplishments during this
initial phase of the project. Therefore, rather than including complete publi-
cations, we chose to reproduce only the first four pages of each paper. In or-
der to satisfy the legitimate curiosity of readers interested in specific articles,
each paper can be integrally retrieved from the World-Wide Web through the
provided URL. A list of the current publications of the Pleiades Project is
accessible at the URL http://theory.stanford.edu/muri/papers.html.
Future articles will be posted there as they become available.

This report is divided into six parts that reflect the scope of the Pleiades
Project. These are: Security Protocol Analysis, Real-Time Systems, Prob-
abilistic Program Correctness, Programming Languages, Temporal Reason-
ing, and Adaptive Agents.

The Pleiades Project, more formally known as Multidisciplinary Research
Initiative (MURI) on Semantic Consistency in Information Exchange, is
funded by grant number N00014-97-0505 of the Organization of Naval Re-
search. Its purpose is to investigate issues of semantic consistency in the
transfer of active information, such as executable program components, in
information systems that are maintained over time, distributed over many
locations, or composed of separate subsystems that may be implemented in
different ways or designed according to different objectives or assumptions.

The current participants of the Pleiades Project include lliano Cervesato
(Stanford University), Cynthia Dwork (IBM Almaden Research Center),
Funda Ergun (University of Pennsylvania), Diana Gordon (Naval Research
Laboratory), Sampath Kannan (University of Pennsylvania), Insup Lee (Uni-
versity of Pennsylvania), Patrick Lincoln (SRl International), John Mitchell
(Stanford University, principal investigator), Ronitt Rubinfeld (Cornell Uni-
versity), Andre Scedrov (University of Pennsylvania), and Ulrich Stern (Stan-
ford University), and several graduate students from Cornell University, the
University of Pennsylvania, and Stanford University.

Stanford, September 21st 1998
lliano Cervesato,
John C. Mitchell.

Contents

Part |

Part 11

Security Protocol Analysis

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre Sce-
drov

A probabilistic poly-time framework for protocol analysis

John C. Mitchell, Mark Mitchell, and Ulrich Stern
Automated Analysis of Cryptographic Protocols Using Murphi

John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern
Finite-State Analysis of SSL 3.0

Vitaly Shmatikov and Ulrich Stern
Efficient Finite-State Analysis for Large Security Protocols

Real-Time Systems

Hee-Hwan Kwak, Jin-Young Choi, Insup Lee, Anna Philippou,
and Oleg Sokolsky

Symbolic Schedulability Analysis of Real-time Systems

Max Kanovich, Mitsu Okada, and Andre Scedrov
Specifying Real-Time Finite-State Systems in Linear Logic

Anna Philippou, Oleg Sokolsky, Insup Lee, Rance Cleaveland,
and Scott Smolka

Probabilistic Resource Failure in Real-Time Process Algebra

Part 111

Part IV

Part v

Anna Philippou, Oleg Sokolsky, Insup Lee, Rance Cleaveland,
and Scott Smolka

Specifying Failures and Recoveries in PACSR

Oleg Sokolsky, Insup Lee, and Hanéne Ben-Abdallah

Specification and Analysis of Real-Time Systems with
PARAGON

Oleg Sokolsky, Mohamed Younis, Insup Lee, Hee-Hwan Kwak,
and Jeff Zhou

Verification of the Redundancy Management System for Space
Launch Vehicle: A Case Study

Probabilistic Program Correctness

Funda FErgin, Sampath Kannan, S. Ravi Kumar, Ronitt Ru-
binfeld, and Mahesh Viswanathan

Spot-Checkers

Funda Ergin, S. Ravi Kumar, and Ronitt Rubinfeld

Approximate Checking of Polynomials and Functional Equa-
tions

Programming Languages

Iliano Cervesato

Proof-Theoretic Foundation of Compilation in Logic Program-
ming Languages

Stephen Freund and John C. Mitchell

A Type System for Object Initialization in the Java Bytecode
Language

Temporal Reasoning

lliano Cervesato, Massimo Franceschet, and Angelo Monta-
nar:

