
Pleiades Project

Collected Work
1997-1998

Multidisciplinary Research Initiative

Semantic Consistency in Information Exchange

Organization of Naval Research Grant N00014-97-1-0505

Edited by Iliano Cervesato and John C. Mitchell

Preface
This report collects the papers that were written by the participants of the
Pleiades Project and their collaborators from April 1997 to August 1998. Its
intent is to give the reader an overview of our accomplishments during this
initial phase of the project. Therefore, rather than including complete publi-
cations, we chose to reproduce only the first four pages of each paper. In or-
der to satisfy the legitimate curiosity of readers interested in specific articles,
each paper can be integrally retrieved from the World-Wide Web through the
provided URL. A list of the current publications of the Pleiades Project is
accessible at the URL http://theory.stanford.edu/muri/papers.html.
Future articles will be posted there as they become available.

This report is divided into six parts that reflect the scope of the Pleiades
Project. These are: Security Protocol Analysis, Real-Time Systems, Prob-
abilistic Program Correctness, Programming Languages, Temporal Reason-
ing, and Adaptive Agents.

The Pleiades Project, more formally known as Multidisciplinary Research
Initiative (MURI) on Semantic Consistency in Information Exchange, is
funded by grant number N00014-97-0505 of the Organization of Naval Re-
search. Its purpose is to investigate issues of semantic consistency in the
transfer of active information, such as executable program components, in
information systems that are maintained over time, distributed over many
locations, or composed of separate subsystems that may be implemented in
different ways or designed according to different objectives or assumptions.

The current participants of the Pleiades Project include Iliano Cervesato
(Stanford University), Cynthia Dwork (IBM Almaden Research Center),
Funda Ergtin (University of Pennsylvania), Diana Gordon (Naval Research
Laboratory), Sampath Kannan (University of Pennsylvania), Insup Lee (Uni-
versity of Pennsylvania), Patrick Lincoln (SRI International), John Mitchell
(Stanford University, principal investigator), Ronitt Rubinfeld (Cornell Uni-
versity), Andre Scedrov (University of Pennsylvania), and Ulrich Stern (Stan-
ford University), and several graduate students from Cornell University, the
University of Pennsylvania, and Stanford University.

Stanford, September 21st 1998
Iliano Cervesato,
John C. Mitchell.

Contents

Part I Security Protocol Analysis

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre Sce-
drov
A probabilistic poly-time framework for protocol analysis

John C. Mitchell, Mark Mitchell, and Ulrich Stern
Automated Analysis of Cryptographic Protocols Using Murphi

John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern
Finite-State Analysis of SSL 3.0

Vitaly Shmatikov and Ulrich Stern
Efficient Finite-State Analysis for Large Security Protocols

Part II Real-Time Systems

Hee-Hwan Kwak, Jin-Young Choi, Insup Lee, Anna Philippou,
and Oleg Sokolsky
Symbolic Schedulability Analysis of Real-time Systems

Max Kanovich, Mitsu Okada, and Andre Scedrov
Specifying Real-Time Finite-State Systems in Linear Logic

Anna Philippou, Oleg Sokolsky, Insup Lee, Rance Cleaveland,
and Scott Smolka
Probabilistic Resource Failure in Real-Time Process Algebra

Anna Philippou, Oleg Sokolsky, Insup Lee, Rance Cleaveland,
and Scott Smolka
Specifying Failures and Recoveries in PACSR

Oleg Sokolsky, Insup Lee, and Han&e Ben-Abdallah
Specification and Analysis of Real-Time Systems with
PARAGON

Oleg Sokolsky, Mohamed Younis, Insup Lee, Hee-Hwan Kwak,
and Jeff Zhou
Verification of the Redundancy Management System for Space
Launch Vehicle: A Case Study

Part III Probabilistic Program Correctness

Funda Ergiin, Sasmpath Kannan, S. Ravi Kumar, Ronitt Ru-
binfeld, and Mahesh Viswanathan
Spot-Checkers

Funda Ergli’n, S. Ravi Kumar, and Ronitt Rubinfeld
Approximate Checking of Polynomials and Functional Equa-
tions

Part IV Programming Languages

Iliano Cervesato
Proof-Theoretic Foundation of Compilation in Logic Program-
ming Languages

Stephen Freund and John C. Mitchell
A Type System for Object Initialization in the Java Bytecode
Language

Part v Temporal Reasoning

Iliano Cervesato, Massimo Franceschet, and Angelo Monta-
nari
Event Calculus with Explicit Quantifiers

Iliano Cervesato, Massimo Franceschet, and Angelo Monta-
nari
The Complexity of Model Checking in Modal Event Calculi
with Quantifiers

Part VI Adaptive Agents

Diana Gordon
Well-behaved Bergs, Bolos, and Berserkers

Part I

Security Protocol Analysis

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre Scedrov: “A
probabilistic poly-time framework for protocol analysis”, in the proceedings
of the fifth ACM Conference on Computer and Communications Security,
San Francisco, CA, November, 1998.

Full paper: file://www.cis.upenn.edu/pub/papers/scedrov/acmccs.ps.gz

John C. Mitchell, Mark Mitchell, and Ulrich Stern: “Automated Analysis
of Cryptographic Protocols Using Murphi”, in the Proceedings of the 1997
IEEE Symposium on Security and Privacy, pages 141-153, Oakland, CA,
May 1997.
Fullpaper: ftp://theory.stanford.edu/pub/jcm/papers/murphi-protocols.ps

John C. Mitchell, Vitaly Shmatikov, and Ulrich Stern: “Finite-State Analy-
sis of SSL 3.0”, in the Proceedings of the 7th USENIX Security Symposium,
pages 201-216, San Antonio, 1998. Preliminary version presented at DI-
MACS Workshop on Design and Formal Verification of Security Protocols,
September 1997, and distributed on workshop CD.
Full paper: ftp://theory.stanford.edu/pub/jcm/papers/ssl-usenix.ps

Vitaly Shmatikov and Ulrich Stern: “Efficient Finite-State Analysis for
Large Security Protocols”, in the Proceedings of the 11th IEEE Computer
Security Foundations Workshop, pages 106-115, Rockport, MA, June 1998.
Full paper: http: //sprout. Stanf ord. EDU/uli/secur/prio .ps . Z

A probabilistic poly-time framework for protocol analysis

P. Lincoln*t J . Mitchell*3 M . Mitchell*S
Computer Science Laboratory Department of Computer Science

SRI International Stanford University

A. Scedrov*(
Department of Mathematics
University of Pennsylvania

Abstract

We develop a framework for analyzing security protocols in
which protocol adversaries may be arbitrary probabilistic
polynomial-time processes. In this framework, protocols are
written in a form of process calculus where security may be
expressed in terms of observational equivalence, a standard
relation from programming language theory that involves
quantifying over possible environments that might interact
with the protocol. Using an asymptotic notion of proba-
bilistic equivalence, we relate observational equivalence to
polynomial-time statistical tests and discuss some example
protocols to illustrate the potential of this approach.

1 Introduction

Protocols based on cryptographic primitives are commonly
used to protect access to computer systems and to protect
transactions over the internet. Two well-known examples
are the Kerberos authentication scheme [15, 141, used to
manage encrypted passwords, and the Secure Sockets Layer
[12], used by internet browsers and servers to carry out se-
cure internet transactions. Over the past decade or two, a
variety of methods have been developed for analyzing and
reasoning about such protocols. These approaches include
specialized logics such as BAN logic [5], special-purpose
tools designed for cryptographic protocol analysis [13], and
theorem proving [26, 271 and model-checking methods using
general purpose tools [16, 18, 23, 28, 291.

Although there are many differences among these ap-
proaches, most current approaches use the same basic model
of adversary capabilities. This model, apparently derived
from [lo], treats cryptographic operations as “black-box”
primitives. For example, encryption is generally considered
a primitive operation, with plaintext and ciphertext treated
as atomic data that cannot be decomposed into sequences of
bits. In most uses of this model, as explained in [23, 26, 291,
there are specific rules for how an adversary can learn new
information. For example, if the decryption key is sent over
the network “in the clear”, it can be learned by the ad-
versary. However, it is not possible for the adversary to
learn the plaintext of an encrypted message unless the en-

‘Partially supported by DOD MURI “Semantic Consistency in In-
formation Exchange,” ONR Grant N00014-97-1-0505.

‘Additional support from NSF CCR-9509931.
*Additional support from NSF CCR-9629754.
§Additional support from Stanford University Fellowship.
qAdditional support from NSF Grant CCR-9800785.

tire decryption key has already been learned. Generally, the
adversary is treated as a nondeterministic process that may
attempt any possible attack, and a protocol is considered
secure if no possible interleaving of actions results in a se-
curity breach. The two basic assumptions of this model,
perfect cryptography and nondeterministic adversary, pro-
vide an idealized setting in which protocol analysis becomes
relatively tractable.

While there have been significant accomplishments using
this model, the assumptions inherent in the standard model
also make it possible to “verify” protocols that are in fact
susceptible to attack. For example, the adversary is not
allowed (by the model) to learn a decryption key by guessing
it, since then some nondeterministic execution would allow a
correct guess, and all protocols relying on encryption would
be broken. However, in some real cases, adversaries can
learn some bits of a key by statistical analysis, and can then
exhaustively search the remaining (smaller) portion of the
key space. Such an attack is simply not considered by the
model described above, since it requires both knowledge of
the particular encryption function involved and also the use
of probabilistic methods.

Another way of understanding the limitations of com-
mon formal methods for protocol analysis is to consider the
plight of someone implementing or installing a protocol. A
protocol designer may design a protocol and prove that it
is correct using the “black-box” cryptographic approach de-
scribed above. However, an installed system must use a
particular encryption function, or choice of encryption func-
tions. Unfortunately, very few, if any, encryption functions
satisfy all of the black-box assumptions. As a result, an
implementation of a protocol may in fact be susceptible to
attack, even though both the abstract protocol and the en-
cryption function are individually correct.

Our goal is to establish an analysis framework that can
be used to explore interactions between protocols and cryp-
tographic primitives. In this paper, we set the stage for a
form of protocol analysis that allows the analysis of these
interactions as well as many other attacks not permitted in
the standard model. Our framework uses a language for
defining communicating probabilistic polynomial-time pro-
cesses [22]. We restrict processes to probabilistic polynomial
time so that we can say that a protocol is secure if there is
no definable program which, when run in parallel with the
protocol, causes a security breach. Establishing a bound on
the running time of an adversary allows us to lift other re-
strictions on the behavior of an adversary. Specifically, an
adversary may send randomly chosen messages, or perform

1

sophisticated (yet probabilistic polynomial-time) computa-
tion to derive an attack from statistical analysis of messages
overheard on the network. In addition, we treat messages
as sequences of bits and allow specific encryption functions
such as RSA or DES to be written in full as part of a pro-
tocol. An important feature of our framework is that we
can analyze probabilistic as well as deterministic encryption
functions and protocols. Without a probabilistic framework,
it would not be possible to analyze an encryption function
such as ElGamal [ll], for example, for which a single plain-
text may have more than one ciphertext.

In our framework, following the work of Abadi and Gor-
don [l], security properties of a protocol P may be formu-
lated by writing an idealized protocol Q so that, intuitively,
for any adversary M, the interactions between A4 and P
have the same observable behavior as the interactions be-
tween hl and Q. Following [l], this intuitive description
may be formalized by using observational equivalence (also
called observational congruence), a standard notion from
the study of programming languages. Namely, two pro-
cesses (such as two protocols) P and Q are observationally
equivalent, written P = Q, if any program C[P] contain-
ing P has the same observable behavior as the program
C[Q] with Q replacing P. The reason observational equiv-
alence is applicable to security analysis is that it involves
quantifying over all possible adversaries, represented by the
environments, that might interact with the protocol partic-
ipants. Our framework is a refinement of this approach in
that in our asymptotic formulation, observational equiva-
lence between probabilistic polynomial-time processes coin-
cides with the traditional notion of indistinguishability by
polynomial-time statistical tests [17, 301, a standard way
of characterizing cryptographically strong pseudo-random
number generators.

2 A language for protocols and intruders

2.1 Protocol description

A protocol consists of a set of programs that communicate
over some medium in order to achieve a certain task. In this
paper, we are concerned with the security of cryptographic
protocols, which are protocols that use some set of cryp-
tographic operations. For simplicity, we will only consider
protocols that require some fixed number of communications
per instance of the protocol. For example, for each client-
server session, we assume that there is some fixed number of
client-server messages needed to execute the protocol. This
is the case for most handshake protocols, key-exchange pro-
tocols and authentication protocols, such as Kerberos, the
Secure Sockets Layer handshake protocol, and so on. While
we do not foresee any fundamental difficulty in extending
our basic methods to more general protocols that do not
have a fixed bound set in advance, there are some techni-
cal complications that we avoid by making this simplifying
assumption.

We will use a form of ~-calculus (a general process cal-
culus) [21] for defining protocols. One reason for using a
precise language is to make it possible to define protocols
exactly. As will be illustrated by example, many protocols
have been described using an imprecise notation that de-
scribes possible traces of the protocol, but does not define
the way that protocol participants may respond to incor-
rect messages or other communication that may arise from
the intervention of a malicious intruder. In contrast, pro-

cess calculus descriptions specify the response to adversary
actions precisely.

The second reason for defining a precise process compu-
tation and communication language is to characterize the
possible behavior of a malicious intruder. Specifically, we
assume that the protocol adversary may be any process or
set of processes that are definable in the language. In the
future, we hope to follow the direction established by the spi-
calculus [l] and use proof methods for forms of observational
congruence. However, in order to proceed in this direction,
we need further understanding of probabilistic observational
congruence and approximations such as probabilistic bisimu-
lation. Since there has been little prior work on probabilistic
process formalisms, one of our near-term goals is to better
understand the forms of probabilistic reasoning that would
be needed to carry out more accurate protocol analysis.

2.2 Protocol language

The protocol language consists of a set of terms, or sequen-
tial expressions that do not perform any communication,
and processes, which can communicate with one another.
The process portion of the language is a restriction of stan-
dard ~-calculus. All computation done by a process is ex-
pressed using terms. Since our goal is to model probabilistic
polynomial-time adversaries by quantifying over processes
definable in our language, it is essential that all functions
definable by terms lie in probabilistic polynomial time.

Although we use pseudo-code to write terms in this pa-
per, we have developed an applied, simply-typed lambda cal-
culus which exactly captures the probabilistic polynomial-
time terms. Our language is described in [22].

2.3 Processes

For any set of terms, we can define a set of processes.
Since we are interested in protocols with a fixed number
of steps, we do not need arbitrary looping. We therefore use
a bounded subset of asynchronous n-calculus, given by the
following grammar:

P : : =
0
wf)
n(x). P
PIQ
vn. P

g= N]p
let x = A4 in P

.
empty process (does nothing)
tra&nIt value of &f on p0rt.n
read value for I on port n and do P
do P in parallel with Q
do P with port n considered private
execute up to k copies of process P
if A4 = N then do P (guarded command)
bind variable x to 15f and do P

2.4 Communication

Intuitively, the communication medium for this language is
a buffered network that allows messages sent by any process
to be received by any other process, in any order. Messages
are essentially pairs consisting of a “port name” and a data
value. The expression Z(M) sends a message M on the
port n. In other words, it places a pair (n, M) onto the
network. The expression n(x). P matches any pair (n, m)
and continues process P with z bound to value m. When
n(x). P matches a pair (n, &f), the pair (n, &f) is removed
from the network and is no longer available to be read by
another process. Evaluation of n(r). P does not proceed
unless or until a pair (n, m) is available.

2

L. -_.- - .

Although we use port names to indicate the intended
source and destination of a communication, there are no
delivery guarantees in this model. Any process containing
a read expression for a given port can read any message
sent by any other process on that port. In particular, an
adversary can read any public network message sent by any
protocol participant.

Some readers may wonder why reading a message has
the side-effect of removing it from the network. One reason
is that we wish to allow an attacker to intercept messages
without forwarding them to other parties. This may occur
in practice when an attacker floods the subnet of a receiver.
In addition, we may express passive reads, which do not
remove messages from the network, as a combination of de-
structive read and resend. To make this precise, let us write
npasv(z). P as an abbreviation for n(z). @(i(z)) P). It is
not hard to see that this definable combination of actions
is equivalent to the intuitive notion of a passive read. For
example, consider the process ??(a)] npasv(z). P) Q con-
taining an output and a passive read. If the passive read is
scheduled first, one computation step of this process leads
to ~(a) 1 P[,/z] I Q which is what one would expect from
a passive read primitive. Further details on the operational
semantics of the process language appear in Appendix A.

2.5 Example using symbolic cryptosystem

For readers not familiar with rr-calculus, we give a brief ex-
ample using a simple set of terms with “black-box” cryptog-
raphy. Specifically, for this section only, let us use algebraic
expressions over sorts plain, cipher and Icey, representing
plaintext, ciphertext and keys, and function symbols

encrypt: plain x key + cipher
decrypt: cipher x key + plain

We illustrate the calculus by restating a simple protocol
written in “the notation commonly found in the literature”
where A + B indicates a message from A to B.

In the following protocol, A sends an encrypted message
to B. After receiving a message back that contains the
original plaintext, A sends another message to B.

A + B: encrypt(pl, ks) (1)
B + A: enCTypt(COnc(pl ,p2), kA)
A -+ B: CTKTypt(ps, ks)

[;;

We can imagine that pi is a simple message like “hello”
and ps is something more critical, like a credit card number.
Intuitively, after A receives a message back containing pi ,
A may believe that it is communicating with B because
only B can decrypt a message encoded with B’s key kB

This protocol can be written in r-calculus using the
same cryptographic primitives. However, certain decisions
must be made in the translation. Specifically, the notation
above says what communication will occur when everything
goes right, but does not say how the messages depend on
each other or what might happen if other messages are re-
ceived. Here is one interpretation of the protocol above. In
this interpretation, B responds to A without examining the
contents of the message from A to B. However, in step 3,
A only responds to B if the message it receives is exactly
the encryption of the concatenation of pl and pa.

AB(encvpt(pl, kB))
1 Ae(z).~(enCTypt(COnC(deCTypt(z,K~),pz), kA)) [l;
1 BA(Y). [d’=-YPt(Y,KA) = coh’l,P~)] (3)-AB(encTYPt(P3, ka))

In words, the protocol is expressed as the parallel composi-
tion of three processes. Port AB is used for messages from
A to B while port BA for messages from B to A.

A fundamental idea that we have adopted from spi-
calculus [l] is that an intruder may be modeled by a pro-
cess context, which is a process expression containing a hole
indicating a place that may be filled by another process.
Intuitively, we think of the context as the environment in
which the process in the hole is executed. To give a specific
example, consider the context

c[] = [] 1 AB(z).=(encTypt(Pl, kc))

where the empty square brackets [] indicate the hole
for an additional process. If we insert a process P
in this context, the resulting process C[P] will run-~~(~).~~(enc~ypt(p~, kc)) in parallel with P. It is easy
to see that if we insert the protocol above in this context,
then the context could intercept the first message from A
to B and replace it by another one using a different key.

2.6 Example

Our first example (continued in Section 4.1) is a simple pro-
tocol based on ElGamal Encryption [ll] and Diffie-Hellman
Key Exchange [8], formulated in a way that gives us a series
of steps to look at. The protocol assumes that a prime p
and generator g of 2; are given and publicly available. Us-
ing the notation commonly found in the security literature,
this protocol may be written

A + B : ga modp
B + A : gb mod p
A + B : msg*gab modp

The main idea here is that by choosing a and receiving
gb mod p, Alice can compute gab mod p. Bob can sim-
ilarly compute gab mod p, allowing Alice and Bob to en-
crypt by multiplying by gab and decrypt by dividing by gab.
1;:s generally believed that no eavesdropper can compute
9 mod p by overhearing ga and 9’. Since this protocol is
susceptible to attack by an adversary who intercepts a mes-
sage and replaces it, we will only consider adversaries who
listen passively and try to determine if the message msg has
been sent.

In r-calculus notation, the protocol may be written-as follows. We use the convention that port A& is used
for the ith message from A to B, and meta-notation for
terms that could be written out in detail in our probabilistic
polynomial-time language. To make explicit the assumption
that p and g are public, the protocol transmits them on a
public port.

let p be a random n-bit prime and
g a generator of 2;

in PUBLIC(~) I PUBLIC(g)
I let a be a random number in [l,p - 11

in ABI(~~ mod p)
1 BA(Z). z(msg * za mod p)

1 let b be a random number in [I, p - l]
in ABE. BA(gb mod p)

An analysis appears in Section 4.1.

3

2.7 Parallelism, Nondeterminism and Complexity
For complexity reasons, we must give a nonstandard prob-
abilistic semantics for to parallel composition. Specifically,
our intention is to design a language of communicating pro-
cesses so that an adversary expressed by a set of processes
is restricted to probabilistic polynomial time. However, if
we interpret parallel composition in the standard nondeter-
ministic fashion, then a pair of processes may nondetermin-
istically uguessn any secret information.

This issue may be illustrated by example. Let us assume
that B has a private key &, that is k bits long and consider
the one-step protocol where A encrypts a message using this
key and sends it to B.

A + B : {msg}K,

We assume that an evil adversary wishes to discover the
message msg. If we allow the adversary to consist of 3
processes Eo , El and E, scheduled nondeterministically,
then this can be accomplished. Specifically, we let

A = ~(encfypt(Kb, msg))
Eo = !kE(O)
El = !kS(l)
E = E(bo). . . E(bk-1). A+).

Pllblic(de~qpt(~on~(bo, . . . , bk-I), mSg))

Adversary processes EO and El each send k bits to E, all
on the same port. Process E reads the message from A
to B , concatenates the bits that arrive nondeterministically
in some order, and decrypts the message. One possible ex-
ecution of this set of processes allows the eavesdropper to
correctly decrypt the message. Under traditional nondeter-
ministic semantics of parallel composition, this means that
such an eavesdropper can break any encryption mechanism.

Intuitively, the attack described above should not suc-
ceed with much more than probability l/2”, the probability
of guessing key Kb using random coins. Specifically, sup-
pose that the key &, is chosen at random from a space
of order 2” keys. If we run processes Eo, El, E on phys-
ical computers communicating over an ethernet, for exam-
ple, then the probability that communication from EO and
El will accidentally arrive at E in an order producing ex-
actly Kb cannot be any higher than the probability of ran-
domly guessing Kb Therefore, although nondeterminism
is a useful modeling assumption in studying correctness of
concurrent programs, it does not seem helpful for analyzing
cryptographic protocols.

Since nondeterminism does not realistically model the
probability of attack, we use a probabilistic form of par-
allel composition. This is described in more detail in Ap-
pendix A, which contains a full operational semantics.

3 Process Equivalence

Observational equivalence, also called observational congru-
ence, is a standard notion in the study of programming lan-
guages. We explain the general concept briefly, as it arises
in a variety of programming languages.

The main idea is that the important features of a part
of a program, such as a function declaration, processes or
abstract data type, are exactly those properties that can be
observed by embedding them in full programs that may pro-
duce observable output. To formalize this in a specific pro-
gramming language C, we assume the hanguagc defiuitions

gires rise to some set of program contetis, each context C[]
consisting of a program with a “hole” (indicated by empty
square brackets [1) to insert a phrase of the language, and
some set Obs of concrete observable actions, such as integer
or string outputs. We also assume that there is some se-
mantic evaluation relation ‘2’) with M ‘2’ v meaning that
evaluation or execution of the program M produces the ob-
servable action v . In a functional language, this would mean
that v is a possible value of M, while in a concurrent setting
this might mean that v is a possible output action. Under
these assumptions, we may associate an ezperiment on pro-
gram phrase with each context C[] and observable v: given
phrase P, run the program C[P] obtained by placing P in
the given context and see whether observable action v oc-
curs. The main idea underlying the concept of observational
equivalence is that the properties of a program phrase that
matter in program construction are precisely the properties
that can be observed by experiment. Phrases that give the
same experimental results can be considered equivalent.

Formally, we say program phrases P and Q are obser-
vationally equivalent, written P 2: Q: if, for all program
contexts C[] and observables v E 0, we have

In other words, P 1: Q if, for any program C[P] contain-
ing P, we can make exactly the same concrete observations
about the behavior of C[P] as we can about the behavior
of the program C[Q] obtained by replacing some number of
occurrences of P by Q.

For the process language considered in this paper, we are
interested in contexts that distinguish between processes.
(We will not need to consider observational equivalence of
terms.) Therefore, the contexts of interest are process ex-
pressions with a “hole”, given by the following grammar

CII ::= [I I +).C[l I W[l I CIIIQ I
yn.C[]] [M=N]C[]] letz=MinC[]

A process observation will be a communication event on a
port whose name is not bound by V. hIore specifically, we
let Obs be the set of pairs (n, m) , where n is a port name
and m is an integer, and write P ‘Z (n,m) if evaluation
of process expression P leads to a state (represented by
a process expression) of the form . . .]Si(m) in which the
process is prepared to communicate integer m on port n
and n is not within the scope of a binding vn. . (This
can be made more precise using the structural equivalence
relation in the Appendix.) In more general terms, P ‘% v
in our language if process P publicly outputs v.

The general definition of 2: above is essentially standard
for deterministic or nondeterministic functional, imperative
or concurrent languages. Some additional considerations en-
ter when we consider probabilistic languages. Drawing from
standard notions in cryptography, we propose the following
adaptation of obskrvational equivalence to the probabilistic
polynomial-time process language at hand.

Intuitively, given program phrases P and Q , context C[]
and observable action v , it seems reasonable to compare the
probability that C[P] ‘2’ v to the probabihty that C[Q] ‘z’
v. However, since a probability distribution is an infinite
entity, it is not clear how to “observe” a distribution. We
might run C[P] some number of rime. count how many
times o occurs, and then repeat rhe serifi of experiments for

Automated Analysis of Cryptographic Protocols Using Murcp

John C. Mitchell Mark Mitchell Ulrich Stern
Dept Computer Science

Stanford University
Stanford, CA 94305

Abstract

A methodology is presented for using a general-
purpose state enumeration tool, Mur(p, to analyze cryp-
tographic and security-related protocols. We illus-
trate the feasibility of the approach by analyzing the
Needham-Schroeder protocol, finding a known bug in a
few seconds of computation time, and analyzing vari-
ants of Kerberos and the faulty TMN protocol used in
another comparative study. The efficiency of Mung al-
lows us to examine multiple runs of relatively short pro-
tocols. giving us the ability to detect replay attacks, or
errors resulting from confusion between independent ex-
ecution of a protocol by independent parties.

1 Introduction

Encouraged by the success of others in analyzing
the Needham-Schroeder public-key authentication pro
tocol using the FDR model checker for CSP [lo, 11, 13,
141, we have carried out a feasibility study for a related,
but somewhat different general tool called Murcp [I],
pronounced “Mur-phi” _ In this paper, we outline our
general methodology and summarize our investigation
of three protocols. First; we repeat Lowe’s analysis of
the Needham-Schroeder protocol, finding a violation of
the correctness condition in a simplified protocol, and
then failing to find a violation in a repaired version
of the protocol. Next, we analyze the TMN proto
co1 [18], first finding a simple error also identified by
two of the three tools described in a comparative study
by Kemmerer, Meadows and Millen [7]. (These three

‘This work was supported in part by the Defense Advanced
Research Projects Agency through NASA contract NAG2-891,
and the National Science Foundation through grants CCR-
9303099 and CCR-9629754. The views and conclusion con-
tained in this document are those of the author(s) and should
not be interpreted as representing the official policies, either ex-
pressed or implied: of the Defense Advanced Research Projects
Agency, NASA, NSF or the US Government.

tools appear to require more expert guidance than our
brute force state exploration tool.) After modifying
our system description to eliminate the first error, our
system finds a second automatically. With some mi-
nor refinement of the cryptographic model, based on
general principles we present in this paper, a third run
also uncovers a related RSA-specific error that is ex-
plained in [18] and also discovered by the third tool in
Kemmerer, Meadows and Millen’s comparative study
(but not the other two tools). We also investigate Ker-
beros, version 5, finding a failure in a simplified version
based on documentation [9], and then “verifying” a re-
paired version that is closer to the full implementation
given in RFC-1510 [S]. 0 ne interesting aspect of the
Kerberos error is that it only occurs in a system config-
uration that includes more than the minimal number
of participants.

In general, we believe that a general-purpose tool for
analyzing finite-state systems may be useful for analyz-
ing cryptographic or security-related protocols. The
main challenges that arise are:

State-space explosion, as with other tools,

Subtleties involving formalization of the adversary
or adversaries, and

Subtleties involving properties of the encryption
primitives, which may be modeled as completely
secure black-box primitives, or primitives with
other algebraic or “malleability” [3] properties.

