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Abstract

This thesis presents a framework that combines deductive and algorithmic methods for

verifying temporal properties of reactive systems, to allow more automatic veri�cation of

general in�nite-state systems and the veri�cation of larger �nite-state ones. Underlying

these deductive-algorithmic methods is the theory of property-preserving assertion-based

abstractions, where a �nite-state abstraction of the system is deductively justi�ed and

algorithmically model checked.

After presenting an abstraction framework that accounts for fairness, we describe a

method to automatically generate �nite-state abstractions. We then show how a number

of other methods, including deductive rules, (Generalized) Veri�cation Diagrams, and De-

ductive Model Checking, can also be understood as constructing �nite-state versions of the

system that are model checked.

This analysis leads to a better classi�cation and understanding of these veri�cation

methods. Furthermore, it shows how the di�erent abstractions that they construct can be

combined. For this, we present an algorithmic extended abstract model checking procedure,

which uses all the information produced by these methods, expressed in a �nite-state format

that can be easily and incrementally combined. Besides a standard safety component, the

combined abstractions include extra bounds on fair transitions, well-founded orders, and

constrained transition relations for the generation of counterexamples.

Thus, our approach minimizes the need for user interaction and maximizes the impact

of the available automated deduction and model checking tools. Once proved, veri�cation

conditions are reused as much as possible, leaving the temporal and combinatorial reasoning

to automatic tools.
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Chapter 1

Introduction

This thesis addresses the formal veri�cation of temporal properties of reactive systems. A

reactive system is a computer program, implemented in hardware or software, or a combina-

tion thereof, that maintains an ongoing interaction with its environment, which can include

the physical world, human users, or other computer programs. Unlike purely functional

programs, which compute a single output given a set of inputs, a reactive system does not

necessarily terminate, so its computations can be viewed as in�nite sequences of states.

Reactive systems feature concurrency : di�erent components of the system may per-

form di�erent tasks at the same time, and frequently or occasionally communicate with

each other. They also feature non-determinism, where the next state of the system is

under-speci�ed or only partially known. The design of correct reactive systems is partic-

ularly challenging, since during their execution a large number of possibly unanticipated

con�gurations and events can occur. Formal veri�cation provides a rigorous, well-de�ned

mathematical basis by which properties of all possible combinations of such con�gurations

and events can be established.

Since the analysis of reactive systems requires reasoning about ongoing behavior over

time, temporal logic has been found to be a very well-suited formalism for precisely specifying

the properties that such systems should satisfy [Pnu77]. Formulas of temporal logic describe

properties of in�nite sequences of states. In its di�erent varieties, temporal logic can express

the ordering, inevitability, eventuality, or possibility of events. By proving that a system

satis�es a temporal property, we show that all of its possible computations do.

Even though computations of reactive systems are in�nite sequences of states, systems

may be classi�ed according to the cardinality of the set of possible states. For �nite-state

1



2 CHAPTER 1. INTRODUCTION

systems, the states are valuations of a �nite number of �nite-state variables, or equiva-

lently, a �nite number of bits. This includes, in particular, hardware systems of �xed size.

In�nite-state systems feature variables with unbounded domains, typically found in software

systems, such as integers, lists, trees, and other datatypes.

The veri�cation of temporal properties for �nite-state systems is decidable: model check-

ing algorithms can automatically decide if a temporal property holds for a �nite-state sys-

tem, usually producing a counterexample computation if this is not the case. Counterexam-

ples are of great use in identifying the corresponding fault in the system or its speci�cation.

(A counterexample is always more convincing than a proof, specially when the latter relies

on exhaustive enumeration by computer.) However, model checking su�ers from the state

explosion problem, where the number of states to be explored grows exponentially in the

size of the system description, particularly as the number of concurrent processes grows.

For general in�nite-state systems, including real-time and hybrid systems, the veri�-

cation problem is undecidable, and �nite-state model checking techniques are not directly

applicable.1 Deductive methods, based on general-purpose theorem proving, apply to a wide

class of �nite- and in�nite-state reactive systems. They provide relatively complete proof

systems, which are guaranteed to prove any temporal property that indeed holds over the

given system. Unfortunately, if the property does not hold, deductive methods do not nor-

mally provide much useful feedback to the user, who must then try to decide whether the

property really fails or something is missing in the proof.

First-order logic, including its many fragments and extensions, is a natural and con-

venient language for expressing relationships over the unbounded data structures that

make software systems in�nite-state. Automated deduction, or theorem proving , provides

computer-aided tools to reason about these relationships. Such tools are particularly wel-

come since the theorems needed are usually not particularly deep or interesting, but instead

rather tedious to prove.

This thesis presents methods for combining the deductive and algorithmic approaches to

veri�cation, making model checking tools more applicable to general in�nite-state systems.

The goal is to make the veri�cation of such systems more automatic (that is, less interactive),

by reusing the results of deductive methods as much as possible and leaving the propositional

1Particular decidable classes of in�nite-state systems can be model checked using specialized tools, and

invariants can be automatically generated for in�nite-state systems as well. These tools often use abstraction

as well|see the discussion of related work in Chapter 7, particularly Section 7.3.
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reasoning and temporal combinatorics to the �nite-state model checking tools. The methods

we present can also help verify large �nite-state systems for which model checking is not

feasible. Such systems may be treated as in�nite-state ones, by parameterizing processes

and introducing symbolic functions and constants to abstract data. Thus, very complex

hardware systems might be best veri�ed by modeling them as software.

One of the goals of this thesis is to show that the two hyphenated words in its title

are mostly redundant: underlying all the methods for combining deductive and algorithmic

veri�cation we consider lies the notion of abstraction, which allows a quotient of the orig-

inal state-space to be explored. We will see that the main di�erence between algorithmic

and deductive methods is the degree of abstraction used. Many deductive methods can

be understood as constructing an appropriate abstraction of the system for which (often

simple) model checking can be performed. Formalizing this, we present an assertion-based

abstraction framework that lies, implicitly, behind most deductive veri�cation techniques

(Chapter 3).

The main question that then arises is how such an abstraction may be found. The

combinations of theorem proving and model checking discussed in this thesis di�er in the

ways in which the abstraction is constructed and analyzed, and are generally classi�ed into

two main groups. Static methods generate a system abstraction and then model check it.

Dynamic methods construct the desired abstraction incrementally, interleaving it with the

model checking process itself. (Chapter 7 classi�es related work along these lines.)

We present an algorithm for automatically constructing �nite-state assertion-based ab-

stractions of possibly in�nite-state systems, based on a description of its basic components

provided by the user (Chapter 4). We then show how deductive veri�cation rules and Gener-

alized Veri�cation Diagrams can also be understood as specifying an adequate abstraction,

which is deductively justi�ed and algorithmically model checked. Similarly, we show how

in the related method of Deductive Model Checking, the abstraction is constructed and

re�ned interactively, while the property is simultaneously model checked (Chapter 5).

We argue that viewing these methods as literal instances of abstraction has implications

that are useful in practice. In Chapter 6 we show how the abstractions that these methods

generate can be automatically combined and model checked, maximizing the utility of their

construction, and minimizing the extra work done by the user. The veri�cation conditions

proved for the original system are reused as much as possible, using automatic tools to

explore their consequences.
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In all cases, the veri�cation of in�nite-state systems is still interactive (and undecidable

in general), and not guaranteed to succeed or �nd a counterexample. However, we argue that

the construction of abstractions provides an alternative to standard deductive veri�cation

that is more exploratory and incremental. Furthermore, user interaction, which will always

be needed, is made less painful by maximizing the amount of model checking and deductive

reasoning that is carried out automatically. We hope that it is also made more fun, by

providing earlier and more interesting feedback to the user.

1.1 Model Checking vs. (?) Theorem Proving

Algorithmic Methods Deductive Methods Combination

Automatic? yes no sometimes

Counterexamples? yes no sometimes

General in�nite-state? no yes yes

Table 1.1: Deductive vs. algorithmic veri�cation

As mentioned above, model checking and deductive veri�cation have di�erent strengths

and weaknesses, summarized in Table 1.1. Model checking [CE81, QS82] is based on the

observation that checking that a formula is true in a particular model is generally easier

than checking that it is true in all models (the validity test). In the case of reactive systems,

the model of interest is the system itself, the temporal property is the formula to be checked

over that model.

The provocatively titled manifesto by Halpern and Vardi [HV91] argues that model

checking, rather than theorem proving, should be used in knowledge representation appli-

cations whenever possible|that is, whenever a particular model is available: a knowledge

base is, in general, better described as a model than as a set of axioms, since its potential

consequences can be model checked, rather than proved valid in a corresponding theory.2

However, we must point out that the use of theorem proving proposed in this thesis,

which includes that found in most deductive veri�cation frameworks, is not analogous to

2As [HV91] points out, for instance, logical omniscience is a non-problem from the model checking point

of view: agents \know" all tautologies, not because they are expert logicians, but because they can check

each one for the given model. (They will know many non-tautologies too, and are not expected to tell the

di�erence.)
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the application of theorem proving criticized in [HV91]: the system itself is not encoded

as a logical formula. Rather, a succinct description of the system (a set of transitions)

is used to generate a small number of theorems (veri�cation conditions) that prove the

truth of a temporal formula relative to the particular system in question. Thus, deductive

veri�cation is itself an indirect form of model checking. In Chapter 5, we justify this claim

by showing how these deductive methods are equivalent to model checking a particular kind

of abstraction.3

We argue that the approach described in this thesis takes advantage of the best that

each method o�ers. Validity checking is used to prove facts about possibly in�nite sets of

states (under specialized theories, if applicable), where considering all the possible models

of a particular formula does make a di�erence, for the best. Model checking is then used to

check truth under the available model: a �nite-state abstract system.

1.2 Sensible Uses of Formal Methods

It is generally agreed that a \formal method" requires three related components (e.g.,

[Rus93, MP95b]):

� A mathematical model of the systems being veri�ed.

� A speci�cation language for describing properties of systems.

� A veri�cation framework for proving properties of systems.

In this way, formal methods can prove that a particular mathematical model of the

system of interest satis�es certain mathematical properties (including, for instance, being

equivalent to, or a re�nement of, another mathematical model). By using formal methods,

we increase the probability of �nding subtle errors (also known as \bugs"). The task of

speci�cation itself can expose previously implicit and possibly misguided assumptions about

the system, increasing the designer's understanding of it.

However, formal methods cannot prove that the mathematical model correctly re
ects

its real-world implementation, or, more seriously perhaps, that the properties that the model

satis�es are indeed the ones that the system designers really want. Eventually, systems must

3This claim is not particularly surprising, but we argue that it gives a point of view that can be exploited

in practice.
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still be tested in the real world, as in the well-known quote from Knuth [Knu77]: \Beware

of bugs in the above code; I have only proved it correct, not tried it."

For this reason, Henzinger [Hen96] argues that formal veri�cation should be called \for-

mal falsi�cation" instead: \The only sensible goal of formal methods is to detect the presence

of errors," rather than certify their absence.4 Rushby [Rus93] makes a similar point, quot-

ing Lakatos: \The virtue of a logical proof is not that it compels belief but that it suggests

doubts." Formal methods are valuable not because they give proofs, but because they un-

cover assumptions, and �nd bugs. We cannot prove that the real world will behave as we

expect any more than we can prove that the law of gravity will continue to work tomorrow.

1.2.1 Which Airplane to Fly?

To illustrate the point more dramatically, consider the problem of choosing which of two

airplanes, A and B, to use for a long trip.5 Assume that both have been designed and built

by equally competent teams of engineers, tested to the same degree, and are operated by

the same crew. Assume also that several properties of the computer systems of plane B

have been \veri�ed" (\falsi�ed" would be more accurate) using methods not unlike those

proposed in this thesis. This author would then prefer to 
y B, maybe even paying a

(modest) fare increase proportional to the quality of the veri�cation methods used.

However, if \formal methods" were the only method used to validate the systems in

plane B, then this author would most de�nitely prefer A (or else walk, drive or swim to

his destination). Formal methods should not give the designers of B any more certainty

that it will behave \correctly" when 
own. But they can help �nd more accurate notions of

system \correctness" and provide more opportunities for uncovering problems in the design

and bugs in the implementation.

We end this philosophical discussion with a good example of the dangers of indiscrimi-

nately applying formal reasoning to the real world, described ca. 1891:

Logic, n. The art of thinking and reasoning in strict accordance with the limita-

tions and incapacities of the human misunderstanding. The basic of logic is the

syllogism, consisting of a major and a minor premise and a conclusion|thus:

4Perhaps the term \veri�cation" can be retained when only mathematical objects are involved, and

\falsi�cation" or \validation" used whenever the physical world is involved.
5See [Rus93] for a discussion of formal methods and this particular domain. This section borrows from

a discussion at a recent formal methods conference, where the very term \formal methods" was questioned.

We keep it for lack of a better one.
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Major premise: Sixty men can do a piece of work sixty times as quickly as

one man.

Minor premise: One man can dig a posthole in sixty seconds; therefore|

Conclusion: Sixty men can dig a posthole in one second.

This may be called the syllogism arithmetical, in which, by combining logic and

mathematics, we obtain a double certainty and are twice blessed.

{ Ambrose Bierce, The Devil's Dictionary [Bie72]

1.3 Outline

Chapter 2 presents the basic background material concerning reactive systems, temporal

logic, model checking and automated deduction. Chapter 3 presents the necessary theoret-

ical abstraction background (fairly simple, as far as these things are concerned), including

fairness considerations.

Chapter 4 then presents an algorithm for generating �nite-state abstractions of possibly

in�nite-state systems, following [CU98]. Chapter 5 discusses how the related methods of

veri�cation rules, Generalized Veri�cation Diagrams, and Deductive Model Checking can be

seen as constructing an appropriate assertion-based abstraction, making �ner distinctions

than those in Chapter 4. Based on this, Chapter 6 presents a practical approach to combin-

ing abstractions that bene�ts from the point of view and common abstraction framework

presented in the previous chapters.

For Chapters 3{6, the most closely related work is discussed at the end of each chapter.

Chapter 7 surveys and classi�es more generally related work. Finally, Chapter 8 presents

conclusions, and suggests some directions for future research.
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Chapter 2

Background

This chapter presents the basic notions used in the rest of this thesis. First, we describe

Kripke structures (Section 2.1.1), which model reactive systems, together with the fair tran-

sition systems that describe them (Section 2.1.2) and the temporal logic that speci�es their

properties (Section 2.2). Model checking and deductive veri�cation are brie
y presented

in Sections 2.3{2.6. The STeP tool, which implements most of the veri�cation methods

described in this chapter and thesis, is described in Section 2.7. Since all of this material

is quite well-covered elsewhere, we try to be brief, referring the reader to the appropriate

sources for details.

2.1 Reactive Systems

2.1.1 Kripke Structures

A reactive system S : h�;�; Ri is given by a set of states �, a set of initial states � � �,

and a transition relation R � � � �. If hs1; s2i 2 R, state s2 is a successor of s1, and

the system can move from s1 to s2. A system S can be identi�ed with the corresponding

Kripke structure,1 or state-space: this is the directed graph whose vertices are the elements

of � and whose edges connect each state to its successor states. Each state in � will be

identi�ed by a valuation of a set of system variables, as we formalize below.

1This formalism has its origins in the semantics for modal logic given by Kripke, where each state is a

possible world .

9



10 CHAPTER 2. BACKGROUND

If � is �nite, S is said to be �nite-state. Describing large or in�nite state-spaces ex-

plicitly is not feasible. Therefore, the state-space is implicitly represented in some other

form: a hardware description, a program, or an !-automaton. We now describe the basic

representation for reactive systems we will use.

Relational Operators

We identify binary relations with sets of pairs, where hs1; s2i 2 R i� R(s1; s2) holds. In

general, for a binary relation R : �� � and a set S � �, we de�ne

post(R;S)
def
= fx jR(s; x) for some s 2 Sg

pre(R;S)
def
= fy jR(y; s) for some s 2 Sg

wpc(R;S)
def
= gpre(R;S) def

= pre(R;S)

where S = � � S. Thus, wpc corresponds to the weakest liberal precondition predicate

transformer, giving those states where the relation is guaranteed to reach a state in S, if a

related state exists at all. In contrast, pre gives those states where it is possible to reach an

element of S by the relation R.

2.1.2 Fair Transition Systems

Fair transition systems [MP91b, MP95b] are a convenient formalism for specifying �nite-

and in�nite-state reactive systems. They are \low-level" in the sense that many other

formalisms can be translated or compiled into them.2 The representation relies on an

assertion language to represent sets of states, usually based on �rst-order logic.

