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Abstract

The explosion of on-line information has given rise to many query-based search engines

(such as Alta Vista) and manually constructed topic hierarchies (such as Yahoo! ). But

with the current growth rate in the amount of information, query results grow incom-

prehensibly large and manual classi�cation in topic hierarchies creates an immense

information bottleneck. Therefore, these tools are rapidly becoming inadequate for

addressing users' information needs.

In this dissertation, we address these problems with a system for topical infor-

mation space navigation that combines the query-based and taxonomic approaches.

Our system, named SONIA (Service for Organizing Networked Information Au-

tonomously), is implemented as part of the Stanford Digital Libraries testbed. It

enables the creation of dynamic hierarchical document categorizations based on the

full-text of articles. Using probability theory as a formal foundation, we develop sev-

eral Machine Learning methods to allow document collections to be automatically

organized at a topical level. First, to generate such topical hierarchies, we employ

a novel probabilistic clustering scheme that outperforms traditional methods used in

both Information Retrieval and Probabilistic Reasoning. Furthermore, we develop

methods for classifying new articles into such automatically generated, or existing

manually generated, hierarchies. In contrast to standard classi�cation approaches

which do not make use of the taxonomic relations in a topic hierarchy, our method

explicitly uses the existing hierarchical relationships between topics, leading to im-

provements in classi�cation accuracy. Much of this improvement is derived from the

fact that the classi�cation decisions in such a hierarchy can be made by considering

only the presence (or absence) of a small number of features (words) in each document.
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The choice of relevant words is made using a novel information theoretic algorithm

for feature selection. Many of the components developed as part of SONIA are also

general enough that they have been successfully applied to data mining problems in

di�erent domains than text.

The integration of hierarchical clustering and classi�cation will allow large amounts

of information to be organized and presented to users in a individualized and compre-

hensible way. By alleviating the information bottleneck, we hope to help users with

the problems of information access on the Internet.
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Chapter 1

Introduction

In recent years, we have witnessed an immense growth in the availability of on-line

information. Most notably, with the emergence of the World Wide Web, users now

have access to thousands of information sources and untold millions of documents.

Simultaneously, there has been a strong focus placed on Digital Libraries as a means

of making such on-line information readily and easily available. Given that much of

this information is textual in nature, the question arises of how access to so much

information can be facilitated. Indeed, if we are not to drown in the growing sea

of documents, it becomes necessary to build tools aimed at helping users �nd those

documents that satisfy their information needs.

At a cursory level, the current methods for accessing large text collections (such

as the Web) can be classi�ed into two categories. The �rst group deals with retrieving

documents from a collection in response to a user's query. Such methods are best

exempli�ed by the search engines which are currently popular on the Web, such

as Alta Vista [6, 151]. In this paradigm, a user is required to specify his or her

information need in the form of a query which is then compared (typically at a

simple keyword level) with documents in a collection to �nd those likely to be most

related to the query and thus potentially relevant to the user. Alternatively, and

more analogously to the traditional approach of libraries, on-line subject taxonomies

(also called directories) for organizing information have been developed. These

organizational schemes allow users to search manually for relevant documents by

3
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traversing a topic hierarchy, into which a collection is categorized. The taxonomy

serves as a guide to help users home in on particularly useful documents. Such

approaches have also gained great popularity on-line, as exempli�ed by the success

of companies such as Yahoo! [173].

Unfortunately, these methods for accessing information are quickly becoming in-

adequate as the amount of on-line information continues to grow at an unprecedented

rate. Methods that respond to a user's query with a simple list of documents quickly

become unwieldy as the list of matching documents becomes incomprehensibly large.

Even now, users often �nd themselves having to wade through several hundred doc-

uments returned in response to their queries; this situation will only get worse in the

future.

On the other hand, current subject directory approaches su�er from the problem

of having too little information available for users to peruse. Since the maintenance of

such topic hierarchies currently requires the manual classi�cation of new documents

within the existing taxonomy, there is an immense bottleneck for keeping up with the

amount of new information that is constantly becoming available. In fact, it has been

estimated that, at the time of this writing, the World Wide Web contains over 300

million non-dynamically generated web pages [105]. In contrast, Yahoo!, the largest

on-line directory, contains roughly 500,000 links to web pages in its topic hierarchy

[160]. This staggering gap of almost three orders of magnitude between the amount of

information available and the amount accessible via even the largest directory services

show that manual classi�cation into topic hierarchies simply can not keep up with

the growth of the Web.

Realizing the shortcomings of current search engines and directory services, we

consider how more sophisticated computational tools can be applied to help address

the problems of information access. In order to pursue this goal, we �rst need a

better understanding of the various challenges which arise in attempting to improve

information access. We can then outline where the use of intelligent computation

may provide a signi�cant bene�t. Thus, in the remainder of this chapter, we turn

our attention to the goals of information access and subsequently give an outline of a

system we have built for addressing some of these challenges. We also brie
y review
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some of the previous research aimed at similar tasks, comparing and contrasting it

with our approach. Finally, an overview of the component technologies encompassed

by our system is provided. This overview also serves as a summary of the core

technical contributions of this work, which are elaborated in depth in the subsequent

chapters of this thesis.

1.1 Challenges of Information Access

As noted previously, users simply cannot manually look through the volumes of in-

formation that are available. Hence, it becomes clear that computational methods

that help �lter the store of information to allow users to more readily home in on

documents of interest are needed. Over the past three decades, a growing body of

research has emerged with the aim of addressing this issue. Often referred to as In-

formation Retrieval (IR) or, more recently, Information Access (IA), this �eld has

clearly de�ned a number of information access tasks which have become the focus of

many recent research e�orts in this area.

Several such information access tasks have been the focus of the Text REtrieval

Conference (TREC) [65], which has in recent years served as a friendly competition

among di�erent research groups addressing information access problems. While, most

recently, TREC has expanded to include such diverse tasks as cross-language and

spoken document retrieval, we only presently consider the longer standing problems

of ad hoc retrieval, as well as document �ltering and routing. Moreover, moving

beyond the realm of the tasks addressed in TREC, we also consider the new task of

document browsing. Below we de�ne and provide details on these di�erent tasks.

1.1.1 Ad Hoc Retrieval

Given a large collection of documents, the ad hoc retrieval task centers on retriev-

ing relevant documents in response to a user's query. Generally, systems built for

addressing this task begin by indexing a collection of documents according to the

words that the documents contain (referred to as an inverted index [51]). Such an
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index allows for the quick identi�cation of those documents from the collection that

contain any of the words in a user's query. After an initial set of matching documents

is obtained, most retrieval systems will then rank these documents according to var-

ious criteria aimed at giving highest rank to the documents \most relevant" to the

user's query.

Document ranking methods are often based on measures of how frequently query

terms appear in each individual document as opposed to the document collection as

a whole. Ranking measures, such as TFIDF weighting [145], usually weight each

query term according to its rarity in the entire collection (often referred to as the

inverse document frequency, or IDF) and then multiply this weight by the frequency

of the corresponding query term in an individual document (referred to as the term

frequency, or TF) to get an overall measure of that document's similarity to the

user's query. The premise underlying such measures is that word frequency statistics

provide a good measure for capturing a document's relevance to a user's information

need (as articulated in his or her query). This conjecture generally has been borne

out in previous TREC results, as many of the most successful retrieval systems have

been based almost entirely on the analysis of term frequency statistics.

A more detailed overview of di�erent ranking measures and their use in informa-

tion retrieval systems can be found in [66]. Also, an excellent, detailed description of

building complete systems for ad hoc retrieval as well as additional information on

document ranking measures can be found in both [146] and [166]. A good history of

the research development of SMART, one of the historically most important retrieval

systems, is given in [144], which also outlines many of the classical research areas in

building more e�ective retrieval systems.

1.1.2 Routing and Filtering

The related tasks of document routing and �ltering can be thought of as a variation

in the set-up of the ad hoc retrieval task. As mentioned previously, in ad hoc retrieval

a static collection of documents is searched using dynamically generated user queries.

In contrast, for both the routing and �ltering tasks, a dynamic incoming document
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stream is matched against a static query, in order to capture new information relevant

to a user's persistent information need. It is important to note here, however, that

the user's standing information need may not be explicitly articulated as a query,

although we may refer to it as such. Rather a user may express their information

need simply via a training set of documents which may be categorized as either

relevant or irrelevant by the user. In this regard, routing and �ltering are analogous

to task of classi�cation, or supervised machine learning, which we discuss later in

Section 3.2.1.

While closely related, the routing and �ltering tasks have an important de�nitional

di�erence. In document routing, we seek to produce a ranked list of documents

according to their relevance to a standing query. In document �ltering, however,

we only make binary decisions as to whether or not given documents are relevant to

a standing query. Consequently, any method for routing can be easily transformed

into a method for �ltering by simply introducing an appropriate threshold, and then

marking as \relevant" only those documents whose measures of relevance are above

this threshold. Likewise, any �ltering method for classifying documents as being

relevant or not, which also produces a con�dence in its prediction of a document's

relevance, can likewise be employed as a solution for the routing problem. Since, in the

remainder of this work, any methods we describe for categorizing documents produce

a real-valued con�dence in their predictions, we con
ate the routing and �ltering

problems as simply di�erent instances of the document classi�cation problem. More

details on the document routing and �ltering tasks, especially within the context of

the TREC conference, can be found in [107] and [77].

1.1.3 Browsing

A �nal information access task which has become more pressing with the advent of

the Web is that of browsing a document collection. We de�ne browsing as: the

task of becoming familiar with the contents of a collection in order to �nd individual

or groups of documents that are relevant to an information need. In order to help

facilitate browsing, it becomes necessary to provide infrastructure or computational
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tools that allow users to both get a better sense of the contents of a collection as well

as quickly home in on documents of particular interest.

Simple examples of infrastructure that facilitate browsing are the hierarchical

topic directories common in library settings (both the traditional paper as well as on-

line \digital" variety) and the World Wide Web. Such directories capture a sense of

the topics encompassed within a corpus and provide an explicit organizational scheme

that enables users to �nd more quickly relevant documents. As users delve deeper into

sub-categories within a directory, they quickly eliminate large numbers of irrelevant

documents from consideration. Indeed, in order for on-line information to be truly

useful, users must not only have some way of �nding relevant information, but they

must also have at their disposal means for �ltering through the vast quantities of

irrelevant material. Moreover, since documents are organized in some semantically

meaningful way in these categories, the identi�cation of just a few potentially relevant

sub-categories within the hierarchy gives users ready access to a number of related

and potentially relevant documents.

While virtually all such topical guides are currently manually constructed, we

believe that it is possible to build computation tools which can help to automatically

group related documents into sub-categories. Consequently, such tools would help to

address the information browsing task without requiring the extensive overhead of

manual organization. Moreover, the dynamic applicability of such tools would allow

for otherwise unstructured collections of documents to be easily organized in a variety

of ways depending on the context (e.g., organizing di�erent query results returned by

a retrieval engine).

1.2 System Overview

Gievn the information access challenges outlined above, we now turn our attention to

building a system which helps to address some of them. We begin with an overview

of a system for topical information space navigation that combines both the query-

based and directory-based approaches. Our system is named SONIA: Service for

Organizing Networked Information Autonomously. This system employs a number
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of machine learning techniques, such as feature selection, clustering, and classi�cation,

to create dynamic categorizations based on the full-text of retrieval results. Using this

system, users can specify their information needs as queries and browse the results

at a topical, rather than document, level.

The technical components of SONIA make use of the formal framework of prob-

ability and information theory. As such, these technical components are based on a

mathematical foundation that lends itself to a more formal analysis of the assump-

tions made in these learning models. Since probability theory also provides semantics

for such mathematical models, it is also possible to ascertain the degree to which

these models capture certain general properties of text domains.

With that said, the best way to get an idea of the functionality that SONIA

provides is to consider the user interaction model. Figure 1.1 presents a 
ow chart of a

user's interaction with the system. While we discuss SONIA more fully in Chapter 10

and show examples of actual usage there, the presentation here provides a road-map

of the components that comprise the system.

Starting in the standard ad hoc retrieval paradigm, SONIA allows users to issue

queries to any of a number of available distributed information sources (i.e., net-

worked queriable text collections). It is important to note that SONIA does not
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maintain its own index of documents and, hence, does not provide its own search

engine. As a result, methods for improving the retrieval performance of the system

are not a research issue in this work. Rather, we can leverage over 30 years worth of

research advances in retrieval [146, 166, 51, 155] as embodied in several on-line search

engines [151] by simply allowing SONIA to directly interface with such information

sources. Such interfacing is done via the Stanford Digital Libraries InfoBus interop-

erability protocol [10] and is described in detail in Chapter 10. By relying on existing

search engines with very broad coverage, we can both allow SONIA to work with

information sources that users may already be familiar with, while at the same time

maintain a clean division between the search engine and the subsequent processing

that takes place in SONIA. This division makes the system maximally 
exible. That

is, our system allows for multiple distributed, heterogeneous collections to be queried

and also for new information sources to easily be integrated.

Once an initial set of documents is returned in response to a user query, SONIA

can then be used to cluster these documents into related groupings. Such a clus-

tering allows a user to get a better sense of the topics encompassed in the possibly

large number of documents returned in response to a query. We address clustering

in more detail in Chapter 6, but it su�ces to say here that clustering can be suc-

cessful at grouping documents based on the similarity of their textual content. The

resulting document grouping often resembles a topical category structure automati-

cally imposed on just the set of documents matching a user's query. We believe that

this structure enables a user to browse documents much more easily than scanning

through a lengthy and unstructured list. Furthermore, re-clustering of the documents

in particular groups is possible, thereby creating a hierarchical structure of document

groupings. The SONIA user interface also allows a user to rearrange both the struc-

ture of this hierarchy as well as the placement of individual documents within it. As

a result, users can leverage such a tool to quickly generate a topical directory struc-

ture for the documents that are potentially relevant to their information needs (as

articulated in their queries).

Notice that having such a hierarchical structure not only helps enable users in the

browsing task, but creates a partitioning of the information space that allows a user
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to better organize the information available about a particular topic. Moreover, the

automated creation of such a structure helps to bridge the gap between the traditional

query-based and directory-based paradigms. Still, as mentioned previously, the man-

ual maintenance of such hierarchical directories can present a formidable challenge.

Thus, SONIA provides methods for automatic classi�cation of new documents (e.g.,

the results of subsequent queries, or documents returned by roving Web agents) into

such a hierarchy. Note that the topic hierarchy need not be constructed by SONIA,

as the classi�cation methods it employs are readily applicable to existing hierarchies

that a user may have manually created (e.g., his or her Web page bookmarks, or the

hierarchical directory structure of a user's �le system). It is important to realize that

this ability to classify documents helps to address the �ltering and routing tasks, as

these problems can be seen as simply classifying documents into the groupings which

are relevant and non-relevant to the user. In this way, the system can help a user to

not only quickly organize a collection of documents, but also maintain this organiza-

tional schemes over time by routing new documents to their correct location in the

hierarchy.

1.3 Reader's Guide

We now delve deeper into the technical components that comprise SONIA in order to

highlight the contributions of this work. While SONIA does embody some elements

found in other IR systems, it uses di�erent technologies to realize this functionality.

Additionally, the novel machine learning tools developed as part of SONIA are general

enough that they can be used on a variety of problems in other domains. While our

presentation herein focuses on the evaluation of the technical components of SONIA

on primarily textual data, we do present results on other domains in some cases to

highlight the full generality of these methods.

The complete interaction model that SONIA provides for users is also novel. We

hope to elevate user interaction with information access systems beyond simple one-

shot queries and move to addressing users' more persistent information needs. To

this end, SONIA extends beyond tools which simply provide document clustering
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Figure 1.2: Overview of the technical components in SONIA.

capability by providing classi�cation tools and an interactive user interface which

allows for such document organizations to be easily expanded and maintained over

time.

We now turn our attention to identifying the particular technical components

that comprise SONIA, and thereby provide a road-map of the subsequent chapters.

Figure 1.2 expands the block diagram of user interaction with the system (seen in

Figure 1.1), showing the technical components of SONIA and how they �t together.

These modular machine learning components are the foci of Chapters 5 through 9.

Here, we brie
y outline what these components are and how they are integrated

together.

As mentioned previously, we begin with the assumption that various informa-

tion sources (i.e., search engines) exist which SONIA can communicate with via the

Infobus protocol. Still, we can only assume about these sources that they provide SO-

NIA with unstructured lists of pointers (i.e., URLs) to documents which may possibly
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be relevant to users' queries. This assumption is in accordace with the information

generally accessible from commercial search engines on the Web. Thus, to subse-

quently apply any machine learning technologies to the document lists returned from

such a queried information source, it becomes necessary to retrieve the actual texts

of these documents and then process this text into a representation that is suitable

for our learning algorithms. We discuss such document processing and representa-

tion in Chapter 2. Moreover, given the vector space representation for documents

that we use, it becomes clear that methods for reducing the high dimensionality of

document vectors are needed. This process is called feature selection in the Machine

Learning community. We describe simple methods for such dimensionality reduction

in this chapter and set the groundwork for later discussions of powerful novel feature

selection methods.

Having de�ned our document representation, we then need to lay out the theo-

retical underpinnings of the probabilistic framework we use in our work. This is the

subject of Chapter 3. Therein we describe the formalism of Bayesian networks which

is the basis for many of the machine learning algorithms described in subsequent

chapters. Moreover, we also provide a brief overview of existing machine learning

methods that serve as a baseline for comparison with the novel methods that we

present later.

Next, in Chapter 4, we provide a context for the novel contributions in this thesis

by presenting previous work in Information Access that is most closely related to

the development of SONIA. Speci�cally, we begin by examining the historical role of

probability theory in Information Retrieval. We then show more recent developments

in document clustering and classi�cation. We give a survey of this work and point

out some of the existing systems that are closest in spirit to SONIA.

Having dispensed with the preliminaries, we dive into the technical components

of SONIA as seen in Figure 1.2, beginning �rst with the topic of clustering. In Chap-

ter 5 we examine the problem of using feature selection as a means for dealing with

clustering high-dimensional data with mixture models. We present two novel algo-

rithms for feature selection and give theoretical results showing how these algorithms

minimize information loss in the probability distributions being modeled. Moreover,
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we shows that these methods help focus the clusters recovered via mixture modeling

on the most signi�cant probabilistic dependencies in the data. They thereby help to

better uncover distinct sub-groups within the data.

Nevertheless, while these methods show promise at identifying features which

lead to better resulting mixture models, the absolute performance of the resulting

clustering still leaves something to be desired. The poor performance of mixture

modeling suggests the need of a better model for document clustering altogether.

Addressing this need is the focus of Chapter 6, which describes joint work with

Goldszmidt [63]. Here we construct a model for clustering documents based on a

novel probabilistic similarity measure that captures the expected overlap in words

between documents. This score prompts the investigation of di�erent methods for

estimating the probability of a word appearing in a document. Furthermore, we show

that the cosine coe�cient [131] widely used in information retrieval as a measure of

document similarity can be associated with a particular form of probability estima-

tion in our model. We also introduce a speci�c scoring function that outperforms

the cosine coe�cient and its extensions in our experiments with document clustering

tasks. Furthermore, our experiments indicate that our model outperforms the stan-

dard mixture models examined in Chapter 5. We believe that this improvement is due

to our model's asymmetrical treatment of positive (word appearance) and negative

(word absence) information in the document clustering task. This assymetry does

not appear in mixture models, since they weigh information about word appearance

and absense equally.

Having found a suitable model for document clustering, we then turn to the topic

of classi�cation. In Chapter 7 (which is based on joint work with Koller [94]), we again

take up the issue of feature selection, but this time in the context of document classi�-

cation rather than clustering. We present a method for feature subset selection based

on Information Theory [35] that rests directly on our underlying probabilistic frame-

work. Initially, we de�ne a theoretically optimal, but computationally intractable,

method for feature subset selection. We show that our goal should be to eliminate

a feature if it gives us little or no additional classi�cation information beyond that

subsumed by the remaining features. In particular, this will be the case for both
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irrelevant and redundant features. We then give an e�cient algorithm for feature

selection which computes an approximation to the optimal feature selection criterion.

We also present empirical results on both textual and non-textual data, showing the

generality of the algorithm in e�ectively handling a wide variety of datasets with large

numbers of features.

Chapter 8 addresses the issue of learning Bayesian classi�cation models. Realiz-

ing that strong probabilistic dependencies often exist between words in documents,

we examine methods for learning more expressive models than the Naive Bayesian

classi�er. These models as refered to as k-dependence Bayesian classi�ers and are

characterized by the degree of dependence between features in the model. The Naive

Bayes algorithm is shown be the most restrictive model according to this character-

ization, while the learning of full Bayesian networks is at the most general extreme.

We present an induction algorithm that allows for models characterized by various

complexity to be quickly learned. Analyzing the modeling assumptions made as one

creates richer models, we show empirical evidence of the tension between model ex-

pressivity (i.e., bias) and the variance associated with �tting the parameters of a very

expressive model when limited data is available. This phenomenon is especially acute

in text domains, but we also show applications of our algorithm to a number of other

domains with di�erent properties.

Again, describing work done jointly with Koller [95], Chapter 9 addresses the goal

of automatically classifying new documents into hierarchical classi�cation taxonomies.

We note that, up to now, existing classi�cation schemes have ignored the hierarchical

relationship of topics; most simply treat the topics as separate classes. As a result,

such methods can be inadequate for text classi�cation where there is a large number

of classes and a huge number of relevant features may be needed to distinguish among

them. Rather, we propose an approach that utilizes the hierarchical topic structure

to decompose the classi�cation task into a set of simpler problems, one at each node

in the classi�cation tree. As we show, each of these smaller problems can be solved

accurately by using the feature selection algorithm from Chapter 7 to focus on only

a very small set of features, those relevant to the task at hand. This set of relevant

features varies widely throughout the hierarchy, so that, while the overall relevant
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feature set may be large, each classi�er only examines a small subset. The use of

reduced feature sets allows us to utilize more complex (probabilistic) models, such as

those presented in Chapter 8, without encountering many of the computational and

robustness di�culties previously outlined.

Having described all the technical components in SONIA, in Chapter 10 we can

�nally give a detailed description of the whole system in operation. First, we describe

how the system is integrated in the Stanford Digital Libraries testbed, and how it

makes use of the InfoBus protocol to communicate with a large number of distributed,

heterogeneous information sources. Then, we provide several anecdotal examples of

user interaction with the system, giving evidence of SONIA's e�cacy in helping users

to organize and browse the results of queries. We also show how SONIA can be

used in a very di�erent application to help a user create and maintain a hierarchical

organization of documents in their local �le directory structure. As part of these

examples, we present the interactive user interface of the system and point out how

it integrates document content browsing with tools for document organization.

Finally, in Chapter 11, we provide some brief concluding remarks on the general

lessons learned from this work. Speci�cally, we consider how controlling the variance

of induced model parameters seems to be a critical issue in the success of applying

learning methods to problems in text domains. We conclude by outlining other poten-

tial applications of our work and presenting promising directions for future research.



Chapter 2

Document Representation

In order to apply the machine learning tools described in subsequent chapters to text

documents, we need to represent documents in a way amenable to probabilistic rea-

soning. Initially, we may be tempted to consider various natural language document

representations from the computational linguistics community [21] (e.g., parse trees).

Such representations, however, are generally used to address problems such as the

part-of-speech tagging and are not as directly useful for the types of clustering and

classi�cation problems we consider.

Rather, we choose to employ a vector space representation of documents, described

in detail in Section 2.1. In this representation, documents are cast as vectors in

a very high-dimensional space. Since probabilistic models can be computationally

expensive to apply and may su�er from lack of robustness in spaces with such high

dimensionality, we examine some simple initial methods for dimensionality reduction

in Section 2.2. Figure 2.1 shows the progression of stages involved as text documents

are processed into a vector representation with reduced dimensionality.

2.1 De�ning a Vector Space

We use the vector space [147] representation for documents commonly employed for

many information access problems. In this representation, each document is char-

acterized by a Boolean or numerical vector. These vectors are embedded in a space

17
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Figure 2.1: Initial document processing and representation phases.

in which each dimension corresponds to a distinct term in the corpus of documents

being characterized. A given document vector has in each component a numerical

value denoting some function f of how often the term corresponding to that dimen-

sion appears in the document. By varying the function f , we can produce alternative

term \weightings" [145]. We explore some of standard weighting functions below, and

give examples of vector representations of documents using these schemes.

2.1.1 De�ning \Terms"

Although we have mentioned that the dimensions of our vector space correspond to

distinct terms in the corpus of documents being represented, we have not de�ned what

is to be considered a \term." The most common de�nition of a term (in English, as

well as most other languages that use the Roman alphabet), and the one that we use

in all subsequent chapters, is that a term is a sequence of alpha-numeric characters

which is delimited by white space (spaces, tabs or newline characters) or punctuation

marks (such as a period or a comma). Moreover, all uppercase letters in a document

are converted to lowercase, so e�ectively capitalization is ignored.

Consider the two short sample documents below (the �rst of which contains a
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quotation from Negroponte [120]).

Computing is not about computers any more. It is about living.

Sample document 1.

To live is to compute!

Sample document 2.

Table 2.1 shows the results of parsing these two documents into single-word terms,

and then representing them as vectors with simple term frequencies (i.e., term counts)

in each component. Such a representation is sometimes also referred to as a bag of

words [117], since the relative position of terms in the document, and hence the

language structure, is not captured in the resulting vectors.

Vector for Vector for
Term document 1 document 2

about 2 0
any 1 0
compute 0 1

computers 1 0

computing 1 0
is 2 1

it 1 0
live 0 1

living 1 0

more 1 0
not 1 0

to 0 2

Table 2.1: A simple vector representation of the sample documents.
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Word Stemming

In some cases, rather than de�ning terms to be the distinct words in the corpus, word

stemming is used to reduce words to some root form. Thus, the terms that de�ne the

dimensions of the vector space are not actual words, but word stems. For example,

the words \computer", \computers", and \computing" would all be reduced to the

word stem \comput". Porter [128] has developed a commonly used algorithm for

word stemming and this algorithm has been incorporated as an optional feature in

SONIA's document parsing module.

Comput i not about comput ani more. It i about live.

Stemmed version of sample document 1.

To live i to comput!

Stemmed version of sample document 2.

Above we show what the two sample sample documents presented earlier would

look like if their contents were stemmed using Porter's stemming algorithm. Table 2.2

shows the vector representation of the stemmed version of the documents. While it

is clear that, in some cases, stemming may be useful to help con
ate similar terms

(such as the stem \comput"), in other cases the results of stemming are counter-

intuitive (such as stemming \is" to \i"). Frakes [50] provides an overview of studies

comparing various stemming methods to unstemmed representations for the retrieval

task and shows that in many cases both representations perform roughly equally.

Consequently, in the remainder of this work we do not make use of stemming, since

we believe it will not have a signi�cant impact on performance, but would make

qualitative examples more di�cult to understand.
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Vector for Vector for
Stem document 1 document 2

about 2 0

any 1 0
comput 2 1

i 2 1

it 1 0

live 1 1

more 1 0

not 1 0
to 0 2

Table 2.2: A vector representation of the stemmed version of the sample documents.

Multi-word terms

Some researchers have de�ned the dimensions of a vector space to include multi-

word phrases. Examples of such multi-word terms include phrases such as \President

Clinton" and \personal computer." Such multi-word terms can be produced as a

result of simply looking for frequently appearing sequences of words in the documents

[29], applying natural language processing to detect meaningful phrases [55] or hand-

engineering speci�c phrases for particular tasks [140, 156].

As with stemming, previous results with using multi-word terms are mixed. Some

researchers report that using such terms can help improve accuracy for classi�ca-

tion tasks [29], whereas others have found them to be no more e�ective than simple

single-word terms [48]. Some of this discrepancy can be accounted for by the ex-

pressivity of the models used for learning. For example, models that do not capture

co-occurrence information between words may stand to bene�t from multi-word fea-

tures which explicitly express such dependencies. On the other hand, models capable

of learning word co-occurrence information may not gain anything from the inclusion

of multi-word phrases and may actually be hindered by having to estimate additional

parameters for such terms. Since, in Chapter 8, we employ learning models capable of

capturing probabilistic dependencies between words, we only consider vector spaces
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de�ned by single-word terms in our work.

2.1.2 Frequency-based Vectors

As mentioned previously, in a vector space representation of documents, various func-

tions may be applied to the frequency of term occurrences in documents in order to

produce \weighted" document vectors. More formally, let �(ti; d) denote the number

of occurrences of term ti in document d. We may then apply some function f to

�(ti; d) to produce the value for the i-th component of the vector for document d. For

the vectors in Table 2.1, for example, we simply used the identity function f(�) = �

applied to the term counts.

Other common functions applied to term frequencies include:

f(�) = log(�+ 1) ; (2.1)

which was de�ned by Robertson and Sparck Jones [135] and used successfully for

retrieval;

f(�) =
p
� ; (2.2)

which was used in the Scatter/Gather system [39] for document clustering and was

found to outperform Eq. 2.1 for that task;

f(�) =
�

�+ Const
; (2.3)

which was proposed by Robertson and Walker [136], who found this general form to

be useful for document retrieval (using various instantiations of the constant value).

Perhaps the most well-known function applied to document term frequencies is

TFIDF weighting [145]. In this scheme, not only are the term frequencies (TF) in

each document used as part of the weighting function, but so is the inverse document

frequency (IDF) of each term in the entire collection. More formally, IDF is usually

de�ned as

IDF(t) = log(
N

nt
) ; (2.4)
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where N is the total number of documents in the collection and nt is the number of

documents in which term t appears at least once.

The TFIDF weight for a term t in a document d is the product of the term

frequency and the inverse documents frequency for that term, yielding:

TFIDF(t; d) = �(t; d) � IDF(t) : (2.5)

Although TFIDF weighting has been used in the past primarily for retrieval,

connections between this weighting scheme and probabilistic classi�cation using the

Naive Bayes algorithm have been recently explored by Joachims [81].

2.1.3 Boolean Vectors

Alternatively, we may consider using a simple Boolean representation of documents,

in which we simply record whether or not a given term appears in a document. In

this case, we have:

f(�) =

8<
:

1 � � 1

0 otherwise
(2.6)

Table 2.3 shows the sample documents from Section 2.1.1 cast as Boolean vec-

tors. Note that most rule-based methods [7, 28] are essentially using an underlying

Boolean model (even if it is not explicitly de�ned as such), as the antecedents of the

classi�cation rules they produce are only considering word presence and absence in

documents.

We make use of the Boolean vector representation in our probabilistic classi�cation

models. While at �rst, it may seem that we are creating a disadvantage for ourselves

by not considering the frequency of word appearances, this is not necessarily the case.

In actuality, it can be problematic to make full use of word frequency information in

probabilistic classi�cation. There are two standard approaches for incorporating such

information, which are described below.

The �rst approach involves using a non-parametric model of term frequencies in

documents (i.e., using a multinomial as opposed to binomial distribution per term).

In this case, each distinct number of times that a word appears in a document is
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Vector for Vector for
Term document 1 document 2

about 1 0

any 1 0
compute 0 1

computers 1 0

computing 1 0

is 1 1

it 1 0

live 0 1
living 1 0

more 1 0

not 1 0
to 0 1

Table 2.3: A Boolean vector representation of the sample documents.

represented by a distinct value of a multinomial distribution. Clearly, we quickly

run into problems of estimating model parameters from limited data as we need to

estimate a parameter for each number of times that a word can appear in a docu-

ment. Still, in preliminary experiments [48], we tried to control for this blow up in

the parameter space by considering limited frequency information. To this end, we

tried using a rough discretization of the feature counts into three-valued attributes

corresponding to the events that a word did not appear in a document, appeared

only once in the document, or appeared two or more times in the document. The

results of these experiments showed virtually no di�erence between the Boolean and

discretized frequency representations.

The second approach to incorporating word frequency information into probabilis-

tic classi�cation models is by using a parametric distribution (e.g., bounded Gaussian

or Poisson distribution) to capture the probability of words appearing di�erent num-

bers of times in documents. Here, one must commit to a particular parametric form

for the distribution of words in documents, even though there may be no compelling

reason to favor any particular distribution (although this may be an interesting venue
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for future work). Our initial investigations conducted along these lines using bounded

Gaussian distributions versus a simple Boolean representation have not shown this

to be a promising venue. Further evidence for the adequacy of the Boolean rep-

resentation is reported by Yang and Chute [174], who, in comparing Boolean and

frequency-based representations in the context of instance-based classi�cation, did

not observe much di�erence between these representations.

We do point out, however, that in Chapter 6, we make use of word frequency

information in documents. Still, it is important to note that there we are considering

an entirely new model for document clustering (based on repeated draws from a single

multinomial distribution) and are thus not working with the same models that we

use subsequently for classi�cation.

2.2 Controlling Dimensionality

In using a vector space representation for documents, it becomes clear that the re-

sulting dimensionality of the space will be enormous, since the number of dimensions

is determined by the number of distinct terms in the corpus. For example, feature

spaces on the order of 103 to 105 are not uncommon for even reasonably small col-

lections of documents. The problem of high dimensionality is further exacerbated in

very heterogeneous environments, such as the World Wide Web.

Thus, methods for controlling the dimensionality of the vector space are needed.

Here, we show how it is possible to use a few simple observations to reduce the size

of the feature space signi�cantly. These dimensionality controls, however, are crude

and are not directly based on clustering and classi�cation problems which we hope to

solve in the resulting vector space. Consequently, we also present more sophisticated,

task-directed feature selection methods in Chapters 5 and 7, where we discuss feature

selection in the context of clustering and classi�cation, respectively.
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a been do
able before does

about below during

after best each
again but else

all by enough
almost came ever

also can except

am cannot few
and clearly for

are come former

as consider from
at could get

be despite goes
because did going

Table 2.4: Sample list of stop words.

2.2.1 Eliminating Stop Words

Initially, we make an observation that is common throughout the IR literature [166]:

there exist many words in English which have little inherent topical content. These are

words such as prepositions, conjunctions and pronouns that are used to provide struc-

ture in language rather than content. Such words are commonly used in documents

regardless of topic, and thus have no topical speci�city. As a result, we can eliminate

such words (and the dimensions corresponding to them) from our document vectors,

as they will be little use when clustering or classifying documents. Such words are

commonly referred to a stop words, and their elimination from documents is common

in IR. A list of exemplary stop words is given in Table 2.4.

Currently, in SONIA we eliminate terms found on a stop word list of approxi-

mately 570 common English words and an additional 100 commonly used words on

the Web (e.g., \click" and \page"). While this serves to eliminate several hundred

dimensions from our vector space, given the high-dimensionality of text, additional

term elimination is necessary.
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2.2.2 Zipf's Law

To further reduce the dimensionality of the document vectors, we make use of another

well known phenomenon: many words in a corpus appear very infrequently. If our

goal is to identify similarities and di�erences among an entire collection of documents,

then words which only appear, say, once or twice (or generally infrequently) in the

collection will have little resolving power between documents [166].

The justi�cation for the elimination of such infrequent terms lies in an observation

about the frequency of word appearances in corpora made by Zipf over 50 years ago

[177]. Since that time, this observation has been named \Zipf's Law," although

it is not actually a law, but merely an empirical and approximate mathematical

phenomenon.

To describe Zipf's Law more formally, let us denote the total frequency of a term t

in a corpus D by �t. That is, �t =
P

d2D �(t; d). Then, we sort all terms in descending

order according to � and give each term t a rank rt based on its placement in the

sorted list. Zipf's Law states that

rt � �t � K ; (2.7)

where K is a constant. This relationship is shown graphically in Figure 2.2. In

English text, it has been observed across a variety of collections that K � N

10
, where

N is the total number of words in the corpus [18].

Following Callan's treatment [18], let us rewrite Zipf's Law as rt � K

�t
. Now,

consider term a which is the lowest ranked term with some frequency �, and term b

which is the lowest ranked term with frequency �+1. We can obtain the approximate

ranks of these terms as ra � K

�
and rb � K

�+1
, respectively. Subtracting these two

ranks, in turn, gives us an approximation to the number of distinct terms that have

frequency equal to �. That is:

ra � rb � K

�
� K

� + 1
(2.8)

=
K

� � (� + 1)
: (2.9)
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Figure 2.2: Histogram of word frequencies showing Zipf's Law.

Now, estimate the number of distinct terms in the collection by computing the

rank of the highest rank term in a collection. Generally, this will be a term which

only appears once in the collection, giving us:

rmax � K

1
= K : (2.10)

If we now consider the fraction of unique terms that appear � times in a collection,

we can simply divide Eq. 2.9 by Eq. 2.10 to obtain 1
��(�+1)

. Thus, Zipf's Law shows

us that a signi�cant fraction of the distinct terms in a collection are made up by

those terms that appear the most infrequently. For example, the number of terms

that appear only once in the corpus will account for approximately 1
2
of the total

unique terms. Even recalling that this \law" is really only a loose approximation, it

still provides compelling evidence that we can eliminate a signi�cant number of terms

(i.e., dimensions in the corresponding vector space) by simply eliminating the terms

with the lowest frequency of occurrence in the corpus. And as noted earlier, such

terms will be of little use for clustering or classi�cation.