One aspect of our approach that we believe will
prove useful is that it is feasible to modify a Murcp
system description to reflect a situation where one or
more pieces of secret information have been cornpro
mised. For example, it is easy to modify our Kerberos
description to give the adversary knowledge that two
clients are using the same private key, without reveal-
ing the key to the adversary. The method is illustrated
in our analysis of TMN to allow the adversary to gen-
erate an encryption of nm from an encryption of n, for

any numbers n and m, without allowing the adversary
to decrypt any messages. The fact that an adversary
can compute the RSA-encryption of one message from
the RSA-encryption of another, without decrypting, is
an example of “malleability” [3]. Since previous anal-
yses tend to assume non-malleability, we expect that
further insight into specific protocols may be gained
by taking algebraic properties of specific cryptosystems
into consideration.

Some promising future directions involve automatic
translation of a higher-level protocol specification lan-
guage such as CAPSL into Murcp, and combined analy-
ses using both exhaustive finitestate analysis and for-
mal logical methods. In particular, we hope to develop
better techniques for using the results of state enumer-
ation to simplify formal correctness proofs for poten-
tially unbounded (or non-finite) systems, and to use
formal proofs of invariants to narrow the search space
for state enumeration. A larger limitation, to which we
have not yet turned our attention, is that we have no
way of incorporating probabilistic analysis. For exam-
ple, we cannot outfit our adversary with an unbiased
coin and compute the probability that a randomized
attack will compromise a protocol.

Contents:
2. Outline of methodology
3. Needham-Schroeder public-key protocol
4. Study of TMN protocol
5. Kerberos
6. Discussion
7. Conclusion

2 Outline of the methodology

Our general methodology is similar to the approach
used in CSP model checking [lo, 141 of cryptographic
protocols. However, there are some differences between
Murcp and FDR.

2.1 The Murcp Verification System

Murcp [l] is a protocol verification tool that has
been successfully applied to several industrial proto-
cols, especially in the domains of multiprocessor cache
coherence protocols and multiprocessor memory mod-
els [2, 16, 191.

To use Murrp for verification, one has to model the
protocol in the Murcp language and au,ment this model
with a specification of the desired properties. The
XIurp system automatically checks, by explicit atat,e
cnrm~erat,ion, if all reachable states of the nrotiel sat,islj

the given specification. For the state enumeration, ei-
ther breadth-first or depth-first search can be selected.
Reached states are stored in a hash table to avoid re
dundant work when a state is revisited. The memory
available for this hash table typically determines the
largest tractable problem.

The Murcp language is a simple high-level language
for describing nondeterministic finite-state machines.
Many features of the language are familiar from con-
ventional programming languages. The main features
not found in a L‘typical” high-level language are de-
scribed in the following paragraphs.

The state of the model consists of the values of all
global variables. In a startstate statement, initial val-
ues are assigned to global variables. The transition
from one state to another is performed by rules. Each
rule has a Boolean condition and an action, which is
a program segment that is executed atomically. The
action may be executed if the condition is true (i.e. the
rule is enabled) and may change global variables. Most
Murcp models are nondeterministic; usually more than
one rule is enabled in each state. For example, in a
model of a cryptographic protocol, the intruder typ-
ically has the nondeterministic choice of several mes-
sages to replay.

Figure 1. Sample state graph

Figure 1 shows a simple sample state graph with nine
states (so,. . . , ss). The outgoing arcs in each state car-
respond to the rules that are enabled in that state.
While a simulator chooses an outgoing arc at random, a
verifier explores all reachable states from a given start-
state (so).

Murcp has no explicit notion of processes. Never-
theless a process can be implicitly modeled by a set
of related rules. The parallel composition of two pro
cesses in Murcp is simply done by using the union of
the rules of the two processes. Each process can take
any number of steps (actions) berw\-rzn the steps of the
other. The resulting computation\1 111odr1 is that of

asynchronous, interleaving concurrency. Parallel pro-
cesses communicate via shared variables; there are no
special language constructs for communication.

The Murcp language supports scalable models. In
a scalable model, one is able to change the size of
the model by simply changing constant declarations.
When developing protocols, one typically starts with a
small protocol configuration. Once this configuration is
correct, one gradually increases the protocol size to the
largest value that still allows verification to complete.
In many cases, an error in the general (possibly infi-
nite state) protocol will also show up in a down-scaled
(finite state) version of the protocol. Murcp can only
guarantee correctness of the down-scaled version of the
protocol, but not correctness of the general protocol.
For example, in the model of the Needham Schroeder
protocol, the numbers of initiators and responders are
scalable and defined by constants.

The Murcp verifier supports automatic symmetry re-
duction of models by special language constructs [4].
For example, in the Needham Schroeder protocol, if
we have two initiators Al and AZ, the state where ini-
tiator Al has started the protocol and AZ is idle is ~ for
verification purposes - the same as the state where Al
is idle and A2 has started the protocol.

The desired properties of a protocol can be specified
in Murcp by invariants: which are Boolean conditions
that have to be true in every reachable state. If a state
is reached in which some invariant is violated, Murcp
prints an error trace - a sequence of states from the
start state to the state exhibiting the problem.

There are two main differences between Murcp and
FDR. First, while communication is supported in FDR
by the CSP notions of channels and events, it is mod-
eled by shared variables in Murcp. Second, Murtp cur-
rently implements a richer set of methods for increas-
ing the size of the protocols that can be verified, in-
cluding symmetry reduction [4], hash compaction [171,
reversible rules [5], and repetition constructors [6]. In
addition, there is a parallel version of the Murcp veri-
fier [151. Although available for internal use, the latter
three techniques are not yet in the public Murcp release.

2.2 The methodology

In outline, we have analyzed protocols using the fol-
lowing sequence of steps:

1. Formulate the protocol. This generally involves
simplifying the protocol by identifying the key
steps and primitives. However, the Murcp formu-
lation of a protocol is more detailed than the high-
level descriptions often seen in the literature. The
most significant issue is to decide exactly which

messages will be accepted by each participant in
the protocol (see Section 6 for further discussion).
Since Murcp communication is based on shared
variables, it is also necessary to define an explicit
message format, as a Murcp type.

2. Add an adversary to the system. We generally as-
sume that the adversary is a participant in the sys-
tem, capable of initiating communication with an
honest participant, for example. We also assume
that the network is under control of the adversary
and allow the adversary the following actions:

l overhear every message, remember all parts
of each message, and decrypt cyphertext
when it has the key,

l intercept (delete) messages,

l generate messages using any combination of
initial knowledge about the system and parts
of overheard messages.

Although it is simplest to formulate an adversary
that nondeterministically chooses between all pos-
sible actions at every step of the protocol, it is
more efficient to reduce the choices to those that
actually have a chance of effecting other partic-
ipants. This is discussed in more detail in Sec-
tion 6.

3. State the desired correctness condition. We have
generally found it easy to state correctness condi-
tions, but we have no reason to believe that there
are not other protocols where this step could prove
subtle.

4. Run the protocol for some specific choice of system
size parameters. Speaking very loosely, systems
with 4 or 5 participants (including the adversary)
and 3 to 5 intended steps in the original protocol
(without adversary) are easily analyzed in minutes
of computation time using a modest workstation.
Doubling or tripling these numbers; however, may
cause the system to run for many hours, or termi-
nate inconclusively by exceeding available mem-
ory.

5. Experiment with alternate formulations and re-
peat. In our examples, which were known to be
incorrect (except possibly Kerberos), we have re-
paired the detected error, either by strengthen-
ing the protocol or, where this did not seem fea-
sible, redirecting the efforts of the adversary. In
cases where a protocol appears correct, it also may
be interesting to investigate the consequences of
strengthening the adversary, possibly by provid-
ing some of the “secret” information.

Clearly there are many calls for creativity and good
judgment; this is not in any way an automatic proce
dure that could be carried out routinely from a high-
level description of a protocol. However, as we gain
more experience with the method, we anticipate de-
velopment of certain tools that will make the process
easier to carry out.

3 Needham-Schroeder Exchange with
Public Keys

3.1 Overview of the Protocol

The Needham-Schroeder Public-Key Protocol [121
aims at mutual authentication between an initiator A
and a responder B, i.e. both initiator and responder
want to be assured of the identity of the other.

As in [lo], we only study a simplified version of the
protocol, which can be described by the following three
steps.

A - B : {-%, A)K~
B - A : {Na, Nb}K,
A - B : {Nb}&

The initiator A sends a nonce N, (i.e. a newly gener-
ated random number) and its identifier to reponder B,
both encrypted with B’s public key Kb. Responder B
decrypts the message and obtains knowledge of N,. It
then generates a nonce Nb itself and sends both nonces
encrypted with A’s public key to A. Initiator A de
crypts the message and concludes that it is indeed talk-
ing to B, since only B was able to decrypt A’s initial
message containing nonce N,; B is authenticated. In
a corresponding fashion, A is authenticated after the
third step of the protocol. (This is not entirely correct,
though, as we shall see.)

3.2 Modeling the Protocol

Due to space constraints, we look only at the initia-
tor part of the model in detail. The data structures for
the initiator are as follows:

const
NumInitiators: 1;

We
InitiatorId: scalarset (NumInitiators) ;
InitiatorStates: enum~I_SLEEP,I_WAIT,I_COMMIT);
Initiator: record

state: InitiatorStates;
responder: AgentId;

end;
var

ini: array CInitiatorIdl of Initiator;

The number of initiators is scalable and defined by
the constant NumInitiators. The type InitiatorId
can be thought of as a subrange 1.. .NumInitiators
with the difference that automatic symmetry reduc-
tion is invoked by declaring this type a scalarset.
The state of each initiator is stored in the array ini.
In the startstate statement of the model, the local
state (stored in field state) of each initiator is set to
ISLEEP, indicating that no initiator has started the
protocol yet.

.

The behavior of an initiator is modeled with two
Murp rules. In the first rule: the initiator starts the
protocol by sending the initial message to some agent
and changes its local state from ISLEEP to I-WAIT. The
second rule models the reception and checking of the
reply from the agent, the commitment and the sending
of the final message.

The Murcp code of the first rule looks as follows:

ruleset i: InitiatorId do
ruleset j: AgentId do

rule “initiator starts protocol”
inifil . state = I-SLEEP & -- condition
! ismemberc j , InitiatorId) &
multisetcount (l:net, true) < NetworkSize

==>
VX

outM: Message; -- outgoing message
begin -- action

undefine outM;
outM.source := i;
outM.dest := j;
. . . set remaining fields of outM
multisetadd (outM,net);
iniCil.state := I-WAIT;
ini[i].responder := j;

end;
end;

end;

In this code segment, the rule in enclosed by two
ruleset statements. These statements make the rule
scalable: it is instantiated for each initiator of type
InitiatorId and for each agent of type AgentId.
Thus, when one changes the constant NnmInitiators,
the number of rules automatically adapts to this
change. The identifiers of the initiator and the agent
of a particular instantiation are assigned to the local *
variables i and j, respectively, and can be used in the
rule.

The condition of the rule is that initiator i is in
the local state ISLEEP, that agent j is not an initiator
(and hence either reponder or intruder). and that there
is space in the network for an additional message. The
network is modeled by the shared \-Gable net. Each
network cell can hol(l o~w rllmage of rhr protocol. III

Finite-State Analysis of SSL 3.0

John C. Mitchell Vitaly Shmatikov Ulrich Stern
Computer Science Department

Stanford University
Stanford, CA 94305

{jcm,shmat,uli}Qcs.stanford.edu

Abstract

The Secure Sockets Layer (SSL) protocol is an-
alyzed using a finite-state enumeration tool called
Mung. The analysis is presented using a sequence
of incremental approximations to the SSL 3.0 hand-
shake protocol. Each simplified protocol is ‘model-
checked” using Murcp, with the next protocol in the
sequence obtained by correcting errors that Mung
finds automatically. This process identifies the main
shortcomings in SSL 2.0 that led to the design of SSL
3.0, as well as a few anomalies in the protocol that is
used to resume a session in SSL 3.0. In addition to
some insight into SSL, this study demonstrates the
feasibility of using formal methods to analyze com-
mercial protocols.

1 Introduction

In previous work [9], a general-purpose finite-
state analysis tool has been successfully applied to
the verification of small security protocols such as
the Needham-Schroeder public key protocol, Ker-
beros, and the TMN cellular telephone protocol.
The tool, Murcp [3, lo], was designed for hardware
verification and related analysis. In an effort to un-
derstand the difficulties involved in analyzing larger
and more complex protocols, we use Murcp to ana-

This work was supported in part by the Defense Advanced
Research Projects Agency through NASA contract NAG-2-
891, Office of Naval Research grant N00014-97-1-0505, Mul-
tidisciplinary University Research Initiative “Semantic Con-
sistency in Information Exchange”, National Science Foun-
dation grant CCR-9629754, and the Hertz Foundation. The
views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, NASA, ONR, NSF or
the US Government.

lyze the SSL 3.0 handshake protocol. This protocol
is important, since it is the de facto standard for se-
cure Internet communication, and a challenge, since
it has more steps and greater complexity than the
other security protocols analyzed using automated
finite-state exploration. In addition to demonstrat-
ing that finite-state analysis is feasible for protocols
of this complexity, our study also points to sev-
eral anomalies in SSL 3.0. However, we have not
demonstrated the possibility of compromising sensi-
tive data in any implementation of the protocol.

In the process of analyzing SSL 3.0, we have de-
veloped a “rational reconstruction” of the protocol.
More specifically, after initially attempting to fa-
miliarize ourselves with the handshake protocol, we
found that we could not easily identify the purpose
of each part of certain messages. Therefore, we set
out to use our analysis tool to identify, for each mes-
sage field, an attack that could arise if that field were
omitted from the protocol. Arranging the simplified
protocols in the order of increasing complexity, we
obtain an incremental presentation of SSL. Begin-
ning with a simple, intuitive, and insecure exchange
of the required data, we progressively introduce sig-
natures, hashed data, and additional messages, cul-
minating in a close approximation of the actual SSL
3.0 handshake protocol.

In addition to allowing us to understand the
protocol more fully in a relatively short period of
time, this incremental reconstruction also provides
some evidence for the “completeness” of our anal-
ysis. Specifically, Murcp exhaustively tests all pos-
sible interleavings of protocol and intruder actions,
making sure that a set of correctness conditions is
satisfied in all cases. It is easy for such analysis to
be “incomplete” by not checking all of the correct-
ness conditions intended by the protocol designers or
users. In developing our incremental reconstruction
of SSL 3.0, we were forced to confirm the importance

1

of each part of each message. In addition, since no
formal or high-level description of SSL 3.0 was avail-
able, we believe that the description of SSL 3.0 that
we extracted from the Internet Draft [6] may be of
interest.

Our analysis covers both the standard handshake
protocol used to initiate a secure session and the
shorter protocol used to resume a session [S, Sec-
tion 5.51. Murcp analysis uncovered a weak form
of version rollback attack (see Section 4.9.2) that
can cause a version 3.0 client and a version 3.0
server to commit to SSL 2.0 when the protocol is
resumed. Another attack on the resumption proto-
col (described in Sections 4.8 and 4.9.1) is possible
in SSL implementations that strictly follow the In-
ternet draft [6] and allow the participants to send
application data without waiting for an acknowledg-
ment of their Finished messages. Finally, an attack
on cryptographic preferences (see Section 4.6) suc-
ceeds if the participants support weak encryption
algorithms which can be broken in real time. Apart
from these three anomalies, we were not able to un-
cover any errors in our final protocol. Since SSL 3.0
was designed to be backward-compatible, we also
implemented and checked a full model for SSL 2.0
as part of the SSL 3.0 project. In the process, Murcp
uncovered the major problems with SSL 2.0 that mo-
tivated the design of SSL 3.0.

Our Murcp analysis of SSL is based on the assump-
tion that cryptographic functions cannot be broken.
For this and other reasons (discussed below), we can-
not claim that we found all attacks on SSL. But our
analysis has been efficient in helping discover an im-
portant class of attacks.

The two prior analyses of SSL 3.0 that we are
aware of are an informal assessment carried out by
Wagner and Schneier [14] and a formal analysis by
Dietrich using a form of belief logic [2]. (We read
the Wagner and Schneier study before carrying out
our analysis, but did not become aware of the Di-
etrich study until after we had completed the bulk
of our work.) Wagner and Schneier comment on the
possibility of anomalies associated with resumption,
which led us to concentrate our later efforts on this
area. It is not clear to us at the time of this writing
whether we found any resumption anomalies that
were not known to these investigators. However, in
email comments resulting from circulation of an ear-
lier document [13], we learned that while our second
anomaly was not noticed by Wagner and Schneier, it
was later reported to them by lMichae1 Wiener. Nei-
ther anomaly seems to have turned up in the logic-
based study of [2].

A preliminary report on this study was prc

sented in a panel at the September 1997 DIMXCS
Workshop on Design and Formal Verification of
Security Protocols and appears on the web site
(http://dimacs.rutgers.edu/Workshops/Security/)
and CD ROM associated with this workshop. Our
study of resumption was carried out after our
workshop submission and is not described in the
workshop document.

2 Outline of the methodology

Our general methodology for modeling security
protocols in Murcp is described in our previous pa-
per [9], and will be only outlined in this section. The
basic approach is similar to the CSP approach to
model checking of cryptographic protocols described
in [8, 111.

2.1 The Murcp verification system

Murcp [3] is a protocol or, more generally, finite-
state machine verification tool. It has been suc-
cessfully applied to several industrial protocols, es-
pecially in the domains of multiprocessor cache co-
herence protocols and multiprocessor memory mod-
els [4, 12, 151. The purpose of finite-state analysis,
commonly called “model checking,” is to exhaus-
tively search all execution sequences. While this pro-
cess often reveals errors, failure to find errors does
not imply that the protocol is completely correct, be-
cause the Murcp model may simplify certain details
and is inherently limited to confi,guations involving
a small number of, say, clients and servers.

To use Murcp for verification, one has to model
the protocol in the Murcp language and augment
this model with a specification of the desired prop-
erties. The Murcp system automatically checks, by
explicit state enumeration, if all reachable states of
the model satisfy the given specification. For the
state enumeration, either breadth-first or depth-first
search can be selected. Reached states are stored in
a hash table to avoid redundant work when a state is .
revisited. The memory available for this hash table
typically determines the largest tractable problem.

The Murcp language is a simple high-level lan-
guage for describing nondeterministic finite-state
machines. Many features of the language are famil-
iar from conventional programming languages. The
main features not found in a “typical” high-level lan-
guage are described in the following paragraphs.

The state of the model consists of the values of
all global variables. In a stnrtstnt~ sratement. initial
values are assigned to global \ariabIes. The trnnsi-
tion from one St,ilte to another is pdormed by &es.

Each rule has a Boolean condition and an action,
which is a program segment that is executed atomi-
cally. The action may be executed if the condition is
true (i.e., the rule is enabled) and typically changes
global variables, yielding a new state. Most Murp
models are nondeterministic since states typically al-
low execution of more than one rule. For example, in
the model of the SSL protocol, the intruder (which is
part of the model) usually has the nondeterministic
choice of several messages to replay.

Murcp has no explicit notion of processes. Nev-
ertheless a process can be implicitly modeled by a
set of related rules. The paralleI composition of two
processes in Murcp is simply done by using the union
of the rules of the two processes. Each process can
take any number of steps (actions) between the steps
of the other. The resulting computational model
is that of asynchronous, interleaving concurrency.
Parallel processes communicate via shared variables;
there are no special language constructs for commu-
nication.

The Murcp language supports scalable models. In
a scalable model, one is able to change the size of
the model by simply changing constant declarations.
When developing protocols, one typically starts with
a small protocol configuration. Once this configura-
tion is correct, one gradually increases the protocol
size to the largest value that still allows verification
to complete. In many cases, an error in the general
(possibly infinite state) protocol will also show up in
a down-scaled (finite state) version of the protocol.
Murcp can only guarantee correctness of the down-
scaled version of the protocol, but not correctness of
the general protocol. For example, in the model of
the SSL protocol, the numbers of clients and servers
are scalable and defined by constants.

The desired properties of a protocol can be spec-
ified in Murcp by invariants, which are Boolean con-
ditions that have to be true in every reachable state.
If a state is reached in which some invariant is vi-
olated, Murcp prints an error trace - a sequence of
states from the start state to the state exhibiting the
problem.

2.2 The methodology

In outline, we have analyzed protocols using the
following sequence of steps:

1. Formulate the protocol. This generally involves
simplifying the protocol by identifying the key
steps and primitives. The Murcp formulation
of a protocol, however, is more detailed than
the high-level descriptions often seen in the lit-
erature, since one has to decide exactly which

messages will be accepted by each participant
in the protocol. Since Murcp communication is
based on shared variables, it is also necessary
to define an explicit message format, as a Murcp
type.

Add an adversary to the system. We gener-
ally assume that the adversary (or intruder) can
masquerade as an honest participant in the sys-
tem, capable of initiating communication with
a truly honest participant, for example. We also
assume that the network is under control of the
adversary and allow the adversary the following
actions:

l overhear every message, remember all
parts of each message, and decrypt cipher-
text when it has the key,

l intercept (delete) messages,
l generate messages using any combination

of initial knowledge about the system and
parts of overheard messages.

Although it is simplest to formulate an adver-
sary that nondeterministically chooses between
all possible actions at every step of the proto-
col, it is more efficient to reduce the choices to
those that actually have a chance of affecting
other participants.

State the desired correctness condition. A typ-
ical correctness criterion includes, e.g., that no
secret information can be learned by the in-
truder. More details about the correctness cri-
terion used for our SSL model are given in Sec-
tion 3.

Run the protocol for some specific choice of sys-
tem size parameters. Speaking very loosely, sys-
tems with 4 or 5 participants (including the ad-
versary) and 5 to 7 intended steps in the origi-
nal protocol (without adversary) are easily an-
alyzed in minutes of computation time using a
modest workstation. Doubling or tripling these
numbers, however, may cause the system to run
for many hours, or terminate inconclusively by
exceeding available memory.

5. Experiment with alternate formulations and re-
peat. This is discussed in detail in Section 4.

2.3 The intruder model

The intruder model described above is limited in
its capabilities and does not have all the power that
a real-life intruder may have. In the following, we
discuss examples of these limitations.

3

NO cryptanalysis. Our intruder ignores both
computational and number-theoretic properties of
cryptographic functions. As a result, it cannot per-
form any cryptanalysis whatsoever. If it has the
proper key, it can read an encrypted message (or
forge a signature). Otherwise, the only action it can
perform is to store the message for a later replay.
We do not model any cryptographic attacks such as
brute-force key search (with a related notion of com-
putational time required to attack the encryption)
or attacks relying on the mathematical properties of
cryptographic functions.

No probabilities. Murcp has no notion of proba-
bility. Therefore, we do not model “propagation” of
attack probabilities through our finite-state system
(e.g, how the probabilities of breaking the encryp-
tion, forging the signature, etc. accumulate as the
protocol progresses). We also ignore, e.g., that the
intruder may learn some probabilistic information
about the participants’ keys by observing multiple
runs of the protocol.

No partial information. Keys, nonces, etc. are
treated as atomic entities in our model. Our intruder
cannot break such data into separate bits. It also
cannot perform an attack that results in the partial
recovery of a secret (e.g., half of the secret bits).

In spite of the above limitations, we believe that
Murcp is a useful tool for analyzing security proto-
cols. It considers the protocol at a high level and
helps discover a certain class of bugs that do not in-
volve attacks on cryptographic functions employed
in the protocol. For example, Murcp is useful for dis-
covering “authentication” bugs, where the assump-
tions about key ownership, source of messages, etc.
are implicit in the protocol but never verified as part
of the message exchange. Also, Murcp models can
successfully discover attacks on plaintext informa-
tion (such as version rollback attacks in SSL) and
implicit assumptions about message sequence in the
protocol (such as unacknowledged receipt of Fin-
ished messages in SSL). Other examples of errors
discovered by finite-state analysis appear in [8,9, 111
and in references cited in these papers.

3 The SSL 3.0 handshake protocol

The primary goal of the SSL 3.0 handshake pro-
tocol is to establish secret keys that “provide privacy
and reliability between two comnlunicating applica-
tions” [G]. Henceforth, we call the communicating

applications the client (C) and the server (S). The
basic approach taken by SSL is to have C generate
a fresh random number (the secret or shared secret)
and deliver it to S in a secure manner. The secret
is then used to compute a so-called master secret
(or negotiated cipher), from which, in turn, the keys
that protect and authenticate subsequent communi-
cation between C and S are computed. While the
SSL handshake protocol governs the secret key com-
putation, the SSL record layer protocol governs the
subsequent secure communication between C and S.

As part of the handshake protocol, C and S
exchange their respective cryptographic preferences,
which are used to select a mutually acceptable set
of algorithms for encrypting and signing handshake
messages. In our analysis, we assume for simplic-
ity that RSA is used for both encryption and signa-
tures, and cryptographic preferences only indicate
the desired lengths of keys. In addition, SSL 3.0 is
designed to be backward-compatible so that a 3.0
server can communicate with a 2.0 client and vice
versa. Therefore, the parties also exchange their re-
spective version numbers.

The basic handshake protocol consists of three
messages. With the ClientHello message, the client
starts the protocol and transmits its version number
and cryptographic preferences to the server. The
server replies with the ServerHello message, also
transmitting its version number and cryptographic
preferences. Upon receipt of this message, the client
generates the shared secret and sends it securely to
the server in the secret exchange message.

Since we were not aware of any formal definition
of SSL 3.0, we based our model of the handshake
protocol on the Internet draft [S]. The draft does not
include a precise list of requirements that must be
satisfied by the communication channel created after
the handshake protocol completes. Based on our
interpretation of the informal discussion in Sections
1 and 5.5 of the Internet draft, we believe that the
resulting channel can be considered “secure” if and
only if the following properties hold:

l Let Secrete be the number that C considers the
shared secret, and Secrets the number that S
considers the shared secret. Then Secrete and
Secrets must be identical.

l The secret shared between C and. S ‘is not in
intruder’s database of knom% message compo-
nents.

l The parties agree on each orher’s identity and
protocol completion status. Suppose that, the
last message of the handshnkr protocol is from

vu_ .__ ._._ -..-.- -.--

Efficient Finite-State Analysis for
Large Security Protocols

Vitaly Shmatikov Ulrich Stern
Computer Science Department

Stanford University
Stanford, CA 943059045

{shmat,uli}Qcs.stanford.edu

Abstract

We describe two state reduction techniques for finite-
state models of security protocols. The techniques ex-
ploit certain protocol properties that we have identified
as characteristic of security protocols. We prove the
soundness of the techniques by demonstrating that any
violation of protocol invariants is preserved in the re-
duced state graph. In addition, we describe an opti-
mization method for evaluating parameterized rule con-
ditions, which are common in our models of security
protocols. All three techniques have been implemented
in the Mung verifier.

1 Introduct ion

Security protocols are becoming widely used and
many new protocols are being proposed. Since security
protocols are notoriously difficult to design, computer
assistance in the design process is desirable. The ex-
isting verification methods are mainly based on either
finite-state analysis, or computer-assisted proof. The
two approaches are complementary. Unlike computer-
assisted proof, finite-state analysis cannot guarantee
correctness for a protocol of unbounded size (e.g.,
a protocol with a potentially unbounded number of
participants). Finite-state analysis, however, requires
much less human expertise and is fully automatic.

This work was supported in part by the Defense Advanced
Research Projects Agency through contract DABT63-96-C-0097,
Office of Naval Research grant N00014-97-1-0505, Multidisci-
plinary University Research Initiative “Semantic Consistency in
Information Exchange,” and the Hertz Foundation. The views
and conclusions contained in this document are those of the au-
thor(s) and should not be interpreted as representing the official
policies, either expressed or implied, of the Defense Advanced
Research Projects Agency, ONR, or the US Government.

Finite-state analysis of security protocols begins
with a high-level description of the behavior of the hon-
est participants of the protocol. This protocol model
must be augmented with a description of the possi-
ble actions of an intruder, and a precise statement
of the desired properties of the protocol. The finite-
state analysis tool then exhaustively enumerates all
reachable states of the model, checking for each state
whether it satisfies the desired correctness criteria. The
main problem in this analysis is the very large number
of reachable states for most protocols.

In this paper, we describe two techniques that re-
duce the number of reachable states and hence allow
the analysis of larger protocols. We prove the tech-
niques sound, i.e., we show that each protocol error
that would have been discovered in the original state
graph will still be discovered in the reduced state graph.
The techniques are based on certain protocol proper-
ties that we have identified as characteristic of security
protocols. We have implemented both techniques in
the Murcp verification system [3] and have evaluated
them on the SSL [4] and Kerberos [5] protocols.

The first technique is to let the intruder always inter-
cept messages sent by the honest participants (instead
of making such interception optional). This technique
has resulted in a very large reduction in both the num-
ber of reachable states and execution time. While this
technique has been used by several researchers [6, 1,
e.g.], it has neither been proved sound, nor has its im-
portance been demonstrated.

The second technique prevents the intruder from
sending messages to honest participants in states where
at least one of the honest participants is able to send a
message. Intuitively, the technique makes the intruder
more powerful since the intruder maximally increases
its knowledge before forging and sending messages to
honest participants; hence the technique should not

1

miss any attacks on the protocol. The technique typ-
ically saved a factor of two or more in the number of
reachable states as well as execution time. It is interest-
ing to note that that this technique is more powerful
than partial-order techniques exploiting the indepen-
dence of the honest participants.