Event Calculus with Explicit Quantifiers

lliano Cervesato, Massimo Franceschet, and Angelo Monta-
nari

The Complexity of Model Checking in Modal Event Calculi
with Quantifiers

Part VI Adaptive Agents

Diana Gordon
Well-behaved Borgs, Bolos, and Berserkers

Part |

Security Protocol Analysis

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre Scedrov: ““A
probabilistic poly-time framework for protocol analysis™, in the proceedings
of the fifth ACM Conference on Computer and Communications Security,
San Francisco, CA, November, 1998.

Full paper: file://www.cis.upenn.edu/pub/papers/scedrov/acmccs.ps.gz

John C. Mitchell, Mark Mitchell, and Ulrich stern: “Automated Analysis
of Cryptographic Protocols Using Murphi”’, in the Proceedings of the 1997
IEEE Symposium on Security and Privacy, pages 141-153, Oakland, CA,
May 1997.

Full paper: ftp://theory.stanford.edu/pub/jcm/papers/murphi-protocols.ps

John C. Mitchell, Vitaly Shmatikov, and Ulrich stern: ““Finite-State Analy-
sis of SSL 3.0”, in the Proceedings of the 7th USENIX Security Symposium,
pages 201-216, San Antonio, 1998. Preliminary version presented at DI-
MACS Workshop on Design and Formal Verification of Security Protocols,
September 1997, and distributed on workshop CD.

Full paper: ftp://theory.stanford.edu/pub/jcm/papers/ssl-usenix.ps
Vitaly Shmatikov and Ulrich Stern: ““Efficient Finite-State Analysis for

Large Security Protocols”, in the Proceedings of the 11th IEEE Computer
Security Foundations Workshop, pages 106-115, Rockport, MA, June 1998.

Full paper: http: //sprout. Stanf ord. EDU/uli/secur/prio.ps.Z

A probabilistic poly-time framework for protocol analysis

P. Lincoln*f J. Mitchell** M. Mitchell*$
Department of Computer Science
Stanford University

Computer Science Laboratory
SRI International

Abstract

We develop a framework for analyzing security protocols in
which protocol adversaries may be arbitrary probabilistic
polynomial-time processes. In this framework, protocols are
written in a form of process calculus where security may be
expressed in terms of observational equivalence, a standard
relation from programming language theory that involves
quantifying over possible environments that might interact
with the protocol. Using an asymptotic notion of proba-
bilistic equivalence, we relate observational equivalence to
polynomial-time statistical tests and discuss some example
protocols to illustrate the potential of this approach.

1 Introduction

Protocols based on cryptographic primitives are commonly
used to protect access to computer systems and to protect
transactions over the internet. Two well-known examples
are the Kerberos authentication scheme [15, 14], used to
manage encrypted passwords, and the Secure Sockets Layer
[12], used by internet browsers and servers to carry out se-
cure internet transactions. Over the past decade or two, a
variety of methods have been developed for analyzing and
reasoning about such protocols. These approaches include
specialized logics such as BAN logic [5], special-purpose
tools designed for cryptographic protocol analysis {13], and
theorem proving [26, 27] and model-checking methods using
general purpose tools [16, 18, 23, 28, 29].

Although there are many differences among these ap-
proaches, most current approaches use the same basic model
of adversary capabilities. This model, apparently derived
from [10], treats cryptographic operations as “black-box”™
primitives. For example, encryption is generally considered
a primitive operation, with plaintext and ciphertext treated
as atomic data that cannot be decomposed into sequences of
bits. In most uses of this model, as explained in [23, 26, 29],
there are specific rules for how an adversary can learn new
information. For example, if the decryption key is sent over
the network “in the clear”, it can be learned by the ad-
versary. However, it is not possible for the adversary to
learn the plaintext of an encrypted message unless the en-

Partially supported by DoD MURI “Semantic Consistency in In-
formation Exchange,” ONR Grant N00014-97-1-0505.