Consequently, SONIA incorporates a module for eliminating infrequent terms from

a collection, and such computation can be done extremely quickly. While there is still

a question of what frequency threshold to use when doing such feature elimination,

in practice it often depends on making a judgment as to how many features we

believe are realistic to use with the algorithms that are applied after this initial
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processing. In the experiments described in later chapters, we regularly use such

Zipf's Law-based feature selection to eliminate all terms that appear fewer than 10

times in a given document collection. This value was heuristically chosen after some

initial experiments, as it generally reduces the feature space to on the order of a few

thousand features, which is a feasible size to use as input to our more sophisticated

feature selection algorithms. Moreover, the threshold is still conservative enough that

it does not appear to eliminate features which could have a large impact on overall

performance.



Chapter 3

Probabilistic Framework

Given that we now have a representation of documents as Boolean vectors (and have

eliminated stop words and terms occurring fewer than 10 times in the collection), we

now present a theoretical framework for developing machine learning tools to apply

to such document vectors. We begin in Section 3.1 by giving an overview of Bayesian

networks{a graphical formalism for reasoning about probability distributions and the

main framework we use in the technical components of SONIA. In Section 3.2, we

then give a brief overview of some existing machine learning algorithms that are used

later in this work for means of comparison.

3.1 Bayesian Networks

In order to reason about documents, we use the calculus of probability theory. At

the heart of the probabilistic framework is the idea that our model of the world (in

this case, a collection of documents) is represented as a probability distribution over

the space of possible states of the world. Typically, a state of the world is described

via some set of random variables, so that each such state is an assignment of values

to these variables.

A Bayesian network [125] provides a compact description of a complex probability

distribution over a large number of random variables. It uses a directed acyclic graph

(DAG) to encode conditional independence assumptions about the domain. Each

30
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variable (also referred to as a feature) Xi is represented as a node in the network.

An arc between two nodes denotes the existence of a direct probabilistic dependency

between the two variables. Hence, the lack of an arc between two nodes implies

that no direct probabilistic in
uence exists between those variables. Essentially, the

structure of the network denotes the assumption that each node Xi in the network is

conditionally independent of its non-descendants given its parents �(Xi).

De�nition 1 Two sets of variables are said to be conditionally independent given

some set of variables X if, for any assignment of values a , b, and x to the variables

A, B , and X respectively, P(A = a j X = x ;B = b) = P(A = a j X = x ). That

is, B gives us no information about A beyond what is already in X . (See [125] for

more details).

Independence assumptions allow the distribution to be described as a product of

small local interaction models. To describe a probability distribution satisfying these

assumptions, we associate with each node Xi in the network a conditional probability

table which speci�es the distribution over the possible values of Xi given any possible

assignment of values to its parents �(Xi). If Xi has no parents, it simply contains

a prior probability distribution over Xi's values. The network structure and the

associated parameters uniquely de�ne a probability distribution over the variables in

the network.

In the case of documents, for example, we can de�ne one random binary variable

(i.e., node in the network) to correspond to each distinct term in the vector space.

A document then is an assignment to these variables re
ecting which terms appear

in the document vector and which do not. In other words, the vector representing

a document de�nes a unique assignment to all of the feature nodes in the Bayesian

network.

To make this description more concrete, consider the simple example Bayesian

network in Figure 3.1. This network represents a domain of six terms (i.e., vector

space of six dimensions) and encodes some of the probabilistic dependencies that we

might expect to see between words in a document collection. If we represent the prob-

ability distribution over these six binary variables without considering the conditional
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Figure 3.1: A simple example of a Bayesian network.

independencies encoded in the network structure, it would require a joint probability

table containing 26� 1 = 63 parameters: one parameter for each possible assignment

to the six variables, except we subtract one since the distribution is constrained to

sum to one. Alternatively, using the independencies encoded in the network, we can

decompose the distribution over these six variables as

P(X1;X2;X3;X4;X5;X6) =

P(X1) � P(X2) � P(X3 j X1) � P(X4 j X1;X2) � P(X5 j X2;X3) � P(X6 j X2;X5)

Note, the distribution factored in this form only requires 1 + 1 + 2 + 4 + 4 + 4 = 16

parameters to specify|far fewer than the case where we assumed no independencies

existed between the variables.

For text modeling problems, we will generally have so many features to model

that it is simply intractable to build a probabilistic model without incorporating some

independence assumptions. We believe that Bayesian networks provide an excellent

means for controlling the computational complexity of our models through the ability

to easily assert such assumptions. The question then becomes one of how much

independence to assume and we address this issue in a variety of contexts throughout

this work.

Another bene�t of Bayesian networks is that they allow for domain knowledge to

be easily incorporated. For example, if we had a priori knowledge of word depen-

dencies in a document collection, we could directly encode them in the network and,
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hence, not require a learning algorithm to have to discover these dependencies by

itself. While we do not actually make use of this feature in our work (since we are

focusing on entirely automated learning methods), we point out this fact to show that

the formalism we harness lends itself to such extensions. Similarly, since Bayesian

networks are graphical in nature, it is far easier for a human expert to validate (and

possibly correct) learned models than in the case of other learning frameworks, such

as neural networks, which are far more opaque.

Finally, by operating in the realm of probability theory, Bayesian networks have

understandable semantics. This is an important factor in helping researchers working

with such tools to gain understanding about a novel domain by examining (auto-

matically) constructed models of it. Moreover, we will explain in Chapter 4 how

probability has been previously advocated as a formalism for advancing the state of

the art in the information retrieval task. We hope to do the same here for the tasks

of clustering and classifying documents.

While the formalism of Bayesian networks has existed for over a decade, it has

only been in the past few years that this framework has been employed with the goal

of automatically learning the graphical structure of such a network from a set of data

[31, 17, 72]. Presently, we describe several learning methods, most of which are based

directly on Bayesian networks, that are aimed at the speci�c tasks of clustering and

classi�cation. We then apply these methods in subsequent chapters on text domains.

3.2 Machine Learning Overview

3.2.1 Classi�cation

Document classi�cation involves assigning documents to one of some set of pre-de�ned

categories. In the classi�cation task we are given a training set of data with pre-

assigned class labels. From this data, we then learn a model that can be used to

classify new data into one of the existing classes.

Formalizing this notion using notation similar to our treatment of clustering, we

being with a set Dtrain of m training documents, denoted d1; : : : ; dm. Each such
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Figure 3.2: The network structure for Naive Bayes.

document also has associated with it a class label, denoted by the variableC. Learning

a classi�er, also known as supervised machine learning (since we begin with a set of

pre-labeled data), involves inducing a model from the training data that we believe

will be e�ective at predicting the class label C in new data for which we do not know

the class. This new data is often referred to as the testing set Dtest in experimental

evaluations.

We now turn to the question of how to induce a classi�cation model from a

pre-labeled set of data. First, we provide a brief introduction to Bayesian network

classi�ers|a topic we treat more fully in Chapter 8. We also give an overview of

decision tree induction, as this is a commonly used learning method that we employ

in the comparative experiments presented in Chapter 7.

Bayesian Network Classi�ers

A Bayesian network classi�er is simply a Bayesian network applied to a classi�cation

problem. It contains a node C for the class variable and a node Xi for each of

the domain features (i.e., words, in the case of documents). Given a speci�c instance

vector x (an assignment of values x1; x2; : : : ; xn to the feature variables), the Bayesian

network allows us to compute the probability P(C = ck j X = x ) for each possible

class ck. If the true distribution P(C j X ) were known, we could achieve Bayes

Optimal classi�cation by simply selecting the class ck for which this probability is

maximized. Unfortunately, the true distribution is not available and, hence, must be

approximated (i.e., learned) from the training data Dtrain.

While it is possible to use any Bayesian network over these variables as a Bayesian
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Figure 3.3: A Bayesian classi�er allowing limited dependencies between the features.

classi�er [153], empirical evidence [53] suggests that networks where the feature vari-

ables are all directly connected to the class variable are better at the classi�cation

task. The simplest and earliest such classi�er is the Naive Bayesian classi�er [64].

This classi�er, which signi�cantly predates the development of Bayesian networks,

is still widely employed today. The Naive Bayesian classi�er makes the simplifying,

but very restrictive, assumption that domain features are conditionally independent

of one another, given the class variable. In other words: P(X j C) = Qi P(Xi j C):
This assumption corresponds to the Bayesian network structure shown in Figure 3.2.

The assumption that all features are conditionally independent given the class

variable is clearly unrealistic in text, as well as many other domains. Still, the Naive

Bayesian classi�er has been shown to be surprisingly e�ective on such problems [117].

Domingos and Pazzani [43] present an argument for the e�cacy of Naive Bayes for

classi�cation, but concede that it often does not produce accurate estimates of the

actual probability for class membership.

In an e�ort to build more accurate classi�cation models, several approaches have

been proposed for augmenting the Naive Bayesian classi�er with limited interactions

between the feature variables, i.e., where we allow each node to have some parents

beyond the class variable (as illustrated in Figure 3.3). Unfortunately, the problem

of inducing an optimal Bayesian classi�er is NP-hard even if we restrict each node

to have at most two additional parents in addition to the class variable [25]. Thus,

any optimal algorithm for constructing such a classi�er would be exponential in the

number of features in the worst case.
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Several solutions have been proposed to this problem. One of the most well-

known is the Tree Augmented Naive-Bayes (TAN) algorithm of Friedman and Gold-

szmidt [53] which restricts each node to have at most one additional parent beyond

the class variable. In this case, an optimal classi�er can be found in quadratic time (in

the number of features). More formally, TAN constructs an optimal approximation

(in terms of the Kullback-Liebler divergence [100]) to P(X j C) which has the general
form

Q
i P(Xi j Xi0 ; C), where Xi0 is the single parent (not counting the class node C)

of feature Xi in the underlying Bayesian network.

In our work, we also address the problem of learning Bayesian network classi�ers

with an alternative algorithm named KDB (k-Dependence Bayes) [139]. We save the

description of this algorithm for Chapter 8.

Decision Trees

While decision trees are not based on the formalism of Bayesian networks, they are

one of the most popular machine learning techniques currently used. To make the

use of decision trees in the context of text classi�cation more concrete, consider the

decision tree presented in Figure 3.4. This illustrative example shows what a typical

decision tree might look like for a classi�er that tries to distinguish documents as

being about the topic \Electronic Commerce" or not. Each node in the tree tests

whether or not a given word appears in the document, and the respective branch is

then followed down the tree until a leaf node, or �nal classi�cation, is reached.

Several methods have been proposed for inducing decision trees, including the

CART algorithm of Breiman et al [15], Quinlan's ID3 algorithm [129], and its more

recent incarnation as C4.5 [130]. Bayesian methods for constructing decision trees

have also been proposed by Buntine [16]. Our treatment here focuses on the C4.5

algorithm since it is the most widely used tree induction method in the machine

learning community. We also use this algorithm directly in some of our subsequent

experiments.

C4.5 induces a decision tree in a greedy divide and conquer fashion. As the tree

is being constructed, the choice of which feature to split on at a given node is made
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Figure 3.4: An example of a decision tree for the topic \Electronic Commerce."

by selecting the feature which maximizes the gain ratio criterion. More formally,

gain ratio(Xi) =
gain(Xi)

split info(Xi)
(3.1)

The numerator in Eq. 3.1 is de�ned as follows:

gain(Xi) = �
X
c

P(c) log P(c) +
X
c;xi

P(c; xi) log P(c j xi) (3.2)

= H(C)�H(C j Xi) (3.3)

= MI(C;Xi) (3.4)

As seen in the derivation above, the gain function is simply a measure of the reduction

in entropy H of the class variable C after the value for the feature Xi is observed.

This is exactly equivalent to the information theoretic notion of mutual information

between the class C and the feature Xi, which we denote MI(C;Xi).
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The denominator in Eq. 3.1 is given by

split info(Xi) = �
X
xi

P(xi) log P(xi) (3.5)

= H(Xi) (3.6)

This function simply represents the entropy in the variableXi, which can alternatively

by seen as the reduction in entropy realized by selecting this variable to split on.

Armed with Eqs. 3.3 and 3.6, it becomes clear that gain ratio is simply a measure

of the proportion of information relevant to the class variable C derived from splitting

on a given feature Xi. Quinlan explains that the split info function was introduced

in Eq. 3.1 as a means of preventing the gain function from overly favoring attributes

with many values. He also reports that using gain ratio as a splitting criterion often

empirically outperforms the use of gain alone, even on entirely binary data. This is

important to note since we use binary vectors to represent text documents.

3.2.2 Clustering

In contrast to classi�cation, document clustering involves discovering a set of cate-

gories to which documents should be assigned. Thus, rather than trying to simply

assign documents to pre-de�ned categories using a labeled set of data for training,

clustering algorithms are required to discover distinct categories using an unlabeled

set of data. Documents in the dataset are then assigned (often as a by-product of the

clustering process) to these newly discovered categories.

To de�ne more formally the notion of document clustering, consider a set D of m

documents, denoted d1; : : : ; dm. We want to partition D into K clusters, c1; : : : ; cK.

Note that this partitioning may either be a hard partition, where each document is

assigned to be a member of only one clustering, or a soft partition in which each

document is probabilistically assigned to multiple clusters. Often, hard partitions

can simply be thought of as the special case where a document is assigned to the

single cluster for which it has the greatest probability.

The clustering task thus has two important components. The �rst is determining
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how many clusters to partition the data into (i.e., choosing K). The second is how

to assign each document to these respective clusters. From a di�erent perspective,

we can also cast this second sub-problem as one of determining the probability that

a document may have been generated by the source distribution represented by a

cluster.

In this work, we focus almost entirely on the second sub-problem of assigning

documents to clusters. The reasons for this particular focus are two-fold. First, since

we will embed our clustering technology within an interactive user interface, we will

leave the question of how many clusters to generate to the user. This gives the user

much more power to select the desired level of structural granularity when browsing

a document collection. Moreover, such 
exibility also allows the user to interactively

cluster a collection of documents into a number of di�erent possible partitionings and

choose the one which best aligns with his or her organizational needs. Second, we have

found from preliminary experiments (some of which are described in Chapter 5) that

several of the well-founded methods for trying to automatically determine the number

of clusters in a data set generally break down in practice on text data containing even

a few hundred terms. While the automatic determination of the number of clusters

in a data set is certainly a very important area of on-going research, it is beyond the

scope of our current work.

AutoClass

We give a brief overview of the AutoClass system [22, 23], a Bayesian method for

clustering whose underlying model is straightforward to characterize as a Bayesian

network. AutoClass is a method for mixture modeling in which a set of data is

modeled as being generated from a mixture of several distributions (i.e., the mixture

components). Each of these component distributions can, in turn, be viewed as

the primary generator for some subset of the data. Each such subset can then be

interpreted as a cluster, since all data instances in that cluster are generated from

the same mixture component and thus must possess some internal consistencies.

More formally, given the data set D, AutoClass attempts to construct a mixture
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modelM which maximizes the log-likelihood of observing D, log P(D jM). Perform-

ing this optimization is intractable unless several underlying assumptions are made.

Foremost, AutoClass assumes that the data points, or in our case document vectors,

are independently distributed, yielding

log P(D jM) = log
mY
i=1

P(di jM) (3.7)

=
mX
i=1

log P(di jM) : (3.8)

Now, to construct a mixture model, we must expand P(di jM) as a sum over all

the mixture components, or clusters, C = ck as follows

P(di jM) =
KX
k=1

P(di j ck;M) � P(ck jM) : (3.9)

This equation now mirrors the standard mixture model equation used in unsupervised

learning [46].

At this point, it is important to recall that a document d really denotes an n-

dimensional vector of features X1; : : : ;Xn. Consequently, P(d j ck;M) in Eq. 3.9

expands to P(X1; : : : ;Xn j ck;M), which is intractable to compute without further

assumptions.

AutoClass makes the strong assumption that each feature is conditionally inde-

pendent of every other feature, given the mixture component C. This assumption

of independence is the same as that made in the Naive Bayesian classi�er described

above. Recall that this assumption can be expressed mathematically as

P(X1; : : : ;Xn j C;M) =
nY
i=1

P(Xi j C;M) : (3.10)

Similar to Naive Bayes, we can represent this assumption of independence, as

well as the general form of the probabilistic mixture model used in AutoClass, in

Figure 3.2. In AutoClass, however, the node C no longer refers to the classi�cation

label (as is the case with the Naive Bayesian classi�er), but rather represents the
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unobserved cluster.

In order to �t a mixture model to a given data set, AutoClass employs the Ex-

pectation Maximization (EM) algorithm [41]. In this context, the cluster C that

generated the data is treated as a hidden, or unobserved, variable with K values.

EM iteratively estimates the distribution over the K values of the unobserved cluster

variable C for each datum (thereby \completing" each datum) and then using this

completed data D0 to re-estimate the model parameters �. The EM algorithm can be

proven to converge to a parameter con�guration ~� which is a local maximum1 with

respect to the likelihood of the completed data. It is important to note that, as with

other non-convex optimization processes, there generally exist many local maxima

and the one that EM converges to is dependent on the initial, often randomly chosen,

parameter con�guration.

Again, the question arises of how K is chosen by AutoClass. While in many

of our experiments we provide a �xed value of K to AutoClass, it is important to

note that the algorithm does provide a means for selecting K automatically. This

is accomplished by searching through the space of possible models (i.e., number of

values for K), �tting one or several models for each choice of K, and then selecting

the one which maximizes the following criterion

log [P(D0 jM)
P(D j ~�;M)

P(D0 j ~�;M)
] =

log P(D0 jM) + log P(D j ~�;M)� log P(D0 j ~�;M): (3.11)

It may initially seem that models with larger values for K will always be preferred

since they provide more tunable parameters to better �t the data. However, the use of

priors helps counterbalance this phenomena, as the introduction of more parameters

causes the e�ect of the priors on the �t of the model to also become greater. At some

point, the use of additional parameters will cause the increased in
uence of the priors

1To be more precise, the EM algorithm is only guaranteed to converge to a �xed point (i.e.,

where the gradient is zero), which can be either a local minimum, a local maximum, or a saddle

point. Since the EM optimization procedure is performing a maximization, we simply refer to the

convergence point as a \local maximum" in our expository text, although we note here that this

statement is not precisely correct.
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to prevent a better �t to the data from being achieved.

Once the model has converged, each document is now probabilistically assigned

to each cluster (i.e., soft assignment) based on its �nal distribution over the variable

C. Preliminary experiments (discussed further in Chapter 6) show, however, that in

high-dimensional spaces such as text domains, the data usually have extreme prob-

abilities (very near 1 and 0) for their cluster assignments, thus e�ectively emulating

a hard assignment algorithm. Consequently, in our subsequent discussions of using

AutoClass for text clustering, we actually assign documents to the cluster for which

they have maximal probability as their degree of inclusion in any other cluster is

generally negligible. A more complete discussion of variations of EM using both soft

and hard assignment of data to clusters is discussed in [87].

Having completed a review of the probabilistic framework we use, as well as several

machine learning algorithms which appear in subsequent chapters, we are now ready

to conclude with the preliminaries. It is important to note, however, that there

is a much longer history of research in machine learning than is possible to review

here. Two of the earliest and most in
uential works that helped de�ne the �eld

are the books by Nilsson [121] and Duda and Hart [46], which both still serve as

exceptional references. A collection of subsequent seminal papers in this �eld is

found in [42]. Quinlan [130] presents a very readable survey of issues pertaining to

supervised learning within the context of decision tree induction. Langley's [102]

recent textbook on machine learning also presents an expository overview of the

�eld. A more recent textbook by Mitchell [117] provides an excellent introduction

to a number of di�erent learning algorithms as well as a brief discussion of text

classi�cation. Finally, the European StatLog project [161] has compiled the results

of extensive experimental comparisons of classi�cation methods from the machine

learning, statistics and neural networks communities into one volume. In addition to

the empirical comparisons, this work highlights many of the salient issues pertaining

to the di�erent classi�cation algorithms that are compared.



Chapter 4

Related Work in Information

Access

To better understand the novel technical contributions encompassed in the develop-

ment of SONIA, it is important to get an overview of related work in the area of

Information Access. Given the long history of research in Information Access and the

recent emergence of synergies between that community and researchers in Machine

Learning, it is not possible for such an overview to be comprehensive. Rather, in this

chapter, we point out the research most closely related with our own, and highlight

seminal work in this area which has in
uenced our thinking.

4.1 Probabilistic Retrieval

Although we do not address the problem of ad hoc retrieval directly in this work,

several research e�orts aimed at this task are important to point out. Foremost, the

seminal work of Salton, Wong and Yang [147] lays the ground work for the Vector

Space model of documents and continues to be used today in modern retrieval systems.

We also make use of this model (and examine it more fully in Chapter 2), as it aligns

well with the representations used in the probabilistic machine learning methods we

employ.

43
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The use of probability theory for information retrieval problems has a long tradi-

tion, dating at least as far back as Maron's proposal for a probabilistic interpretation

of \mechanized documentation" in the mid-1960's [113]. The role of probability was

later de�ned more explicitly in the formulation of the Probability Ranking Principle

by Robertson (who attributed it to W. S. Cooper) [134]. The principle states that,

in order to optimize the e�ectiveness of an information retrieval system, documents

matching a query should be ranked according to their probability of relevance to the

user (i.e., the query). This principle thus suggests that methods for the estimation of

probabilistic relevance of a document to a query are critical for the good performance

of retrieval systems. Expanding on this notion, Cooper and Maron [33] proposed the

idea of probabilistic indexing of documents in which index terms are given probabilis-

tic weights based on the relevance of these index terms to queries likely to be given

to the retrieval system. Much more recent work in probabilistic indexing by Fuhr

[56, 57] also treats the retrieval problem as one of making probabilistic inferences

about the relevance of documents to a query, and examines this problem from the

di�erent viewpoints of the query and the document.

The work along these lines closest in spirit to our own is that of van Rijsbergen

[166], who essential boils the retrieval problem down to one of estimating the proba-

bility of observing each term in a document given that the document is relevant to the

user's query. His formulation of this problem is exactly equivalent to a Bayesian ap-

proach to classi�cation and thus bears strong similarities to the classi�cation models

we present in Chapter 8. In essence, his approach to document retrieval is simply to

classify documents into either the category relevant or non-relevant using a Bayesian

classi�er. However, the applicability of such models to the retrieval task can be prob-

lematic as a priori it is unknown which documents are relevant to a query, making

parameter estimation in these models di�cult. Van Rijsbergen even extends his re-

trieval model to consider information about the probabilistic co-occurrence of words

[165]. Nevertheless, his models still have more limited expressibility than those that

we present later.

Other work in applying probabilistic models to the retrieval task includes the work

of Turtle and Croft [163, 164] on using inference networks for document retrieval.
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While this work claims to be casting the estimation of document relevance as a

problem of inference in a Bayesian network [125], it is unclear the degree to which the

system truly adheres to the principles of Bayesian inference. Still, this work has led

to the development of the INQUERY system [19], one of the most successful retrieval

tools at the TREC competition.

Fung and DelFavero [59] have also recently developed a retrieval system which does

in fact operate in accord with Bayesian inference. This system, however, requires a

good deal of manual knowledge engineering for constructing the network structure and

selecting the appropriate index terms to represent within the network. Consequently,

it points out yet another venue in which automated learning methods may be useful

for information access, but we do not pursue that possibility here.

Further arguments in favor of the use of probability theory for retrieval prob-

lems are given by Cooper [32], who also provides a nice historical perspective on

the subject. For more detailed information, we also refer the interested reader to

the recently published collection of seminal works in information retrieval [155] that

includes several papers on probabilistic models for retrieval.

Our account of previous work in using probabilistic retrieval models helps to show

that such a formalism has not only been embraced by the IR community for its

theoretical elegance, but that it has shown great empirical success for the retrieval

task. As a result, we argue this formalism can also be of great bene�t to addressing

other problems in information access, to which we currently turn our attention.

4.2 Feature Selection for Text

As mentioned in Chapter 2, the application of feature selection is an important step in

many information access systems. While stop word elimination and Zipf's-Law-based

feature selection have been used for some time in retrieval systems, it is only in the

last few years that more advanced forms of feature selection have been employed for

other problems in information access.

One such approach to dimensionality reduction that has received quite a bit of

attention in the information retrieval community recently is known as Latent Semantic
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Indexing [40]. The idea here is to use singular value decomposition [159] to �nd

an approximation to the original document vectors, such that these approximated

document vectors lie in a lower dimensional subspace of the original vector space. The

basis vectors of this low dimensional subspace (which are each linear combinations of

the dimensions in the original vector space) then de�ne the axes of the �nal vector

space in which documents will be represented.

While LSI was originally proposed for retrieval, its use in clustering [149] and clas-

si�cation [47, 148] have been recently explored as well. In classi�cation tasks, such

a representation has shown some utility when used in conjunction with linear classi-

�ers. This seem to follow from the fact that LSI, by creating feature vectors which

are linear combinations of the original term space, is helping to capture some term

co-occurrence information. Unfortunately, LSI does not seem to provide a compelling

advantage for the clustering task.

We do not make use of LSI in our work, but rather choose to model the prob-

abilistic co-occurrence of terms directly in our classi�cation models. Moreover, one

could argue that LSI, by convolving the problems of dimensionality reduction and

term dependency modeling, creates a representation that is much harder to interpret.

Instead, by separating the tasks of feature selection and term dependency modeling,

we hope to not only create models which are more readily understandable, but also

have a more modular architecture in which individual advances in feature selection

or probabilistic modeling can be independently incorporated into our system.

More recent work in using feature selection speci�cally for document classi�ca-

tion is seen in the work of Yang and Pedersen [175]. They compare a number of

feature selection methods including simple document frequency schemes, as well as

probabilistic approaches, such as computing the mutual information between each

word and the topics in the corpus. As to be expected, they �nd that probabilistic

approaches based on mutual information and chi-squared measures appear to give

the best performance among the methods tested.

As we show in Chapter 7, our work on feature selection for classi�cation builds on

similar probabilistic methods for selecting features that have high information content
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relative to the classi�cation task at hand. In fact, we show that the mutual infor-

mation measure for feature selection is exactly equivalent to one particular variant of

the feature selection method we have developed.

4.3 Document Clustering

There has been a good deal of previous work in the use of clustering technologies

to help enable better information access. Early work along these lines was based on

the Cluster Hypothesis which states that \closely associated documents tend to be

relevant to the same requests" [166]. As a result, much of this research centered on

the use of clustering as a means for improving retrieval speed and e�cacy [167, 169].

The idea here is that if a collection of documents is clustered a priori, then queries

need not be matched against individual documents, but only against some cluster

representatives (e.g., the centroid or medoid of each cluster). The documents in the

clusters matching most closely to the query would then be returned to the user. Not

only could this speed-up retrieval, but it could also help retrieve relevant documents

that did not contain the precise terms used in the user's query, but were part of a

cluster of other documents that did.

Subsequently, a good deal of research in this area has focused on di�erent methods

for forming document clusters [131]. Willett [172] gives an excellent survey of much

of this work up to the present decade. The past few years have seen new directions

in document clustering focusing on more diverse issues such as models that allow

documents to be full members of multiple clusters [141], as well as experimental stud-

ies examining the e�cacy of using di�erent document representations in conjunction

with clustering [149].

Also in recent years, work in document clustering has turned toward using clus-

tering to better enable user browsing of document collections. The work in this area

most closely related to SONIA is the Scatter/Gather system [39] developed at Xe-

rox Palo Alto Research Center. Studies with this system have shown that document

clustering has the potential to help users quickly home in on the documents relevant
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to them and often successfully conveys a notion of the structure of a document col-

lection to users [127]. Moreover, such a document clustering tool has also been used

for navigating query results [70], and specialized user interfaces for querying and dis-

playing document clusters have been developed for this system as a result [68]. The

application of Scatter/Gather to query results has also lent further support for the

Cluster Hypothesis, as it has been empirically observed that clustering tends to con-

centrate documents particularly relevant to a query in just one or two groupings [71].

Moreover, this work has shown that users are generally successful at locating a higher

proportion of relevant documents by simply identifying the appropriate high-level

groupings.

Other researchers have focused more on the use of visualization methods for con-

veying similarity between clustered documents to the user. For example, specialized

interfaces have developed that allow users to navigate through the dendogram of doc-

uments generated by a hierarchical agglomerative clustering algorithm [3]. In this

way, users can potentially locate subsets of particularly relevant documents. In much

the same vein, other systems convey document similarity to the user via spatial layout

[2]. Here, relevant documents are often located near each other (i.e., clustered) spa-

tially. Thus, when a user locates a relevant document, it is more likely that they will

�nd other relevant documents by examining documents in the local neighborhood.

Although, this system does not explicitly form distinct clusters, the spatial layout of

documents essentially forms de facto clusters.

Another example of the use of clustering to aid in information access is the use

of Self-Organizing Maps (SOMs) [93] to group together related words into word cat-

egory maps. Such maps are, in turn, used to automatically organize (i.e., cluster)

documents according to the words that they contain. Early work along these lines

was conducted by Lin, Soergel and Marchionini [112]. Subsequently, Timo et al de-

veloped the WEBSOM system [162] which provides an interface that allows users

to navigate a word category map and zoom in on groups of documents related to

a particular group of words. The SOM approach seems to require a fairly sizable

initial corpus to generate a useful word category map, however, and thus may not be

directly applicable to query results.
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Recently, the SenseMaker interface [11] has been developed, which allows for doc-

uments returned in response to a query to be \bundled" (their term for \clustered")

according to various criteria. Since this system is designed for use primarily with

Web documents, the bundling criteria include simple non-content document features,

such as identical URL's or identical URL domains. To extend the functionality of this

interface to include full-text clustering of documents, we have connected some of the

clustering and classi�cation technology developed as part of SONIA with SenseMaker

[142]. Still, since SenseMaker does not allow for the explicit formation and display of

cluster hierarchies, we have developed a separate user interface for SONIA which is

described in Chapter 10.

As seen in much of the more recent work above, the use of document clustering is

often closely tied with the development of various interfaces for information access. It

is important to note that although we have provided our own novel interface as part

of SONIA, this is not one of our primary research foci. Rather, by concentrating on

improvedmethods for clustering, we believe that advances in the underlying clustering

technology can be of bene�t to any interface for information access that makes use of

these improvements. Still, we believe the issue of interface design is very important

in achieving better information access, and while we do not address this issue further

here, we refer the interested reader to Hearst's recent overview of this area [67].

4.4 Document Classi�cation

Spurred on by the growing availability of on-line information, research in document

classi�cation has grown enormously in the past few years. One of the earliest and still

used document classi�cation methods, now called the Rocchio algorithm [137] after

its inventor, is based directly on the Vector Space model for retrieval. This algorithm

essentially creates a binary classi�er by summing together the term vectors of one

class of documents, while subtracting from this sum the term vectors for the other

class of documents. This procedure produces a �nal weight vector which can then be

used to classify new document vectors by computing a dot product and thresholding

appropriately.
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More recently, several traditional machine learning techniques have been applied

to the problem of document classi�cation. For example, decision tree induction [130]

has been explored as a means of text classi�cation [37]. Likewise, Wiener, Pedersen

and Weigand [171] have employed neural networks [138] for topic spotting, which

can be seen as a form of classi�cation problem. This research has been important in

pointing out the strengths and limitations in applying these methods to text. Other

methods, however, have come into favor of late.

Masand, Lino� and Waltz [114], for example, have usedMemory Based Reasoning

[157] (essentially a form of the nearest neighbor algorithm [46]) to e�ectively classify

news stories given a very large number of training documents on a highly parallelized

machine. Further evidence of the e�cacy of the nearest neighbor algorithm is found in

the work of Yang and Chute [174], who use this method in conjunction with di�erent

word weighting schemes for text classi�cation.

In a di�erent vein, rule induction algorithms have recently become one of the more

popular methods for text classi�cation. Such algorithms induce a set of logical rules

that predict a classi�cation label for a document given that some set of words appears

in the document. The rule induction system of Apte, Damerau and Weiss [7] has been

successfully applied to the classi�cation of Reuters newswire stories. Likewise, Cohen

has developed the RIPPER algorithm [28] which contains extensions, such as using

set-valued features, that make it particularly applicable to text domains. Rilo� and

Lehnert [133] have also examined learning systems for text classi�cation, focusing on

using hand-coded domain knowledge to help induce rules whose antecedents are based

on more structured information extracted from text than simple word occurrences.

Of closest relation to our own work is previous research in probabilistic text classi-

�cation methods. Lewis, in his seminal thesis on text classi�cation [106], showed that

the Naive Bayesian classi�er [64] (which we discuss in detail in subsequent chapters)

is often quite e�ective for use in text domains, even though the strong statistical

independence assumptions it makes are often clearly violated in practice. Further

support for this point is also seen in Lewis and Ringuette's [110] empirical work com-

paring such simple probabilistic classi�ers with decision trees that are able to capture

the probabilistic dependencies between words in a document. Lewis and Gale [109]
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also explore methods for reducing the amount of data necessary to train a Naive

Bayesian classi�er. More recently, the Web Knowledge Base project at Carnegie Mel-

lon University [36] has also made extensive use of the Naive Bayesian classi�er as a

means of categorizing Web pages in order to then apply category-speci�c information

extraction tools.

It is important to note that the term \Naive Bayesian classi�er" has been used

in the text classi�cation community to refer to two di�erent classi�er models. While

these classi�ers are both similar in their use of Bayesian decision making and strict

independence assumptions, they di�er in their underlying event models. As explained

by Lewis [108] and McCallum and Nigam [115], one such model represents the prob-

ability of word appearances using multiple independent Bernoulli trials (as explained

in Chapter 3 and seen in our work [95]). Alternatively, word appearances can also be

represented using multiple draws from a single multinomial distribution over words

(as described in Mitchell's Machine Learning text [117]). In subsequent chapters of

this work, we describe and make use of the multiple Bernoulli model as it lends itself

to extensions such as modeling word dependencies [139] which are problematic to in-

corporate in the single multinomial model. Still, it is important to realize that while

these underlying di�erences do exist, good performance has been witnessed using

both event models.

Given that so many methods for text categorization have been developed and

explored, a number of extensive studies comparing di�erent algorithms and docu-

ment representations have also emerged. Schuetze, Hull and Pedersen [148] provide

an excellent comparison of classi�cation methods including logistic regression, lin-

ear discriminant analysis and neural networks. They also compare using a simple

term weighting representation documents with Latent Semantic Indexing [40] and

�nd that a redundant combination of these representations seems to provide the best

performance in their experiments.

On a related note, Lewis et al [111] compare a number of learning methods for

linear text classi�ers including Rocchio's algorithm, the Widrow-Ho� (WH) update

rule [170] and the exponentiated gradient (EG) algorithm [89]. They �nd that both

WH and EG yield consistently superior results to Rocchio. Furthermore, they point
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out that since EG seems to drive many of the linear discriminant coe�cients to zero,

e�ectively reducing the number of features used in making classi�cation decisions, it

may be possible to augment the feature space of such models with more expressive

features (i.e., multi-word combinations) to produce better results; however, they do

not actually conduct such experiments.

Addressing this issue, Cohen and Singer [29], as respective advocates of rule-

based and probabilistic learning methods, provide a nice comparison of the RIPPER

rule inducer with the probabilistic Sleeping Experts algorithm. Their results provide

a clear indication that using what they call \context" (i.e., multi-word predictive

features) in text classi�cation can yield signi�cant improvements in accuracy. Such

results lend further credence to the fact that there is room for improvement over

linear classi�cation methods, including Naive Bayes, that do not consider word co-

occurrence information. We explore this issue more fully in Chapter 8.

Exploring an entirely di�erent learning framework, Joachims [82] provides a com-

parison of the recently popularized Support Vector Machine (SVM) [168] with several

previously used learning methods for text classi�cation, including Naive Bayes, deci-

sion trees and nearest neighbor methods. He concludes that SVMs produce the best

overall results in terms of precision and recall measures. Unfortunately, Joachims

optimizes some of the parameters of his learning methods after examining their per-

formance on the testing data, which raises some questions about the validity of the

absolute performance numbers he reports. Still, his relative ranking of methods is

likely to be trustworthy.

Dumais et al [48] also compare SVMs with a Rocchio-like classi�cation method

(called Find Similar), Bayesian classi�ers, and decision trees. They also report that

Support Vector Machines provide the best overall results (without using the testing

data in any way during the learning algorithm parameter optimization process). Still,

recognizing the importance of performance evaluation, the desire to also have under-

standable probabilistic semantics for such models has led researchers toward initial

attempts to understand SVMs in a probabilistic framework [62, 38, 73]. This is an

area of very recent inquiry and not one that we delve further into here. Rather, staying

well within the realm of probabilistic learning, we explore methods whose underlying



CHAPTER 4. RELATED WORK IN INFORMATION ACCESS 53

assumptions align better with what we believe to be true about text domains (i.e.,

probabilistic dependencies between words exist). We believe that a fruitful venue

for future work will be to establish stronger connections between our models and

the Structural Risk Minimization framework on which SVMs are based, but that is

beyond the scope of the work presented here.