In addition to the two state reduction techniques,
we also describe a technique that reduces the execution
time of Murcp, but not the number of reachable states.
The technique is based on the following observations.
The intruder model employed in Murip is highly non-
deterministic and thus gives rise to a large number of
state transition rules. In every reachable state, the en-
abling conditions of all rules are evaluated. Evaluation
can be sped up by partitioning the rules into sets with
identical enabling conditions and evaluating the condi-
tion only once for each set. This technique typically
increased the overall speed of Murcp by a factor of four.

2 Overview of Murcp

Murcp [2] is a protocol or, more generally, finite-state
machine verification tool. It has been successfully ap-
plied to several industrial protocols, especially in the
domains of multiprocessor cache coherence protocols
and multiprocessor memory models [3, 10, 111 and in
the domain of security protocols [7, 81. The purpose
of finite-state analysis, commonly called “model check-
ing,” is to exhaustively search all execution sequences.

To verify a security protocol using Murcp, one has
to model both the protocol and the intruder (or adver-
sary) in the Murcp language and augment the result-
ing model with a specification of the desired proper-
ties. The Murcp system automatically checks, by ex-
plicit state enumeration, if every reachable state of the
model satisfies the given specification. For the state
enumeration, either breadth-first or depth-first search
can be selected. Reached states are stored in a hash
table to avoid redundant work when a state is revisited.
The memory available for this hash table typically de-
termines the largest tractable problem.

The intruder is generally modeled to control the net-
work and allowed the following actions: (1) overhear
every message, remember all parts of each message (in
a knowledge database), and decrypt ciphertext when
it has the key, (2) intercept (delete) messages, and
(3) generate messages using any combination of initial
knowledge about the system and parts of overheard
messages. We also assume that the intruder can mas-
querade as an honest participant in the system, capable
of initiating communication with a truly honest partic-
ipant, for example. We will refer to this intruder model
as ‘imechanical intruder model” because of its simplic-

ity.

The Murcp language is a simple high-level language
for describing nondeterministic finite-state machines.
Many features of the language are familiar from con-
ventional programming languages. The main features
not found in a “typical” high-level language are de-
scribed in the following paragraphs.

The state of the model consists of the values of all
global variables. In a startstate statement, initial val-
ues are assigned to global variables. The transition
from one state to another is performed by rules. Each
rule has a Boolean condition and an action, which is a
program segment that is executed atomically. The ac-
tion may be executed if the condition is true (i.e., the
ruIe is enabled) and typically changes global variables,
yielding a new state. Most Mury models are nondeter-
ministic since states typically allow execution of more
than one rule. For example, in the model of a security
protocol, the intruder usually has the nondeterministic
choice of several messages to replay.

Murcp has no explicit notion of processes. Never-
theless a process can be implicitly modeled by a set
of related rules. The parallel composition of two pro-
cesses in Murcp is simply done by using the union of
the rules of the two processes. Each process can take
any number of steps (actions) between the steps of the
other. The resulting computational model is that of
asynchronous, interleaving concurrency. Parallel pro-
cesses communicate via shared variables; there are no
special language constructs for communication.

The Murcp language supports scalable models. In
a scalable model, one is able to change the size of
the model by simply changing constant declarations.
When developing protocols, one typically starts with a
small protocol configuration. Once this configuration
is correct, one gradually increases the protocol size to
the largest value that still allows verification to com-
plete. In many cases, an error in the general (possibly
infinite state) protocol will also show up in a scaled-
down (finite state) version of the protocol. Murcp can
only guarantee correctness of the scaled-down version
of the protocol, but not correctness of the general pro-
tocol. For example, the numbers of clients and servers
in a security protocol are typically scalable and defined
by constants.

.

The desired properties of a protocol can be specified
in Murcp by invariants, which are Boolean conditions
that have to be true in every reachable state. If a state
is reached in which some invariant is violated, Murv
prints an error trace - a sequence of states from the
start state to the state eshibiring the problem.

3 Properties of security protocols

In this section, we identify several characteristic
properties of security protocols that we will use to
develop state reduction techniques. These properties
characterize every security protocol we have encoun-
tered so far, including, e.g., Kerberos [5], SSL [4], and
Needham-Schroeder [9]. The properties are quite sim-
ple, yet recognizing them is useful both for better un-
derstanding of the protocols and for making finite-state
analysis as efficient as possible within the basic frame-
work of the mechanical intruder model.

3.1 Protocol invariants are monotonic

The invariants used to specify correctness of secu-
rity protocols are typically of the forms “Intruder does
not know X” or “If honest participant A reaches state
5’1, then honest participant B must be in state Sz.”
Assume that an invariant of this form is invalid for
a given state. Then increasing the intruder’s knowl-
edge set (which is part of the state) will not make the
violated invariant valid. Hence we will call the proto-
col invariant monotonic with respect to the intruder’s
knowledge set. All protocol invariants we have encoun-
tered to date have been monotonic.

The implication of this property for state reduc-
tion is that we can safely rearrange the reachable state
graph, possibly eliminating some states, as long as we
can guarantee that for every state in the old graph,
there exists a state in the new graph in which the state
of all honest protocol participants is the same while the
intruder’s knowledge set is the same or larger. Because
protocol invariants are monotonic, such state reduc-
tions are sound in the sense that any invariant that
would have been violated in the old state graph will
still be violated in the new graph.

We also assume that protocol invariants are defined
in terms of the intruder’s knowledge set and the states
of the honest protocol participants. The invariants
should not depend on the state of the network. (Since
the network is assumed to be controlled by the intruder,
invariants that depend on the state of the network can
be rewritten to depend on the intruder’s knowledge
set .)

3.2 Intruder controls the network

It is traditionally assumed in security protocol anal-
ysis that the intruder exercises full control over the
network, including the option to intercept any message.
Instead of giving the intruder the option to intercept

messages, we will assume that the intruder always in-
tercepts. We model interception in Murcp by having
the intruder remove the message from the “network”
and store it in its database. The intruder can then re-
play the message to the intended recipient, or forge a
similar-looking message.

Intuitively, the assumption that every message gets
intercepted will not weaken the intruder and should
hence be sound. In Section 5.1 below, this assump-
tion is used to cut the transitions leading to redundant
states that differ only in the contents of the intruder’s
database. The only state left is the one in which the
database contains all information observable from the
exchange of protocol messages up to that moment.

3.3 Honest protocol participants are inde-
pendent

Honest protocol participants are fully independent
from each other. The only means of communication
between the participants is by sending messages on the
network, which is assumed to be fully controlled by the
intruder. Sending a message to another participant is
thus equivalent to simply handing it to the intruder,
hoping that the latter will not be able to extract any
useful information from it and will replay it intact to
the intended recipient.

As a consequence, an honest protocol participant
has no way of knowing for sure what the current state
of other participants is, since all information about the
rest of the world arrives to it through a network fully
controlled by the intruder. Actions of each honest par-
ticipant (i.e., sending and receiving of messages) thus
depend only on its own local state and not on the global
state that comprises the states of all participants plus
that of the intruder. In our formal representation of
security protocols as state graphs, we will rely on this
property to make all transition rules for honest partici-
pants local (see Section 4.2 below). We do not consider
protocols with out-of-band communication as they are
beyond the scope of our research with Murcp.

4 Protocols as state graphs

In this section, we define a formalism for describ-
ing finite-state machines associated with security pro-
tocols.

4.1 States

The global state of the system is represented by a
vector:

3

s = [sl,...,sN,e]

where N is the number of honest protocol participants,
si is the local state of the protocol participant i, and e
is the state of the intruder.

Instead of modeling the global network, we model a
separate l-cell local network for each honest protocol
participant. All messages intended for that participant
are deposited in its local network as described in Sec-
tion 4.2 below. The local state of an honest participant
i is a pair

Si = (Vi, ??I+)

where vi is the vector of current values of i’s local state
variables, and mi is the message currently in i’s local
network. It is possible that mi = E, representing the
empty network.

The state of the intruder is simply the set of mes-
sages that the intruder has intercepted so far (assume
that its initial knowledge is represented as an inter-
cepted message also):

e = {m,,,...,m,,)

The intruder’s knowledge is obviously not limited to
the intercepted messages. The intruder can split them
into components, decrypt and encrypt fields, assemble
new messages, etc. However, the full knowledge set can
always be synthesized from the intercepted messages,
since they are the only source of information available
to the intruder. Therefore, our chosen representation
for the intruder’s state is sufficient to represent the in-
truder’s knowledge. When necessary, we will refer to
the set of messages that can be synthesized from the
set of intercepted messages as synth(e). (Since oper-
ations like encryption and pairing can be applied in-
finitely many times in the synthesis, the intruder’s full
knowledge is generally infinite. In practice, one can
extract finite limits on the numbers of times encryp-
tion and pairing have to be applied from the protocol
definition, making the intruder’s knowledge finite.)

4.2 Rules for honest participants

All transition rules between states have the following
form in our formalism:

p = if ck(s,Je) then s + s’

where ck(sile) is the condition of the rule (it depends
on the local state si in case of an honest protocol partic-
ipant, and the knowledge set e in case of the intruder),

4

s is the original global state, and s’ is the global state
obtained as the result of the rule application.

We can assume without loss of generality that ev-
ery transition rule for an honest protocol participant
consists of reading a non-empty message off the local
network, changing the local variables, and sending a
non-empty message to another participant. If neces-
sary, the protocol can be rewritten so as to avoid “hid-
den” transitions that change the state of a participant
without visible activity on the network. The initial
transition for each participant can be triggered by a
special message deposited into its local network in the
start state of the system, and the last transition can be
rewritten so that it deposits another special message on
the network. This ensures that every transition reads
and writes into the network. Also, the l-cell capacity
restriction on the local network is not essential, since
we will eventually assume that every message is inter-
cepted by the intruder immediately after it has been
sent.

The transition rules for an honest protocol partici-
pant i are represented as follows:

$1 = if ck(vi, mi) then [. . . (vi: mi) . . . (TJ~,E) . . .]
+ [...(Uf.S)...(Uj,mj) . ..I

Informally, if condition ck evaluates to true given
i’s local state si = (zli, mi), then i reads message rni
off its local network, executes some code changing its
local state variables from zli to vi, and sends message
rnj to participant j by depositing it in j’s local network.
Piote that the rule is local - its condition depends only
on i’s local state. We assume that honest participants
are deterministic. In any state, there is no more than
one rule enabled for each participant. However, it is
possible that rules for several participants are enabled
in the same state, resulting in nondeterminism.

4.3 Rules for the intruder

The transition rules for the intruder are global. The
first set of rules describes the intruder intercepting a
message intended for an honest participant:

rCe! = if origin(m) # e then [-3 (u m) . e]. . . ,) . .
+ [...(Ui,&)...eU{m}]

The intruder first checks the origin of the message on
i’s local network, since we do not want the intruder to
remove its own messages. If the message was gener-
ated by an honest participant, it is removed from the
network and added to the intruder’s database. Note
that the ldcal variables of the bon*:: participant are
not affected by this action.

Part II

Real-Time Systems

Hee-Hwan Kwak, Jin-Young Choi, Insup Lee, Anna Philippou, and Oleg
Sokolsky: “Symbolic Schedulability Analysis of Real-time Systems”, in Pro-
ceedings of the 19th IEEE Real-Time Systems Symposium ~ RTSS’98,
IEEE Computer Society Press, to appear, Madrid, Spain, December 1998.

Full paper: http: //www.cis.upenn.edu/-lee/tmp/98rtss.ps

Max Kanovich, Mitsu Okada, and Andre Scedrov: “Specifying Real-Time
Finite-State Systems in Linear Logic”, in the Proceedings of the 2nd Inter-
national Workshop on Constraint Programming for Time-Critical Applica-
tions and Multi-Agent Systems ~ COTIC’98, Electronic Notes in Theoret-
ical Computer Science, to appear, Nice, France, September 1998.

Full paper: file://www.cis.upenn.edu/pub/papers/scedrov/rtime6.ps.gz

Anna Philippou, Oleg Sokolsky, Insup Lee, Rance Cleaveland, and Scott
Smolka: “Probabilistic Resource Failure in Real-Time Process Algebra”,
in Proceedings of the 9th International Conference on Concurrency Theory
- CONCUR’98, Springer-Verlag LNCS, to appear, Nice, France, September
1998.

Full paper: http://www.cis.upenn.edu/"lee/tmp/98concur.ps

Anna Philippou, Oleg Sokolsky, Insup Lee, Rance Cleaveland, and Scott
Smolka: “Specifying Failures and Recoveries in PACSR”, in the Proceedings
of the Workshop on Probabilistic Methods in Verification, June 1998.

Full paper: http: //www.cis.upenn.edu/-lee/tmp/98probmiv.ps

Oleg Sokolsky, Insup Lee, and Han&e Ben-Abdallah: “Specification and
Analysis of Real-Time Systems with PARAGON”, in Jeffrey J. P. Tsai edi-
tor, the Annals of Software Engineering, volume 7 (Real-Time Software En-
gineering), Balker Science Publishers, to appear. Submitted March 1998.
Full paper: http://www.cis.upenn.edu/-lee/tmp/98ase.ps

Oleg Sokolsky, Mohamed Younis, Insup Lee, Hee-Hwan Kwak, and Jeff
Zhou: “Verification of the Redundancy Management System for Space Launch
Vehicle: A Case Study”, in the Proceedings of the 3rd IEEE Real-Time Tech-
nology and Applications Symposium - RTAS ‘98, IEEE Computer Society
Press, to appear, Denver, CO, June 1998.
Full paper: http: //www.cis.upenn.edu/-lee/tmp/98rtas.ps

Symbolic Schedulability Analysis of Real-time
Systems *

Hee-Hwan Kwak’ , Jin-Young Choi2, Insup Lee’,
Anna Philippou’, and Oleg Sokolsky3

’ Department of Computer and Information Science,University of Pennsylvania, USA.
{heekwak,annap}@saul.cis.upenn.edu, lee@cis.upenn.edu

2 Department of Computer Science and Engineering, Korea University, Korea. choi@formal.korea.ac.kr
3 Computer Command and Control Company, USA. sokolsky@cccc.com

Abstract

We propose a unifying method for analysis of scheduling problems in real-time systems. The
method is based on ACSR-VP, a real-time process algebra with value-passing capabilities. We use
ACSR-VP to describe an instance of a scheduling problem as a process that has parameters of the
problem as free variables. The specification is analyzed by means of a symbolic algorithm. The
outcome of the analysis is a set of equations, a solution to which yields the values of the parameters
that make the system schedulable. Equations are solved using integer programming or constraint
logic programming. The paper presents specifications of two scheduling problems as examples.

*This research was supported in part by NSF CCR-9415346, NSF CCR-9619910, AFOSR F49620-95-1-0508, AR0
DAAH04-95-1-0092, and ONR N00014-97-1-0505.

1 Introduction

The desire to automate or incorporate intelligent controllers into control systems has lead to rapid

growth in the demand for real-time software systems. Moreover, these systems are becoming

increasingly complex and require careful design analysis to ensure reliability before implementation.

Recently, there has been much work on formal methods for the specification and analysis of real-

time systems [6, 91. Most of the work assumes that various real-time systems attributes, such as

execution time, release time, priorities, etc., are fixed a priori and the goal is to determine whether

a system with all these known attributes would meet required safety properties. One example

of safety property is schedulability analysis; that is: to determine whether or not a given set of

real-times tasks under a particular scheduling discipline can meet all of its timing constraints.

The pioneering work by Liu and Layland [15] derives schedulability conditions for rate-monotonic

scheduling and earliest-deadline-first scheduling. Since then, much work on schedulability analysis

has been done which includes various extensions of these results [lo, 25, 23, 17, 24, 21, 16, 21. Each

of these extensions expands the applicability of schedulability analysis to real-time task models with

different assumptions. In particular, there has been much advance in scheduling theory to address

uncertain nature of timing attributes at the design phase of a real-time system. This problem is

complicated because it is not sufficient to consider the worst case timing values for schedulability

analysis. For example, scheduling anomalies can occur even when there is only one processor and

jobs have variable execution times and are nonpreemptable. Also for preemptable jobs with one

processor, scheduling anomalies can occur when jobs have arbitrary release times and share re-

sources. These scheduling anomalies make the problem of validating a priority-driven system hard

to perform. Clearly, exhaustive simulation or testing is not practical in general except for small

systems of practical interest. There have been many different heuristics developed to solve some

of these general schedulability analysis problems. However, each algorithm is problem specific and

‘thus when a problem is modified, one has to develop new heuristics.

In this paper, we describe a framework that allows one to model scheduling analysis problems

with variable release and execution times, relative timing constraints, precedence relations, dynamic

priorities, multiprocessors etc. Our approach is based on ACSR-VP and symbolic bisimulation

. . -.

1

algorithm.

ACSR (Algebra of Communicating Shared Resources) [13], is a discrete real-time process al-

gebra. ACSR has several notions, such as resources, static priorities, exceptions, and interrupts,

which are essential in modeling real-time systems. ACSR-VP is an extension of ACSR with value-

passing and parameterized processes to be able to model real-time systems with variable timing

attributes and dynamic priorities. In addition, symbolic bisimulation for ACSR-VP has been de-

fined. ACSR-VP without symbolic bisimulation has been applied to the simple schedulability

analysis problem [3], by assuming that all parameters are ground, i.e., constants. However, it is not

possible to use the technique described in [3] to solve the general schedulability analysis problem

with unknown timing parameters.

1 Linear-programmig 1

\
Constraint
Logic
Programming

,

Theorem
Prover I

Figure 1: Overview

Figure 1 shows the overall structure of our approach. We specify a real-time system with

unknown timing or priority parameters in ACSR-VP. For the schedulability analysis of the specified

system, we check symbolically whether or not it is bisimilar to a process idling forever. The result

is a set of predicate equations, which can be solved using widely available linear-programming or

constraint-programming techniques. The solution to the set of equations identifies, if exists, under

what values for unknown parameters, the system becomes schedulable.

The rest of the paper is organized as follows. Sections 2 and 3 overview the theory of the under-

lying formal method, ACSR-VP, and introduce symbolic bisimulation for ACSR-VP expressions.

Section 4 gives specifications of two scheduling problems, namely the period assignment probZem

and the start-time assignment problem. Section 5 illustrates analysis of two instances of these

problems. We conclude with a summary and an outline of future work in Section 6.

2

2 ACSR-VP

ACSR-VP extends the process algebra ACSR [13] by allowing values to be communicated along

communication channels. In this section we present ACSR-VP concentrating on its value-passing

capabilities. We refer to the above papers for additional information on ACSR.

We assume a set of variables X ranged over by 2: y, y set of values V ranged over by U, and a

set of labels L ranged over by c, d. Moreover, we assume a set Expr of expressions (which includes

arithmetic expressions) and we let BExpr c Expr be the subset containing boolean expressions.

We let e and b range over Expr and BEx~T respectively, and we write Z for a tuple 21,. . . z, of

syntactic entities.

ACSR-VP has two types of actions: instantaneous communilcation and timed resource access.

Access to resources and communication channels is governed by priorities. A priority expression p

is attached to every communication event and resource access. A partial order on the set of events

and actions, the preemption relation, allows one to model preemption of lower-priority activities

by higher-priority ones.

Instantaneous actions, called events, provide the basic synchronization and communication

primitives in the process algebra. An event is denoted as a pair (i,ep) representing execution

of action i at priority ep, where i ranges over 7, the idle action, c?z, the input action, and c!e, the

output action. We use DE to denote the domain of events and let X range over events. We use

Z(X) and r(X) to represent the label and priority, respectively, of the event X; e.g., I((c!x,p)) = c!

and Z((c?x,p)) = c?. To model resource access, we assume that .a system contains a finite set

of serially-reusable resources drawn from some set R. An action that consumes one tick of time

is drawn from the domain P(R x Expr) with the restriction that each resource is represented at

most once. For example the singleton action {(r, ep)} denotes the use of some resource r E R

at priority level ep. The action 0 represents idling for one unit of time, since no resource is con-
.

sumed. We let DR to denote the domain of timed actions with A, B, to range ovei DR. We define

p(A) to be the set of the resources used by action A, for example p({(rr,pr), (rz1p2)})>= {rr,rz}.

We also use n,(A) to denote the priority level of the use of the resource r in the action A; e.g.,

~r,({(n,~l), (r2,p2))) = PI. and write 7r,. (A) = 0 if r +! p(A). T1le entire dmn~in of actions is
.

3

Specifying Real-Time Finite-State Systems in Linear Logic

Max I. Kanovich* Mitsuhiro Okadat Andre Scedrovt

Abstract
Real-time finite-state systems may be specified in linear logic by means of linear implica-
tions between conjunctions of fixed finite length. In this setting, where time is treated as a
dense linear ordering, safety properties may be expressed as certain provability problems.
These provability problems are shown to be in PSPACE. They are solvable, with some
guidance, by finite proof search in concurrent logic programming environments based on
linear logic and acting as sort of model-checkers. One advantage of our approach is that
either it provides unsafe runs or it actually establishes safety.

1 Introduction

There are a number of formalisms for expressing real-time processes, including [l, 6, 7, 3, 4, 5, 50, 44,
45, 381. Many of these real-time formalisms are based on temporal logic or its variations [46, 38, 331
or on timed process algebras [14, 42, 43, 23, 121, or on Biichi automata [52, 31. In some cases exact
complexity-theoretic information is available, such as [51, 3, 51, while other formalisms are known to be
undecidable. In this context, undecidability may arise a priori from the undecidability of traditional
predicate logic with binary predicates, or in a more subtle way from so-called punctual temporal
specifications, which are known to be capable of simulating the halting problem [5].

In this work we introduce a real-time specification formalism based on Zinear logic [19, 20, 48, 491.
A clear advantage of our approach is that it provides a common user with a very easy and transparent
way of writing high-level specifications without having to be concerned with operational issues. Linear
logic seems a natural choice for a logical specification formalism in this regard because of its intrinsic
ability to reflect state transitions. Indeed, the most straightforward and naive way of writing very
simple propositional logic formulas that correspond to the informal natural language descriptions
of state transition systems is actually rigorous and correct in linear logic, while this way of writing
specifications is incorrect in classical logic. This is discussed in detail below and in the railroad-crossing
example in Section 2.

*max@kanovich. dnttm. rssi . ru Department of Theoretical and Applied Linguistics, Russian State University for the
Humanities, Miusskaya 6, 125267 Moscow, Russia.

+mitsu@abelard. f let .mita.keio . ac. jp Department of Philosophy, Keio University, 2-15-45 Mita, Minato-ku, Tokyo
108, Japan. Partially supported by the Grant-in-Aid for Scientific Research (Ministry of Education, Science and Culture,
Japan) and the Ogata-Jyosei Grant (Keio University).

$scedrovQcis . upenn. edu http: //wwu. cis .upenn. edu/-scedrov Department of Mathematics, University of Penn-
sylvania, Philadelphia, PA 19104-6395 USA. Partially supported by DOD MURI “Semantic Consistency in Information
Exchange” as ONR Grant N00014-97-1-0505, by NSF Grant CCR-9800785, and by an International Fellowship from the
Japan Society for the Promotion of Science.

1

1 IKl-‘RODUCTION 2

The best way to model, specify, and prove time-sensitive properties of real-time systems would be
to use natural language. While this might be possible in the future, today it is customary to resort
to various formal languages for this purpose. Among these, the formal language that has been most
investigated and best understood is traditional predicate logic. In principle one could express various
properties and requirements of real-time systems by means of formulas built up from certain basic, or
atomic, predicates by traditional logical connectives and quantifiers. However, such a general approach
in the framework of traditional predicate logic runs into difficulties, for example, the undecidability of
predicate logic with binary predicates.

For purely qualitative time properties of real-time systems such as sometimes, always, never, it
s&ices to consider “time-closed” formulas where all time variables are bound by quantifiers. Such
qualitative time properties can be handled within the temporal logic framework where all time variables
are encapsulated by means of temporal-modal operators on the propositional level. There are a
number of successful investigations in this line of research, for instance [46, 511. However, one runs
into difficulties with this approach in handling pantitutiwe time properties such as “within B time
units ufterwurds”, “never for more than B time units”, that refer to explicit time delays. In the case
of such qwntitutive time constraints, in order to represent current states of a given real-time system
temporal logic is to be equipped with first-order means so that time parameters cannot be handled
but explicitly, beyond the propositional logical framework. There are other solutions, such as the
temporal logic of actions TLA [33, 11, w here real time is handled expcpbicitly by introducing a variable to
represent time. However, it is not easy to describe a decidable fragment of TLA suited for describing
system requirements such as safety and Ziveness.

In this paper we introduce an approach that allows handling both qualitative and quantitative time
aspects of real-time systems in purely logical terms, where the difficulties of being over-sophisticated
and over-complicated are obviated within the framework of monadic Horn fragment of linear logic
in the sense of [28]. This simple fragment of linear logic can be communicated to the common users
without requiring any sophistication in logic. Let us describe the main idea of our approach. For
real-time systems with their peculiar time, one of the basic primitive relations one deals with is of the
form

P(e, t) E “an event e happens in the system at moment f’.
In order to circumvent the difficulties caused by binary predicates (which, for example, usually lead to
undecidability of the system), one may split P(e, t) into two unary predicates: a “timeless predicate”
Q(e) that means “event e happens in the system” and the unique “time predicate” Time(t) that means
“time is t (on the global clock)“. That is,

P(e, t) M (Q(e) and Time(t)).

Suppose that a given action is performed in such a way that a certain event el at moment tl is followed
by another event e2 at moment t2 (as a delayed effect). A naive way of formalizing this action is by
a “Horn axiom” of the form P(el, tl) implies P(ez, t2). Following our unarization procedure, this
axiom is supposed to be encoded as:

(Q(el) and Time(t.1)) implies (Q(es) and Time(t2)).

However, such a straightforward reduction to unary predicates requires certain precautions related to
the exact meaning of the connectives and and implies. In particular, the traditional understanding
of and and implies as boolean connectives A and =+-, respectively, yields unintended consequences
such as

(Q(el) ;\Time(tl)) * (Q(el) A Q(e2)ATime(tl)ATimejt-j).

1 INTRODUCTION 3

that is, P(ei, ti) + (P(ei, ti> A P(ez, tz)), and furthermore

(Q(el) A Time(tl)) * (Q(e) A Time(%)),

that is, P(el,tl) + P(er,t:!).
The main reason behind these problems is that our and is intended to represent only the “con-

current coexistence”, while the traditional conjunction A can behave in many different ways. This is
one reason why as a possible logical setting we propose linear logic, a resource-sensitive refinement
of classical logic [19, 20, 48, 491, where the traditional conjunction A is split into two connectives: @
(tensor) and & (with), and the traditional implication + is refined as linear implication -o . Reveal-
ing the “concurrent coexistence” nature of 8, we encode the basic binary relation P(e, t) by a linear
logic formula of the form Q(e) @ Time(t). Accordingly, the action discussed above will be specified by
a linear logic implication of the form

(Q(el> @ Time(Q)) -O (Q(e2) 63 Time(Q)).

It is remarkable that in linear logic this formula does not yield the undesired formula

(Q(el) @ Time(%)) --o (Q(el) ~3 Q(e) 8 Time(tl) 8 Time(k)),

nor the undesired formula

(Qh) @ Time(tl)) -O (Q(el) @ Time(t2)).

Concrete examples of this phenomenon are discussed in the railroad-crossing example in Section 2.
Important system properties such as safety are represented in our approach as certain PSPACE

decision properties related to provability in linear logic. In terms of complexity, this indicates a good
fit with the automata-theoretic approach [3, 41 and its PSPACE-complete problem of emptiness of the
language associated to an automaton, in contrast with the EXPSPACE-complete properties related to
satisfiubility in metric interval temporal logic [5]. By way of comparison between our setting and the
automata-theoretic approach, let us emphasize that one of the central concepts used in verification
is reachability, in the sense that safety is seen as unreachability. Our approach provides a simple
and direct correspondence between reachability and the traditional logical concept of provability. In
contrast, the traditional concept emphasized in the automata-theoretic approach is the language empti-
ness problem, while reachability is treated there only as a derived, subsidiary notion. Moreover, the
way reachability is derived from language emptiness in the automata-theoretic approach involves non-
trivial technical operations such as language intersection and complementation. The exact nature of
a relationship between our approach and the automata-theoretic approach remains to be determined.

Let us note that the method of proof of our main complexity result shows that, aside from complex-
ity bounds, decision problems that involve temporal constraints may be dealt with by running a finite
proof search, with some guidance, in the available concurrent logic programming environments based
on linear logic [9, 10, 24, 25, 41, 30, 31, 32, 131 or in the environments supporting multiset rewriting
[17, 221 or concurrent rewriting [40,44], either of which would in this case act as sort of model-checkers.
Indeed, our current work may be seen as a first step toward a larger issue of proof-bused state explo-
ration in contrast to model-checking, which is model-based. One advantage of our approach is that
it incorporates a decision procedure, so that either it provides unsafe runs or it actually establishes
safety.