‘Additional support from NSF CCR-9509931.

*Additional support from NSF CCR-9629754.

§ Additional support from Stanford University Fellowship.

¥ Additional support from NSF Grant CCR-9800785.

A. Scedrov*¥
Department of Mathematics
University of Pennsylvania

tire decryption key has already been learned. Generally, the
adversary is treated as a nondeterministic process that may
attempt any possible attack, and a protocol is considered
secure if no possible interleaving of actions results in a se-
curity breach. The two basic assumptions of this model,
perfect cryptography and nondeterministic adversary, pro-
vide an idealized setting in which protocol analysis becomes
relatively tractable.

While there have been significant accomplishments using
this model, the assumptions inherent in the standard model
also make it possible to “verify”” protocols that are in fact
susceptible to attack. For example, the adversary is not
allowed (by the model) to learn a decryption key by guessing
it, since then some nondeterministic execution would allow a
correct guess, and all protocols relying on encryption would
be broken. However, in some real cases, adversaries can
learn some bits of a key by statistical analysis, and can then
exhaustively search the remaining (smaller) portion of the
key space. Such an attack is simply not considered by the
model described above, since it requires both knowledge of
the particular encryption function involved and also the use
of probabilistic methods.

Another way of understanding the limitations of com-
mon formal methods for protocol analysis is to consider the
plight of someone implementing or installing a protocol. A
protocol designer may design a protocol and prove that it
is correct using the ““black-box” cryptographic approach de-
scribed above. However, an installed system must use a
particular encryption function, or choice of encryption func-
tions. Unfortunately, very few, if any, encryption functions
satisfy all of the black-box assumptions. As a result, an
implementation of a protocol may in fact be susceptible to
attack, even though both the abstract protocol and the en-
cryption function are individually correct.

Our goal is to establish an analysis framework that can
be used to explore interactions between protocols and cryp-
tographic primitives. In this paper, we set the stage for a
form of protocol analysis that allows the analysis of these
interactions as well as many other attacks not permitted in
the standard model. Our framework uses a language for
defining communicating probabilistic polynomial-time pro-
cesses [22]. We restrict processes to probabilistic polynomial
time so that we can say that a protocol is secure if there is
no definable program which, when run in parallel with the
protocol, causes a security breach. Establishing a bound on
the running time of an adversary allows us to lift other re-
strictions on the behavior of an adversary. Specifically, an
adversary may send randomly chosen messages, or perform

b

sophisticated (yet probabilistic polynomial-time) computa-
tion to derive an attack from statistical analysis of messages
overheard on the network. In addition, we treat messages
as sequences of bits and allow specific encryption functions
such as RSA or DES to be written in full as part of a pro-
tocol. An important feature of our framework is that we
can analyze probabilistic as well as deterministic encryption
functions and protocols. Without a probabilistic framework,
it would not be possible to analyze an encryption function
such as ElGamal [11], for example, for which a single plain-
text may have more than one ciphertext.

In our framework, following the work of Abadi and Gor-
don (1], security properties of a protocol P may be formu-
lated by writing an idealized protocol Q so that, intuitively,
for any adversary M, the interactions between A4 and P
have the same observable behavior as the interactions be-
tween M and Q. Following [1], this intuitive description
may be formalized by using observational equivalence (also
called observational congruence), a standard notion from
the study of programming languages. Namely, two pro-
cesses (such as two protocols) P and Q are observationally
equivalent, written P ~ Q, if any program C[P] contain-
ing P has the same observable behavior as the program
C[Q] with Q replacing P. The reason observational equiv-
alence is applicable to security analysis is that it involves
quantifying over all possible adversaries, represented by the
environments, that might interact with the protocol partic-
ipants. Our framework is a refinement of this approach in
that in our asymptotic formulation, observational equiva-
lence between probabilistic polynomial-time processes coin-
cides with the traditional notion of indistinguishability by
polynomial-time statistical tests [17, 30], a standard way
of characterizing cryptographically strong pseudo-random
number generators.