The state-space of the system is determined by a set of system variables V, where each

variable has a given domain (e.g., booleans, integers, recursive datatypes, or reals).

De�nition 2.1.1 (Assertion) A �rst-order formula whose free variables are a subset of

V is an assertion, and represents the set of states that satisfy it. For an assertion ', we

say that s 2 � is a '-state if s q ', that is, ' holds given the values of V at the state s.

Assertions are sometimes called \state-formulas," but we avoid this term to prevent

confusion with the CTL* state formulas of Section 2.2 (which are temporal formulas that

2In practice, higher-level languages are desirable since, among other things, they lessen the chance of

inadvertently writing down vacuous speci�cations, as noted, e.g., in [McM93].
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are evaluated over a state). We reserve the term assertion for formulas with no temporal

operators.

We write the standard boolean connectives as ^, _, :, and$ (equivalence). An atomic

formula is one whose only subformula is itself.

Remark 2.1.2 (Assertion language) In practice, an assertion language other than �rst-

order logic can be used. The basic requirements on the assertion language are the ability

to represent predicates and relations, and automated support for validity and satis�ability

checking (which need not be complete). 0

Besides �rst-order logic, examples of other suitable assertion languages include ordered

binary decision diagrams (OBDD's) [Bry86] and their variants, for �nite-state systems (see

Section 2.3), and specialized constraint languages such as those used in constraint logic

programming (CLP) [JL87].

The initial condition is now expressed as an assertion, characterizing the set of states

the system can be in at the start of a computation. The transition relation R is described as

a set of transitions T . Each transition � 2 T is described by its transition relation �(V;V 0),

a �rst-order formula over the set of system variables V and a primed set V 0, indicating their

values at the next state.

De�nition 2.1.3 (Transition system) A transition system S : hV;�;T i is given by a

set of system variables V, an initial condition �, expressed as an assertion over V, and a

set of transitions T , each an assertion over (V;V 0).

In the associated Kripke structure, each state in the state-space � is a possible valuation

of V. We write s q ' if assertion ' holds at state s, and say that s is a '-state. A state s

is initial if s q �. There is an edge from s1 to s2 if hs1; s2i satisfy � for some � 2 T .

Remark 2.1.4 (Edge labels in a Kripke structure) The edges of a Kripke structure

can be labeled with transitions in one of two ways: In the �rst, there is at most one edge

between any pair of states hs1; s2i, labeled by the set of transitions that can go from s1 to

s2. In the second, each one of these transitions labels a separate edge from s1 to s2. In

both cases, we say that a transition is taken along the edges it labels.

These two conventions are, of course, equivalent. We will use one or the other according

to convenience, but not both at the same time. 0



12 CHAPTER 2. BACKGROUND

The Kripke structure is also called the state transition graph for S. Note that if the

domain of a system variable is in�nite, the state-space is in�nite as well, even though the

reachable state-space, the set of states that can be reached from �, may be �nite.

The global transition relation is the disjunction of the individual transition relations:

R(s1; s2) i� �(s1; s2) holds for some � 2 T . We also write T (s1; s2) in this case. The

predicate transformers pre , post and wpc can now be expressed in terms of assertions:

pre(�; ')
def
= 9V

0:
�
�(V;V 0) ^ '(V 0)

�
post (�; ')

def
= 9V0: (�(V0;V) ^ '(V0))

wpc(�; ')
def
= 8V

0:
�
�(V;V 0)! '(V 0)

�
:

For assertions ' and  and transition � , we write

f'g � f g
def
=
�
'(V ) ^ �(V;V 0)

�
!  (V 0) :

This is the veri�cation condition that states that every � -successor of a '-state must be a  -

state. For an expression ', we de�ne '0 to be the result of replacing each free variable x of '

with x0. Thus,  (V 0) can be written as  0. For a set of expressions S, let S0
def
= f'0 j ' 2 Sg.

Note 2.1.5 (Implicit universal quanti�ers) Throughout this thesis, �rst-order formu-

las will be, implicitly, universally quanti�ed. Thus, a veri�cation condition f will stand for

its universal closure 8x1: : : : :8xn:f , where x1; : : : ; xn are the free variables in f . In contrast,

existential quanti�ers will always be explicit.

A run of S is an in�nite path through the Kripke structure that starts at an initial

state, i.e., a sequence of states (s0; s1; : : :) where s0 2 � and R(si; si+1) for all i � 0. If

�(si; si+1) holds, then we say that transition � is taken at si. A transition is enabled if it

can be taken at a given state. The states where � can be taken are characterized by the

formula enabled , where

enabled (�)
def
= 9V 0:�(V;V 0) :

Note 2.1.6 (Assertions as sets) Since an assertion can be identi�ed with the set of states

where it is true, we sometimes write f1 � f2 when f1 implies f2, for assertions f1 and f2.

Similarly, we may write f1 \ f2 for f1 ^ f2, f1 [ f2 for f1 _ f2, or f for :f .
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local y1; y2 : integer where y1 = 0 ^ y2 = 0

2
66666664

loop forever do2
666664

`0: noncritical

`1: y1 := y2 + 1

`2: await (y2 = 0 _ y1 � y2)

`3: critical

`4: y1 := 0

3
777775

3
77777775
jj

2
66666664

loop forever do2
666664

m0: noncritical

m1: y2 := y1 + 1

m2: await (y1 = 0 _ y2 < y1)

m3: critical

m4: y2 := 0

3
777775

3
77777775

{P1{ {P2{

Figure 2.1: Program bakery for 2-process mutual exclusion

2.1.3 Fairness and Computations

Our computational model represents concurrency by interleaving : at each step of a compu-

tation, a single action or transition is executed. The transitions from di�erent processes are

combined in all possible ways to form the set of computations of the system. Fairness ex-

presses the constraint that certain actions cannot be forever prevented from occurring|that

is, that some actions that the system can take do have a fair chance of being taken.

DescribingR as a set of individual transition relations is convenient for modeling fairness:

De�nition 2.1.7 (Fair transition system) A fair transition system (FTS) is one where

each transition is marked as just or compassionate. A just (or weakly fair) transition cannot

be continually enabled without ever being taken; a compassionate (or strongly fair) transition

cannot be enabled in�nitely often but taken only �nitely many times. A computation is a

run that satis�es these fairness requirements (if any exist). Otherwise, the run is unfair.

As usual, compassionate transitions are also considered to be just. Below, systems described

using R but not T are assumed to have no fairness requirements.

To ensure that R is total on �, so that sequences of states can always be extended to

in�nite sequences, we assume an idling transition, with transition relation V = V 0. The set

of all computations of a system S is written L(S), suggesting a language of in�nite strings

whose alphabet is the set of states of S.

Example 2.1.8 (bakery) Figure 2.1 shows program bakery, which implements Lam-

port's bakery mutual exclusion algorithm, in the Simple Programming Language (SPL) of
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[MP95b]. SPL programs can be compiled into the corresponding fair transition systems, fol-

lowing the semantics of each of the SPL constructs, as done by STeP (Section 2.7). To each

process corresponds a �nite-domain control variable. For bakery, the control variables �1

and �2 range over locations f`0; : : : ; `4g and fm0; : : : ;m4g. All transitions are assumed to

be just, except for those associated with the noncritical statements. Program bakery is

an in�nite-state system, since variables y1 and y2 can grow beyond any bound.

We write mi and `j to abbreviate the assertions �1 = mi and �2 = `i, indicating where

the control for each process resides.

2.1.4 Clocked Transition Systems

The reactive system model presented earlier assumes that concurrency can be modeled by

interleaving, and that time advances by discrete steps of unspeci�ed duration. However, fair

transition systems can be also be used to model reactive systems with real-time constraints.

A clocked transition system (CTS) [MP96] is a fair transition system S : hV;�;T i, whose

system variables are partitioned into a set of discrete variables D and a set of real-valued

clock variables C. Instead of an idling transition, T includes a tick transition, which is the

only transition that can advance time. Clocked transition systems contain a master clock

T , which can only be changed by the tick transition, where the initial condition � should

imply T = 0.

The progress of time is restricted by a time-progress condition �, an assertion over D

and C. The transition relation for tick is:

�tick : 9� > 0:

0
BBB@

(D0 = D) ^ (C 0 = C +�)

^

8t 2 [0;�]:�(D;C + t)

1
CCCA :

Here, C 0 = C +� stands for

c01 = c1 +� ^ : : : ^ c0k = ck +� ;

indicating that all the clock variables are incremented by �. The expression �(D;C + t)

stands for �(d1; : : : ; dj ; c1 + t; : : : ; ck + t), where D = fd1; : : : ; djg, and is used to indicate

that the progress condition should hold for the system at all times between the current
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local x : f0; 1; 2g where x = 0

P1 ::

2
666664

`0: await x = 0

`1: x := 1

`2: skip

`3: await x = 1

`4: critical

3
777775 jj P2 ::

2
666664

m0: await x = 0

m1: x := 2

m2: skip

m3: await x = 2

m4: critical

3
777775

Figure 2.2: Simple version of Fischer's mutual exclusion algorithm.

time T and T +�. Clocked transition systems usually do not feature fairness constraints.

Instead, upper bounds on the time that can pass before an enabled transition is taken can

be speci�ed as part of the time-progress condition.

The computations of a CTS are the runs where time grows beyond any bound. Incorrect

speci�cations of real-time and hybrid systems may force time to stop, in the sense that

it does not diverge. The property of non-Zenoness states that every run pre�x can be

extended to a computation where time diverges, and should be proved as a sanity check

in speci�cations. This is an existential property (see Section 3.5). See [BMSU99] for a

discussion of non-Zenoness in the STeP and CTS framework.

Example 2.1.9 (Fischer) Figure 2.2 shows a fragment of Fischer's real-time mutual ex-

clusion algorithm, from [MP95a] (the complete program is described in Section 4.6). The

algorithm assumes uniform positive bounds L and U on the time each process can wait be-

fore executing its next statement: an enabled transition must wait at least L and at most

U before being taken. If 2L > U , the algorithm guarantees that both processes are never in

their critical sections simultaneously.

Two clock variables, c1 and c2, are used to measure the time that the current transition

of each process has been enabled. The initial condition is the assertion

� : `0 ^m0 ^ c1 = 0 ^ c2 = 0 ^ x = 0 ^ T = 0 :

As before, each statement corresponds to a transition. For example, statement `1 yields

transition �`1, with relation

�`1 :

0
@ `1 ^ c1 � L ^

`02 ^ c01 = 0 ^ x0 = 1

1
A ^ �02 = �2 ^ c02 = c2 :
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This transition can be taken only if c1 � L, enforcing the lower bound, and resets c1 to 0.

The time-progress condition, which goes into the tick transition, is � : c1 � U ^ c2 � U ,

stating that time cannot advance if c1 or c2 would then grow beyond U . Intuitively, this

forces the discrete transitions from each process to be taken within time U of the last time

that the respective clock was reset.

Clocked transition systems illustrate the expressive power of the fair transition system

formalism. However, after writing transition systems down, we must be able to specify their

properties and reason about them.

2.2 Temporal Logic

So here are the questions:

Is time long, or is it wide?

. . .Are things getting better, or are they getting worse?

| Laurie Anderson, \Same Time Tomorrow"

We will use temporal logic to specify properties of reactive systems [Pnu77, MP91b].

STeP uses linear-time temporal logic (LTL) for temporal speci�cations, which we will use

throughout most of this thesis. However, since we will also occasionally refer to existential

properties, for generality we present here the temporal logic CTL* [EH86]. The logic CTL*

includes both the branching-time computation tree logic (CTL) and LTL in a strictly more

expressive language. The syntax of CTL* is given by a set of atomic predicates, p, and path

and state formulas, recursively de�ned as:

state := p j :p j state _ state j state ^ state jApath jEpath

path := state j path _ path j path ^ path

j 2 path j 1 path j 0 path j (path U path) j (path W path)

For simplicity, in the de�nition below we assume negation-normal form, where negation is

only used at the level of atomic predicates. A literal is an atomic formula or its negation.

For a literal l, the set of states for which l holds (l-states) is written as jjljj. Technically,

the jjljj function is part of the Kripke structure, but notice that it is �xed once the system

variables V and the assertion language are given.
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State formulas are evaluated for each node in a Kripke structure, while path formulas

are evaluated over in�nite sequences (s0; s1; : : :) of states. For a state s in structure K, we

write paths(K; s) for the set of all in�nite paths in K starting at s.

De�nition 2.2.1 (CTL* temporal semantics) For structure K and state s:

(K; s) q l if s 2 jjljj for a literal l

(K; s) q '1 ^ (_)'2 if (K; s) q '1 and (or) (K; s) q '2

(K; s) q A' if � q ' for all � 2 paths(K; s)

(K; s) q E' if � q ' for some � 2 paths(K; s)

Path formulas are evaluated as follows: For a path � : (s0; s1; : : : ; ), we write �n for the

suÆx path (sn; sn+1; : : : ; ).

� q state if (K; s0) q state for state formula state

� q '1 ^ (_)'2 if � q '1 and (or) � q '2

� q 2 ' if �1 q '

� q 0 ' if �k q ' for all k � 0

� q 1 ' if �k q ' for some k � 0

� q '1 U '2 if �j q '2 for some i � 0 and �k q '1 for all 0 � k < i

� q '1 W '2 if � q ('1 U '2) or � q 0 '1

U is the until operator, where p U q states that q will eventually hold, and p will be

true at least up to (but not including) the point where q holds. The await formula pW q

allows for the possibility that q never happens, in which case p must always be true.

CTL and LTL: Computation tree logic (CTL) is obtained by restricting the state and

path modalities to always go together in pairs, where A and E must always be followed by

2 , 1 , 0 or U . Linear-time temporal logic (LTL) is obtained by eliminating the A and

E path quanti�ers, leaving only path formulas that are evaluated over a single sequence of

states. A CTL* formula is universal (resp. existential) if it only contains occurrences of the

A (resp. E) path quanti�er. 8CTL* (resp. 9CTL*) is the logic that contains only universal

(resp. existential) CTL* formulas. An LTL formula ' holds for (K; s) if (K; s) q A', so

LTL properties can be considered as universal.

The other boolean connectives such as! and$ are de�ned as usual. Following [MP91b,

MP95b], we sometimes write p ) q as an abbreviation for 0 (p ! q). Past temporal
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operators, such as ` p (\So-far p") can be introduced as well [MP95b].

We can now de�ne when a reactive system satis�es a temporal property ':

De�nition 2.2.2 (System validity) For a system S : h�;�;T i with underlying Kripke

structure K, we say that ' is S-valid , written S q ', if (K;n) q ' for all n 2 �, where

path formulas are evaluated over fair paths only, that is, those that are computations of the

system (see Section 2.1.3).

Remark 2.2.3 (Quanti�ers and temporal logic) In propositional temporal logic,

atomic formulas are treated as boolean variables. Since we will describe unbounded do-

mains, we go beyond the propositional case by referring to possibly unbounded system

variables, and allowing explicit quanti�ers under the condition that temporal operators

do not appear within the scope of a quanti�er. Such formulas are called state-quanti�ed

temporal properties [MP95b].

The value of a rigid variable cannot change over time, while 
exible variables can.

System variables are the only 
exible variables we will use, and we will not use 
exible

quanti�cation in this thesis. However, for a temporal property ', we will be able to prove

the S-validity of properties of the form 8x:'[x], for a rigid auxiliary variable x, by proving

'[N ] for an arbitrary constant N of the same type as x. Similarly, we can prove 9x:'[x] by

proving '[x0] for some particular value x0. 0

Example 2.2.4 (Non-Zenoness) The non-Zenoness of a real-time system (Section 2.1.4)

is expressed in CTL as:

8� > 0 : 8t : A 0 (T = t ! E 1 (T � t+ �))

where � and t are rigid auxiliary variables. That is, for every � > 0 and at every reachable

state, there is a possible future state where the global clock T has increased by at least �.

This property is equivalent to

9� > 0 : 8t : A 0 (T = t ! E 1 (T � t+ �)) ;

so we can prove it by showing the S-validity of

A 0 (T = t ! E 1 (T � t+ �0))
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for arbitrary t and some �xed �0 [BMSU97].

For LTL, a convenient alternative de�nition of S-validity can be formulated in terms of

the models of ':

De�nition 2.2.5 (LTL models) For an LTL formula, L(') is the set of all models of ',

that is, all paths � such that � q ' .