Technically, our framework may be seen as a combination of local transitions and global, quantita-
tive time correlations. In our framework transitions are instantaneous but events may have duration.

2 EXAMPLE: RAILROAD-CROSSING CONTROLLER 4

Regarding the transitions, our Gamework is a refinement of the work in [ll, 21, 18, 39, 151, which
established a direct relationship between Petri nets and linear logic axiomatizations using conjunctive
formulas. Here we consider only conjunctions of fixed finite length. In linear logic this restriction
suffices for a faithful simulation of finite state transitions.

We extend this underlying framework to real-time systems by using global constraints formulated
by means of alarms (timers, time guards.) Our use of these devices is generally motivated by “an
old-fashioned approach” in [l], although our actual technical treatment of the timers is somewhat
different. Let us illustrate our combination of local trmsitions and global time constraints in more
detail on the standard railroad-crossing example.

2 Example: Railroad-Crossing Controller

The railroad-crossing system we consider consists of a train, a signal, and a gate. The train goes from
being safe to approaching, then to crossing, and then back to being safe. The signal may be set
to either raise or lower. The gate has four options: up, down, moving-up, or moving-down.

The controller senses when the train starts approaching and sets the signal to lower within D
time units. When the signal is set to lower, then the gate starts moving-down within G time units.
Once the gate starts moving-down, it is down within L time units. When the train is safe, the signal
is set to raise, and in turn, the gate starts moving-up, and is then up. For the purposes of this simple
example, no time bounds are placed on this suite. In addition to that, the train is supposed to spend
at least B time units going from safe to crossing.

The main safety property of the system is that when the train is crossing, then the gate is down.
A common assumption is that B > D + G + L.

2.1 Specifying Timeless Transitions

In order to let the reader develop some feel for the way linear logic operates, let us first discuss in
detail linear logic specifications of timeless transitions. Because of the resource-sensitive nature of
linear logic, the most naive way of writing logical formulas corresponding to the informal English
description above is actually rigorous and correct. For instance, changing the signal from lower to
raise when the train is safe is specified by the formula:

(Tr(safe) @ Sig(low)) --o (Tr(safe) @ Sig(raise)), (1)
where ~0 (tensor) is a linear logic version of conjunction and --<) is linear implication. The meaning
of a linear implication A -o B is not simply that A implies B but that A is consumed or spent and
that B is produced. This is reflected in the linear logic rules of inference. For instance, a linear logic
counterpart A -o (A @ A) of the traditional propositional tautology A +- (A A A) is not provable in
linear logic. This expressive ability of linear logic to distinguish between one and two occurrences of
a formula reflects the common sense that $1 cannot be spent to produce a $1 and another $1. In our
situation this expressive ability makes it possible for the linear logic specification (1) to%stipulate that
the signal changes from lower to raise. A similar formula in classical or in intuitionistic logic

(Tr(safe) A Sig(low)) + (Tr(safe) A Sig(raise))
is incorrect in this regard. because the tautology A + (A A A) allows us to infer

(Tr(safe) A Sig(low)) + (Tr(safe) A Sig(low) A Sig(raise)),

Probabilistic Resource Failure in Real-Time
Process Algebra*

Anna Philippou’ , Rance Cleaveland2, Insup Lee’,
Scott Smolka3, and Oleg Sokolsky4

’ University of Pennsylvania, USA. {annap. lee}@saul.cis.upenn.edu
*University of North Carolina, USA. rance@eos.ncsu.edu

3SUNY at Stony Brook, USA. sas@cs.sunysb.edu
4Computer Command and Control Company, USA. sokolsky@cccc.com

Abstract. PACSR, a probabilistic extension of the real-time process al-
gebra ACSR, is presented. The extension is built upon a novel treatment
of the notion of a resoz1rce. In ACSR, resources are used to model con-
tention in accessing physical devices. Here, resources are invested with
the ability to fair and are associated with a probability of failure. The re-
sulting formalism allows one to perform probabilistic analysis of real-time
system specifications in the presence of resource failures. A probabilistic
variant of Hennessy-Milner logic with until is presented. The logic fea-
tures an until operator which is parameterized by both a probabilistic
constraint and a regular expression over observable actions. This style
of parameterization allows the application of probabilistic constraints to
complex execution fragments. A model-checking algorithm for the pro-
posed logic is also given. Finally, PACSR and the logic are illustrated
with a telecommunications example.

1 Introduct ion

A common high-level view of a distributed real-time system is that the compo-
nents of the system compete for access to shared resources, communicating with
each other as necessary. To capture this view explicitly in formal specifications,
a real-time process algebra ACSR [17] has been developed. ACSR represents a
real-time system as a collection of concurrent processes. Each process can en-
gage in two kinds of activities: communication with other processes by means of
instantaneous events and computation by means of timed actions. Executing an
action requires access to a set of resources and takes a non-zero amount of time
measured by an implicit global clock. Resources are serially reusable, and access
to them is governed by priorities. A process that attempts to access a resource
currently in use by a higher-priority process is blocked from proceeding.

The notion of a resource, which is already important in the specification of
real-time systems, additionally provides a convenient abstraction mechanism for

* This work was supported in part by grants AFOSR F49620-95-1-0508, AR0
DAAH04-95-1-0092, NSF CCR-9415346, NSF CCR-9619910, and ONR N00014-97-
l-0505 (MURI).

probabilistic aspects of systems behavior. A major source of behavioral variation
in a process is failure of physical devices, such as processors, memory units, and
communication links. These are exactly the type of objects that are captured as
resources in ACSR specifications. Therefore, it is natural to use resources as a
means of exploring the impact of failures on a system’s performance.

In this paper, we present PACSR, a process algebra that extends the resource
model of ACSR with the ability to reason about resource failures. Each resource
used by the system is associated with a probability of failure. If a process at-
tempts to access a failed resource, it is blocked. Resource failures are assumed
to be independent. Then, for each execution step. that requires access to a set of
resources, we can compute the probability of being able to take the step. This
approach allows us to reason quantitatively about a system’s behavior.

Previous work on extending process algebra with probability information
(discussed below) typically associates probabilities with process terms. An ad-
vantage of associating probabilities with resources, rather than with process
terms, is that the specification of a process does not involve probabilities di-
rectly. In particular, a specification simply refers to the resources required by a
process. Failure probabilities of individual resources are defined separately and
are used only during analysis. This makes the specification simpler and ensures
a more systematic way of applying probabilistic information. In addition, this
approach allows one to explore the impact of changing probabilities of failures
on the overall behavior, without changing the specification.

We are also interested in being able to specify and verify high-level require-
ments for a PACSR specification. Temporal logics are commonly used to express
such high-level requirements. In the probabilistic setting, the requirements usu-
ally include probabilistic criteria that apply to large fragments of the system’s
execution. We present a simple temporal logic suitable for expressing properties
of PACSR expressions. As is common with probabilistic extensions of temporal
logics, we associate probabilistic constraints with temporal operators. The novel
feature of the logic is that we allow temporal operators to be parameterized with
regular expressions over the set of observable actions. Such parameterization al-
lows us to apply probabilistic constraints to complex execution fragments.

For example, consider a communication protocol in which a sender inquires
about the readiness of a receiver, obtains an acknowledgement, and sends data.
A reasonable requirement for the system would be that this exchange happens
with a certain probability. To express this property, one usually needs two nested
temporal until operators. Since probabilistic constraints are associated with tem-
poral operators, the single constraint has to be artificially split in two to apply to
each of the operators. With the proposed extension, we need only one temporal
operator, and the property is expressed naturally. A model-checking algorithm
for the logic, suitable for finite-state PACSR specifications, is also given.

In terms of related work, a number of process algebras have been proposed
that extend process terms with probability information, including [12,21,2,10,
16,201. The approach of [12] is particularly relevant as it also adds probability
to a real-time process algebra. It does not, however, consider the notions of ’

resource and resource probability, nor use priorities to control communication
and resource access. In [18], an automata-based formalism that combines the
notions of real-time and probabilities is presented. It employs a different notion
of time in that transitions can have variable durations. Also, probabilities are
associated with instantaneous events.

Since a PACSR specification typically consists of several parallel processes,
concurrent events in these processes are the source of non-deterministic behavior,
which cannot be resolved through probabilities. To provide for both probabilistic
and non-deterministic behavior, the semantics of PACSR processes are given via
labeled concwrent Ma&v chains [22]. This model has also been employed in [12],
and variations of it appeared in [18,6].

Regarding previous work on model checking for probabilistic systems, a
closely related approach involves associating a probability threshold with the in-
til operator of the temporal logic CTL [7]. For example, see [13,4,6,14]. We find
that this approach can become problematic when expressing properties that re-
quire multiple, nested until. Our proposed extension of the until operator, which
uses regular expressions and probability, serves to alleviate this deficiency.

The rest of the paper is organized as follows: the next section presents the
syntax of PACSR and its semantics is given in Section 3. Section 4 discusses
the temporal logic and the model-checking algorithm. In Section 5, we present
an application of PACSR for the analysis of a probabilistic telecommunications
system. We conclude with some final remarks and discussion of future work.

2 The Syntax of PACSR

2.1 Resource Probabilities and Actions

PACSR (Probabilistic ACSR) extends the process algebra ACSR by associating
with each resource a probability. This probability captures the rate at which the
resource may fail. PACSR also has two types of actions: instantaneous events
and timed actions, the latter of which specifies access to a (possibly empty) set
of resources. We discuss these three concepts below.

Instantaneous events. PACSR instantaneous actions are called events. Events
provide the basic synchronization primitives in the process algebra. An event is
denoted as a pair (a, p), where a is the label of the event and p, a natural number,
is the priority. Labels are drawn from the set L = C U z U {T}, where if a is a
given label, ?? is its inverse label. The special label 7 arises when two events with
inverse labels are executed concurrently. We let a, b range over labels. Further,
we use 2)~ to denote the domain of events.

Timed actions. We assume that a system contains a finite set of serially reusable
resources drawn from the set Res. We also consider set Res that contains, for
each T E Res, an element 5;, representing the failed resource r. We write R for
Res U Res. An action that consumes one tick of time is drawn from the domain
P(R x W) with the restriction that each resource is represented at most once. For

example the singleton action {(r, p)} denotes the use of some resource r E Res at
priority level p. Such an action cannot happen if r has failed. On the other hand,
action { (7, q)} takes place with priority q given that resource r has failed. This
construct is useful for specifying recovery from failures. The action 0 represents
idling for one unit of time, since no resource is consumed.

We let VR denote the domain of timed actions and we let A, B range over
DR. We define p(A) to be the set of the resources used by action A; for example
b4{(r17Pl)t (F,P~))) = {n,Gl.

Resource Probabilities In PACSR we associate each resource with a probability
specifying the rate at which the resource may fail. In particular, for all r E Res
we denote by p(r) E [0, l] the probability of resource r being up, while ~(5;) =
1 - p(r) denotes the probability of r failing. Thus, the behavior of a resource-
consuming process has certain probabilistic aspects to it which are reflected in
the operational semantics of PACSR. For example, consider process {(cpu, 1)) :
NIL, where resource cp~ has probability of failure l/3, i.e. p(v) = 2/3. Then
with probability 213, resource cp~ is available and thus the process may consume
it and become inactive, while with probability l/3 the resource fails and the
process deadlocks. This is discussed in detail in Section 3.

2.2 Processes

We let P, Q range over PACSR processes and we assume a set of process con-
stants each with an associated definition of the kind X dgf P. The following
grammar describes the syntax of PACSR processes.

P ::= KIL 1 (a,n). P 1 A : P 1 P + P / PllP I
P Ll”, (P, P, P) I P\F 1 [P]I I P\\I I ret X.P I X

The process NIL represents the inactive process. There are two prefix oper-
ators, corresponding to the two types of actions. The first, (a,n). P, executes
the instantaneous event (a,n) and proceeds to P. When it is not relevant for
the discussion, we omit the priority of an event in a process. The second, A : P,
executes a resource-consuming action during the first time unit and proceeds
to process P. The process P + Q represents a nondeterministic choice between
the two summands. The process PIIQ describes the concurrent composition of
P and Q: the component processes may proceed independently or interact with
one another while executing events, and they synchronize on timed actions.

The scope construct, P A”, (Q, R, S), binds the process P by a temporal
scope and incorporates the notions of timeout and interrupts. We call t the time
bound, where t E N U {co} and require that P may execute for a maximum of t
time units. The scope may be exited in one of three ways: First, if P terminates
successfully within t time-units by executing an event labeled E, where a E L,
then control is delegated to Q, the success-handler. On the other hand, if P
fails to terminate within time t then control proceeds to R. Finally, throughout I
execution of this process construct, P may be interrupted by process S. In P\F,

Specifying Failures and Recoveries in PACSR *

Anna Philippou‘, Oleg Sokolsky2, Insup Lee’,
Rance Cleaveland3, and Scott Smolka4

‘University of Pennsylvania, USA. {annap,lee}@saul.cis.upenn.edu

2Computer Command and Control Company, USA. sokolsky@cccc.com
3University of North Carolina, USA. rance@eos.ncsu.edu

4SUNY at Stony Brook, USA. sas@cs.sunysb.edu

Abstract

The paper presents PACSR, a probabilistic extension of a real-time process algebra
ACSR. The extension is built upon a novel treatment of the notion of a resource. In
ACSR, resources are used to model contention in accessing physical devices such as
processors, memory modules, and communication links, or any other reusable resource
of limited capacity. Here, we invest resources with an ability to fail and associate,
with every resource, a probability of its failure. The resulting formalism allows us
to perform probabilistic analysis of real-time system specifications in the presence of
resource failures. An attractive feature of PACSR is the ability to express failure-
recovery actions easily.

We perform probabilistic reachability analysis for PACSR specifications that allows
us to compute the probability of occurrence of an undesirable event. We illustrate
PACSR specification and analysis by means of a telecommunications example.

1 Introduction

Process algebras such as CCS [15] have proved to be effective for specification and analysis
of distributed systems. Numerous real-time [22, 16, 121 and probabilistic [20] extensions of
process algebras exist. We propose an approach that allows one to perform probabilistic
analysis for real-time systems.

A common high-level view of a distributed real-time system is that its components
compete for access to shared resources, communicating with each other as necessary. To
capture this view explicitly in formal specifications, a real-time process algebra ACSR [14]
has been developed. ACSR represents a real-time system as a collection of concurrent
processes. Each process can engage in two kinds of activities: communication with other
processes by means of instantaneous events and computation by means of timed actions.
Executing an action requires access to a set of resources and takes a non-zero amount of
time measured by an implicit global clock. Resources are serially reusable, and access to
them is governed by priorities. A process that attempts to access a resource currently in
use by a higher-priority process is blocked from proceeding.

*This work was supported in part by grants AFOSR F49620-95-1-0508, AR0 DAAH04-95-1-0092, NSF
CCR-9415346, NSF CCR-9619910, and ONR N00014-97-1-0505 (MURI).

The notion of a resource, which is important in specification of real-time systems, is
even more critical to capture the probabilistic aspects of real-time systems behavior. A
major source of behavioral variations in a process is failure of physical devices, such as
processors, memory units, and communication links, that the process utilizes during its
execution. These are exactly the type of objects that are captured as resources in ACSR
specifications. Therefore, it is natural to use resources as a means of exploring the impact
of failures on a system’s performance.

In this paper, we present PACSR, a process algebra that extends the resource model of
ACSR with the ability to reason about resource failures. With each resource used by the
system, we associate a fixed probability of failure. If a process attempts to access a failed
resource, it is blocked. Resource failures are assumed to be independent. Then, for each
execution step that requires access to a set of resources, we can compute the probability
of being able to take the step. This approach allows us to reason quantitatively about a
system’s behavior.

An advantage of associating probabilities with resources, rather than with process
terms, is that the specification of a process does not involve probabilities directly. In
particular, a specification simply refers to the resources required by a process. Failure
probabilities of individual resources are defined separately and are used only during anal-
ysis. This makes the specification simpler and ensures a more systematic way of applying
probabilistic information. In addition, this approach allows one to explore the impact of
changing probabilities of failures on the overall behavior, without changing the specifica-
tion.

A related approach that combines probabilistic specification with the notion of time
is presented in [lo]. The main distinguishing features of PACSR are the notion of re-
sources and their use to capture probabilistic data, and the use of priorities to control
communication and resource access.

A synchronous probabilistic process algebra WCCS is presented in [19]. There, each
choice is assigned a weight. Weights are treated as priorities of the corresponding compu-
tation path. Furthermore, weights provide for probabilistic analysis of the specification.
Time is measured in WCCS by counting the number of actions performed by a process,
and no high-level temporal constructs such as timeouts are provided.

In [17], an automata-based formalism that combines the notions of real-time and prob-
abilities is presented. It employs a different notion of time in that transitions can have
variable durations. Also, probabilities are associated with instantaneous events.

Since a PACSR specification typically consists of several parallel processes, concurrent
events in these processes are the source of non-deterministic behavior, which cannot be
resolved through probabilities. To provide for both probabilistic and non-deterministic be-
havior, semantics of PACSR processes are given via labeled concurrent MarJ~ov chains [21].
This model has also been employed in [lo], and variations of it appeared in [17, 51.

We employ probabilistic reachability as means of analysis of PACSR specifications.
The method allows us to perform quantitative analysis of safety properties by computing
the probability of observing an undesirable event. Another popular method of analysis is
probabilistic model checking [ll, 3, 51.

The rest of the paper is organized as follows: In the next section we present the syntax
of PACSR and then we proceed with its semantics in Section 3. In Sect,ion 4. we discuss
probabilistic reachability for PACSR terms. In Section 5, we present an application of
PACSR for the analysis of a probabilistic system. We conclude with some final remarks

. . . .

and discussion of future work.

2 The Syntax of PACSR

2.1 Actions

PACSR extends the process algebra ACSR with probability by enriching the notion of
resource, associating each resource with a probability. This probability captures the rate
at which the resource may fail. PACSR has three types of actions: timed actions, events
and probabilistic actions. We discuss these below:

Timed actions. We assume that a system contains a finite set of serially-reusable re-
sources drawn from the set Res. We also consider set Res that contains, for each r E Res,
an element r, representing the failed resource T. Finally, we write R for Res U Res. An
action that consumes one tick of time is drawn from the domain P(R x rmP> with the re-
striction that each resource is represented at most once. For example the singleton action
{(r,p)} denotes the use of some resource T E Res at priority level p. Such action cannot
happen if r has failed. On the other hand, action { (;F, q)} takes place with priority q given
that resource T has failed. This construct is useful for specifying recovery from failures.
The action 0 represents idling for one unit of time, since no resource is consumed.

We let Z)R to denote the domain of timed actions and we let A, B, to range over
DR. We define p(A) to be the set of the resources used by action A, for example
P({h,PlMT2,P2))) = {flJT).

Instantaneous events. PACSR instantaneous actions are called events. Events provide
the basic synchronization primitives in the process algebra. An event is denoted as a pair
(a,~), where a is the label of the event and p is the priority. Labels are drawn from the
set L=fTUuCU{7}, where if a is a given label, ?i is its inverse label. The special label 7,
arises when two events with inverse labels are executed concurrently. We let a, b, range
over labels. Further, we use Z)E to range over the domain of events.

Probabilistic actions. As mentioned earlier, in PACSR we associate each resource,
with a probability capturing the rate at which the resource may fail. In particular, for
all T E Res we denote by p(r) E [0, l] the probability of resource T being up, while
p(r) = 1 - p(r) denotes the probability of T failing. Thus, the behavior of a resource-
consuming process has probabilistic aspects that are captured by probabilistic actions.
For example, consider process {(CPU, 1)) : NIL where resource cpu has probability of
failure l/3, i.e. p(cpzl) = 2/3. Then with probability 2/3, resource cpu is available and
thus the process may consume it and become inactive, while with probability l/3 the
resource may fail, in which case the process deadlocks. This will be discussed in more
detail in Section 3.

2 . 2 Processes

We let P, Q range over PACSR processes and we assume a set of process constants each
with an associated definition of the kind X dAf P. The following grammar describes the

syntax of PACSR processes.

P : : = NILIA:PI(a,n).PIP+PIPjjPI
P & (P, P, P) I P\F I [PI, I P\\I I ret X.P I X

The process NIL represents the inactive process. There are two prefix operators,
corresponding to the two types of actions. The first, A : P, executes a resource-consuming
action during the first time unit and proceeds to process P. On the other hand (a,n). P,
executes the instantaneous event (a,n) and proceeds to P. Sometimes, when it is not
relevant for the discussion, we omit the priority of an event in a process. The process
P+ Q represents a nondeterministic choice between the two summands. The process PIIQ
describes the concurrent composition of P and Q: the component processes may proceed
independently or interact with one another while executing instantaneous events, and they
synchronize on timed actions. The scope construct, P & (Q, R, S), binds the process P
by a temporal scope and incorporates the notions of timeout and interrupts. We call t
the time bound, where t E Bv U {oo} and require that P may execute for a maximum
of t time units. The scope may be exited in one of three ways: First, if P terminates
successfully within the time bound t by executing an event labeled E, where a E L, then
control is delegated to process Q, the success-handler. On the other hand, if P fails to
terminate within time t then control proceeds to R. Finally, throughout execution of this
process construct, P may be interrupted by process S. In P\F, where F C L, the scope
of labels in F is restricted to process P: components of P may use these labels to interact
with one another but not with P’s environment. The construct [P]I, I C 72, produces a
process that reserves the use of resources in I for itself, extending every action A in P
with resources in I - p(A) at priority 0. P\\I hides the identity of resources in I so that
they are not visible on the interface with the environment. Finally, the process ret X.P
denotes standard recursion. We write Proc for the set of PACSR processes.

The operator P\\I binds all free occurrences of the resources of I in P. This binder
gives rise to the sets of free and bozlnd resources of a process P. In what follows, we work
up to a-conversion on resources so as to avoid tedious side conditions. In this way, bound
resources in a process are assumed to be different from each other and from the other free
resources, and o-equivalent processes are assumed to have the same transitions.

Note that the syntax of PACSR processes is the same as that of ACSR. The only
extension concerns the appearance of failed resources in timed actions. This allows us to
perform probabilistic analysis of existing ACSR specifications without any modifications,
as well as use non-probabilistic analysis of PACSR processes (without failure recovery
actions).

The informal account of behavior just given is made precise via a family of rules that
define the labeled transition relations +R and c) on processes. This is presented in the
next section. First we have some useful definitions.

The function imr(P), defined inductively below, associates each PACSR process with

.

Specification and Analysis of Real-Time Systems with
PARAGON*

Oleg Sokolsky Insup Lee Han&e Ben-Abdallah
Computer Command and Department of Computer and Dkpartement d’Informatique

Control Company Information Science FSEG
University of Pennsylvania Universite de Sfax

Philadelphia, U.S.A. Sfax, Tunisia

sokolsky@cccc.com lee@central.cis.upenn.edu hanene@saul.cis.upenn.edu

August 6, 1998

Abstract

This paper describes a methodology for the specification and analysis of distributed
real-time systems using the toolset, called PARAGON, PARAGON is based on the
Communicating Shared Resources paradigm, which allows a real-time system to be
modeled as a set of communicating processes that compete for shared resources.
PARAGON supports both visual and textual languages for describing a real-time sys-
tem. For analysis, it offers automatic analysis based on state space exploration as well
as user-directed simulation. Our experience of using PARAGON on several case stud-
ies resulted in a methodology that includes design patterns and abstraction heuristics,
as well as an overall process. This paper briefly overviews the communicating shared
resource paradigm and its toolset PARAGON, including the textual and visual speci-
fication languages. The paper then describes our methodology with special emphasis
on heuristics that can be used in PARAGON to reduce the state space. To illustrate
the methodology, we use examples from a real-life system case study.

1 Introduction

As software systems become more complex and safety-critical, it is vitally important to
ensure reliability properties of these systems. Most complex safety-critical systems are dis-
tributed and must function in real-time. Fornd methods allow users to specify their systems
precisely and reason about them in mathematical terms. A variety of methods for dealing
with hardware and software systems aimed at distributed and real-time systems have been

*This research was supported in part by NSF CCR-9415346, NSF CCR-9619910, AFOSR F49620-95-1-
0508, AFOSR F49620-96-1-0204, ONR N00014-97-l-0505 (MURI),

1

developed. They include state machines, Petri nets, logics, temporal logics, process algebra
and timed automata; the summary of existing approaches and directions for future research
can be found in [14,17]. As formal methods become more mature and their benefits for devel-
opment of large system can be clearly demonstrated, formal methods are being increasingly
accepted by the industry.

Most industrial designs yield specifications with very large state spaces. Therefore, tools
for mechanical analysis of large specifications are essential for successful application of formal
methods in industry. A number of tools based on formal methods have been put forward
in the last several years in an effort to increase the usability of formal methods especially
within the industrial community. Among the tools that are most widely available are the
Concurrency Workbench [16], Spin [29], SMV [37]. Analysis of real-time systems is supported
by COSPAN [24], Kronos [IS], and Uppaal [S].

Even with tool support, most specifications of real-life systems are too large to be an-
alyzed by brute force. Analysis of large systems is impossible without abstractions and
simplifications that serve to reduce infinite, or finite but unmanageable, state space of the
system’s specification. Users of each formalism and supporting tools employees a number of
abstraction heuristics that help in creating manageable specifications of large-scale systems.
Some of the used heuristics are specific to the formalism or the tool, while others are ap-
plicable to several related methods. Often when case studies are described, these heuristics
are left out or mentioned only briefly. We think it is worth while to make these heuristics
explicit for the benefit of future users of formal method tools.

This paper describes a methodology for the specification and analysis of distributed real-
time systems using the toolset, called PARAGON. We describe the process of constructing a
formal specification from an informal description of the system, and some of the specification
patterns often observed in this process. In addition, we summarize heuristics aimed at
reduction of the state space of specifications, commonly employed by PARAGON.

PARAGON is based on process algebra ACSR [33] and related formalisms. Process
algebras, such as CCS [38], CSP [28] and ACP [9], have been developed to describe and
analyze communicating, concurrently executing systems. A process algebra consists of a
concise language, a precisely defined operational semantics, and a notion of equivalence. The
language is based on a small set of operators and a few syntactic rules for constructing a
complex process from simpler components. The operational semantics describes the possible
execution steps a process can take, i.e., a process specification can be executed, and serves
as the basis for various analysis algorithms.

The notion of equivalence indicates when two processes behave identically, i.e., they
have the same execution steps. To verify a system using a process algebra, one writes a
requirements specification as an abstract process and a design specification as a detailed
process. The correctness can then be established by showing that the two processes are
equivalent. The most salient aspect of process algebras is that they support the modular
specification and verification of a system. This is due to the algebraic laws that form a
compositional proof system, and thus it is possible to verify the whole system by reasoning
about its parts. Process algebras without the notion of time are now used widely in specifying
and verifying concurrent systems.

To expand the usefulness to real-time systems, several real-time process algebras have
been developed by adding the notion of time and including a set of timing operators to process
algebras. In particular, these real-time process algebras provide constructs to express delays
and timeouts, which are two essential concepts to specify temporal constraints in real-time
systems.

Algebra of Communicating Shared Resource (ACSR) introduced by Lee et. al. [33], is
a timed process algebra which can be regarded as an extension of CCS. It enriches the set
of operators, introducing constructs to capture such common real-time design notions such
as resource sharing and exception and interrupt handling. ACSR supports the notions of
resources, priorities, interrupt, timeout, and process structure. The notion of real time in
ACSR is quantitative and discrete, and is accommodated using the concept of timed actions.
The execution of a timed action takes one time unit and consumes a set of resources defined
in the timed action during that one time unit period. The execution of a timed action is
subject to the availability of resources it uses. The contention for resources is arbitrated
according to the priorities of competing actions. To ensure the uniform progression of time,
processes execute timed actions synchronously.

ACSR is an extension of another real-time process algebra, called CCSR [22], which
shares many aspects of ACSR. In particular, CCSR was the first process algebra to support
the notions of both resources and priorities. CCSR, however, lacks instantaneous synchro-
nization since all actions take exactly one time unit. ACSR extends CCSR with the notion of
instantaneous events and synchronization, and includes a set of laws complete for finite state
processes [ll]. To promote the use of ACSR in the specification and analysis of real-time
systems, we have implemented a tool called VERSA [13]. PARAGON is a toolset that ex-
tends the capability of VERSA by providing graphical user interface, graphical specification
language and simulation, as well as modifying it to handle larger specifications.

The paper is organized as follows. Section 2 presents the paradigm of Communicating
Shared Resources, which forms the basis for PARAGON analysis. Section 3 gives an overview
of the PARAGON toolset. Section 4 describes the specification and analysis methodology of
PARAGON using a real-life example. We also detail heuristics that enabled us to successfully
analyze this example. Section 5 gives an overview of related work. We conclude in Section 6
with a summary of our results and directions for future research.