2 A language for protocols and intruders

2.1 Protocol description

A protocol consists of a set of programs that communicate
over some medium in order to achieve a certain task. In this
paper, we are concerned with the security of cryptographic
protocols, which are protocols that use some set of cryp-
tographic operations. For simplicity, we will only consider
protocols that require some fixed number of communications
per instance of the protocol. For example, for each client-
server session, we assume that there is some fixed number of
client-server messages needed to execute the protocol. This
is the case for most handshake protocols, key-exchange pro-
tocols and authentication protocols, such as Kerberos, the
Secure Sockets Layer handshake protocol, and so on. While
we do not foresee any fundamental difficulty in extending
our basic methods to more general protocols that do not
have a fixed bound set in advance, there are some techni-
cal complications that we avoid by making this simplifying
assumption.

We will use a form of ~-calculus (a general process cal-
culus) [21] for defining protocols. One reason for using a
precise language is to make it possible to define protocols
exactly. As will be illustrated by example, many protocols
have been described using an imprecise notation that de-
scribes possible traces of the protocol, but does not define
the way that protocol participants may respond to incor-
rect messages or other communication that may arise from
the intervention of a malicious intruder. In contrast, pro-

cess calculus descriptions specify the response to adversary
actions precisely.

The second reason for defining a precise process compu-
tation and communication language is to characterize the
possible behavior of a malicious intruder. Specifically, we
assume that the protocol adversary may be any process or
set of processes that are definable in the language. In the
future, we hope to follow the direction established by the spi-
calculus [1] and use proof methods for forms of observational
congruence. However, in order to proceed in this direction,
we need further understanding of probabilistic observational
congruence and approximations such as probabilistic bisimu-
lation. Since there has been little prior work on probabilistic
process formalisms, one of our near-term goals is to better
understand the forms of probabilistic reasoning that would
be needed to carry out more accurate protocol analysis.

2.2 Protocol language

The protocol language consists of a set of terms, or sequen-
tial expressions that do not perform any communication,
and processes, which can communicate with one another.
The process portion of the language is a restriction of stan-
dard ~-calculus. All computation done by a process is ex-
pressed using terms. Since our goal is to model probabilistic
polynomial-time adversaries by quantifying over processes
definable in our language, it is essential that all functions
definable by terms lie in probabilistic polynomial time.

Although we use pseudo-code to write terms in this pa-
per, we have developed an applied, simply-typed lambda cal-
culus which exactly captures the probabilistic polynomial-
time terms. Our language is described in [22].

2.3 Processes

For any set of terms, we can define a set of processes.
Since we are interested in protocols with a fixed number
of steps, we do not need arbitrary looping. We therefore use
a bounded subset of asynchronous n-calculus, given by the
following grammar:

P::= N

o empty process (does nothing)

(M) transmit value of M on port n

n(x). P read value for z on port n and do P

P|lQ do P in parallel with Q

vn. P do P with port n considered private

WP execute up to k copies of process P

[M = NP if A4 = N then do P (guarded command)

let x = A4 in P bind variable x to M and do P

2.4 Communication

Intuitively, the communication medium for this language is
a buffered network that allows messages sent by any process
to be received by any other process, in any order. Messages
are essentially pairs consisting of a “port name” and a data
value. The expression 7{M) sends a message M on the
port . In other words, it places a pair (n, M) onto the
network. The expression n(z). P matches any pair (n, m)
and continues process P with z bound to value m. When
n(z). P matches a pair (n, M), the pair (n, M} is removed
from the network and is no longer available to be read by
another process. Evaluation of n{r). P does not proceed
unless or until a pair {n, ;n) is available.

Although we use port names to indicate the intended
source and destination of a communication, there are no
delivery guarantees in this model. Any process containing
a read expression for a given port can read any message
sent by any other process on that port. In particular, an
adversary can read any public network message sent by any
protocol participant.