Proposition 2.2.6 (LTL system validity) S q ' for an LTL formula ' if and only if

all the computations of S are models of ', that is,

L(S) � L(') :

Note 2.2.7 (S-validity of veri�cation conditions) When we require that a premise of

a rule or a veri�cation condition be valid, we will mean for it to be S-valid; thus, axioms

and previously proven invariants concerning S can be used to establish it.

Safety and Progress

Following [MP91b, MP95b], we distinguish between safety and progress properties. LTL

safety properties have the following semantic characterization: if a safety property ' fails

for a sequence � (that is, � q :'), then there is a �nite pre�x �0 of � such that ' is false

for any extension of �0. Intuitively, safety properties state that certain \bad" states cannot

be reached. Safety properties of the form 0 p for an assertion p are called invariances. In

this case, a pre�x �0 that violates the property is a sequence of states whose �nal state

satis�es :p .

Progress properties, on the other hand, generally state that \good" things will happen,

e.g., particular states are eventually reached, or appear in�nitely often. Note that a system

with no fairness requirements can idle forever, so it will not satisfy any non-trivial progress

property unless fairness assumptions are encoded in the property itself. For more details on

LTL, see [MP91b]. For a comprehensive treatment of CTL* and related logics, see [Eme90].

Example 2.2.8 (Temporal properties of bakery) The main temporal properties of pro-

gram bakery of Figure 2.1, written in LTL, are:
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� Mutual exclusion: The two processes are never in their critical sections at the same

time:

0 :(`3 ^m3) :

� One-bounded overtaking: If one process is waiting to enter its critical section, the

other process can only do so at most one before the �rst one does:

0 (`2 ! :m3W (m3W (:m3W `3))) :

� Accessibility: If one process is waiting to enter the critical section, it will eventually

do so:

0 (`1 ! 1 `3) :

Mutual exclusion for the Fischer program of Figure 2.2 is expressed by the LTL formula

0 :(`4 ^m4).

The �rst two properties are safety properties, and are valid even if the system decided

to idle forever at any point. Accessibility is a progress property, and relies on the fairness

of transitions.

2.3 Finite-State Model Checking

The question addressed in the rest of this thesis is how to establish S q ' given a reactive

system S and a temporal property '. For �nite-state systems, model checking answers this

question by a systematic exploration of the Kripke structure (state-space) of S: the Kripke

structure is the model, and ' is the property being checked over that model.

Model checking for �nite-state systems was introduced by Clarke and Emerson [CE81]

and independently by Queille and Sifakis [QS82]. The classic model checking algorithms

for CTL recursively label each system state with the formulas it satis�es, starting with the

atomic propositions in ' and analyzing more complex subformulas of ' at each step. For

example, once the states that satisfy a subformula f have been identi�ed, the states that

satisfy E 0 (f) (namely, the ones where f is always true in some possible computation) are

identi�ed by �nding all the strongly connected components in the state-space where f is

always true that are reachable by a path where f also holds (see [CG87]).
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Model checkers such as SPIN [Hol91], COSPAN [Kur94], SMV [McM93], Mur' [MD93],

and those in STeP (Section 2.7) take as input, essentially, a �nite-state fair transition system

and a temporal formula in some variety or subset of CTL*, and automatically check that

the system satis�es the property.

2.3.1 Explicit-state LTL Model Checking

Much of the work we present only requires the \black box" use of model checkers, without

having to change their internal workings. However, in Section 6.4 we describe a model

checking procedure tailored to �nite-state abstractions that can bene�t from extra infor-

mation about the concrete system. Therefore, we now brie
y summarize an instance of

automata-theoretic model checking, based on Chapter 5 of [MP95b], on which the proce-

dure of Section 6.4 will be based.

The Formula Tableau

The temporal tableau T' of an LTL formula ' is a �nite-state !-automaton over in�nite

strings whose language is L('), the set of models of ' [Pra80, MP95b]. It is represented

as a directed graph, where each node is labeled by an atom, which is a set of assertions

and temporal formulas expected to hold whenever a model reaches this node. Two nodes

n1 and n2 are connected with a directed edge (n1; n2) if the formulas in n2 can hold at

a state following one that satis�es the formulas in n1. For example, if n1 contains 2 p

and 0 q, then n2 should contain p, q, and 0 q. A tableau atom is initial if it describes a

possible initial state of a model of '. In particular, an initial atom should include ' itself.

(When past temporal operators are used, an initial atom should not require the existence

of previous states.)

A strongly connected subgraph (SCS) is a subgraph with at least one edge where each

node is reachable from every other node. If ' is satis�able, then there must be an SCS in

T' that is reachable from an initial atom. Such an SCS must satisfy an additional property:

if a model satis�es 1 q or p U q at some state, it must in fact satisfy q at this or another

state later on. Thus, we say that an SCS S is ful�lling if whenever a node in S contains

1 � or ' U �, then some node in S contains �. This de�nes the acceptance condition of

the tableau, when viewed as an !-automaton (see Section 5.3).
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Theorem 2.3.1 (Temporal Satis�ability and Tableaus) ' is satis�able i� there is a

ful�lling, reachable SCS in T'.

In practice, it suÆces to consider only maximal strongly connected components: if an

SCS is not ful�lling, all of its sub-SCS's are not ful�lling either. For details on LTL tableau

constructions, see [KMMP93, MP95b, McG95].

The tableau serves as a guide for �nding computations of S that satisfy :', that is,

counterexamples to the S-validity of '. We do this by taking the product of the tableau

and the Kripke structure of S:

De�nition 2.3.2 (Product graph) Given two directed graphs

G1 : hN1; E1i ; G2 : hN2; E2i ;

their product is the graph

G1 � G2 :


N1 �N2; E

0
�

where E0 is the set of edges

f(ha1; a2i ; hb1; b2i) j (a1; b1) 2 E1 and (a2; b2) 2 E2g :

Edges in G are labeled with the corresponding edge-label pair. If G1 and G2 have initial

nodes, the initial nodes in the product are those of the form hn1; n2i where n1 is initial in

G1 and n2 is initial in G2.

Figure 2.3 shows an outline of the classic model checking procedure for �nite-state

systems. The algorithm builds the product between the Kripke structure for S and T:'

and checks whether it contains a ful�lling SCS (with respect to the tableau atoms) that also

satis�es the fairness requirements associated with S. If such an SCS is reachable from an

initial node a counterexample computation can be produced; otherwise, ' is S-valid. Thus,

the �nite-state model checking algorithm is:

1. Compute the product graph G : S � T:', removing nodes hs;Ai where the state s

does not satisfy the assertions in the atom A. The graph G is sometimes called the

(S;:')-behavior graph [MP95b].
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System S Temporal Property '

Computations of S Models of :'

No computation is a model Some computation is a model

Product Graph

S � T:'

S q ' Counterexample

Figure 2.3: Outline of explicit-state LTL model checking

Edges in the product graph can be labeled by single or multiple transitions depending

on the convention used (see Remark 2.1.4).

2. An SCS S is accepting if its underlying tableau SCS is accepting. An SCS is just

(resp. compassionate) if every just (resp. compassionate) transition that is enabled at

all (resp. some) nodes in S is taken along some edge in S.

3. If there is an accepting, just and compassionate SCS in G that is reachable from an

initial node, return this SCS, and a path that leads to it, as a counterexample.

Otherwise, report that S q '.

Note that if an SCS is not just, its sub-SCS's are not just either, so it suÆces to consider

MSCS's. However, this is not the case for compassion: a sub-SCS can be compassionate

while the larger one is not.
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Many variants and improvements of this basic algorithm are possible, as we will see. For

instance, if the product graph is to be explicitly constructed, this should be done starting

with the initial states of both graphs, pruning incompatible hs;Ai nodes as the reachable

state-space is explored in a forwards propagation of the transition relation. When prov-

ing safety properties, backwards propagation is possible, constrained by previously proved

system invariants, to check if the \bad" states are reachable from an initial state [Bj�98b].

The discussion of related work in Chapter 7 addresses model checking for in�nite-state

systems. The following sections present the other two main approaches to �nite-state model

checking.

2.3.2 Automata-theoretic Model Checking

The algorithm of the previous section is a simple instance of the automata-theoretic approach

to model checking, where the system and its speci�cation are viewed as �nite-state !-

automata that describe languages over in�nite trees or strings [Kur86, VW86, Kur94].

In the linear-time case, the system S is identi�ed with an !-automaton that recognizes

the language L(S). Similarly, the property or speci�cation to be veri�ed can be expressed

as an automaton that recognizes the language L('). To prove that ' holds for S, we must

show that L(') � L(S) (see Proposition 2.2.6). If both ' and S can be expressed as

�nite automata, this can be decided by purely algorithmic means. We will return to such

automata in Section 5.3, where we discuss Generalized Veri�cation Diagrams.

In the case of LTL, the automata describe languages over in�nite words. For CTL and

CTL*, automata over in�nite trees can be used [Kup95]. For a survey on !-automata, see

[Tho90].

2.3.3 Symbolic Model Checking

For a �nite-state system S, the complexity of model checking depends on the size of the

formula being checked (linear for CTL and exponential for LTL and CTL*) and the size of

the state-space of S (linear for all three logics). While the temporal formulas of interest are

usually small, the size of the state-space can grow exponentially in the size of its description,

e.g., as a circuit, program, or fair transition system. This is known as the state explosion

problem, where the number of system states limits the practical applicability of model

checking algorithms.
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Model checking techniques that construct and explore states of the system, one at a time,

such as the one in Section 2.3.1, are called explicit-state. In contrast, symbolic model check-

ing combats the state-explosion problem by using specialized formalisms to represent sets of

states. Ordered Binary Decision Diagrams (OBDD's), introduced by Bryant [Bry86], are an

eÆcient data structure for representing boolean functions and relations. McMillan [McM93]

used OBDD's to represent the transition relation of �nite-state systems, as well as subsets

of the system's state-space. The eÆcient algorithms for manipulating OBDD's [BRB90] can

be used to compute predicate transformations, such as pre- and post-condition operations,

over the transition relation and large, implicitly represented sets of states.

The resulting model checking algorithms can be formulated using the propositional �-

calculus [Koz83], which expresses �xpoint relations over �nite domains. The temporal

operators can be given a �xpoint characterization; for instance, E 1 p is the least �xed

point of the function f(y) = p _ E 2 y [BCM+92]. A survey of model checking for the

�-calculus is presented in [BCJM96]. Symbolic model checking algorithms for CTL can be

adapted to LTL as well [CGH94].

The success of symbolic model checkers is often best measured in terms of the number

of bits that describe the system state, rather than the number of reachable states. Sym-

bolic model checking extends the size of �nite-state systems that can be analyzed, and is

particularly successful for hardware systems. However, it is still restricted to �nite-state

systems of �xed size; thus, for instance, a system may be model checked for up to 128 bits,

but not for 129. The size of the OBDD representation of particular functions can grow

exponentially in the number of boolean variables [Bry91], leading to what can be called

the OBDD explosion problem, where the model checker runs out of memory before the user

runs out of time. In these cases, eÆcient explicit-state model checkers are preferred, such

as Mur' [Dil96]. To further extend the range of symbolic model checking, extensions of

BDDs are being used to move from bit-level to word-level representations [CFZ95].

2.4 Deductive Veri�cation

Figure 2.4 presents the general invariance rule, g-inv, which can be used to prove the

S-validity of formulas of the form 0 p for an assertion p. The premises of the rule are �rst-

order veri�cation conditions. If they can be proved to be valid, the temporal conclusion

must hold for the system S.
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For assertions ' and p,

I1. � ! '

I2. f'g � f'g for each � 2 T

I3. ' ! p

S q 0 p

Figure 2.4: General invariance rule g-inv

An assertion is inductive if it is preserved by all the system transitions and holds at all

initial states. The invariance rule relies on �nding an inductive auxiliary assertion ' that

strengthens p, that is, ' implies p. The invariant p may not be inductive, but ' must be.

Thus, some transitions might be able to make p false, but the rule ensures that the states

where this happens do not appear in any run of S.

The soundness of the rule is obvious: if ' holds initially and is preserved by all transi-

tions, it will hold for every reachable state of S. If p is implied by ', then p will also hold for

all reachable states. Rule g-inv is also relatively complete, that is, complete relative to the

underlying �rst-order reasoning: if p is an invariant of S, then the strengthened assertion '

always exists [MP95b]. Assuming that we have a complete system for proving valid asser-

tions, then we can prove the S-validity of any S-valid temporal property. Note, however,

that proving invariants is undecidable for general in�nite-state systems, and �nding such a

' can be non-trivial.

Other veri�cation rules can be used to verify di�erent classes of temporal formulas,

ranging from safety to progress properties [MP91a]. These deductive methods are rela-

tively complete and yield a direct proof of any S-valid temporal property. However, they

may require substantial user guidance to succeed, and do not produce counterexample com-

putations when the property fails.

Graphical formalisms facilitate the task of guiding and understanding a deductive proof.

Veri�cation diagrams [MP94, BMS95] provide a graphical representation of the veri�cation

conditions needed to establish a particular temporal formula. In Chapter 5 we will discuss

deductive veri�cation, including rules and diagrams, in the context of abstraction.
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2.4.1 Well-founded Orders

Not all properties of in�nite-state systems can be proved by simple �nite-state abstractions

or rules such as g-inv: well-foundedness arguments must be used to reason about loops

that depend on unbounded data variables.

For example, consider the bakery program of Figure 2.1 and the property

' : 1 0 :((`0 _ `1) ^ (m0 _m1)) ! 1 (max(y1; y2) > N)

where N is an arbitrary positive integer [Sip98, BMSU98]. This property states that

max(y1; y2) will grow beyond N , provided the two processes are never at locations `0 or

`1 (resp. m0 or m1) at the same time. bakery has no �nite-state abstraction that can

prove ' for an arbitrary N , unless we use well-foundedness arguments to add extra fairness

constraints, as we will do in Chapters 5 and 6. We will return to this property in Chap-

ter 6, where we describe a model checking algorithm for �nite-state abstractions that can

use well-founded orders to reduce the number of abstract computations that are potential

counterexamples.

To express well-founded relations, we use ranking functions:

De�nition 2.4.1 (Ranking functions) A binary relation � over a domain D is a subset

of D �D, where we write s1 � s2 i� hs1; s2i 2� .

A binary relation � is well-founded over D if there are no in�nite sequences of elements

e1; : : : ; en; : : : in D such that

e1 � e2 � : : : � en � : : :

A ranking function Æ is a mapping from system states into a well-founded domain (D;�).

We write x � y i� x � y or x = y .

We say that an assertion over unprimed and primed system variables �(V;V 0) is well-

founded if it characterizes a well-founded relation over �� � .

Ranking functions can be described using an extended or specialized assertion language,

e.g. [SdRG89].

2.5 Invariant Generation

Invariants state that some assertion p holds at all the reachable states of the system. Once
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established, they can be very useful in all forms of deductive and algorithmic veri�cation.

In the deductive case, veri�cation conditions need not be valid in general, but only valid

with respect to the invariants of the system. Therefore, deductive veri�cation usually begins

by proving a series of invariants of increasing strength, where each one is used as a lemma

to prove subsequent ones. In the algorithmic case, invariants can constrain the set of states

explored in symbolic model checking [PS96] and backwards explicit-state model checking

[Bj�98b], for extra eÆciency.

Finally, invariants can also be used to produce better system abstractions in deductive-

algorithmic veri�cation, as we will see in Chapter 4.

2.6 Automated Deduction

Automated deduction (\theorem proving") is used to formally check the validity of the

veri�cation conditions generated by deductive veri�cation rules and diagrams. As mentioned

above, the validity of these formulas can be established with respect to invariants of the

system, which can be previously proved or generated automatically. In general, axioms

and lemmas about the system or the domain of computation can also be used. We now

summarize the main types of automated deduction we will use:

2.6.1 Decision Procedures

Establishing the validity of �rst-order formulas is, in general, itself undecidable. However,

most veri�cation conditions refer to particular theories that describe the domain of compu-

tation, such as linear arithmetic, lists, arrays and other data types.

Decision procedures provide eÆcient, specialized validity checking for particular theories.

For instance, equality need not be axiomatized, but its consequences can be eÆciently

derived by specialized methods based on congruence closure. Similarly, specialized methods

can eÆciently reason about integers, lists, bit vectors and other datatypes frequently used

in system descriptions [Bj�98a].

Thus, using appropriate decision procedures can be understood as specializing the asser-

tion language to the particular domains of computation used by the system being veri�ed.



2.6. AUTOMATED DEDUCTION 29

2.6.2 Validity Checking

Given an assertion language, an essential operation is to determine the validity of particular

assertions, possibly with respect to given axioms, previously proven invariants or lemmas.