2 Overview of the Formalism

The specification paradigm of Communicating Shared Resources (CSR) [21] is the basis
for several process-algebraic formalisms. Among these formalisms are the real-time process
algebra ACSR (the Algebra of Communicating Shared Resources) [ll, 331 and a visual
specification language GCSR (the Graphical CSR) [4, 61. The two languages have compatible
semantics and can be intermixed in a large specification.

The CSR paradigm is based on the view that a real-time system consists of a set of
communicating components called processes. Processes compete for access to a finite set of
serially shared resources and synchronize with one another through communication channels.

3

Further, parameterized specifications allow users to represent data manipulation and value
passing between processes.

The use of shared resources by processes is represented by timed actions, and synchro-
nization is supported via instantaneous events. The execution of an action is assumed to
utilize a set of resources during a nonzero amount of time, measured by an implicit global
clock. The execution of an action is subject to availability of resources it uses, and con-
tention for resources is arbitrated according to priorities of competing actions. In addition,
to ensure uniform progress of time, processes execute actions synchronously. Time can be
either dense or discrete; in this paper, we consider only discrete time semantics to simplify
the presentation. With discrete time, duration of an action is one tick of the global clock.
Each action is represented by a set of resources needed for the action, each with an access
priority. Example of an action is {(CPU, 2)) (sensor, l)}, which is executed only if resources
cpu and sensor are not in use by a higher-priority process.

Unlike an action, the execution of an event is instantaneous and does not require any
resources. Processes execute events asynchronously except when two processes synchronize
through matching event names, i.e., channels. Two events match if one is an input and the
other an output on the same-name channel. Matching pairs of events are denoted a and
si in ACSR, respectively, and a? and a! in GCSR. Contention for channels is also resolved
according to priorities of events. An input event in channel a with priority 1 is denoted as
(a, 1).

We next present the syntax and informal semantics of ACSR and GCSR, two languages
that implement the CSR specification paradigm. Formal semantics for ACSR and GCSR
in the form of structured operational semantics (SOS) rules may be found in [33] and [7],
respectively.

2.1 Syntax and Semantics of ACSR

ACSR provides a set of operators that are similar to the common set of operators found
in other process algebras: prejx for sequencing of actions and events; choice for choosing
between alternatives; parallel for composing two processes to run in parallel; restriction and
hiding for abstracting communication details or resource names; and recursion for describing
infinite processes. As a real-time formalism, ACSR supports a variety of operators that deal
with time. They allow one to delay execution for t time units, to timeout while waiting for
some actions to occur, and to bound the time it takes to execute a sequence of actions. In
addition, ACSR provides two operators, interrupt and exception, that are extremely useful
in modeling real-time systems but are not present in other real-time process algebras. The
interrupt operator makes it easy to specify reaction to asynchronous actions or events. The
exception operator allows an exception to be raised any place inside a process and handled
by an exception handling process. i

ACSR provides for parameterization of a process specification by an index set. to sup-

. .

port efficient representation families of similarly defined processes. There are two kinds of
variables in ACSR specifications, process variables and index rwrinbles. Process variables
represent ACSR terms and index variables range over elements of smw indes set and are

Verification of the Redundancy Management System for Space Launch Vehicle *
A Case Study

Oleg Sokolsl$, Mohamed Younis+, Insup Lee:, Hee-Hwan Kwak: and Jeff Zhout
* Computer Command and Control Company, 2300 Chestnut St., Su. 230, Philadelphia, PA 19103. sokolsky@cccc.com

+ AlliedSignal Advanced Systems Technology Group, 9140 Old Annapolis Rd., Columbia, MD 21045. {younis,zhou}@batc.allied.com
: Department of Computer and Information Systems, University of Pennsylvania, Philadelphia, PA 19 104. { lee,heekwak} @saul.cis.upenn.edu

Abstract

In the recent years, formal methods has been widely rec-
ognized as effective techniques to uncover design errors
that could be missed by a conventional software engineer-
ing process. This paper describes our experience with us-
ing formal methods in analyzing the Redundancy Manage-
ment System (RMS) for a Space Launch Vehicle. RMS is
developed by AlliedSignal Inc. for the avionics of NASA’s
new space shuttle, called VentureStar; that meets the expec-
tations for space missions in the 21St century. A process-
algebraicformalism is used to construct a formal specifica-
tion based on the actual RMS design specifications. Analy-
sis is performed using PARAGON, a toolsetforformal spec-
ification and verification of distributed real-time systems.
A number of real-time and fault-tolerance properties were
verified, allowing for some errors in the RMS pseudocode
to be detected. The paper discusses the translation of the
RMS specification into process algebra formal notation and
results of the formal verification.

1. Introduction

In July 1996, the National Aeronautics and Space Ad-
ministration (NASA) launched a very ambitious project to
build the next generation of space shuttles for the 21th cen-
tury. NASA wants the new spacecraft, which is named Ven-
ture&r, to be reusable for multiple missions and to be able
to reach the target orbit in a single stage. One of the driv-
ing principles of the program is to reduce the cost of future
space flights to encourage private companies to install their
payload. After soliciting designs from different airframe
companies, NASA appointed Lockheed Martin Corp. for
building a proof-of-concept prototype for the VentureStar

*This work was supported in part by AFOSR F49620-95-l-0508, AR0
DAAH04-95-l-0092, NSF CCR-9415346, NSF CCR-9619910, and ONR
NOOO14-97-I-0505.

(Figure l), called the X-33, that will eventually lead to the
Reusable Launch Vehicle (LRV). AlliedSignal Aerospace
is a major subcontractor to Lockheed Martin Corp. on the
project to develop the avionics of VentureStar.

A quad-redundant open system architecture is to be used
for the avionics of VentureStar (only triple-redundant archi-
tecture is used for the X-33 prototype). The architecture de-
viates radically from traditional designs by integrating mul-
tiple flight critical control within the same cage. The in-
tegrated platform hosts the flight manager and the mission
manager, both are regarded as highly critical control func-
tions on the spacecraft since they manipulate control sur-
faces to compensate for aerodynamic instability. To avoid
losing multiple highly critical controls by a single failure,
redundant components are used. Four cages with similar
configuration are included to provide fault-tolerance. The
cages are deployed with a redundancy management system
(RMS), developed by AlliedSignal Inc. RMS, as illustrated
next, provides fault detection, containment and recovery
and maintains consistency between the redundant compo-
nents.

Fault tolerance is critical to the operation of VentureStar.
To gain additional confidence in correctness of the RMS,
we undertook a formal analysis of the RMS design. Formal
methods rely on mathematical semantics of the formalism
to provide rigorous analysis of specifications. Numerous
case studies show that formal analysis can uncover design
errors that are missed by a conventional software engineer-
ing process [S]. Exhaustive verification of real-time systems
is a very resource-consuming task. Given the current state-
of-the-art in the area of formal methods, only systems of
moderate size can be analyzed. For a formal verification
project to succeed, a relatively small safety-critical com-
ponent of the system has to be identified. The RMS of
VentureStar provides an excellent example of such safety-
critical component. A specification of the RMS, based
on the pseudocode used in the design process, was con-
structed. The specification uses the formalism of real-time

1

Figure 1. The Future VentureStar Reusable Launch Vehicle

process-algebra ACSR [121. After construction, the speci-
fication was analyzed for compliance with the set of RMS
requirements, which were also given a formal representa-
tion. Analysis was performed using PARAGON toolset [I]
that follows the ACSR specification paradi,om. The overall
scheme of the approach is demonstrated in Figure 2.
Related work. Several other tools for formal analysis
of system specifications are available. Among the most
widely used are SPIN [93, SCR* [6] and the Concurrency
Workbench [3]. Tools like HyTech [7], COSPAN [5], and
SMV [13] are popular for analysis of hardware and hy-
brid systems. Compared to these tools, PARAGON is
more oriented towards specification of real-time systems.
In addition to capabilities for quantitative timing analy-
sis, PARAGON allows notions of priorities and shared re-
sources, common in design of real-time systems, to be used
in system specifications.

The outline of the paper is as follows: Section 2 de-
scribes the RMS design and implementation, as well as re-
quirements for the RMS. Section 3 presents PARAGON [11,
the specification and verification toolset for distributed real-
time systems that was used to analyze the RMS. The formal
specification of the RMS and its requirements is discussed
in Section 4. The paper concludes with the summary of ver-
ification results in Section 5.

2. The Fault Tolerant Architecture

Tolerance of faults, typically, can be realized in four
steps [1 I]. The first step is to detect an error. Second the
fault that caused the error has to be contained to prevent
fault propagation to other system components. Then, the
required diagnosis is performed to find the location (zone)
of the fault. Finally, the appropriate recovery procedure

is invoked, including reconfiguration if necessary. Fault-
tolerance is achieved by using redundancy. Such redun-
dancy can be a replica used in case of failure to supply the
same function. A technique known as passive replication
is used to mask faults by removing their effects. Faults are
masked by executing voting algorithms that select the most
reliable response from the replicated computers [lo]. Re-
dundancy management is necessary to synchronize the ex-
ecution of multiple computers into a common clock and to
vote on data to detect and mask faults. However, manag-
ing the redundancy requires overhead to keep consistency
between replicas and this overhead can increase the com-
plexity of the application development process.

The AlliedSignal research team has developed the Multi-
computer Architecture for Fault Tolerance (MAFT) to sup-
port the development of real-time mission critical applica-
tions [lo, 151. The philosophy used in the MAFI archi-
tecture is to separate redundancy management and fault-
tolerance support from the applications (e.g., control func-
tions, etc.) so that the overall development complexity and
effort of dependable systems can be reduced. The architec-
ture is scalable to support as many redundant components
as needed by the fault coverage requirements. Using this
approach, a system developer can concentrate on system
application design and can rely on the redundancy manage-
ment system (RMS) to provide system executive functions
such as cross-channel synchronization and data voting to
achieve fault tolerance and redundancy management at the
system level. This divide-and-conquer strategy is impor-
tant for a complex system-engineering task so that it can be
broken down into smaller and easily manageable tasks. It
avoids the ad-hoc design processes for implementing fault-
tolerant systems, and offers effective means for integration
of design dependability into real-time, mission-critical sys-

RMS requirements RMS design
(English) (pseudocode)

Figure 2. Formalization of the RMS

tern development.
A MAlT-based fault tolerant architecture consists of

multiple processing nodes, called application processors or
simply AP Each AP performs exactly the same functions.
Every node is connected to an RMS processor. All of these
RMS nodes are mutually connected through direct commu-
nication links. The RMS and AP partitioning can be either
logical or physical. The RMS may be a software kernel that
shares the same processor with application tasks, resulting
in only logical partition. The RMS may also be a hardware
device that is physically separated from the AP processor.
The number of redundant AP nodes is selected based on
the criticality level and the types of faults that the system
should handle. A sample four-channel RMS system model
is depicted in Figure 3. Every channel is considered as a
fault containment zone. Faulty channels will be excluded
from the voting process. Thus, a fault in a channel cannot
propagate to affect other healthy channels.

Using this architecture, every application function will
be executed multiple times simultaneously on different
nodes (four in this example). Every application function
will periodically send data to the associated RMS module
via the direct communication links. Every RMS module
will then send that data to all other RMS nodes through
dedicated communication links, called Cross Channel Data
Link (CCDL). After receiving all copied data, every RMS
module will perform voting and send back the voted data
values that will be used by the application for further com-
putation. The voted data can be used to mask the error gen-
erated by a faulty application node to restore system health
and integrity. In addition, RMS maintains a global sys-
tem health status identifying both healthy and faulty nodes
based on the deviation from the voted data. Moreover, RMS
maintains synchronized execution of all the redundant ap-
plication processors by sending periodic synchronization
messages to overcome any clock skew effect. Thus, RMS
masks faults by excluding erroneous data and provides fault
detection, containment, diagnosis and recovery. The RMS
functions are transparent to the application processors and
are available to the system developer as system services.

By providing such system service functions for the X-
33 vehicle management computer, RMS plays an essential

role in maintaining the availability and safety of the vehi-
cle. Consequently, rigorous engineering design and imple-
mentation processes and fault avoidance techniques are ex-
tremely critical to verify the correctness of RMS. A single
generic fault in the design or implementation of RMS may
bring the whole system down regardless the number of re-
dundant components. In addition, RMS implementation for
the X-33 is mostly in software that increases the probability
of subtle faults. Thus, verification and fault avoidance tech-
niques, including the use of Formal Methods, are necessary
to prove the behavior of RMS before deployment. The next
section summarizes both functional and operational require-
ments of RMS for the X-33 VentureStar.

2.1. RMS Requirements for VentureStar

For the VentureStar, RMS has to be designed and im-
plemented subject to a set of functional and operational re-
quirements. Operational requirements address the behavior
of RMS in both absence and presence of faults. They in-
clude performance, fault latency, errors reporting and ap-
plication processor interface. On the other hand, functional
requirements include the capabilities that RMS is expected
to provide and the assumptions that both RMS and the ap-
plications should make about each other. The following are
informal samples of the requirements:

1. RMS should complete its functional computation in a
minor frame of 10 ms. A minor frame is the period of
the most frequently activated task.

2. For a three or more node system, RMS should operate
normally with the failure of one node.

3. The system should be able to tolerate any single fault
with the following timing characteristics: (1) transient,
(2) permanent, and (3) intermittent. Any of these faults
should be contained in its originated node and should
not be propagated to other nodes.

4. RMS should complete system recovery by excluding
the faulty node in one major frame. A major frame
is the period of the least common multiple of tasks’
frequencies.

5.

8.

9.

10.

11.

$j $q gj p-kl
Figure 3. A four-channel RMS based fault-tolerant system

The system should be able to readmit a fault-free node
into the operating set within one major frame in order
to preserve system resources.

At startup RMS should synchronize with all other
nodes to form the potential operating set (OPS) incre-
mentally. All nodes in the OPS should maintain a syn-
chronization skew of less than 0.1 ms.

RMS should use different voting algorithms [10, 151
for different types of data: (A) Majority voting for fi-
nite discrete data. (B) Mid-Value Selection voting for
integer or floating-point numbers. (C) Mean of Medial
Extremes voting for system synchronization.

RMS should collect application data at the minor
frame boundary, vote the data, and signal the availabil-
ity of the voted data with the application data ready
signal before the next minor frame boundary.

CCDL communications should be by serial link that
runs at a minimum speed of 8Mbps.

The CCDL shall be able to receive messages from mul-
tiple nodes (including itself) simultaneously.

Messages sent through the CCDL should include error
detection code to detect transmission errors.

2.2. RMS Design and Implementation

Since RMS and application partitioning can be either
logical or physical, both software and hardware implemen-
tation of RMS are feasible. RMS may be a software ker-
nel that shares the same processor with application tasks,
resulting in only logical partition. RMS may also be a
hardware device that is physically separated from the ap-
plication processor. For the X-33, a dedicated VME-based

computer board separate from the application hosts RMS.
A total hardware implementation of RMS makes the design
less portable in spite of providing superior performance. On
the other hand, a full software implementation can be easily
ported to a different platform although it may not meet the
timing constraints. To meet the performance goals for the
VMC on the X-33 VentureStar, a hybrid approach is used
by providing most of the BMS functions in software, while
implementing cross channel communication between RMS
nodes in hardware.

Thus, KMS consists of two parts as shown in Figure 4:
(a) the Fault-Tolerant Executive (FI’E) and (b) the Cross-
Channel Data Link (CCDL). The FlE performs the re-
dundancy management functions in software, whereas the
CCDL performs cross-channel data communication in hard-
ware. The FI’E provides major FWS functions which in-
clude: maintaining system synchronization (Synchronizer);
voting on application data and RMS internal state (Voter);
error detection and fault isolation and recovery (Fault Tol-
erator); managing the cross channel data link (Manage
CCDL); performing built-in-test at startup (Diagnostics);
managing the application interface (.Task Communicator);
and, coordination of correct and timely operations of all the
functions above (Kernel). The Cross Channel Data Link
(CCDL) is designed as a mezzanine board that is seated on
the VME card running the FI’E. The CCDL card provides
the physical interface between the redundant nodes and per-
forms error checking on message transmission. Pseudo
code is prepared for various components of the FI’E and re-
viewed by peers. In addition, a detailed design of the CCDL
including schematics is developed and verified.

RMS development follows various well-established soft-
ware engineering process for software development, testing,
and validation. Peer reviews are conducted during prelimi-
nary and detailed design. In addition, code inspection is per-

Part III

Probabilistic Program Correctness

Funda Ergtin, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Ma-
hesh Viswanathan: “Spot-Checkers”, in the Proceedings of the 30th ACM
Symposium on the Theory of Computing - STOC’98, pages 259-268, Dal-
las, TX, May, 1998.

Full paper: http://theory.stanford.edu/muri/reports/97-98/f~da2.ps

Funda Ergtin, S. Ravi Kumar, and Ronitt Rubinfeld: L’Approximate Check-
ing of Polynomials and Functional Equations”, submitted for publication. A
preliminary version appeared in the Proceedings of the 37th IEEE Sympo-
sium on the Foundations of Computer Science - FOCS’98, pages 592-601,
Burlington, VT, October 1996.

Full paper: http://theory.stanford.edu/muri/reports/97-98/f~dal.ps

Spot-Checkers*

Funda Ergtint Sampath Kannant S Ravi Kumad
Ronitt Rubinfelds Mahesh Viswanathant

Abstract

On Labor Day Weekend, the highway patrol sets up spot-
checks at random points on the freeways with the intention
of deterring a large fraction of motorists from driving in-
correctly. We explore a very similar idea in the context of
program checking to ascertain with minimal overhead that
a program output is reasonably correct. Our model of spot-
checking requires that the spot-checker must run asymptoti-
cally much faster than the combined length of the input and
output. We then show that the spot-checking model can be
applied to problems in a wide range of areas, including prob-
lems regarding graphs, sets, and algebra. In particular, we
present spot-checkers for sorting, element distinctness, set
containment, set equality, total orders, and correctness of
group operations. All of our spot-checkers are very simple
to state and rely on testing that the input and/or output have
certain simple properties that depend on very few bits.

Our sorting spot-checker runs in O(log n) time to check
the correctness of the output produced by a sorting algorithm
on an input consisting of n numbers. We also show that there
is an 0(1) spot-checker to check a program that determines
whether a given relation is close to a total order. We present
a technique for testing in almost linear time whether a given
operation is close to an associative cancellative operation.

*This work was supported by ONR NOCO14-97- l-0505, MURI. The sec-
ond author is also supported by NSF Grant CCR96-19910. The third author
is also supported by DARPA/AF F30602-95-l-0047. The fourth author is
also supported by the NSF Career grant CCR-9624552 and Alfred P. Sloan
Research Award. The fifth author is also supported by AR0 DAAHO4-95-
I-0092.

tErnail: {fergun@saul, kannan@central, maheshv@
gradient}. cis . upenn. edu. Department of Computer and Informa-
tion Science, University of Pennsylvania, Philadelphia, PA 19104.

XEmail: ravi@almaden. ibm. corn. IBM Almaden Research Center,
San Jose, CA 95 120.

fErnail: ronitt@cs Cornell. edu. Department of Computer Sci-
ence, Cornell University, Ithaca, NY 14853.

In this extended abstract we show the checker under the as-
sumption that the input operation is cancellative and leave
the general case for the full version of the paper. In contrast,
[RaS96] show that quadratic time is necessary and sufficient
to test that a given cancellative operation is associative. This
method yields a very efficient tester (over small domains)
for all functions satisfying associative functional equations
[Acz66]. We also extend this result to test in almost linear
time whether the given operation is close to a group opera-
tion.

1 Introduction

Ensuring the correctness of computer programs is an impor-
tant yet difficult task. Program result checking [BK89] and
self-testing/correcting programs [BLR93, Lip911 make run-
time checks to certify that the program is giving the right
answer. Though efficient, these methods often add small
multiplicative factors to the runtime of the programs. Ef-
forts to minimize the overhead due to program checking
have been somewhat successful [BW94, Rub94, BGR96] for
linear functions. Can this overhead be minimized further by
settling for a weaker, yet nontrivial, guarantee on the correct-
ness of the program’s output? For example, it could be very
useful to know that the program’s output is reasonably cor-
rect (say, close in Hamming distance to the correct output).
Alternatively, for programs that verify whether an input has
a particular property, it may be useful to know whether the
input is at least close to some input which has the property.

In this paper, we introduce the model of spot-checking,
which performs only a small amount (sublinear) of addi-
tional work in order to check the program’s answer. In this
context, three prototypical scenarios arise, each of which is
captured by our model. In the following, let f be a func-
tion purportedly computed by program P that is being spot-
checked, and x be an input to f.

l Functions with small output. If the output size of the
program is smaller than the input size, say If(x)] =
o(]z]) (as is the case for example for decision prob-
lems), the spot-checker may read the whole output and

only a small part of the input.

Functions with large output. If the output size of
the program is much bigger than the input size, say
1x1 = o(lf(z)l) (for example, on input a domain D,
outputting the table of a binary operation over D x D),
the spot-checker may read the whole input but only a
small part of the output.

Functions for which the input and output are compa-
rable. If the output size and the input size are about
the same order of magnitude, say 1~1 = O(lf(z)l) (for
example, sorting), the spot-checker may only read part
of the input and part of the output.

One naive way to define a weaker checker is to ask that
whenever the program outputs an incorrect answer, the
checker should detect the error with some probability. This
definition is disconcerting because it does not preclude the
case when the output of the program is very wrong, yet is
passed by the checker most of the time. In contrast, our
spot-checkers satisfy a very strong condition: if the output
of the program is far from being correct, our spot-checkers
output FAIL with high probability. More formally:

Definition 1 Let A(., -) be a distancefunction. We say that
C is an e-spot-checkerfor f with distance function A if

Given any input x andprogram P (purporting to com-
pute f), and E, C outputs with probability at least
3/4 (over the internal coin tosses of C) PASS if
A((x, P(x)), (x, f(x))) = 0 and FAIL iffor all inputs
Y. A(b,P(x)>, (Y, f(y))) > e.

The runtime of C is 0(1x1 + If(x

The spot-checker can be repeated O(lg l/b) times to get
confidence 1 - 6. The choice of the distance function A is
problem specific, and determines the ability to spot-check.
For example, for programs with small output, one might
choose a distance function for which the distance is infinite
whenever P(x) # f(y), whereas for programs with large
output it may be natural to choose a distance function for
which the distance is infinite whenever x # y.

OUR RESULTS . We show that the spot-checking model
can be applied to problems in a wide range of areas, includ-
ing problems regarding graphs, sets, and algebra. We present
spot-checkers for sorting, element distinctness, set contain-
ment, set equality, total orders, and group operations. All of
our spot-checker algorithms are very simple to state and rely
on testing that the input and/or output have certain simple
properties that depend on very few bits; the non-triviality lies
in the choice of the distribution underlying the test. Some of
our spot-checkers run much faster than o(/XI+ If(x - for
example, our sorting spot-checker runs in O(lg 1x1) time. All
of our spot-checkers have the additional property that if the
output is incorrect even on one bit, the spot-checker will dc-
tect this with a small probability. In order to construct these

spot-checkers, we develop several new tools, which we hope
will prove useful for constructing spot-checkers for a num-
ber of other problems.

One of the techniques that we developed for testing group
operations allows us to efficiently test that an operation is
associative. Recently in a surprising and elegant result,
[RaS96] show how to test that operation o is associative
in O(lD12) steps, rather than the straightforward O(lD13).
They also show that s2(ID12) steps are necessary, even for
cancellative operations. In contrast, we show how to test that
0 is close (equal on most inputs) to some cancellative asso-
ciative operation o’ over domain D in 6(/D/) steps’. We
also show how to modify the test to accommodate opera-
tions that are not known to be cancellative, in which case the
running time increases to o(n3j2). Though our test yields a
weaker conclusion, we also give a self-corrector for the op-
eration o’, i.e., a method of computing o’ correctly for all
inputs in constant time. This method yields a reasonably ef-
ficient tester (over small domains) for all functions satisfying
associative functional equations [Acz66].

RELATIONSHIP TO PROPERTY TESTING . A number of
interesting result checkers for various problems have been
developed (cf., [BK89, BLR93, EKS97, KS96, AHK95,
Kan90, BEG+91, ABC+93]). Many of the checkers for nu-
merical problems have used forms ofpropeq resting (albeit
under various names) to ensure that the program’s output
satisfies certain properties characterizing the function that
the program is supposed to compute. For example, efficient
property tests that ensure that the program is computing a
linear function have been used to construct checkers. In
[GGR96], the idea of using property testing directly on the
input is first proposed. This idea extended the scope of prop-
erty testing beyond numeric properties. In [GGR96, GR97],
property testing is applied to graph problems such as bipar-
titeness and clique number. The ideas in this paper are in-
spired by their work.

For the purposes of this exposition, we give a simplified
definition of property testing that captures the common fea-
tures of the definitions given by [RS96, Rub94, GGR96].
Given a domain H and a distribution V over H, a function f
is e-close to a function g 0verD if PrzED[f (x) # g(x)] 5 E.
A is a property tester for a class of functions 3 if for any
given E and function f, with high probability (over the coin
tosses of A) A outputs PASS if f E 3 and FAIL if there is
no g E 3 such that g and f are E-close.2

Our focus on the checking of program results motivates
a definition of spot-checkers that is natural for testing in-
put/output relations for a wide range of problems. All previ-
ous property testers used a “Hamming-like” distance func-

a
‘The notation d(n) suppresses polylogarithmic factors of n.
‘In fact. the definition of property resting given by [GGR96] is much

more general. For example, it allows one to sepantrly consider fwo differ-
ent models of the tester’s access fo /. The lirst case IS when the tester muy
m&e queries to / on any input. The srcond C‘LSS IS u hen the wswr cannot
make queries to / but is given a random sequence 01 \r. f(r)\ ptirs where
x is chosen accordmg to ‘D In our ssmng. the kvmx IS the nxud model.

tion. Our general definition of a distance function allows us
to construct spot-checkers for set and list problems such as
sorting and element distinctness, where the Hamming dis-
tance is not useful. In fact, with a proper distance function,
all property testers in [GGR96] can be transformed into spot-
checkers. One must, however, be careful in choosing the
distance function. For instance, consider a program which
decides whether an input graph is bipartite or not. Every
graph is close to a graph that is not bipartite (just add a
triangle), so property testing for nonbipartiteness is trivial.
Thus, unless the distance function satisfies a property such
as A((2, g), (z, y’)) is greater than e when y # y’, the spot-
checker will have an uninteresting behavior.

2 Set and List Problems

2.1 Sorting

Given an input to and output from a sorting program, we
show how to determine whether the output of the pro-
gram is close in edit-distance to the correct sorting of
the input, where the edit-distance p(u, w) is the num-
ber of insertions and deletions required to change string
u into v. The distance function that we use in defin-
ing our spot-checker is as follows: for all 2, y lists
of elements, a((~:, P(z)), (y, f(y))) is infinite if either
2 # y or]P(z)] # If(y)] and otherwise is equal to
P(P(X)> f(Y))llP(X)l. S’mce sorting has the property that
for all 5, 1x1 = If(z)], we assume that the program P sat-
isfies Vx, 1x1 =]P(,)]. It. tis s raightforward to extend our
techniques to obtain similar results when this is not the case.
We also assume that all the elements in our unsorted list are
distinct. (This assumption is not necessary for testing for the
existence of a long increasing subsequence.)

In Section 2.1.2, we show that the running time of our
sorting spot-checker is tight.

2.1.1 The Test

Our 2e-spot-checker first checks if there is a long increasing
subsequence in P(x) (Theorem 2). It then checks that the
sets P(x) and x have a large overlap (Lemma 8). If P(z) and
x have an overlap of size at least (1 - e)n, where rz = 1x1,
and P(x) has an increasing subsequence of length at least
(1 - 4~ then A(& P(x)), (Y, f(y))) I 2~.

For m = O((l/c) lg l/S) and n = O(lg l/6), the algo-
rithm presented in the figure checks if an input sequence A
has a long increasing subsequence by picking random pairs
of indices i < j and checking that A[i] < A[j]. An obvious
way of picking i and j is to pick i uniformly and then pick j
to be i + 1. Another way is to pick i and j uniformly, making
sure that i < j. One can find sequences, however, that pass
these tests even though they do not contain long increasing
subsequences. The choice of distribution on the pairs i, j is
crucial to the correctness of the checker.

Procedure Sort-Check(c,G)
repeat m times

choose i ER [l,n]
for ktO...lgi do

repeat n times
choose j ER [l, 2k]
if (A[i - j] > A[i]) then return FAIL

for k t 0.. .lg(n - i) do
repeat n times

choose j l R [1,2k]
if (A[i] > A[i + j]) then return FAIL

return PASS

Theorem 2 Procedure Sort-Check(c,&) runs
0((l/c) lg n lg2 l/6) time, and satisfies:

l If Aissorted, Sort-Check(c,b)= PASS.

in

l If A does not have an increasing subsequence of length
at least (1 - c)n, then with probability at least 1 - 6,
Sort-Check(c, 6) = FAIL.

To prove this theorem we need some basic definitions and
lemmas.