Some readers may wonder why reading a message has
the side-effect of removing it from the network. One reason
is that we wish to allow an attacker to intercept messages
without forwarding them to other parties. This may occur
in practice when an attacker floods the subnet of a receiver.
In addition, we may express passive reads, which do not
remove messages from the network, as a combination of de-
structive read and resend. To make this precise, let us write
Tpasv(T). P as an abbreviation for n(z). (@) | P). It is
not hard to see that this definable combination of actions
is equivalent to the intuitive notion of a passive read. For
example, consider the process Z{a} | npasv(z). P | Q con-
taining an output and a passive read. If the passive read is
scheduled first, one computation step of this process leads
to Z(a) | Pla/z]| Q which is what one would expect from
a passive read primitive. Further details on the operational
semantics of the process language appear in Appendix A.

2.5 Example using symbolic cryptosystem

For readers not familiar with =-calculus, we give a brief ex-
ample using a simple set of terms with ““black-box’” cryptog-
raphy. Specifically, for this section only, let us use algebraic
expressions over sorts plain, cipher and key, representing
plaintext, ciphertext and keys, and function symbols

encrypt: plain x key — cipher
decrypt: cipher x key — plain

We illustrate the calculus by restating a simple protocol
written in “the notation commonly found in the literature”
where A — B indicates a message from A to B.

In the following protocol, A sends an encrypted message
to B. After receiving a message back that contains the
original plaintext, A sends another message to B.

A — B: encrypt(pi, ki) (1)
B — A encrypt(conc(pi,p2).ka) (2)
A — B: encrypt(ps, ki) (3)

We can imagine that p) is a simple message like ““hello”
and p3 is something more critical, like a credit card number.
Intuitively, after A receives a message back containing p1 ,
A may believe that it is communicating with B because
only B can decrypt a message encoded with B% key kB

This protocol can be written in r-calculus using the
same cryptographic primitives. However, certain decisions
must be made in the translation. Specifically, the notation
above says what communication will occur when everything
goes right, but does not say how the messages depend on
each other or what might happen if other messages are re-
ceived. Here is one interpretation of the protocol above. In
this interpretation, B responds to A without examining the
contents of the message from A to B. However, in step 3,
A only responds to B if the message it receives is exactly
the encryption of the concatenation of p, and p2.

AB(encrypt(pr, ks)) (1)

| aB(z). BA{encrypt(conc(decrypt(z, KB),p2), ka)) (2)

| Bay). [decrypt(y, Ka) = conc(pr,p2)])
AB{encrypt(ps, ka))

In words, the protocol is expressed as the parallel composi-
tion of three processes. Port » is used for messages from
A to B while port Ba for messages from B to A.

A fundamental idea that we have adopted from spi-
calculus [1] is that an intruder may be modeled by a pro-
cess context, which is a process expression containing a hole
indicating a place that may be filled by another process.
Intuitively, we think of the context as the environment in
which the process in the hole is executed. To give a specific
example, consider the context

C[]=11]|as(z). aB{encrypt(p1, kc))

where the empty square brackets [] indicate the hole
for an additional process. If we insert a process P
in this context, the resulting process C[P] will run
aB(z). AB(encrypt(p1, kc)) in parallel with P. It is easy
to see that if we insert the protocol above in this context,
then the context could intercept the first message from A
to B and replace it by another one using a different key.

2.6 Example

Our first example (continued in Section 4.1) is a simple pro-
tocol based on ElGamal Encryption [11] and Diffie-Hellman
Key Exchange [8], formulated in a way that gives us a series
of steps to look at. The protocol assumes that a prime p
and generator g of Z; are given and publicly available. Us-
ing the notation commonly found in the security literature,
this protocol may be written

A — B : g* modp
B - A : ¢® mod p
A - B msg * g°® modp

The main idea here is that by choosing a and receiving
g® mod p, Alice can compute g*®> mod p. Bob can sim-
ilarly compute ¢** mod p, allowing Alice and Bob to en-
crypt by multiplying by ¢*® and decrypt by dividing by g°°.
It is generally believed that no eavesdropper can compute
9*® mod p by overhearing g% and g¢°. Since this protocol is
susceptible to attack by an adversary who intercepts a mes-
sage and replaces it, we will only consider adversaries who
listen passively and try to determine if the message msg has
been sent.