Decision procedures usually operate only at the ground level, where no quanti�cation is

allowed. Program features such as parameterization and the tick transition (Section 2.1.4)

introduce quanti�ers in veri�cation conditions. Fortunately, the required quanti�er instan-

tiations are often \obvious" in that they use instances that can be provided by the decision

procedures themselves. [BSU97, Bj�98a] presents an integration of �rst-order reasoning and

decision procedures that can automatically prove many veri�cation conditions that would

otherwise require the use of an interactive prover.

Throughout this thesis, we will use validity checkers as \black boxes," and will not need

to change or access their internal workings. Thus, we could also use systems such as the

Stanford Validity Checker (SVC) [BDL96], an eÆcient checker specialized to handle large

ground formulas that occur in hardware veri�cation.

2.6.3 Interactive Theorem Proving

Automatic proof methods for �rst-order logic and certain specialized theories are necessarily

incomplete, not guaranteed to terminate, or both. In practice, automatic veri�cation tools

abandon completeness and focus instead on quickly deciding particular classes of problems

that are both tractable and likely to appear when verifying realistic systems.

To achieve completeness, interactive theorem proving is used. The user selects rules that

reduce complex subgoals to simpler ones, and provides instantiations for �rst-order quan-

ti�ers that the automated system would otherwise have diÆculty �nding. The automatic

decision procedures are still used whenever possible (e.g., to simplify formulas and close o�

branches). Tactics are used to automate repetitive sequences of steps.

PVS [OSR93, ORR+96] is an interactive theorem prover that includes higher-order logic,

decision procedures, and tactics. Other interactive theorem provers (with varying degrees

of automated support) that have been used for reactive system veri�cation include the

Boyer-Moore prover [BM88], HOL [GM93] and the STeP system, described below.
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2.7 The STeP System

STeP
The Stanford Temporal Prover (STeP) implements the veri�cation methodologies de-

scribed in this chapter, including explicit-state and symbolic LTL model checking, auto-

matic invariant generation, veri�cation rules and diagrams, and automatic and interactive

theorem proving.

Fair transition systems are the basic system description formalism of STeP. Real-time

systems can be represented as clocked transition systems (see Section 2.1.4); hybrid systems,

where discrete and continuous components interact, can be described as phase transition

systems. STeP automatically translates SPL programs such as bakery from Figure 2.1

into the underlying transition systems, using control variables to represents the locations

of the program. STeP includes a number of automatic invariant generation methods, based

on abstract interpretation [BBM97] (see Section 7.1.2).

STeP is described in [BBC+95, BBC+96, MBB+98]. Cases studies for STeP are pre-

sented in [BMSU99] (a real-time system, modularly described), [BLM97] (a parameterized

fault-tolerant system), and [MS98, MCF+98, Sip98] (hybrid systems). STeP is being ex-

tended to include modular speci�cation and veri�cation [FMS98, MCF+98].



Chapter 3

Abstraction

Abstraction reduces the veri�cation of a system property to the veri�cation of a related

property over a simpler system. Abstraction is often proposed to allow the veri�cation

of in�nite-state systems, by constructing �nite-state abstract systems that can be model

checked. Abstraction can also mitigate the state explosion problem in the �nite-state case,

by constructing an abstract system with a more manageable set of states.

The general framework of abstract interpretation (see Section 7.1.1) de�nes an abstrac-

tion whose state-space can be represented, manipulated and approximated in specialized

ways that could not be directly applied to the original system. Originally designed for deriv-

ing safety properties in static program analysis, this framework has recently been extended

to include reactive systems and general temporal logic, e.g., [BBLS92, CGL94, LGS+95,

DGG94, CIY95, Dams96]. Below, we follow the notation of [Dams96] as much as possible.

We discuss this and other related work in Chapter 7.

3.1 An Abstraction Framework

In general terms, abstraction reduces the veri�cation of a temporal property ' over a

concrete system S, to checking a related property 'A over a simpler, abstract system A.

De�nition 3.1.1 (Generic abstraction) Given a class of temporal properties P and two

systems S and A, we say that:

31
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� A is a weakly preserving abstraction of S for P if for any 'A 2 P,

If A q 'A then S q '

� A is a strongly preserving abstraction of S for P if for any 'A 2 P,

A q 'A if and only if S q '

Strong preservation does not leave much room for generating simpler systems. For

instance, if all CTL properties are to be preserved, the two systems must be bisimilar (see,

e.g., [BCG88, vG90, dNV95, LGS+95]). Thus, weak preservation is more often used.

Based on the framework of abstract interpretation [CC77], the abstract system is de�ned

in terms of an abstract domain, a set of states �A that includes a partial order �, where

a1 � a2 if a1 is a \more precise" abstract state than a2. Such abstractions are often presented

in terms of Galois connections. In a frequently used case, abstract states represent sets of

concrete states, and the two posets being connected are the power set of concrete states,

P(�C), ordered by set inclusion, and an abstract domain �A ordered by � which, being

abstract, will remain under-speci�ed for the time being. This is the framework we will use

as well:

De�nition 3.1.2 (Galois connection) A Galois connection from (P(�C);�) to

(�A;�) is a pair of functions

(� : P(�C)! �A; 
 : �A ! P(�C))

such that �(x) � y i� x � 
(y).

The abstraction function � maps each set of concrete states to an abstract state that

represents it. The concretization function 
 : �A ! P(�C) maps each abstract state to the

set of concrete states that it represents.

De�nition 3.1.3 (Concretization of sets and relations) For a set of abstract states

S, we de�ne


(S)
def
=
[
a2S


(a) :
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For a relation �A over �A ��A, we de�ne


(�A) = fhs1; s2i j s1 2 
(a1) and s2 2 
(a2) for some ha1; a2i 2 �Ag :

We say that �A over-approximates a concrete relation �C if �C � 
(�A) .

As an alternative to De�nition 3.1.2, � and 
 should be monotonic, �(
(a)) � a for all

a 2 �A, and c � 
(�(c)) for all c 2 P(�C). The functions � and 
 determine each other,

and are usually expressed in terms of 
. Given 
, the abstraction function can be uniquely

de�ned as

�(c) = glb fa 2 �A j c � 
(a)g ;

where glb is the greatest lower bound with respect to � in the abstract domain. This,

provided that such greatest lower bounds exist and 
 is continuous:

glb(
(S)) = 
(glb(S)) :

Conversely, given an abstraction function �, the concretization function is uniquely

de�ned as


(a) =
[
fc 2 �C j �(c) � ag :

If 
(�(S)) = S for all S 2 P(�C), then we have a Galois insertion.

This framework can be generalized by allowing arbitrary concrete domain posets|the

particular one we use here is the power-set construction|as well as weakening the Galois

connection requirements, replacing them by constraints on a more general description re-

lation � � P(�C) � �A [Dams96]. Another approach is to express abstractions using an

abstraction mapping h : �C ! �A, where the abstract model is a homomorphic image of

the concrete one [Kur94, CGL94, RSS95, HS96]. Such homomorphisms preserve 8CTL*

properties, as we also do below. However, the Galois connection framework is suÆcient for

our purposes.

Remark 3.1.4 In general, we assume that we have di�erent assertion languages for the

abstract and concrete systems, which can be specialized to the respective domains of com-

putation, and say that an assertion or temporal formula is abstract or concrete depending

on the language that it belongs to. 0
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3.2 Abstract Property Satisfaction

We now discuss how to relate abstract and concrete temporal properties. One way to de�ne

the abstract satisfaction of a concrete property, given an abstract domain �A, is to de�ne

a special jjljjA, which tells us which elements of the abstract domain satisfy literals of the

concrete assertion language, as follows:

De�nition 3.2.1 (Abstract pointwise satisfaction jjljjA [Dams96]) For an abstract

domain �A, concretization function 
 : �A ! P(�C), and concrete literal l, we de�ne

jjljjA
def
= fa j 
(a) � jjljjg :

Note that the jjljjA function ranges over concrete literals; the domain �A includes a separate

jjlAjj function over abstract ones. (We regard the jjljj function as a �xed attribute of the

domain, even though technically it is part of the Kripke structure|see Section 2.2.) While

the jjlAjj that corresponds to �A satis�es jjlAjj [ jj:lAjj = �A, it is not the case that

jjljjA[jj:ljjA = �A . This new jjljj
A is used to directly de�ne what it means for an abstract

system to satisfy an arbitrary concrete temporal property:

De�nition 3.2.2 ( q A for 8CTL*) An abstract system A satis�es a concrete 8CTL* prop-

erty ' (over concrete assertions), written A q A', if A satis�es ' using the q of De�ni-

tion 2.2.1, but replacing the jjpjj native to A by the jjpjjA of De�nition 3.2.1.

While the above de�nition is quite general, an alternative and more intuitive approach is

to abstract and concretize temporal properties themselves. The following de�nition applies

to universal properties, assumes negation-normal form, and is relative to a �xed abstraction

domain (that is, a Galois connection as in De�nition 3.1.2).

De�nition 3.2.3 (Abstraction and concretization of CTL* properties) For a con-

crete CTL* temporal property ', its abstraction �t(') is obtained by replacing each assertion

f in ' by an abstract assertion ��(f) that characterizes the set of abstract states

��(f) :
_A
fa 2 �A j 
(a) � fg :

Conversely, given an abstract temporal property 'A, its concretization 
('A) is obtained by

replacing each atom a in 'A by an assertion that characterizes 
(a).
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The particular abstraction framework we use (Section 3.8) ensures that these assertions

exist. Intuitively, this means that �t(') should under-approximate assertions at the state-

level as exactly as possible (the de�nition chooses the best under-approximation for each).

On the other hand, concretization will be exact , since we will always have concrete asser-

tions to characterize 
(a) (if this were not possible, we should choose the smallest over-

approximation instead).

Lemma 3.2.4 (Relating �t and q A) Given a concrete property ' and abstract system

A, then A q A' (using De�nition 3.2.2) if and only if A q �t(') (using De�nition 3.2.3).

This gives rise to three equivalent de�nitions of weak preservation:

De�nition 3.2.5 (Weak preservation) A is a weakly preserving abstraction of S rela-

tive to a class of concrete temporal properties P if for any property ' 2 P,

I. If A q A' then S q '. Or, equivalently:

II. If A q �t(') then S q '. Or, equivalently:

III. For any abstract temporal property 'A, if A q 'A then S q 
('A).

3.3 Property-Preserving Abstractions

Naturally, we now would like to establish conditions on the concrete and abstract systems

that guarantee weak preservation of di�erent kinds of temporal properties. We �rst consider

the simple case of universal properties. (Existential properties are discussed in Section 3.5.)

De�nition 3.3.1 (Concretizing sequences 
(�)) We say that a sequence c0; c1; : : : of

S-states corresponds to a sequence a0; a1; : : : of A-states if ci 2 
(ai) for all i � 1. For

a sequence of abstract states � : a0; a1; : : :, we de�ne 
(�) as the set of all sequences of

concrete states that correspond to it. We extend this to a set of sequences S as


(S)
def
=

[
�2S


(�) :

Then we can say:



36 CHAPTER 3. ABSTRACTION

Proposition 3.3.2 (LTL preservation) System A is an LTL property-preserving abstrac-

tion of S if

L(S) � 
(L(A)) :

If S has no fairness constraints, then L(S) is equal to the set of runs of S. Fairness

constraints are discussed in Section 3.4. Di�erent versions of the following theorem are

presented and proved in [Dams96, LGS+95, CGL94]:

Theorem 3.3.3 (Weakly preserving 8CTL* abstraction) Consider two systems

S : h�C ;�C ; RCi, and A : h�A;�A; RAi such that for a concretization function


 : �A ! P(�C)

the following hold:

1. Initiality: �C � 
(�A).

2. Consecution: If RC(s1; s2) for some s1 2 
(a1) and s2 2 
(a2), then RA(a1; a2).

Then A is a weakly preserving abstraction of S for 8CTL*.

Note that the consecution requirement can be expressed using De�nition 3.1.3 as R �


(RA). Informally, the conditions ensure that A can do everything that S does, and perhaps

some more.1

The proof [Dams96] proceeds by induction on the structure of the formula ', and relies

on the following lemma:

Lemma 3.3.4 If � : s0; s1; : : : is a path in K, then there is a path �A : a0; a1; : : : in KA

such that � 2 
(�A).

Proof: We can choose any ai 2 �(si) for each i (see De�nition 3.2.3). The consecu-

tion requirement ensures that, since R(si; si+1), then RA(ai; ai+1). 0

1It is also said that S 
-simulates A (see Section 3.6): the conditions of Theorem 3.3.3 ensure that

�
def

= f(c; a) j c 2 
(a)g is a simulation from S to A. As noted in [Dams96], this is confusing, and the

terminology should probably be reversed in this context. We will simply say that there is a simulation

between A and S.



3.3. PROPERTY-PRESERVING ABSTRACTIONS 37

sA0

RA

sA1

RA

sA2

RA


 
 


s0

RC

s1

RC

s2

RC

Figure 3.1: 8CTL* weak preservation (
-simulation)

This theorem applies to the weak preservation of LTL, being a subset of 8CTL*. Fig-

ure 3.1 illustrates the proof for the case of LTL. The two conditions ensure that every run

of S corresponds to some run of A. Therefore, by Proposition 3.3.2, if every run of A sat-

is�es an LTL temporal property 'A, every run of S will satisfy the corresponding property


('A).

We would like A to satisfy as many properties as possible, which is the case (for all of

CTL*) if �A is as small as possible. This is the case if �A is de�ned as f�(c) j c 2 �Cg.

Similarly, the transition relation should be as small as possible|while still correct|in order

to preserve the maximum number of universal properties. The best abstraction, then, is the

one where RA(a1; a2) only when there exist s1 2 
(a1) and s2 2 
(a2) such that RC(s1; s2).

Example 3.3.5 (Abstract bakery) Figure 3.2 shows an abstract version of the bakery

program of Figure 2.1. Three bits, b1, b2 and b3, are used to eliminate the in�nite-domain

concrete variables y1 and y2, while the �nite-state control variables have been retained. The

correspondence between these bits and the original system de�nes the abstract domain and

the concretization function, in a way that we will formalize in Section 3.8.

The transitions of this abstract system retain the fairness constraints of the concrete

ones. This is justi�ed in the following section.
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local by1=0; by2=0; by1�y2 : boolean where by1=0; by2=0; by1�y2

2
66666664

loop forever do2
666664

`A
0
: noncritical

`A1 : (by1=0; by1�y2) := (false ; false)

`A2 : await (by2=0 _ by1�y2)

`A3 : critical

`A4 : (by1=0; by1�y2) := (true ; true)

3
777775

3
77777775
jj

2
66666664

loop forever do2
666664

mA
0
: noncritical

mA
1 : (by2=0; by1�y2) := (false ; true)

mA
2 : await (by1=0 _ :by1�y2)

mA
3 : critical

mA
4 : (by2=0; by1�y2) := (true; by1=0)

3
777775

3
77777775

{P1{ {P2{

by1=0 : y1 = 0

by2=0 : y2 = 0

by1�y2 : y1 � y2

Figure 3.2: Finite-state abstraction of program bakery

3.4 Preservation under Fairness

If we consider fairness, we must ensure that unfair paths in A correspond only to unfair

paths in S. Otherwise, some computations (fair runs) of S might not be represented as

computations of A. Therefore, we must add an extra condition for fairness:

Theorem 3.4.1 Consider systems S : hVC ;�C ;TCi, and A : hVA;�A;TAi and concretiza-

tion function 
 : �A ! P(�C). If the initiality and consecution conditions of Theorem 3.3.3

hold, and:

3. Fairness: If an abstract transition �A is marked as just (resp. compassionate), then

there is a just (resp. compassionate) concrete transition �C such that

(a) 
(enabled (�A)) � enabled(�C)

(resp. 
(enabled (�A)) = enabled(�C)), and

(b) post (�C ; 
(enabled (�A))) � 
(post(�A; enabled (�A))).

Then A is a weakly preserving abstraction of S for 8CTL*.

Note that (b) is guaranteed if �A over-approximates �C , in which case (a) is always


(enabled (�A)) = enabled (�C) :
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�A1 :fair
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s0

�0

s1

�1:fair

s2

�2

Figure 3.3: 8CTL* weak preservation (
-simulation) under fairness

Proof: The path quanti�cation for 8CTL* satisfaction now considers only fair paths.

Thus, the proof proceeds as for Theorem 3.3.3, except that we now must also show

that if a sequence �A : a0; a1; : : : is not fair for A, then any sequence in 
(�A) is not

fair for S.