Definition 3 The graph induced by an array A, of inte-
gers having n elements, is the directed graph GA, where
V(GA) = {wI,...,~,} a n d E(G.4) = {(wi,wj) I i <
j and A[i] < A[j]}.

We now make some trivia1 observations about such graphs.

Observation 4 The graph GA induced by an array A =
{Q,V2,... , v,} is transitive, i.e., if (u,v) E E(G,J) and
(v,w) E E(GA) then (u,w) E E(GA).

We shall use the following notation to define neighborhoods
of a vertex in some interval.

NOTATION. I&,)(i) denotes the set of vertices in the
open interval between t and t’ that have an incoming edge
from 2ri. Similarly, I&,) (i) denotes the set of vertices be-
tween t and t� that have an outgoing edge to Vi.

It is useful to define the notion of a heavy vertex in such a
graph to be one whose in-degree and out-degree, in every 2”
interval around it, is a significant fraction of the maximum
possible in-degree and out-degree, in that interval.

Definition 5 A vertex vi in the graph GA is said to be heavy
ifforall k, 0 5 k 5 lgi, I I’(i-21c,i)(i) I 2 772” andforall k,
0 < k < lg(n - i), I I’~,i+zlJ(i)] 2 7t2”, where Q = 3/4.

Theorem 6 A graph GA induced by an array A, that has
(1 - c)n heavy vertices, has a path of length at least (1 - c)n.

The theorem follows as a trivia1 consequence of the follow-
ing:

Lemma 7 If Vi and Vj (i < j) are heavy vertices in the
graph GA, then (vi, vj) E E(GA).

Proof Since GA is transitive, in order to prove the above
lemma, all we need to show is that between any two heavy
vertices, there is a vertex uk such that (vi, Q) E E(GA) and
(uk,vj) E WGA).

Let m be such that 2”’ 5 (j - i), but 2(“+‘) > (j - i).
Let 1 = (j -i) - 2”‘. Let I be the closed interval b - 2”) i +
2n]with]1]=(i+2m)-(j-2m)+l=2m-1+1.Since
Vi is a heavy vertex, the number of vertices in I that have an
edge from vi is at least ~2~ - ({(j - 2”‘) - i}) = ~2~ - 1.
Similarly, the number of vertices in I, that are adjacent to uj
is at least ~2~ - ({j - (i + 2m)}) = ~2~ - 1.

Now, we use the pigeonhole principle to show that there
is a vertex in I that has an incoming edge from i and an
outgoing edge to j. By transitivity that there must be an
edge from i to j. This is true if (112” - 1) + (7l2* - I) >
III = 2m - 1 + 1. Since 77 = 3/4, this condition holds if
1 < 2m-‘.

-Now consider the case when 1 > 2”‘-‘. In this case we
can consider the intervals of size 2m+1 to the right of i and
to the left of j and apply the same argument based on the
pigeonhole principle to complete the proof. El

Proof [of Theorem 21 Clearly if the checker returns FAIL,
then the array is not sorted.

We will now show that if the induced graph GA does not
have at least (1 - c)n heavy vertices then the checker returns
FAIL with probability 1 - 6. Assume that GA has greater
that cn light vertices. The checker can fail to detect this if
either of the following two cases occurs: (i) the checker only
picks heavy vertices, or (ii) the checker fails to detect that
a picked vertex is light. A simple application of Chemoff
bound shows that the probability of(i) is at most 6/2.

By the definition of a light vertex, say vi, there is a k such
that]I?G,i+2iJ(i)] (or]r(i,i-gL)(i)]) is less than (3/4)2’i.
The checker looks at every neighborhood; the probability
that the checker fails to detect a missing edge when it looks
at the k neighborhood (vj such that i 5 j < i f 2k) can
be shown to be at most 6/2 by an application of Chemoff’s
bound. Thus the probability of (ii) is at most b/2. 0

In order to complete the spot-checker for sorting, we give a
method of determining whether two lists A and B (of size n)
have a large intersection, where A is presumed to be sorted.

Lemma 8 Given lists A, B of size n, where A is presumed
to be sorted. There is a procedure that runs in O(lg n) time
such that if A is sorted and IA n BI = n, it outputs PASS
with high probability, and if IA n BI < cn for a suitable
constant c, it outputs FAIL with high probability.

Remark: The algorithm may also fail if it detects that .+l is
not sorted or is not able to find an element of B in -4.
Proof Suppose .-I is sorted. Then, one can randomly pick

b E B and check if b E A using binary search. If binary
search fails to find b (either because b 4 A or A is wrongly
sorted), the test outputs FAIL. Each test takes O(lg n) time,
and constant number of tests are sufficient to make the con-
clusion. q

2.1.2 A Lower Bound for Spot-Checking Sorting

We show that any comparison-based spot-checker for sorting
running in o(lgn) time will either fail a completely sorted
sequence or pass a sequence that contains no increasing sub-
sequence of length R(n). We do this by describing sets
of input sequences that presents a problem for such spot-
checkers. We will call these sequences 3-layer-saw-tooth
inputs.

We define k-layer-saw-tooth inputs (k-lst’s) inductively.
k-lsts take k integer arguments, (zi,22, . . . , zk) and are de-
noted by lStk(xl,xg,. . . ,zk). lstk(z1,22,. . . , zk) repre-
sents the set of sequences in Z21Z2...2* which are comprised
of Xk blocks of sequences from E&k-t(xi, x2,. . . ,x&i).
Moreover, if k is odd, then the largest integer in the it* block
is less than the smallest integer in the (i + l)th block for
1 5 i < Xk. If k is even, then the smallest integer in the
ith block is greater than the largest integer in the i(i + l)th
block for 1 2 i < xk. Finally to specify these sets of inputs
we need to specify the base case. We define Zstl(xl) to be
the set of sequences in ZZ1 which are increasing.

An example l&(3,3,2) is:

E [h(3,3)

m 161718131415101112
E h-h(3)

Note that the longest increasing subsequence in Zstg(i, j, k)
is of lentgth ik and can be constructed by choosing one
lstl (i) from each lstg(i, j).

We now show that o(lgn) comparisons are not enough
to spot-check sorting using any comparison-based checker
(including that presented in the previous section). Sup-
pose, for contradiction, that there is a checker that runs in
f(n) = @(lgn/a(n)) time where a(n) is an unbounded,
increasing function of 12. Without loss of generality, the
checker generates O(f(n)) index pairs (ai, bl), . . . (ak, bk),
where the at < bt for 1 < 1 5 k and returns PASS if and
only if, for all 1, the value at position al is less than the value
at position bt .

Lemma 9 A checker of the kind described above must either
FAIL a completely sorted sequence or PASS a sequence that
contains no increasing sequence of length p(n).

Proof Maintain an array consisting of log n buckets. For
each (~1, al) pair generated by the checker. put this pair in
the bucket whose index is Llg(bt - al)]. It follows that there
is a sequence of ccy(n) buckets (for some: c < 1) such that
the probability (over all possible runs of the checker) that

Approximate Checking of Polynomials and

Functional Equations *

Funda Ergiin S Ravi Kumar Ronitt Rubinfeld

Department of Computer Science

Cornell University

Ithaca, NY 14853.

July 16, 1998

Abstract

In this paper, we show how to check programs that compute polynomials and

functions defined by addition theorems - in the realistic setting where the output

of the program is approximate instead of exact. We present results showing how to

perform approximate checking, self-testing, and self-correcting of polynomials, settling

in the affirmative a question raised by [GLR+Sl, RS92, RS96]. We obtain this by

first building approximate self-testers for linear and multilinear functions. We then

show how to perform approximate checking, self-testing, and self-correcting for those

functions that satisfy addition theorems, settling a question raised by [Rub94]. In both

cases, we show that the properties used to test programs for these functions are both

*This work is partially supported by NSF Career grant CCR-9624552, the Alfred P. Sloan Research

Award, and ONR grant N00014-97-1-0505. The first and second authors are also supported by NSF grant

DMI-91157199. The third author is also supported by the grant No. 92-00226 from the United States-Israel

Binational Science Foundation (BSF), Jerusalem, Israel. Part of this research was conducted while visiting

the M.I.T. Lab. for Computer Science. A preliminary version of this paper appeared in the 37th IEEE

Conference on Foundations of Computer Science, 1996.

robust (in the approximate sense) and stable. Finally, we explore the use of reductions

between functional equations in the context of approximate self-testing. Our results

have implications for the stability theory of functional equations.

1 Introduction

Program checking was introduced by Blum and Kannan [BK89] in order to allow one to

use a program safely, without having to know apriori that the program is correct on all

inputs. Related notions of self-testing and self-correcting were further explored in [BLR93,

LipSl]. These notions have proved to be very powerful from a practical point of view (c.f.,

[BW94]) and from a theoretical angle (c.f., [AS92, ALM+92]) as well. The techniques used

usually consist of tests performed at run-time which compare the output of the program

either to a predetermined value or to a function of outputs of the same program at different

inputs. In order to apply these powerful techniques to actual programs, however, several

issues dealing with precision need to be dealt with. The standard model, which considers

an output to be wrong even if it is off by a very small margin, is too strong to make

practical sense, due to reasons such as: (1) in many cases, the algorithm is only intended

to compute an approximation, e.g., Newton’s method; (2) representational limitations and

roundoff/truncation errors are inevitable in real-valued computations; (3) the representation

of some fundamental constants (e.g., 7r = 3.14159. . .) is inherently imprecise.

The framework presented by [GLR+91, ABC+931 accommodates these inherently in-

evitable or acceptably small losses of information by overlooking small precision errors while

detecting actual “bugs”, which manifest themselves with greater magnitude. Given a func-

tion f, a program P that purports to compute f, and an error bound a, if]P(z) -f(z)] < a

(denoted P(X) %A f(z)) under some appropriate notion of norm, we say P(x) is upproxi-

mutely correct. Approximate result checkers test if P is approximately correct for a given

input x. Approximate self-testers are programs that test if P is approximately correct for

most inputs. Approximate self-correctors take programs that are approximately correct on

most inputs and turn them into programs that are approximately correct on every input.

DOMAINS. We operate on finite subsets of fixed point arithmetic that we refer to as finite

rational domains. For n, s E Z+, D,,, gf {i :]i] 5 n, i E Z}. Usually, s = 2l where I is the

precision. We allow s and n to vary for generality. For a domain D, let D+ and D- denote

the positive and negative elements in 27.

TESTING USING PROPERTIES. There are many approaches to building self-testers. We

3

illustrate one paradigm that has been particularly useful. In this approach, in order to test if

a program P computes a function f on most inputs, we test if P satisfies certain properties

o f f .

As an example, consider the function f(z) = 2x and the property “f(ll: + 1) = f(x) + 2”

that f satisfies. One might pick random inputs x and verify that P(x + 1) = P(x) + 2.

Clearly, if for some x, P(x + 1) # P(x) + 2, then P is incorrect. The converse, however, is

not true. In particular, there exists a P (for instance, P(x) = 2x mod K for some large K)

such that: (i) with high probability, P satisfies the property at random x and hence will pass

the test, and (ii) there is no function that satisfies the property for all x such that P agrees

with this function on most inputs. Thus we see that this method, when used naively, does

not yield a self-tester that works according to our*specifications. Nevertheless, this approach

has been used as a good heuristic to check the correctness of programs [CodSl. CS91, Vai93].

As an example of a property that does yield a good tester, consider the linearity property

‘Xx + Y> = f(x) + f(Y)“, satisfied only by functions mapping DD,,, to Iw of the form f(x) =

cx, c E Iw. If, by random sampling, we conclude that the program P satisfies this property

for most x, y, it can be shown that P agrees with a linear function g on most inputs [BLR93,

Rub94]. We call linearity, and any property that exhibits such behavior, a robust property.

We now describe more formally how to build a self-tester for a class 3 of functions that

can be characterized by a robust property. Our two-step approach is: (i) test that P satisfies

the robust property (property testing), and (ii) check if P agrees with a specific member of 3

(equality testing). T he success of this approach depends on finding robust properties which

are both easy to test and lead to efficient equality tests.

We first consider robust properties in more detail. Suppose we want to test the program

on the domain ID,,,. Then we allow calls to the program on a larger domain D7(,,S), where

T : Z2 + Z2 is a fixed function that depends on the structure of 1. Ideally, we would like

+, 4 = h 4, i.e., %(,,,) = K,,. But, for technical reasons, we allow DD,(,,,) to be a proper,

but not too much larger, superset of DD,,, (in particular, the description size of an element\
in DD,(,,,) should be polynomial in the description size of an element in Ibn.S).’ -A property

‘Alternatively, one could test the program over the domain VD,,, and attempt to infer rhe correctness of

the program on most inputs from ‘Z?,,l,,f, where P,,lS,f is a large subdomain of I?,,,,.
.

Part IV

Programming Languages

Iliano Cervesato: “Proof-Theoretic Foundation of Compilation in Logic Pro-
gramming Languages”, in the Proceedings of the 1998 Joint International
Conference and Symposium on Logic Programming - JICSLP’98, (J. Jaffar
editor), pages 115-129, MIT Press, Manchester, UK, June 1998.
Full paper: http : //www . stanf ord. edu/“iliano/papers/ j icslp98 .ps . gz

Stephen Freund and John C. Mitchell: “A Type System for Object Ini-
tialization in the Java Bytecode Language”, in the Proceedings of the ACM
Symposium on Object-oriented Programming: Systems, Languages and Ap-
plications - OOPSLA’98, Vancouver, Canada, October, 1998 (to appear).
Full paper: f tp : //theory. stanf ord. edu/pub/ j cm/papers/ jvm-oopsla-98. ps

Proof-Theoretic Foundation of
Compilation
in Logic Programming Languages
Iliano Cervesat 0
Department of Computer Science
Stanford University
Stanford, CA 94305-9045
iliano@cs.stanford.edu

Abstract

Commercial implementations of logic programming languages are engineered
around a compiler based on Warren’s Abstract Machine (WAM) or a variant
of it. In spite of various correctness proofs, the logical machinery relating
the proof-theoretic specification of a logic programming language and its
compiled form is still poorly understood. In this paper, we propose a logic-
independent definition of compilation for logic programming languages. We
apply this methodology to derive the first cut of a compiler and the corre-
sponding abstract machine for the language of hereditary Harrop formulas
and then for its linear refinement.

1 Introduction

Compiled logic programs run over an order of magnitude faster than their
interpreted source and constitute therefore a key step to combining the ad-
vantages of the declarative nature of logic programming with the efficiency
requirements of full-scale applications. For this reason, commercial imple-
mentations of logic programming languages come equipped with a compiler
to translate a source program into an intermediate language, and an ab-
stract machine to execute this compiled code efficiently. Most systems are
based on Warren’s Abstract Machine (WAM) [l, 221, first developed for Pro-
log. The WAM has now been adapted to other logic programming languages
such as CLP(R) [lo] and PROTOS-L [2]. Extensions to XProZog [14] are
under way [12, 16, 171, but no similar effort has been undertaken for other
advanced logic programming languages such as Lolli [9] or Elf [20].

Warren’s work appears as a carefully engineered construction, but, for its
very pioneering nature, it lacks any logical status. This contrasts strongly
with the deep roots that the interpretation semantics of logic programming
has in logic and proof-theory [15]. Indeed, the instruction set of the WAM
hardly bears any resemblance to the connectives of the logic underlying Pro-
log and seems highly specialized to this language. As a result, the WAM
“resembles an intricate puzzle, whose many pieces fit tightly together in a

Appeared in the Proceedings of the 1998 Joint International Conference and Symposium
on Logic Programming - JICSLP’98 (J. JaRar editor), pp ??-??, MIT Press, Manchester,
UK, 16-19 June 1998.

miraculous way” [3], understanding it is complex in spite of the availability
of excellent presentations [l], and designing WAM-like systems for other lan-
guages is a major engineering project. Several authors have proved the cor-
rectness of the WAM with respect to specifications of Prolog’s interpretation
semantic [3, 211. However, these results shed very little light on the logical
reading of the WAM since they start from highly procedural presentations of
the semantic of Horn clauses, as SLD-resolution for example. Adaptations
of these proofs to the aforementioned extensions of the WAM to other logic
programming languages [2, 41 suffer from the same problem. Therefore, dif-
ferently from the case of functional programming for example [13, 181, there
is no logical account of compilation for logic programs.

In this paper, we give a general definition of compilation that parallels
and extends the notion of abstract logic programming language [E]. More
specifically, we propose a proof-theoretic characterization of the compilation
process based on the duality between left and right rules in a sequent calcu-
lus presentation of a logic. In doing so, we do not commit to any particular
logic but consider any formalism whose proof theory obeys a minimal set of
properties [15]. We use the logic of hereditary Harrop formulas [15] and its
linear variant [9] as examples. The high-level rules of an abstract logic pro-
gramming language leave several implementation choices open, such as the
order in which conjunctive goals should be solved and how to instantiate vari-
ables. The same will happen in the compiled language. However, similarly
to the case of abstract logic programming languages, our abstract compi-
lation scheme can be refined to adopt specific strategies (e.g. left-to-right
subgoal selection rule and unification). Modularity is achieved in this way.

The main contributions of this paper are: (1) the individuation of the
logic underlying the WAM and a logical justification of the compilation pro-
cess, (2) the definition of an abstract, logic-independent and modular notion
of compilation for logic programming languages, and possibly (3) the first
steps toward a logic-based theory of compilation for logic programming lan-
guages . We also hope that our approach will help make compilation an
integral part of the design of new logic programming languages rather than
the collateral engineering task it is now.

This paper is organized as follows. In Section 2, we recall the definition
of abstract logic programming language and introduce the logic of hereditary
Harrop formulas as an example. We describe our abstract notion of compi-
lation in Section 3, apply it to our case study and prove correctness results.
In Section 4, we further exemplify our approach on a logic programming
language based on linear logic. Section 5 outlines directions of future work.

2 Abstract Logic Programming Languages

Computation in logic programming is achieved through proof search. Given
a goal A to be proved in a program r, we want to be able to interpret the
connectives of -4 as search directi,ues and the clauses in I’ as specifications

2

Uniform provability

I-,A,r’ & A >> a l-&Al IT-&AZ
u-Atom - u-True u-And

r,A,r’ -S a r-St r& A1 A Aa

l?,Al % A2 c “new” r 3 [c/z]A
u-Imp u-Forall

l- -li A1 > A2 r & Vx.A
Immediate entailment

i-Atom

r-J%..>.
(No rule for t)

r&A1>>a r&A2 r & [t/z]A >> a
i-Imp i-Forall

r-% Az>Al >> a r & Vx.A >> a

Figure 1: Uniform Deduction System for LHH.

of how to continue the search when the goal is atomic. These desiderata are
given without mentioning the logic the program and the goal belong to.

A proof in any logic is goal-oriented if every compound goal is immedi-
ately decomposed and the program is accessed only after the goal has been
reduced to an atomic formula. A proof is focused if every time a program
formula is considered, it is processed up to the atoms it defines without need
to access any other program formula. A proof having both these properties is
zlniform, and a formalism such that every provable goal has a uniform proof
is called an abstract logic programming language, abbreviated ALPL [15]. An
ALPL is conveniently described as a pair (,C, +) consisting of a language
L: and an associated notion of (uniform) derivability -+.

The language of hereditary Hurrop formulas, abbreviated CHH, is the
largest freely generated fragment of intuitionistic logic that passes the above
ALPL test [15]. It is the logic underlying the programming language XPro-
log [14] and embeds the language of Horn clauses on which Prolog is based.
Formulas and programs are defined by means of the following grammar:
Formulas: A ::= a 1 t 1 Al A A2 1 Al >A, 1 Vz.A
Programs : I? : := . I r, A

where a ranges over atomic formulas. We shall treat programs as sequences
and omit the leading “.” whenever a program is not empty. Moreover, we
write t to indicate terms and denote the capture avoiding substitution of a
term t for 2 in a formula A as [t/z]A. Not ice that we do not specify the un-
derlying language of terms. This is irrelevant to our development: it can be
first-order, higher-order as in XProZog, or be based on any equational theory
(which would yield corresponding constraint logic programming languages).
Propositional LHH can be handled as well once we omit the quantifiers Vx. A.
However, we do not admit quantification over atomic formulas.

3

Syntactically richer definitions of the logic of hereditary Harrop formulas
exist [14, 151. They are obtained by allowing the language of programs to be
different from the language of goals. The former differs in minor points from
the grammar displayed above. The latter is extended with numerous other
logical operators. It is not a coincidence that these additional constructs
correspond to the connectives and quantifiers into which program formulas
will be compiled in the next section. This syntactic extension does not
however alter the expressiveness of this logic.

Figure 1 displays the traditional sequent calculus rules for CHH written
in such a way that every proof is uniform. The specification of the uniform
provability judgment, written l? 21\ A, includes all the right sequent rules for
this logic and calls the immediate entailment judgment r -% A >> a when
the goal is atomic. Immediate entailment isolates a clause and decomposes
it as prescribed by the left sequent rules of CHH until an axiom applies. The
cut-elimination theorem and simple permutations of inference rules s&ice
to show that any sequent derivation can be transformed into a uniform proof
that uses only these rules [15]. Therefore CHH is an ALPL.

The rules in Figure 1 present three main forms of non-determinism. First,
the order in which the two premises of rules u-And and i-Imp should
be proved is left unspecified (conjunctive non-determinism). Second. no
criterion is given to select the program formula in rule i-Atom nor to choose
among rules iAnd and iAnd2 (disjunctive non-determinism). Third, no
strate,T is specified to construct the term t in rule S’orall (existential non-
determinism). A concrete implementation must resolve these points.

3 Abstract Compilation

The search for a uniform proof consists of the alternation of two distinct
phases: goal decomposition, where right sequent rules are applied according
to the structure of the goal, and, once the goal is atomic, clause decomposi-
tion where left sequent rules are systematically used on the selected formula
in the program. These two operational modes are clearly distinguished in
LHH by means of the two forms of judgments that describe its semantics (Fig-
ure 1). From a logic programming perspective, the connectives appearing in
the goal are search directives and therefore goal decomposition is where the
bulk of the action takes place. Clause decomposition can instead be viewed
as a preparatory phase.

The objective of compilation is to separate these two phases so that all the
preparatory steps are performed before any search begins [ll]. An abstract
logic programming compilation system, ALPCS for short, consists therefore
of a source ALPL (,C, +), an intermediate language Cc which is itself an
ALPL with the characteristic that its notion of derivability c\ consists of
right sequent rules only, and a compilation function >> that maps programs
and goals in C to compiled programs and compiled goals in Cc, respecri\-ely.

The intermediate XLPL (Cc, A) and the compilation function C:W be

A Type System for Object Initialization
In the JavaT” Bytecode Language*

Stephen N. Freund John C. Mitchell
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

{freunds, mitchell}@cs.stanford.edu

Abstract

In the standard Java implementation, a Java language
program is compiled to Java bytecode. This bytecode
may be sent across the network to another site, where it
is then interpreted by the Java Virtual Machine. Since
bytecode may be written by hand, or corrupted during
network transmission, the Java Virtual Machine con-
tains a bytecode verifier that performs a number of con-
sistency checks before code is interpreted. As illustrated
by previous attacks on the Java Virtual Machine, these
tests, which include type correctness, are critical for
system security. In order to analyze existing bytecode
verifiers and to understand the properties that should be
verified, we develop a precise specification of statically-
correct Java bytecode, in the form of a type system. Our
focus in this paper is a subset of the bytecode language
dealing with object creation and initialization. For this
subset, we prove that for every Java bytecode program
that satisfies our typing constraints, every object is ini-
tialized before it is used. The type system is easily
combined with a previous system developed by Stata
and Abadi for bytecode subroutines. Our analysis of
subroutines and object initialization reveals a previously
unpublished bug in the Sun JDK bytecode verifier.

1 Introduction

The Java programming language is a statically-typed
general-purpose programming language with an im-
plementation architecture that is designed to facilit-
ate transmission of compiled code across a network.
In the standard implementation, a Java language pro-

*Supported in part by NSF grants CCR-9303099 and CCR-
9629754, ONR MURI Award N00014-97-1-0505, and a NSF Graduate
Research Fellowship.

gram is compiled to Java bytecode and this bytecode is
then interpreted by the Java Virtual Machine. While
many previous programming languages have been im-
plemented using a bytecode interpreter, the Java archi-
tecture differs in that programs are commonly transmit-
ted between users across a network in compiled form.

Since bytecode may be written by hand, or corrup-
ted during network transmission, the Java Virtual Ma-
chine contains a bytecode verifier that performs a num-
ber of consistency checks before code is interpreted. Fig-
ure 1 shows the point at which the verifier checks a pro-
gram during the compilation, transmission, and execu-
tion process. After a class file containing Java bytecodes
is loaded by the Java Virtual Machine, it must pass
through the bytecode verifier before being linked into
the execution environment and interpreted. This pro-
tects the receiver from certain security risks and various
forms of attack.

The verifier checks to make sure that every opcode
is valid, all jumps lead to legal instructions, methods
have structurally correct signatures, and that type con-
straints are satisfied. Conservative static analysis tech-
niques are used to check these conditions. As a result,
many programs that would never execute an erroneous
instruction are rejected. However, any bytecode pro-
gram generated by a conventional compiler is accepted.
The need for conservative analysis stems from the un-
decidability of the halting problem, as well as efficiency
considerations. Specifically, since most byt#ecode is the
result of compilation, there is very little benefit in devel-
oping complex analysis techniques to recognize patterns
that could be considered legal but do not occur in com-
piler output.

The intermediate bytecode language, which we refer
to as JVML, is a typed, machine-independent form with
some low-level instructions that reflect specific high-
level Java source language constructs. For example,
classes are a basic notion in JVML, and there is a
form of “local subroutine” call and return designed to
allow efficient implementation of the source language

A.java A.class
I I 1

class A {
v o i d f0 {

JavaP-iCompiler
class f i le

B.class
networb . ’ r -

: I
I

Java Virtual Machine

Loader

--

Untrusted Code : Trusted Code
I
I
I

Figure 1: The Java Virtual Machine

try-finally construct. While some amount of type in-
formation is included in JVML to make type-checking
possible, there are some high-level properties of Java
source code that are not easy to detect in the resulting
bytecode. One example is the last-called first-returned
property of the local subroutines. While this property
will hold for every JVML program generated by compil-
ing Java source, some effort is required to confirm this
property in bytecode programs [SA98].

Another example is the initialization of objects before
use. While it is clear from the Java source language
statement

A x = new A((parameters))

that the A class constructor will be called before any
methods can be invoked through the pointer x, this is
not obvious from a simple scan of the resulting JVML
program. One reason is that many bytecode instruc-
tions may be needed to evaluate the parameters for the
call to the constructor. In the bytecode, these will be
executed after space has been allocated for the object
and before the object is initialized. Another reason, dis-
cussed in more detail in Section 2, is that the structure
of the Java Virtual Machine requires copying of point-
ers to uninitialized objects. Therefore, some form of
aliasing analysis is needed to make sure that an object
is initialized before it is used.

Several published attacks on early forms of the Java
Virtual Machine illustrate the importance of the byte-
code verifier for system security. To cite one specific
example, a hug in an early version of Sun’s byt.ecode

verifier allowed applets to create certain system objects
which they should not have been able to create, such
as class loaders [DFW96]. The problem was caused by
an error in how constructors were verified and resul-
ted in the ability to potentially compromise the security
of the entire system. Clearly, problems like this give
rise to the need for a correct and formal specification of
the bytecode verifier. However, for a variety of reasons,
there is no established formal specification; the primary
specification is an informal English description that is
occasionally at odds with current verifier implementa-
tions .

Building on a prior study of the bytecodes for local
subroutine call and return [SA98], this paper develops
a specification of statically-correct bytecode for a frag-
ment of JVML that includes object creation (allocation
of memory) and initialization. This specification has the
form of a type system, although there are several tech-
nical ways in which a type system for low-level code
with jumps and type-varying use of stack locations (or
registers) differs from conventional high-level type sys-
tems. We prove soundness of the type system by a tra-
ditional method using operational semantics. It follows
from the soundness theorem that any bytecode program
that passes the static checks will initialize every object
before it is used. We have examined a broad range of al-
ternatives for specifying type systems capable of identi-
fying that kind of error. In some cases, he found it pos-
sible to simplify our specification by being more or less
conservative than current verifiers. However. we gener-

ally resisted the temptation to do so since we hoped to
gain some understanding of the strength and limitations
of existing verifier implementations.

In addition to proving soundness for the simple lan-
guage, we have structured the main lemmas and proofs
so that they apply to any additional bytecode commands
that satisfy certain general conditions. This makes it
relatively straightforward to combine our analysis with
the prior work of Abadi and Stata, showing type sound-
ness for bytecode programs that combine object creation
with subroutines. In analyzing the interaction between
object creation and subroutines, we have identified a
previously unpublished bug in the Sun implementation
of the bytecode verifier. This bug allows a program to
use an object before it has been initialized; details ap-
pear in Section 7. Our type-based framework also made
it possible to evaluate various repairs to fix this error
and prove correctness for a modified system.

