
Decomposing, Transforming and Composing Diagrams:

The Joys of Modular Veri�cation �

Luca de Alfaro Zohar Manna Henny Sipma

Email: luca@ic.eecs.berkeley.edu, fmanna,sipmag@cs.stanford.edu

Abstract

The paper proposes a modular framework for the veri�cation of temporal logic properties
of systems based on the deductive transformation and composition of diagrams. The diagrams
represent abstractions of the modules composing the system, together with information about
the environment of the modules. The proof of a temporal speci�cation is constructed with the
help of diagram transformation and composition rules, which enable the gradual decomposition
of the system into manageable modules, the study of the modules, and the �nal combination of
the diagrams into a proof of the speci�cation. We illustrate our methodology with the modular
veri�cation of a database demarcation protocol.

1 Introduction

One of the challenges of formal veri�cation is to propose veri�cation methodologies that are able

to handle not only simple examples, but also realistic systems. Modular veri�cation frameworks

propose to address this issue by providing the means of decomposing the original system into

modules of manageable size, studying each module separately, and composing the results into

a proof of the correctness of the whole system. In this paper, we introduce a formal veri�cation

formalism based on the deductive transformation and composition of diagrams. The aim is to obtain

a methodology that combines the modular approach to veri�cation with the visual representation,

the gradual proof construction and the provision of proof guidance made possible by diagrams.

The modular veri�cation approach that we follow is based on the assume-guarantee paradigm

of Abadi and Lamport [AL90]. In this paradigm, the system is partitioned into modules, which

are studied with the help of assumptions about their environment. These assumptions, which must

have the form of safety properties, usually specify restrictions to the possible state transitions of the

module's environment. Once these assumptions are validated by an analysis of the other modules,

the properties of the modules are combined into a correctness proof for the whole system.

The modular diagrams used in this paper belong to the family originated by the proposal of

[MP94], later generalized by [BMS95]; another proposal using diagrams for the illustration of proofs

is [Lam94]. In particular, this work represents a synthesis and an extension to modular veri�cation

of the proposals [dAM96, SUM96]. The diagrams provide a visual representation of the behavior

of system modules and their environment: they consist in graphs whose vertices are labeled with

assertions, and whose edges are labeled with transition formulas; additional components specify

the progress properties that have been proved about them.

The proof that a system satis�es a temporal speci�cation is constructed by applying a set of

transformation rules to two initial diagrams, one representing the system and the other representing

the negation of the speci�cation. There are several classes of rules: modular rules split the system

or one of its modules into submodules; safety, progress and simpli�cation rules are used to study

�

This research was supported in part by the National Science Foundation under grant CCR-95-27927, the Defense

Advanced Research Projects Agency under NASA grant NAG2-892, ARO under grant DAAH04-95-1-0317, ARO

under MURI grant DAAH04-96-1-0341, and by Army contract DABT63-96-C-0096 (DARPA).

1

the diagrams; a composition operator is used to compose diagrams for di�erent modules into a

single diagram. The aim of this process is to obtain a diagram that can be algorithmically shown

to have empty language: by construction, this implies that all the behaviors of the original system

satisfy the speci�cation. The structure of the proof process, and of the composition operator, are

reminiscent of the proposal of [GL94] for the modular veri�cation of �nite-state systems.

Integrating the modular framework with the use of diagrams makes it possible to generate the

environment assumptions in a simple and often automatic way during the study of each module,

and to discard them automatically during the composition of modules. The same operator also

provides guidance for proof re�nement in the case in which the environment assumptions cannot be

validated; further guidance can be obtained from an automatic analysis of the diagrams, combining

the insights of [dAM96, SUM96, dAKM97]. Our approach also leads to an increased
exibility of

the process of modular analysis: the modules can be dynamically decomposed into submodules

and recomposed during the construction of the proof, enabling a need-driven decomposition of

modules. We illustrate our methodology with the modular veri�cation of a protocol to enforce

data constraints on distributed databases.

2 Preliminaries

Transition systems. Given a set V of variables, we denote by form(V) the set of well-formed

�rst-order formulas whose free variables are among V. Our computational model is that of a

transition system (TS) S = (V;T ;�; J; C), where V is a set of typed state variables, T is a set

of transitions, � 2 form(V) is a satis�able initial condition, J � T contains the just (weakly

fair) transitions, and C � T contains the compassionate (strongly fair) transitions. A state s is

a type-consistent interpretation of V, and � denotes the set of all states. A transition � 2 T is a

function � : � 7! 2�, and is represented by a transition formula �� 2 form(V;V 0) that expresses

the relation between the values of V in the current state and those in the next state, referred to

by V 0 = fx0 j x 2 Vg. Given a formula � 2 form(V), we denote with �0 the formula obtained by

replacing each x 2 V with x0. For � 2 T , the enabling condition En(�) of � is de�ned by 9V 0
: �� .

The set T must include the idle transition �idle, with transition relation ��idle :
V
x2V(x = x

0).