In addition to the wide variety of comparative studies of document classi�cation,

there are also numerous successful research applications of such technology that are

worth pointing out. We present these applications to show that our work on improved

methods for document classi�cation hold promise not only in the context of our system

SONIA, but also in a variety of other stand-alone applications.

Lang's NewsWeeder system [101] shows one application of classi�cation to Usenet

Newsgroup article routing. After learning from user judgments of previously read

news articles, the system scours through a wide variety of newsgroups collecting other

relevant articles for the user. Similarly, Balabanovic has developed a system, known

initially as LIRA and later as Fab [9, 8], that works in much the same fashion for

recommending potentially interesting Web pages to users. Fab's underlying technol-

ogy di�ers from NewsWeeder in that it makes use of a collection of distributed agents

to learn multiple topics of interest for each user of the system. Also working in the

context of the Web, Pazzani and Billsus have developed a system very similar in spirit

to Fab, named Syskill and Webert [123, 122]. This system creates a \user pro�le" by

training a Naive Bayesian classi�er on a user's rating of various Web pages and then

uses this classi�er to identify previously unseen Web sites that may be of interest to

the user. In much the same vein, the WebWatcher system of Joachims, Freitag and

Mitchell [83] also uses document classi�cation technology to learn topics of interest

to a user. The system then acts as a tour guide for the Web, recommending links for

a user to follow in situ on the Web pages which they are browsing.

Lastly, considering the problem of electronic mail classi�cation, Cohen [27] has

used rule-based learning methods for automatically classifying messages into appro-

priate folders in a user's E-mail archive. Tackling a similar problem, we have, in col-

laboration with several colleagues, also applied the probabilistic classi�cation methods

described in later chapters to successfully �lter out junk E-mail (known colloquially
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as \spam") from a user's incoming mail stream [140]. While we do not give a full

account of this still on-going work here, one point of particular interest that stems

from this work is that additional features representing non-textual domain-speci�c

information (such as a message sender's E-mail domain type) can be easily integrated

into our feature selection and classi�cation models (described in Chapters 7 and 8,

respectively) without requiring any modi�cation to the underlying algorithms. The

use of such additional information led to a dramatic improvement in the empirical

performance of these methods in the junk mail �ltering task and points out the po-

tential bene�ts of considering a combination of textual and non-textual features for

domain-speci�c applications in future work.
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Chapter 5

Feature Selection for Clustering

5.1 Introduction

Beginning with the task of document clustering, we seek to group together docu-

ments that possess strong internal consistencies. As outlined in Chapter 1, such an

unsupervised learning task is useful for a wide variety of problems, including helping

users more easily browse the topics contained in a large document collection [39, 143].

Moreover, clustering has been successfully applied to a broad range of data mining

problems in a number of di�erent domains [23], helping to uncover important sub-

structure within the data.

Let us begin by considering the AutoClass algorithm presented in Chapter 3.

While such a mixture modeling method may be quite e�ective for clustering low-

dimensional data, it may be problematic to apply directly in very high-dimensional

spaces. For example, text collections can have on the order of 103 to 104 features (even

after applying the Zipf's-Law-based dimensionality reduction technique described ear-

lier), making them quite challenging for mixture modeling.

To address the issue of high dimensionality, we present methods for unsupervised

feature selection that seek to maintain as much information from the original proba-

bility distribution over the data as possible. The intuition here stems from the idea

that mixture modeling often seeks to capture the probabilistic dependencies that exist

between features in a data set. This is accomplished by assuming, as in AutoClass,

56
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X1
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X3 X4

X5 X6

X7

Figure 5.1: A tree-structured dependency model.

that all features in the model are independent when conditioned on the mixture com-

ponent C. Consequently, any dependencies between features must be captured via

the states of the mixture variable. As a result, if we eliminate the features that have

the least e�ect on the distribution of the remaining features, we can focus the mixture

model on the strongest probabilistic dependencies in the data without getting bogged

down by the estimation of many more parameters from the data. The hope, then, is

that the reduction in the parameter space will help control the variance associated

with estimating many parameters and will thus produce better models in the end.

Note that we will use the terms Bayesian network structure and dependency model

interchangeably.

In the remainder of this chapter, we give a formal presentation of our probabilistic

framework and follow with several theoretical results pertaining to minimizing infor-

mation loss during feature selection. Based on these observations, we then present two

feature selection algorithms and give empirical results using them on high-dimensional

text data.

5.2 Mixture Modeling Revisited

Recall that in a mixture model, a distribution can be encoded as a Bayesian network

which contains a hidden variable C corresponding to \clusters" that data instances

may belong to. This cluster variable then in
uences the distributions of all other
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features in the network. Since, in AutoClass, an underlying Naive Bayes dependency

model (depicted in Figure 3.2) is used, it becomes clear from the structure of this

model that any feature interactions in the data must be captured via the states

of the cluster variable C. Thus, the resulting clusters will generally be most heavily

in
uenced by the strongest feature dependencies that exist in the data being modeled.

We believe that generating clusters based on such feature dependencies makes

intuitive sense for document collections, since we would expect that documents about

a given topic would often contain several strongly inter-dependent words. Unfortu-

nately, in cases where there are very many features in the mixture model, as is often

the case with document clustering, the probabilistic dependencies that exist between

features can become more problematic to discover. This problem results from the fact

that the space of possible models is enormous, and some of the dependencies that exist

in the data may be swamped by noise from a large number of uninformative features.

Still, we can make use of the intuition that the clusters discovered via mixture

modeling rely on capturing the strongest word dependencies in a collection. Hence, we

believe that by identifying the words that are least correlated with other words, we are

likely to �nd good candidate features to eliminate from subsequent mixture models.

Armed with this insight, we now turn our attention to considering the general problem

of modeling a data set using a Bayesian network without a hidden cluster variable

(i.e., density estimation), so as to more directly model probabilistic dependencies

between features in the data.

Recalling that the independence assumptions encoded in a Bayesian network allow

us to factor a probability distribution into components that are computationally more

manageable and more robust for parameter estimation, we seek to limit the number

of dependencies allowed in such models. Still, if these independence assumptions are

too severe, we may sacri�ce too much model expressivity for tractability.

In previous work on learning such networks from data, it has been observed that

tree-structured Bayesian networks provide a good compromise between expressivity

and computational tractability. Indeed, the �rst explorations of such tree-structured

dependency models dates back over 30 years under the rubric of optimal dependence
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trees [26]. More recently, Friedman, Geiger, and Goldszmidt [52] show very good per-

formance with such tree-structured dependency models for supervised classi�cation

tasks, and their use in other contexts has been examined by Geiger [60].

More formally, a tree-structured Bayesian network decomposes a distribution

P(X ) into the product
Q
i P(Xi j Si), where Si denotes the single parent node of

Xi or is ; if Xi has no parent. An example of such a tree-structured dependency

model is shown in Figure 5.1.

Using such tree-structured dependency models as a starting point, we can develop

methods for feature selection which can minimize the information loss with regard to

the distribution being modeled. By reducing the dimensionality of the data, we hope

to improve the empirical performance of our mixture models by reducing the variance

associated with the estimation of a large number of parameters. With this goal in

mind, we present a series of theoretical results which pave the way for well-founded

and practical algorithms for unsupervised feature selection.

5.3 Theoretical Underpinnings

We �rst begin by de�ning terms and our loss criterion. Let P(X ) de�ne an arbitrary

probability distribution over the featuresX = (X1;X2; : : : ;Xn) and let PT (X ) denote

a probability distribution over X which is de�ned by a tree-structured dependency

model. Moreover, we employ the information-theoretic measure of relative entropy

(also known as Kullback-Liebler divergence [100]) to measure the loss in approximat-

ing one distribution with another. More formally, let � and � be two distributions

over some probability space 
. The relative entropy of � to � is de�ned as

D(�; �) =
X
x2


�(x) log
�(x)

�(x)
: (5.1)

Note that the roles of � and � are not symmetrical in this de�nition. Generally

speaking, the idea is that � is the \right" distribution, and � is our approximation

to it. Then, D(�; �) measures the extent of the \error" that we make by using � as

a substitute for �.
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We now show that an optimal tree-structured dependency model for a distribution

(with respect to the relative entropy loss criterion de�ned above) can be constructed

e�ciently. Chow and Liu [26] in their seminal work on optimal dependence trees,

present a simple and e�cient procedure for determining the structure of an optimal

dependence tree. We present an overview of their algorithm here, and follow it with

their main theoretical result.

The Chow and Liu procedure for �nding an optimal dependence tree can be sum-

marized as follows. Let G be a complete undirected graph, where each node in G

represents a single feature Xi in X . Let each arc between two feature nodes Xi and

Xj in G be weighted by the mutual information MI(Xi;Xj) between those features.

Let MST be the maximal spanning tree of G. Direct all the arcs in MST \away"

from some arbitrarily chosen node, thereby producing an optimal dependence tree.

Theorem 1 (Chow and Liu, 1968 [26]) The distribution PT (X ) de�ned by the tree-

structured dependency model MST minimizes D(P(X );PT (X )) over all distributions

de�ned by tree-structured dependency models.

We omit a review of the proof of this theorem for the sake of brevity. Still, we

note that constructing such a maximal spanning tree can be done in time O(n2m)

[34], where n is the number of features and m is the number of data instances.

The directed maximal spanning treeMST obviously de�nes the structure of a tree-

structured Bayesian network. Hence, we associate each node of the graph MST with

a conditional probability table representing the probability for the feature represented

by that node, conditioned on the (maximum of one) parent feature of the node. We

denote the distribution de�ned by this dependency model as PMST (X ).

Now, let PF (X ) be any distribution whose underlying dependency graph (i.e.,

Bayesian network), denoted F , is a directed forest. Let PFMST
(X ) be a distribution

whose underlying Bayesian network FMST is a directed forest whose edges are some

subset of the edges in MST . Moreover, the conditional probability tables associated

with the nodes in FMST are identical to the ones associated with MST , except for

the cases where nodes that had a parent in MST are parentless in FMST . These

parentless nodes in FMST are associated with a marginal probability table with is
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determined by marginalizing the conditional probability table in corresponding node

in MST . Finally, let X�i denote the set of features X � fXig.

Theorem 2 Deleting the arc u with the least mutual information weight in a depen-

dency forest F yields a dependency forest F 0 such that D(PF (X );PF 0(X )) is mini-

mized over all choices of u.

Proof:

D(PF (X );PF 0(X )) =
X
x

PF (x ) log
PF (x )

PF 0(x )
(5.2)

=
X
x

PF (x ) log
Y
i

PF (xi j Si = si)

PF 0(xi j S0
i = s0i)

(5.3)

where Si is the parent of Xi in F and S0
i is the parent of Xi in F 0. Recall that Si

(S0
i, respectively) will contain at most one feature since F (F 0) is a forest, and may

be ; if Xi has no parent. Consider an arc u that connects Xk with Sk, and let F 0 be

the forest obtained from F by dropping u. Consequently, S0
k = ; and S0

i = Si 8i 6= k.

Incorporating this into Eq. 5.3 yields:

X
x

PF (x ) log
PF (xk j sk)
PF 0(xk)

=
X
x

PF (x ) log
PF (xk j sk)
PF (xk)

(5.4)

=
X
xk;sk

PF (xk; sk) log
PF (xk j sk)
PF (xk)

(5.5)

= MI(Xk;Sk) (5.6)

Since the arc u between Xk and Sk is weighted by MI(Xk;Sk), dropping the arc for

which this value is smallest thus minimizes D(PF (X );PF 0(X )).

Corollary 3 Deleting the least weighted arc u in a directed maximal spanning tree

MST yields a directed forest FMST such that D(PMST (X );PFMST
(X )) is minimized

over all choices of u.

Proof: Since a tree is a forest by de�nition, this result follows immediately from

Theorem 2 and the de�nition of FMST .



CHAPTER 5. FEATURE SELECTION FOR CLUSTERING 62

While the theorem above gives us insight as to how to iteratively drop arcs from

a Bayesian network while minimizing information loss in the distribution being mod-

eled, we are also interested in dropping nodes from a Bayesian network so as to reduce

the total number of features in a model. To that end, we consider which features (i.e.,

nodes) we may delete from a Bayesian network which will have the least impact on

the distributions of the remaining features.

Theorem 4 Deleting a node representing feature Xi in an arbitrary directed depen-

dency graph G causes no loss with respect to the marginalized relative entropy given

by
P

xi
PG(xi) �D(PG(x�i j xi);PG(x�i)) if Xi is unconnected to any other node in G.

Proof:

X
xi

PG(xi) �D(PG(x�i j xi);PG(x�i))

=
X
xi

PG(xi) �
X
x
�i

PG(x�i j xi) log PG(x�i j xi)
PG(x�i)

(5.7)

SinceXi is unconnected to any other node in the dependency graph G, PG(x�i j xi) =
PG(x�i). Substituting this result into Eq. 5.7 yields:

X
x

PG(x ) log
PG(x�i)

PG(x�i)
= 0: (5.8)

In an attempt to generalize beyond tree-structured dependency models, we also

provide a more general result, but here need to consider a di�erent form of approx-

imation on the underlying dependency model. We begin with an observation about

the mathematical relationship of the marginalized relative entropy to the mutual

information between pairs of features.

Observation 5 The marginalized relative entropy
P

xi
P(xi) �D(P(x�i j xi);P(x�i))

is equal to the sum of conditional mutual information values
Pn

j=1;j 6=iMI(Xi;Xj j
X1; : : : ;Xi�1;Xi+1; : : : ;Xj�1).
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Proof:

X
xi

P(xi) �D(P(x�i j xi);P(x�i))

=
X
xi

P(xi) �
X
x
�i

P(x�i j xi) log P(x�i j xi)
P(x�i)

(5.9)

=
X
x

P(x ) log
P(x�i j xi)
P(x�i)

(5.10)

= MI(Xi;X�i) (5.11)

=
nX

j=1;j 6=i

MI(Xi;Xj j X1; : : : ;Xi�1;Xi+1; : : : ;Xj�1) (5.12)

Here, we note that the summation in Eq. 5.12 is intractable to compute when the

number of features n is large, since the size of the conditional probability tables needed

to compute each mutual information term grows exponentially with the number of

conditioning variables. Alternatively, we can consider a simple approximation to this

sum that is easy to compute. In this approximation, we ignore the conditioning

variables in each mutual information term, giving us

nX
j=1;j 6=i

MI(Xi;Xj j X1; : : : ;Xi�1;Xi+1; : : : ;Xj�1) �
nX

j=1;j 6=i

MI(Xi;Xj) (5.13)

Note that this approximation is actually only a true equality in cases where all

variables Xi are independent of each other. Still, if we believe that many of the

features in our domain do not exhibit signi�cant \higher order" interactions and,

hence, we may capture most of the variable dependencies in our domain via simple

pair-wise interactions, then this approximation may be a reasonable one. Moreover,

using this approximation allows us to relax our restriction of only considering tree-

structured models when attempting to capture the probabilistic dependencies in a

domain. The degree to which this approximation is valid is, thus, mainly an empirical

question for a particular data set that is being modeled. We explore this issue further

in Section 5.5.
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5.4 Feature Selection Algorithms

The theoretical results presented above, give rise to two feature selection algorithms

outlined below. These algorithms are based on the insight that features that appear

to only weakly in
uence the remaining domain variables are good candidates for

elimination, prior to building a mixture model.

It must be stressed, however, that using a tree-structured dependency model to

measure the degree to which a feature Xi in
uences the rest of the features in the do-

main is only an approximation to the true degree of feature interaction in the domain.

Consequently, eliminating the variable Xi that minimizes
P

xi
PT (xi) � D(PT (x�i j

xi);PT (x�i)), where PT (�) is a probability distribution de�ned by a tree-structured

dependency model, may not also minimize
P

xi
P(xi) �D(P(x�i j xi);P(x�i)), where

P(�) is the true distribution for the domain. Still, if we believe that the tree-structured

dependency model is a good approximation, then we may be con�dent that in many

cases we are indeed eliminating the features that have the least impact on the rest of

the domain features.

With that said, we now present a feature selection algorithm based on building a

tree-structured dependency model of a given domain.

Procedure MST-FeatureSelection

1. 8i; j i 6= j Compute MI(Xi;Xj)

2. Build maximal spanning tree MST of complete graph G where the

arc between each pair of nodes Xi and Xj is weighted by MI(Xi;Xj).

3. FMST  direct-arcs(MST), R X .

4. while (jRj > k) do

4.1. if 9v where v is a node representing feature Xd that is

not connected to any other node in FMST

4.1.1. then R R � fXdg, FMST  FMST � v.

4.1.2. else remove least weighted arc from FMST.

In the MST-FeatureSelection algorithm, we begin by constructing the optimal

tree-structured dependency model (according to Thm. 1). Then, we iteratively delete
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the least weighted arcs in the dependency tree (forest) and eliminate features corre-

sponding to nodes that become isolated as a result (in accordance with Thms. 2, 3

and 4). We continue to eliminate nodes in this fashion until only k features remain,

where k is a user-set parameter.

Alternatively, we may consider a feature selection algorithm which does not make

use of an underlying tree-structured dependency model. Here, we use the assumption

(formalized in Eq. 5.13) that the in
uence a feature Xi exerts on the rest of the

features in the domain can be measured as the sum of the unconditional pairwise

mutual information values between Xi and every other feature in X . Since such an

approximation requires that each pair of features be independent of all remaining

features, we say that our algorithm based on this assumption is Pairwise Interaction

Limited, or PIL for short.

Procedure PIL-FeatureSelection

1. 8i; j i 6= j Compute MI(Xi;Xj).

2. R X .

3. while (jRj > k) do

3.1. 8Xi 2 R Compute �i  PXj2R�fXigMI(Xi;Xj)

3.2. Xd  feature with minimal �d.

3.3. R R � fXdg.

The PIL-FeatureSelection algorithm (based directly on Obs. 5 and Eq. 5.13)

is also iterative in nature, eliminating features which have minimal summed mutual

information with all other remaining nodes in the dependency graph. Since we believe

intuitively that a feature will often not depend on all other features in the model,

however, we can also consider a heuristic variant of this algorithm where in Step 3.1

we compute the sum over just the q features which have maximal mutual information

with each feature Xi. To test the e�cacy of these algorithms, we presently give a

number of empirical results using these algorithms on high-dimensional text data.
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Data Number Number Majority
set of Docs of Words Categories Accuracy

D1 486 1143 Natural Gas, Soybean, Dollar 46.7%

D2 466 1001 Gold, Co�ee, Sugar 41.0%
D3 289 552 T-Bill, Yen, Reserves 43.9%

D4 467 1126 GNP, Livestock, Sugar 39.6%

D5 1426 1953 Loan, Interest, Money E�ects 42.9%

Table 5.1: Data sets used in experiments.

5.5 Empirical Results

Our experiments using these feature selection algorithms are conducted on various

subsets of the Reuters-22173 data set [132]. The data sets used here are created by

selecting a subset of the class labels from the Reuters collection, and then including all

of the documents that are assigned only one of the labels in this subset. As mentioned

previously, we pre-processed this data in accordance with Zipf's Law to eliminate any

words that appeared fewer than 10 or greater than 1000 times, as providing too

little discriminating power between documents. Thus, we sought to create a more

challenging problem by previously eliminating features that we would expect not to

be useful based on the fact that they are extremely rare or common.

A description of these data sets is given in Table 5.1. This table includes the

number of documents (instances) in each data set, the number of distinct words

(features) after applying the Zipf's Law-based reduction, the names of the topic

present in each collection, and the classi�cation accuracy that would be realized if all

the documents in the data set were classi�ed into the majority class.

In order to evaluate our feature selection algorithms, we use previously labeled

data and measure how well mixture modeling (i.e., clustering) recovers the known

label structure in the data. The learning algorithm, however, is given no information

about the true (i.e., human assigned) label of each document. We train a mixture

model on each data set using AutoClass. After training is completed, we designate

the predicted label for all documents in each cluster to be the true label that the
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majority of documents in that cluster have. Once we have an actual and predicted

label for each document, we can now simply compute the classi�cation accuracy as

the percentage of documents whose predicted and actual labels match.

We note that this method for evaluating the accuracy of clustering produces a

useful and intuitive score. This accuracy measure is also especially well-suited to the

task of grouping documents in a semantically meaningful manner, which would be the

aim of applying mixture modeling to text data. Moreover, we did not simply evaluate

the marginal likelihood of the resulting mixture models since such a comparison is

not meaningful over data with di�erent numbers of features.

We recognize the di�culties of quantitatively evaluating clustering in general.

And, we note that our method for evaluating the accuracy of a clustering may not be

an ideal evaluation method in all situations, especially since it tends to favor larger

numbers of clusters. Indeed, there currently appears to be no universally accepted

method for evaluating clustering results. Still, we believe that in our controlled ex-

perimental setting, the advantages of this measure outweigh its shortcomings for the

task that we are addressing.

As part of our experimental methodology, we �rst build a mixture model using the

full feature set (after the Zipf's Law reduction) and we refer to this as the Baseline. We

then use the MST-FeatureSelection algorithm, denoted MST, to eliminate features

and then train a new mixture model. We likewise evaluate PIL-FeatureSelection

using both the original (sum over all features) formulation, which we denote PIL, and

the heuristic formulation (summing over the �ve maximal mutual information values

for each feature), denoted PIL-5. Finally, we also consider applying supervised feature

selection to the data, denoted Supervised, which involves eliminating features which

have the smallest mutual information with the true class variable. We can consider

this as a rough upper bound for the e�cacy of feature selection, as this feature

selection method has direct access to the class variable that the mixture model is

trying to discover. So applying such a feature selection method should yield features

which more directly guide the mixture model to discovering the di�erent groupings

in the data. Note that in this case, the mixture model itself, obviously, is still not

given direct access to the class variable.
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Figure 5.2: Results on Dataset 1.

The results of these experiments across feature sizes from 50 to 400 are reported in

Figures 5.2 to 5.6. Note that the Baseline does not actually involve feature selection,

but is simply presented as a straight line in the �gures for visual comparison. The

averages given in the legends are the average accuracies over the entire range from

50 to 400 features (in increments of 50). Since our evaluation measure favors greater

numbers of clusters, we did a \post mortem" analysis to measure the degree to which

the number of clusters varied between runs. In virtually all cases, the number of

clusters produced on the original (non-reduced) data was equal to or greater than the

number of clusters discovered in the data after feature selection, indicating that the

improvement seen in using our feature selection algorithms is not a result of causing

AutoClass to form more clusters on the reduced data.

From the results in Figures 5.2 to 5.6, it is evident that both the MST and PIL-5

methods for feature selection produce consistently better results than mixture mod-

eling applied to the original data. This is especially important when we realize that

in several cases these methods are reducing the feature set to less than 5% of its
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Figure 5.3: Results on Dataset 2.
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Figure 5.4: Results on Dataset 3.
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Figure 5.5: Results on Dataset 4.
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Figure 5.6: Results on Dataset 5.
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original size. Also worth noting is that these methods provide consistent improve-

ments, because they are in essence guiding the mixture model to capture the most

signi�cant feature interactions in the data without being hindered by the large vari-

ance of estimating all the parameters needed with the original data set. As to be

expected, the Supervised method performs best overall, but shows that the unsuper-

vised methods are generally performing quite well without having access to the class

label information (which in practice would never be available).

The consistently poor performance of PIL, relative to the other feature selection

methods, indicates that the approximation (used to measure the degree of in
uence

each variable exerts on the rest of the domain) underlying this algorithm is not likely

to be accurate. However, we see that PIL-5 seems to exhibit more reasonable perfor-

mance, even though it is based on a similar assumption. We believe that, since this

variant of the algorithm only considers interactions between each feature and some

limited number of other features, it does not cause the assumption on which it is based

to be violated as wildly as in PIL. Furthermore, by making use of fewer features in

this approximation, the detrimental e�ects of variance in parameter estimation can

be controlled. This reliance on using fewer features to compute the interaction of

each feature with the rest of the domain helps make PIL-5 more roughly comparable

in resulting accuracy to MST.

5.6 Conclusions

We have presented two novel algorithms for unsupervised feature selection based

on theoretical considerations that appear to provide nice empirical improvements in

using mixture models to cluster high-dimensional text data. Furthermore, our results

provide even more evidence of the utility of using restricted dependency models in

data �tting problems in high-dimensional spaces|a point we return to in Chapter 8.

While our initial results have been quite encouraging, a further analysis reveals

some of the underlying limitations of using mixture models for text. In the exper-

iments presented above, AutoClass was allowed to automatically select the number

of clusters using the scoring criterion given in Section 3.2.2. In virtually every run,
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Figure 5.7: Results on Dataset 1 using three clusters.

AutoClass produced a model with between 20 and 25 clusters. This is quite remark-

able given that the data sets used in this study were each composed of documents

from three di�erent topics. Still, it could be the case that AutoClass was discovering

a �ner level of topical granularity in these data sets.

To further test how well AutoClass could recover the topical partitioning of the

data, we re-ran the experiments above, but in this case limited the algorithm to only

construct models with three mixture components in order to match the true number

of topics in the data. Recalling that inducing a mixture modeling requires performing

an optimization in a non-convex space, it is important to note that the AutoClass

algorithm actually builds several models in each run (we always built �ve models

for each of the runs reported here) and selects the best one according to its model

scoring criterion. In this way, it attempts to attenuate the e�ect of converging to

a poor local maxima during the optimization. The results of these experiments are

given in Figures 5.7 through 5.11.

In these results, we �nd that our feature selection methods are still e�ective at
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Figure 5.8: Results on Dataset 2 using three clusters.
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Figure 5.9: Results on Dataset 3 using three clusters.
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Figure 5.10: Results on Dataset 4 using three clusters.
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Figure 5.11: Results on Dataset 5 using three clusters.
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producing better models than the original data. In fact, averaging over the di�er-

ent sized feature sets, every one of our feature selection methods outperformed the

Baseline on every data set! Still, in contrast to the e�cacy of our feature selection al-

gorithms, several facts of applying mixture models to text domains become painfully

clear. Foremost, the high variability of the accuracy results shows that there are

many local maxima in the search space over which the mixture model is being op-

timized. As a result, it is often possible to produce a poor model, and consistency

is hard to guarantee (even though we may induce several models from di�erent ran-

dom initial starting points and pick the best one according to some scoring criterion).

Second, when the accuracy results obtained via mixture modeling are considered on

an absolute scale, they still leave something to be desired. In essence, we would like

to generate a clustering which better captures the topics we believe exist in corpus.

This leaves us with the conclusion that, while feature selection appears to improve

the results of mixture modeling, we would really like to have a better overall method

for clustering, if possible. We turn our attention to this topic in the next chapter.



Chapter 6

A New Model for Document

Clustering

6.1 Introduction

As explained in Chapter 1, the capability to e�ectively cluster documents of similar

content can aid in both the retrieval of information and its presentation to the user

(e.g., in a system like SONIA). Recall that early work in information retrieval stressed

the use of clustering as a means of improving the ability to �nd documents relevant

to a query [167] [144]. This work was based on the Cluster Hypothesis [166], which

states that \closely associated documents tend to be relevant to the same requests."

With this as a working assumption, document collections could be clustered a priori,

and then new queries could simply be matched against clusters rather than against

each document individually. Such cluster-based matching could speed the retrieval

process and possibly �nd relevant documents that do not explicitly contain the words

in the user's query.

More recently, applications of document clustering such as Scatter/Gather [39, 71]

have been used to enable entire collections and query retrieval results to be browsed

more easily. Similarly, our goal in SONIA is to use document clustering as a means

of helping users quickly organize a collection of documents (e.g., the results of query

retrieval). Moreover, by grouping related documents together, users can more readily

76
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browse the topics inherent in a corpus.

The success of systems such as SONIA can be signi�cantly impacted by the ef-

fectiveness of the clustering methods employed. In our very preliminary work, for

example, we found that using di�erent clustering methods often led to di�erent re-

sults with respect to how a collection of documents was characterized at a topical

level. Indeed, the description of Scatter/Gather is very speci�c about the cluster-

ing methods used (albeit much more for reasons of e�ciency than e�cacy) re
ecting

the years of comparative work in the IR community. Such comparative analyses of

di�erent methods and document representations for clustering continue today [149].

While empirical work in document clustering has advanced the state of the art

in performance, no equivalent advancement in theoretical analysis explains why the

methods arrived at through experimentation work as well as they do. In fact, as seen

in the previous chapter, many of the theoretically well-understood methods for clus-

tering, such as mixture modeling, do not perform as well as we would hope on textual

domains. In this chapter, we seek to provide an analysis of document clustering with

the tools of probability theory. In this way, we can formalize the assumptions and

models used in existing document clustering methods. Our objective is to gain new

insights into the e�ectiveness of current clustering algorithms as well as to open the

door to improvements. Uncovering the explicit distributional assumptions made in

many text clustering algorithms has prompted us to investigate issues such as the

treatment of evidence and di�erent approaches to density estimation. From these

insights, we have developed a new probability-based score for measuring document

similarity. We provide empirical results showing that this score outperforms tradi-

tional IR methods for the text clustering task.

In general terms, the clustering problem consists of �nding groups of data points

that possess strong internal similarities. The problem is not formalized until we de�ne

what is meant by similarity. In practice, this formalization involves two separate

issues: �rst, how one should measure similarity between data samples, and second,

how one should evaluate a partitioning of a set of samples into clusters. We note,

for clarity, that mixture modeling (as exempli�ed by AutoClass) also �ts our general

de�nition of clustering, even through the distance measures may not be explicitly
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de�ned. Here, however, we propose an explicit score for measuring similarity between

documents derived from the probabilistic overlap in the words contained in each

document.

In the context of clustering, and more generally throughout IR, a commonly used

measure of similarity is obtained by representing documents as normalized vectors

(as explained in Chapter 2) and then computing the inner product to �nd the cosine

of the angle between the vectors. This measure of similarity is generally referred to

as the cosine coe�cient [144]. To compute this measure, documents are represented

as vectors containing the normalized frequency counts (as opposed to the Boolean

indicators) of the words in them. Intuitively, this measure tries to capture the degree

of word overlap between two documents.

On similar grounds, in Section 6.2 we investigate a probabilistic function for doc-

ument overlap that scores the expectation of the same words appearing in two doc-

uments. This score prompts the investigation of di�erent smoothing methods for

estimating the probability of a word appearing in a document. Section 6.3 describes

the clustering algorithms we use in conjunction with this similarity score.

As our empirical evaluation in Section 6.4 shows, di�erent smoothing methods may

be more or less e�ective, depending on the degree of separability between the clusters.

Furthermore, we point out some correspondencies between the document similarity

measure derived in our framework and other probabilistic measures from the pattern

recognition community, which have been derived in very di�erent contexts. We also

show that the widely used cosine coe�cient can be associated with a particular form

of probabilistic smoothing in our framework. Moreover, this analysis reveals a scaling

factor, given by the inverse of the probability of a word appearing in the corpus, that,

when combined with our similarity score, yields a clustering method that outperforms

those based on the cosine coe�cient and TFIDF weighting [145] in our experiments.

For completeness, in Section 6.5 we directly compare our new results with those

obtained with mixture modeling using AutoClass. As expected, our new clustering

method produces much better results, showing that it is quite suitable for incorpora-

tion into the SONIA system. Finally, we conclude in Section 6.6 with some general

observations and directions for future work.
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6.2 Probabilistic Document Overlap

To formalize the problem of document clustering, we �rst need to explicitly de�ne

a notion of similarity between documents. The similarity function that we will use

for clustering will be based on establishing the degree of overlap between pairs of

documents. To this end, we will assume that each document imposes a multinomial

distribution over the set of words in the corpus. Each document doci is associated

with an n-dimensional feature vector di, where the value of the jth component of the

vector is the number of times the word corresponding to this component appears in

the document. Thus, this vector representation of documents provides the su�cient

statistics for computing the expected overlap between any given pair of documents

(de�ned below).

Let doci and docj be two documents in a corpus D. We will then compute the

expected overlap between doci and docj in terms of the corresponding vectors di and

dj . We denote this expected overlap measure as EO(di; dj;D) and compute it as

follows:

X
w2di\dj

P(Yi = w j di;M) � P(Yj = w j dj ;M) ; (6.1)

where Yi = w denotes the event that a word randomly selected from document doci

is equal to w. M , the model, includes the su�cient statistics about the corpus D,

including the total number of times each word appears in the corpus.

Eq. 6.1 is intuitively appealing. It says that the overlap between two documents

i and j can be computed by estimating the probability that each word appears in

each document, and then multiplying these results. As will be seen shortly, the way

the probability of word appearance is estimated will greatly in
uence the results of

clustering. We focus on the di�erent ways of estimating this probability from the

statistics in each vector di and M , as well as the relationship of this equation to the

cosine coe�cient below. We �rst provide a derivation of Eq. 6.1.
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6.2.1 Deriving the Probabilistic Overlap

Here we investigate one possible derivation of Eq. 6.1 and reveal its underlying as-

sumptions. We start by de�ning the expected degree of overlap between two docu-

ments doci and docj in the corpusD, using the corresponding vectors of word statistics

di and dj. This de�nition is given by

X
w2W

P(Yi 2 di; Yj 2 dj ; Yi = w; Yj = w j di; dj;M) : (6.2)

The event Yi 2 di denotes whether the word assigned to Yi appears in di (i.e., has

a nonzero count). If the word assigned to Yi does indeed appear in di, then the

probability of this event is 1, otherwise this event has probability 0. Thus, the events

Yi 2 di and Yj 2 dj in Eq. 6.2 are simply indicator functions that limit the set of

words that contribute to the sum to only those w 2 di \ dj . This reduces the sum

above to X
w2di\dj

P(Yi = w; Yj = w j di; dj ;M) : (6.3)

The probabilities of the events Yi = w and Yj = w are fully determined by the

document vectors di and dj (and the modelM). Thus, these events are conditionally

independent given di, dj , and M , giving us

X
w2di\dj

P(Yi = w j di; dj;M) � P(Yj = w j di; dj ;M) : (6.4)

Furthermore, the event Yi = w is conditionally independent of dj , given di, since

Yi = w is fully determined by di. Likewise, the event Yj = w is conditionally inde-

pendent of di, given dj . As a result, Eq. 6.4 reduces to

P(Yi = w j di;M) � P(Yj = w j dj ;M) ; (6.5)

which is equal to Eq. 6.1.

As was pointed out above, this derivation embodies a series of assumptions of

probabilistic independence. We remark that, given the relation we establish in the
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next section, these assumptions are also present in the use of the cosine coe�cient

to compute similarity. Our analysis above merely makes these assumptions explicit,

opening opportunities for further research on verifying or even �nding ways to avoid

making them. Such research, however, is not addressed here.

6.2.2 Probability Estimation and Smoothing

We now focus on estimating the term P(Y = w j d;M) in Eq. 6.1.1 An initial

approach is to take the maximum likelihood (ML) estimate for this probability:

PML(Y = w j d;M) =
�(w; d)P

w02d �(w
0; d)

; (6.6)

where �(w; d) is the number of times that word w appears in document doc (repre-

sented by the vector d).

This is bound to be a poor estimate, as some words that are \important" to the

topic of a document may appear only a few times, whereas other \unindicative" terms

may appear very often. Also, with shorter documents such as news clips or manyWeb

pages, this estimate will be even more prone to word \spikes" (i.e., will have high

variance).

In trying to control variance in estimating P(Y = w j d;M), it becomes critical to

perform some type of smoothing. A simple smoothing technique that has been used

in the context of computational linguistics [21] is to use the arithmetic mean (AM)

of PML(Y = w j d;M) and the maximum likelihood estimate of the unconditional

distribution, PML(Y = w jM), where

PML(Y = w jM) =

P
d2D �(w; d)P

d2D

P
w02d �(w

0; d)
: (6.7)

For the case of P(Y = w j M), the ML estimate is appropriate because this compu-

tation is an average over all documents in the entire corpus and is therefore likely to

1We drop the subscript previously used with Y for the sake of readability.
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attenuate any word spikes that may appear in a single document. Formally, arith-

metic mean smoothing yields

PAM (Y = w j d;M) =
1

2
PML(Y = w j d;M) +

1

2
PML(Y = w jM) : (6.8)

Note that, for simplicity, we compute the unweighted mean using coe�cients of 1
2
.

However, methods for �tting these coe�cients to obtain improved results in language

modeling [24] and text classi�cation [116] have been explored.

A novel form of smoothing that we introduce involves the taking the geometric

mean (GM) of these two ML distributions2:

PGM (Y = w j d;M) = PML(Y = w j d;M)
1

2 � PML(Y = w jM)
1

2 : (6.9)

The GM estimate in Eq. 6.9 does not de�ne a true probability distribution because

it will generally not sum to 1. We thus introduce a true probability distribution based

on the geometric mean, by simply adding a normalization factor. This gives us the

following normalized geometric mean (NGM) estimate:

PNGM(Y = w j d;M) =
PML(Y = w j d;M)

1

2 � PML(Y = w jM)
1

2

P
w02W PML(Y = w0 j d;M)

1

2 � PML(Y = w0 jM)
1

2

: (6.10)

We continue to pursue the unnormalizedGM formulation further, since it is related

to the computation of similarity between documents using the normalized vector dot

product, also known as the \cosine coe�cient." Moreover, it is also closely related to

other similarity scores developed in the pattern recognition community [12].