If �A is not fair, then there is a fair abstract transition �A that is enabled in�nitely

often (continuously in the case of justice) but never taken. Consider then the transition

�C guaranteed by the fairness clause of Theorem 3.4.1. By the � requirement in

condition (a), �C is enabled in the respective states in c1; c2; : : : and, in the case of

compassion, disabled at all other states, thanks to the equality requirement in (a).

Condition (b) means that if �A is not taken at an abstract state sA, then �C cannot

be taken at any state in 
(sA). Therefore c1; c2; : : : is not fair towards �
C , since �C

can never be taken, a contradiction. 0

Figure 3.3 illustrates this theorem, where �A1 is an abstract fair transition; the corre-

sponding concrete transition �1 should be enabled at all the states that correspond to those

where �A1 is enabled, and reach corresponding states.

Remark 3.4.2 If we weaken condition (a) to 
(enabled (�A)) � enabled(�C) for the case of

compassion, then Theorem 3.4.1 no longer holds: in the proof, it could be the case that the

concrete transition �C was taken at a state corresponding to one where �A was not enabled.

Figure 3.4 shows this case. At abstract states A and B, compassionate transition �A

is enabled and not taken. Transition �C cannot be taken at the corresponding concrete

states either. However, �A is not enabled at abstract state C, but could, under the weaker
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Figure 3.4: The problem with under-approximating the enabling condition of a compas-

sionate transition

� requirement, be enabled and taken at some concrete state that it represents. Thus,

the abstract run may be uncompassionate towards �A even though the concrete one is

compassionate towards �C .

This is not a problem in the case of justice: if �A is continuously enabled but not taken,

then the weaker � requirement ensures that �C is also continuously enabled but not taken.

0

The conditions of Theorem 3.4.1 limit the fairness constraints that can be imposed on

transitions in A. Note that the more fairness constraints A has, the more CTL* properties

it will satisfy. In Chapter 6, we will describe how partial information about the enabling

condition of fair transitions can be used at the abstract level, which gives an alternative

and more 
exible approach.

3.4.1 Uniform Compassion

Uniform compassion is presented in [BLM97] to more accurately model compassion in pa-

rameterized distributed systems. This is a stronger version of compassion: if a transition

� is declared to be uniformly compassionate, then it cannot be enabled at in�nitely many

'-states without being taken in�nitely often at a '-state, for any assertion '. If uniform

compassion enters the picture, we can add the following clause:

Theorem 3.4.3 (Preservation of Uniform Compassion) �A can be marked as uni-

formly compassionate if there is a uniformly compassionate concrete transition �C such

that

(a) 
(enabled (�A)) � enabled(�C), and

(b) post(�C ; 
(enabled (�A))) � 
(post (�A; enabled (�A))) .
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�A just �A compassionate �A uniformly comp.

�C unfair | | |

�C just � | |

�C compassionate � = |

�C uniformly comp. � � �

Table 3.1: Justi�cation of fairness of abstract transitions

Proof: Again we must show that if �A : a0; a1; : : : is not fair, then every computa-

tion in 
(�A) is unfair. Assume �A is not fair towards the uniformly compassionate

transition �A . Then �A is in�nitely often enabled but not taken at 'A-states, for

some abstract assertion 'A. By condition (a), �C is in�nitely often enabled at all the

corresponding 
('A)-concrete states. By condition (b), �C cannot be taken at those

states. Consider now the other states in the concrete computation. These states do

not satisfy 
('), so (unlike the normal compassion case) whether �C is taken at those

states is irrelevant: �C is enabled at in�nitely many 
(')-states, but not taken at a


(')-state, so any any computation in 
(�) is unfair towards the uniformly compas-

sionate �C . 0

We can consider compassionate transitions to be just, and uniformly compassionate tran-

sitions to be both compassionate and just. Thus, for instance, a uniformly compassionate

concrete transition can justify the justice of an abstract transition.

Table 3.1 summarizes the conditions under which �A can be marked as fair based on the

fairness of �C . A \|" entry indicates that the given fairness assignment to �A cannot be

justi�ed by the fairness of �C . A \�" entry indicates that the weaker condition 3(a) must

hold, and \=" indicates that equality must hold.

Note that for the \�" entries, we can generate a distinct abstract fair transition �A' for

each set of states ' where we know that �C is enabled.

De�nition 3.4.4 (Transition-mapped abstraction) Following [KMP94], we say that a

transition-mapped abstraction is one where every abstract transition �A over-approximates

a concrete transition � , that is, � � 
(�A). The mapping and the abstraction are fairness-

reducing if the conditions for fairness preservation of Table 3.1 are observed. In this case,

the � requirements imply the = one.
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Thus we have:

Proposition 3.4.5 A fairness-reducing transition-mapped abstraction is weakly-preserving

for 8CTL*.

These are suÆcient but not necessary conditions for the fairness of �A. Section 3.6

presents a more general formulation and, as mentioned before, Chapter 6 presents ways in

which more 
exible fairness constraints at the abstract level can be used.

The following Lemma is a special case of Theorem 3.4.1, expressed in terms of �rst-order

assertions at the concrete level:

Lemma 3.4.6 An abstract system A : hVA;�A;TAi is a weakly preserving abstraction of

S : hVC ;�C ;TCi for 8CTL* if:

1. Initiality: �! 
(�A) is valid.

2. Consecution: For every transition �C 2 TC there is a set of transitions
n
�A1 ; : : : ; �

A
k

o
in TA such that

�C ! 
(�A1 ) _ : : : _ 
(�
A
k )

is valid.

3. Fairness: For every just (resp. compassionate) transition �A 2 TA there is a just

(resp. compassionate) transition � 2 T such that the following are valid:

(a) 
(enabled (�A))! enabled (�)

(resp. 
(enabled (�A))$ enabled(�)) and

(b) post (�; 
(enabled (�A)))! 
(post (�; enabled (�))).

Example 3.4.7 In the abstract bakery program of Example 3.3.5 (Figure 3.2), we can

label abstract transitions `2 and m2 as just, since 
(by2=0 _ by1�y2) is equivalent to y2 =

0 _ y1 � y2 and 
(by1=0 _ :by1�y2) is equivalent to y1 = 0 _ y2 < y1 (c.f. Example 2.1.8,

Figure 2.1).

For this program, we can automatically model check the mutual exclusion, bounded over-

taking and accessibility properties (Example 2.2.8), which are then guaranteed to hold of the

original in�nite-state bakery program of Figure 2.1.
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3.5 Preserving Existential Properties

The previous lemmas apply to the preservation of universal properties (8CTL*) only. The

logics CTL and CTL* include existential quanti�cation as well, which expresses the possi-

bility of certain computations.

A footnote in [CGL94] tells us that \[one of the authors] prefers systems that will do

something useful to those that might." The paper by Lamport [Lam95], titled \Proving

Possibility Properties," begins by stating: \Proving possibility properties provides no useful

information about a system." However, it goes on to discuss how proving existential prop-

erties of speci�cations can be useful to validate and debug them (and shows how this can

be done in an LTL framework, even though such properties cannot be directly expressed

in LTL). A special case of this is the non-Zenoness of real-time and hybrid system speci�-

cations (see Section 2.1.4 and Example 2.2.4): real systems will never be Zeno, but faulty

speci�cations might be.

It is also important to note that techniques for proving existential properties can also

�nd counterexamples to universal ones. Combining the search for a proof with the search

for a counterexample can help overcome one of the main drawbacks of traditional deductive

veri�cation (see Section 1.1).

De�ning abstractions that preserve both universal and existential properties is more

complex. This is done in [CIY95, DGG97, Dams96] by de�ning Kripke structures with

two di�erent transition relations, each one used to interpret existential and universal path

quanti�cation respectively.

For reasons that will soon become clear, we write R89A to indicate the extra abstract tran-

sition relation. [Dams96] calls this the constrained transition relation, while the universal-

preserving relation RA we have been using so far is the free one. In [CIY95], they are

called the conservative and liberal transition relations, respectively (the expanded Kripke

structure is a democratic one). To preserve properties that combine existential and uni-

versal properties, both transition relations are used to give semantics to CTL* formulas,

depending on the temporal modality being analyzed. We brie
y formalize this as follows:

De�nition 3.5.1 (89-subgraph, paths89(K; s)) Given a Kripke structure K and a con-

strained transition relation R89A , the 89-subgraph of K is the subgraph whose edges are

exactly those where R89A holds. For a node s in K, we write paths89(K; s) for the set of all

in�nite paths in K starting at s in the 89-subgraph.
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We can now formally de�ne what it means for an abstract system to satisfy a concrete

CTL* temporal property:

De�nition 3.5.2 ( q A for CTL*) An abstract system A with extra constrained transition

relation R89A satis�es a concrete CTL* property ' (over concrete assertions), written A q A',

if A satis�es ' using the q of De�nition 2.2.1, where (1) we replace the jjpjj native to A by

the jjpjjA of De�nition 3.2.1, and (2) we modify the clause for existential path quanti�cation

as follows:

(K; s) q E' if � q ' for some � 2 paths89(K; s)

See [Dams96] for details. The following theorem gives the R89A relation its name:

Theorem 3.5.3 (CTL* preservation) Given a concrete system S : h�C;�C ; RCi, and

abstract system

A :
D
�A;�A; RA; R

89
A

E
:

Assume that the conditions of Theorem 3.3.3 hold, and

(iii) If R89A (a1; a2) then for all s1 2 
(a1) there exists s2 2 
(a2) such that RC(s1; s2).

Then all properties of CTL* are weakly preserved, that is, if A q A', then S q '.

To maximize the number of existential properties we can prove over the abstract system,

we should maximize the R89A relation. This is achieved if R89A (a1; a2) holds exactly when for

all s1 2 
(a1) there exists s2 2 
(a2) such that RC(s1; s2). Note that under-approximating

each concrete transition �C to a corresponding abstract �A89 such that


(�A89) � �
C

is a suÆcient but not necessary condition for Theorem 3.5.3 above; that is, it does not always

give the best possible existential-preserving abstraction over the assertion-based abstraction

domain. We return to this in Section 4.9.

The abstract initial condition should still be an over-approximation of the concrete one;

to maximize the number of properties that hold, we should make it as small as possible

(while still a correct over-approximation): the fewer computation trees the system has, the

more CTL* properties will hold for all of them.
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Fairness: We now brie
y address the question of how a CTL* model checker for the

abstract system should handle fairness. Satisfaction of CTL* should only consider fair

paths through the Kripke structure when existentially or universally quantifying over them.

For the concrete system, a path is fair if it is a computation of the system.

In the case of an abstract system, we again need sound fairness constraints to identify

unfair paths. If �A is deemed unfair, then all computations of 
(�A) should be unfair

too. We now note that if the existential version of � is taken, the universal version can be

considered taken too. Thus, our criteria for eliminating unfair paths can be the same as

before, using fairness constraints on the standard 99 free transition relation.

On the other hand, to ensure that paths that are witnesses for existential quanti�cation

are indeed fair, all transitions that are just (resp. compassionate) at the concrete level

should be disabled in�nitely often (resp. continuously) with respect to the 99 abstract

relation, or else taken in�nitely often, with respect to the 89 relation. We will return to

this in Chapter 6. Expressed in terms of �rst-order transition relations, we have:

Proposition 3.5.4 If the conditions of Lemma 3.4.6 hold for the TA relations, and for all

abstract constrained transition relations �A89 and all abstract states a


(a)! 9V 0:
�
TC(V;V

0) ^ 
(post(a; �A89))
�

is valid, then A :
D
VA;�A;TA;

n
�A89

oE
is a CTL* weakly-preserving abstraction of S.

Recall that �rst-order formulas such as the above are implicitly universally quanti�ed

throughout this thesis.

3.6 A General Simulation Rule

A general proof rule for simulation between systems is presented in [KMP94]. This rule is

rephrased in Figure 3.5, to include abstraction. The temporal formula taken(�) character-

izes, not surprisingly, the states in a computation where � is taken (see [MP91b], p. 255).

Expressing taken at the concrete (in�nite-state) level requires, in general, rigid quanti�-

cation over auxiliary variables, or a next value operator. This is less inconvenient at the

abstract �nite-state level, as we will see in Chapter 6.



46 CHAPTER 3. ABSTRACTION

For systems S : hVC ;TC ;�Ci and A : hVA;TA;�Ai,

S1. Initiality: �C � 
(�A)

S2. Consecution: S q �C !
_

�A2TA


(�A) for every � 2 T

S3. Justice: S q 
(enabled (�A))) 1

�
:
(enabled (�A)) _ 
(taken(�A))

�
for every just �A 2 TA

S4. Compassion: S q 0 1 
(enabled (�A))) 1 
(taken(�A))

for every compassionate �A 2 TA

L(S) � 
(L(A))

Figure 3.5: General simulation rule

Theorem 3.6.1 (General LTL Preservation Rule)

The general simulation rule of Figure 3.5 is sound.

Proof: (Outline) Premises S1 and S2 are the usual initiality and consecution condi-

tions. Premise S3 states that if an abstract just transition is enabled, then it eventually

must be taken or disabled|when translated back to the computations of the origi-

nal system. Similarly, premise S4 requires that compassionate abstract transitions be

taken if they are in�nitely often enabled. 0

3.7 Unobservable Abstract Variables

Re�nement between systems can be understood as the inverse of the abstraction process.

Here, a high-level (abstract) speci�cation is shown to correspond to a low-level (concrete)

implementation, which is then guaranteed to satisfy the properties of the speci�cation.

Re�nement complicates the abstraction framework by allowing abstract variables that

do not correspond to any concrete variables. We do not address such re�nement in this

thesis, but in Chapter 5 we will consider the case where abstract system variables are not

re
ected in the concrete states. Such variables are deemed unobservable in the concrete

system.

The crux of the following de�nitions is that an abstract state represents exactly the

same set of states it would represent if the variables in U were not part of A.
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De�nition 3.7.1 (U-variants) A state s is a U -variant of a state s0 if s and s0 coincide

in the values of variables not in U . For a sequence of states �0 : s0; s1; : : :, a sequence

�0 : s0; s1; : : : is a U -variant of � if each si is a U -variant of s
0
i.

For a state or sequence X, the set of U -variants of x is written X[U ]. For a set of states

S, we write x[U ] for the set fs0js0 2 s[U ] and s 2 Sg.

De�nition 3.7.2 (Unobservable abstract variables) Abstract system variables can be

marked as unobservable. Let U be the set of unobservable variables of A. Then for a

state, set of states, sequence or set of sequences X, the new concretization function 
New

is de�ned as:


New(X)
def
= 
(X[U ]) :

Thus, an abstract state represents the same set of states that all of its U -variants do, and an

abstract computation corresponds to the same set of computations that all of its U -variants

do.

An alternative is to consider the unobservable variables U as concrete variables as well,

which have the same value in corresponding abstract and concrete states. Then we would

have 
(X[U ]) = (
(X))[U ].

Proposition 3.7.3 If A has unobservable variables, all the theorems in this chapter still

hold when 
 is replaced by 
New.

3.8 Assertion-based Abstraction

We will use a particularly simple instance of the previous abstraction framework.

De�nition 3.8.1 (Boolean algebra) A complete boolean algebra BA(S), given a set S,

is a structure
D
S;^A;_A;:; falseA; trueA

E
which satis�es the usual properties of Boolean

logic, that is,
D
S;^A;_A

E
a distributive lattice, with top element trueA, bottom element

falseA, and complement :, where a ^A :a = falseA and a _A :a = trueA (see [DP90]).

As we will see, the following abstract domain is often implicitly used in deductive veri�ca-

tion:
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De�nition 3.8.2 (Assertion-based abstraction) Given a �nite set of assertions B, the

assertion-based abstract domain with basis B has the complete boolean algebra BA(B) (using

^A;_A;:A) as its abstract domain �A, where

| sA
1
� sA

2
i� sA

1
implies sA

2
;

| 
(f)
def
= fs 2 � j s q fg, and

| �(S)
def
=
VA nsA 2 BA(B) j S � 
(sA)o.

That is, the concretization 
(f) of an assertion f is simply the set of concrete states that

satis�es it. The abstraction �(S) of a set of states S is the smallest point in the abstract

lattice whose concretization includes all the elements of S. Note that 
 is continuous, since


(f1 ^
A f2) = 
(f1) \ 
(f2) :

This is a Galois insertion from (P(�);�) to (�A;�), since �(
(f)) = f for all f 2

BA(B). The converse, 
(�(f)) � f , is not always the equality, since there will be sets

of concrete states for which there is no exact corresponding abstract state; in this case,


(�(f)) will be the intersection of the states represented by all the abstract points a such

that 
(a) � f .