The language L(S) of a transition system S = (V;T ;�; J; C) consists of all the in�nite sequences

of states s0; s1; s2; : : : 2 �! such that s0 satis�es �, for every si; si+1 there exists � 2 T such that

(si; si+1) j= �� , and the fairness conditions are respected [MP91]. Note that L(S) 6= ;, since � is

satis�able and �idle 2 T .

Speci�cation language: linear-time temporal logic. The system speci�cations are written in

the language TLs consisting of �rst-order linear-time temporal logic formulas in which no temporal

operator appears in the scope of a quanti�er. The formulas of TLs are thus obtained by combining

�rst-order logic formulas by means of the future temporal operators e (next), 2 (always), 3
(eventually), U (until), and the corresponding past ones e, 2{ , 3{ and S [MP91].

Example: demarcation protocol. We illustrate the proposed methodology by verifying a

safety property of the protocol shown in Figure 1. The protocol is a more parallel version of

the demarcation protocol presented in [BGM92], and is used to maintain linear arithmetic consis-

tency constraints in a distributed database while minimizing communication costs between sites.

In the example shown we have two sites, with data variables x and y, and we need to maintain the

constraint x � y. The demarcation protocol shown maintains two safe limits xl and yl: Site 1 (Site

2) can modify x (y) independently as long as it stays below xl (above yl). When a site, e.g. Site 1,

wishes to go beyond the safe limit, it asks permission from Site 2 to increase the limit xl. If the new

2

local �; � : channel of integer

2
664

Site1
local x; xl : integer where x = 0; xl = 0

2
6666666666666666664

Requestor1
local xg; xw : integer where xg = 0

local ax : boolean

`0: loop forever do

`1: produce xw

`2:

**
if xw � xl
then (x; ax) := (xw;F)

else ax := T

++

`3: if ax then

`4: �((xw � xl)

`5: �) xg
`6: (xl; xg) := (xl + xg; 0)

`7: hhif xw � xl then x := xwii

3
7777777777777777775

jj

2
66666666664

Grantor1
local xr; xp : integer

where xr > 0; xp = 0

m0: loop forever do

m1: �) xr

m2:

**
if xl � xr � x

then (xl; xp) := (xl � xr; xr)

else xp := 0

++

m3: � (xp

3
77777777775

3
775

jj

2
664

Site2
local y; yl : integer where y = 0; yl = 0

2
6666666666666666664

Requestor2
local yg; yw : integer where yg = 0

local ay : boolean

k0: loop forever do

k1: produce yw

k2:

**
if yl � yw
then (y; ay) := (yw;F)

else ay := T

++

k3: if ay then

k4: � ((yl � yw)

k5: �) yg
k6: (yl; yg) := (yl � yg; 0)

k7: hhif yl � yw then y := ywii

3
7777777777777777775

jj

2
66666666664

Grantor2
local yr; yp : integer

where yr > 0; yp = 0

n0: loop forever do

n1: �) yr

n2:

**
if yl + yr � y

then (yl; yp) := (yl + yr; yr)

else yp := 0

++

n3: �(yp

3
77777777775

3
775

Figure 1: Demarcation protocol

limit is still below y, Site 2 will grant the request (and update its own limit yl); otherwise it will

deny it. The conversion of this program to a fair transition system Sd is straightforward (see also

[MP91]). Each statement gives rise to a transition; the statements enclosed by angle brackets are

interpreted as atomic statements. For example, the transition relation for the statement labeled by

`2 is (xw � xl ^ x
0 = xw ^ a

0
x = false) _ (xw > xl ^ a

0
x = true). We will verify that the protocol

satis�es the temporal speci�cation 2(x � xl � yl � y).

3 Modular Diagrams

The diagrams used in this paper are derived from the fairness diagrams of [dAM96]. A diagram

A = (U ;V; V; F;E; �; �; �; tr;F) for a TS S consists of the following components:

1. A subset U � T indicating the transitions that are studied by diagram A.

2. A set V of typed variables.

3. A set V of vertices, and two disjoint sets F , E of edges, with associated functions tl; hd : F[E 7!

V that give the source (tail) tl(e) and the target (head) hd(e) of each edge e 2 F [E. The

edges in F , called system edges, represent subsets of the set U of transitions; the edges in E,

called environment edges, represent the transitions in T � U .

3

4. Two mappings �; � : V 7! form(V) that associate with each vertex v 2 V a formula �(v) (resp.

�(v)) denoting the states (resp. initial states) associated with v.

5. A mapping � : F [E 7! form(V;V 0), which associates with each edge e 2 F [E a transition

formula �(e).

6. A mapping tr : F [E 7! 2T , labeling each edge e 2 F [E with the subset of transitions it

represents. We require that tr(e) � U for e 2 F , and tr(e) = T � U for e 2 E.

7. A fairness set F , consisting of triples of the form (J;C;G), where J;C : V 7! form(V) and

G : F 7! 2U . For e 2 F we require that G(e) � tr(e). Each triple, called a fairness constraint,

is used to represent a fairness property of the diagram, as will be explained below.