Here, we examine the cosine coe�cient in more detail. Consider the similarity

score of two documents, doci and docj , computed by using the cosine represented by

Eq. 6.11:
X
w2W

�(w; di)

(
P

w02di �(w
0; di)2)

1

2

� �(w; dj)

(
P

w02dj �(w
0; dj)2)

1

2

: (6.11)

2This is also equivalent to taking the arithmetic mean in the log space: logPGM (Y = w j d;M ) =
1

2
logPML(Y = w j d;M ) + 1

2
logPML(X = w j M ):



CHAPTER 6. A NEW MODEL FOR DOCUMENT CLUSTERING 83

Note, however, that when the cosine similarity score is used in information retrieval

and clustering, the raw frequency scores often are not actually used as the features in a

document vector. Rather, these frequencies are attenuated by a monotone shrinkage

factor such as the log or square root (as in Eqs. 2.1 or 2.2, respectively). It has

been reported that for the document clustering task, using the square root generally

appears to give better performance than using the log [39]. Incorporating this factor

into Eq. 6.11 yields

X
w2W

�(w; di)
1

2

(
P

w02di(�(w
0; di)

1

2 )2)
1

2

� �(w; dj)
1

2

(
P

w02dj(�(w
0; dj)

1

2 )2)
1

2

=

X
w2W

(
�(w; di)P

w02di �(w
0; di)

)
1

2 � ( �(w; dj )P
w02dj �(w

0; dj)
)
1

2 : (6.12)

First, we point out that Eq. 6.12 is equivalent to the expected overlap measure

using the square roots of two maximum likelihood estimates, and can be rewritten as

X
w2W

PML(Yi = w j di;M)
1

2 � PML(Yj = w j dj;M)
1

2 ; (6.13)

Moreover, we have recently discovered that the measure in Eq.6.13 is exactly equiva-

lent to the Bhattacharyya distance [12], which has been used as a measure of similarity

between two probability distributions by researchers in the pattern recognition com-

munity. Thus we believe that the use of geometric factors (as evidenced by the use of

the square root) may be a fruitful venue in comparing the multinomial distributions

over words induced by documents. A further discussion of the Bhattacharyya dis-

tance is given by Kailath [86] who points out many of the similarities and di�erences

between this measure and the relative entropy measure (given in Eq. 5.1), which is

more commonly used to compare probability distributions in an information theoretic

sense. Kailath's work also relates the Bhattacharyya distance to Fisher's measure of

information [99] which is frequently used in statistical classi�cation. Very recent work

by Jaakkola and Haussler [80] has in turn used the Fisher information as a founda-

tion for the derivation of kernel functions for classi�cation. In the case of multinomial

distributions, as we have here, these kernel functions have a very similar functional
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form (i.e., vector dot product over the parameters of the multinomial distribution)

to our expected overlap measure. Hence, many connections exist between our pro-

posed overlap measure (using various parameter estimation methods) and work in

other communities. Investigating these connections may serve as a basis for future

work. However, this line of investigation is tangential to the remainder of our work

in clustering, and we do not pursue it further here.

Returning to our derivation of the overlap measure, we note that the sum in

Eq. 6.12 can be reduced to include only those words w 2 di \ dj, since any words not
in both documents will have �(w; d) = 0 for at least one of the documents and will

not in
uence the sum. This gives us

X
w2di\dj

(
�(w; di)P

w02di �(w
0; di)

)
1

2 � ( �(w; dj )P
w02dj �(w

0; dj)
)
1

2 : (6.14)

Finally, if we cast Eq. 6.14 in terms of the unnormalized GM estimate de�ned

above, we obtain

X
w2di\dj

PGM (Yi = w j di;M) � PGM (Yj = w j dj;M)

PML(Y = w jM)
: (6.15)

Thus, the cosine similarity metric with square root dampening that has found

empirical success in the IR community (and is closely tied to other similaritymeasures

used in pattern recognition) is actually utilizing a form of geometric smoothing to

account for the high variability in word appearances. Furthermore, casting the cosine

in terms of the GM estimate uncovers a scaling factor for the axes of the word space

(i.e., the denominator in Eq. 6.15). Intuitively, this scaling makes sense, since it

incorporates additional knowledge in the form of the frequency of word usage in the

corpus to be clustered. In our experiments below we evaluate the expected overlap

given by Eq. 6.1 using the various estimation and smoothing proposals introduced in

this section, plus a variant that incorporates the scaling factor in Eq. 6.15. As will

be seen, the best results are obtained by using the NGM of Eq. 6.10 augmented with

the scaling factor from Eq. 6.15.
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Figure 6.1: Example of a dendogram generated by hierarchical agglomerative clus-
tering.

6.3 Clustering Algorithms

Having de�ned a similarity score for documents, we now turn to the problem of the

actual document clustering algorithms. While a number of methods for clustering

exist (some of which are discussed in Chapter 3), the two most widely applied to

text domains are hierarchical agglomerative clustering (HAC) and iterative clustering

techniques [131]. Both of these methods rely on the de�nition of a similarity score

between pairs of documents. For the sake of generality, we will refer to this similar-

ity score as Sim(doc; doc0) and will subsequently instantiate it with our measure of

probabilistic overlap, using di�erent probability estimation methods.

6.3.1 Hierarchical Agglomerative Clustering

The most common clustering method employed in the information retrieval commu-

nity over the past decade is hierarchical agglomerative clustering (HAC) [51]. This

family of methods begins by placing each document into a distinct cluster. Pairwise

similarities between all such clusters are computed, and the two closest clusters are

then merged into a new cluster. This process of computing pairwise similarities and

merging the closest two clusters is repeatedly applied, generating a dendogram struc-

ture that contains only one cluster (encompassing all the data) at its root. A sample
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dendogram is shown in Figure 6.1. By selecting an appropriate level of granularity

in this dendogram, we can generate a partitioning into as many clusters as desired.

Criteria such as a minimum number of documents per cluster are often used to pre-

vent outlier documents from being considered a separate cluster. In our experiments

we heuristically set this minimum cluster size at 10 documents.

Depending on how the similarity of a document to a cluster is de�ned, we can

obtain di�erent \
avors" of HAC; the most common are the single link, complete

link, and group average methods. Previous work in IR [172] has pointed out that the

group average method generally produces superior results, so we concentrate on this

method here.

The group average method de�nes the similarity between a document doc and

a cluster C as the average of the pairwise similarities between doc and each of the

documents in C:

Sim(doc; C) =
X

doc02C

1

jCj Sim(doc; doc
0) : (6.16)

Analogously, the similarity between two clusters C and C 0 is given as the average

of the pairwise similarities between each document in C with each document in C 0.

More formally,

Sim(C;C 0) =
X

doc2C;doc02C0

1

jCj � jC 0j Sim(doc; doc
0) (6.17)

=
X

doc2C

1

jCjSim(doc; C
0) : (6.18)

A simple probabilistic interpretation of the group average method is that each

document in a cluster is an equally likely representative of that cluster. This is evident

in the 1
jCj

weighting given to each term in the sum in Eq. 6.16. Note that we can

obtain many variations of HAC by replacing the term 1
jCj

with alternate distributions

over the \weight" of documents in a cluster (e.g., a Gaussian based on a document's

distance from the cluster centroid).
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6.3.2 Iterative Clustering

Iterative clustering techniques, also referred to as reallocation methods, attempt to

optimize a given clustering by repeatedly reassigning documents to the cluster to

which they are most similar. The general form for such algorithms, given a speci�ca-

tion of the number of clusters k, is as follows:

1. Initialize the k clusters3

2. For each document doc in the corpus

2.1. Compute the similarity of doc to each cluster

3. For each document doc in the corpus

3.1. Assign doc to the cluster most similar to it

4. Goto 2, unless some convergence criterion is satisfied

As in the case of HAC, we de�ne the similarity of a document to a cluster by the

group average similarity. Our exit criterion in Step 4 can be met by simply running

the algorithm for 10 iterations (although we observed that often far fewer were needed

for convergence.)

It is worth noting that manywell-known clustering algorithms, such as k-means [98],

are instances of iterative clustering techniques. Moreover, such techniques (using ap-

propriate similarity measures) can be viewed as hard assignment variants of proba-

bilistic clustering techniques, such as AutoClass, that seek to produce models maxi-

mizing the likelihood of the data [46, 87, 117]. Unfortunately, since the optimization

performed by iterative clustering is in a non-convex space, the initialization in Step

1 will a�ect the convergence point of the algorithm. We experimented using various

runs with random initial clusters, and with using HAC as a method to �nd an initial

clustering. The results of the former were often comparable and in some cases worse

than the latter. Thus, we report only on the experiments where HAC determined the

initial set of clusters.

3The random assignment of documents to clusters is one simple, commonly used method of

initialization.
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Dataset U-ML U-AM U-NGM S-ML S-AM S-NGM Cos TFIDF

D1 0.14 0.09 0.22 0.27 0.30 0.34 0.41 0.26

D2 0.16 0.11 0.26 0.35 0.38 0.43 0.47 0.28
D3 0.25 0.22 0.42 0.35 0.42 0.49 0.54 0.35

D4 0.17 0.11 0.31 0.34 0.38 0.48 0.52 0.32
D5 0.26 0.16 0.40 0.37 0.41 0.48 0.63 0.47

Table 6.1: Ratios of average inter-label to intra-label similarity.

6.4 Results

The objective of the experiments we describe in this section is to measure the

e�cacy of our proposed overlap measure, as well as to test the di�erent estimation

schemes for the computation of the expected overlap between documents. We are also

interested in evaluating the e�ect of axis scaling on the expected overlap measure

revealed from the derivation of the cosine coe�cient. As will be seen below, the

scaled NGM score of overlap performs better (in some case dramatically better) than

any other score we tested, including the cosine coe�cient and the TFIDF weighting

method commonly used in IR.

To evaluate these clustering methods, we continue to use the evaluation criteria

introduced in the previous chapter. Since we are interested in comparing the various

probability estimation schemes as well as the absolute accuracy of our method, we

a priori speci�ed the number of clusters to be �tted in all the clustering runs to be

the number of known class labels in the data. Recall, however, that the clustering

algorithm is given no information about the true label of each document.

In a more general setting, the automatic determination of a good number of clus-

ters is an open question. Nevertheless, we believe that in an interactive context, such

as that o�ered by SONIA, it is easy for users to generate di�erent numbers of clusters

with the system and simply keep the one that best �ts their speci�c organizational

needs. In essence, the end-user is providing their own subjective model selection cri-

terion in this task. Hence, the question of automatically determining the number of

clusters (i.e., selecting the proper model) may be deferred to future work without

seriously impinging on the development of SONIA.
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The experiments reported here were conducted on the same subsets of the Reuters-

22173 dataset used in the previous chapter. They are described in Table 5.1. Note,

that we did not apply the feature selection techniques described in Chapter 5 to these

datasets for the experiments conducted here. We did, however, use the same standard

stop word elimination and Zipf's-Law-based feature selection described previously.

We empirically evaluated our measure of probabilistic overlap, using a number of

di�erent estimation schemes. First, we computed document overlap using the ML,

AM, and GM estimates for P(Y = w j d;M). In these cases we did not scale the

axes of the word space, so these computations are denoted \Unscaled" (U-). We then

modi�ed the computation of document overlap to include a scaling factor based on

the marginal probability of word appearance, yielding

X
w2di\dj

P(Yi = w j di;M) � P(Yj = w j dj;M)

PML(Y = w jM)
: (6.19)

We identify these runs as \Scaled" (S-). For comparison, we also performed clustering

using the cosine coe�cient (with square root dampening) as a similarity score (as

in Eq. 6.15). Also, recognizing the extensive use of TFIDF weighting in IR as an

alternate means of term scaling, we also used this weighting scheme, in conjunction

with the cosine rule (without square root dampening), as yet another similarity score

for comparison. For our TFIDF weighting we employed the commonly used scheme

given by Eq. 2.5.

Seeking to better characterize the datasets in our study according to the di�culty

of recovering the underlying class structure, we also measured the ratio of the average

inter-label similaritywith the average intra-label similarity using the various similarity

measures. These values, shown in Table 6.1, indicate the relative di�culty we would

expect each measure of similarity to have with each dataset. An increase in these

values indicates that documents within a class appear more and more similar to

documents outside the class, thus making the recovery of the true class structure

much more di�cult. From these values we �nd that datasets D1, D2, and D3 are

clearly in order of increasing di�culty for all the similarity measures. Datasets D4

and D5 show more relative variability. However, D5 is the most di�cult dataset



CHAPTER 6. A NEW MODEL FOR DOCUMENT CLUSTERING 90

Dataset U-ML U-AM U-NGM S-ML S-AM S-NGM Cos TFIDF

D1 95.7% 95.7% 95.1% 94.7% 95.3% 97.7% 99.0% 96.1%

D2 93.1% 95.9% 98.9% 86.7% 91.0% 95.3% 94.6% 90.6%
D3 68.2% 77.5% 76.8% 88.2% 83.7% 96.9% 79.2% 87.5%

D4 76.0% 52.7% 76.2% 90.6% 89.5% 94.6% 44.1% 57.6%

D5 74.2% 78.5% 44.2% 64.8% 72.8% 73.5% 49.7% 49.2%

Table 6.2: Accuracy percentages from hierarchical agglomerative clustering.

Dataset U-ML U-AM U-NGM S-ML S-AM S-NGM Cos TFIDF

D1 97.9% 99.0% 98.1% 99.2% 99.2% 99.4% 99.4% 99.4%

D2 97.4% 99.1% 98.5% 92.5% 97.0% 98.5% 97.0% 95.7%
D3 68.5% 79.6% 79.6% 95.2% 94.5% 95.8% 76.7% 92.4%
D4 90.0% 90.5% 88.1% 93.4% 93.4% 95.9% 80.9% 60.0%
D5 75.3% 68.0% 68.4% 70.8% 75.1% 79.7% 77.6% 52.7%

Table 6.3: Accuracy percentages from iterative clustering using HAC seeding.

when averaged over all the methods. These relative degrees of cluster identi�cation

di�culty are clearly re
ected in the results of our experiments.

The accuracy percentages for clustering using HAC are given in Table 6.2, with

the best results for each dataset boldfaced. Those for iterative clustering, using HAC

as an initialization, are given in Table 6.3, and again the best results for each dataset

are boldfaced. We note that applying the iterative optimization after performing

HAC almost always leads to improved results, as seen in the increases in accuracy

from Table 6.2 to Table 6.3. Hence, we focus our attention on Table 6.3.

Our �rst conclusion is that the use of axis scaling often improves the performance

of the similarity measure using ML, AM, and NGM estimates. As a matter of fact,

the accuracy is increased in 11 cases (often drastically), is decreased in 3 cases (only

slightly), and remains unchanged in 1 case. This improvement re
ects the obvious

fact that words are not distributed uniformly in document collections, and taking

advantage of this information can be of use in clustering.

Our second, and most important, conclusion highlights the utility of S-NGM as
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a similarity score. In general, the scaled probabilistic similarity measures using ML,

AM, and NGM perform extremely well in comparison to both the cosine and TFIDF

similarity scores, which are currently the state of the art in information retrieval. Most

signi�cantly, we draw the reader's attention to the S-NGM similarity score, which

always produces an accuracy rate comparable to or much greater than that of either

the cosine or the TFIDF methods! Noting that the cosine coe�cient is equivalent

to a scaled but unnormalized GM estimate, we see that the use of normalization to

obtain true probabilities, as in the S-NGM case, not only can preserve more of the

probabilistic 
avor of our overlap measure, but also can have a signi�cant bene�cial

impact on the empirical performance. Finally, in terms of absolute performance, we

�nd that the accuracy �gures obtained using S-NGM show that it is quite suitable

for use in an end-user system like SONIA.

6.5 Comparison With Mixture Modeling

One of the original motivations for carrying out the work in this chapter stemmed

from the poor results obtained previously in using probabilistic mixture modeling

for document clustering. Thus, to further highlight the e�cacy of our new method,

we seek to compare it with probabilistic mixture modeling (using AutoClass). As

explained in Chapter 5, using AutoClass requires that documents be represented as

binary vectors (rather than word frequency counts). Then document clusters are

obtained by �tting mixtures of independent binomial distributions over word appear-

ances in the documents. Note that this Boolean representation has two immediate

consequences: (1) it loses word frequency information and (2) it treats evidence about

whether or not a word appears in a document in a symmetrical manner.

The loss of word frequency estimation may be remedied by the use of more com-

plex statistical models (e.g., parametric distributions, such as bounded Gaussians or

Poissons, over word frequencies) to �t the data. This approach, however, requires a

commitment to a particular parametric model of word appearance. Our initial in-

vestigation along these lines, using bounded Gaussian distributions, indicates that

this approach may not be promising. Still, as noted in Chapter 2, the loss of word
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HAC HAC + Iter AutoClass
Dataset S-NGM Cos S-NGM Cos S-NGM Cos Random

D1 97.7% 60.5% 99.6% 99.6% 97.9% 61.7% 46.7%

D2 92.3% 64.2% 94.6% 86.1% 91.0% 64.4% 60.1%
D3 70.9% 77.2% 70.9% 84.4% 64.7% 72.7% 57.1%

D4 76.0% 48.2% 85.4% 56.7% 70.6% 46.4% 57.4%

D5 77.4% 49.2% 77.3% 56.2% 72.2% 48.4% 44.7%

Table 6.4: Accuracy percentages using binary data.

frequency information alone may not be an especially important concern.

However, in the context of text clustering, the symmetrical treatment of evidence

is more problematic. By \symmetrical treatment" we mean that word appearance

and absence are given the same weight in a binomial distribution such as the one

described above. One would expect, however, that the appearance of particular words

in a text would be more indicative of a particular topic than the absence of some other

word. Note that our probabilistic model of documents (which is based on a single

multinomial) places much more importance on the information about the appearance

of words than on their absence. Thus, the model matches our intuitions about word

usage in text.

To test these arguments, we convert the datasets previously described to binary

representations. The objective is to compare the two probabilistic models on fair

grounds by removing the word frequency information. We then cluster this data, using

the S-NGM and cosine similarity scores. (We do not compare the TFIDF similarity

score here since it requires term frequency information to compute meaningfully).

As before, we use both HAC alone and HAC followed by iterative clustering as the

clustering methods. We also run AutoClass (which is a priori given the proper number

of clusters to �nd), with initial clusters set with the results from HAC or via random

seeding. To help alleviate the problems with bad initial conditions in the random

case, we run AutoClass multiple times with di�erent random initial clusters, and

report the results for the best clustering chosen according to AutoClass's own model

selection criterion. The results of these experiments are given in Table 6.4.
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As expected, the lack of word frequency information generally hinders both S-

NGM and cosine across both non-AutoClass clustering regimes. As we saw in the

previous chapter, AutoClass with random initialization fails to �nd any real structure

in any of the datasets. Furthermore, even when \reasonable" initial clusters are pro-

vided by HAC (using S-NGM and cosine), AutoClass outputs �nal clusters that are

worse than the other methods. Thus, we believe that using our new model for docu-

ment clustering, especially with the S-NGM estimate, can overcome the performance

problems witnessed when applying mixture models to text.

As an aside, we note that while the intuition about asymmetry of evidence is

useful for text clustering where categories must be discovered, it generally does not

hold true for text classi�cation tasks where the categories are known a priori. Recent

work [115] has tried to address this issue more directly, arguing in favor of incorpo-

rating frequency information in classi�cation. Nevertheless, it has also been observed

empirically that applying such symmetric probabilistic models to text classi�cation

problems is still quite successful [110, 95]. We discuss the classi�cation problem more

fully in the next three chapters.

6.6 Conclusion

We have presented a probability-based measure for document similarity that is quite

e�ective for clustering. We have also shown how the widely used cosine similarity

coe�cient can be captured as a particular form of probability estimation within our

framework. Moreover, this formulation of the cosine coe�cient has revealed a scaling

factor that can be e�ectively integrated into our probabilistic framework and that

yields results superior to those of traditional IR methods. Most importantly, the

absolute performance of our new clustering model is good enough to make it a useful

component of SONIA.

Although we do not pursue it here, we further point out that our similarity score

can easily be extended to include more sophisticated notions of document overlap,

based on equivalence classes of words (e.g., synonyms), phrases, or, in general, any

function on groups of words in the corpus. In this way, our score can capture the
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full generality of probabilistic indexing [56] techniques used in other tasks (such as

document retrieval). This extension can be performed by computing the expected

document overlap as a sum over multiple multinomial distributions (one for each set

of mutually exclusive functional events).

For example, say we wished to consider both single word and two-word phrases

(i.e., bi-grams) in computing the overlap between documents. We could simply aug-

ment our current similarity score with another summation which computed the over-

lap in two-words phrases between documents. Thus, our �nal similarity score would

incorporate two sums: one for the overlap in single words and another for the overlap

in two-word phrases. The probabilities used in each sum would be normalized sepa-

rately since the space of single words and two-word phrases can more easily be de�ned

by two separate multinomial distributions, rather than trying to convolve them into

one and somehow deal with the fact that the events are not mutually exclusive (i.e.,

a two-word phrase also constitutes two separate single word events). Moreover, each

sum would be weighted in the overall similarity measure according to the relative

in
uence we believe single words and two-word phrases to have in determining the

topic of a document.

In this way we will be able to easily incorporate much more information than

simple word frequencies into our similarity score. Moreover, the parameters de�ning

the contributions of di�erent words or functional characteristic of the documents

to the overall similarity score in these cases can be learned directly from the data.

Finally, we note that another advantage of a probability-based score is the possibility

of easily fusing information coming from di�erent modalities (such as video and audio)

into similarity scores over multimedia domains. Indeed, we have already conducted

some very preliminary, but promising, experiments in applying our similaritymeasure

to problems in other domains such as video segmentation, using di�erent estimation

techniques as appropriate. This continuing work, however, is beyond the scope of the

topic of text clustering discussed here.
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Classi�cation
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Chapter 7

Feature Selection for Classi�cation

7.1 Introduction

Having seen how clustering may be used to discover topics in a collection of docu-

ments, we now turn our attention to classifying documents into pre-de�ned categories.

Note that such categories can either be the result of automatic clustering techniques

or may be manually de�ned by a user. Moreover, as systems such as SONIA be-

come more widely available, it is also likely that such categorization schemes may be

frequently produced by some semi-automated combination of these two methods.

In the classi�cation (i.e., supervised learning) task, we are given a training set of

labeled �xed-length feature vectors, or instances, from which to induce a classi�cation

model. This model is then used to predict the class label for a set of unlabeled

instances (i.e., uncategorized documents). Thus, the information about the class that

is inherent in the features determines the accuracy of the model. Theoretically, having

more features should give us more discriminating power. However, the real world,

especially in the case of document classi�cation, provides us with many reasons why

this theoretical observation does not generally hold in practice.

It is well-known that the number of features can have a strong e�ect on the per-

formance of a learning algorithm. First, the time requirements for an induction algo-

rithm often grow dramatically with the number of features, rendering the algorithm

impractical for problems with a large number of features. Since the computational

96
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complexity of such learning algorithms depends heavily on the number of features, it

is often useful to reduce the feature set prior to constructing a classi�er.

Furthermore, many learning algorithms, such as decision trees and, obviously,

Bayesian classi�ers, can be viewed as performing (a biased form of) estimation of the

probability of the class label given a set of features. In domains such as text with

a large number of features, this distribution is very complex and of high dimension.

Unfortunately, in the real world, we are often faced with the problem of limited data

from which to induce a model. This limited availability of data makes it very di�cult

to obtain good estimates of the many probabilistic parameters. Thus, the estimation

of more parameters resulting from using more features in a classi�er can cause the

detrimental e�ects of increased parameter variance to outweigh potential gains that

might be realized from the information contained in the additional features. This

problem is best characterized by the bias/variance tradeo� [61].

Moreover, irrelevant and redundant features also cause problems in this context

as they may confuse the learning algorithm by helping to obscure the distributions

of the small set of truly relevant features for the task at hand. The inclusion of such

irrelevant or redundant features in the training data can, thus, degrade the accuracy

of a learning algorithm, causing it to use less than optimal features for classi�cation.

In order to avoid over-�tting the model to the idiosyncrasies of the training data

and thereby reduce the variance in the estimation of the model parameters, many

algorithms employ the Occam's Razor [13] bias to build as simple a model as possible

that still achieves some acceptable level of performance on the training data. This

bias often leads us to prefer a small number of relatively predictive features over a

very large number of features that, taken in the proper, but complex, combination,

are entirely predictive of the class label.

If we reduce the set of features considered by the algorithm, we can therefore

serve two purposes. We can considerably decrease the running time of the induction

algorithm, and we can increase the accuracy of the resulting model. In light of this,

a number of researchers have recently addressed the issue of feature subset selection

in machine learning. As noted by John, Kohavi and P
eger [84], this work is often

divided along two lines: �lter and wrapper models.
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In the �lter model, feature selection is performed as a preprocessing step to in-

duction. Thus, the bias of the learning algorithm does not interact with the bias

inherent in the feature selection algorithm. Two of the most well-known �lter meth-

ods for feature selection are RELIEF [88] and FOCUS [5]. In RELIEF, a subset of

features is not directly selected, but rather each feature is given a weighting indicating

its level of relevance to the class label. RELIEF is therefore ine�ective at removing

redundant features since two predictive, but highly correlated, features are both likely

to be highly weighted. The FOCUS algorithm conducts an exhaustive search of all

feature subsets to determine the minimal set of features that can provide a consistent

labeling of the training data. This consistency criterion makes FOCUS very sensitive

to noise in the training data. Moreover, the exponential size of the power set of the

features makes this algorithm impractical for domains with more than 30 features.

Another feature selection methodology which has recently received much atten-

tion is the wrapper model [84, 20, 104]. This model searches through the space

of feature subsets using the estimated accuracy from an induction algorithm as the

measure of goodness for a particular feature subset. Thus, the feature selection is

being \wrapped around" an induction algorithm, so that the bias of the operators

that de�ne the search and that of the induction algorithm strongly interact. While

these methods have encountered some success on induction tasks, they are often pro-

hibitively expensive to run and can be intractable even for a few hundred features.

Furthermore, the methods leave something to be desired in terms of theoretical justi-

�cation. While an important aspect of feature selection is how well a method helps an

induction algorithm in terms of accuracy measures, it is also important to understand

how the induction problem in general is a�ected by feature selection.

We address here both theoretical and empirical aspects of feature selection with

respect to the classi�cation task. We describe a formal framework for understanding

feature selection, based on ideas from Information Theory [35]. We then present an

e�cient implemented algorithm based on these theoretical intuitions. The algorithm

overcomes many of the problems with existing methods: it has a sound theoretical

foundation; it is e�ective in eliminating both irrelevant and redundant features; it is

tolerant to inconsistencies in the training data; and, most importantly, it is a �lter
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algorithm which does not incur the high computational cost of conducting a search

through the space of feature subsets as in the wrapper methods, and is therefore

e�cient for domains containing several hundred or even thousands of features.

The formal framework for feature selection is presented in Section 7.2. Section 7.3

presents an algorithm for feature selection based on this framework. Empirical results

for this algorithm are given in Sections 7.4 and 7.5. We conclude in Section 7.6 with

a discussion of this work.

7.2 Theoretical Framework

Recall that a classi�er is a procedure that takes as input a data instance x which is an

assignment of values x1; : : : ; xn to a set of features X = (X1; : : : ;Xn). The classi�er

then predicts that the instance is a member of one of K possible classes c1; : : : ; cK.

The classi�er must make its decision based on the assignment x associated with

an instance. Optimistically, the feature vector will fully determine the appropriate

classi�cation. However, this is rarely the case: we do not typically have access to

enough features to make this a deterministic decision. Therefore, we use a probability

distribution to model the classi�cation function. For each assignment of values x to

X , we have a distribution P(C j X = x ) on the di�erent possible classes, C. A

learning algorithm implicitly uses the empirical frequencies observed in the training

set | an approximation to the conditional distribution P(C j X ) | to construct a

classi�er for the problem.

Let us consider the e�ect of feature space reduction on the distribution that char-

acterizes the problem. Let Y be some subset of X . Given a feature vector x , we

use xY to denote the projection of x onto the variables in Y . Consider a particu-

lar data instance characterized by x . In the original distribution, this data instance

induces the distribution P(C j X = x ). In the reduced feature space, the same

instance induces the (possibly di�erent distribution) P(C j Y = xY ). Our goal is

to select Y so that these two distributions are as close as possible. As our distance

metric, we use the information-theoretic measure of relative entropy given in Eq. 5.1.

Thus, we can view process this as selecting a set of features Y which causes us to
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lose the least amount of information in these distributions. While other measures

of separability (notably divergence) have been suggested in the statistics community

for feature selection [58], these measures are often aimed at selecting features to en-

hance the separability of the data and may have di�culty in very large dimensional

spaces. Hence, they bring with them an inherent bias which may not be appropriate

for particular induction algorithms. Our method seeks to eliminate non-informative

features and thereby allow induction methods to employ their own bias in a much

reduced feature space.

Recall that the relative entropy between two distributions � and �, denoted

D(�; �), measures the extent of the \error" made by using � as an approximation

to �. Thus, this measure is particularly suitable for our application, with P(C j x )
in the role of the \more informed" distribution �, and P(C j xY ) in the role of �.

In this case, the probability space 
 is the set of possible classi�cations fc1; : : : ; cKg.
Therefore, we de�ne

�Y (x ) = D(P(C j x );P(C j xY )) : (7.1)

Of course, in order to have a measure which allows us to compare one feature

set Y to another, we must integrate the values �Y (x ) for di�erent feature vectors x

into a single quantity. Naively, we might think to simply sum the relative entropy

for the di�erent feature vectors, or to consider the maximum relative entropy over

all feature vectors. Neither of these ideas take into consideration the fact that some

feature vectors are far more likely to occur than others, and that we might not mind

making a larger mistake in certain rare cases. Therefore, we want to �nd a feature

set Y for which �Y =
P
x P(x )�Y (x ) is reasonably small.

Clearly, the feature set that minimizes this quantity is simplyX , since that main-

tains the exact distribution. This observation suggests that we use a backward elimi-

nation algorithm, where at each state we eliminate a feature Xi in a way that allows

us to remain as close to this distribution as possible. Intuitively, we use a greedy al-

gorithm where we eliminate the feature Xi which would cause us the smallest increase

in �. That is, we have a current feature set Y , initially set to X . At each stage, we

want to eliminate the feature Xi such that �(Y�fXig) is as close as possible to �Y .
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Unfortunately, it is impractical to simply implement this idea as described, since

the computation of �Y is exponential in the number of features in our domain.

Furthermore, we cannot really compare our approximate distribution to the true

conditional distribution P(C j X ), since the true distribution is not available to us.

Rather, we have a training set which provides us only a rough approximation to it. In

those cases where we have a large number of features, the number of data instances

in our training set corresponding to any particular assignment x will be very small.

Therefore, as the number of features grows, our ability to use the training set to

approximate this conditional distribution decreases (exponentially).

As we now show, we can utilize ideas from probabilistic reasoning to circumvent

this problem (to some extent). Intuitively, features that cause a small increase in �

are those that give us the least additional information beyond what we would obtain

from the other features in Y . We can capture this intuition via the formal notion of

conditional independence, de�ned in Chapter 3.

Proposition 6 Let Y be a subset of features in X , and Xi be a feature in Y . Then

Xi is conditionally independent of C given Y 0 = Y �fXig if and only if �Y 0 = �Y .

Thus, we can eliminate a conditionally independent feature Xi from Y without in-

creasing our distance from the desired distribution. Intuitively, removing a feature

which is \almost" conditionally independent will not make our distance grow too

large.

While it is also impractical to test for conditional independence given Y 0, this

reformulation of the problem points the way to a solution. Intuitively, if all of the

information in Xi is subsumed by the features in Y 0, it is almost certainly subsumed

by some subset of the features in Y 0 as well. After all, it is very unlikely that all of

these (usually very many) features are actually required.

De�nition 2 [125, p. 97] Let M be some set of features which does not contain Xi.

We say that M is a Markov blanket for Xi if Xi is conditionally independent of

(X[C)�M � fXig given M .
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It is easy to see that ifM is a Markov blanket of Xi, then it is also the case that

the class C is conditionally independent of the feature Xi given M . Therefore we

give the following corollary which is obtained directly from Prop. 6 and Def. 2:

Corollary 7 Let Y be a subset of features in X , and Xi be a feature in Y . Assume

that some subset M of Y is a Markov blanket of Xi. Then �Y 0 = �Y .

However, the Markov blanket condition is stronger than requiring that Xi and C

be conditionally independent, given M . It requires that M subsume not only the

information that Xi has about C, but also about all of the other features. While

it might be di�cult to �nd such a set M , use of Markov blankets as the basis for

feature elimination has a number of very desirable properties that we presently ex-

plore. Ideally, we would like to use the Markov blanket condition, if it is feasible to

implement in a practical algorithm.

Intuitively, we want to remove features for which we �nd a Markov blanket within

the set of remaining features. We now show that features judged as unnecessary

based on this criterion remain unnecessary during the rest of the process. Assume,

for example, that we remove a feature Xi based on a Markov blanket M . At some

later phase, we might remove some other feature Xj 2 M . In general, the removal

of Xj might now render Xi relevant again; that is, if we were to add Xi back in, we

might not be able to remove it again. As we now show, this is not the case.

Theorem 8 Let Y be our current set of features, and assume that some (previously

removed) feature Xi 62 Y has a Markov blanket within Y . Let Xj 2 Y be some

feature which we are about to remove based on some Markov blanket within Y . Then

Xi also has a Markov blanket within Y � fXjg.

Proof: The proof is based on the basic independence properties of probability distri-

butions, as described in [125, p. 84]. We will use the notation I(X;Y j Z) to denote
the conditional independence of two variables or sets of variables X and Y given a

set of variables Z. Let Mi � Y be the Markov blanket of Xi (note that this is not

necessarily the same Markov blanket which we used in order to remove Xi in the

�rst place); let Mj � Y be the Markov blanket which we are now using to remove
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Xj . It is straightforward to show that if Mi does not contain Xj , then it remains

a Markov blanket for Xi even after the removal of Xj from Y . Therefore, consider

the case where Xj 2Mi and de�ne Mi = M
0
i [ fXjg. We will show that M 0

i [Mj

is a Markov blanket for Xi. Let Z denote Y � fXjg � (M 0
i [Mj). We need to

show that I(Xi;Z j (M 0
i [Mj)). From the Markov blanket assumption for Xj and

the Decomposition property, we have that I(Xj; (Z [M 0
i ) j Mj). Using the Weak

Union property, we obtain that I(Xj;Z j (M 0
i [Mj)). Similarly, we can derive that

I(Xi; (Z [ (Mj �M 0
i )) jM 0

i [fXjg), and therefore that I(Xi;Z jM 0
i [Mj [fXjg).

From these two facts, we can use the Contraction property to show the desired result.

Thus, we conclude the Markov blanket criterion only removes attributes that are

really unnecessary. As interesting is the fact that the converse of this statement is also

true. Two types of attributes are generally perceived as being unnecessary: attributes

that are irrelevant to the target concept, and attributes that are redundant given

other attributes. The Markov blanket criterion captures both of these. Attributes

that are irrelevant will be unconditionally independent of everything, so they will be

removed based on a Markov blanket consisting of the empty set of features. Even if we

have a set of attributes that are correlated only with each other, but are completely

independent of the class variable, the Markov blanket criterion will remove them one

by one: at each stage, the remaining irrelevant features will be used as a Markov

blanket for the one we are trying to remove. If, on the other hand, we have a feature

whose value is fully determined (or even probabilistically determined) by some set S,

we will be able to remove it by using S as its Markov blanket.

It is interesting to compare our approach to another, seemingly very similar one,

often used in the literature [153]. There, rather than starting with the full feature

set and eliminating features, we begin with an empty set of features and add features

one by one. Usually, the measure used to add features is information gain: we

add to our current Y the feature Xj that maximizes the expected relative entropy

between P(C j Y ) and P(C j Y [ fXjg). It is easy to show that our idea of using

a Markov blanket to estimate the relative entropy can also be applied in the case of

forward selection. Therefore, it might seem that the two approaches are essentially
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Figure 7.1: Forward vs. backward selection

minor variants on the same theme. We claim that this is not the case: Our formal

framework provides us with the tools to compare forward selection and backward

elimination, and justi�es our choice of backward elimination.

Recall that our goal was to remain as close as possible to the \correct" conditional

distribution P(C j X ). By removing features that only take \small steps" away from

this distribution, we can remain close to it. By contrast, the forward selection scheme

starts out with the prior distribution P(C) given no features. It then tries to take

\large steps" away from that distribution. If the goal of this process is to get as

close as possible to the \right" distribution, the problem becomes clear. There is

no guarantee that taking a large step away from initial distribution actually gets us

closer to the goal distribution.

For example, as illustrated in Figure 7.1, addingXj might let us take a much larger

step than adding Xi, but the resulting distribution P(C j Xj) is actually further from

the \right" distribution than P(C j Xi). As we show in Section 7.4, this behavior

actually occurs on some of our data sets.