In r-calculus notation, the protocol may be written
as follows. We use the convention that port aB; is used
for the ith message from A to B, and meta-notation for
terms that could be written out in detail in our probabilistic
polynomial-time language. To make explicit the assumption
that p and g are public, the protocol transmits them on a
public port.

let p be a random n-bit prime and
g a generator of Z,
in PUBLIC(p) | PUBLIC(g)
| let a be a random number in [1,p — 1]
in 281(¢g* mod p)
| BA(z). ABz{msg * £ mod p)
| let b be a random number in [1, p — 1]
in 4B:1(y). BA(g® mod p)

An analysis appears in Section 4.1.

b Mt e

2.7 Parallelism, Nondeterminism and Complexity

For complexity reasons, we must give a nonstandard prob-
abilistic semantics for to parallel composition. Specifically,
our intention is to design a language of communicating pro-
cesses so that an adversary expressed by a set of processes
is restricted to probabilistic polynomial time. However, if
we interpret parallel composition in the standard nondeter-
ministic fashion, then a pair of processes may nondetermin-
istically “guess” any secret information.

This issue may be illustrated by example. Let us assume
that B has a private key K, that is k bits long and consider
the one-step protocol where A encrypts a message using this
key and sends it to B.

A — B {msg}x,

We assume that an evil adversary wishes to discover the
message msg. If we allow the adversary to consist of 3
processes Ep , Ei and E, scheduled nondeterministically,
then this can be accomplished. Specifically, we let

A = aB(encrypt(K,, msg))
Eo = !%5(0)

El = !k_E‘_<l>

E = E(bo).. . E(br-1). aB(z).

o be—1),msg))

Adversary processes Ey and E, each send k bits to E, all
on the same port. Process E reads the message from A
to B, concatenates the bits that arrive nondeterministically
in some order, and decrypts the message. One possible ex-
ecution of this set of processes allows the eavesdropper to
correctly decrypt the message. Under traditional nondeter-
ministic semantics of parallel composition, this means that
such an eavesdropper can break any encryption mechanism.

Intuitively, the attack described above should not suc-
ceed with much more than probability 1/2’° , the probability
of guessing key K3 using random coins. Specifically, sup-
pose that the key Kj is chosen at random from a space
of order 2 keys. If we run processes Eg, Ey, E on phys-
ical computers communicating over an ethernet, for exam-
ple, then the probability that communication from Eq and
E, will accidentally arrive at E in an order producing ex-
actly K, cannot be any higher than the probability of ran-
domly guessing K, Therefore, although nondeterminism
is a useful modeling assumption in studying correctness of
concurrent programs, it does not seem helpful for analyzing
cryptographic protocols.

Since nondeterminism does not realistically model the
probability of attack, we use a probabilistic form of par-
allel composition. This is described in more detail in Ap-
pendix A, which contains a full operational semantics.

Public{decrypt(conc(bo, . .

3 Process Equivalence

Observational equivalence, also called observational congru-
ence, is a standard notion in the study of programming lan-
guages. We explain the general concept briefly, as it arises
in a variety of programming languages.

The main idea is that the important features of a part
of a program, such as a function declaration, processes or
abstract data type, are exactly those properties that can be
observed by embedding them in full programs that may pro-
duce observable output. To formalize this in a specific pro-
gramming language £, we assume the language definitions

gives rise to some set of program contests, each context C{]
consisting of a program with a ““hole” (indicated by empty
square brackets []) to insert a phrase of the language, and
some set Obs of concrete observable actions, such as integer
or string outputs. We also assume that there is some se-

mantic evaluation relation ‘4’.‘1’, with M 2% meaning that
evaluation or execution of the program M produces the ob-
servable action v . In a functional language, this would mean
that v is a possible value of M, while in a concurrent setting
this might mean that v is a possible output action. Under
these assumptions, we may associate an ezperiment on pro-
gram phrase with each context C[] and observable v: given
phrase P, run the program C[P] obtained by placing P in
the given context and see whether observable action v oc-
curs. The main idea underlying the concept of observational
equivalence is that the properties of a program phrase that
matter in program construction are precisely the properties
that can be observed by experiment. Phrases that give the
same experimental results can be considered equivalent.