Given u; v 2 V and a set H of edges, we denote by H(u) = fe 2 H j tl(e) = ug and H(u; v) = fe 2

H j tl(e) = u ^ hd(e) = vg the set of edges from u, and from u to v, respectively.

A location of a diagram is a pair (v; s) : v 2 V; s j= �(v) composed of a vertex and of a

corresponding state. A run of a diagram is an in�nite sequence of locations (v0; s0), (v1; s1),

(v2; s2), . . . , such that s0 j= �(v0), and for all i � 0 there is e 2 F (vi; vi+1) [E(vi; vi+1) such that

(si; si+1) j= �(e). Given an edge e 2 E[F , we denote by ~�(e) the formula �(e)^�(tl(e))^�0(hd(e)),

which denotes the state transitions that can occur when edge e is traversed. The computations of

a diagram are de�ned in terms of its accepting runs.

De�nition 1 (accepting runs) A run � : (v0; s0), (v1; s1), (v2; s2); : : : of a diagram A is an

accepting run if, for each constraint (J;C;G) 2 F , if there is n � 0 such that si j= J(vi) for all

i � n and si j= C(vi) for in�nitely many i � 0, then there are in�nitely many j � 0 such that

9� 2 G(vj ; vj+1) : (sj; sj+1) j= �� . If � : (v0; s0); (v1; s1); (v2; s2); : : : is an accepting run of A, the

sequence of states s0; s1; s2; : : : is a computation of A. We denote by Runs(A), L(A) the sets of

accepting runs and computations of A, respectively.

4 The Structure of Proofs

Given a TS S and a speci�cation � 2 TLs, a proof of S j= � consists of a directed acyclic graph

(dag) whose nodes are labeled with diagrams. The diagrams labeling the roots of the dag are

obtained from S and �; the diagrams labeling the non-root nodes of the dag are obtained using

diagram transformation rules that will be discussed in detail in the next section.

De�nition 2 (proof dag) Given a transition system S = (V;T ;�; J; C) and a formula � 2 TLs,

a proof dag for S and � is a directed acyclic graph (dag) D, in which every node d 2 D is labeled

with a diagram Ad. Dag D has two root nodes, labeled with diagrams Ah:�; Si and AhSi; every

non-root node d 2 D has either one or two parents. If d has a single parent d0, then Ad has been

obtained from Ad0 by one application of a transformation rule; if d has two parents d0, d1, then

Ad = Ad0
Ad1 , where
 is the diagram composition operator.

The diagrams labeling the roots of the proof dag are constructed as follows.

Construction 1 (AhSi) The diagram AhSi = (U ;V; fv0g; ff0g; ;; �; �; �; tr; ;) consists of a single

vertex v0 with one self-loop system edge f0. The vertex and edge labels are de�ned by �(v0) = true,

�(v0) = �, �(f0) = true, tr(e0) = T .

Construction 2 (Ah:�; Si) Let N:� be the (�rst-order) Streett automaton that accepts all the

state sequences that do not satisfy � [Saf88]. The automaton N:� consists of the components

4

(V; (V; F); �;Q;A), where V, � are as in a diagram; (V; F) is a directed graph; Q � V is the set of

initial vertices, and A, called the acceptance list, is a set of pairs (P;R) : P;R � V .

From N:� we construct Ah:�; Si = (V; V; F; ;; �; �; �; tr;F), where �(e) = true, tr(e) = T for

e 2 F , �(v) = � for v 2 Q, and �(v) = false for v 2 V � Q. For each (P;R) 2 A, there is a

constraint (J;C;G) 2 F de�ned by J(v) = true, if v 2 V � P then C(v) = true else C(v) = false,

and if hd(e) 2 R then G(e) = T else G(e) = ;, for all v 2 V and e 2 F .

Due to the granularity of the acceptance condition of Ah:�; Si, we do not necessarily have

L(N:�) = L(Ah:�; Si). However, the following lemma su�ces for our purposes.

Lemma 1 L(S) \ L(Ah:�; Si) = f! 2 L(S) j ! 6j= �g.

The aim of the construction of the proof dag is to obtain a leaf labeled with a diagram that can

be algorithmically shown to have empty language, indicating that all computations of S satisfy �.

The algorithm for language emptiness relies on a terminating proof procedure ` for the �rst-order

language used in the speci�cation and in the labels of the diagram. Given a �rst-order formula ,

we write ` , 6` depending on whether ` terminates with or without a proof of , respectively.

We assume that the procedure ` is at least able to prove the validity of all substitution instances of

propositional tautologies. The check for language emptiness is based on an analysis of the strongly

connected components (SCCs) of the graph underlying the diagram.

De�nition 3 (persistent and non-persistent SCCs) Given a diagram A, we say that a

strongly connected component U of the graph (VA; FA [EA) is non-persistent if there is a con-

straint (J;C;G) 2 FA such that the following conditions hold:

8v 2 U : ` �(v)! J(v) 9v 2 U : ` �(v)! C(v) 8e 2 F : G(e) = ; :

Otherwise, we say that U is persistent.