Our results for assertion-based abstraction will hold of any abstract lattice for which

the boolean operations are available.

Note 3.8.3 (Abstract vs. concrete assertions) We will continue to characterize sets

of concrete states using assertions, which need not be points in the abstract state-space. To

distinguish abstract points and assertions from concrete ones, we use ^A;_A;:A;!A for

operations in the abstract domain, while ^;_;:;! are the usual connectives in the concrete

assertion language (occasionally, the superscripts will be dropped when the context is clear).

Note that the abstract domain serves as its own (propositional) assertion language.

Proposition 3.8.4 (
 as a boolean homomorphism) If sA is an abstract assertion (or,

equivalently, an abstract state), then 
(sA) is characterized by the concrete assertion ob-

tained from sA by replacing ^A, _A and :A by ^, _ and :. The boolean variables in sA,

which are elements of B, appear as corresponding subformulas in 
(sA). That is, 
 is a

boolean homomorphism between the two assertion languages.
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f1

f1 _
A f2

f1 ^
A f2

f2


(f1)


(f2)

Figure 3.6: Assertion-Based Abstraction; 
(f1 _
A f2) = 
(f1) \ 
(f2)



50 CHAPTER 3. ABSTRACTION

For a formula sA 2 BA(B), we will write 
(sA) to characterize the set of states it

represents, rather than simply sA, to highlight the fact that sA is an abstract state, while


(sA) is a concrete assertion representing a set of concrete states (see Figure 3.6). In this

way, the extension of 
 to sets can be de�ned as the assertion


(S)
def
=
_
a2S


(a) :

Another reason for insisting on the 
(sA) notation is that the abstract assertion language

can be replaced by a less familiar one.

Example 3.8.5 (Abstract Bakery as an ABA) The abstract Bakery program of Fig-

ure 3.2 is an assertion-based abstraction, with basis B :
�
by1=0; by2=0; by1�y2

	
. Any set of

abstract states can be described as an assertion fA over by1=0, by2=0, by1�y2 and the �nite-

state control variables. If we let 
(by1=0) = fs j s q y1 = 0g, 
(by2=0) = fs j s q y2 = 0g,

and 
(by1�y2) = fs j s q y1 � y2g, then 
(f
A) is characterized by the corresponding concrete

assertion (see Proposition 3.8.4 above).

The preservation of a �nite-state concrete variable v can be easily but tediously formal-

ized by introducing a set of abstract variables to encode the possible values of v.

3.9 Related Work

Most abstraction-based property-preservation frameworks do not account for fairness. How-

ever, Pnueli and Kesten [PK98, KP98] have recently described an assertion-based 8CTL*-

preserving abstraction framework that includes fairness considerations, expressed in terms

of fair Kripke structures.

This formalism adds fairness directly to Kripke structures: the Kripke structure now

include justice requirements, which are sets of states Ji such that a computation should

have in�nitely many Ji-states, and compassion requirements, which are pairs hPi; Qii such

that in�nitely many Pi states then there are in�nitely many Qi states. This representation

brings the Kripke structure closer to an !-automata, and replaces the need for individual

transition relations.

Over-approximating the Ji's and Qi's, and under-approximating the Pi's, (weakly) pre-

serves 8CTL* properties, similarly to Theorem 3.4.1. Progress properties can be model
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checked for a �nite-state abstract Kripke structure and transferred to the original, possibly

in�nite-state one, as we will also do.

In Chapter 6, we will release abstract transitions from the requirement of having to

be marked as just or compassionate, and will use extra information about the concrete

transitions instead, expressed in terms of the abstract states. Informally, this representation

can be thought as lying in between (abstract) Fair Kripke Structures and (abstract) Fair

Transition Systems.

Summary: Simulation and re�nement rules such as those described in this chapter can be

used provided that the abstract system A is given beforehand, together with an abstraction

mapping between the two systems. However, they do not address the question of how

abstract systems can be found or generated. This is the subject of the rest of this thesis.



Chapter 4

Automatic Generation of Abstract

Systems

In the terminology of Chapter 3, one way to establish properties for an in�nite-state system

S is to �nd a �nite-state abstraction SA that preserves these properties. SA can then be

model checked using automatic, algorithmic tools.

The theorems of Chapter 3 describe when an abstraction is property-preserving, and

can be used to check that a given abstraction is correct, but do not address the issue of

constructing such abstractions. One approach is to construct the abstraction manually,

and separately prove the conditions of Theorem 3.3.3 or Theorem 3.4.1. This o�ers the

most 
exibility, but is time-consuming and is subject to errors if not done entirely within a

computer-aided veri�cation environment.

Another approach is to construct the abstract system based on the concrete one and

a description of the abstraction function. This is the approach we present in this chapter,

automatically generating assertion-based abstractions from the concrete fair transition sys-

tem and the basis of the desired abstraction. The algorithm we present has the following

features:

� Uses a validity checker for the assertion language as a black box.

� Generates abstract assertions from concrete assertions, and is compositional in the

structure of the formulas that describe the concrete initial condition and transition

relations. This allows us to generate an abstract FTS from a concrete FTS, and then

let a model checker explore the state-space of the abstraction.

52
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� Is thus relatively eÆcient: its performance is polynomial in the size of the transition

relations and not the size of the abstract state-space.

� Can be applied to any assertion language and abstract domain for which the corre-

sponding boolean algebra and validity checker exist.

The (relative) eÆciency of the algorithm makes it easier to try out di�erent alternatives.

This is particularly useful when systems are being debugged, and when di�erent checks re-

quire di�erent abstractions. The generated abstractions also lend themselves to re�nement,

can be incrementally constructed, and can be easily combined, as we will see in Chapter 6.

Note 4.0.1 (Assertion Basis) In the following, let B : fb1; : : : ; bng be a �xed assertion

basis.

The basis B de�nes an assertion-based abstract domain, as given by De�nition 3.8.2.

As mentioned in Section 3.8, the concretization function 
(f) is trivial to compute: for any

abstract state s, the corresponding set of concrete states is characterized by the formula

obtained by replacing each bit in s by its corresponding assertion. The same applies to

relations, replacing primed bits by primed assertions. However, computing � is more prob-

lematic: for a set of concrete states S, the best abstraction of S is the least upper bound

(that is, the conjunction) of all the abstract states whose concretization includes S. Finding

all such abstract points is impractical, even for a singleton set S, and much more so when

S is in�nite and itself characterized by an assertion.

Thus, we will be content with approximating �. Instead of replacing concrete sets of

states and relations by their best possible abstraction, which may be too expensive or

impossible to compute, we will replace them by a conservative approximation that will still

preserve the class of properties we are interested in. (That is, the de�nition of assertion-

based abstraction tells us what the best possible abstraction is, but in general we will �nd a

sub-optimal one that, hopefully, will still be good enough to prove the property of interest.)

Note 4.0.2 (On � and 
) In the rest of this chapter, � will refer to a function used to

approximate the abstraction function of the same name in Chapter 3, while 
 is the exact

concretization function.

We will use validity checking to relate abstract and concrete (sets of) states. The
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abstraction procedure assumes the availability of a validity checker , which will be used as

a black box:

De�nition 4.0.3 (Validity checker) We assume we have a procedure, checkValid, which

is a sound, but not necessarily complete, validity checker for the assertion language (see

Section 2.6.2): if checkValid(p) succeeds, then p is valid.

Validity checkers are provided by theorem provers such as PVS, veri�cation systems

such as STeP, and specialized tools such as SVC (see Section 2.6).

The abstraction algorithm is based on a procedure that approximates assertions over V

and V 0 as assertions over B and B0. The procedure descends through the boolean structure

of the formula, building an assertion to serve as a context and keeping track of the polarity of

subexpressions until it reaches the atoms. The procedure then over- or under-approximates

each atom using an element of BA(B [ B0), where the context is used to improve the

abstraction.1

We show how to abstract single atoms in Section 4.1. This procedure is then used in

Section 4.2 to abstract assertions, which are boolean combinations of atoms. Abstract tran-

sition systems and temporal properties can then be easily generated, as shown in Sections 4.3

and 4.4.

4.1 Abstracting Atoms

Atoms are abstracted by testing them, given a context C, against a set of points

P � BA(B [B0) :

Default sets of points for pure and mixed atoms are de�ned below; these sets of points can

be rede�ned or expanded by the user.

�atom(+; C; a)
def
=

^A
fp 2 P j checkValid((C ^ a)! 
(p))g (over-approximation)

�atom(�; C; a)
def
=

_A
fp 2 P j checkValid((C ^ 
(p))! a)g (under-approximation)

1While it is possible to push all negations down to the level of atoms and avoid polarity considerations,

we will both under- and over-approximate formulas (at the topmost level) later on, so the above presentation

is more convenient to use.
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(p1)


(p2)

C \ a

C
a

Figure 4.1: Over-approximations (relative to C) are conjoined

Intuitively, the context C indicates that we only need to correctly approximate the part

of a that lies within C. Thus, when over-approximating a in context C, we can over-

approximate a ^ C instead, a smaller set than a. This yields a smaller result, and hence a

more precise over-approximation. Similarly, when under-approximating a in context C, we

can under-approximate a _ :C instead, which is a larger set than simply a. This will give

a larger result, and hence a better overall under-approximation.

Lemma 4.1.1 (Soundness of Approximations) For any atom a,

C ! (a! 
(�(+; C; a))) and C ! (
(�(�; C; a))! a)

are valid.

Proof: In set-theoretic notation, this can be expressed as:

C \ a � 
(�(+; C; a))

and

C \ 
(�(�; C; a)) � a :

Let T be the set of points for which checkValid returns true.
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(p1)


(p2)

C
a

Figure 4.2: Under-approximations (relative to C) are disjoined

+ case: For every point p in T , (C \ a) � 
(p). Thus, C \ a �
T
p2T 
(p). This

is illustrated in Figure 4.1. Since 
 is continuous,

\
p2T


(p) = 
(
^A

p2T
p)

and thus

C \ a � 
(
^A

p2T
p) ;

which we wanted to show.

� case: For every point p for which checkValid returns true, (C\
(p)) � a. Thus,

C\
S
p2P 
(p) � 
(a). This is illustrated in Figure 4.2. Similarly to the previous case,

this means that [
p2P


(p) = 
(
[
p2P

(p))

and thus

C \ 
(
_A

p2P
(p)) � 
(a) :

0
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4.2 Abstracting Assertions

Note 4.2.1 (Polarity) For � 2 f+;�g, we de�ne ��1 as +�1
def
= � and ��1

def
= +.

We extend �atom to a function � that abstracts assertions as follows:

�(�;C; a) = �atom (�;C; a); if a is an atom

�(�;C;:q) = :
A�(��1; C; q)

�(+; C; q ^ r) = let q̂ = �(+; C; q) in q̂ ^A �(+; C ^ 
(q̂); r)

�(+; C; q _ r) = let q̂ = �(+; C; q) in q̂ _A �(+; C ^ :
(q̂); r)

�(�; C; q ^ r) = let q̂ = �(�; C; q) in q̂ ^A �(�; C ^ 
(q̂); r)

�(�; C; q _ r) = let q̂ = �(�; C; q) in q̂ _A �(�; C ^ :
(q̂); r) :

An assertion f is thus abstracted using O(jP j � jf j) validity checks.

The intuition is as follows: when over-approximating q ^ r, if we �rst over-approximate

q to q̂, then we know that a correct result can be forced to lie within q̂. Thus, we add this

to the context when over-approximating r. Similarly, when over-approximating q _ r, if we

�rst over-approximate q to q̂, we then can commit to a result that includes q̂; thus, when

over-approximating r, we can consider only the part of r that lies outside q̂, that is, add :q̂

to the context. Similar reasoning lies behind the � case.

The main claim that justi�es the correctness of the algorithm is:

Theorem 4.2.2 For assertions C and f ,

C ! (
(�(�; C; f))! f) and C ! (f ! 
(�(+; C; f)))

are valid, that is,

C \ 
(�(�; C; f)) � f and C \ f � 
(�(+; C; f)) :

Proof: We prove this by induction on the structure of the formula f .2 The base

case, where the formula is an atom, is covered by Lemma 4.1.1. Assume now that the

2Researchers in formal veri�cation are sometimes criticized for not verifying their own algorithms and

veri�cation systems, and indeed there is a small typo in [CU98]. We therefore include this proof in rather

excruciating detail.
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theorem holds for formulas q and r.

� (:q): Complementing a correct over- (resp. under-) approximation for :q produces

a correct under- (resp. over-) approximation of q. More formally: by the induction

hypothesis, C ! (
(�(�; C; q))! q) is valid. Then

C ! (:q ! :
(�(�; C; q)))

is valid. By the de�nition of �, we have �(+; C;:q) = :A�(�; C; q), so �(�; C; q) =

:A�(+; C;:q); thus

C ! (:q ! :
(:A�(+; C;:q)))

is valid. Since :
(f) = 
(:f), this means that

C ! (:q ! 
(�(+; C;:q)))

is valid, which we wanted to show. The proof for �(�; C;:q) is dual.

� �(+; C; q ^ r): As in the algorithm, let q̂
def
= �(+; C; q). By induction hypothesis,

(C \ q) � 
(q̂) and (C ^ 
(q̂)) \ r � 
(�(+; C ^ 
(q̂); r)) :

Then:


(�(+; C; q ^ r)) = 
(q̂ ^A �(+; C ^ 
(q̂); r)) (de�nition of �)

= 
(q̂) ^ 
(�(+; C ^ 
(q̂); r))

� 
(q̂) ^ (C ^ 
(q̂)) \ r (induction hypothesis)

= C ^ 
(q̂) \ r

� C ^ (C \ q) \ r (induction hypothesis)

= C \ (q ^ r)

Thus,

C \ (q ^ r) � 
(�(+; C; q ^ r));

which we wanted to show.

� �(+; C; q _ r): Again, let q̂
def
= �(+; C; q). By induction hypothesis,

(C ^ :
(q̂)) \ r � 
(�(+; C ^ :
(q̂); r)) and (C ^ q) � 
(q̂) :
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Then:


(�(+; C; q _ r)) = 
(q̂ _A �(+; C ^ :
(q̂); r)) (de�nition of �)

= 
(q̂) _ 
(�(+; C ^ :
(q̂); r))

� 
(q̂) _ (C ^ :
(q̂) ^ r) (induction hypothesis)

= 
(q̂) _ (C ^ r)

� (q ^C) _ (C ^ r) (induction hypothesis)

= C \ (q _ r)

� �(�; C; q ^ r): Let q̂
def
= �(�; C; q). By induction hypothesis,

(C ^ 
(q̂)) \ 
(�(�; C ^ 
(q̂); r)) � r and (C ^ 
(q̂)) � q :

Since Z ^X � Y implies Z � Y [ :X, we know that

C \ 
(�(�; C ^ 
(q̂); r)) � r [ :
(q̂) (4.1)

Then:

C \ 
(�(�; C; q ^ r)) = C \ 
(q̂ ^A �(�; C ^ 
(q̂); r)) (de�nition of �)

= C \ (
(q̂) ^ 
(�(�; C ^ 
(q̂); r)))

= (C \ 
(q̂)) ^ (C \ 
(�(�; C ^ 
(q̂); r)))

� (C \ 
(q̂)) ^ (r [ :
(q̂)) (4.1 above)

= (C \ 
(q̂)) ^ r

� (q ^ r) (induction hypothesis)

0

As a check, note that a \C � X is equivalent to (:X) \ C � (:a):

a \ C � X $ :(a \C) � :X

$ (:a [ :C) � :X

$ (:a) � (:X) \ C

Hence, the condition �(�; C;X) = a is equivalent to :�(+; C;:X) = a. Using the equation

�(�; C;X) = :�(+; C;:X)
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we can derive the negative cases from the positive ones:

�(�; C; q ^ r) = :�(+; C;:q _ :r)

= :( �(+; C;:q)| {z }
X

_ �(+; C ^ :X;:R))

= (:�(+; C;:q)) ^ :�(+; C ^ :X;:r)

= �(�; C; q) ^ �(�; C ^ :X; r)

But �(�; C; q) = :�(+; C;:q) = :X. Similarly,

�(�; C; q _ r) = :�(+; C;:q ^ :r)

= :( �(+; C;:q)| {z }
X

^ �(+; C ^X;:r))

= (:�(+; C;:q)) _ :�(+; C ^X;:r)

= �(�; C; q) _ �(�; C ^X; r)

Again, �(�; C; q) = :�(+; C;:q) = :X.