7.3 An Approximate Algorithm

Previously, we showed how we can eliminate a feature Xi from a candidate feature

set Y by �nding a Markov blanket M for Xi. Unfortunately, there might not be

a full Markov blanket for a feature, but rather only an approximate one that sub-

sumes the information content of the feature. Furthermore, �nding either a true or

an approximate Markov blanket might be computational infeasible. We now present

a simple algorithm which provides a heuristic approach to dealing with this problem.
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Broadly, our algorithm iteratively selects one candidate set Mi for each feature Xi,

and uses a rough heuristic to estimate how closeMi is to being a Markov blanket for

Xi; the feature Xi for which Mi is closest to being a Markov blanket is eliminated,

and the algorithm repeats. Our intuition for constructing a candidate Markov blan-

ket is as follows: Assume that Xi does, in fact, have a Markov blanket Mi. We can

think of Xi as directly in
uencing the features in Mi. Therefore, these features will

tend to be quite strongly correlated with Xi. Other features, on the other hand, are

conditionally independent of Xi givenMi. Thus, Xi in
uences them only indirectly,

via Mi. There is a well-known \folk-theorem" that probabilistic in
uence tends to

attenuate over distance; that is, direct in
uence is typically stronger than indirect

in
uence. (This has been shown formally and empirically in certain cases [45, 97].)

Therefore, we heuristically choose, as an approximation to the Markov blanket, some

set of K features which are strongly correlated with Xi. We tested a number of

feature \correlation" metrics including statistical correlation, mutual information be-

tween features, class conditional mutual information and \pair-wise" relative entropy

(described below). The latter measure provided the best initial results and was used

in the experiments reported here.

We now want to �gure out how close Mi is to being a Markov blanket for Xi.

Unfortunately, evaluating the conditional independence expression in De�nition 2 is

typically very expensive. In fact, while the Markov blanket condition has many desir-

able properties outlined above, it is not feasible to directly implement in a practical

algorithm. Rather, we use the intuitions a�orded by this property to �nd a suitable

approximation. First, we note that if Mi is really a Markov blanket for Xi, then

D(P(C jM = xM ;Xi = xi);P(C jM = xM )) = 0

for any assignment of feature values xM and xi to M and Xi, respectively.

While the Markov blanket condition requires that M subsume all information

that a feature Xi has about both the class C and all other features, we really only

care about the in
uence of a feature Xi on C. Thus, rather than trying to �nd a true

Markov blanket, we can simply search for a set of featuresM which subsumes all the
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information which Xi has about C, without regard to the in
uence Xi may have on

any other features. We therefore de�ne the expected relative entropy:

�Y (Xi jMi) =
X
xMi

;xi

P(Mi = xMi
;Xi = xi)�

D(P(C jM = xM ;Xi = xi);P(C jM = xM )) : (7.2)

If we assume that P(C j Y ) is a good approximation to P(C j X ), then our goal is

to stay close to the former. Note that this is an approximation since (among other

reasons) relative entropy does not satisfy the triangle inequality, so that we cannot

conclude anything about D(P(C j X );P(C j Y � fXig)) from D(P(C j X );P(C j
Y )) and D(P(C j Y );P(C j Y �fXig)). IfMi is, in fact, a Markov blanket for Xi,

then �Y (Xi jMi) = 0. (This follows from the same techniques used in Corollary 7.)

Hopefully, if it is an approximate Markov blanket, or at least subsumes most of the

information that Xi has about C, then this value will be low.

It is also worth noting that our measure for feature selection given in Eq. 7.2

bears important similarities to other measures in information theory which we show

below. Nevertheless, the derivation for the measure presented above is based on very

di�erent intuitions than the standard channel coding arguments on which much of

information theory is based [35].

Theorem 9 Let MI(C;Xi jMi) denote the mutual information between the class C

and feature Xi given Mi. Then, �Y (Xi jMi) =MI(C;Xi jMi)

Proof:

�Y (Xi jMi) =
X
xMi

;xi

P(xMi
; xi) �D(P(C j xMi

; xi);P(C j xMi
)) (7.3)

=
X
xMi

;xi

P(xMi
; xi) �

X
c

P(c j xMi
; xi) log

P(c j xMi
; xi)

P(c j xMi
)

(7.4)

=
X
xMi

;xi

X
c

P(xMi
; xi) � P(c j xMi

; xi) log
P(c j xMi

; xi)

P(c j xMi
)

(7.5)

=
X

c;xMi;xi

P(c;xMi
; xi) log

P(c j xMi
; xi)

P(c j xMi
)

(7.6)
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=
X

c;xMi;xi

P(c;xMi
; xi) log

P(c j xMi
; xi)P(xi j xMi

)

P(c j xMi
)P(xi j xMi

)
(7.7)

=
X

c;xMi;xi

P(c;xMi
; xi) log

P(c; xi j xMi
)

P(c j xMi
)P(xi j xMi

)
(7.8)

= MI(C;Xi jMi) (7.9)

Given Thm. 9, it is trivial to show that if the Markov blanketMi for feature Xi is

;, then �Y (Xi j Mi) = �Y (Xi) = MI(C;Xi). Thus, if we harness no conditioning

information (i.e., assume that each feature's in
uence on the class variable is not

a�ected by any other feature) our feature selection measure reduces to the mutual

information between the class and each variable. While this simpler measure has

been used for feature selection in previous work [153, 175], our derivation places it on

a �rmer theoretical foundation with respect to the classi�cation task. Moreover, we

show how conditioning information should be incorporated into this measure and the

underlying assumption of independence made when such information is not used.

Returning to Eq. 7.2, we can make use of this approximation to de�ne the following

feature selection algorithm.

Procedure SupervisedFeatureSelection

1. 8i; j i 6= j Compute 
ij  �Y (Xi j Xj)

2. R X

3. while (jRj > nr) do

3.1. For each feature Xi 2 R do

3.1.1. Mi  the set of K features fXj1 ; : : : ;XjKg in

R � fXig for which 
ij is smallest.

3.2. 8Xi Compute �R(Xi jMi).

3.3. Xelim  Xi for which �R(Xi jMi) is minimal

3.4. R R � fXelimg.

This algorithm is simple and fairly easy to implement. However, it is clearly

suboptimal in many ways, particularly due to the very naive approximations that it



CHAPTER 7. FEATURE SELECTION FOR CLASSIFICATION 108

uses. We now discuss the consequences of this and some ways in which the algorithm

can be improved. First, the current algorithm eliminates a pre-speci�ed number of

features (determined by the user set parameter nr), and constructs setsMi of a �xed

pre-speci�ed size K. It is easy to have the algorithm stop automatically when the

expected relative entropy estimate for dropping any remaining feature gets too large.

It is also fairly straightforward to extend the algorithm to pick a di�erent size Mi

based on the number of features which were highly correlated with Xi. There is,

however, an important tradeo� that must be kept in mind. Theoretically, the larger

the conditioning set, the likelier it is to subsume all of the information in the feature,

thereby forming a Markov blanket. On the other hand, larger conditioning sets frag-

ment our training set into small chunks (corresponding to the di�erent assignment

of values to the features in Mi), reducing the accuracy of our probability, and hence

relative entropy, estimates. Therefore, it is crucial, when doing this modi�cation,

to have a penalty term associated with adding additional features to Mi. While we

do not pursue the issue of using di�erent size Markov blankets for each feature, we

do experiment with automatically determining the number of features to eliminate

by comparing the increase in relative entropy as features are eliminated with the

classi�cation performance of a learning algorithm. We further note that simple cross-

validation over a range of feature set sizes can also help determine a good number of

features to eliminate with this algorithm.

More importantly, our techniques for choosing the candidate Markov blanketsMi

and for evaluating how close each one is to ful�lling the Markov blanket assumption

require closer scrutiny. In particular, the expected relative entropy does not really

test for the Markov blanket property. The expected relative entropy will also have

value 0 if Xi is conditionally independent of C givenMi, but we have already pointed

out that conditional independence is a weaker property than the Markov blanket

assumption. In fact, using conditional independence as a selection criterion can lead

to counterintuitive behavior. For example, as we can see in our results, increasing the

size K of the conditioning set can actually cause the results to degrade. While some

of this degradation is due to fragmentation of the training set (see below), some of

it is caused by the fact that conditional independence is not a monotonic property.
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That is, it is possible for a certain feature to be conditionally independent of C given

some conditioning set M , but strongly correlated with C given a strict superset of

M . In a way, this fact is not surprising. It is well-known that additional information

can cause correlations that were not present before to appear [125].

To illustrate this phenomenon in our context, consider a hypothetical text classi�-

cation problem, where (as described in Chapter 2) the data instances are documents,

the features are the presence or absence of words, and the classes are document top-

ics. The word mining is not signi�cantly correlated with the topic machine-learning.

Therefore, if we were to run our algorithm with K = 0, we would probably eliminate

mining fairly early. However, this word is strongly correlated with the word data.

Moreover, if we condition on the presence of the word data, there is a strong correla-

tion between the word mining and the topic machine-learning. Thus, by putting the

word data into our conditioning set M , we have caused a seemingly irrelevant word

to become relevant. The converse can also occur, so that we can get the estimated

\relevance" of a feature 
uctuating multiple times as we change K. We believe that

the performance of our algorithm will be signi�cantly improved by the use of more

re�ned techniques (e.g., Bayesian methods) to choose a candidate (or even several

candidates) Markov blanket, and by the use of a more precise formula for evaluating

how close the di�erent candidates are to ful�lling the requirement.

As far as computational expense, our algorithm shows promise for scaling to larger

domains. The time complexity of our algorithm is quite low. Theoretically, it requires

O(n2(m+ log n)) operations for computing the pairwise relative entropy matrix and

sorting it, where n is the initial number of features and m is the number of instances.

The subsequent feature selection process requires O(rnkmcvk) time, where r is the

number of features to eliminate, v is the maximum number of distinct values that a

feature may take, k is the small, �xed number of conditioning features and c is the

number of classes. This second complexity result is due to the fact that to eliminate

a single feature, we must iterate through all the remaining features (at most n) and

for each one select the k features which are most correlated with it. To then compute

�R(Xi jMi) for each feature, requires O(mcvk) time to iterate through the m data

instances and compute the cvk entries in the conditional probability tables that we



CHAPTER 7. FEATURE SELECTION FOR CLASSIFICATION 110

must sum over. Using caching schemes, it is possible to reduce the second term by

close to a factor of n, due to the fact that an eliminated feature is likely to be in the

Mi of only a few of the remaining features. Thus, we need only recompute a newMi

and its expected relative entropy for this small number of features.

7.4 Initial Results on Non-Text Domains

In order to empirically test our theoretical model for feature selection as implemented

by our approximate algorithm, we ran a number of experiments on both arti�cial data

as well as real-world data from both textual and non-textual domains. We report �rst

on the results using non-textual data since we have a good a priori understanding

of how feature selection should a�ect this data and we can verify that our method

is working well. These datasets include: the Corral data (which was arti�cially con-

structed by John, Kohavi, and P
eger [84] speci�cally for research in feature selec-

tion), as well as the LED24, Vote, and DNA datasets from the UCI repository [119].

These datasets are detailed in Table 7.1.

Number of Number of Training Testing
Dataset Classes Features Set Size Set Size

Corral 2 6 32 128
LED24 10 24 3200 5-fold CV
Vote 2 48� 435 5-fold CV

DNA 3 180� 3186 5-fold CV

Table 7.1: Datasets from the UCI repository used in feature selection experiments.
�Re
ects Boolean encoding of feature values.

We �rst analyze the arti�cial domains. The Corral dataset has been noted by

previous researchers [84] as particularly di�cult for �lter methods since, of the 6

features in this domain, the target concept is a Boolean function of only four of the

features: (A^B)_(C^D). The �fth feature is entirely irrelevant and the sixth feature
is \correlated" with the target concept in that it matches the class label 75% of the

time. Thus, many �lter approaches which use forward selection are likely to always
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select the correlated feature. This poses a problem for certain induction methods. The

C4.5 decision tree algorithm, for example, is likely to initially split on the correlated

feature, thus fragmenting the data enough that the true target concept cannot be

recovered in the subtrees. One should note, however, that, due to the disjunctive

nature of the target function, the Naive Bayesian classi�er is actually better o� with

the correlated feature than without it. This seems to be more a shortcoming of the

simplicity of this induction method than a 
aw with feature selection methods that

eliminate the correlated feature.

We veri�ed this analysis experimentally, �nding that forward selection (even with

conditioning) always selects the correlated feature (thereby taking a \large" step

in a suboptimal direction, as in Figure 7.1). Running backward elimination with

conditioning, on the other hand, avoids this problem: we eliminate the correlated

feature, since it has no e�ect on the class distribution for the function given the

features that determine the target concept (or some large subset thereof). When

we conditioned on 2 or more features and set the algorithm to drop 2 features, it

consistently eliminated both the correlated and irrelevant features.

In the LED24 domain, we �nd a situation (albeit arti�cial) where conditioning on

correlated features actually makes it more di�cult to determine an appropriate subset

of features. This domain contains 7 relevant and 17 irrelevant features. Moreover,

the class label in the LED24 domain entirely determines the value of each relevant

feature (modulo a noise term), whereas the irrelevant features are random. Thus,

there is no dependence between features given the class label. As a result, we would

expect that conditioning on correlated features would only confuse our algorithm by

forcing it to unnecessarily estimate a larger number of probability values with the

same amount of data, thus leading to poorer estimates. Again, this conjecture was

veri�ed experimentally, as our method in fact only consistently selected the 7 relevant

features when we conditioned on no variables.

To initially test how our method of feature subset selection a�ected classi�cation,

we employed both a Naive Bayesian classi�er [46] and C4.5 [130] as induction al-

gorithms. These algorithms were applied both to the original datasets and to the
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datasets �ltered through our feature selection algorithm (using both forward selec-

tion and backward elimination). Accuracy results (and standard deviations, when

cross-validation was used) for the UCI data are given in Tables 7.2 and 7.3.

# Features Naive Bayes Accuracy
Dataset Orig.=Final K Original Forward Backward

0 84.4 84.4

1 81.3 84.4

Corral 6 = 4 2 90.6 81.3 87.5
3 81.3 87.5

4 81.3 87.5

0 72.1 � 1.0 72.1 � 1.0

LED-24 24 = 14 1 72.1 � 2.1 71.9 � 0.9 72.1 � 0.7
2 72.2 � 1.4 72.4 � 1.4

0 72.8 � 1.5 72.8 � 1.5
LED-24 24 = 7 1 72.1 � 2.1 72.2 � 1.8 72.2 � 1.8

2 72.1 � 1.5 72.1 � 0.8

0 90.1 � 1.8 90.1 � 1.8
Vote 48 = 28 1 90.1 � 1.8 90.1 � 2.7 90.1 � 2.7

2 90.3 � 3.4 90.3 � 3.4

0 92.0 � 2.7 92.0 � 2.7

Vote 48 = 8 1 90.1 � 1.8 93.6 � 1.8 92.7 � 2.5

2 95.2 � 2.6 93.1 � 5.4

0 95.0 � 0.5 95.0 � 0.5

DNA 180 = 80 1 94.0 � 0.6 95.4 � 0.7 95.5 � 0.9
2 94.9 � 0.9 94.8 � 0.6

0 94.1 � 1.0 94.1 � 1.0

DNA 180 = 30 1 94.0 � 0.6 94.2 � 1.1 94.3 � 1.1

2 92.3 � 1.8 93.8 � 1.0

Table 7.2: Accuracy percentages for Naive-Bayes using feature selection.

As seen in the accuracy results for Corral (using C4.5), Vote (using Naive Bayes

with aggressive feature elimination), and DNA, selection of the appropriate feature

set can have a large impact on classi�cation accuracy. In the DNA domain we see

some of the most dramatic results: accuracy improvements after eliminating 100,

or even 150, of the 180 features with our method! A two-tailed paired T-test over
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# Features C4.5 Accuracy
Dataset Orig.=Final K Original Forward Backward

0 81.2 75.0

1 75.0 87.5
Corral 6 = 4 2 81.2 75.0 100.0

3 81.2 100.0

4 81.2 100.0

0 71.3 � 1.2 71.3 � 1.3

LED-24 24 = 14 1 71.1 � 1.2 71.0 � 1.0 70.9 � 1.2
2 71.9 � 1.0 71.3 � 0.9

0 72.1 � 0.9 72.1 � 0.9
LED-24 24 = 7 1 71.1 � 1.2 71.3 � 1.9 71.3 � 1.9

2 71.6 � 1.3 71.5 � 1.1

0 95.7 � 1.5 95.7 � 1.5
Vote 48 = 28 1 95.2 � 1.5 95.0 � 2.8 95.2 � 2.8

2 94.5 � 1.3 94.7 � 1.3

0 95.4 � 2.9 95.4 � 2.9
Vote 48 = 8 1 95.2 � 1.5 95.9 � 1.5 95.7 � 1.5

2 95.0 � 2.5 96.0 � 2.2

0 93.6 � 0.7 93.5 � 0.7

DNA 180 = 80 1 92.3 � 0.7 93.4 � 0.8 93.3 � 0.6

2 93.6 � 1.4 93.5 � 1.1

0 93.6 � 0.2 93.6 � 0.3
DNA 180 = 30 1 92.3 � 0.7 93.6 � 0.8 93.4 � 0.7

2 91.7 � 1.5 93.3 � 1.0

Table 7.3: Accuracy percentages for C4.5 using feature selection.



CHAPTER 7. FEATURE SELECTION FOR CLASSIFICATION 114

the cross-validation folds reveals statistically signi�cant improvements (P < 0:10)

in accuracy for the Vote domain using Naive Bayes with aggressive feature selection

and in the DNA domain for backward elimination used in conjunction with C4.5.

Moreover, feature selection never signi�cantly degraded accuracy in any of the real-

world datasets from UCI tested. More importantly, however, is the fact that, in many

domains, our feature selection algorithm can make dramatic reductions in the feature

space and consequently improve running-time performance as well.

Empirically, the low running time of our algorithm allows us to deal with very

large domains in a reasonable amount of time. By way of comparison, Kohavi [90]

obtains similar accuracy results on the DNA dataset for Naive-Bayes and C4.5 using

the wrapper approach, but notes that doing so takes 15 hours on a Sun Sparc 10.

In our experiments, an ine�cient implementation of our algorithm (one that did not

utilize clever data structures to reduce the running time) reduced the DNA dataset by

100 features using between 10 and 20 minutes on the same machine 1 (depending on

the number of conditioning variables). This is a time savings of nearly two orders of

magnitude! Moreover, since our approach is a �lter method, we do not need to re-run

the algorithm for every induction algorithm we choose to run on a reduced-feature

dataset.

7.5 Results on Text Domains

Returning to our original motivation for this work, we now evaluate our feature se-

lection algorithm on the high-dimensional datasets common in text domains. The

dimensionality of such datasets present an exceptional challenge for many feature se-

lection algorithms. In particular, feature selection using a wrapper method is simply

intractable due to the prohibitive cost of running an induction algorithm thousands

of times on this very high-dimensional data. Hence, an e�cient �lter method, akin

to the one method described here, is the only suitable approach.

We begin by considering two new subsets of the Reuters document collection

1Actually, the machine we ran our initial experiments on is exactly the same machine (named

\Starry") that Kohavi used in his study.
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Data Number Number Testing
set of Docs of Words Categories Method

Reuters1 337 1675 Co�ee, Iron-Steel, Livestock 5-fold CV

Reuters2 379 1646 Reserves, Gold, GNP 5-fold CV

Table 7.4: Subsets of the Reuters document collection used for initial feature selection

experiments.

[132] and then turn our attention back to the �ve subsets of the Reuters collection

(D1 - D5) initially presented in Chapter 5. The two new datasets, named Reuters1

and Reuters2, each contain three topics (classes) and are described in more detail in

Table 7.4.

The �rst subset, Reuters1, is comprised of topics that are not likely to have many

meaningful overlapping words. Reuters2, on the other hand, contains topics which

are likely to have many similar words used in di�erent contexts across topics. In

accordance with Zipf's Law, all words which occurred less than 3 times in each dataset

were eliminated simply as a means for removing extremely rare words such as unique

names. We ran our feature selection algorithm on these two Reuters datasets in order

to reduce the feature space by 1000 features | down to nearly 1=3 its original size

| and get an initial feel for how well this algorithm would work in text domains.

The results of these experiments are shown in Tables 7.5 and 7.6, which also includes

results for forward selection. The best results for each dataset is shown in bold face

in each table.

In the Reuters1 domain, where we expect more distinct terms between topics (and

hence less feature interaction) we see that both feature selection methods have a ten-

dency to work comparably well without conditioning information, producing good

accuracy results. When conditioning is introduced, however, the results using the

backward elimination method clearly dominate those obtained using forward selec-

tion. Employing forward selection is simply inadequate for �nding good features with

conditioning information.

In the second Reuters domain, we see that employing backward elimination allows
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# Features Naive Bayes Accuracy
Dataset Orig.=Final K Original Forward Backward

Reuters1 1675 = 675 0 90.5 � 5.2 90.7 � 5.1 90.7 � 5.1

2 91.9 � 3.1 96.1 � 3.3

Reuters2 1646 = 646 0 89.9 � 2.2 92.3 � 1.7 92.3 � 1.7
2 90.6 � 2.5 94.1 � 2.8

Table 7.5: Accuracy percentages for two Reuters text datasets using Naive Bayes and

feature selection.

# Features C4.5 Accuracy
Dataset Orig.=Final K Original Forward Backward

Reuters1 1675 = 675 0 95.2 � 2.5 95.5 � 2.4 94.9 � 2.7
2 95.8 � 2.5 96.4 � 2.0

Reuters2 1646 = 646 0 91.5 � 1.2 93.0 � 0.6 93.0 � 0.6
2 91.5 � 2.9 94.9 � 2.0

Table 7.6: Accuracy percentages for Reuters text datasets using C4.5 and feature
selection.

the algorithm to make e�ective use of conditioning information to increase the accu-

racies of both induction methods in a drastically reduced feature space. The results

for Reuters2 using our backward elimination method with K = 2 are statistically sig-

ni�cant (P < 0:10) improvements over the accuracy on the original dataset. Indeed,

the combination of backward selection and using conditioning information leads to

the best accuracy results for both datasets, regardless of whether C4.5 or Naive Bayes

is used as the subsequent learning method.

As for resource consumption, eliminating 1000 features from the Reuters datasets

while making use of conditioning information took about 2.5 hours on a Sun Sparc 10.

If we were not to use such conditioning information (i.e., setK = 0), the time required

for feature selection could be reduced to under a minute, making the algorithm quite

practical for use in an interactive system such as SONIA. By way of comparison, a

rough estimate of the time required by a wrapper approach, such as that of Caruana
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and Freitag [20] or John, Kohavi, and P
eger [84], to eliminate this many features is

on the order of thousands of hours, assuming the method does not get caught in a

local minimum �rst and prematurely stops eliminating attributes as a result.

With these initial results on text data giving us a better understanding of how

well our algorithm performs in such domains, we now consider its e�cacy on the

�ve text datasets D1 through D5. Since our previous results showed that backward

elimination generally outperforms forward selection, we focus only on the former

method in our follow-up experiments. Furthermore, since we wish to stay in the

realm of probabilistic classi�cation methods, we only consider the Naive Bayesian

classi�er at this point and no longer report results using C4.5.

We ran our feature selection algorithm with various levels of conditioning (K =

0; 1; or 2), producing feature sets of size 20, 50, 100, 200, and 400 for each dataset.

We used 10-fold cross-validation to obtain classi�cation accuracies for each such run.

The results of these experiments are plotted in Figures 7.2 through 7.6, corresponding

to datasets D1 through D5, respectively. In these �gures, we also report the average

accuracy over the �ve reduced feature set sizes, as well as the accuracy obtained when

the entire feature set is used (which shows up as a straight line in each plot).

It is worth noting that in virtually all of the text datasets we are able to reduce

the sizes of the feature sets to less than 5% of their original sizes without a signi�cant

degradation in accuracy. In fact, in several cases we actually obtain signi�cantly

better results. Starting with D1, for example, we can reduce the feature set to 50

features (less than 5% of the original feature space) while producing virtually no

reduction in accuracy. In fact, we see a slight increase in accuracy on this dataset

until we reach 200 features. In D2, D3, and D4, we see an improvement in classi�cation

accuracy across the entire range of feature sizes tested, with the improvements often

becoming more pronounced for the smallest feature set sizes. In fact, for D3 with

20 features, and D4 with 50 features (with K = 0 or 1 in both cases) the accuracy

improvements are statistically signi�cant using a paired t-test (P < 0:10). Only in

D5, which has the largest initial feature set (nearly 2000 features) do we see feature

selection consistently producing inferior results to using the full feature set. Still, it is

worth noting that only at the smallest numbers of features (20 and 50 features, which
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Figure 7.2: Results on Dataset 1 using Naive Bayes with feature selection.

comprise roughly 1% and 2:5% of the original feature set, respectively) are the results

actually signi�cantly worse. On balance, when averaging over all �ve datasets, we

�nd that feature selection generally provides modest improvements in classi�cation

accuracy.

We also tried to measure the extent to which the expected relative entropy score

can be used to automatically determine an appropriate number of features for each

dataset. To this end, we considered the gain in information over using the simple class

prior distribution P(C) as measured by the expected relative entropy for di�erent size

feature sets. The results of these measurements for the datasets D1 though D5 are

given in Figure 7.7. Most striking in this �gure is the di�erence in gain between D5

and the other datasets. This discrepancy would seem to indicate that on average

each feature in D5 contains much less information about a document's class than the

features in the other datasets (perhaps because D5 contains far more documents and

initial features than the other text datasets). Hence, more features would be needed

for accurate classi�cation in D5. This conclusion is clearly borne out in the accuracy
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Figure 7.3: Results on Dataset 2 using Naive Bayes with feature selection.
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Figure 7.4: Results on Dataset 3 using Naive Bayes with feature selection.
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Figure 7.5: Results on Dataset 4 using Naive Bayes with feature selection.
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Figure 7.6: Results on Dataset 5 using Naive Bayes with feature selection.
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Figure 7.7: Gain in bits over P(C) with di�erent size feature sets.

results presented earlier. In fact, to realize the same level of gain reached in D5 with

400 features, we would only need approximately 50 features in D1, and approximately

70 features in D2, D3, and D4. While these exact feature set sizes are not quite

optimal, as re
ected in the accuracy �gures presented earlier, they nevertheless are in

a very good ballpark. Hence, we believe that the expected relative entropy measure

can be used as a means for �nding the right general range of feature set sizes that

produce good classi�cation accuracies. Further re�nements to the feature set size

can then be realized by using cross-validated classi�cation accuracy over this small

ballpark range.

7.6 Conclusions

We have presented a theoretically justi�ed model for optimal feature selection based

on using relative entropy to minimize the amount of predictive information lost during

feature elimination. Within this theoretical framework, we prove several desirable
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properties of using such a method for feature selection. Moreover, we present an

algorithm that roughly approximates our theoretical model and provide extensive

empirical testing. We show that this algorithm is e�ective at drastically reducing the

feature space in many learning tasks while also helping to improve accuracy in many

cases.

Our method attempts to eliminate features in a way that keeps the conditional

probability of the class given the features as close to the original distribution as

possible. This approach is not the same as attempting to maintain the same classi-

�cation for each instance. While this too is a desirable goal, it is necessarily speci�c

to a particular induction algorithm. Rather, we focus on an algorithm-independent

paradigm for feature subset selection, viewing an induction algorithm as a biased

method for approximating the probability distribution of class labels given features

and transforming this distribution into a classi�cation. We stay free of the bias of a

particular induction algorithm by simply maintaining as much as possible the under-

lying conditional distribution of class labels that the induction algorithm attempts to

approximate.

Due in large part to its induction-bias-free nature, our approach sometimes pro-

vides only modest gains in accuracy. However, improving classi�cation accuracy is

not our primary goal at this point. Rather, we utilize feature selection as a means for

allowing more expressive (and often more computationally expensive) induction algo-

rithms to be applied to high-dimensional text domains. Currently, when faced with

such a domain, we are essentially forced to use simple, less computationally intensive

induction algorithms such as Naive Bayes. The use of our feature selection algorithm

as a pre-processing step will enable the use of more powerful induction algorithms,

such as Bayesian classi�ers which make use of feature dependence information. We

explore this issue more fully in next two chapters. In this way, we hope to make

such induction methods much more applicable to classi�cation problems with many

features. Furthermore, although we argue that wrapper methods are, a priori, too

computationally expensive for text datasets, we can use them on the feature-reduced

datasets resulting from our algorithm. This will allow us to produce a classi�er which

is optimized for accuracy with respect to a speci�c induction algorithm, by searching
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in the �ltered feature space. We hope that these techniques, taken together, will allow

us to further tackle induction problems in very large feature spaces.



Chapter 8

Limited Dependence Bayesian

Classi�ers

8.1 Introduction

In order to more accurately classify text documents, it is necessary to use an induc-

tion algorithm whose bias corresponds with our intuitions about textual domains.

Addressing this issue in the context of probabilistic classi�ers, we now turn our at-

tention to methods for learning Bayesian classi�ers which better model the feature

dependencies that exist in text.

As mentioned in Chapter 3, work in Bayesian methods for classi�cation has grown

enormously of late [31, 72, 17, 52]. Nevertheless, the notion of Bayesian classi�cation

at least dates back to the Naive Bayesian classi�er [64], which has existed since the

early days of pattern recognition research. This classi�er has had a longer history as

a simple, yet powerful, classi�cation technique and continues to be used widely today.

Although learning of general Bayesian networks as well as the Naive Bayesian

classi�er have both shown success in di�erent domains, each has its shortcomings.

Learning in the domain of unrestricted Bayesian networks is often very time consum-

ing and quickly becomes intractable as the number of features in a domain grows.

Indeed, it has been proven that learning optimal unrestricted network structures is

NP-hard [25]. Moreover, inference in such unrestricted models has also been shown

124
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to be NP-hard [30].

Alternatively, the Naive Bayesian classi�er, while very e�cient for inference, makes

very strong independence assumptions that are often violated in practice, especially

in text domains, and can lead to poor predictive generalization. In this chapter,

we seek to identify the limitations of each of these methods, and show how they

represent two extremes along a spectrum of Bayesian classi�cation algorithms. We

then present an algorithm for learning Bayesian network classi�ers that relaxes the

restrictive Naive Bayes assumption and allows for e�cient learning of models with

limited feature dependency structure. The ability to learn feature dependency models

e�ciently makes this method particularly useful for text classi�cation problems. Still,

the algorithm is general enough to use on any domain.

In Section 8.2 we formally describe the probabilistic models alluded to above.

Section 8.3 presents the KDB algorithm that allows us to move along a spectrum

between these two extremes, allowing us to appropriately model data based on our

beliefs about the existence of dependencies in a domain. Empirical results using

this algorithm on both standard UCI domains as well as text classi�cation problems

are presented in Sections 8.4 and 8.5, respectively. Finally, Section 8.6 presents our

conclusions and more details of related work in probabilistic classi�cation.

8.2 Probabilistic Classi�cation Models

To lay the foundation for understanding the spectrum of classi�cation models, we

begin by �rst examining the end points of this spectrum and then naturally generalize.

8.2.1 Unrestricted Bayesian Classi�ers

Recall that in probabilistic classi�cation, we would ideally like to determine the proba-

bility distribution P(C j X ) where C is the class variable and X is the n-dimensional

vector of variables (X1;X2; : : : ;Xn) whose instantiation x represents an observed

instance. If we had this true distribution available to us, we could achieve the theo-

retically optimal classi�cation (with respect to a uniform loss function over classes)
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Figure 8.1: Bayesian network representing P(X j C), allowing for complete depen-
dency between domain features.

by simply classifying each instance x into the class ck for which P(C = ck j X = x )

is maximized. This is known as Bayes Optimal classi�cation.

By applying Bayes Law to P(C = ck j X = x ), we obtain

P(X = x j C = ck) � P(C = ck)

P(X = x )
: (8.1)

Since the denominator in Eq. 8.1 does not depend on the choice of class ck, it can

be safely ignored when selecting the class which maximizes this expression. Thus,

Bayes classi�cation requires us to determine only the two probabilities P(X = x j
C = ck) and P(C = ck). While the distribution P(C = ck) may be determined in

a straightforward way, the distribution P(X = x j C = ck) is more problematic to

de�ne.

In the completely unrestricted case, we maymodel P(X = x j C = ck) by allowing

for arbitrarily many dependencies between features. In the most extreme form of

such an unrestricted network, every feature is dependent on every other feature. The

Bayesian network shown in Figure 8.1 corresponds to this extreme case. In this �gure,

we can see that the true complexity in such full-dependence model comes from the

large number of feature dependence arcs which are present in the model. Learning

such a model, especially in domains with many features, can be prohibitive.
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There has been much recent research in learning in the context of generally un-

restricted Bayesian networks [72]. These learning methods attempt to model the

full joint probability distribution for a set of features, but rely on identifying feature

independencies in order to keep computation tractable. Nevertheless, as mentioned

earlier, the process of learning the appropriate graphical structure representing the

probabilistic dependencies inherent in a dataset remains very expensive computation-

ally. Moreover, most work in this area has focused on primarily on density estimation

and it is only very recently that such models have been tailored especially for use

with supervised classi�cation problems [53, 152].

Nevertheless, since unrestricted Bayesian networks (as shown in Figure 8.1) allow

for the modeling of arbitrarily complex dependencies between features, we can think

of these extreme models as lying at the most general end of a feature dependence

spectrum. Such Bayesian classi�ers have great representational power at the cost of

computational expense.

8.2.2 Naive Bayes

The Naive Bayesian classi�er (also known as Idiot Bayes) represents the most restric-

tive extreme in the spectrum of probabilistic classi�cation techniques. It employs

the very restrictive assumption that each feature Xi is conditionally independent of

every other feature given the class label, when predicting the class ck that maximizes

P(C = ck j X = x ). Recall that this assumption is more formally written as

P(X = x j C = ck) =
Y
i

P(Xi = xi j C = ck) : (8.2)

The network structure of the Naive Bayes model is shown in Figure 8.2. In contrast

to Figure 8.1, we see that the Naive Bayes model allows for no arcs between feature

nodes (although the arcs from C to the features Xi appear in both models). We can

think of Naive Bayes as being at the most restrictive end of the feature dependence

spectrum, in that it strictly allows no dependencies between features given the class

label. While the conditional independence assumption is unrealistic in many domains,

especially text, the Naive Bayesian classi�er surprisingly often gives good classi�cation
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Figure 8.2: Bayesian network representing a Naive Bayesian classi�er.

accuracy. In domains in which feature dependencies may play a key role, however,

the Naive Bayesian algorithm can fail to perform well.

Naive Bayes has been very popular due to its computational e�ciency. Training

such a classi�er only requires time that is linear in the number of features and data

instances. The maximum likelihood values for the necessary probabilities can be

easily estimated directly from counts in the data. In many cases, simple priors are

also incorporated into these estimates in a straightforward manner (e.g., Laplace

estimation [91]).

The simplicity of this classi�er has also made it the bene�ciary of a number of

recent research e�orts. Work in this area includes average case analyses of error rates

using Naive Bayes [103], as well as methods for handling features with continuous

values, such as discretizing the data into suitable intervals [44] or performing some

form of univariate kernel density estimation [85].

8.2.3 Limited Dependence Classi�ers

We now formalize our notion of the \spectrum of feature dependence" in Bayesian

classi�cation by introducing the notion of k-dependence Bayesian classi�ers.

De�nition 3 A k-dependence Bayesian classi�er is a Bayesian network which con-

tains the structure of the Naive Bayesian classi�er and allows each feature Xi to have

a maximum of k feature nodes as parents. That is, �(Xi) = fC;Xdig where Xdi is a

set of at most k feature nodes, and �(C) = ;.
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Figure 8.3: Bayesian network representing a 1-Dependent Bayesian classi�er.

Observation 10 The Naive Bayesian classi�er is a 0-dependence Bayesian classi-

�er.

Observation 11 The fully unrestricted Bayesian classi�er (i.e., no independencies)

is a (n�1)-dependence Bayesian classi�er, where n is the number of domain features.

By varying the level of allowable dependence k in a k-dependence Bayesian clas-

si�er, we can de�ne models that smoothly move along the spectrum of feature de-

pendence. An example of a 1-dependence Bayesian classi�er is shown in Figure 8.3.

Note that such 1-dependence models capture the notion of tree structured dependency

models described in Chapter 5 (modulo the di�erence that here we are dealing di-

rectly with a classi�cation task, and hence have a class variable C that all features

are also conditioned on).