The set of vertices that appear in�nitely often along any accepting run of a diagram must be a

persistent SCC. Thus, we have the following criterion for language emptiness [dAM96, SUM96].

Theorem 1 If all the SCCs of a diagram A are non-persistent, then L(A) = ;.

De�nition 4 (proof of S j= �) A dag D for S and � is a proof of S j= � if there is a leaf l 2 D

such that UAl
= T and Theorem 1 can show that L(A(l)) = ;.

Since diagram AhSi can be obtained from Ah:�; Si by means of transformation rules, it would

be su�cient to consider dags with only the root Ah:�; Si. However, it is convenient to have AhSi

as alternate root, since it enables the study of the system starting from a simpler diagram that is

independent of the speci�cation. The soundness of the methodology is expressed by the theorem

below, discussed in the appendix.

Theorem 2 If there is a dag D which is a proof of S j= �, then S j= � holds.

Examples of Proof Dags

In the following, we present some examples of proof dags for a transition system S and a speci�-

cation �. Each dag exempli�es a di�erent proof style, underlining the
exibility that the modular

decomposition and composition lend to the methodology. In the dags, thin lines indicate the appli-

cation of at most one transformation rule, thick lines indicate the application of zero or more rules;

we assume that the rightmost diagram has U =]calt and can be shown to have empty language

using Theorem 1.

5

4.1 The system-analysis style.

φ ,S>A<

A 1
A 2

A<S>

This �rst dag corresponds to the proof style proposed in [dAM96, dAKM97]. In this style,

the root diagram AhSi is studied by means of successive transformations, until the product of the

resulting diagram with Ah:�; Si has empty language.

4.2 The deductive model-checking style.

A 1φ ,S>A<

A<S>

This dag corresponds to the proof style proposed in [SUM96]. In this style, the diagramAh:�; Si

is studied by means of successive transformations until it can be shown to have empty language.

4.3 The modular deductive model-checking style.

A 3φ ,S>A<

A 11 A 12

A 22A 21

A 4

A<S>

This dag corresponds to a modular version of the proof style proposed in [SUM96]. In this

style, the diagram Ah:�; Si is decomposed into the two diagrams A11, A21, each corresponding

to a module of S. These diagrams are then �rst studied in isolation (leading to A12, A22), and

then composed into a joint diagram A3. This diagram is then subject to transformations, until the

resulting diagram A4 can be shown to have empty language.

4.4 A system-analysis and model-checking modular style.

A 3

A 11 A 12

A 22A 21 A 4

φ ,S>A<

A<S>

This dag illustrates a proof in which the diagram AhSi for the TS S is �rst studied by means

of modular decomposition, leading to the two diagrams A11 and A21. These diagrams are studied,

leading to diagrams A21 and A22, which are then combined into diagram A3. Then, diagram A3

is combined with Ah:�; Si, and from this point on the proof proceeds as in the deductive model-

checking approach. Diagrams for more complex proof structures can be drawn in similar ways.

6

5 Diagram Transformations

The transformation rules enable the analysis of the temporal properties of diagrams and the mod-

ular decomposition of the system. There are four classes of rules: modular rules split modules into

submodules, safety and progress rules study the safety and progress properties of diagrams, and

simpli�cation rules simplify the structure of diagrams. While some rules can be applied without

preconditions, others require the proof of �rst-order veri�cation conditions. The diagram composi-

tion operator, based on a special type of synchronous composition, is used to combine diagrams for

di�erent submodules of a system. It can also be used for proof reuse and backtracking, but such

uses are beyond the scope of this paper. Due to space constraints, we present in detail only one rule

for modular decomposition and the composition operator
; discussing only the general features

of the other classes of rules. The de�nitions of additional rules can be found in the appendix.

Modular rules. The rule below is used to perform modular decomposition: given a diagram A

that studies U � T and given R � U , the rule produces a diagram for the subset R of transitions.

An additional rule, not discussed in this paper, enables the introduction of auxiliary variables.

Module split rule. Given a proper non-empty subset R � U of the transitions of diagram A, the

diagram module-split(A;R) is obtained by restricting U to R, and by splitting each edge e 2 F into

two new edges e1 2 F , e2 2 E with labels tr(e1) = tr(e)\R, tr(e2) = T �R, �(e1) = �(e2) = �(e).

Each time an edge e is split into e1 and e2, all the constraints (J;C;G) such that G(e) 6� R are

dropped from the fairness set of the diagram.

Safety rules. There are two types of safety rules: the rules that strengthen the vertex or edge

labels, and the rules that split vertices and edges into new vertices and edges. The application

of rules of the �rst type corresponds to the proof of inductive invariants, obtained for example

using the methods of [BBM97]. Strengthening the vertex labels automatically strengthens the

environment by restricting the admissible environment transitions. An additional rule enables the

arbitrary strengthening (and pruning) of environment edges, in preparation to the application of

progress rules.