Section, 2 describes the problem of object initializ-
ation in more detail, and Section 3 presents JVMLi,
t,he language which we formally study in this paper.
The operational semantics and type system for this lan-
guage is presented in Section 4. Some sound extensions
t,o JVMLi, including subroutines, are discussed in Sec-
tion 6, and Section 7 describes how this work relates to
Sun’s implementation. Section 8 discusses some other
projects dealing with bytecode verification, and Sec-
tion 9 gives directions for future work and concludes.

2 Object Initialization

.4s in many other object-oriented languages, the Java
implementation creates new objects in two steps. The
first step is to allocate space for the object. This usually
requires some environment-specific operation to obtain
an appropriate region of memory. In the second step,
user-defined code is executed to initialize the object. In
Java, the initialization code is provided by a constructor
defined in the class of the object. Only after both of
these steps are completed can a method be invoked on
an object.

In the Java source language, allocation and initial-
ization are combined into a single statement. This is
illustrated in the following code fragment.

Point p = new Paint(3) ;
p.Print();

The first line indicates that a new Point object should
be created and calls the Point constructor to initialize
this object. The second line invokes a method on this
object and therefore can be allowed only if the object
has been initialized. Since every Java object is created
by a statement like the one in the first line here, it does

not seem difficult to prevent Java source language pro-
grams from invoking methods on objects that have not
been initialized. While there are a few subtle situations
to consider, such as when a constructor throws an ex-
ception, the issue is essentially clear cut.

It is much more difficult to recognize initialization-
before-use in bytecode. This can be seen by looking at
the five lines of bytecode that are produced by compiling
the preceding two lines of source code:

1: new #I <Class Point>
2: duP
3: iconst-3
4: invokespecial #4 <Method Point(int)>
5: invokevirtual 85 <Method void Print()>

The most striking difference is that memory allocation
(line 1) is separated from the constructor invocation
(line 4) by two lines of code. The first intervening line,
dup, duplicates the pointer to the uninitialized object.
The reason for this instruction is that a pointer to the
object must be passed to the constructor. A convention
of parameter passing for the stack-based architecture is
that parameters to a function are popped off the stack
before the function returns. Therefore, if the address
were not duplicated, there would be no way for the code
creating the object to access it after it is initialized. The
second line, iconst3 pushes the constructor argument
3 onto the stack. If p were used again after line 5 of the
bytecode program, another dup would have been needed
prior to line 5.

Depending on the number and type of constructor
arguments, many different instruction sequences may
appear between object allocation and initialization. For
example, suppose that several new objects are passed
as arguments to a constructor. In this case, it is neces-
sary to create each of the argument objects and initialize
them before passing them to the constructor. In general,
the code fragment between allocation and initialization
may involve substantial computation, including alloca-
tion of new objects, duplication of object pointers, and
jumps to or branches from other locations in the code.

Since pointers may be duplicated, some form of ali-
asing analysis must be used. More specifically, when a
constructor is called, there may be several pointers to
the object that is initialized as a result, as well as point-
ers to other uninitialized objects. In order to verify code
that uses pointers to initialized objects, it is therefore
necessary to keep track of which pointers are aliases
(name the same object). Some hint for this is given by
the following bytecode sequence:

1 : neu #l Glass P o i n t >
2: nea #I <Class Po in t>
3: W’
4: iconst-3
5: invokespecial #4 <Method Point(int)>
6: invokevirtual #5 <Method void Print()>

When line 5 is reached during execution, there will be
two different uninitialized Point objects. If the byte-
code verifier is to check object initialization statically, it
must be able to determine which references point to the
object that is initialized at line 5 and which point to the
remaining uninitialized object. Otherwise, the verifier
would either prevent use of an initialized object or al-
low use of an uninitialized one. (The bytecode program
above is valid and accepted by verifiers using the static
analysis described below.)

Sun’s Java Virtual Machine Specification [LY96] de-
scribes the alias analysis used by the Sun JDK verifier.
For each line of the bytecode program, some status in-
formation is recorded for every local variable and stack
location. When a location points to an object that is
known not to be initialized in all executions reaching
this statement, the status will include not only the prop
erty uninitialized, but also the line number on which the
uninitialized object would have been created. As refer-
ences are duplicated on the stack and stored and loaded
in the local variables, the analysis also duplicates these
line numbers, and all references having the same line
number are assumed to refer to the same object.

When an object is initialized, all pointers that refer
to objects created at the same line number are set to ini-
tialized. In other words, ail references to uninitialized
objects of a certain type are partitioned into equivalence
classes according to what is statically known about each
reference, and all references that point to uninitialized
objects created on the same line are assumed to be ali-
ases. This is a very simple and highly conservative
form of aliasing analysis; far more sophisticated meth-
ods might be considered. However, the approach can be
implemented efficiently and it is sufficiently accurate to
accept bytecode produced by standard compilers.

Our specification of statically-correct Java bytecode
in Section 4 uses the same form of a&sing analysis as
the Sun JDK verifier. Since our approach is type based,
the status information associated with each reference is
recorded as part of its type.

One limitation of aliasing analysis based on line num-
bers is that no verifiable program can ever be able to ref-
erence two objects allocated on the same line, without
first initializing at least one of them. If this situation
were to occur, references would exist to two different
objects from the same static aliasing-equivalence class.
Unfortunately, there was an oversight in this regard in
the development of the Sun verifier. \vlli<.h allowetl SIIC~

a case to exist (as of version 1.1.4). As discussed in Sec-
tion 7, aliasing based on line numbers makes it problem-
atic for a subroutine to return an uninitialized object.

3 J V M L ;

This section describes the JVMLi language, a subset
of JVML encompassing basic constructs and object ini-
tialization. Although this language is much smaller than
JVML, it is sufficient to study object initialization and
formulate a sound type system encompassing the static
analysis described above. The run-time environment
for JVMLi consists only of an operand stack and a fi-
nite set of local variables. A JV>lLi program will be a
sequence of instructions drawn from the following list:

instruction ::= push 0 1 inc 1 pop
1 if L
1 s t o re 2 1 load z
1 new c 1 init u 1 use d
1 h a l t

where 3: is a local variable name! u is an object type, and
L is an address of another instruction in the program.
Informally, these instructions have the following effects:

push 0: pushes integer 0 onto the stack.

inc: adds one to the value on the top of the stack, if
that value is an integer.

pop: removes the top element from the stack, provided
that the stack is not empty.

if L: if the top element on the stack is not 0, execution
jumps to instruction L. Ot.herwise, execution steps
to the next sequential instruction. This assumes
that the top element is an integer.

store 2: removes a value from the top of the stack and
stores it into local variable t.

.

load 2: loads the value from local variable z and places
it on the top of the stack.

halt: terminates program execution.

new E allocates a new, uninitialized object of type u
and places it on the stack.

init u: initializes the object on top of the operand
stack, which must be a previously uninitialized ob-
ject obtained by a call to new (T. This represents
calling the constructor of an object. In this model,
we assume that constructors always properly ini-
tialize their argument and return. However, as de-
scribed in Section 6. there are several additional
properties which musr be checked t,o verify that
constructors do in fact beh;jve correctly.

Part V

Temporal Reasoning

Iliano Cervesato, Massimo Franceschet, and Angelo Montanari: “Event
Calculus with Explicit Quantifiers”, in the Proceedings of the Fifth Interna-
tional Workshop on Temporal Representation and Reasoning ~ TIME’98,
(R. Morris, L. Khatib editors), pages 81-88, IEEE Computer Society Press,
Sanibel Island, FL, May 1998.

Full paper: http://www.stanford.edu/-iliano/papers/time98.ps.gz

Iliano CervesatoJ Massimo Franceschet, and Angelo Montanari: “The Com-
plexity of Model Checking in Modal Event Calculi with Quantifiers”, in the
Proceedings of the Sixth International conference on Principles of Knowl-
edge Representation and Reasoning - KR’98, (A. G. Cohn, L. K. Shubert,
and S. C. Shapiro, editors), pages 368-379, Morgan Kaufmann publishers,
Trento, Italy, June 1998.

Full paper: http: //www.stanford.edu/-iliano/papers/kr98.ps.gz

Event Calculus with Explicit Quantifiers*

Iliano Cervesatot , Massimo Franceschett , and Angelo Montanarit
t Department of Computer Science t Dipartimento di Matematica e Informatica

Stanford University Universit& di Udine
Stanford, CA 94305-9045 Via delle Scienze, 206 - 33100 Udine, Italy

iliano@cs.stanford.edu franzesc@dimi.uniud.it; montana@dimi.uniud.it

Abstract

Kowalski and Sergot’s Event Calculus (EC) is a sim-
ple temporil formalism that, given a set of event occur-
rences, derives the maximal validity intervals (MVIs)
over which properties initiated or terminated by these
events hold. We extend the range of queries accepted
by EC, so far limited to boolean combinations of MVI
verification or computation requests, to admit arbitrary
quantification over events and properties. We demon-
strate the added expressive power by encoding a medical
diagnosis problem as a case study. Moreover, we give
an implementation of this formalism and analyze the
computational complexity of the extended calculus.

1 Introduction

The Event Calculus, abbreviated EC [5], is a sim-
ple temporal formalism designed to model and reason
about scenarios characterized by a set of events, whose
occurrences have the effect of starting or terminating
the validity of determined properties. Given a (possi-
bly incomplete) description of when these events take
place and of the properties they affect, EC is able to de-
termine the maximal validity intervals, or MVIs, over
which a property holds uninterruptedly. In practice,
since this formalism is usually implemented as a logic
program, EC can also be used to check the truth of
MVIs and process boolean combinations of MVI veri-
fication or computation requests. The range of queries
that can be expressed in this way is however too limited
for modeling realistic situations.

*The first author was supported by ONR grant N00014-97-l-
0505, Multidisciplinary University Research Initiative Semantic
Consistency in Information Exchange. The work of the third
author was partially supported by the CNR project Program-
mazione logica: strumenti per analisi e trasformatione di pro-
grammi; tecniche di ingegneria de1 software; estensioni con vin-
coli, concorrenza ed oggetti (STE).

A systematic analysis of EC has recently been un-
dertaken in order to gain a better understanding of this
calculus and determine ways of augmenting its expres-
sive power. The keystone of this endeavor has been
the definition of an extendible formal specification of
the functionalities of this formalism [2]. This has had
the effects of establishing a semantic reference against
which to verify the correctness of implementations [2],
of casting EC as a model checking problem [3], and of
setting the ground for studying the complexity of this
problem, which was proved polynomial [l]. Extensions
of this model have been designed to accommodate con-
structs intended to enhance the expressiveness of EC.
In particular, modal versions of EC [2], the interaction
between modalities and connectives [3], and precondi-
tions [4] have all been investigated in this context.

In this paper, we continue the endeavor to enhance
the expressive power of EC by considering the possibil-
ity of quantifying over events and properties in queries.
We also admit boolean connectives and requests to ver-
ify the relative order of two events. We show that the
resulting language, that we call QCEC, can effectively
be used to encode interesting problems in medical di-
agnosis. Moreover, we provide an elegant implemen-
tation in the higher-order logic programming language
XProlog [6] and prove its soundness and completeness.
Finally, we analyze the complexity of the model check-
ing problem involving this language.

The main contributions of this work are: (1) the ex-
tension of the event calculus with quantifiers; (2) per-
mitting queries to mention ordering information; and
(3) the use of the higher-order features of modern logic
programming languages in temporal reasoning.

This paper is organized as follows. In Section 2, we
formalize QCEC. Section 3 is devoted to exemplifying
how this calculus can adequately model certain medi-
cal diagnosis problems. In Section 4, we briefly intro-
duce the logic programming language XProlog, give an
implementation of QCEC in it and prove the sound-

Appeared in the Proceedings of the Fifth International Workshop on Temporal Representation and Reasoning - TIME’98 (R. Morris,
L. Khatib editors), pp. 81-88, IEEE Computer Society Press, Sanibel Island, FL, 16-17 May 1998.

ness and completeness of the resulting program. In
Section 5, we analyze the complexity of QCEC. We
outline directions of future work in Section 6.

2 Event Calculus with Quantifiers

In this section, we first recall the syntax and seman-
tics of the Event Calculus, EC for short (2.1). We then
extend this basic definition to give a semantic founda-
tion to the Event Calculus with Connectives and Quan-
tifiers, abbreviated QCEC (2.2).

2.1 EC

The Event Calculus (EC) [5] and the extension we
propose aim at modeling scenarios that consist of a set
of events, whose occurrences over time have the effect
of initiating or terminating the validity of properties,
some of which may be mutually exclusive. We for-
malize the time-independent aspects of a situation by
means of an EC-structure [2], defined as follows:

Definition 2.1 (EC-structure)
A structure for the Event Calculus (EC-structure)

is a quintuple U = (E, P, [-), (.I, I.,.[) such that:

l E = {el,... ,e,} andP = {pl,...,p,} arefinite
sets of events and properties, respectively.

l [q) : P + 2E and (01 : P + 2E are respectively the
initiating and terminating map of 7-t. For every
pve~y P E P, b> and (p] represent the set of
events that initiate and terminate p, respectively.

l I-,-[& P x P is an irreflezive and symmetric re-
lation, called the exclusivity relation, that models
exclusivity among properties. cl

The temporal aspect of EC is given by the order in
which events happen. For the sake of generality [2], we
admit scenarios in which the occurrence times of events
are unknown or in which the relative order of event
happenings is incomplete. Clearly our argument spe-
cializes to the common situation where every event has
an associated occurrence time. We however require the
temporal information to be consistent so that an event
cannot both precede and follow some other event. In its
most basic form, EC does not take the evolution of the
event ordering into account, but operates on temporal
snapshots. We can then formalize the time-dependent
aspect of a scenario modeled by EC by means of a
(strict) partial order for the involved event occurrences.
We write Wx for the set of all partial orders over the
set of events E in ‘l-l, use the letter LL’ to denote indi-
vidual orderings and write el <al e- 10 indicate that e,

precedes e2 in the ordering w. For reasons of efficiency,
implementations usually represent the temporal infor-
mation of an EC problem as a binary acyclic relation o
from which w can be recovered by taking its transitive
closure, written o+.

Given a structure 3-1 = (E, P, [.), (-1, I-;[) and
an event ordering w, we call the pair (8, w) an EC-
problem. EC permits inferring the maximal validity
intervals, or MVIs, over which a property p holds un-
interruptedly. We represent an MVI for p as p(ei, et),
where ei and et are the events that respectively initiate
and terminate the interval over which p holds maxi-
mally. Consequently, we adopt as the query language
of an EC problem (FL, w) the set

GL(EC) = {P(el,e2) : p E P and el,e2 E E}
of all such property-labeled intervals over ?f. We in-
terpret the elements of Lx(EC) as propositional let-
ters and the task performed by EC reduces to deciding
which of these formulas are MVIs in w and which are
not. This is a model checking problem.

In order for p(el, e2) to be an MVI relative to the
event ordering 20, it must be the case that el <v e2.
Moreover, el and e2 must witness the validity of the
property p at the ends of this interval by initiating and
terminating p, respectively. These requirements are
enforced by conditions (i), (ii) and (iii), respectively,
in the definition of valuation given below. The max-
imality requirement is caught by the negation of the
meta-predicate br(p, el, e2, w) in condition (iv), which
expresses the fact that the truth of an MVI must not be
broken by any interrupting event. Any event e which is
known to have happened between el and e2 in w and
that initiates or terminates a property that is either p
itself or a property exclusive with p interrupts the va-
lidity of p(el , ez). These observations are formalized as
follows.

Definition 2.2 (Intended model of EC)
Let ‘H = (E, P, [a), (.I,].;D be a EC-structure

a n d w E Wx. The intended EC-model of (‘?L, w) is
the propositional valuation v(R+,L’) C LE(EC), where
p(el, 4 E v(TQ,,) if and only if

i.
ii.
. .122.
iv.

2

l .._

br(p,el, e2, w) does not hold, where br(p,el,e2, w)
abbreviates: .

there exists an event e E E such that el <w e,
e Cw e2 and there exists a property q E P
such thut e E [q) or e E (q:. ant1 zither]p, q[
orp = q. 0

2.2 QCEC

We will now enrich the query language of the Event
Calculus with universal and existential quantifiers over
both events and properties. In order to make the
resulting formalism more interesting, we further add
boolean connectives and the possibility of testing the
relative order of events. Indeed, a logic programming
implementation of EC can emulate existential quantifi-
cation over individual formulas in Lx (EC) by means
of unification, and moreover, universally quantified for-
mulas in this language always have trivial solutions.
We call the resulting formalism the Event Calculus with
Connectives and Quantifiers, or QCEC for short.

The addition of connectives, precedence testing and
unrestricted quantification over events gives QCEC a
considerably improved expressive power with respect
to EC. This will be demonstrated in Section 3 where
we will be able to encode a medical diagnosis prob-
lem that cannot be easily tackled by EC. The compu-
tational complexity of the extended calculus remains
polynomial in the numbers of events, but becomes ex-
ponentials in the quantifiers nesting of the query, as we
will see in Section 5. However, in realistic applications
the query size is likely to be much smaller than the
number of recorded events.

Quantifiers over property do not appear to enhance
significantly the expressiveness of EC due to the tight
relation between properties and events, hard-coded in
the initiation and termination maps. However, we ex-
pect substantial benefits in a language that admits the
use of preconditions [4]. We nonetheless treat property
quantifiers since they are handled similarly to quantifi-
cation over events.

In order to accommodate quantifiers, we need to ex-
tend the query language of an EC problem (3-1, w), with
31 = P, P, [.), (.I, I.>.[)> in several respects. We first
assume the existence of infinitely many event variables
that we denote E, possibly subscripted. We similarly
need a countable set of property variables, indicated
with the letter P variously decorated. We write I? for
a syntactic entity that is either an event in E or an
event variable. We adopt a similar notation in the case
of properties. The query language of QCEC, denoted
L,(QCEC), is then the set of closed formulas gener-
ated by the following grammar:

- -
‘p ::= p(el, e2) I G < E2 I 7 I 91 A 92 I (~1 V (~2

1 VE.cp] 3E.q~] VP.9] 3P.q.

where ~1 < ez denotes the test of whether 121 precedes
&. Observe that V and 3 have been overloaded to
indicate quantification over both events and properties;
the nature of the syntactic variable that follows these

symbols allows disambiguating their use. In addition
to the operators above, we also admit implication (1)
as a derived connective, where cpi > cpz is classically
defined as “pi V (~2,

The notions of free and bound variables are defined
as usual and we identify formulas that differ only by
the name of their bound variables. We write [e/E]cp
for the substitution of an event e E E for every free
occurrence of the event variable E in the formula cp,
and similarly for properties. Notice that this limited
form of substitution cannot lead to variable capture.

We now extend the definition of intended model of
an EC-problem (X,w) from formulas in Lx(EC) to
objects in L,(QCEC). To this aim, we need to define
the notion of validity for the new constructs of QCEC.

Definition 2.3 (Intended model of QCEC)
Let ‘H = (E, P, [.), (.I, I.;[) be an EC-structure

and w an event ordering. The intended QCEC-model
of 7-i and w is the classical model Z~.H+,, built on top
of the valuation u(H,~). Given a (closed) formula
cp E Ln(QCEC), the truth of cp at Z~.H,,,, , denoted
as ZCR,~J b cp, is inductively defined as follows:

+w) k d-3, e2) iff de, e2) E v(N,~);
+t,w) k el < e2 ii7 el G e2;

q&w, b “P iff q,,w, F 9;
+-L~) k CPI A ‘~2 8 +L~) I= CPI and +W I= (~2;
z(7+) + ‘~1 V ~2 8 &,w~ I= CPI or +b) b 92;
&,w, I= V’E- cp iiT for all e E E, Z(N,~) k [e/Elcp;
&,w, I= 3E.v ifl there exists e E E such that

+-L~) b [e/Elcp;
+L,w, I= VP. cp ii? for all P E P, +t,w) k [Plplcp;
qTt,w, I= 3p.v iff there exists p E P such that

%bJ, I= blplP~ 0

The well-foundedness of this definition derives from
the observation that if VE. cp is a closed formula, so
is [e/E]cp for every event e E E, and similarly for the
other quantifiers.

A universal quantification over a finite domain can
always be expanded as a finite sequence of conjunc-
tions. Similarly an existentially quantified formula is
equivalent to the disjunction of all its instances. The
following lemma, whose simple proof we omit, applies
these principles to QCEC.

Lemma 2.4 (Unfolding quantifiers)
Let Tf = (E, P, [.), (.I, I.,.[) be an EC-structure,

with E = {el,... , e,} and P = {PI,. . . ,p,}. Then,
for every w E Wx,

(i) +L~) b YE. cp ii7 J+w) b A~y”=l[edElcp;
(4 Z(R+,) I= 3,~. cp iff +Lw, I= VLkilElP~
(4 q-&w, I= VP. ‘p iff +hJ, k A,“=lbilplP~
(iv) q?L,w, I= 3fJ- cp iI7 +hd, k vaP4% 9

3

This property hints at the possibility of compiling a
QCEC query to a formula that does not mention any
quantifier. Observe however that this is possible only
after an EC-structure has been specified. Therefore,
qua.ntiGers are not simply syntactic sugar, but an effec-
tive extension over a query language with connectives.

We will rely on the above lemma in order to ana-
lyze the computational complexity of the formalism in
Section 5. However, we will not take advantage of it to
implement QCEC in Section 4 since a model checker
should be independent from the particular EC-problem
it is operating on.

3 Example

In this section, we consider an example taken from
the domain of medical diagnosis that shows how an ex-
tension of EC with quantifiers and connectives can be
conveniently used to deal with significant applications.

We focus our attention on repeated clusters of events
whose correlation, if present, can entail conclusions
about the state of the system under observation. As
an example, consider the following rule of thumb for
diagnosing malaria [7]:

A malaria attack begins with chills that are fol-
lowed by high fever. Then the chills stop and some
time later the fever goes away as well. Malaria
is likely if the patient has repeated episodes of
malaria attacks.

Figure 1 descr ibes the symptoms of a pa t ien t ,
Mr. Jones, who has just returned from a vacation to
the Tropics. We have labeled the beginning and the
end of chills and fever periods for reference. Accord-
ing to the rule above, Mr. Jones should be diagnosed
with malaria. If however he had not had fever in the
period between es and es for example, or if er had pre-
ceded es, then further checks should be made in order
to ascertain the kind of ailment he suffers from.

We will now show how the rule above can be ex-
pressed as a QCEC query in order to automate the
diagnosis of malaria. The first task is to give a rep-
resentation of symptom records as EC-problems. In
the case of Mr. Jones, the factual information of his
condition is represented by the EC-structure 31 =
(E, P, I->, (4, I-,-[) b 1e ow, which is a direct transliter-
ation of the data in Figure 1.

l E = ~e1 ~e2~e3~e4 ~e5,e6~e7~~8~e1 0~e1 0~~ll~~1 2}~

l P = {chills, fever},

l [chills) = {el,es,es}, Vever) = {ez,e6,elo},
l (chills] = {e3,e7,ell}, (fererj = {eJ.es,ely},
. I.;[= B.

The events that initiate and terminate the symptoms of
hlr. Jones happened in ascending order of their indices.
FVe call w the corresponding ordering.

The decision rule for diagnosing malaria can then be
reworded as saying that “whenever there is an episode
of chills, there is a successive period of fever that starts
before the chills are over”.1 It can in turn be expressed
by the following formula in Lc,(QCEC):

17 = VEi.VEz. (chills(E1, E2) > (3E;. 3E;.
(El < Ei A Ei < E2 A fever(Ei , E2’))))

that makes use of both universal and existential quanti-
fiers over events, of all the connectives of QCEC (once
implication is expanded) and of the precedence test. It
is easy to verify that Z~N,~, b cp, while this formula
is not valid in models where es or es have been elimi-
nated, or where the relative order of es and er has been
reversed, for example.

There is no way to express this rule in EC, even when
extended with connectives and the precedence test, un-
less quantifiers are unfolded as specified in Lemma 2.4.
This would have however the undesirable effects of
making the formula used to diagnose malaria problem-
specific, and to augment considerably the size of this
e-xpression.

4 Implementation

The Event Calculus [5] has traditionally been im-
plemented in the logic programming language Pro-
log [8]. Recent extensions to EC have instead adopted
AProlog [S] in order to achieve a declarative yet sim-
ple encoding, necessary to formally establish correct-
ness issues [2]. In this section, we will rely on orthog-
onal features of AProlog to obtain an elegant encod-
ing of quantifiers (4.2). Before doing so, we recall the
meaning of relevant constructs of this language (4.1).
We conclude this section by showing that this program
faithfully realizes the specification of QCEC (4.3).

4.1 AProlog in a nutshell

Due to space limitations, we shall assume the reader
to be familiar with the logic programming language
Prolog [8]. We will instead illustrate some of the char-
acteristic constructs of AProlog at an intuitive level.
We invite the interested reader to consult [6] for a more-
complete discussion, and [2] for a presentation in the
context of the Event Calculus.

Unlike Prolog which is first-order. AProlog is a
higher-order language. which means that the terms in

‘The other possible inrerpretarionz cm be rendered in QCEC.

-1

The Complexity of Model Checking
in Modal Event Calculi with Quantifiers

Iliano Cervesato Massimo F’ranceschet Angelo Montanari
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

iliano@cs.stanford.edu

Abstract

Kowalski and Sergot’s Event Calculus (EC)
is a simple temporal formalism that, given
a set of event occurrences, derives the max-
imal validity intervals (MVIs) over which
properties initiated or terminated by these
events hold. It does so in polynomial time
with respect to the number of events. Ex-
tensions of its query language with Boolean
connectives and operators from modal logic
have been shown to improve substantially its
scarce expressiveness, although at the cost
of an increase in computational complex-
ity. However, significant sublanguages are
still tractable. In this paper, we further ex-
tend EC queries by admitting arbitrary event
quantification. We demonstrate the added
expressive power by encoding a hardware di-
agnosis problem in the resulting calculus. We
conduct a detailed complexity analysis of this
formalism and several sublanguages that re-
strict the way modalities, connectives, and
quantifiers can be interleaved. We also de-
scribe an implementation in the higher-order
logic programming language AProlog.

1 Introduction

The Event Calculus, abbreviated EC [9], is a sim-
ple temporal formalism designed to model and reason
about scenarios characterized by a set of events, whose
occurrences have the effect of starting or terminating
the validity of determined properties. Given a possibly
incomplete description of when these events take place
and of the properties they affect, EC is able to de-
termine the maximal validity intervals, or MVIs, over
which a property holds uninterruptedly. In practice,
since this formalism is usually implemented as a logic

Dipartimento di Matematicae Informatica
Universita di Udine

Via delle Scienze, 206 - 33100 Udine, Italy
{franzescImontana}@dimi.uniud.it

program, EC can also be used to check the truth of
MVIs and process boolean combinations of MVI veri-
fication or computation requests. The range of queries
that can be expressed in this way is however too lim-
ited for modeling realistic situations.

A systematic analysis of EC has recently been under-
taken in order to gain a better understanding of this
calculus and determine ways of augmenting its expres-
sive power. The keystone of this endeavor has been
the definition of an extendible formal specification of
the functionalities of this formalism [3]. This has had
the effects of establishing a semantic reference against
which to verify the correctness of implementations [4],
of casting EC as a model checking problem [5], and of
setting the ground for studying the complexity of this
problem, which was proved polynomial [2]. Extensions
of this model have been designed to accommodate con-
structs intended to enhance the expressiveness of EC.
In particular, modal versions of EC [l], the interaction
between modalities and connectives [5], and precondi-
tions [6] have all been investigated in this context.

In this paper, we continue this endeavor to enhance the
expressive power of EC by considering the possibility
of quantifying over events in queries, in conjunction
with boolean connectives and modal operators. We
also admit requests to check the relative order of two
events. We thoroughly analyze the representational
and computational features of the resulting formalism,
that we call QCMEC. We also consider two proper
sublanguages of it, EQCMEC, in which modalities are
applied to atomic formulas only, and CMEC, which
is quantifier-free. We show that QCMEC and its re-
strictions can effectively be used to encode diagnosis
problems. Moreover, we provide an elegant implemen-
tation in the higher-order logic programming language
AProlog [lo] and prove its soundness and completeness.
As far as computational complexity is concerned, we
prove that model checking in CMEC, EQCMEC, and
QCMEC is PSPACE-complete. However, while solv-

Appeared in the Proceedings of the Sixth International Conference on Principles of Knowledge Representation and Rea-
soning - KR’98 (A.G. Cohn, L.K. Schubert, and S.C. Shapiro, editors), pp. ?????, Morgan Kaufmann Publishers, Trento,
Italy, 2-5 June 1998.

ing an EQCMEC problem is exponential in the size of
the query, it has only polynomial cost in the number n
of events, thus making EQCMEC a viable formalism
for MVI verification or computation. Since in most re-
alistic applications the size of databases (n) dominates
by several orders of magnitude the size of the query, n
is asymptotically the parameter of interest.