If k is large enough to capture all feature dependencies that exist in a domain,

then we could expect a classi�er to achieve Bayes optimal accuracy if the \right"

dependencies are set in the model and the model parameters could be determined

accurately. The question becomes one of determining if the model has allowed for

enough dependencies to represent the Markov blanket [125] of each feature. The

subtleties of this point are discussed in more detail in Chapter 7 as well as the work

of Friedman and Goldszmidt [53]. In practice, however, the limited size of a dataset

relative to the entire instance space (which grows exponentially with the number

of features) makes it extremely di�cult to learn the \true" model and thus achieve

Bayes optimal classi�cation.
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8.3 The KDB Algorithm

In this section, we give an algorithm, named KDB (for k-Dependence-Bayes), which

allows us to construct classi�ers at arbitrary points (values of k) along the feature

dependence spectrum, while also capturing much of the computational e�ciency of

the Naive Bayes classi�er. From the analysis of probabilistic methods in Section 8.2,

it becomes apparent that the amount of feature dependence that is allowed in a

Bayesian network classi�er is the key to the modeling power of the classi�er|this

is how we de�ne the feature dependence spectrum. Unfortunately, as this degree of

dependence grows, the cost of generating such classi�ers can increase dramatically.

Indeed, the NP-hardness results for learning Bayesian networks cited in Section 8.1

apply to learning optimal k-dependence Bayesian classi�ers for k � 2.

Consequently, we present an alternative to the general trend in Bayesian net-

work learning algorithms which do an expensive search through the space of network

structures [72] to �nd a locally optimal networks. Rather, focusing on the issue of

tractable computation, we provide an algorithm which heuristically constructs good,

but potentially suboptimal, Bayesian network structures e�ciently.

Before delving into the details of our algorithm, however, we provide some context

for our development choices by brie
y discussing some of the previous work in this

area that is most directly related to our algorithm. One of the earliest algorithms

for actually learning Bayesian network structure is the well-known K2 algorithm of

Cooper and Herskovits [31]. While K2 bears some super�cial similarities to our

method, it was developed as an unsupervised learning method (i.e., when no class

information is provided) to model a general joint probability distribution. In our

algorithm, we speci�cally aim to generate a classi�er, and thus focuses on supervised

learning problems by making use of class dependent measures as heuristics to guide

network construction. This di�erence in focus can have a large impact on the kinds

of network structures that are produced by our method as opposed to those produced

by K2 (for more details, see the discussion in Section 8.6). Furthermore, K2 requires

an explicit ordering of the features as input. To relax this requirement, our algorithm

produces its own feature ordering, again making use of classi�cation speci�c measures
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to determine the order.

Looking speci�cally at models that limit the amount of feature dependence, Geiger

[60] has de�ned the notion of a conditional dependence tree, which corresponds in our

framework to a 1-dependence model that does not include a class variable. Such

models can be learned optimally in O(n2) time, where n is the number of domain

features, using a method directly based on the work of Chow and Liu [26].

More recently, Friedman and Goldszmidt [53] have independently developed an

algorithm (described brie
y in Chapter 3), named TAN (T ree Augmented N aive-

Bayes), which is similar to Geiger's method for inducing conditional trees, but is

speci�cally targeted at the classi�cation task. This algorithm can e�ciently (in O(n2)

time) generate optimal 1-dependence Bayesian classi�ers. The method has shown im-

pressive results in experimental comparisons with Naive Bayes. However, it provides

no straightforward extension to generalize to higher degrees of feature dependence.

We would like our method to be of similar computational complexity to TAN, but be

able to represent more complex feature dependencies.

Ezawa and Schuermann [49] have developed an algorithm APRI, which predates

ours, and also performs a heuristic search to �nd Bayesian classi�ers with higher

order feature interactions. While our algorithm makes use of the same measures as

APRI for determining the dependencies between features in the Bayesian network,

APRI does not explicitly bound the degree of dependence that may be modeled by

an induced classi�er. As a result, this algorithm provides no guarantee that it will

produce a strictly k-dependence classi�er. This lack of an explicit complexity control

can be especially problematic in text domains, where the feature space is so large that

an explicit control on the level of dependence in the network is critical to prevent the

network from becoming unwieldy.

With this previous work in mind, the goal of our algorithm is to allow for various

levels of feature dependency to be learned e�ciently, while also maintaining an explicit

control on the network complexity. In this way, we hope to learn 
exible, yet explicitly

bounded, models that are more accurate than the Naive Bayesian classi�er. However,

we point out that the main goal of developing our algorithm is not to attempt to

show that it is superior (in terms of classi�cation accuracy) to the other methods
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for learning Bayesian networks just mentioned. Hence, we make no experimental

comparisons with these methods. Rather, our main motivation in this regard is

simply to show that for domains, such as text, which a�ord many features as well as

many potential feature interactions, having an algorithm which can explicitly model

these feature dependencies e�ciently, yet still produce guaranteed compact models is

desirable in itself.

We now turn to the details of the KDB algorithm. Our algorithm is supplied with

a dataset of training instances D as well as the k value for the maximum allowable de-

gree of feature dependence. It begins with a Bayesian network BN that contains just

the nodes representing the features and the class variable (and no arcs between them).

The algorithm determines an ordering for the features based on their mutual infor-

mation with the class. Then, using this feature ordering, the algorithm determines

the set of up k parent nodes for each feature in the network. Once the structure of

the network is determined, it is then possibly to compute the conditional probability

tables needed at each node directly from the input data. Thus, the algorithm outputs

a k-dependence Bayesian classi�er, complete with conditional probability tables. We

note that priors may be easily incorporated into the conditional probability tables of

the classi�er, but we omit them in the presentation here. The algorithm is as follows:

Procedure KDB

1. 8Xi Compute �i  MI(Xi;C)

2. Sort and renumber features X1; : : : ;Xn in descending order by �i

3. 8i; j i 6= j Compute 
ij  MI(Xi;Xj j C)
4. For i = 1; : : : ; n do

4.1. r  min(i� 1; k)

4.2. Xdi  r features Xj1 ; : : :Xjr with largest 
ij`, where j` < i

4.3. parents(Xi)  C [Xdi

5. Compute the conditional probability tables inferred by the

structure of the Bayesian network by using counts from dataset D

Note that in Step 3 of the algorithm, for each pair of features Xi and Xj , we

compute the class conditional mutual information between these features [35], denoted
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MI(Xi;Xj j C). This quantity is de�ned as

MI(Xi;Xj j C) =
X

xi;xj;c

P(xi; xj; c) log
P(xi; xj j c)

P(xi j c) � P(xj j c) (8.3)

Furthermore, in this description of the algorithm, Step 4.2 requires that the set

of conditioning features Xdi for each feature Xi being added to the model contain r

elements. To make the algorithm more robust, we also consider a variant where we

change this step to be:

4.2 Xdi  q features Xj1 ; : : :Xjq with largest 
ij`,

where j` < i, 
ij` > � and q � r

In this revised step, � is a pre-set mutual information threshold which any given

pair of features must exceed in order for a dependency to be added between these

variables in the model. This threshold helps make the learning algorithm more robust

in that it prevents the modeling of weak feature correlations that may appear simply

due to poor probabilities estimated from limited data. It can also be interpreted as

a form of prior over network structures which prefers sparseness|an instantiation of

Occam's razor[13]. Thus, we can hope to attenuate the e�ect of modeling spurious

dependencies when the value of k is set too high. In doing so, we can also reduce

the number of parameters that must be estimated in the resulting model, and hence

try to control the overall variance associated with the classi�er. This is especially

important for text domains where the large number of features may make spurious

correlations more common.

Another feature of our algorithm which makes it very suitable for text domains is

its relatively small computational complexity. Computing the actual network struc-

ture requires O(n2(mcv2 + k)) time, where n is the number of features, m is the

number of data instances, c is the number of classes, and v is the maximum number

of discrete values that a feature may take. The �rst term in this complexity result

comes from computing the n2 mutual information values in Step 3, each of which

requires O(mcv2) time to compute. The second term comes from the loop in Step 4,

where O(nk) time is required to determine the (at most) k parents of each of n feature
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No. No. Training Testing

Dataset Classes Features Set Size Set Size

Corral 2 6 128 10-fold CV
LED7 10 7 3200 10-fold CV

Chess 2 36 3196 10-fold CV
DNA 3 180� 3186 10-fold CV

Vote 2 48� 435 10-fold CV

Table 8.1: Datasets from the UCI repository used in the initial experiments with

KDB. �Re
ects Boolean encoding of feature values.

nodes. Once the network structure has been determined, calculating the conditional

probability tables within the network (Step 5) takes O(n(m + cvk)) time since, for

each of n feature nodes, we must make a pass through allm data instances to compute

the cvk entries in the corresponding conditional probability table. In many domains,

v will be small (for example, in our binary encoding of text documents v = 2) and

k is a user-set parameter, so the algorithm will scale linearly with m, the amount

of data in the dataset D. Moreover, classifying an instance using the learned model

only requires O(nck) time.

8.4 Initial Results on Non-Text Domains

As in our work in the previous chapter, we �rst tested the KDB algorithm on

several well-understood datasets from the UC Irvine repository. This allowed us to

get an initial feel for the strengths and limitations of our algorithm prior to returning

to our primary focus of text classi�cation. These datasets are described in Table 8.1.

Largely, these datasets are the same ones used in our feature selection work.

Speci�cally, in these experiments we wanted to measure if increasing the value of k

above 0 would help the predictive accuracy of the induced models. In other words, we

sought to compare the dependency modeling capabilities of KDB with Naive Bayes.

Moreover, we wanted to see if we could uncover various levels of dependencies that

we know exist in a few arti�cial domains by seeing how classi�cation accuracy varied

with the value of k. We also tested both the original and modi�ed KDB algorithm
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Accuracy
Dataset k KDB-original KDB-�

0 88:4 � 10:5% 88:4 � 10:5%

Corral 1 100.0 � 0.0% 100.0 � 0.0%
2 96:7 � 5:8% 96:7 � 5:8%

3 88:4 � 17:2% 100.0 � 0.0%

0 72:9 � 2:1% 72:9 � 2:1%

LED7 1 73:1 � 3:9% 73:0 � 2:9%
2 73.5 � 2.3% 72:9 � 2:4%

3 73:2 � 2:3% 73.4 � 1.3%

0 86:2 � 1:9% 86:2 � 1:9%

Chess 1 93:9 � 1:3% 93:8 � 1:4%
2 95.1 � 1.2% 95.5 � 1.6%
3 94:9 � 1:1% 95:3 � 1:2%

0 94:0 � 0:9% 94:0 � 0:9%
DNA 1 94:0 � 1:6% 94:1 � 1:1%

2 95.3 � 1.2% 95.6 � 1.1%
3 93:3 � 0:9% 95:5 � 1:8%

0 90:2 � 3:8% 90:2 � 3:8%

Vote 1 92:6 � 3:6% 92:1 � 5:3%
2 92:3 � 3:5% 93:5 � 4:1%
3 93.0 � 2.2% 94.0 � 3.2%

Table 8.2: Classi�cation accuracies for KDB on UCI datasets.

(which employs the mutual information threshold, �). For these experiments, we

set � = 0:03, which was a value heuristically determined from very preliminary runs

of the algorithm. Nevertheless, we note that in a more rigorous usage scenario, it

would be straightforward (and desirable) to optimize this parameter using a wrapper

approach [92]. The results of our experiments on the UCI datasets are given in

Table 8.2 with KDB-original referring to the original algorithm and KDB-� referring

to the variant using the mutual information threshold.

The two arti�cial domains, Corral and LED7, were selected because of known

dependence properties. As explained previously, the Corral dataset represents the

concept (A ^ B) _ (C ^ D) and thus is best modeled when at least one feature
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dependency is allowed, as is borne out in our experimental results (higher accuracies

when k > 0). The LED7 dataset, on the other hand, actually satis�es the Naive Bayes

assumption, with all the features being independent when conditioned on the class.

Our algorithm helps discover this phenomenon, as re
ected by the similar accuracy

rates when k = 0 and k > 0. Note that the classi�cation accuracies in the k = 0 and

k > 0 are not identical due to the fact that this dataset contains arti�cial noise which

can contribute to higher variance in parameter estimation.

In the real-world domains from UCI, we �nd that modeling feature dependencies

very often improves classi�cation results. This is especially true for the KDB-� algo-

rithm, where classi�cation accuracies when k > 0 are almost always greater than or

equal to the k = 0 (Naive Bayes) case. In the Chess (k = 1; 2; 3), Vote (k = 2; 3) and

DNA (k = 2; 3) domains, these improvements are statistically signi�cant (t-test with

p < 0:10). Moreover, by noting how the classi�cation accuracy changes with the value

of k we get a notion of how to set the parameter k for each problem and get a rough

approximation to the degree of feature dependence in each domain. For example, in

both the Chess and DNA datasets, we see large jumps in accuracy when going from

k = 0 to k = 2, and that there is no gain when k = 3. This indicates that there are

either many low-order interactions in these domains, or that the increase in variance

of the model parameters resulting from data fragmentation causes no further gain

in accuracy to be realized from modeling the additional dependencies. (We return

to this latter point below.) In either case, it is easy to identify that 2-dependence

models provide the best results for both of these domains.

It is important to note that the Boolean encoding of the Vote and DNA domains

has introduced some feature dependencies into the data, but such representational

issues (which are often unknown to the end user of a classi�cation system) also argue

in favor of methods that can model such dependencies when they exist. Recall that

as k grows, we must estimate a larger probability space (more conditioning variables)

with the same amount of data. This growth in the number of conditioning features

can cause our probability estimates to become more inaccurate since each is based

on fewer data instances, and thus leads to an overall decrease in predictive accuracy.

This phenomenon is re
ected in the di�erence between using k = 2 and k = 3 in many
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Initial feature Reduced feature
Dataset set size set size

D1 1143 50

D2 1001 50
D3 552 20

D4 1126 50

D5 1953 100

Table 8.3: Reduced feature set sizes of Reuters datasets.

of the domains. The KDB-� algorithm is less prone to this e�ect, but it is still not

impervious. Still, our initial results indicate that we can induce better probabilistic

classi�cation models for domains, such as text, that contain feature dependencies.

8.5 Results on Text Domains

Returning, once again, to our original problem of text classi�cation, we now examine

the e�cacy of the KDB algorithm on Reuters subsets D1 through D5, which we

have used throughout our work. For these experiments, we began by employing the

feature selection algorithm described in the previous chapter to reduce the feature

set for each dataset to approximately 5% of its initial size. This level of reduction

was chosen since it seemed to provide good classi�cation results with Naive Bayes in

our earlier work. When employing the feature selection algorithm, we used Markov

blanket (abbreviated MB below) sizes of both 0 and 1. The actual reduction in feature

set size is summarized in Table 8.3.

Furthermore, since our initial results with KDB showed that the variant which

incorporated the mutual information threshold � generally provided slightly better

results than the original algorithm, we use that variant in all our runs on the Reuters

data. As before, we simply set � = 0:03 in these experiments. The average accuracy

results (as well as standard deviations) using 10-fold cross-validation in these experi-

ments is reported in Table 8.4. Note that we applied KDB (with k = 0; 1; and 2) and

feature selection to each fold so as not to give the feature selection algorithm access
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Feature selection Feature selection
Dataset k MB size = 0 MB size = 1

0 99.2 � 1.1% 99.4 � 1.0%

D1 (50 features) 1 99.2 � 1.5% 99.2 � 1.5%
2 99.0 � 1.5% 98.8 � 1.8%

0 97.8 � 2.5% 98.3 � 2.7%

D2 (50 features) 1 98.9 � 1.5% 98.7 � 1.5%

2 98.3 � 1.7% 98.5 � 1.5%

0 93.9 � 4.8% 94.3 � 4.5%

D3 (20 features) 1 95.7 � 3.7% 93.9 � 2.9%
2 94.3 � 5.1% 94.3 � 4.5%

0 97.2 � 2.3% 97.0 � 2.1%

D4 (50 features) 1 95.7 � 2.0% 95.7 � 2.3%
2 95.2 � 2.5% 95.4 � 2.8%

0 78.5 � 2.0% 74.4 � 4.2%
D5 (100 features) 1 83.1 � 2.5% 80.6 � 3.5%

2 83.2 � 3.1% 81.9 � 3.6%

Table 8.4: Classi�cation accuracies for KDB on text datasets.

to the testing data.

From these results, we initially note that KDB with k = 1 or 2 generally performs

slightly better when the feature selection algorithm previously applied to the data

uses an a Markov blanket of size 0 (i.e., the feature selection algorithm does not make

use of conditioning to eliminate correlated features). This makes sense given that the

KDB algorithm is aimed at capturing such dependencies when they exist and thus

its expressivity can account for such correlated features. Moreover, since running

the feature selection algorithm without conditioning information is much faster than

when such information is incorporated, it becomes very computationally e�cient to

run the feature selection algorithm in this fashion and then apply KDB to model

dependencies in the reduced feature space.

While all the methods appear to be performing quite well, it is important to

note that modeling dependencies (using k = 1 or 2) in these text datasets never

signi�cantly degrades performance over Naive Bayes (using k = 0), but can lead
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to signi�cant accuracy gains in some cases. For example, on both datasets D2 and

D3 using k = 1 (and a Markov blanket size of 0 during feature selection) leads

to signi�cant improvements over Naive Bayes (paired t-test P < 0:10). The most

dramatic increase is seen on the most di�cult and largest dataset D5, where using

either k = 1 or 2 always outperforms Naive Bayes by a signi�cant margin (P < 0:01).

In dataset D4, we actually see a slight degradation over Naive Bayes, but these results

are not signi�cant. Hence, we believe that the combination of feature selection and

the KDB algorithm can be very e�ective in text domains.

To provide further experimental evidence for the utility of dependency modeling

with KDB, we considered the task of classifying the complete updated Reuters-21578

dataset.1 This dataset contains 118 topics (classes) and (using the \ModApte" split

of the data) has 9603 training documents and 3299 testing documents. Each doc-

ument, however, may be labeled with multiple topics. Consequently, we follow the

traditional protocol for this collection of treating this problem as 118 separate bi-

nary classi�cation tasks. Each such task corresponds to predicting whether or not

documents belong in a given topic.

We began by performing a series of preliminary experiments using only the train-

ing data (which was split into a 7147 document training set and a 2456 document

validation set). First, we sought to determine how many features we should use by

applying our feature selection algorithm to this data. These results indicated that

using our feature selection algorithm (with Markov blanket size set to 0 for com-

putational e�ciency2) led to the best performance for both Naive Bayes and KDB

when the feature set for each of the binary classi�cation tasks was reduced to 50

features. Moreover, our preliminary experiments also indicated that using KDB with

k = 2 generally outperformed KDB with k = 1. Consequently, we only considered

1The results on the Reuters-21578 collection were obtained in collaboration with Dumais,

Heckerman and Platt [48]. In that work, we also present results on this dataset using

other (non-Bayesian) algorithms, but do not include those results here for brevity (since they

are not germane to our main discussion). We also thank David Lewis for making the

Reuters-21578 collection publicly available. More information on this dataset is available at

http://www.research.att.com/~lewis/reuters21578.html.
2Recall that using our feature selection algorithm with a Markov blanket size of 0 is equivalent

to selecting the features which have the highest mutual information with the class variable.
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Topic Naive Bayes KDB with k = 2

earn 95.9% 95.8%

acq 87.8% 88.3%

money-fx 56.6% 58.8%
grain 78.8% 81.4%

crude 79.5% 79.6%

trade 63.9% 69.0%

interest 64.9% 71.3%

ship 85.4% 84.4%

wheat 69.7% 82.7%
corn 65.3% 76.4%

Avg. top 10 categories 81.5% 85.0%
Avg. all categories 75.2% 80.0%

Table 8.5: Breakeven points on full Reuters dataset.

the former in our �nal experiments.

With these experimental settings in hand, we then tackled the full Reuters-21578

dataset. For each binary classi�cation task, our feature selection algorithm was ap-

plied to the full training set to reduce the feature space to 50 features. We then

trained our classi�ers (Naive Bayes and KDB with k = 2) on this data and subse-

quently used them to classify the testing data. We scored the classi�cation results for

each algorithm using the traditional score for this task of the breakeven point, as op-

posed to the classi�cation accuracy. The breakeven point is de�ned to be the average

of the precision and recall for each topic. Precision is de�ned as the the number of

documents correctly classi�ed into a topic divided by the total number of documents

classi�ed into that topic by the classi�er. Recall is the number of documents correctly

classi�ed into a topic divided by the total number of documents which truly belong

in that topic. The results of these �nal experiments on the full collection are given

in Table 8.5.

We report the breakeven points for each of the 10 topics in the collection which

contain the most documents. We also give the micro-averaged (i.e., weighted average

by category size) breakeven points for the the top 10 categories as well as the entire



CHAPTER 8. LIMITED DEPENDENCE BAYESIAN CLASSIFIERS 141

collection (all 118 categories). As can be seen in both the results from the individual

topics as well as the aggregated results, using KDB to learn limited dependence

Bayesian classi�ers leads to consistent improvements in accuracy over using the simple

Naive Bayesian model. This matches our intuitions about text domains, since we

would expect them to contain many dependencies between words.

8.6 Conclusions and Related Work

We have de�ned a spectrum of dependency for Bayesian classi�cation algorithms and

presented an e�cient algorithm, KDB, that allows for traversal along this spectrum.

The algorithm was analyzed both in terms of its theoretical complexity and empirical

performance. The empirical results show that we can use such an algorithm not only

to help discover dependencies between domain features, but also to help improve

classi�cation accuracy as a result. We �nd that this algorithm is generally e�ective at

producing better models of text domains, where our intuitions would lead us to believe

that many feature dependencies would exist. In these cases, the algorithm seems to

work well when used in conjunction with feature selection. We further explore the

coupling of feature selection and KDB in the context of hierarchical classi�cation in

the next chapter.

It is important to point out that many research e�orts have focused speci�cally on

ways to increase the expressivity of the Naive Bayesian classi�er. While we discussed

those algorithms most closely related to KDB in Section 8.3 to more clearly contrast

them with our work, we present other (di�erent) methods here. One of the earliest

such attempts is Kononenko's work on \Semi-Naive" Bayesian classi�ers [96] which

considered creating new features from pairs of existing features as a means of relaxing

the strict independence assumption. Unfortunately, this method was not capable of

realizing any empirical accuracy improvements over Naive Bayes.

Similarly, Pazzani [124] has looked at constructive methods to capture feature

dependencies in Naive Bayes by creating \higher order" features that are simply

combinations of several simple features. This approach relies heavily on searching for

useful feature combinations by using classi�cation accuracy as a search metric (akin
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to the wrapper approach). As a result, the method can have di�culty while searching

in high-dimensional feature spaces due to local minima and must rely on generating

precise accuracy estimates by performing an expensive cross-validation operation at

each step in the search. This di�culty can make the algorithm impractical for use in

text domains.

The work of Heckerman, Geiger and Chickering [72] has been successful at cast-

ing the problem of learning Bayesian network structure into an entirely Bayesian

framework, and is similar in some respects to the K2 algorithm described earlier.

They provide a great deal of theoretical analysis for their methods, and, among other

things, eliminate the need for an initial ordering over domain features (as is required

by K2). Similar to K2, however, classi�cation was not the primary concern of their

work, as they were focused on general density estimation problems. This di�erence

in focus may render their induced networks less suitable for the classi�cation task.

Other researchers have sought to extend K2 to deal more speci�cally with classi-

�cation problems. For example, Singh and Provan [152] use an algorithm named CB

[154], which is heavily based on K2, for determining the structure of a Bayesian classi-

�er. However, their algorithm disregards the fact that they are trying to optimize the

Bayesian network solely for predicting the class variable, and instead optimizes the

network structure to model the whole joint probability of the data. In other words,

rather than building a structure speci�cally to model P(C j X ), the algorithm opti-

mizes the Bayesian network structure to model P(C;X ), and can thus spend much

time modeling dependencies between features which are not really relevant to the

classi�cation task at hand.

Our algorithm also has much room for further work. Ways of identifying good val-

ues for k for a given domain need to be determined (possibly using cross-validation).

Also, the value of the � parameter needs a more solid foundation, so that this pa-

rameter may be set automatically based on the the characteristics of a given domain.

Finally, we would like to �nd ways of extending our algorithm to sit more �rmly

within the framework of Bayesian learning of network structures.



Chapter 9

Hierarchical Classi�cation

9.1 Introduction

In tackling the problem of document classi�cation, it is important to utilize the orga-

nizational schemes that are often imposed on such information. Historically, one of

the most successful paradigms for organizing large quantities of text (thereby making

the topical contents of a collection more comprehensible to end users), is to categorize

documents according to their topics, where these topics are organized in a hierarchy

of increasing speci�city. For example, hierarchical classi�cations of this type have

long been used in special-purpose collections of documents such as the MEDLINE

collection of medical literature [76] or collections of patent documents [150]. More

generally, the classi�cation schemes used by many libraries (both the traditional and

new \digital" varieties) rely on hierarchical structures. Such hierarchical organiza-

tional schemes have also been used by Internet \portal" sites, such as Yahoo! [173]

and Infoseek [78], in an attempt to categorize the contents of the World Wide Web.

And even at the level of the individual user, Web page bookmarks are often stored in

hierarchies (akin to the hierarchical �le system structure used on most personal com-

puters today). Indeed, part of our motivation for building SONIA was to enable users

to quickly and easily generate and maintain such topical hierarchies of documents.

As alluded to in the �rst chapter of this work, the unfortunate bottleneck tra-

ditionally encountered in classifying documents into such organizational schemes is

143
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the need for a person to manually read each document and decide on its appropri-

ate place in the hierarchy. Clearly, we would like systems such as SONIA to help

users alleviate this bottleneck by automatically classifying new documents for them.

In fact, Infoseek has recently attempted to overcome this di�culty by using neural

network technology to automatically categorize Web pages [79]. In many ways, this

task is ideally suited to the application of machine learning techniques. We have a

speci�ed set of classes (i.e., the topics in the hierarchy), and a very large training

set, consisting of all of the documents that have already been classi�ed. However,

with few exceptions (notably [4] which focused on hierarchically structured attributes

rather than classes), most work in classi�cation has ignored the problem of supervised

learning in the presence of hierarchically structured classes.

Of course, standard classi�cation techniques, such as the one outlined in the pre-

vious chapter, can be applied to this problem almost directly. We simply construct

a \
attened" class space, with one class for every leaf in the hierarchy. We can now

train a single classi�er so that each document is classi�ed as belonging to precisely

one of the possible basic classes.1 Unfortunately, this simplistic approach can be prob-

lematic in the context of text classi�cation. Here, the resulting classi�cation problem

may be huge. For example, even a moderately large corpus may contain hundreds

of classes and many thousands of features. The computational cost of training a

classi�er for a problem of this size is prohibitive. Furthermore, the variance of the

resulting classi�er is typically very large, since such a model will have many thousand

parameters that need to be estimated, and thus can easily lead to over�tting of the

training data. As a result of the potentially enormous growth in the parameter space,

we are typically able to use only very simple classi�ers such as Naive Bayes.

Previous work [148, 94, 175], has shown that feature selection can be a useful tool

in dealing with these issues. We can simply eliminate many of the words that appear

in the corpus as being unindicative of any topic. In Chapter 7, for example, we showed

that in many cases one can obtain a signi�cant increase in accuracy by reducing the

number of words used for classi�cation down to as little as 5% of the original feature

1Here, we focus on disjoint topic hierarchies. Similar techniques can be applied for the non-

disjoint case.
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set. Still, even such an extreme reduction may yield several hundred features for a

large collection. In such cases, computational cost and issues of robustness still pose

signi�cant limitations for all but the simplest classi�cation algorithms.

We propose a new approach to classi�cation using a structured hierarchy of topics.

Rather than ignoring the topical structure and building a single huge classi�er for the

entire task, we use the hierarchical structure to break the problem up into manageable

size pieces. The basic insight supporting our approach is that topics that are close

to each other in the hierarchy typically have a lot more in common with each other

than topics that are far apart. Therefore, even when it is di�cult to �nd the precise

topic of a document (e.g., \color printers"), it may be easy to decide whether it is

about \agriculture" or about \computers".

Building on this intuition, our approach divides the classi�cation task into a set

of smaller classi�cation problems corresponding to the splits in the classi�cation hi-

erarchy. Thus, for example, we may have one classi�er which distinguishes articles

about agriculture from articles about computers, and another one, only applied to

documents about agriculture, which distinguishes animal husbandry from crop farm-

ing. Each of these subtasks is signi�cantly simpler than the original task, since the

classi�er at a node in the hierarchy need only distinguish between a small number

of categories. Therefore, it is possible to make this determination based only on a

small set of features. For example, there appears to be a fairly small number of

words|e.g., computer, farm, plant, software, . . .|whose presence or absence in the

document clearly di�erentiates documents about agriculture from documents about

computers. The ability to restrict to a very small feature set avoids many of the

di�culties we describe above. The resulting models are more robust, and less subject

to over�tting.

It is important to note that the key here is not merely the use of feature selection,

but its integration with the hierarchical structure. To understand this integration, ob-

serve that the set of features required for these subtasks varies widely from one to the

other. For example, almost none of the words that can help us di�erentiate between

agriculture and computers are useful for distinguishing between animal husbandry

and crop farming: a word such as \farm" is unlikely to be helpful because it is fairly
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likely to appear in documents of both types, whereas a word such as \computer" is

not helpful because it is likely to appear in virtually no documents that reach this

classi�er. Thus, while each classi�er uses only a very small set of features, the overall

set of features used in the classi�cation process is still rather large. A single 
attened

classi�er would have to consider all of these features in order to do a reasonable job

of classifying all of the documents. For any given document, however, most of these

features are irrelevant, and serve only to confuse the classi�er. In the hierarchical

approach, a document percolating down the hierarchy of classi�ers only encounters

questions concerning a small fraction of the features throughout the process (e.g., a

document about computers will probably never meet a classi�er utilizing the word

\cow"). Even the features which each classi�er does utilize are divided so as to focus

the attention of each classi�er on the features relevant to the classi�cation subtask at

hand.

The reduction in the feature space also allows us to go beyond the simple classi-

�ers such as Naive Bayes, to which we are restricted in tasks involving a very large

number of features. For example, we can train a probabilistic classi�er, such as KDB

described in Chapter 8, that takes into account the correlation between di�erent fea-

tures (e.g., the fact that Microsoft and Windows tend to co-occur). Such classi�ers

provide a more realistic model for text data, often leading to higher classi�cation ac-

curacies. However, the search in this more complex hypothesis space is signi�cantly

more expensive, being at least quadratic in the number of features for an algorithm

such as KDB (and potentially exponential if we tried to learn optimal probabilistic

classi�ers), versus the linear time behavior of Naive Bayes. Furthermore, even when

we are willing to spend the time, these more complex models are usually unsuitable

for large feature spaces, due to the problem of over�tting.

As in the case of feature selection, it is the integration of this idea with the hier-

archical structure which is the key to its success. As our results show, a 
at classi�er

has much more di�culty taking advantage of the richer models, regardless of the size

of the feature space. By contrast, when we use more expressive classi�ers in the nodes

of our hierarchy, the classi�cation accuracy increases much more substantially. We

conjecture that, as for the choice of feature set, the dependency models appropriate
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for the di�erent nodes in the hierarchy are radically di�erent. In the 
at classi�cation

case, the dependency model would be an aggregate of the various lower-level models.

As a consequence, in corpora with many topics, the dependencies may either \wash

out" or be too complex to represent adequately using a limited dependency model.

The use of the hierarchical structure allows us to focus both our feature space

and the dependency model on the relevant distinctions. As we show, the combination

of these three techniques provides signi�cant accuracy gains over the standard 
at

approach.

We note that, while our techniques are originally motivated by the large classi�-

cation tasks arising in the context of text domains (and more speci�cally, the SONIA

system), they may also be useful in other domains. For example, in medical applica-

tions, we often want to classify a patient's disease based on symptoms and test results.

Here also, our classes|the diseases|are often organized in a taxonomic hierarchy,

where only a small number of features is needed to distinguish between neighboring

classes.

The rest of this chapter is structured as follows. In Section 9.2 we brie
y review

the speci�c details of how we use our feature selection and classi�cation algorithms

in a hierarchical context. While we focus on the probabilistic techniques presented in

previous chapters, we emphasize that our basic paradigm for hierarchical classi�cation

in no way depends on the use of these particular techniques. In Section 9.3, we

provide a variety of experimental results supporting our approach. We show that our

technique allows us to restrict the set of features signi�cantly (e.g., from over 1000

to 10), and that the resulting classi�er, in addition to being smaller and easier to

train, also provides better accuracy than the 
at classi�er. Section 9.4 then presents

some theoretical results on extending the use of our hierarchical classi�cation scheme

to deal with classes organized into directed acyclic graphs (as opposed to strict tree

structures). We conclude in Section 9.5 with some discussion and directions for future

work.
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9.2 Hierarchical Classi�cation Scheme

Our general approach, as described in the introduction, consists of constructing a

hierarchical set of classi�ers, each based on its own set of relevant features. It uses

two main subroutines: a feature selection algorithm for deciding on the appropriate

feature set at each decision point, and a supervised learning algorithm for constructing

a classi�er for that decision. The general approach can be instantiated in a variety

of ways, depending on the choice of these subroutines.

Here, we have chosen to focus on the probabilistic methods for feature selection

and for classi�cation given in Chapters 7 and 8. These methods provide both e�cient

and principled techniques for pruning large feature sets as well as ways to induce

a range of classi�ers of varying complexities (and accuracies). We now provide a

brief overview of how these methods are applied within our hierarchical classi�cation

scheme.

9.2.1 Feature Selection

As mentioned throughout this work, our representation of text documents as vectors

leads to a very large number of initial features. Consequently, even if we use algo-

rithms such as KDB, which are \merely" quadratic (as opposed to exponential) in the

total number of features, the computational cost can still be very great. Moreover, if

we wish to employ more optimal models which are of exponential complexity in the

size of the feature set, then feature selection is an absolute necessity.

In addressing this issue, we apply the feature selection method described in Chap-

ter 7. To review, the algorithm greedily eliminates features one by one so as to least

disrupt the original conditional class distribution P(C j X ). For each remaining fea-

ture Xi, the algorithm �nds a feature set MB i which attempts to approximate the

Markov blanket of Xi (i.e., the set of features that render Xi conditionally indepen-

dent of the remaining domain features). The algorithm then determines the expected
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relative entropy, given by

�i =
X

Xi;MBi

P(Xi;MB i) �D(P(C j Xi;MB i);P(C jMB i)) (9.1)

and eliminates the feature Xi for which �i is minimized. This process can be iterated

to eliminate as many features as desired.

In the hierarchical classi�cation work described here, we compute P(C j Xi;MB i)

in the feature selection algorithm bymaking the simplifying assumption that 8iMB i =

;. This allows the algorithm to be run quickly (in O(mn log n) time, where m is the

number of documents and n is the number of features), even on many thousands

of features. In this respect, the algorithm is even more applicable to text domains

with many features. Moreover, as our results in the previous chapter show, assuming

MB i = ; during feature selection does not pose signi�cant problems for subsequently

applying induction algorithms that can actually model the dependencies that exist

between the remaining features. Again, we note that using our feature selection al-

gorithm with MB i = ; is equivalent to selecting the feature that have highest mutual
information with the class variable.

9.2.2 Bayesian Classi�cation

In our hierarchical classi�cation scheme2 we begin by applying probabilistic feature

selection to the entire training dataset, using, at �rst, just the topics associated with

each document at the �rst tier in the hierarchy as classes. The resulting reduced

feature set is then used to build a probabilistic classi�er for the �rst tier of the

hierarchy. We currently consider Naive Bayes in addition to KDB with k = 1 and

k = 2 as our classi�cation methods. Then, for the training documents in each of

the �rst-tier topics, the second-tier topics are used as class labels. For each �rst-tier

topic, a separate round of probabilistic feature selection is employed. Note that this

feature selection is done starting from the original feature set (pruned only based on

2For the time being, we assume that topic hierarchies are tree structured. Later, in Section 9.4,

we show how this condition may be relaxed.
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Zipf's law as described in Chapter 2), since, as we have observed, the most indicative

features at one level of the hierarchy are unlikely to be particularly useful at lower

levels. We construct a separate classi�er for the subtopics of each �rst-tier topic using

the appropriate reduced feature set.

Although we only consider two level hierarchies in our empirical results, it is

straightforward to extend this approach to hierarchies of arbitrary depth. We do so

as follows: at each node of the hierarchy we simply perform feature selection with

respect to the classes de�ned by the sub-topics of this node. Using this reduced feature

set, we then build a classi�er which can �lter new instances down to the next level

of the hierarchy. This process of feature selection and classi�er induction is repeated

at each node down through the hierarchy, with the hierarchy leaves representing the

�nal classes which documents may be placed into. Moreover, since every node in the

hierarchy has only a subset of the total class labels, and the nodes at the lower tiers

of the hierarchy have fewer instances each, the additional cost of feature selection and

induction is not substantially more than that of the 
at classi�cation scheme.

Test documents are classi�ed by �ltering them through the hierarchy of classi�ers.