Progress rules. The progress rules derive new progress properties about the diagrams, and

represent them as fairness constraints that are then added to the diagrams; they are obtained

by adapting the rules of [dAM96] to the notation used in this paper. Since the rules do not

distinguish between system and environment edges, a fairness constraint can be proved only if it is

compatible with the environment: hence the need for the previously mentioned rule to strengthen

the environment.

Simpli�cation rules. The simpli�cation rules enable the weakening of the labels of vertices and

system edges, and the merging of sets of vertices and edges. The purpose of these rules is to

summarize and simplify portions of diagrams that have already been analyzed.

In order to preserve soundness, the simpli�cation rules never weaken the labels of environment

edges. To understand the reason, consider as an example an application of a safety rule that over-

strengthens the vertex labels, causing the pruning of a portion of the diagram that in fact was

reachable by a computation of the TS S. In this case, the application of the rule generates an

environment that is too restrictive to account for all the possible transitions of the other modules.

Since the environment assumptions will not be weakened, when a descendant of the diagram is

composed with the diagrams for the other modules, some transitions of these diagrams will not

satisfy the environment assumptions, and the composition operator
 will create edges to a \sink"

vertex. The computations of S that are excluded by the diagram strengthening will then be

7

represented by transitions to the sink vertex, thus preserving computations of S. A similar argument

can be made for rules that add progress constraints by relying on an improperly strengthened

environment.

Composition operator. Given two diagrams A, B, the composition operator
 combines them

into a diagram C = A
B that corresponds to the synchronous composition of A and B, with one

additional \sink" node. All the state changes of A (resp. B) that are due to transitions in UA�UB
(resp. UB�UA) but are not accounted for by the environment of B (resp. A) give rise to transitions

leading to the sink node, preserving the computations that would otherwise be excluded. Diagram

C = A
B is de�ned as follows:

1. UC = UA [UB.

2. VC = fv
�
g [f(u; v) j u 2 VA ^ v 2 VB^ 6` :[�(u) ^ �(v)]g, where v� is a new vertex used as

\sink" for the computations of one diagram that do not match with the environment of the other

diagram. For all (u; v) 2 VC , we let �C(u; v) = �A(u)^�B(v) and �C(u; v) = �A(u)^ �B(v); for

the sink node, �C(v
�) = true, �C(v

�) = false.

3. Initially, the sets FC and EC contain only two edges f�; e�, respectively, that are self-loops

for the sink vertex v
�. These edges are labeled by �C(e

�) = �C(f
�) = true, tr(f�) = UC ,

tr(e�) = T � UC . Then, additional edges are added in two steps.

(a) First we add the \good" edges, representing synchronous steps of the two diagrams. Con-

sider all pairs of vertices (u; v); (u0; v0) 2 VC . For each e 2 FA(u; u
0) [EA(u; u

0) and

f 2 FB(v; v
0) [EB(v; v

0), if trA(e) \ trB(f) 6= ; and 6` :[�A(e) ^ �B(f)], we construct an

edge g from (u; v) to (u0; v0), labeled by �C(g) = �A(e)^�B(f) and trC(g) = trA(e)\ trB(f).

If e 2 EA and f 2 EB , we insert g in EC ; otherwise we insert it in FC .

(b) Next, if an edge allows transitions violating the environment of the other diagram, we

construct an edge to the sink node.

Consider all vertices (u; v) 2 VC . For each edge e 2 FA(u) such that trA(e) 6� UB , we

check whether ` [~�A(e) ^ �B(v)] !
W
f2EB(v)

~�B(f). If the implication cannot be proved,

we add to FC an edge g from (u; v) to v�, labeled by �C(g) = ~�A(e) ^ :
W
f2EB(v)

~�B(f),

trC(g) = trA(e)� UB . We then perform the symmetrical check for each f 2 FB(v), adding

an edge from v to v� if the corresponding implication cannot be proved.

4. For each constraint (J;C;G) 2 FA, we insert in FC the constraint (Ĵ ; Ĉ; Ĝ) de�ned by:

(a) Ĵ(v�) = Ĉ(v�) = false, and for all u 2 VA, v 2 VB, Ĵ(u; v) = J(u), Ĉ(u; v) = C(u)

(b) For each edge g 2 FC generated from e 2 FA as in Step 1, let Ĝ(g) = G(e) \ tr(g).

We then perform the symmetrical step for each constraint (J;C;G) 2 FB .

6 Demarcation Protocol: Diagram Proof

To prove that the demarcation protocol shown in Figure 1 satis�es � : 2(x � xl � yl � y) we

construct the two roots AhSdi and Ah:�; Sdi of the proof dag. The communication structure of

the program suggests to decompose the system into two modules consisting of Requestor1Grantor2
(R1G2) and Requestor2Grantor1 (R2G1); the proof will follow the style depicted in Section 4.4.

First, we apply the decomposition rule twice to AhSdi, once with R = f`0:::7; n0:::3; idleg, and

another time with R equal to the remaining transitions, obtaining diagrams A11 and A21.