The main contributions of this work are: (1) the exten-
sion of a family of modal event calculi with quantifiers;
(2) permitting queries to mention ordering informa-
tion; (3) the use of the higher-order features of modern
logic programming languages in temporal reasoning;
and (4) analyzing the complexity of model checking in
these extensions of EC.

This paper is organized as follows. In Section 2, we for-
malize QCMEC and significant subcalculi. Section 3
exemplifies how this calculus can adequately model
certain hardware diagnosis problems. In Section 4,
we briefly introduce the logic programming language
XProlog, give an implementation of QCMEC in it and
prove the soundness and completeness of the resulting
program. We study the complexity of QCMEC and
its sublanguages in Section 5. We outline directions of
future work in Section 6.

2 Modal Event Calculi with Quantifiers

In this section, we first briefly recall the syntax and
semantics of a number of modal event calculi. We
invite the interested reader to consult [l, 3, 5, 8, 91
for motivations, examples, properties, and technical
details. We then extend these basic definitions to give
a semantic foundation to refinements of these calculi
with quantifiers.

2.1 Event Calculus

The Event Calculus (EC) [9] and the extensions we
propose aim at modeling scenarios that consist of a
set of events, whose occurrences over time have the
effect of initiating or terminating the validity of prop-
erties, some of which may be mutually exclusive. We
formalize the time-independent aspects of a situation
by means of an EC-structure [l], defined as follows:

Definition 2.1 (EC-structure)

A structure for the Event Calculus (or EC-structure)
is a quintuple R = (E, P, [-). (.I, I.,.[) such that:

l E = {el,..., e,,} and P = {pr, . . .p,,,} are finite
gets of evems and properties, respectively.

0 [.) : P + 2E arid (,I : P -i 2.E are rrspect,irdy the

prow-b P E P, f,p) and (p] represent the set of
events that initiate and terminate p, respectively.

l].,.[G P x P is an irrefiexive and symmetric re-
lation, called the exclusivity relation, that models
exclusivity among properties. cl

The temporal aspect of EC is given by the order in
which events happen. Unlike the original presenta-
tion [9], we focus our attention on situations where the
occurrence time of events is unknown and only assume
the availability of incomplete information about the
relative order in which they have happened. We how-
ever require the temporal data to be consistent so that
an event cannot both precede and follow some other
event. Therefore, we formalize the time-dependent
aspect of a scenario modeled by EC by means of a
(strict) partial order, i.e. an irreflexive and transitive
relation, over the involved set of event occurrences.
We write IV, for the set of all partial orders over the
set of events E in an EC-structure 31, use the letter
w to denote individual orderings, or knowledge states,
and write er <,,, ez to indicate that el precedes e2 in
w. The set VVx of all knowledge states naturally be-
comes a reflexive ordered set when considered together
with the usual subset relation s, which is indeed re-
flexive, transitive and antisymmetric. An extension of
a knowledge state w is any element of IV, that con-
tains w as a subset. We write Extx(w) for the set of
all extensions of the ordering w in IV,.

Given a s t ruc tu re ‘?I = (E , P, [n), (-1, I.,.[) and a
knowledge state w, EC permits inferring the maximal
validity intervals, or MVIs: over which a property p
holds uninterruptedly. We represent an MVI for p as
p(ei,et), where ei and et are the events that respec-
tively initiate and terminate the interval over which p
holds maximally. Consequently, we adopt as the query
language of EC the set Lx(EC) = {p(el, ez) : p E
P and el, e2 E E} of all such property-labeled inter-
vals over ‘R. We interpret the elements of Lx(EC)
as propositional letters and the task performed by EC
reduces to deciding which of these formulas are MVIs
in the current knowledge state w and which are not.
This is a model checking problem.

In order for p(ei, ez) to be an MVI relative to the event
ordering 20, it must be the case that ei <v e2. More-
over, er and e2 must witness the validity of the prop
erty p at the ends of this interval by initiating and
terminating p, respectively. The maimality require-
ment is caught by the negation of the meta-predicate
br(p, er , ez, W) below. which expresses the fact that the
validity of an ;\I\7 must not be br.oken by any inter-
rupt,ing event. Any event t‘ which is known to have

or terminates a property that is either p itself or a
property exclusive with p interrupts the validity of
p(el, e2) 141.

We call this language Cx(CMEC) and CMEC the
relative extension of EC. In addition to the above op-
erators, we admit implication as a derived connective,
where (~1 > cps is classically defined as ‘(~1 V cpz.

Definition 2.2 (Intended model of EC)

Let 7-l = (E, P, [e), (.I, I.;[) be a EC-structure. The
intended EC-model of ?l is the propositional valua-
tion vx : Wx + 2cC”(EC), where p(el, e2) E VR(W) if
and only if (i) ei <,,, ez, (ii) ei E [p), (iii) e2 E (p],
(iv) br(p, el, e2, w) does not hold, where br(p, el, e2, w)
abbreviates

there exists an event e E E such that el cw e,
e G e2 and there exists a property q E P such
that e E [q) or e E (q], and either]p, q[or p = q. 0

In order to formalize the semantics of the modalities
in CMEC, we must shift the focus from the current
knowledge state w to all knowledge states that are
reachable from w, i.e. Extx(w). Since C is a reflexive
partial order, (Wx, s) can be naturally viewed as a
finite, reflexive, transitive and antisymmetric modal
frame. If we consider this frame together with the
straightforward modal extension of the valuation vx
to an arbitrary knowledge state, we obtain a modal
model for CMEC. Connectives are handled as usual
and incorporating the precedence test is trivial.

2.2 Modal EC with Connectives Definition 2.3 (Intended model of CMEC)

The query language of the basic EC we just formalized
suffers from a remarkably low expressive power that
prevents its use for modelling any but the most trivial
applications. The expressiveness of this formalism is
drammatically augmented by admitting boolean con-
nectives in queries. This allows inquiring about logical
combinations of basic MVI verification problems.

Let Z = (E, P, [.), (.I, I.,-[) be an EC-structure. The
intended CMEC-model of 7-i is the modal model 1~ =
(Wx, C, UN), where the propositional valuation UN :
W, + 2”xcEC) d fi das e ne as in Definition 2.2. Given
w E Wx and cp E Lx(CMEC), the truth of cp at w
with respect to TN, denoted by 1~; w k cp, is defined

In our specific setting, where the ordering of event oc-
currences is only partially specified, the set of MVIs
computed by EC is not stable with respect to the ac-
quisition of new ordering information. Indeed, as we
move to an extension of the current knowledge state,
some MVIs might become invalid and new MVIs can
emerge [7]. Extending the query language of EC with
the modal logic operators •I and 0 leads to the possi-
bility of enquiring about which MVIs will remain valid
in every extension of the current knowledge state, and
about which intervals might become MVIs in some ex-
tension of it [l, 81. Several ways of combining boolean
connectives and modalities, with different cost and ex-
pressiveness, have been proposed [3, 51.

p(el, e2) E w(w);
el G e2;
zTL;w I+ 9;
&;w k ‘~1 and 13~;~ b (~2;
&t;w kp1 07. z?L;w l=$92;

for all w’ E Extx(w),
&i;w’ k cp;
there is w’ E Extx(w) such
that TN; w’ k cp. 0

In this paper, we also include a precedence test opera-
tor, written <, which allows checking the relative order
of two events in the current knowledge state. In previ-
ous work, this was awkwardly achieved either by aug-
menting EC-structures with dedicated properties [5],
or by using preconditions [6]. A native precedence test
makes inquiring about the relative order of two events
independent from the underlying EC-structure.

Notice that deciding the truth of a modal formula re-
quires the exploration of all the extensions of the cur-
rent knowledge state. Since there are exponentially
many, this raises the complexity of CMEC beyond
tractability [5]. This distressing fact is overcome in
the calculus ECMEC [4, 51, that restricts CMEC by
allowing 0 and 0 to enclose only atomic formulas of
the form ei < e2 and p(el, e2). To determine the truth
of atomic formulas prefixed by one modal operator, it
is possible to exploit necessary and sufficient local con-
ditions over the given partial order, thus avoiding a
complete (and expensive) search of all the consistent
extensions of the given order [5]. Therefore, solving
modal queries in ECMEC has polynomial cost [5].

Given an EC-structure 8, the query language that
freely includes these three extensions is formally de-
fined by the following grammar:

cp ::= p(el,e;?) I el < e2 I ~cp I m A 992

This is particularly appealing since numerous CMEC-
formulas are logically equivalent to ECMEC-formulas.
The transformation proceeds by pushing the modali-
ties inside the scope of the connectives. An ECMEC

3 formula cannot always be produced since 0 does not

c

distribute over V , and dually 0 cannot be pushed in-
side a conjunction. We will now consider conditions
that permit overcoming this difficulty in situations of
interest.

Specif&lly, we consider EC-structures ‘?-L = (E, P,
[->7 t-17 l-73 hw ere every property is initiated and ter-
minated by at most one event and there are no ex-
clusive properties. We call this condition (*). An
atomic formula p(el, ez) on 31 is an MVI relative to
the knowledge state w E Ww if and only if el initiates
p: ez terminate p and (el, e2) belongs to w. Indeed,
condition (*) ensures us that there are no interrupting
events for p in (el, e2) and thus we do not need to check
whether br(el,p, e2, w) holds since this meta-predicate
will be trivially false. Condition (*) offers further op-
portunities to push modalities inside the scope of con-
nectives. We omit the proof of the following simple
proposition.

Proposition 2.4 (Consequences of (*))

Let 7-l = (E, P, [.), (.I, I.;[) be an EC-structure that
s a t i s f i e s (*). L e t cp b e a CSIEC-formula. F o r p E
P and el, e2 E E, let v,(el, e2) be either p(el, e2) or
(el < e2). Then, for any w E Wx such that el <ur e2,
we have that:

In particular, for cp = false (resp. true), we have
that w + q lv,(el, e2) (resp. w k Ov,(el, e2)) i#
w b +(el, e2).

2.3 Modal EC with Connectives and Quantifiers

We will now enrich CMEC with explicit universal and
existential event quantifiers that can be used freely in
a query. We call the resulting formalism QCMEC. In-
deed, a logic programming implementation of CMEC
can emulate only restricted forms of existential quan-
tscation by means of unification, while universally
quantified queries are out of reach.

In order to accommodate quantifiers, we extend
t h e q u e r y l a n g u a g e o f a n E C - s t r u c t u r e 31 =
(J% p, [.L (5 IYD in several respects. We first as-
sume the existence of infinitely many event variables
that we denote z, possibly subscripted. We write Z
for a syntactic entity that is either an event in E or
an event variable. The query language of QCMEC,
denoted lc,(QCiUEC), is the set of closed formulas
generated by the following gr:mlmar:

The notions of free and bound variables are defined
as usual and we identify formulas that differ only by
the name of their bound variables. We write [e/z]cp
for the substitution of an event e E E for every free
occurrence of the event variable z in the formula cp.
Notice that this limited form of substitution cannot
lead to variable capture.

11-e now extend the notion of intended model to ac-
commodate quantifiers.

Definition 2.5 (Intended model of QCMEC)

L e t 7-l = (E , P, [.), (-I, I.,-[) b e a n E C - s t r u c t u r e .
The intended QCMEC-model of 7-L is the modal model
1~ = (Wx, E, UN) defined as in Definition 2.3. Given
w E CVx and a (closed) formula cp E l,(QCMEC),
the truth of cp at w with respect to Zx, denoted as
TX; w i= cp, is defined as in Definition 2.3 with the
addition of the following two cases:

ZR;W + Vx.cp iff for all e E E, Zx;w k [e/x]cp;
2~; w b 3x. cp ifl there exists e E E such that

Gi;w I= [el+. 0
The well-foundedness of this definition derives from
the observation that if tlx. (r’ and 3x. cp are closed for-
mula, so is [e/x]cp for every event e E E.

A universal quantification over a finite domain can al-
ways be expanded into a finite sequence of conjunc-
tions. Similarly an existentially quantified formula is
equivalent to the disjunction of all its instances. The
following lemma, whose simple proof we omit, applies
these principles to QCMEC.

Lemma 2.6 (Unfolding quantifiers)

Let 3-1 = (E, P, [.), (.I,].;D be an EC-structure, with
E = {el,..., e,}. Then, for every w E WR,

i. 1~; W k VX. cp iff Zx; w + A:=‘=, [ei/X]cp;
ii. Z-w; W j= 3X. $ 0 ifi 1 ~; w b Vycl[ei/X]p. n

This property hints at the possibility of compiling
a QCMEC query to a quantifier-free formula. Ob-
serve however that this is possible only after an EC-
structure has been specified. We will rely on the above
lemma in order to analyze the explicit complexity of
the formalism in Section 5. It is also possible to take
advantage of it in order to structure an implementation
of QCMEC into a preprocessor that expands quanti-
fiers into exhaustive sets of conjunctions or disjunc-
tions, and a CMEC checker that verifies the resulting
formula. \\:e will ho\ve\-er follow a more direct ap-
proach in Section 4.

Part VI

Adaptive Agents

Diana Gordon: “Well-behaved Borgs, Bolos, and Berserkers”, in the Pro-
ceedings of the 15th International Conference on Machine Learning - ICML’98,
Morgan Kaufmann, Madison, WI, July 1998.

Full paper: http://www.aic.nrl.navy.mil/-gordon/papers/ml98.ps

This paper will appear in the proceedings of the 15th International Conference on Machine Learning (ICML-98)

Well-Behaved Borgs, Bolos, and Berserkers

Diana F. Gordon
Naval Research Laboratory, Code 5510

4555 Overlook Avenue, S.W.
Washington, DC 20375
gordon@aic.nrl.navy.mil

Abstract

How can we guarantee that our software and
robotic agents will behave as we require, even
after learning? Formal verification should
play a key role but can be computationally
expensive, particularly if re-verification fol-
lows each instance of learning. This is espe-
cially a problem if the agents need to make
rapid decisions and learn quickly while on-
line. Therefore, t,his paper presents novel
methods for reducing the time complexity of
re-verification subsequent to learning. The
goal is agents that are predictable and can
respond quickly to new situations.

1 I N T R O D U C T I O N

Software and robotic agents are becoming increasingly
prevalent. Agent designers can furnish such agents
with plans to perform desired tasks. Nevertheless,
a designer cannot possibly foresee all circumstances
that. will be encountered by the agent. Therefore, in
addition to supplying an agent with plans, it is es-
sential to also enable the agent to learn and mod-
ify its plans to adapt to unforeseen circumstances.
The introduction of learning, on the other hand, of-
ten makes the agent’s behavior significantly harder to
predict. Our objective is to develop methods that pro-
vide verifiable guarantees that the behavior of learning
agents always remains within the bounds of specified
constraints (called “properties”), even after learning.
An example of a property is Asimov’s First Law of
Robotics (Asimov! 1942). This law, which has recently
been studied by Weld and Etzioni (1994), states that
a robot may not harm a human or allow a human to
come to harm. Weld and Etzioni advocate a “ ‘call

to arms:’ before we release autonomous agents into
real-world environments, we need some credible and
computationally tractable means of making them obey
Asimov’s First Law...how do we stop our artifacts from
causing us harm in the process of obeying our orders?”
Asimov’s law can be operationalized into specific prop-
erties testable on a system, e.g., “Never delete another
user’s file.” This paper addresses Weld and Etzioni’s
“call to arms” in the context of adaptive agents. It is
a very important topic for real-world agents and is a
dominant theme in science fiction, which is sometimes
prescient. Examples include the Borgs (Star Trek, The
New Generation), Bolos (Laumer, 1976), and Berserk-
ers (Saberhagen, 1967) ~ fictional agents that demon-
strate the dangerous behavior that can result from in-
sufficient constraints.

We assume that an agent’s plan has been initially veri-
fied offline. Then, the agent is fielded and has to adapt
online. After adaptation via learning, the agent must
rapidly re-verify its new plan to ensure this plan still
satisfies required properties.’ Re-verification must, be
as computationally efficient as possible because it is
performed online, perhaps in a highly time-critical sit-
uation. There are numerous applications of this sce-
nario, including software agents that can safely ac-
cess information in confidential or proprietary environ-
ments while responding to rapidly changing access re-
quirements, planetary rovers that quickly adapt to un-
foreseen planetary conditions but behave within criti-
cal mission constraints, and JAVA applets that can get
smarter but not become destructive to our computing
environments.

Typically, properties desired by a user are orthogonal
to the agent’s planning goals and to its learning goals.

‘Current output is success/failure. Future work will
consider using re-verification counterexamples to choose a
better learning method when re-verification fails.

For example, the agent may generate a plan with the
objective of maximizing the agent’s profit. Learning
might have the goal of achieving the agent’s plan more
efficiently or modifying the plan to adapt to unforeseen
events. The designer also may have a constraint that
the agent does not cheat in its dealings with other
agents. Why doesn’t the planner incorporate all prop-
erties into the plan? There are a number of possible
reasons, e.g., not all properties may be known at the
time the plan is developed, or security reasons.

Re-verification can be (from least to most time re-
quired): none, incremental, or complete. It is pos-
sible to avoid re-verification entirely if we restrict the
agent to using only those learning methods determined
a prioii to be “safe” with respect to certain classes of
properties in which we are interested. In other words,
if a plan satisfies a property prior to learning, we want
an a priori guarantee that the property will still be
sat.isfied subsequent to learning. Note that this incurs
no run-time cost. It is called “moving a tester into the
generator” or “compiling constraints.”

Unfortunately, the safety of some learning methods
may be very difficult or maybe impossible to deter-
mine a priori. When a priori determination is too dif-
ficult, it is helpful to use incremental re-verification.
Incremental methods save computational costs over
re-verification from scratch by localizing re-verification
and/or by reusing knowledge from the original verifica-
tion. Furthermore, incremental methods may identify
positive results that cannot be determined a priori.
When an agent needs to learn, we suggest that the
agent should consult the a priori results first. If no
positive results exist, then incremental re-verification
proceeds. The least desirable of the three alternatives
is to do complete re-verification from scratch.

Gordon (1997a) begins to explore the extent to which
we can prove a priori results that certain machine
learning operators are, or are not, safe for certain
classes of properties. The paper has positive a priori
results for plan efficiency improvements via deletion
of plan elements, as well as for plan refinement meth-
ods. Unfortunately, we have not yet obtained positive
a priori results for popular machine learning operators
such as abstraction (unless one is willing to accept an
abstracted property) or generalization. Abstraction
is a more global operator than generalization. Ab-
straction alters the language of a plan (e.g., by feature
selection), whereas generalization alt.ers the condition
for a state-to-state transition within a plan. Both are
extremely common operators in coucrpt learning. but
are also very appropriate for plan nlotlificat.ioii.

This paper has two contributions beyond (Gordon,
1997a). First, the previous paper models agent plans
using automata on infinite strings. This paper reaches
a wider audience by using the more familiar automata
on finite strings. Second, this paper addresses two,
new questions: Are there situations in which an ab-
stracted property is acceptable? If yes, we have pos-
itive a priori results for abstraction. Also, can we
get positive results by using incremental re-verification
rather than a priori? Initial, positive answers to these
questions are presented here.

The remainder of this paper is organized as follows.
Section 2 presents an illustrative example that is used
throughout the paper. ’ Section 3 contains back-
ground material and definitions on automaton plans,
temporal logic properties, and “safe” learning. The
formal definitions provide a precise foundation for un-
derstanding the incremental re-verification methods
presented later. Section 4 lists situations in which
property abstraction is acceptable. Sections 4 and 5
present novel (and as far as we are aware, the only)
methods for incremental re-verification of abstraction
and generalization, respectively, on automata. Finally,
time complexity comparisons between incremental and
complete re-verification are provided.

2 ILLUSTRATIVE EXAMPLE

This section provides an example to illustrate some
of the main ideas of the paper. Although the plan
in this example is very small, it is important to point
out that existing automata-based verification methods
currently handle huge, industrial-sized problems (e.g.,
see Kurshan, 1994). Our goal is to improve the time
complexity of verification over current methods when
learning occurs.

In our example, hundreds of tiny, micro air vehicles
(MAVs) are required to perform a task within a region.
The MAVs are divided into two groups called “swarm
A” and “swarm B.” One constraint, or property, is that
only one MAV may enter the region at a time - because
multiple MAVs entering simultaneously would increase
the risk of detection. Each swarm has a separate FIFO
queue of MAVs. MAVs enter the queue when they
return from their last task. A second,constraint is that
some (at least one) lI-\‘s from each swarm eventually
enter the region. One distinguished MAV, C, acts as a

* E x a m p l e s i n this paper ha\-? b e e n i m p l e m e n t e d ns-
ing Iiurshan’s COSP.\S ver i f ica t ion system. COSP.L\N i s
an ATtT verification tool. which is described in Iiurshm
(1994).

/
0 (A:MAVs-go) * (C:go-A)

Figure 1: Plan A Figure 2: Plan C

task coordinator. C selects which swarm, A or B, may
send in an MAV next.3

Plans for swarm A and task controller C are shown in
Figures 1 and 2. The plan for swarm B is not shown
in the figure, but it is identical to the plan for A ex-
cept all instances of “A” are replaced by “B.” Each
of these plans is a finite-state automaton, i.e., a graph
with stat,es (the vertices) and allowable state-to-state
transitions (the directed edges between vertices). The
transition conditions (i.e., the logical expressions label-
ing the edges) describe the set of actions that enable a
state t.ransition to occur. The possible actions A can
take from a state are (A:no-MAVs), (A:MAVs-wait),
or (A:MAVs-go). The first action means the queue is
empty, the second that the queue is not empty but
the MAVs in the queue must wait, and the third that
the first MAV in the queue enters the region. Likewise
for B. The possible actions C can take from a state
are (C:geA) or (C:go-B). The first action means con-
troller C allows swarm A to send one MAV into the
region, the second means C allows B to send one MAV
into the region.

Swarms A and B are single agents, i.e., although indi-
vidual MAVs may each have their own plan, such as
queuing within a swarm, for simplicity we ignore that
level of detail. We can form a multiagent plan by tak-
ing a “product” (see Section 3.1) of the plans for A, B,
and C. This product synchronizes the behavior of A,
B, and C in a coordinated fashion. At every discrete
time step, every agent (A, B, C) is at one state in its
plan, and it selects its next action. The action of one
agent (e.g., A) becomes an input to the other agents’
plans (e.g., B and C). If the joint actions chosen by all
t.hree agents satisfy the transition conditions of a plan
from the current state to some next state, then that
transition may be made. For example, if the agents

3This example is a variant of the traffic controller in
Kurshan (1994).

jointly take the actions (A:MAVs-wait) and (B:MAVs-
wait) and (C:geA), then the multiagent plan can tran-
sition from the global, joint state (WAIT, WAIT, GO-
A) to the joint state (GO, WAIT, GO-B) represented
by triples of states in the automata for agents A, B,
and C.

Given the full, multiagent plan, verification now con-
sists of asking the quest.ion: Does this plan satisfy the
two required properties, i.e., some MAVs from each
swarm enter the region, but only one MAV enters the
region at a time? Assuming our initial plan in Figures
1 and 2 satisfies these properties, we next ask whether
the properties are still satisfied subsequent to learning.
The latter question is the topic of this paper.

An example of learning is the following. Suppose co-
ordinator C discovers that the B swarm has left the
region. One way agent C can adapt to incorporate
this new knowledge is by deleting the action (C:go-B)
from its action repertoire. This is a form of abstrac-
tion. There are alternative modifications agent C can
do, but the selection between these alternatives is a
learning issue, which we do not address here. What
we do address here are the implications of this choice,
in particular, which learning methods are safe, i.e.,
preserve the properties.

3 PLANS, PROPERTIES, AND
“SAFE” LEARNING

3 .1 AUTOMATON PLANS

This subsection, which is based on Kurshan (1994),
briefly summarizes the basics of the automata used
to model plans. Figures 1 and 2 illustrate the defini-
tions. Essentially, an automaton is a graph with ver-
tices corresponding to states and directed edges corre-
sponding to state-to-state transitions. The terms “ver-
tex” and “state” are used interchangeably throughout

the paper. For an automaton representing an agent’s
plan, vertices represent the internal state of the agent
and/or the state of its external environment. State-to-
state transitions have associated transition conditions,
which are the conditions under which the transition
may be made. An agent action that satisfies a transi-
tion condition enables that transition to be made. We
assume finite-state automata, i.e., the set of states is
finite, and that the transition conditions are elements
of a Boolean algebra. Therefore, we briefly diverge to
summarize the basics of Boolean algebras.

-A Boolean algebra X: is a set with distinguished ele-
ments 0 and 1, closed under the Boolean operations +
(logical “and”), + (logical “or”), and 1 (logical nega-
tion), 8nd satisfying the standard properties (Kurshan,
1994).

The Boolean algebras are assumed to be finite. There
is a partial order among the elements, 5, which is
defined as 2: 5 y if and only if z * y = 2. The elements
0 and 1 are defined as Qx E Ic, 0 5 x and Qx E Ic, x 5
1. The atoms of hc, r(n), are the nonzero elements
of X minimal with respect, to 5. For two different
atoms x and y within the same Boplean algebra, x * y
= 0. For Figures 1 and 2, agents A, B, and C each
have their own Boolean algebra with its atoms. The
atoms of A’s Boolean algebra are the actions (A:no-
>IAVs), (A:MAVs-wait), and (A:bfAVs-go); the atoms
of B’s algebra are (B:no-MAVs), (B:MAVs-wait), and
(B:?vIAVs-go); the atoms of C’s algebra are (C:go-A)
and (C:go-B).

A Boolean algebra K’ is a subalgebra of X: if Ic’ is a
non-empty subset of X that is closed under the op-
erations *, +, and 1, and also has the distinguished
elements 0, 1. Let X: = nni, i.e., X: is the product
algebra of the Ici. In this case the Ici are subalgebras
of Xc. An atom of the product algebra is the product of
the atoms of the subalgebras. For example, if al, a,
are atoms of subalgebras ICI, Ic,, , respectively, then
01 * . . . * a, is an atom of K.

In Figure 1, the Boolean algebra ,4 used by agent A
is the smallest one containing the atoms of A’s alge-
bra. It contains all Boolean elements formed from A’s
atoms using the Boolean operators +, +, and 7, includ-
ing 0 and 1. These same definitions hold for B and C’s
algebras f? and C. One atom of the product algebra
ABC is (A:no-MAVs) * (B:no-YA1,‘s) + (C:go-A). This
is the form of actions taken by the three agents in the
multiagent plan. Algebras tl, F. and C are subalge-
bra.5 of the product, algebra XC. Finally, A,&: is tile
f36cJleatl a l g e b r a f o r t i l e trnnsit ion cotitlit,iotis iti the

multiagent plan.

Let us return now to automata. This paper focuses on
automata that model agents with finite lifetimes (rep-
resented as a finite string, or sequence of actions). An
example is an agent that is created specially to exe-
cute a plan and is destroyed immediately afterwards.
In particular, we focus on processes. Processes are
automata, but they are the dual of our usual notion of
an automaton, which accepts any string beginning in
an initial state and ending in a final state (Hopcroft &
Ullman, 1979). Instead, processes accept any string
beginning in an initial state and ending in a non-
final state.4 A string is a sequence of actions (atoms).
Therefore, by specifying the set of final states, we can
infer the set of action sequences not permitted by the
plan. It consists of those strings ending in a final state.
All other action sequences that begin in an initial state
are permitted by the plan. Processes are used here to
be consistent with the automata theoretic verification
literature.

Formally, a process is a three-tuple S =
(J4~(S),I(S),F(S)) where K is the Boolean algebra
corresponding to S. 31~(S) : V(S) x V(S) -L K is the
matrix of transition conditions, which are elements of
X:, V(S) is the set of vertices of S, I(S) E V(S) are
the initial states, and F(S) c V(S) are the final states.
Also, E(S) = {e E V(S) x V(S) 1 .&lx(e) # 0) is the
set of directed edges connecting pairs of vertices of S,
and Mx(e) is the transition condition of A4x(S) corre-
sponding to edge e. Note that we omit edges labeled
“0.” By our definition, an edge whose transition con-
dition is 0 does not e-xi&. We can alternatively denote
Mx(e) as Mx(vi, vi+l) for the transition condition cor-
responding to the edge going from vertex zli to vertex
vi+l. For example, in Figure 1, &1x (WAIT, GO) is
(A: MAVs-wait) * (C: go-A).

Figures 1 and 2 illustrate the process definitions.
There are process plans for two agents: swarm A and
task coordinator C. Recall that agent B is identical
to A but, with “A” replaced by “B.” An incoming ar-
row to a state, not from any other state, signifies that
this is an initial state. Recall that the output actions
of process A are its atoms, and likewise for processes
B and C. The transition conditions are the labels on
the edges. We assume for process J = A, B, or C,
F(X) .= 0, i.e., there are no final states. Therefore
every finite string of actions that starts in an initial
state and satisfies the transition conditions is accept-

4For the case of d~teru~ix~istic u,i comple te t rans i t ion
contlit,ions, revvreiny the acceptance <onditiou will comple-
rrlrrlt t,tw lilllgoa~r.