First, the top-level classi�er sends the document down a particular branch to another

classi�er at the next level of the hierarchy. This process is repeated until the document

reaches a leaf node in the hierarchy and a �nal class assignment is made. Due to the

series of classi�cation decisions that are made in this scheme, we colloquially refer to

it as the \Pachinko machine" classi�er.3 Note that errors made at the higher levels

of the hierarchy are unrecoverable at lower levels. Thus, in the two-level hierarchies

we consider here, our method needs to make two correct classi�cations in order for a

test document to be considered properly classi�ed. We have conducted some initial

experiments in which documents were sent down multiple paths in the hierarchy of

classi�ers as a way of addressing this issue, but, surprisingly, did not obtain improved

classi�cation results.

In the 
at classi�cation scheme, we simply treat every low-level topic (leaf node)

3A Pachinko machine is a Japanese game in which small steel balls are dropped into a vertical

playing area �lled with hundreds of small nails that direct the 
ow of the balls downward. The goal

of the game is to get as many balls as possible into special scoring slots at the bottom of the playing

area.
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Figure 9.1: Hier1 hierarchy, containing 939 documents and 1568 features.

as a separate class. We then apply probabilisitic feature selection and induce one

probabilistic model based on this reduced feature set.

In order to induce classi�cation models that more accurately capture the distri-

bution of word appearances in text, we make use of the limited dependence Bayesian

classifers introduced in the previous chapter. Our experiments there revealed that

generally using 1 and 2-dependence models generally seemed to provide the best re-

sults, as data fragmentation problems were seen when trying to induce models with

even greater degrees of dependence. We subsequently refer to these models as KDB-

1 and KDB-2, respectively. For comparative purposes, we also employ the Naive

Bayesian classi�er in our hierarchical scheme.

9.3 Results

In order to test our scheme for hierarchical classi�cation, we �rst needed to obtain

hierarchically classi�ed text data. In keeping with our previous experimental evalu-

ations, we used the Reuters-22173 dataset. The Reuters collection does not have a

pre-determined hierarchical classi�cation scheme, but each document can have mul-

tiple labels. We therefore identi�ed labels which tended to subsume other labels, and

used those as the higher level topics in our hierarchy. Three hierarchical subsets of

the Reuters collection, which we call Hier1, Hier2 and Hier3, were then extracted.

These datasets are described in Figures 9.1, 9.2 and 9.3, respectively.
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Figure 9.2: Hier2 hierarchy, containing 138 documents and 435 features.

food commodities metals money
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steel
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Figure 9.3: Hier3 hierarchy, containing 834 documents and 1440 features.
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As dicussed in Chapter 2, we applied a single pass of the Zipf's law-based feature

selection method to eliminate all words which appeared fewer than 10 or more than

1000 times in each corpus. Recall that we also did this in our initial work on feature

selection, so that we would not get unrealistic improvements in accuracy by simply

eliminating features that rarely if ever appear during testing, or are so frequent that

they will have no bearing on classi�cation. The number of features reported for each

dataset is after the application of this initial feature selection. These datasets were

then used in our experiments, detailed below, employing 10-fold cross-validation to

produce multiple training and testing sets for each dataset.

In our experimental work, we seek to show that the hierarchical approach com-

pares favorably with the simple approach of constructing a single large classi�er over

a 
attened topic space. In both cases, the feature selection phase plays a crucial role

in the performance of the resulting classi�er. Since it is our belief that a small set of

features su�ces for accurately distinguishing between topics (and furthermore helps

avoid over�tting), we employed a very aggressive feature selection policy. In the Hier1

and Hier2 domains we considered reducing the feature space to 10, 40, and 160 fea-

tures. For Hier3, which contains the largest number of �nal classes among which we

need to distinguish, we considered 20, 80, and 320 features. We chose this particular

pattern of feature space sizes in order to facilitate a fair comparison between the 
at

method and the hierarchical method. Recall that, in the hierarchical case, a poten-

tially very di�erent set of features is selected at each node in the hierarchy. Therefore,

the hierarchical method, as a whole, actually examines a larger set of features. To

allow a fair comparison, we also compare the hierarchical method with some number

of features to a 
at method with four times as many features (since our hierarchies

contain around four classi�ers each). We also considered running each method on the

full feature set, but since the number of features was very large, it became prohibitive

to consider models which did not assume conditional independence of features (e.g.,

KDB); thus only the results for Naive Bayes are given in these cases. The accuracies

and standard deviations for 10-fold cross-validation using the hierarchical approach

are given in Table 9.1. The analogous results in the 
at classi�cation case are shown

in Table 9.2.
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Hierarchical
Dataset # Features NB KDB-1 KDB-2

10 92.4 � 2.4 92.4 � 2.3 92.2 � 2.5
Hier1 40 91.8 � 2.8 93.3 � 1.9 94.1 � 2.7

160 88.2 � 2.3 91.2 � 2.8 91.1 � 3.0
1568 85.9 � 3.1 | |

10 87.7 � 7.4 85.4 � 8.5 85.4 � 8.5

Hier2 40 88.5 � 9.1 87.7 � 8.3 90.0 � 8.2

160 86.2 � 10.8 86.2 � 10.1 82.3 � 10.9
435 84.6 � 9.6 | |

20 90.1 � 4.1 94.7 � 3.0 94.9 � 2.6
Hier3 80 90.9 � 2.4 98.6 � 1.4 97.7 � 1.8

320 94.8 � 2.5 95.5 � 2.0 94.2 � 2.5
1440 92.8 � 2.5 | |

Table 9.1: Accuracy percentages for hierarchical learning employing feature selection.

We begin by noting the substantial improvements in accuracy when feature selec-

tion was aggressively employed versus the case where all domain features were used.

We see an improvement both in the hierarchical case and in the 
at case, and for

every single dataset. In the Hier1 dataset, these gains are particularly visible, with a

statistically signi�cant di�erence (t-test with P < 0:01) obtained in Naive Bayes for

both the 
at classi�er with 40 features (versus the original 1568) and the hierarchical

classi�er with 10 features. In both cases, around 1500 features|over 95% of the fea-

tures after Zipf's law pruning|were eliminated. Of course, the number of features

cannot be reduced to zero. In general, we observe an initial signi�cant improvement

as the number of features is reduced, and then a decrease in accuracy as the number

of features is reduced too much. This phenomenon is yet another instance of the

familiar bias-variance tradeo�, also seen in previous chapters. The selection of very

few features, say 10, helps reduce the error associated with the variance of the model,

but strongly biases the model. Conversely, the use of too many features, say 160,

can cause the probability estimates used in the classi�cation models to become inac-

curate and thus lead to poorer overall performance. We believe that combining the
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Flat
Dataset # Features NB KDB-1 KDB-2

10 79.3 � 9.1 79.1 � 8.8 78.8 � 8.7
Hier1 40 92.0 � 3.1 94.1 � 2.3 93.8 � 2.6

160 92.0 � 4.1 93.8 � 2.8 93.8 � 2.8
1568 86.2 � 2.8 | |

10 89.2 � 8.3 89.2 � 8.3 86.9 � 8.9

Hier2 40 87.7 � 5.4 86.2 � 6.1 86.2 � 7.1

160 85.4 � 8.5 82.3 � 12.6 77.7 � 9.2
435 83.1 � 8.7 | |

20 90.6 � 3.4 89.8 � 2.4 89.8 � 2.7
Hier3 80 95.4 � 1.7 95.7 � 1.5 95.2 � 2.7

320 91.8 � 4.1 91.2 � 2.7 89.3 � 3.4
1440 90.9 � 2.5 | |

Table 9.2: Accuracy percentages for 
at learning employing feature selection.

hierarchical method with relatively aggressive feature selection can help address this

issue since it allows a larger space of overall features to be considered, but provides

a variance control for each classi�er in the hierarchy by having it focus on just a few

relevant features.

We now turn our attention to the main question: the di�erence between the hier-

archical and 
at classi�cation methods. We begin by comparing the two approaches

with an equivalent number of features for each classi�er. (E.g., we compare the

hierarchical classi�er with 10 features in each node with the 
at classi�er with 10

features total.) In the case of Naive Bayes, the comparison is inconclusive. In some

cases (Hier1 with 10 features) the hierarchical approach is signi�cantly better, while

in others (Hier3 with 80 features) the 
at approach wins. Alternatively, we can com-

pare the cases where both classi�cation schemes see a roughly comparable number of

features (i.e., hierarchical with 10 features per node versus 
at with 40 features total).

In this case, the comparison for Naive Bayes is still predominantly inconclusive (with

one exception in Hier3 where the 
at classi�er wins).

Thus, the hierarchical approach appears to present few bene�ts when we restrict
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attention to simple classi�ers such as Naive Bayes. However, as we explained in the

introduction of this chapter, one of the primary bene�ts of the hierarchical approach

is that it allows us to train more complex classi�ers with richer dependency models.

As we have seen, the complexity of algorithms for learning expressive classi�ers grows

rapidly with the number of features. Even when the growth is quadratic, as in the

KDB algorithm, it is signi�cantly more expensive to learn a single classi�er over 160

features than to learn a few classi�ers over only 40 features each. Furthermore, if we

wish to construct even more accurate models by using an optimal Bayesian network

learning algorithm, this task may be achievable in the case of 40 features, but is

clearly infeasible in the case of 160.

Indeed, when we use these richer dependency models within the hierarchical ap-

proach, we begin to see signi�cant accuracy gains over Naive Bayes. In Hier1 with 40

and with 160 features, for example, KDB-2 provides an accuracy improvement which

is statistically signi�cant (P < 0:10). In Hier3 with 80 features, the gains are even

more dramatic, with KDB-1 providing an 80% reduction in error (with signi�cance

P < 0:01).

By contrast, the 
at approach seems much less capable of taking advantage of

the richer model space. In few cases did we observe improvements in accuracy with

the KDB classi�ers, and in no case was the improvement statistically signi�cant. As

mentioned previously, we conjecture that the reason for this shortcoming arises from

the fact that the dependency models for the di�erent classes are quite di�erent. (This

phenomenon is a form of context-speci�c independence [54, 14].)

The 
at classi�er is required to capture, within a single model, a complex depen-

dency structure resulting from aggregating all of these disparate dependency struc-

tures. In this case, the dependencies are either \washed out" by the noise, or are

so complex that it is impossible to capture them within the restricted dependency

structure that we consider. Even if we built a series of binary classi�ers, one for each

individual topic (as we did with the Reuters-21578 data in Chapter 8, where each

classi�er simply predicts whether or not a document should be classi�ed into a given

topic), we would still need to build a complex dependency structure to capture the

factors that seperated one class from all the others. Rather, we could simply build
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Topic 10 most discriminating words

Top level dollar, dealer, tonnes, agriculture,

oil, grain, wheat, corn, gas, usda

Grain london, taiwan, wheat, gulf, maize,

k, corn, eep, enhancement, winter

Money E�ects dollar, japan, yen, money, england,

repurchase, k, stg, shortage, system

Crude Oil production, ship, gas, natural, iran,

cubic, barrel, iranian, attack, tanker

Table 9.3: The 10 most discriminating words in one fold of the hierarchical method
for the Hier1 dataset.

a set of binary classi�ers in the context of the hierarchy (where at each topic node,

a set of binary classi�ers would simply predict whether or not a document should be

�ltered down to the various child topics of the node) and thereby still get the bene�ts

of the context-sensitivity by making direct use of the topic hierarchy.

Thus, we see that the key to the success of our approach is the combination of

three techniques: hierarchical classi�cation based on the structured topic hierarchy,

aggressive feature selection at each node of the hierarchy, and the use of richer depen-

dency models. The use of the hierarchy serves to focus the attention of each classi�er

on distributions with more uniform characteristics (i.e., more semantically related

topics), allowing us to target both the selected features and the dependency model

to the local classi�cation task.

To illustrate this phenomenon, Table 9.3 shows the set of 10 features (words)

found to be most dicriminating at each level of the hierarchy learned during the run

of one fold on the Hier1 dataset. At the top level of the hierarchy, we see a selection of

high-level terms from the various major topics. Some of these are no longer indicative

at the lower levels. For example, while the terms \agriculture" and \usda" are useful

for identifying documents in the Grain topic, they are not useful for distinguishing

among its subtopics. Rather, we see more speci�c words (such as \corn", \maize",

and \wheat") that help distinguish between the two subtopics (Corn and Wheat)

of the Grain topic. Similarly, the the Money E�ects topic contains terms that help
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Figure 9.4: Dependencies between individual words found by KDB-1 among the 20
features selected in the top level of the Hier3 hierarchy.

distinguish documents about the Dollar (many of which relate to \japan" and the

\yen") from articles that relate to Interest Rates. Finally, the feature selection for

the Crude Oil topic autonomously homed in on all of the terms appearing in the

names of its various subtopics (\natural", \gas", and \ship"). We also note that

the features selected in the di�erent cross-validation folds contain many of the same

words at each node, thereby indicating that the method is generally robust in terms

of selecting meaningful features across di�erent partitions of the same dataset.

The same localization phenomenon allows the dependency model to be tailored to

the relevant distribution. To illustrate this point, we examined the actual dependency

structure between words constructed (automatically) by the KDB algorithm in the top

level node in one randomly selected fold of the Hier3 dataset (where we obtained the

biggest gains from the use of richer dependency models). Recall that the task at that

node was to distinguish the topics food commodities, metals, and money. Figure 9.4

shows these dependencies (omitting the universal dependence on the class variable).

We see that the word dependencies form small clusters, re
ecting the correlations

between the words in the domain. The cluster associated with the word \tonnes"

is most intriguing, as the word is used for both metals and food commodities. The

model constructs two subclusters connected to \tonnes", one related to metals and
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the other to food commodities. This dependency helps the classi�er interpret the

word \tonnes" as appropriate to the context.

Our approach allows us to utilize the synergy between these tools, resulting in sig-

ni�cantly improved classi�cation accuracy. To see this, compare the best hierarchical

classi�er versus the best 
at classi�er for each number of features (marked in boldface

in Tables 9.1 and 9.2). In Hier1 and Hier2, we typically see small improvements, but

not signi�cant ones. We note that the hierarchical approach almost never detracts

from accuracy, even though the hierarchical method requires the data to be frag-

mented at lower levels in the hierarchy. To examine the robustness of the hierarchical

approach to fragmentation, we included the data-impoverished Hier2 dataset. As we

see, even in this case, the hierarchical method never performed signi�cantly worse

than the 
at method. In fact, it actually achieved the best results on this dataset

(using KDB-2 with 40 features per node) although the high variance precluded any

conclusion as to the signi�cance of this improvement.

It is in the Hier3 dataset, which provided the largest hierarchical structure and

thus the most classi�cation information to leverage, that we see the true power of

our approach. In comparing cases with equivalent numbers of features per classi�er,

we see that the hierarchical method signi�cantly outperforms (P < 0:05) the 
at

classi�cation scheme in every such comparison! We also compare the cases where

an equivalent number of total features is used. The hierarchical method using 20

features per internal KDB classifer performs equivalently to the 
at method using 80

features, but is far faster to train. Still more compelling is the fact the hierarchical

method utilizing 80 features per classi�er signi�cantly outperforms (P < 0:01) the


at method using 320 features. Finally, we note that the hierarchical method (using

KDB-1 and 80 features) achieves the highest overall classi�cation accuracy on the

Hier3 dataset, signi�cantly outperforming every run of the 
at method regardless of

classi�er or number of features used.
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Figure 9.5: A sample directed acyclic graph of topics.

9.4 Extensions to Directed Acyclic Graphs

Thus far, the hierarchies we have considered have been tree structured. Some topic

hierarchies, however, may not adhere to a strict tree, but rather may be represented

by a directed acyclic graph (DAG). In such cases, it is still possible to apply our

hierarchical classi�cation scheme, but a bit more care must be taken so as not to

count instances in the hierarchy multiple times. To illustrate this point, consider the

sample hierarchy of topics (organized in a DAG) in Figure 9.5. Here, we use the

variable B to refer to the classication in the �rst tier of the hierarchy and the variable

C to refer to the �nal classi�cation into the leaves of the hierarchy.

For the sake of simplicity, let us assume that a given instance vector x is equally

likely to appear in any of the leaf classes c1, c2, or c3. That is, P(X = x j C =

c1) = P(X = x j C = c2) = P(X = x j C = c3). Moreover, since each leaf

class contains an equal number of instances, it ideally should be equally probable

for x to be classi�ed into each of the leaf classes. However, if we take too simple of

an approach to using our hierarchical classi�cation scheme within a DAG, and just

classify the instance down each level of hierarchy into the class that has maximal

probability, we run into the possibility of counting some instances multiple times.

For example, consider the case of a document x being classi�ed into class c2. We
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would begin our hierachical classi�cation of x by �rst either classifying it into b1 or

b2, and then trying to classify into one of the �nal leaf classes. Since it is possible to

reach class c2 along a path through either b1 or b2, we must consider both possibilities

in computing a �nal probability. Formally, this yields:

P(C = c2 j X = x ) = P(C = c2 j B = b1;X = x ) � P(B = b1 j X = x ) +

P(C = c2 j B = b2;X = x ) � P(B = b2 j X = x ): (9.2)

Since we assumed that the instance x actually provides no information with regard to

the class label, we can compute the classi�cation probability simply based on the class

marginals (i.e., the number of training documents in each class). At the �rst level

of the hierarchy, b1 and b2 each contain 20 documents in their descendents (i.e., the

number instances classi�ed into a leaf class that is reachable by following downward

arcs from a node). Thus, to compute P(B), for example, we simply divide the number

of instances in the descendents of each class B by the total number of documents in

the descendents of all classes at that node. Such a computation yields

P(B = b1 j X = x ) = P(B = b2 j X = x ) =
20

40
=

1

2
: (9.3)

Similarly, the probabilities needed to perform classi�cation at the second level of the

hierarchy are given by:

P(C = c2 j B = b1;X = x ) =
10

20
=

1

2
; (9.4)

and

P(C = c2 j B = b2;X = x ) =
10

20
=

1

2
: (9.5)

Now, the problem of double counting becomes clear. By substituting the values

from Eqs. 9.3, 9.4, and 9.5 into Eq. 9.2, we obtain:

P(C = c2 j x = x ) =
1

2
� 1
2
+
1

2
� 1
2
=

1

2
: (9.6)

If the instance x truly provided no information about the class, we would a priori
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Figure 9.6: Treating the DAG in Figure 9.5 as a tree (without weighting) double
counts some topics.

expect that each class c1, c2, and c3 would each have probability 1
3
, since each class

contains the same number of instances. However, in the calculations above, the

instances in c2 are being counted once for each path leading to this node. As a

result, class c2 has a disproportionately high probability, as evidenced in Eq. 9.6. In

essence, our greedy classi�cation approach has made it possible to double count the

instances in c2 since it is possible to reach this class via two di�erent paths in the

hierarchy. This situation would correspond to treating the DAG in Figure 9.5 as the

tree structured hierarchy shown in Figure 9.6.

In order to solve this problem, we can divide the weight of a child node in the

DAG among all its parents, with these weights summing to 1. For example, in the

hierarchy shown in Figure 9.5, the instances in node c2 could be equally weighted

(with weight 1
2
) between its two parents b1 and b2. This weighting simply implies

that each instance labeled as c2 is counted as half an instance for all probabilities

that need to be estimated (e.g., during both feature selection and classi�cation) using

the descendents of b1, and similarly for the downward closure of b2. Such a weighting

would correspond to the hierarchy shown in Figure 9.7.

With this weighting scheme, we can now recompute the calculations in our previ-

ous example, showing that we do indeed obtain numerical results that are consistent
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Figure 9.7: Weighting instances allows the DAG in Figure 9.5 to be treated as a tree,
while not double counting instances.

with our intuitions about the a priori class probabilities. In the weighted scheme, we

have

P(C = c2 j B = b1;X = x ) =
5

15
=

1

3
; (9.7)

and

P(C = c2 j B = b2;X = x ) =
5

15
=

1

3
: (9.8)

Note the the probabilities for b1 and b2 remain 1
2
, but are derived slightly di�er-

ently.

P(B = b1 j X = x ) = P(B = b2 j X = x ) =
15

30
=

1

2
: (9.9)

Using these updated probabilities, we obtain the �nal result:

P(C = c2 j X = x ) =
1

3
� 1
2
+
1

3
� 1
2
=

1

3
; (9.10)

which matches our intuitive expectations (and actual distribution of instances among

the leaf classes).

More generally, in order to extend our work to DAGs we need to consider two

factors. First, nodes in the DAG with multiple parents should be probabilistically

weighted among their parents (as noted above), so that the instances contained in
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their descendents are not counted multiple times during probability computations.

In this way, we can guarantee that each instance in the data is, in fact, only counted

once regardless of the structure of the topic hierarchy. Second, the probability of

predicting a given class c should be determined as the sum over all paths in the DAG

leading to that class node. Formally, this can be expressed as

P(C = c j X ) =
X

Y 2fpaths to cg

P(C = c; Y j X ) ; (9.11)

where Y is a vector of nodes on the path from the root of the DAG to class node c.

While this sum may appear to become computationally unmanageable due to

the possible exponential blow-up in the number of paths to a given node in a large

hierarchy, it is important to keep two considerations in mind. First, the connectivity

in topic hierarchies is often quite sparse, thus strongly controlling the number of

possible paths to a given node. Second, even in cases where the number of paths to

a given node may be very large, it is still possible to e�ciently compute the sum in

Eq. 9.11 using dynamic programming.

By using a dynamic programming solution, we can decompose Eq. 9.11 into sums

over local path segments, thereby eliminating the exponential growth in the total

number of terms (i.e., complete paths) that would normally have to be computed

in the sum. This decomposition is achieved by simply storing the probability of

an instance reaching each node in the graph, rather than maintaining a separate

probability for each possible path that the instance may take through the graph.

As a result, for each node in the topic hierarchy, we only need to sum over the

probabilities of getting to it from its immediate parents (weighted by the probability

of an instance reaching each of the immediate parent nodes). Thus, even if there are

exponentially many distinct paths leading to some node in a topic graph, we can still

compute the probability of reaching that node in time that is polynomial in the total

number of nodes in the graph.

In future work we would like to more empirically explore the issue of hierarchical

classi�cation into topic DAGs. However, the current implementation of SONIA only
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requires classi�cation into strict trees of topics, and hence we do not pursue classi�-

cation into DAGs more fully here. Still, while incorporating topic DAGs into SONIA

may be well understood from a computational point of view, it is not a trivial task

when considering an appropriate user interface for developing such hierarchies. This

is yet another reason why we do not address the more empirical issues here.

9.5 Conclusions

The construction of a system such as SONIA that can help hierarchically organize

large amounts of text-based documents calls for algorithms that hierarchically catego-

rize new documents as they come in (e.g., in response to users' queries). We described

an approach which utilizes the existing rich hierarchical topic structure in order to

facilitate this process. Rather than building a single massive classi�er, our approach

generates a hierarchy of classi�ers, utilizing feature selection to tailor the feature set

of each classi�er to its localized task. As we have shown, the resulting reduction in

the size of the classi�er allows us to obtain signi�cantly higher accuracy, a reduction

due both to increased robustness and to our ability to use richer (and more complex)

classi�ers.

In other domains, such as medicine, the argument has also been extended that

making use of structure in the problem can help to reduce the complexity of a diag-

nosis task. For example, in the Path�nder system [74, 75], it was observed that by

constructing a single model for several related diseases, it was possible to build more

robust and specialized diagnosis models for di�erent groupings of diseases. While, this

system was not focused on a classi�cation task per se, the results obtained in that

work lend further credence to the bene�ts of making explicit use of class relationships,

such as in our hierarchical scheme.

Our work also opens the door to using more expressive (and computationally more

expensive) classi�ers at the nodes of the hierarchy. In this way we hope to be able to

obtain not only better classi�cation results, but also be able to handle text collections

with a wider variety of statistical characteristics.
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Several research issues speci�c to hierarchical classi�cation still remain. In partic-

ular, we have already mentioned the problem of recovering from classi�cation errors

early in the hierarchy. Moreover, recent work by McCallum et al [116] on improved

methods for estimating probabilities for classi�cation in text hierarchies are directly

applicable in our work and may even further improve our results. We would also like

to investigate the problem of discovering new classes in the hierarchy, when we have

multiple documents that do not \�t in" nicely. We believe that incorporating some

of the clustering work from Chapter 6 may help address this issue in future work.

Finally, in addressing the issue of applying our method to large text hierarchies

existing on the Web, we have already conducted some preliminary work on applying

this method to sub-hierarchies of topics extracted from the Yahoo! Web directory.

These results are still inconclusive (as Web data has a tendency to be extremely

varied, as well as incorporating other media aside from text), but we are encouraged

by some of our initial results and are seeking ways to improve them. More recently,

Mladenic [118] has directly followed up on this work, making use of our hierarchical

classi�cation scheme also for classifying Web pages into the Yahoo! directory. Her

positive results on this task lend further support to the applicability and scalability

of this method on large text datasets.
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Chapter 10

SONIA { A Complete System

10.1 Introduction

Having described the major technical components that comprise SONIA in the pre-

vious chapters, we can now see how all these pieces �t together to form a complete

system. To return to our original motivation for building SONIA, recall that the enor-

mous amount of information available on the World Wide Web and other networked

information sources, such as Digital Libraries, has created an urgently pressing need

to provide users with tools to navigate these information spaces. The initial attempts

at addressing this problem have led to the development of a number of information

�nding tools such as Web-based search engines (e.g., Alta Vista) and hierarchical di-

rectory services (e.g., Yahoo! ). However, as we explained previously (in Chapter 1),

such methods for information access are quickly being rendered inadequate due to

the tremendous growth in the number of documents available. Also worth noting is

the fact that networked information can often come from a number of heterogeneous

sources (i.e., the World Wide Web, di�erent Digital Libraries, proprietary databases,

etc.), whereas many existing information �nding tools are only implemented to work

with one information source.

We seek to address these problems with SONIA, a system for topical information

space navigation that combines both the query-based and taxonomic approaches. SO-

NIA employs the machine learning techniques described earlier (i.e., feature selection,

168
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clustering, and hierarchical classi�cation) to create dynamic document categorizations

based on the full-text of articles that are retrieved in response to users' queries. In this

way, users can explicitly specify their information needs as queries while also having

the ability to browse the results of their queries at a topical, rather than document,

level. Moreover, the hierarchical organization scheme imposed on a set of documents

may be used to classify new documents that become available to the system (e.g.,

documents returned in response to follow-up queries by the user).

The ability to automatically create meaningful document groupings relies on the

validity of the Cluster Hypothesis. Recall that this hypothesis states that \closely as-

sociated documents tend to be relevant to the same requests" [166]. As we described

in Chapter 4, a good deal of previous work [167, 127, 70, 71, 2] has provided signif-

icant support for the cluster hypothesis, as have our more recent results reported in

Chapter 6. Thus, we have strong reason to believe that clustering may be used as an

e�ective tool to help organize documents.

While our system embodies some similar elements to those in previous work on

document clustering, it uses entirely di�erent, and in many cases improved, tech-

nologies to realize this functionality. More importantly, however, SONIA provides

signi�cant new extensions in terms of technical functionality and broader applicabil-

ity. Operating in the dynamic context of networked information, SONIA makes use

of a number of methods for relevant feature extraction from documents through a

multi-tiered feature selection process that is customized to each user query.

The most signi�cant extension of SONIA beyond existing systems, however, is the

ability to save various document clusterings (i.e., topical partitionings) as hierarchical

classi�cation schemes that can be used to automatically categorize the results of sub-

sequent, but related, queries (using the hierarchical classi�cation method presented

in Chapter 9). This combination of clustering and classi�cation allows users to not

only navigate a given document collection more easily, but enables them to quickly

construct and maintain their own organizational structures for the vast quantities

of information available to them. In this way, we hope to elevate user interaction

with large information sources (e.g., the Web, Digital Libraries, etc.) beyond simple

one-shot queries and move to addressing users' more persistent information needs.
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We show that the basic ideas implemented in SONIA are also quite applicable to

personal information management, such as helping a user organize the �le system on

his or her personal computer desktop. In this context, SONIA can be very e�ective

at helping automatically generate and maintain portions of a user's hierarchical �le

directory structure.

Finally, since our system exists as part of a general architecture within the Stanford

Digital Libraries Testbed [158], it has the ability to simultaneously retrieve informa-

tion from a number of heterogeneous sources, thereby making our system maximally


exible. SONIA was also designed with e�ciency in mind, thereby facilitating real-

time user interactivity even when accessing diverse, distributed document collections.

In the remainder of this chapter we present the technical details of SONIA. In

Section 10.2, we describe the architecture in which SONIA is embedded and how it

interacts with a variety of heterogeneous information sources. There, we also give a

brief description of the Stanford Digital Libraries InfoBus Architecture, showing how

SONIA is situated within a larger distributed systems context. Section 10.3 provides

a more detailed account of how the various machine learning methods employed in

SONIA are incorporated together in the system. Then, in Section 10.4, we show anec-

dotal examples of the system in use, discussing its e�cacy in information browsing

and classi�cation. Finally, Section 10.5 gives a summary of this work and its future

directions.

10.2 SONIA on the InfoBus

The focus of the Stanford Digital Libraries project is on providing interoperability

among heterogeneous, distributed information sources, services and interfaces. To

this end, the InfoBus architecture [10] shown in Figure 10.1 has been developed. In

brief, the InfoBus is comprised of network proxies that encapsulate the protocols used

by disparate interfaces, information sources, and information services. These proxies

allow for communication among the di�erent entities connected to the InfoBus by

translating their communications into a common language.
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Figure 10.1: The InfoBus architecture.

The InfoBus thus provides a mechanism whereby a number of di�erent informa-

tion sources may be uniformly accessed. Furthermore, as new information sources

are incorporated into the InfoBus, their contents may be accessed with minimal re-

engineering of existing systems. In this way, systems that make use of the InfoBus

protocols are easily adapted to account for the emergence of diverse new information

sources. Also, the InfoBus provides a number of built-in services, such as intellectual

property rights management and automatic payment for information, among others.

These additional services are beyond the scope of the functionality necessary for de-

scribing SONIA's relationship to the InfoBus, and hence we do not describe them

further here.

SONIA exists within this architecture as an information service with a number

of capabilities. First, it allows for the clustering of collections of documents to help

extract subtopics that may be present. Furthermore, SONIA also allows for such

document groupings to be stored as persistent hierarchical categorization schemes.

Each such hierarchy is simply a multi-level partitioning of documents into a num-

ber of semantically meaningful groups. These hierarchies may then be updated by

automatically classifying additional documents into them. In this way, new query

results can be integrated into an existing topic hierarchy derived from previous query

results. As a result, a user can build up a large collection of results spanning multiple
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related queries (possibly directed at di�erent information sources) within the same

organizational scheme. Moreover, SONIA allows a single user to save several distinct

hierarchies to re
ect each of his or her diverse information needs.

Previously, the functionality in SONIA was accessible through the Java-based

SenseMaker interface [11]. SenseMaker allows users to simultaneously query multi-

ple heterogeneous information sources and then organize the retrieved documents by

matching titles, matching URLs (for Web documents), and the like, or it can utilize

SONIA to cluster documents by their full-text content [142, 143]. However, since

the the focus of the SenseMaker interface was not on the formation of topic hierar-

chies, we have more recently developed our own custom interface for SONIA. In this

new interface (which we show examples of in Section 10.4), users can still query a

variety of heterogeneous information sources, but can now form hierarchical organi-

zation schemes to capture the richer topical structures that exist in many document

collections. The InfoBus is still used as the primary means of communicating with

these disparate information sources. Thus, SONIA can e�ectively query virtually any

information sources which are, or will be, connected to the InfoBus.

10.3 A Component View SONIA

It is simplest to view SONIA as a series of modules, each of which is responsible for

a data transformation procedure. We begin by examining the initial querying and

document processing stages in SONIA, which are represented in the block diagram

in Figure 10.2. Here, the user begins by using SONIA to issue a query to various

information sources linked to the InfoBus. A list of potentially relevant document

identi�ers (e.g, URLs for Web documents, ID numbers for DIALOG, etc.) are then

returned to the system in response to the query. SONIA then employs a parallelized

crawler to retrieve the full text of the documents referred to in this list of document

identi�ers.

At this point, it becomes necessary to represent these documents in a manner

suitable for processing by subsequent machine learning algorithms (i.e., a vector rep-

resentation). The processing stages which produce this vector representation very
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Figure 10.2: Initial querying and document processing stages in the SONIA system.

closely follow our treatment of document representation given in Chapter 2. Once a

suitable representation has been obtained, the documents are then analyzed by dif-

ferent machine learning tools, depending on whether the user is choosing to organize

the documents according to an existing hierarchical classi�cation scheme or not. The

machine learning components of SONIA are depicted in Figure 10.3. We explain the

details of all of these processing stages, as implemented in SONIA, below.

10.3.1 Document retrieval and parsing

Since on-line information sources are rapidly changing, SONIA does not attempt to

maintain its own (possibly outdated) inverted index of documents, but rather treats

networked information as a massive digital library from which it can dynamically

retrieve documents. As a result, SONIA only requires that it receive a list of doc-

ument identi�ers (and not the actual documents) from the information sources that

it queries. This makes it possible to employ SONIA in conjunction with any of the

existing well-known search engines on the Web.
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Figure 10.3: The machine learning components in the SONIA system.

A highly parallelized document retrieval module (sometimes called a network

crawler or spider) is employed to retrieve the full text of the corresponding doc-

uments. This module does not present a timing bottleneck in real-time interaction

as it is capable of robustly retrieving as many as 250 document texts in parallel, and

utilizes a time-out condition (currently set at 30 seconds) to prevent needlessly long

waits for documents. Moreover, as the infrastructure of the Internet continues to

improve, and localized repositories become more prevalent, this document retrieval

stage will become even less of a time issue.

The retrieved document texts are then parsed into a series of alphanumeric terms

(i.e., words). Optionally, these terms may be stemmed to their root as SONIA's

parser includes a standard word stemming scheme [128]. We note that we currently

do not make use of such stemming in the examples of system usage provided in later
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sections. Empirically, we have not found stemming to create much of a di�erence in

the results obtained with the system.

Each term then forms a dimension in a high-dimensional space in which the docu-

ments can now be represented as vectors. That is, the vector representing a document

contains in the vector entry for each term, the count of how many times that term

appeared in the document. Since we now have the term counts for each document,

SONIA is capable of transforming the vector representation of documents to di�erent

term weighting schemes, such as a Boolean representation (as in Eq. 2.6). Such dif-

ferent representations are easily generated when needed by di�erent modules within

SONIA.

10.3.2 Initial feature selection

As we have mentioned on a number of occasions, the number of distinct terms in

unrestricted text is very large, so feature selection is generally necessary. SONIA uses

a multi-tier feature selection process, using both stop word elimination and statistical

techniques to reduce the feature space drastically. The system currently incorporates

two initial forms of feature selection, each of which operates on the vector-space

representation of the documents. Initially, dimensions representing stop words are

eliminated from the document vectors. These stop words are determined using a

standard English stop word list of 570 words (for example, see Table 2.4), as well as

a hand-crafted list of approximately 100 Web stop words (such as \html" and \url").

In the second tier of feature selection, a Zipf's Law analysis of term occurrence over

the collection is used. This process eliminates terms that appear fewer than three or

greater than 1000 times in the entire collection as not having adequate resolving power

to di�erentiate sub-collections of documents. These threshold values implemented in

SONIA were chosen heuristically since they appear to work quite well in practice

across the range of collection sizes typically used with the system|a few hundred

documents. We note that we have explored methods for tuning these thresholds to

the characteristics of more varied collections in previous work [141]. However, in the

current implementation of SONIA we have not observed much empirical di�erence
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through the use of these more sophisticated techniques, and thus do not employ them

here to save processing time.

After these �rst two stages of feature selection, the system reaches a branching

point (see Figure 10.3) depending on the user's choice to organize the current set of

documents with respect to an existing hierarchy or not. If an existing topic hierarchy

is not being employed, we are working in the context of unsupervised learning, and

consequently allow the user to create a new document organization from scratch

using the clustering method described in Chapter 6. If an existing hierarchy is being

used, then we have a supervised learning problem, in which case we can employ the

hierarchical classi�cation scheme presented in Chapter 9. We describe the clustering

and classi�cation modules in more detail in Sections 10.3.3 and 10.3.5, respectively.

10.3.3 Clustering

We �rst consider the case where an existing hierarchy is not being employed and

the user chooses to create a new organization scheme. Since we have found that the

clustering techniques presented in Chapter 6 are quite e�ective without the use of

any additional feature selection beyond that which we have already applied, SONIA

currently does not make use of the unsupervised feature selection methods presents in

Chapter 5. This not only gives us an important computational savings, but we believe

that the use of additional feature selection at this point would have little in
uence

on the e�cacy of the clustering algorithm. Moreover, the clustering algorithms we

employ are less computationally intensive than those used for classi�cation. Hence

the fact that we keep more features during clustering is not a serious computational

hindrance.

In the clustering method implemented in SONIA, we use the document similarity

measure based on the scaled term overlap between two documents, given in Eq. 6.19.

To compute the probability of a word appearing in a document, we used the normal-

ized geometric mean (NGM) estimate, de�ned in Eq. 6.10, as this estimate provided

the best results in our previous comparative work. As in Chapter 6, we use the
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group-average measure (de�ned in Eq. 6.18) to determine the similarity of two clus-

ters using a similarity function de�ned over two documents. Nevertheless, we note

that any reasonable clustering method can be used in this module of SONIA. In fact,

SONIA's modular architecture makes it easy to upgrade any individual component

as advances are made in a particular technology.