We want to show that the module corresponding to diagram A11 maintains x � xl. The only

statement that may potentially violate this is `6: thus, we require at `6 ! xg � 0. Note that n2
cannot violate x � xl due to its guard and the atomicity of the grouped statement. Performing

8

backpropagation based on at `6 ! xg � 0, following the methods described in [BBM97], and

splitting and strengthening the vertices accordingly, we obtain the diagram shown in Figure 2.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

?

?

?

?

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

?

?

?

?

?

�� : at `7;0;1;2 _ (at `3 ^ :ax)

� : at `3;4 ^ ax ^ xw > xl

� : at `5 ^ at n2 ^ yr > 0

� : at `5 ^ at n3 ^ yp � 0

� : at `6 ^ xg � 0

tr : fn0; idleg

tr : fidleg

tr : fidleg

tr : f`3; n0; idleg

tr : f`0; `1; `2; n0; idleg

tr : fh`5n3ig

tr : fn2g

tr : fh`4n1ig

tr : f`2g

tr : f`6g

Figure 2: Diagram for module R1G2

To reduce cluttering, environment edges have been omitted. However, each vertex has an

environment edge connecting it to itself, labeled by tr : fk0:::7;m0:::3g. The �-labeling of the system

edges consists of the disjunction of the transition relations associated with the transitions in tr; the

� labeling of the environment edges is identically equal to true. The labeling � is equal to � on the

�rst vertex of the diagram, and is false on the other ones. The fairness set F is empty.

The environment assumptions are encoded by the ~�-formulas associated with the environment

edges: for example, the assumption corresponding to the second vertex is given by

(at `3;4 ^ ax ! xw > xl) ! (at0 `3;4 ^ a
0
x ! x

0
w > x

0
l) :

The second property we want to analyze for this module is 2(xl � yl). This may be falsi�ed

by statements n2 and again `6. Thus we require at n2 ! yr � 0 and at `6 ! xl + xg � yl. These

assertions can be added to the vertices of the diagram shown in Figure 2 by application of the

safety rules without the need for further splitting of vertices; the diagram obtained corresponds to

diagram A12 of Section 4.4.

After performing a similar analysis for the module R2G1, obtaining diagram A22, we compose

the two resulting diagrams obtaining diagram A3 = A12
 A22. The edges leading to the \sink"

vertex of A3 are labeled by false, so that the sink vertex is unreachable and can be eliminated.

Note that only the transition relation of the environment edge of the second vertex of A12 (resp.

A22) has to be validated against its environment, since the assertions labeling the other vertices

only refer to variables local to R1G2 (resp. R2G1), and thus cannot be falsi�ed by other modules;

on the other hand, xl and yl are not local to the modules.

9

A �nal composition of this diagram with Ah:�i leads then to diagram A4, which can be shown

to have empty language by Theorem 1.

By comparison, the proof of this property using non-modular veri�cation diagrams requires the

input of a diagram with many more vertices, labeled with complex assertions.

7 Completeness Results and Guidance

The completeness of the methodology presented in this paper follows easily from an analysis of

the completeness proof for the diagram transformation methodology of [dAM96]. In fact, the

completeness proof for the methodology of [dAM96] is based on the construction of a chain of

diagram transformations that proves the property; the construction of this chain can be easily

recast as the construction of a non-modular proof dag. We can thus state the following theorem.

Theorem 3 (completeness) For a TS S and � 2 TLs, if S j= � then there is a dag D that is a

proof of S j= �.

Guidance in constructing the proof can be obtained in several ways, depending on the position

of the diagram A under study in the proof dag. If the only root ancestor of A is AhSi, it is possible

to obtain guidance by computing the product A
Ah:�; Si: the projection of the persistent SCCs

of the product back onto A gives an indication of the components of A that have to be shown either

unreachable or non-persistent [dAM96, dAKM97].

If the root ancestors of A include Ah:�; Si, then attention can be focused on the persistent SCSs

of A; all of these have to be shown to be unreachable, or have to be broken or shown non-persistent

by the addition of progress constraints [SUM96].

When analyzing a diagram for a subsystem, a
 product with a diagram for the rest of the

system will tell whether the environment assumptions are satis�ed by the rest of the system. In

case sink edges are created, the assumption were too restrictive: the source vertex and the transi-

tion relation of the sink edge give information about the improper restriction of the environment

assumptions.

References

[AL90] M. Abadi and L. Lamport. Composing speci�cations. In Stepwise Re�nement of Distributed

Systems: Models, Formalism, Correctness, volume 430 of LNCS, pages 1{41. Springer-Verlag,
1990.

[BBM97] N.S. Bj�rner, A. Browne, and Z. Manna. Automatic generation of invariants and intermediate
assertions. Theor. Comp. Sci., 1997. To appear.

[BGM92] D. Barbara and H. Garcia-Molina. The demarcation protocol: A technique for maintaining linear
arithmetic constraints in distributed database systems. In Advances in Database Technology -

3rd Int. Conf. on Extending Database Technology, pages 373{388. Springer-Verlag, 1992.