Notice that this algorithm applies to any abstract domain that is a boolean algebra,

provided the operations for ^A, _A, :A and 
 are available. Similarly, it applies to any

assertion language for which a validity checker is available.

The stronger the validity checker, the better over- and under- approximations we will

get, and the more temporal properties we will be able to prove, for a �xed basis. Note that

if an assertion f contains only atoms in B, then we can expect its abstraction fA to be

equivalent to f modulo invariants. (More precisely, S q 
(fA)$ f .)

4.3 Abstracting Systems

Given a concrete transition system

S
C :
D
V;�;T :

n
�C1 ; : : : ; �

C
k

oE
;

its 8CTL*-preserving abstraction is

S
A :

D
B : fb1; : : : ; bng;�A;TA :

n
�A1 ; : : : ; �

A
k

oE
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where �A is the result of over-approximating �, and each abstract transition �Ai is the

result of over-approximating the corresponding �Ci .

System SA is an n-bit �nite-state system. Since � � 
(�A) and � � 
(�A) for all

� 2 T , the initiality and consecution conditions of Lemma 3.4.1 are satis�ed. We satisfy

the fairness condition by propagating the fairness of � to �A only if we can establish the

validity of 
(enabled (�A)) ! enabled (�). In this case, the two enabling conditions are

equivalent.3 If the basis includes the atoms in the guard of � , this is guaranteed to be the

case (c.f. the abstract bakery of Figure 3.2). In the worst case no fairness carries over and

only safety properties of SA (and hence SC) can be proved.

Following [KMP94], we call this a transition-mapped abstraction, since there is a one-to-

one mapping between abstract and concrete transitions. The mapping is fairness-reducing ,

since each transition �C is at least as fair as the corresponding �A (see Table 3.1).

The initial context can contain known invariants of SC . When abstracting the atoms

of an initial condition or the assertions of a temporal property (see below), we test against

the set of unprimed points

PU
def
= B [ f:bi j bi 2 Bg :

For transition relations, we test against the set of mixed points

PM
def
= PU [ P

0
U [

�
p1 ! p2 j p1 2 PU and p2 2 P

0
U

	
:

Thus, the algorithm abstracts a transition relation �� using O(n
2j�� j) validity checks, where

n = jBj. For an assertion f with no primed variables, O(njf j) validity checks are needed.

Enlarging these point sets can increase the quality of the abstraction, as discussed in Sec-

tion 4.5; however, these relatively small sets were suÆcient to verify most of the examples

in Section 4.6 below.

4.4 Abstracting Temporal Properties

A temporal property ' is abstracted by under-approximating the positive polarity assertions

that it contains and over-approximating those with negative polarity. This gives an abstract

property 'A that implies the optimal abstraction �t(') of De�nition 3.2.3, which assumes

3Strictly speaking, the two could di�er on unreachable states, since known invariants of SC can be used

to establish the conditions of Lemma 3.4.1 and to generate the abstractions.
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negation-normal form.

This guarantees that every model of the abstract property 'A corresponds to a model of

the concrete one. Informally, consider the temporal tableau G : T' for ' (see Section 2.3.1).

Let G0 be the tableau obtained by replacing the assertion �(n) in each node n of G by an

under-approximation of �(n). Any computation accepted by G0 will also be accepted by G.

(This also justi�es De�nition 3.2.3, which uses the best possible approximation.)

Thus, if all computations of the abstract system satisfy 'A, all computations of the

concrete system will satisfy '. If the basis includes all of the assertions appearing in the

property, the property approximation is exact.

Of course, if we can prove a property 'A for SA, then the concrete system S will

satisfy 
('A), obtained by replacing each abstract assertion f in 'A by its corresponding

concretization 
(f) (see De�nition 3.2.3).

4.5 Optimizations

There are many possible improvements to the basic abstraction procedure described above,

to increase eÆciency and generate better approximations. We now describe some of them:

Preserving concrete variables: For convenience, we let SA retain some of the �nite-

domain variables of S, as indicated by the user. (This is the case, for example, for the control

variables of the abstract bakery of Figure 3.2). The �nite-state model checker can then

represent them explicitly or, for instance, encode them as bits (as an OBDD-based symbolic

model checker would). We implement this by letting � be the identity on expressions with

�nite-domain whose free variables do not appear in the basis. Note, however, that the

algorithm can always be used to abstract �nite-state systems to smaller abstract ones.

Enlarging the test point set: Additional points must sometimes be tested to obtain a

suÆciently precise abstraction. For example, � may imply (bi ^ bj)! b0k, but imply neither

bi ! b0k nor bj ! b0k. In our implementation, the user can specify additional points to test

for particular transitions when specifying the basis. Alternatively, the user may enlarge the

basis, but this will in general not only increase the abstraction time, but also increase the

time and space used at model-check time.
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4.6 Examples

Consider the bakery program from Figure 2.1 and the basis

B :

8>>><
>>>:
b1 : y1 = 0;

b2 : y2 = 0

b3 : y1 � y2

9>>>=
>>>;

obtained from the guards of the await statements (that is, their enabling conditions). Using

this basis, and preserving the �nite-state (control) variables, the �nite-state abstraction of

bakery, shown in Figure 3.2 is generated. This abstract program can be model checked

to verify the basic safety properties of the original system, including mutual exclusion and

one-bounded overtaking (see Example 2.2.8).

The atoms in the guards of transitions `2 and m2 are included in the basis (negated,

in the case of y2 < y1); thus, they are abstracted exactly. By Theorem 3.4.1, the abstract

transitions can inherit the fairness properties of the original ones. The same trivially applies

to `1; `3; `4;m1;m3;m4, since their guards are true. Thus, we can also prove the response

property of accessibility,

0 (`1 ! 1 `3) ;

by model checking the abstract system.

Example 4.6.1 (Abstracting Fischer) For the Fischer program of Figure 2.2, we used

the following basis [CU98]:

b1: c1 � L b4: c2 � c1

b2: c2 � L b5: c1 � c2 + L

b3: c1 � c2 b6: c2 � c1 + L

The initial context contained assumptions fL > 0; U > 0; U � L; 2L > Ug and invariants

fc1 � 0; c2 � 0g. The initial condition was abstracted to

�1 = `0 ^ �2 = m0 ^ x = 0 ^ :b1 ^ :b2 ^ b3 ^ b4 ^ :b5 ^ :b6
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local x : f0; 1; 2g where x = 0

P1 ::

2
66666666666666666664

`0: loop forever do2
666666666666666664

`1: noncritical

`2: skip

`3: while x 6= 1 do2
6666664

`4: await x = 0

`5: x := 1

`6: skip

`7: if x = 1 thenh
`8: critical

i

3
7777775

`9: skip

`10: x := 0

3
777777777777777775

3
77777777777777777775

jj P2 ::

2
66666666666666666664

m0: loop forever do2
666666666666666664

m1: noncritical

m2: skip

m3: while x 6= 2 do2
6666664

m4: await x = 0

m5: x := 2

m6: skip

m7: if x = 2 thenh
m8: critical

i

3
7777775

m9: skip

m10: x := 0

3
777777777777777775

3
77777777777777777775

Figure 4.3: Fischer's mutual exclusion algorithm (complete version)

(where we now write ^;_;: rather than ^A;_A;:A). Transition `1 was abstracted to

�A`1 :

0
BBBBB@

�1 = `1 ^ �
0
1 = `2 ^ x

0 = 1 ^ �02 = �2 ^

b1 ^ :b
0
1 ^ b

0
4 ^ :b

0
5 ^ (b2 ! :b

0
3) ^ (b2 ! b06) ^

(:b3 ! :b
0
3) ^ (:b3 ! b06) ^ (b4 ! :b

0
3) ^ (b4 ! b06) ^

(:b5 ! :b
0
3) ^ (b6 ! :b

0
3) ^ (b6 ! b06)

1
CCCCCA :

The other transitions were similarly abstracted. (The tick transition, which contains quan-

ti�ers, was treated as a single literal when abstracted.) With our STeP implementation, the

abstract system was generated in 28 seconds, and mutual exclusion was automatically model

checked in one second.

Figure 4.3 shows a more complete version of Fischer's algorithm, for which mutual

exclusion can be veri�ed using the same abstraction basis; even though the control structure

is more complex, the relevant relationships between the data variables remain the same.

Table 4.1 shows abstraction times for several other examples, from [CU98], where the

main safety property of each system was model checked.4 In practice, �nding the right

abstraction is an iterative process, where di�erent assertion bases are tested, and extra test

points are used. Section 5.5 addresses these issues.

4Obtained on a Sun SPARC 2 workstation, approx. 200 Mhz. These are measurements, in the sense of

[Hol98], and not intended to validate or refute any particular scienti�c hypothesis.
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System # transitions Basis size Abstraction

time

Model check

time

Bakery 14 3 3s <1s

Fischer (fragment) 11 6 28s 1s

Alternating-bit 7 4 14s <1s

Bounded Retransmission 13 7 70s 4s

Table 4.1: Abstraction and model checking times

4.7 Minimizing Validity Checks

The most expensive part of the abstraction algorithm is calling checkValid. The performance

can be greatly improved if the number of calls is minimized. We now present a few simple

strategies that eliminate trivial or redundant test points.

4.7.1 Terminating the Recursion

When a subexpression consists solely of conjunctions of literals, we eliminate redundant

validity checks by testing each point once for the entire subexpression. That is, we terminate

the recursion early, since testing the points for each atom will not improve the quality of

the abstraction.

This assumes that checkValid is monotonic, in the sense that if checkValid(C ! p)

succeeds and C 0 � C, then checkValid(C 0 ! p) should also succeed.

Theorem 4.7.1 If ' and  are pure atoms and the methods of Section 4.1 and 4.2 are

used, then �(+; ' ^  ) and �(�; ' _  ) can be computed directly without loss of precision.

Proof: Consider �(+; C; a ^ b) where a and b are atoms. If computed directly, this

would be the conjunction
V
S of all the elements of

S
def
= ff 2 P j checkValid((a ^ b ^ C)! f)g :

We claim that the same result would be obtained if we recurse into the ^:

Let â
def
= �(+; C; a). If we recurse, the result would be I : â ^ �(+; C ^ â; b).

Assume that some formula f 2 P appears as a conjunct in both â and �(+; C ^ â; b),
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so that it appears in I. Then (b^ (â^C))! f and (a^C)! f are valid. Therefore,

(a ^ b ^ C ! f) is valid, so f 2 S. Thus, (
V
S) � I.

Assume now that f 2 S, that is, checkValid((a^b^C)! f) succeeds. Since (C^

a) � â (by the de�nition of â and the correctness of �) this means that checkValid((â^

b ^ C) ! f) also succeeds, assuming that checkValid is monotonic. Thus, f is a

conjunct in �(+; C ^ â; b). Also, f is implied by â, so f is implied by I. Thus,

I �
V
S. 0

A similar argument holds if one or both of the atoms in the conjunction is a mixed

atom. Dual arguments apply to �(�; ' _ ). What this means is that the contextual over-

approximation can bene�t mostly from the presence of disjunctions (non-determinism) in

the transition relation, while under-approximation can bene�t from conjunctions.

We say that transitions �1 and �2 are overlapping if enabled(�1) \ enabled(�2) 6= ;. To

exploit disjunctions more, overlapping transitions can be combined, as their disjunction,

and abstracted together.

However, we must again be careful if one of the transitions is fair. The combined tran-

sition relation cannot have any fairness requirement unless they are both compassionate, in

which case the resulting transition can also be compassionate (or uniformly compassionate,

if both are uniformly compassionate as well, see Section 3.4.1). Nonetheless, for safety prop-

erties, joining transitions can lead to �ner consecution constraints on the abstract system.

4.7.2 Propositional Optimization

Any information available about the relationship between basis elements can be used to

eliminate redundant tests. As a simple example, if we know that an atom implies bi, it is

unnecessary to test the point :bi ! b0j for that atom.

More generally, together with the context, which is an assertion over the concrete vari-

ables, we can maintain a corresponding abstract context CA, a propositional formula over

the abstract variables. This abstract context will contain information about the current

approximation. Whenever C is updated with 
(f), the abstract context CA is updated

with f .

Normally, the two contexts will be related by C = 
(CA), but this does not always have

to be the case. The initial abstract context can be conjoined with over-approximations of

concrete invariants, as well as boolean relationships, previously established, among the basis
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variables. This information may not be included in the initial context C, e.g., if the validity

checker already accounts for them, or if it slows down the validity checking by making C

too large; thus, in general 
(CA) � C.

A point is not tested if it is deemed propositionally redundant with respect to CA.

De�nition 4.7.2 (Propositional �lter(b; P )) For a set of points P and an abstract con-

text CA, let �lter (CA; P ) be the set of points p in P such that CA does not propositionally

imply p or :p.

These implications can be quickly checked if CA is maintained as an OBDD.

Remark 4.7.3 (Using OBDDs) Note that OBDDs can also be used to represent the

abstract transition relation. We can also construct an OBDD expressing the relationships

between the basis elements, including any abstract invariants. This OBDD, and its primed

version, can be conjoined to the abstract transition relations, giving an abstract system

that is ripe for being symbolically model checked. 0

We now rede�ne �atom as:

�atom (+; C
A; C; a)

def
=

^A
n
p 2 �lter (CA; P ) j checkValid((C ^ a)! 
(p))

o
�atom (�; C

A; C; a)
def
=

_A
n
p 2 �lter (CA; P ) j checkValid((C ^ 
(p))! a)

o

The revised version of � is then:

�(�;CA; C; a) = �atom (�;C
A; C; a); if a is an atom

�(�;CA; C;:q) = :
A�(��1; CA; C; q)

�(�;CA; C; q ^ r) = let q̂ = �(�;CA; C; q) in q̂ ^A �(�;CA ^ q̂; C ^ 
(q̂); r)

�(�;CA; C; q _ r) = let q̂ = �(�;CA; C; q) in q̂ _A �(�;CA ^ :q̂; C ^ :
(q̂); r) :

If this optimization is used, then recursing into conjunctions can save time, since the

propositional context CA can help restrict validity checking to the conjuncts that are not

propositionally redundant.
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4.7.3 Incremental Computation

The optimized procedure of the previous section is also useful when computing abstractions

incrementally , where a given abstraction is used as a starting point for constructing a

better one. This situation arises, for instance, if we have a hierarchy of validity checkers,

each one more powerful, but less eÆcient, than the previous. Incremental computation is

also desirable if, having constructed an abstraction, we want to re�ne it by adding new

elements to the basis (see Chapter 5).

In these situations, we can minimize the number of redundant validity checks in re-

computing �(�) by adding the previous abstraction �A as a conjunct to the initial abstract

context CA. In the case that new basis elements are used, any known propositional con-

straint relating the new and old basis elements should be conjoined with CA as well.

4.7.4 Variable Dependencies

We can analyze the dependencies between subformulas to predict when the validity checker

is likely to fail. For example, if � does not modify the free variables of bi, we can eliminate

the points fp! b0i j p 2 PUg when abstracting � .

In general, when proving C ^ a ! b, we can assume that the validity checker would

have failed if the context does not connect the variables in a with those of b. This can be

implemented by maintaining equivalence classes of variables as part of the context, using,

e.g., a union-�nd structure [Tar75], where initially each variable is in its own class. When

an assertion is added to the context, the equivalence classes for the variables appearing

in the assertion are merged. A point p ! q0 is only tested if p and q share at least one

equivalence class.

Strictly speaking, this does not mean that the validity checker would have failed: the

concrete context may be unsatis�able, for instance.5 However, reducing the number of tests

can only increase the degree of approximation, so soundness is not compromised.

4.8 Invariant Generation

In general, any abstraction can be used to generate invariants of the concrete system, as

pointed out, e.g., in [BBM97, GS97].

5This should terminate the recursion if detected, of course.
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Let reachable(SA) be the boolean formula that characterizes the reachable states of SA.

The assertion 
(reachable(SA)) is obtained by replacing each boolean variable by its corre-

sponding assertion. This formula may be too large to be useful, e.g., when reachable(SA) is

a large OBDD. However, any formula that is implied by reachable(SA) is also an invariant

of the system.

In the OBDD case, for instance, we can then look for short paths from the OBDD root

node to the false terminal node: if �b1 ^ : : :^�bi is an assignment to the OBDD variables

that leads to false , then :(
(�b1) ^ : : : ^ 
(�bi)) is an invariant of S.6 Similarly, control

invariants for SA can be obtained by existentially quantifying out data-related abstract

variables in reachable(SA).