In conjunction with this similarity measure, SONIA makes use of a two step

clustering procedure. As explained in Chapter 6, this clustering procedure �rst uses

hierarchical agglomerative clustering to form an initial set of seed clusters. These

clusters are then further optimized using an iterative clustering technique (with a

maximum of 10 iterations). We chose this two step approach since it produced the

best results in our previous experiments. Moreover, this approach is deterministic,

which is an important characteristic from the end-user standpoint. Our belief is

that reproducibility of results is important to users, especially since they may �nd

it disconcerting to see di�erent results when applying a clustering operation to the

same collection of documents.

Finally, note that the clustering methods we employ currently require that the

user specify a priori the number of clusters into which a collection of documents

should be grouped. SONIA provides an interface which easily allows users to direct

the system to produce anywhere from two to 10 clusters. Moreover, since SONIA

also allows users to aggregate, or undo a clustering of documents, it is simple for

users to repeatedly try clustering a collection of documents into di�erent numbers of

subgroups and then select the one that best suits their needs.

10.3.4 Descriptor extraction

Whenever the user clusters a set of documents, he or she not only produces a parti-

tioning of the documents, but also causes SONIA to automatically extract descrip-

tors from the document subsets. These descriptor words provide a description of the

subtopics found in the document collection, and are presented to the user as initial

labels for each cluster.

We have informally compared a few methods for extracting these descriptors.
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The �rst such method is a probabilistic odds scheme in which, for each cluster cj,

we compute the probabilistic odds Oj(xi) of a term xi appearing in a document in

cj versus appearing in a document in any other sibling cluster ck. More formally, we

have

Oj(xi) =
P(xi j cj)P

ck 6=cj P(xi j ck)
: (10.1)

We then select some number, �, of terms with the highest Oj values as the descriptor

for document subset cj. Currently, we use � = 12, as this value appears to achieves

a good balance between brevity and descriptiveness. Alternatively, we have also con-

sidered a simple centroid -based approach for descriptor extraction. Here, we simply

compute the Euclidean centroid of all documents assigned to each group c (using the

term frequency vector representation for each document). As before, we simply take

the � terms corresponding to the dimensions with highest value in the centroid vector

as the descriptor for that group.

In practice, we have found that the centroid-based approach appears to yield words

that are much more indicative of the topic of a given document subset. It should be

noted, however, that part of the success of the centroid-based approach relies on the

e�cacy of prior stop word elimination to prevent common meaningless words from

appearing in the descriptor lists, since these words will be very common and hence

have high frequency counts in all document subsets. In contrast, the problem with the

odds based approach is that it seems to favor very rare (and hence not particularly

descriptive) terms that may appear a few times in one document subset, but not in

any of the others. As a result, these terms get a much higher odds score than more

common terms that may appear even a few times in the other document subsets. Still,

it may be of interest to select the terms to present to the user with the centroid-based

method, but then order the terms according to the odds-based method. Pursuing

this point in detail, however, is beyond the scope of our current work, and we do not

currently make use of this idea in the system.

We also make use of the descriptor extraction module in SONIA to help suggest

query terms pertaining to a particular document subset to the user. Here, the user

simply selects any topic node (i.e., document subset) in a hierarchy and asks the
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system to supply terms which may be useful in future queries aimed at �nding more

documents related to the selected topic. We simply employ the same centroid-based

descriptor extraction scheme, and list for the user the top 50 words (in order) in

the resulting centroid vector. As will be seen in the example usage scenarios in

Section 10.4, we have found this scheme to work quite well in practice.

10.3.5 Classi�cation

Rather than using clustering, a user may be employing an existing topic hierarchy

to classify an incoming stream of documents (for example, in response to a follow-up

query by the user). In this case, SONIA directly applies the hierarchical classi�cation

scheme (i.e., the pachinko machine) described in the previous chapter. To this end, we

use a combination of feature selection and Bayesian classi�cation at each node in the

user's existing topic hierarchy. Here, the documents in the existing hierarchy simply

become the training data and a hierarchy of classi�ers is built that can then be used

to classify the new incoming documents. In generating the hierarchy of classi�ers,

we �rst apply the feature selection algorithm introduced in Chapter 7 to the docu-

ments at each node of the classi�cation hierarchy. Note that we use no conditioning

information (i.e., Markov blanket size = 0) during this feature selection process. This

simpli�cation allows us to obtain fast computational speed, without much degrada-

tion in classi�cation performance (as evidenced by the results in Chapters 8 and 9).

Currently, we select the 50 most informative features at each node, since the results

from Chapter 7 show that 50 features are often su�cient for accurate classi�cation.

Moreover, using so few features gives us a big win in terms of computation time when

subsequently inducing a classi�er.

SONIA's architecture is general enough to allow any classi�cation algorithm to

be used as part of the system. We have chosen to focus on techniques based on

k-dependence Bayesian classi�ers presented in Chapter 8. More speci�cally, SONIA

makes use of 1-dependence models, as these seem to provide the best tradeo� between

expressivity and parameter robustness (i.e., bias and variance).

Once the hierarchy of classi�ers is built, we simply classify the new documents
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Figure 10.4: Using SONIA to issue the query \Saturn" to Excite.

in accordance with this resulting pachinko machine. After the new documents are

classi�ed, they are then displayed in the appropriate hierarchy nodes with asterisks

appended to the start of their titles to readily di�erentiate them from the documents

previously existing in the hierarchy. We show an example of this in the usage scenarios

below. Thus, the topic hierarchy can be updated with minimal e�ort by the user.

10.4 Examples of System Usage

Having detailed the myriad components that comprise SONIA, we now give detailed

examples of the complete system in action. Since it is di�cult to provide an objective

measure by which to evaluate such a system as a whole, we stress the salient aspects

of each of the examples presented here, so as to highlight both the strengths and

weaknesses of the system.
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10.4.1 Usage Scenario One

In the �rst usage scenario, let us consider the situation in which a user is interested

in �nding out more information about the ringed planet Saturn and its recently

discovered new moons.1 The user begins by using SONIA to issue the query \Saturn"

to the Excite Web search service, asking for the top 200 matching URLs. The query

dialog box in which this request is issued is shown in Figure 10.4. Note that the user

has a uniform interface regardless of which information sources are being queried.

SONIA sends this query via the InfoBus to Excite and receives the top 200 match-

ing URLs back from the search engine. At this point, the parallel crawler module of

SONIA is invoked to simultaneously retrieve all 200 Web pages pointed to by these

URLs. Of the 200 original URLs, the crawler is able to retrieve 150 valid documents,

since many links on the Web are outdated and point to non-existent documents, or

the servers on which some of these documents reside may not be currently operational.

These documents are then parsed into a vector representation, which initially has ap-

proximately 4000 features. The application of both Zipf's Law-based feature selection

and stop word elimination reduces these vectors to 1872 features. The entire process

of document retrieval, parsing and initial feature selection takes approximately 1.5

minutes of wall clock time on a heavily loaded Sun Sparc Ultra 2.

The user then chooses to cluster this initial group of documents into four clusters in

order to see what sorts of topics are contained in this collection. Applying clustering to

the entire collection and then extracting descriptors from each resulting cluster takes

roughly 1 minute. While we believe that the time taken to cluster is quite reasonable

for an interactive system, we note that it would be possible to speed-up this process

in many ways if desired (e.g., using an approximation to the similarity measure that

is faster to compute, performing fewer clustering iterations, etc.), but such speed-ups

may have a negative impact on the quality of the resulting clusters. However, it may

be possible to tune our system for di�erent user contexts, as appropriate.

An overview of the results of this clustering are given in Table 10.1, which includes

1This example was run in the summer of 1998. Since the Web is very dynamic, it is likely that

running this same example at a later date will produce di�erent results than those reported here.

As with most things in life, your mileage may vary.
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Plausible No.

Extracted Descriptors Sample Document Titles Topics Docs

saturn sega games sale Sega Online: Strategy Guides Sega

�ghter game virtua world Sega Saturn with 6 games for sale Saturn 23

nhl www ii $5 Sega Saturn Links Video Game

saturn car club price Saturn: A Case Study of How to Grow Saturn Car

saturn's market higher san Saturn Falling On Hard Times Businesses 19

000 service money diego Saturn of Honolulu

saturn talk car www Saturn, Let's Talk Saturn

sc2 
 kind mail Saturn New Car Sales Car Talk 70

4a4 home dark sl2 Saturn is di�erent! New cars and used and Info

saturn saturn's rings moons Saturn's Small Moons Planet

ring jupiter moon planet The 1995-6 Saturn Ring Plane Crossings Saturn 38

system hydrogen interior earth Science Tip - Saturn

Table 10.1: Initial clustering results on documents matching the query \Saturn".

for each cluster the descriptors automatically generated for that cluster, a sample of

the titles of documents contained in the cluster, a human-generated description of the

likely \plausible topic" for the cluster, and the number of documents in the cluster.

Figure 10.5 shows the SONIA interface after this clustering, re
ecting the �rst level

of the topic hierarchy being generated by the user. Figure 10.6 shows this hierarchy

after the user has renamed each cluster with its plausible topic.

The results in Table 10.1 reveal that SONIA is quite capable of discovering mean-

ingful subtopics within the given collection, readily distinguishing those documents

about the planet Saturn with those about the car company, as well as the Sega Sat-

urn video game. Moreover, these results also highlight how query results may contain

many documents which are about topics entirely di�erent than what the user is truly

interested in. By using clustering to quickly identify and sort out these non-relevant

documents, the user may be able to better home in on just those documents relevant

to him or her. This feature is especially important when we note that some of the web

pages of Saturn car enthusiasts have such vague titles as \Saturn Page" and \Sat-

urn" that could be misconstrued as pages about the planet if only titles were available

(as is the case with simple Web searches that provide no categorization mechanism).

Indeed, a detailed analysis of this document collection reveals that only 38 of 150
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Figure 10.5: SONIA display after initial clustering of \Saturn" collection.

documents are about the planet Saturn, and all of then are correctly grouped to-

gether into one cluster. Similarly, the collection contains 23 documents about the

Sega Saturn video game, which are all placed in a single cluster. The remaining two

clusters contain documents exclusively about the Saturn car company. Thus, in this

example, it appears that SONIA's clustering algorithm is very e�ective at keeping

each subgroup of documents relatively coherent.

At this point, the user wishes to �nd more structure in the subcollection of docu-

ment speci�c to the planet Saturn. Consequently, SONIA is used to cluster this sub-

group into three clusters. A brief overview of these clusters is given in Table 10.2. A

closer examination of the contents of each cluster reveals that one contains documents

on general information about the planet Saturn itself, another contains documents

primarily about Saturn's rings and moons, and the �nal cluster contains documents

pertaining to the observation of Saturn. We do note, however, that the descriptors au-

tomatically extracted from each cluster tend to have several overlapping terms. Thus,

using these descriptors alone may be insu�cient for the user to properly discern the



CHAPTER 10. SONIA { A COMPLETE SYSTEM 184

Figure 10.6: SONIA display after naming of the document clusters.

true topic of each subcollection.

The reduced e�cacy of our descriptor extraction scheme lower in the hierarchy is

mostly attributable to the fact that topics lower in the hierarchy tend to be much

more related to their sibling topics. The documents in these related �ne-grain topics

use many of the same words. Thus, the documents generally become less distant

from one another. Hearst also discusses this point in her work on information access

user interfaces that make use of clustering [69], where she explains that the focused

results of complex queries may be di�cult for clustering systems to meaningfully

di�erentiate. Still, by reading just a few of the document titles in each subcollection,

the contents of each subgroup becomes much more clear.

A close manual examination of this clustering shows that only two documents

are questionably placed in a cluster which may not best match their topical theme.

These documents both have a fair deal of information about the planet Saturn itself,

but also contain a good deal of information on Saturn's rings and virtually all of its

moons. These documents are both clustered into the \Moons and Rings", which seems
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Plausible No.

Extracted Descriptors Sample Document Titles Topics Docs

saturn hydrogen planet interior Saturn Facts General

saturn's jupiter ice layer Composition of Saturn's Interior information 17

rings composition system core Saturn - What We Know

saturn saturn's moons rings 7 (Saturn) Moons, compare Moons

ring moon plane jupiter Saturn's Small Moons and 16

system voyager image planet The 1995-6 Saturn Ring Plane Crossings Rings

saturn jupiter moon venus Best times to observe

mars mercury day rings Hourly Cycle of Solar System Objects Observation 5

side earth picture visible APOD: July 5 - Night Side of Saturn

Table 10.2: Results of clustering the \Planet Saturn" subcollection.

quite acceptable. However, they could have been equally reasonably grouped into the

documents containing general Saturn information. While their current grouping is

very reasonable, this example does show that allowing documents to belong tomultiple

clusters would be a desirable property. In previous work [141] we have taken some

initial steps in this direction, but a good solution to this problem still remains an

open question.

Still, if the user believes that some documents are improperly categorized by the

system, SONIA's interactive interface allows the user to move such documents to

other folders in the hierarchy if they choose. Thus, the clustering need not be 100%

accurate in order to still be e�ective at partitioning the document collection into

meaningful subgroups.

Returning to the usage scenario, the user now decides to rename the subcollections

about the planet Saturn for easier identi�ability. Moreover, the user also restructures

part of the hierarchy dealing with Saturn cars to create one subtree which encompasses

both of the document groups related to this topic. This �nal hierarchy, as displayed

in SONIA, is shown in Figure 10.7.

Focusing on the subtree dealing with the planet, Figure 10.8 shows a view of the

interface with two of the document folders open. This �gure displays how users are

able to browse document titles (and accompanying URLs) easily within the SONIA

interface. Thus, when automatically extracted descriptors may be inadequate to
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Figure 10.7: SONIA display showing the hierarchical organization produced by the
user.

characterize the topic of a group of documents, it is simple enough to peruse the

document titles within SONIA.

Nevertheless, a user may wish to browse the actual Web pages in a given group of

documents, as opposed to just their titles. To this end, SONIA is capable of dynami-

cally generating Web pages which contain links to the actual documents contained in

each node of the hierarchy. Moreover, a browser is launched in parallel with SONIA to

display such Web pages to the user. Consequently, the user may organize documents

with SONIA and also browse the documents in any subcollection generated with the

system at the same time. Hence, the ability to actually browse documents is well

integrated with the tools for organization that SONIA provides, helping to enable a

more topical level of document browsing. For example, Figure 10.9 shows one such

Web page generated by SONIA for the \Moons and Rings" subcollection.

Say that the user now wishes to �nd more articles related to the \Moons and

Rings" of Saturn. By selecting this node in the hierarchy and asking the system to
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Figure 10.8: SONIA display focusing on the sub-clusters of the \Planet Saturn" node.

saturn system solar
saturn's voyager tethys

moons image cassini
rings planet km
ring pan atlas

moon earth titan

plane dione telescope

jupiter satellites gif

Table 10.3: Top 24 suggested query terms for \Moons and Rings" subcollection.

suggest query terms, the user invokes the descriptor extraction module of SONIA.

This module then displays the top 50 terms related to this collection of documents.

We show the top 24 of these terms in Table 10.3. Note that this list of terms includes

the speci�c names of several of Saturn's moons (e.g., Pan, Dione, Tethys, Atlas, and

Titan), as well as more general terms for referring to such objects, such as \moons"

and \satellites".
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Figure 10.9: A Web page, dynamically generated by SONIA, containing links to
documents in the node labeled \Moons and Rings".



CHAPTER 10. SONIA { A COMPLETE SYSTEM 189

With these suggested query terms in hand, the user then issues the follow-up

query \saturn satellites and moons" to the system, asking for 50 URLs from the

Excite search service. As before, this request is serviced using the InfoBus protocol.

The crawler in SONIA is capable of retrieving 40 actual web pages from the 50

URLs returned by Excite. Rather than organizing these documents from scratch,

however, the user makes use of the currently existing topic hierarchy to classify the

new incoming documents. These documents are classi�ed into the topic hierarchy by

inducing a pachinko machine classi�er, as detailed in Section 10.3.5. The process of

inducing a hierarchical classi�cation scheme and classifying the new documents takes

approximately 20 seconds.

A close inspection of the results of this classi�cation reveals that only one doc-

ument is not placed somewhere in the \Planet Saturn" subtree. This Web page,

which contains a problem set from an astronomy class, would most likely belong in

the \Moons and Rings" topic. However, it is mistakenly placed in the \Saturn Car

Talk and Info" node, since it contains little actual information about Saturn's moons

and rings, and uses very conversational language (akin to many of the \car talk"

documents).

In the \Planet Saturn" subtree, three documents are placed in the \General Infor-

mation" topic, and all these documents do in fact appear to belong in this category,

as they contain information predominantly about the planet Saturn itself and only in

passing refer to its satellites. The remaining 36 documents retrieved in response to

the query are placed in the \Moons and Rings" class. Not surprisingly, 33 of these

documents are in fact discussing the moons and rings of Saturn. Two of the docu-

ments are about the moons of the planet Jupiter and are arguably classi�ed into the

best topic in the hierarchy for them. The last document contains information on the

moons of both Jupiter and Saturn, and again seems to be appropriately classi�ed,

given the classes that exist in the hierarchy. Thus, it seems that SONIA is quite

e�ective at classifying documents into a hierarchy formed via clustering, making only

one error in classifying 40 documents in the example above|a 97.5% accuracy rate.

Still, we point out that it would be useful for a system such as SONIA to detect when

incoming documents may not �t nicely into any existing topic. We believe that this
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direction is especially promising for future work.

If more documents were misclassi�ed in the example above (for example, into

nodes not in the \Planet Saturn" subtree), it might be argued that the user would

not look at these articles if he or she only focused on the results of the \Planet

Saturn" subtree. This point becomes less signi�cant, however, when we recognize

the vast quantity of relevant documents that a user would never see on a subject

because they are not in digital format, have not been indexed, etc. In the context

of large information repositories, such as Digital Libraries and the Web, the ability

to get query results with high precision is generally much more important that being

able to recall all possibly relevant documents. Thus, for classi�cation, it is arguable

that we should generally care more about �ltering out non-relevant information than

making sure we properly classify all relevant documents. However, we do not pursue

this conjecture further here.

10.4.2 Usage Scenario Two

In the second usage scenario, we consider the case where a user makes use of SONIA

to help him organize the �les in his computer's �le system.2 The user begins with 66

text �les that he wishes to organize. Being a graduate student in Computer Science

who has been engaged in a recent job search, this user's document set contains both

job-related documents (cover letters, various resumes, and letters of recommendation

written for former students who are also conducting job searches), as well as some

material related to courses (which have recently been taken or taught by the user).

In loading these raw text �les into SONIA, the documents are �rst parsed to

produce a vector representation, and then both Zipf's Law-based feature selection

and stop word elimination are applied. Since the documents are stored on local disk,

there are no network delays in loading this data. Thus, the process of parsing all

the documents and applying feature selection, which reduces the feature set from

approximately 3500 to just under 900 features, is performed in 20 seconds (again, on

2In fact, the particular user in this study is the author of this dissertation, who used SONIA to

organize some of the actual documents that had been stored on his personal computer.
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Figure 10.10: SONIA display after initial clustering of the user's �le system.

Plausible No.

Extracted Descriptors Sample Document Titles Topics Docs

stanford computer science university New Resume Job

teaching programming research department cover-letter-education related 49

ca learning program interests Andy-Reference

user error minor system CS147-paper1 Class

� program users time psych251-week3 related 17

problem command major model GradingCriteria2

Table 10.4: Results of initially clustering the �le system collection.

a heavily loaded Sun Sparc Ultra 2).

To initially organize these documents, the user decides to cluster the collection

into two groups, since there are at least two major themes present. With such a small

collection, clustering takes less than 10 seconds to perform. In Table 10.4, we give

an overview of these clusters. Also, the SONIA interface showing these two initial

clusters is presented in Figure 10.10.
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Figure 10.11: SONIA display after naming of the initial �le system clusters.

From the results seen in Table 10.4, it is apparent that SONIA can e�ectively

distinguish the job-related document from those pertaining to academic courses. For

example, the job-related cluster is characterized by descriptive words such as \stan-

ford", \computer", \science", \teaching", and \research", which are very indicative of

the user's background as a graduate student in Computer Science at Stanford Univer-

sity, and his desire to obtain a job involving teaching and research. Also, descriptive

terms from the class-related cluster, such as \user" and \model" are re
ective of the

fact that the user's classes, CS 147 and Psychology 251, are about human-computer

interaction and computational models of human learning, respectively. Terms such as

\program", \major", \minor", and \error" are also seen in the class-related cluster,

re
ecting the fact that the grading criteria for the classes the user is teaching measure

students' performance by the number of major or minor errors that are made on their

programming assignments.

A close examination of the results reveals that the only categorization errors made

by the clustering algorithm are two letters of reference (which are clearly job-related)
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Plausible No.

Extracted Descriptors Sample Document Titles Topics Docs

computer stanford science programming NewResume

university software ca teaching Resume-newest Resumes 10

learning resident responsibilities dormitory CurriculumVitae

stanford computer research university letter-MIT Cover

science interests department information coverletter-Brown Letters 21

teaching consideration learning machine cover- U Michigan

stanford computer program science Ref-Kleper References

class programming university teaching Phil.rec for others 20

student section students eric referenceJen

Table 10.5: Results of clustering the \Job related" subcollection.

Plausible No.

Extracted Descriptors Sample Document Titles Topics Docs

user system � users CS147-paper1

command problem model information psych251-week3 My Courses 9

printer task provided knowledge GroupPaper

error minor major errors GradingCriteria2 Grading

properly program time array GC1 Criteria 6

grading face smiley bar error-criteria

Table 10.6: Results of clustering the \Classes" subcollection.

that are incorrectly grouped with the class-related materials. Still, even with these

errors, SONIA achieves quite an acceptable level of performance|97.0% accuracy.

This result is also notable since the document collection is very skewed toward job-

related information, containing 51 such documents, whereas there are only 15 class-

related ones. Still, SONIA �nds these two major themes, rather than simply trying

to produce two convoluted clusters that are of more equal size (as some clustering

algorithms using mixture modeling are prone to do [87]). Furthermore, the interactive

nature of SONIA's interface makes it quite easy for the user to simply move the two

errant documents into the proper folder. The user can then name these two subgroups

of documents \Job related" and \Classes", respectively, for easier identi�ability. This

naming is re
ected in the interface shown in Figure 10.11.

Now, say the user wishes to further organize the folder of \Job related" documents,
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so he clusters this subcollection into three groups. An brief overview of the results

of this clustering are given in Table 10.5, where it appears that SONIA has once

again successfully identi�ed substructure in this document collection. Here, we �nd

that the three sub-themes of the job-related documents become clear: resumes, cover

letters, and job references written for former students. As in the �rst usage scenario,

however, we see that the descriptors automatically extracted for these subgroups

contain several overlapping terms, and it is only by viewing the document titles that

we can distinguish the major themes of each subgroup. Thus, it seems that our

descriptor extraction scheme, while working well at the high levels of the hierarchy,

is of more limited utility at �ner-grained subtopics lower in the hierarchy.

Performing our usual follow-up examination of the document clustering reveals

that only a single reference letter is erroneously included in the same cluster as the

cover letters. This yields an accuracy of over 98.0%. Again, the user can use SONIA

to simply move this single misclassi�ed document into the correct grouping with

minimal e�ort.

Similarly, the user also decides to cluster the \Classes" subcollection into two

groups, trying to separate the documents pertaining to the classes in which he enrolled

from those that he taught. The results of this clustering are presented in Table 10.6.

Here, the grouping is completely accurate at separating those documents written by

the user for classes in which he was enrolled (CS 147 and Psychology 251) from the

grading criteria for assignments in the programming classes he taught.

After giving more easily identi�able names to the new document groups formed via

clustering, the user produces the hierarchy depicted in Figure 10.12. Note that this

hierarchy is essentially a directory structure for helping the user manage this portion

of his �le system. Indeed, after some time, the user writes several more related

documents and it would be natural to use SONIA to classify these newly written

documents into the correct place into the �le system hierarchy. In accordance with

this idea, the user classi�es a set of nine new documents (including two cover letters,

three new papers for courses he is in, two reference letters for former students of his,

an updated resume, and the last grading criteria document for the class he is teaching

this quarter) into the current hierarchy. These nine documents were written after the
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Figure 10.12: SONIA display showing the hierarchy initially constructed by the user.

initial set of documents that were used to generate the hierarchy. SONIA is successful

at correctly classifying 100% of these documents into the appropriate classes in the

hierarchy using the pachinko machine classi�cation scheme. This shows that SONIA

is also e�ective at helping a user maintain his hierarchical �le organization as new

documents are being introduced into the system.

After classifying these new documents, the user �nally wishes to re�ne the hier-

archy further by di�erentiating between the di�erent classes he is taking. Thus, he

chooses to cluster the \My Courses" folder into two groups (re
ecting the number of

courses he's been working on most recently). In this case, SONIA distinguishes the

two classes with complete accuracy, correctly grouping together all CS 147 papers in

one folder and all Psychology 251 papers in another. This �nal hierarchy (after the

\CS147" and \Psych251" folders are named by the user) is shown in Figure 10.13.

Note that this �gure also shows some of the document titles contained in the \Cover

Letters" folder. Here, SONIA marks the newly classi�ed documents with an asterisk

(*) at the beginning of their titles to di�erentiate them from the documents which
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Figure 10.13: SONIA display highlighting the newly classi�ed documents (marked
with asterisks) in the \Cover Letters" folder.

previously populated the hierarchy. In this way, the user can quickly visually distin-

guish the new documents which have been automatically classi�ed into a hierarchy

from those that were there previously.

This usage scenario shows that SONIA is e�ective not only for helping users search

for and manage information on the World Wide Web, but also for helping users

organize information in much more personal environments, such as the documents on

their desktop. Thus, we believe that a system such as SONIA has the potential to

be an important component in an intelligent operating system that provides methods

for helping users automate their �le system management.
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10.5 Conclusions

We have presented SONIA, a system that provides the ability to organize document

collections into hierarchical categorization schemes, using a variety of machine learn-

ing techniques. SONIA is an operational system currently integrated into the Stanford

Digital Libraries Project testbed via the InfoBus communications protocol. We have

shown that SONIA can e�ectively help users �nd and keep track of relevant informa-

tion in large information spaces by utilizing its automated organizational capabilities.

Moreover, by emphasizing the use of hierarchies in document organization, we can

leverage users' familiarity with existing hierarchical topical organization schemes used

on the World Wide Web (e.g., Yahoo! ) and personal computer �le systems. In this

way, we hope to allow users to quickly construct their own personalized and exten-

sible hierarchies of categories, as well as apply SONIA in a variety of other related

applications, such as organizing Web page bookmarks.

In future work, we hope to further develop several of the technical modules in

SONIA.Most notably, we seek to �nd better means for descriptor extraction which are

robust across a variety of granularity levels in the document hierarchy. Also, we would

like to address the issue of clustering or classifying documents into multiple topics

in the hierarchy, when appropriate. We believe that basing our work on probability

theory can help take a �rst step in this direction by allowing documents to be included

in multiple topics whose probability is close to the maximally probably category. Still,

much work is needed to further formalize and implement this idea.



Chapter 11

Conclusions and Future Work

To recap, we brie
y summarize some of the results presented in this dissertation in

Section 11.1. We also highlight the major themes which have arisen in the course

of this work. Then, in Section 11.2 we consider avenues for further research into

the use of machine learning in information access. Speci�cally, we point our several

particular issues that have come up in the course of our work that still need to be

addressed. Finally, we consider broader research questions aimed at making use of

the rich non-textual information which is becoming a more integral part of on-line

documents.

11.1 Where Have We Been?

Beginning with the topic of document clustering in Chapters 5 and 6, we �rst showed

that standard methods for clustering via mixture modeling are prone to problems

of converging to local maxima in the large parameter spaces of text domains. Fur-

thermore, since it appears that there are many local maxima in these spaces, the

clustering results obtained by mixture modeling (even though they were substan-

tially improved through the use of feature selection) still did not appear adequate for

use in an end-user system such as SONIA.

Instead, in Chapter 6, we developed a more successful method for clustering which

relies on a novel form of probabilistic smoothing based on geometric, rather than

198
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arithmetic, means. We also showed that this similarity measure outperforms many

of the traditional document similarity measures used in IR for the clustering task.

Moreover, in the formulation of our new similarity score, we were able to provide a

new interpretation of the commonly used cosine coe�cient, thereby helping to shed

some new light on an old method. In this way, we hope to have taken some initial

steps toward a better understanding of document clustering criteria, and helped point

out new directions for further improvements.

Turning to the topic of document classi�cation, we began by developing a new

method for feature selection in Chapter 7. In this work, we showed that, for text do-

mains, we could successfully reduce the number of features used in classi�er induction

to as little as 5% of its original size, and often produce more accurate classi�cation

models as a result. Through such feature selection, we reduced the number of param-

eters that needed to be estimated during the classi�er induction process, and thus

introduced a bias (i.e., selecting a subset of features) that helped reduce the overall

variance associated with the model parameters. Thus, it appears that this way of

addressing the bias/variance trade-o� can be quite successful in text domains. More-

over, we pointed out that our feature selection method is entirely general, by giving

examples of its e�cacy in non-text domains as well.

In Chapter 8, we then turned directly to the question of Bayesian classi�er in-

duction. Beginning with the working assumption that many feature dependencies

exist in text domains, we �rst characterized the spectrum of feature dependence by

de�ning k-dependence Bayesian classi�ers. We then presented an e�cient algorithm

for the induction of such classi�ers and showed that they did indeed provide more

accurate classi�cation models for text than models that did not account for feature

dependencies. As in the case of feature selection, we also showed the generality of our

KDB algorithm on non-textual domains. The bias/variance trade-o� once again was

an important theme of this work, as we saw that allowing for too great a degree of de-

pendence (usually, k > 2), led to a degradation in classi�er performance. This seems

to show that while the expressivity of the classi�er is increased (i.e., less biased to-

ward simple models), any bene�ts from building a more complex model of the domain

are quickly swamped by the exponential increase in the number of model parameters
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which must be estimated from limited data (and, hence, have high variance).

More generally, we point out the importance of variance control in parameter esti-

mation for modeling text. Consider the fact that for text domains, the ratio of model

parameters to the amount of training data available is much higher than in many

previously addressed machine learning domains (e.g., the UC Irvine data sets). As

a result, it is important to consider what biases may be e�ective in helping control

the variance associated with estimating so many model parameters. For example,

the success of the Naive Bayesian classi�er can probably be explained more due to

its restrictive bias that provides an implicit variance control than for its real e�cacy

in modeling text. As further evidence of this, we note that when we attempted to

use limited dependence Bayesian classi�ers to model text domains without �rst per-

forming feature selection we often saw no classi�cation accuracy improvements. This

would seem to indicate that any added expressivity from using a richer model struc-

ture (which we intuitively believe is more realistic for text) was simply outweighed

by the increase in parameter variance.

To further corroborate the need for variance control, we point out that Support

Vector Machines (which provide an explicit variance control mechanism) have very

recently shown excellent results in text domains [82, 48]. Furthermore, even our

clustering results show that, by making use of strong parameter smoothing techniques

(another variance control method), we can often obtain superior results. Indeed,

as the data mining community looks at ways of constructing algorithms that can

scale to huge datasets, those working in text domains must simultaneously think of

methods that can scale to enormous parameter spaces and the resulting variance

issues associated with them.

Finally, in Chapter 9, we addressed the issue of classifying documents into a

hierarchy of topics. We showed that by developing a classi�cation scheme that directly

makes use of the hierarchical topic structure, both the features that are examined and

the feature dependencies that are modeled can be focused on the most salient aspects

of the data in di�erent parts of the document space. In this way, we can better capture

contextual information between topics in our hierarchical classi�er, and thus build a

series of more localized (and, consequently, more accurate) classi�cation models for
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documents.

Moreover, by developing our classi�cation methods in the same probabilistic frame-

work as our feature selection algorithm, we gained a better understanding of how these

di�erent components interact when they are used in combination. For example, we

saw that by not making use of probabilistic conditioning information during the fea-

ture selection process, we are less likely to eliminate redundant features. Nevertheless,

when we subsequently employ limited dependence Bayesian classi�ers, which can ac-

count for the existing feature dependencies, the problem of redundant features can

be dealt with e�ectively during induction. Thus, combining these methods creates a

bene�cial synergy that can easily be understood in the probabilistic framework.

Also, in our hierarchical classi�cation scheme, the use of feature selection and

limited dependence Bayesian classi�ers can be interpreted as building a probabilistic

model which has localized feature interaction regions. These regions are de�ned by

the classes in the topic hierarchy. The feature selection algorithm simply selects

the most probabilistically relevant features in each region. The limited dependence

Bayesian classi�er then separately models the dependencies that exist among each

subgroup of features.

In conclusion, we point out that while many of the machine learning tools pre-

sented in this dissertation have been successfully incorporated into SONIA (as seen

in Chapter 10), this system is not the end goal. Rather, it is merely one incarnation

of an intelligent information access system using the machine learning tools we have

developed here. We hope that there will be others to follow.

11.2 Where Are We Going?

While we hope to have contributed to the improvement of information access systems

through the development of machine learning tools geared toward helping users better

�nd and organize on-line information, there is a great deal more work along these lines

that needs to be done.

Beginning with our clustering work, we would like to gain a better understanding
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of the similarity score developed in Chapter 6 from a Bayesian perspective. More-

over, we have only recently uncovered ties between our measure and related work

using geometric means of probabilities in the pattern recognition community. We be-

lieve that by building stronger ties between our work and these other measures, such

as the Bhattacharyya distance, we can not only gain more insight into our particu-

lar similarity measure, but hopefully also reveal some more of the important issues

pertaining to parameter estimation in high-dimensional domains such as text.

Also along these lines, we would like to explore the use of our similarity measure

developed for clustering in supervised classi�cation problems. We believe that our

strong initial results in clustering give good evidence that this similarity measure may

also be quite e�ective for classi�cation tasks.

There are also several issues lying at the boundary of clustering and classi�cation

which deserve further exploration. Foremost among these is the detection of new

topics that do not neatly �t into an existing classi�cation scheme. This area has the

potential to bene�t from combining previous work in topic detection [1, 176], with

new ideas in clustering. Indeed, this issue will become more important as the domain

of digital libraries moves from the classic topic structure of existing libraries and into

the realm of organizing the quickly evolving body of information on the World Wide

Web.

In a similar vein, the notion of automatically merging class hierarchies is another

potentially fruitful research area. In this problem, we consider how two separately

built hierarchies, which may contain some overlapping topics and documents, may

be successfully merged into a single coherent topic hierarchy. If we could adequately

address this problem, we could help users elevate their information sharing beyond

individual documents (as is commonly done currently), and move into the realm of

sharing their large directories of information. We believe that solving this problem

will also be a critical issue in the building of large digital libraries through federating

existing information repositories.

Yet another area which we believe has great potential is the incorporation of

non-textual features, such as document metadata (e.g., author, publisher, etc.), into

document clustering and classi�cation tasks. Indeed, initial work along these lines in
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the context of e-mail classi�cation has already shown that the use of such non-textual

features can have a signi�cant impact on classi�cation accuracy [140]. As the current

push in the Digital Libraries community toward having more document metadata

succeeds in making such non-textual features available for more on-line documents in

the future, we believe that methods that can e�ectively harness this information will

have signi�cant advantages over methods that cannot.

While non-textual metadata is one rich source of additional information, methods

for incorporating information from other media (e.g., images) into the clustering and

classi�cation process also need to be developed. This is especially true given the

growing amount of multi-media information being used on Web pages. We hope that

by tackling this problem, we can make systems such as SONIA much more applicable

to multi-media information repositories.

In looking at the broader scope of a user's need to �nd and organize relevant

information, we would like to consider the development of autonomous software agents

which can be directed to scour the Web to �nd documents related to particular

topics in a user's topic hierarchy. We believe that it is possible to make use of

the machine learning technologies developed here to help determine the degree of

relevance various documents on the Web may have to users. Moreover, to deal with

proprietary information, it would be bene�cial to incorporate utility models into

our work so as to enable such agents to make decision theoretically justi�ed choices

regarding, for example, when to pay for proprietary, but potentially highly relevant,

information on behalf of a user, or when the agent must consider other cost-sensitive

factors when making retrieval decisions.

Finally, we would like to stress the full generality of the machine learning com-

ponents developed in SONIA, by using the system for exploratory data analysis and

data mining in non-textual domains. As our results from Chapters 7 and 8 point out,

we believe that the technology incorporated into SONIA has much wider potential

than just the organization of textual information. Still, this is an area that needs

much work, especially in the identi�cation of domains where such interactive tools

could have a large impact.

Indeed, the scope of future work stemming from such a rich area as the use of
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machine learning in information access is potentially limitless. If we consider research

as the on-going search for knowledge and understanding, then perhaps we could best

conclude by simply observing that \the point of the journey is not to arrive" [126].
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