[BMS95] A. Browne, Z. Manna, and H.B. Sipma. Generalized veri�cation diagrams. In 15th Conference

on the Foundations of Software Technology and Theoretical Computer Science, volume 1026 of
LNCS, pages 484{498, 1995.

[dAKM97] L. de Alfaro, A. Kapur, and Z. Manna. Hybrid diagrams: A deductive-algorithmic approach
to hybrid system veri�cation. In 14th Symposium on Theoretical Aspects of Computer Science,
February 1997.

[dAM96] L. de Alfaro and Z. Manna. Temporal veri�cation by diagram transformations. In Proc. 8th Intl.

Conference on Computer Aided Veri�cation, volume 1102 of LNCS, pages 287{299, July 1996.

10

[GL94] O. Grumberg and D.E. Long. Model checking and modular veri�cation. ACM Trans. Prog. Lang.

Sys., 16(3):843{871, May 1994.

[Lam94] L. Lamport. TLA in pictures. Technical Report 127, Digital Equipment Corporation, Systems
Research Center, September 1994.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Speci�cation.
Springer-Verlag, New York, 1991.

[MP94] Z. Manna and A. Pnueli. Temporal veri�cation diagrams. In Proc. Int. Symp. on Theoretical

Aspects of Computer Software, volume 789 of LNCS, pages 726{765. Springer-Verlag, 1994.

[Saf88] S. Safra. On the complexity of !-automata. In Proc. 29th IEEE Symp. Found. of Comp. Sci.,
pages 319{327, 1988. An extended version to appear in J. Comp. Sys. Sci.

[SUM96] H.B. Sipma, T.E. Uribe, and Z. Manna. Deductive model checking. In Proc. 8th Intl. Conference

on Computer Aided Veri�cation, volume 1102 of LNCS, pages 208{219. Springer-Verlag, 1996.

11

Appendix

A Diagram Transformation Rules

Below, we present several diagram transformation rules. We have included all the safety rules

needed to complete the proof of the demarcation protocol. Moreover, we present the only (elemen-

tary) progress rule original from this paper, and we indicate how to adapt the rules of [dAM96] to

the present notation.

In the presentation of the transformation rules, we let A = (U , V, V , F , E, �, �, �, tr, F)

be the diagram to be transformed. Moreover, we adopt the following convention to describe the

modi�cation of diagram components. Given a mapping � : C 7! D and two elements a, b with

b 2 D, we de�ne the result of updating � by �(a) := b to be the mapping �� : C [fag 7! D such

that ��(a) = b, and ��(x) = �(x) for x 2 C � fag.

Once a transformation rule has been applied, yielding a diagram B, we remove all the vertices

v 2 V
� such that �B(v) � false, along with all the edges originating from and leading to these

vertices. Next, we remove all edges e 2 EB [FB such that either �B(e) � false or trB(e) = ;. Last,

we remove from the diagram all the vertices that are not reachable in the graph (VB ; EB [FB)

from some vertex u with �B(u) ^ �B(u) satis�able.

A.1 Safety Rules

Rule 1 (vertex strengthen) Let V = fv1; v2; : : : ; vmg, and consider a list of formulas

�1; �2; : : : ; �m 2 form(V). Assume that the implication (�(vi) ^ �(vi)) ! �i and (�i ^ ~�(e)) ! �
0
j

holds for all 1 � i; j � m and all e 2 F (vi; vj). Then, the diagram v-streng(A;�1; : : : ; �m) is

obtained by updating �(vi) := �(vi) ^ �i, �(vi) := �(vi) ^ �i, for 1 � i � m.

Rule 2 (system-edge strengthen) Given e 2 F , the diagram se-streng(A; e) is obtained by

updating �(e) := ~�(e) ^
W
�2tr(e) �� .

The following rule enables the arbitrary strengthening (and pruning) of environment edges.

Rule 3 (environment-edge strengthen) Given e 2 F and � 2 form(V;V 0), the diagram

ee-streng(A; e; �) is obtained by updating �(e) := �(e) ^ �.

Rule 4 (drop edge label) Given e 2 F and � 2 tr(e), assume that �� ^ �(e) � false. Then,

the diagram drop-label(A; e; �) is obtained by updating tr(e) := tr(e)�f�g, and by updating every

constraint (J;C;G) by G(e) := G(e)� f�g.

Rule 5 (vertex split) Given v 2 V and � 2 form(V), the diagram v-split(A; v; �) is obtained by

replacing the vertex v of A with two new vertices v1, v2, with labels �(v1) = �(v) ^ �, �(v2) =

�(v) ^ :�. Then, we replace each edge e 2 E(v; v) [F (v; v) with four new edges feijgi;j2f1;2g,

where edge eij leads from vi to vj , and we add these edges to E if e 2 E and to F is e 2 F . We

replace each edge e 2 E [F leading to v with two new edges e1, e2 leading to v1, v2 respectively.