Formally, we say program phrases P and Q are obser-
vationally equivalent, written P ~ @, if, for all program
contexts C[] and observables v € O, we have

CIP) %y iff ClQI % v
In other words, P =~ Q if, for any program C[P] contain-
ing P, we can make exactly the same concrete observations
about the behavior of C[P] as we can about the behavior
of the program C[Q] obtained by replacing some number of
occurrences of P by Q.

For the process language considered in this paper, we are
interested in contexts that distinguish between processes.
(We will not need to consider observational equivalence of
terms.) Therefore, the contexts of interest are process ex-
pressions with a ““hole”, given by the following grammar

Cl] === [1 1 n@-C[] | PIC[] | ClliQ |
vn.C[] | [M=NIC[] | letz=MinC[]

A process observation will be a communication event on a
port whose name is not bound by ». More specifically, we
let Obs be the set of pairs (n, m) , where n is a port name

eval

and m is an integer, and write P =% {n,m) if evaluation
of process expression P leads to a state (represented by
a process expression) of the form . . . |7i{m) in which the
process is prepared to communicate integer m on port n
and n is not within the scope of a binding vn. . (This

can be made more precise using the structural equivalence

relation in the Appendix.) In more general terms, P <y

in our language if process P publicly outputs v.

The general definition of = above is essentially standard
for deterministic or nondeterministic functional, imperative
or concurrent languages. Some additional considerations en-
ter when we consider probabilistic languages. Drawing from
standard notions in cryptography, we propose the following
adaptation of observational equivalence to the probabilistic
polynomial-time process language at hand.

Intuitively, given program phrases P and Q , context C[]
and observable action v , it seems reasonable to compare the

eval

probability that C[P] %' v to the probabifity that C[Q] %
v. However, since a probability distribution is an infinite
entity, it is not clear how to ““observe” a distribution. We
might run C{P] some number of rimes. count how many
times v occurs, and then repeat rhe series of experiments for

Automated Analysis of Cryptographic Protocols Using Mury

John C. Mitchell Mark Mitchell Ulrich Stern
Dept Computer Science
Stanford University
Stanford, CA 94305

Abstract

A methodology is presented for using a general-
purpose state enumeration tool, Mury, to analyze cryp-
tographic and security-related protocols. We illus-
trate the feasibility of the approach by analyzing the
Needham-Schroeder protocol, finding a known bug in a
few seconds of computation time, and analyzing vari-
ants of Kerberos and the faulty TMN protocol used in
another comparative study. The efficiency of Muryp al-
lows us to examine multiple runs of relatively short pro-
tocols. giving us the ability to detect replay attacks, or
errors resulting from confusion between independent ex-
ecution of a protocol by independent parties.

1 Introduction

Encouraged by the success of others in analyzing
the Needham-Schroeder public-key authentication pro-
tocol using the FDR model checker for CSP [10, 11, 13,
14], we have carried out a feasibility study for a related,
but somewhat different general tool called Mur¢ [1],
pronounced “Mur-phi”. In this paper, we outline our
general methodology and summarize our investigation
of three protocols. First; we repeat Lowe3% analysis of
the Needham-Schroeder protocol, finding a violation of
the correctness condition in a simplified protocol, and
then failing to find a violation in a repaired version
of the protocol. Next, we analyze the TMN proto-
col [18], first finding a simple error also identified by
two of the three tools described in a comparative study
by Kemmerer, Meadows and Millen {7]. (These three