We replace each edge e 2 E(v)[F (v) with two new edges e1, e2 departing from v1, v2 respectively.

The new edges have the same labels as the edges they replace. Finally, we update each constraint

(J;C;G) by J(v1) := J(v), J(v2) := J(v), C(v1) := C(v), C(v2) := C(v). If edge f has replaced

edge e, we update G(f) := G(e).

12

A.2 Progress Rules

Our �rst progress rule is used to add fairness constraints that represent the fairness of the transitions

of the original transition system.

Rule 6 (add constraints from TS) Let � 2 U be a just (resp. compassionate) transition of

the TS S. The diagram add-constraint(A; �) is obtained from A by adding the constraint (J;C;G)

de�ned by J(v) = En(�) (resp. J(v) = true) if � 2 J (resp. � 2 C), C(v) = En(�), and G(e) =

tr(e) \ f�g for all v 2 V and e 2 F .

Once the fairness of the transitions is represented by fairness constraints, other progress rules

are used to reason on these constraints and obtain new constraints, that are added to the diagram.

These rules are obtained by adapting the progress rules of [dAM96] to the notation of this paper.

As an example, we give below the adapted version of the rule that derives new constraints from

the concatenation of already existing ones.

Rule 7 (concatenation of constraints) Given a diagram A and a constraint (J;C;G), assume

that there is a constraint (J0; C0; G0) 2 F with (J0(u) ^ �(u))! J(u) for all u 2 V and a ranking

function � such that the following implications are valid.

1. For all u; v 2 V and e 2 F (u; v) [E(u; v),

J(u) ^ ~�(e) ! :J
0(v) _ �(u) � �

0(v) _
_

�2G(e)

��

J(u) ^ ~�(e) ^
_

�2G0(e)

�� ! :J
0(v) _ �(u) > �

0(v) _
_

�2G(e)

�� ;

with the convention that G(e) = ; for e 2 E.

2. Either (C(u) ^ �(u)) ! C0(u) for all u 2 V , or there is (J1; C1; G1) 2 F such that for all

u; v 2 V , the implications

J(u) ^ �(u) ! J1(u) _ J0(u)

C(u) ^ �(u) ! C1(u) _ C0(u)

J(u) ^ ~�(e) ^
_

�2G1(e)

�� ! :J
0(v) _ C 0

0(v) _
_

�2G(e)

��

are valid for all e 2 F (u; v) [E(u; v).

Then, diagram conc-cons(A; (J;C;G)) is obtained by adding the constraint (J;C;G) to the fairness

set of diagram A.

B Soundness of the Methodology

Di�erently from [dAM96], the diagram transformations we present do not preserve language con-

tainment, since it is possible to strengthen arbitrarily the transition formulas labeling the environ-

ment edges. The lemma below provides a characterization of the language of diagrams in the proof

dag. In the lemma, we denote by �̂ the sequence of states corresponding to a run � (which can be

accepting or not accepting). The lemma can be proved by induction on the structure of the dag,

using the de�nitions of the transformation rules and the composition operator; the proof has been

omitted due to its length.

13

Lemma 2 Given a proof dag D for a TS S, let D0 be the set of nodes that have AhSi as unique

root ancestor, and let D1 be the set of nodes that have Ah:�; Si among the root ancestors. Then,

for A 2 fAd j d 2 D0g (resp. A 2 fAd j d 2 D1g) there is a function �A
0 (resp. �A

1) that maps the

accepting runs f� 2 Runs(AhSi) j �̂ 2 L(S)g (resp. f� 2 Runs(Ah:�; Si) j �̂ 2 L(S)g) into runs

(not necessarily accepting) or run pre�xes of A. For i = 0; 1, these functions have the following

properties:

Faithfulness. For �0 = �A
i (�), if �

0 is in�nite then �̂0 = �̂, otherwise �̂0 is a pre�x of �̂.

Termination. If �0 = �A
i (�) is �nite, let (v; s); (v0; s0) be the �rst step of � that does not have a

correspondent in �0, and let (u; s) be the last location of �0. Then, for all � 2 T , if (s; s0) j= �

then � 62 UA, so that the missing step in A is the responsibility of the environment. Moreover,

(s; s0) 6j= �A(e) for all e 2 EA(u), indicating that �0 cannot be extended due to the (excessive)

strengthening of the environment of A.

Progress. If �0 = �A
i (�) is in�nite, then �0 is also accepting.

As a consequence of this lemma, we have the following result.

Theorem 4 In a proof dag D, consider a node d labeled by a diagram A with UA = T . If d has

AhT i as only root ancestor, then L(S) � L(A). If Ah:�; Si is among the root ancestors of d, then

f! 2 L(S) j ! 6j= �g � L(A).

By the above theorem, if dag D contains a node labeled with a diagram A such that UA = T and

L(A) = ;, then f! 2 L(S) j ! 6j= �g = ;. Theorem 2, expressing the soundness of the methodology,

follows as a consequence.

14