This work was supported in part by the Defense Advanced
Research Projects Agency through NASA contract NAG-2-891,
and the National Science Foundation through grants CCR-
9303099 and CCR-9629754. The views and conclusions con-
tained in this document are those of the author(s) and should
not be interpreted as representing the official policies, either ex-
pressed or implied: of the Defense Advanced Research Projects
Agency, NASA, NSF or the US Government.

tools appear to require more expert guidance than our
brute force state exploration tool.) After modifying
our system description to eliminate the first error, our
system finds a second automatically. With some mi-
nor refinement of the cryptographic model, based on
general principles we present in this paper, a third run
also uncovers a related RSA-specific error that is ex-
plained in [18] and also discovered by the third tool in
Kemmerer, Meadows and Millen’s comparative study
(but not the other two tools). We also investigate Ker-
beros, version 5, finding a failure in a simplified version
based on documentation [9], and then “verifying” a re-
paired version that is closer to the full implementation
given in RFC-1510 [8]. 0 ne interesting aspect of the
Kerberos error is that it only occurs in a system config-
uration that includes more than the minimal number
of participants.

In general, we believe that a general-purpose tool for
analyzing finite-state systems may be useful for analyz-
ing cryptographic or security-related protocols. The
main challenges that arise are:

e State-space explosion, as with other tools,

e Subtleties involving formalization of the adversary
or adversaries, and

e Subtleties involving properties of the encryption
primitives, which may be modeled as completely
secure black-box primitives, or primitives with
other algebraic or “malleability” [3] properties.

One aspect of our approach that we believe will
prove useful is that it is feasible to modify a Muryp
system description to reflect a situation where one or
more pieces of secret information have been compro-
mised. For example, it is easy to modify our Kerberos
description to give the adversary knowledge that two
clients are using the same private key, without reveal-
ing the key to the adversary. The method is illustrated
in our analysis of TMN to allow the adversary to gen-
erate an encryption of nm from an encryption of n, for

any numbers n and m, without allowing the adversary
to decrypt any messages. The fact that an adversary
can compute the RSA-encryption of one message from
the RSA-encryption of another, without decrypting, is
an example of “malleability” [3]. Since previous anal-
yses tend to assume non-malleability, we expect that
further insight into specific protocols may be gained
by taking algebraic properties of specific cryptosystems
into consideration.

Some promising future directions involve automatic
translation of a higher-level protocol specification lan-
guage such as cAPsL into Murcp, and combined analy-
ses using both exhaustive finitestate analysis and for-
mal logical methods. In particular, we hope to develop
better techniques for using the results of state enumer-
ation to simplify formal correctness proofs for poten-
tially unbounded (or non-finite) systems, and to use
formal proofs of invariants to narrow the search space
for state enumeration. A larger limitation, to which we
have not yet turned our attention, is that we have no
way of incorporating probabilistic analysis. For exam-
ple, we cannot outfit our adversary with an unbiased
coin and compute the probability that a randomized
attack will compromise a protocol.

Contents:

. Outline of methodology

. Needham-Schroeder public-key protocol
. Study of TMN protocol

. Kerberos

Discussion

. Conclusion

NoO A WN

2 Outline of the methodology

Our general methodology is similar to the approach
used in CSP model checking [10, 14] of cryptographic
protocols. However, there are some differences between
Murcp and FDR.

2.1 The Murcp Verification System

Murcp [1] is a protocol verification tool that has
been successfully applied to several industrial proto-
cols, especially in the domains of multiprocessor cache
coherence protocols and multiprocessor memory mod-
els [2, 16, 19].

To use Mury for verification, one has to model the
protocol in the Murcp language and augment this model
with a specification of the desired properties. The
Mury system automatically checks, by explicit state
enumeration, if all reachable states of the model satisfy

the given specification. For the state enumeration, ei-
ther breadth-first or depth-first search can be selected.
Reached states are stored in a hash table to avoid re-
dundant work when a state is revisited. The memory
available for this hash table typically determines the
largest tractable problem.

The Murcp language is a simple high-level language
for describing nondeterministic finite-state machines.
Many feature