This leads to the intriguing possibility of bootstrapping , where invariants generated by

an abstraction are used in turn to generate a better abstraction, building on the �rst. (See

the discussion of incremental generation of abstractions in Section 4.7.3.)

We can do the reverse too: abstract the invariants of the concrete system, by over-

approximating them (expressed as assertions) to obtain invariants for the abstract system.

These can then help reason about SA, e.g., constraining the model checking process.

4.9 Preserving Existential Properties

As described in Section 3.5, a second abstract transition relation must be considered if

existential properties are to be preserved.

To model check CTL* properties that combine existential and universal path quanti�-

cation, the model checker should use both abstract transition relations, considering one or

the other depending on the existential quanti�cation being analyzed. In Chapter 6, we will

see that the constrained transition relation can also help �nd abstract counterexamples that

correspond to concrete ones.

4.9.1 89 and 99 Approximations

In the universal-preservation case, considered above, there should be an abstract transition

from a1 to a2 if some concrete state in 
(a1) can reach some concrete state in 
(a2). Hence,

over-approximation is exactly what is needed. The smaller the abstract transition relation

6Recent work by the authors of [BLO98] and Berezin [Ber98] explores the question of generating usable

invariants from such OBDD's.
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is (that is, the more exact the over-approximation is), the more universal properties will

be satis�ed. Following [Dams96], we call this the free transition relation, and say that �A

99-approximates � :

De�nition 4.9.1 (99-approximation) An abstract relation �A is an 99-approximation

of a concrete relation � if

� � 
(�A) :

The name comes from the fact that if �(s1; s2), then there should exist a1 and a2 such

that s1 2 
(a1) and s2 2 
(a2). This is built into the de�nition of 
 for relations (De�ni-

tion 3.1.3).

As described in Section 3.5, to preserve existential properties we need a separate con-

strained abstract transition relation R89A . We can describe it as an abstract transition �A89

for each concrete transition � , where �A89 goes from a1 to a2 only if for all concrete states in


(a1) it is possible to reach a concrete state in 
(a2). We call this the constrained transition

relation, and say that �A89 89-approximates � :

De�nition 4.9.2 (89-approximation) An abstract relation �A is a 89-approximation of

a concrete relation � if whenever �A(a1; a2) holds, then


(a1)(V)! 9V
0 :
�
�(V;V 0) ^ 
(a2)(V

0)
�

is valid.

Theorem 3.5.3 can be rephrased by saying that each constrained abstract transition �A89

must be a 89-approximation of the corresponding � for CTL* preservation to hold. The

larger the 89-transition relation is, the more existential properties will be satis�ed by the

abstract system. In general, if p and q are assertions over the basis B, we can add p ^A q0

as a disjunct to �A89 if we can prove

p(V)! 9V:
�
�(V;V 0) ^ q(V 0)

�
:

Remark 4.9.3 The \free" and \constrained" terminology becomes more intuitive by not-

ing that the free (99) relation can always be made larger without losing soundness, while

the constrained one (89) cannot. 0
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4.9.2 89 Considerations

The question, now, is how to obtain abstract 89 transition relations. The case is not en-

tirely dual to the 99-approximation of the preceding sections: while under-approximation is

suÆcient , it is not the case that (for a �xed abstract domain) the best under-approximation

of � gives the best constrained �A89 :

Assume that an abstract relation �A under-approximates a concrete relation �, that is,


(�A) � �. Thus, if �A(a1; a2) holds, then all elements of 
(a1) are �-related to all elements

of 
(a2) (so, indeed, �A 89-approximates �). But it is enough for each element of 
(a1) to

be �-related to only one element of 
(a2). Thus, intuitively, �A can be made larger while

still being a sound 89-approximation of � .

Unfortunately, the compositional approximation algorithm of the previous sections is not

directly applicable in this case. For example, consider the case of abstracting the relation

� : A ^B . Assume that we can prove

p1(V)! 9V
0:(A ^ q1(V

0))

and

p2(V)! 9V
0:(B ^ q2(V

0))

so that p1^
A q01 (resp. p2^

A q02) is a correct 89-approximation of A (resp. B). However, this

does not imply the validity of

(p1 ^ p2)(V)! 9V
0:(A ^B ^ (q1 ^ q2)(V

0)) ;

so we cannot add (p1 ^
A q01) ^

A (p2 ^
A q02) (as a disjunct) to �

A
89. Instead, we can only add

(p1 ^
A p2) ^

A (q01 _
A q02) .

The 89-approximation relation does distribute over disjunction, so we can approximate

each transition individually: if �A1 89-approximates �1 and �A2 89-approximates �2, then

�A
1
_A �A

2
correctly 89-approximates �1 _ �2 .

The design of good 89-approximation algorithms is left as a question for future work.

We note that (1) the above discussion addresses ^ and _, (2) negations can be pushed down

to the atomic level, (3) standard under-approximations, e.g., �(�; C; f) can be disjoined

with any �A89 to get a larger and better 89-approximation, (4) if q is the postcondition of an

under-approximation q of the enabling condition of � , then p^ q0 can be added to �A89, and
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(5) if the 89 postcondition is limited to a set q, and we can compute the (weak) precondition

pre(�;:q), then the result should not be in the pre-image of q for �A89. We also note that

the veri�cation conditions that must be proved are generally harder than for the universal

case, due to the alternated quanti�ers (which are �rst-order, in general).

4.10 Related Work

The assertion-based abstract domain is presented in [BBM97], as one of a number of abstract

domains that can be used to generate invariants once a �xpoint that over-approximates the

reachable states is found (see Section 7.1.2).

In [BLO98], a similar framework for generating abstractions is presented. The framework

is essentially the same|Assertion Based Abstraction|but some details di�er:

� The method in [BLO98] is geared towards proving invariants, of the form 0 ' for

an assertion '. The invariant to be proved is assumed when generating the abstrac-

tion, yielding a better abstract system: more speci�cally, the veri�cation conditions

f g � f�g are replaced by f ^ 'g � f�g.

We can achieve the same e�ect by including ' in the initial context; the correctness

of the abstraction is then contingent on proving ' over A.

� For eÆciency, the basis B is partitioned into sets of abstract variables S1; : : : ; Sk.

When generating the abstract system, only relationships between variables in the

same set are considered.

� A \substitution method" is used to make more immediate replacements.

These three improvements can be directly combined with our approach. The second one

has the goal of reducing the number of test points considered. Heuristics to determine which

abstract variables are more likely to be related to each other can be used (c.f. heuristics for

�nding good variable orderings for OBDD's).

The generation of abstractions proceeds by an \elimination method," where transitions

from abstract state si to sj are eliminated from a transition � if fsig � f:sjg is proved to

be valid. We will see this again in Section 5.5.

Graf and Saidi [GS97] present an alternate procedure for generating assertion-based

abstractions. The procedure uses validity checking to generate a �nite-state abstraction
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based on a set of formulas B : fb1; : : : ; bng . The abstract state-space �A is the complete

lattice of 3n + 1 monomials over B. A monomial is either false, or a set that may contain

'i or :'i, but not both. The ordering � over �A is implication. Given an abstract state

s, an approximation of its successors is found by deciding which of f'i;:'ig are implied

by post(R; 
(s)). This is done using an automatic strategy (a tactic) of the PVS theorem

prover [ORR+96]. In the cases where the proof strategy fails (because the implications do

not hold, or because the strategy was not powerful enough), the next-state does not include

the corresponding 'i or its negation.

Rather than performing an exhaustive search of the reachable abstract states while

constructing SA, our algorithm transforms SC to SA directly, leaving the exploration of the

abstract state-space to a model checker. Thus, the number of validity checks is proportional

to the number of formulas in B and the size of the representation of SC , rather than the

size of the abstract state-space. Furthermore, our procedure is applicable to systems whose

abstract state-space is too large to enumerate explicitly, but can still be handled by a

symbolic model checker (see Section 2.3).

The price paid by our approach, compared to [GS97], is that a coarser abstraction may

be obtained. This is compensated by using a richer abstract state-space: the complete

boolean algebra of expressions over B : fb1; : : : ; bng, rather than only the monomials over

this set. Using the complete algebra is prohibitively expensive in the [GS97] approach. On

the other hand, the latter has the relative advantage of exploring only the reachable states,

if this number is small.

Summary: Validity checking and propositional reasoning can be used in batch mode to

generate �nite-state abstractions, given an assertion basis provided by the user. The ques-

tion now is how a suitable basis can be found. Chapter 5 addresses this question, which

requires user interaction in general.



Chapter 5

Interactive Abstraction: Rules,

Diagrams and DMC

This chapter shows how assertion-based abstraction is implicitly used in the deductive-

algorithmic formalism of Generalized Veri�cation Diagrams (GVD's) (Section 5.3), and

hence the more speci�c (and mostly deductive) methods of veri�cation rules and (standard)

veri�cation diagrams.

We then show how the related method of Deductive Model Checking (DMC) can be

viewed as abstraction re�nement, where a suitable abstract system is constructed incre-

mentally and interactively (Section 5.5).

This provides bene�ts in both directions. On the one hand, the techniques of DMC and

GVD's can be used to enhance the abstraction framework to make it (relatively) complete.

We will see that they can make �ner distinctions regarding fairness and well-founded orders,

compared to the transition-mapped abstractions of Chapter 4. This will lead us to propose

an extended model checking procedure in Chapter 6.

On the other hand, the abstraction point of view yields an alternative presentation of

DMC and GVD's that is simpler to formulate, and leads to alternative implementation

schemes. In particular, it allows the reuse and combination of the abstractions that they

implicitly generate.

74
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For assertions ' : 
(b1) and p,

I1. � ! ' initiality for SA

I2. f'g � f'g for each � 2 T consecution for SA

I3. ' ! p concretization

S q 0 p

Figure 5.1: General invariance rule g-inv revisited

5.1 Example: Invariance Rule

Recall the general invariance rule g-inv, which proves an invariant 0 p by �nding an in-

ductive assertion ' that strengthens p. As noted in, e.g., [BLO98, KP98], it is easy to see

that the success of rule g-inv implies the existence of an abstract system that can prove

the property in question. The veri�cation conditions imply that the abstract system with a

single state sA that represents all the concrete states that satisfy ', in which every abstract

transition �A leads from sA to itself, is a correct abstraction of S.

Figure 5.1 presents this rule, indicating how the veri�cation conditions correspond to

abstraction. In our terminology, if we choose the one-bit basis B : fb'g, then the veri�cation

conditions prove the correctness of an assertion-based abstract system

S
A :

D
BA(fb'g);�A : b';TA :

n
�A : b' !A b'0

oE
:

Trivially, we can model check 0 b' for this system. Veri�cation condition I3 proves that


(0 b') implies 0 p;

so we can conclude that S q 0 p.

The (relative) completeness of rule g-inv [MP91a] implies the completeness of the ab-

straction approach|provided the adequate strengthening ' is found. Conversely, assume

we have an abstraction SA that proves an invariant 0 p. Then the reachable states of SA

describe a strengthened assertion ' that can be used to prove 0 p using rule g-inv: take

' : 
(reachable(SA)), where reachable(SA) characterizes the reachable states of SA. As

discussed in Section 4.8, any assertion implied by 
(reachable(SA)) is an invariant of S.
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For assertions p; q0; : : : ; qm, '0 : 
(b0); : : : ; 'm : 
(bm),

W1. f'ig � f'i _ : : : _ '0g, consecution for SA

for each i = 1; : : : ;m and � 2 T

W2. p ! ('m _ : : : _ '0) concretization I

W3. 'i ! qi, concretization II

for i = 0; : : : ;m

S q p) (qmW : : : W q1W q0)

Figure 5.2: Rule g-wait

5.2 Example: Wait-for Rule

Figure 5.2 presents the general wait-for rule [MP95b] in the same light. Premise W1 lets

us construct a property-preserving abstract system

S
A :

D
BA(fb'0 ; : : : ; b'mg);�A : trueA;TA

E
;

where 
(b'i) = 'i, for which

'A : 0

�
(b'0 _A : : : _A b'm) !A b'm W : : : W b'0

�

can be successfully model checked. Each veri�cation condition f'ig � f'i _ : : : _ '0g adds

the conjunct b'i !A (b'i 0 _A : : : _A b'0 0) to the transition relation �A. Since there is no

fairness, these can be collected together into a single transition relation R.

Premises W2 and W3 establish that


('A) implies (p) qmW : : : W q0) :

The case of rules for progress properties is slightly di�erent, and we address it in Section 5.4.

5.3 Generalized Veri�cation Diagrams

While di�erent kinds of veri�cation rules and diagrams can be formulated for di�erent classes

of temporal properties (see Section 5.1), Generalized Veri�cation Diagrams (GVD's) o�er
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a single deductive-algorithmic formalism that is applicable to arbitrary temporal properties

[BMS95, BMS96]. We now summarize the description of GVD's from [MBSU98], which

o�ers a simpler presentation and clari�es the connection with abstraction. We will see that

in addition to being a proof, a GVD is a (weakly) 8CTL* property-preserving assertion-

based abstraction of the system. This connection is formalized in Sections 5.3.2, but we

will informally point out the highlights along the way.

A veri�cation diagram is a labeled graph, where nodes are labeled by assertions. Our

diagrams will not use edge labels. For a node n, the assertion that labels n is �(n), and

succ(n) is the set of its successor nodes. For a set of nodes S : fn1; : : : ; nkg, we de�ne

�(S)
def
= �(n1) _ : : : _ �(nk) ;

where �(fg) = false .

De�nition 5.3.1 (Generalized Veri�cation Diagram) A Generalized Veri�cation Di-

agram (GVD) 	 is a veri�cation diagram with a distinguished set of initial nodes and an

acceptance condition F , which is a set of sets of nodes of 	.

As we will see, GVD's can be thought of as !-automata. The set F is a M�uller acceptance

condition (see [Tho90]), which we use instead of the more concise but less intuitive Streett

acceptance conditions used in [BMS95].

As de�ned in [BMS95, MBSU98], a run of a diagram is a sequence � : s0; s1; : : : of states

of S such that there is an associated path � : n0; n1; : : : through the diagram, where n0 is

an initial node and for each i � 0, the state si satis�es �(ni).

For an in�nite path � through a GVD, let inf(�) be the set of nodes that appear in�nitely

often in �. A path � is accepting if inf(�) 2 F . A computation of a diagram 	 is a run

of 	 that has an associated accepting path. Since inf(�) must be an SCS for any path �,

the set F only needs to contain strongly connected subgraphs (SCS's) of 	. The set of all

computations of 	 is L(	):

5.3.1 The (S;	) Veri�cation Conditions: Abstraction

Given a GVD 	 and a system S, veri�cation conditions are proved to ensure that L(S) �

L(	). In this case, we say that 	 is S-valid . These veri�cation conditions, as we will see,

ensure that 	A is a correct abstraction of S.
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� Initiality: Every initial state of S should be covered by some initial node of the

diagram, that is,

�! �(I) ;

where I is the set of initial nodes of 	. This implies that every run of S can start at

some initial node of 	, and corresponds to the initiality condition of Theorem 3.3.3.

� Consecution: For every node n and every transition � , some successor node of n

can be reached by � (if � can be taken), that is,

�(n) ^ � ! �0(succ(n)) :

This corresponds to Condition 2 of Theorem 3.3.3.

Together, these two conditions imply that every run of S can remain within 	:

Proposition 5.3.2 If a diagram 	 satis�es the initiality and consecution requirement for

a system S, then the runs of S are a subset of the runs of 	.

Therefore, once the above veri�cation conditions are proved we can conclude that any

safety property of 	 also holds for S. We will see that this proposition is equivalent to

Theorem 3.3.3.

Progress: To preserve progress properties, a second set of veri�cation conditions ensures

that every computation of the system can follow an accepting path in the diagram, that is,

can always eventually remain in an accepting SCS. Thus, if S is not an accepting SCS, we

must show that system computations can always leave S, or cannot stay in S forever.

De�nition 5.3.3 For an SCS S, a tail(S)-computation is a system computation that has

a corresponding path � in the diagram such that inf(�) = S. An SCS is called transient

if every tail(S)-computation can leave S (so it is also a tail(S0)-computation, for an SCS

S0 6= S).

We want to show that each non-accepting SCS is transient. This can be done in one of

the following three ways:
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� Just exit: An SCS S has a just exit , if there is a just transition � such that the

following veri�cation conditions are valid: for every node m 2 S,

�(m) ! enabled (�) and �(m) ^ � ! �0(succ(m)� S) :

This means that � is enabled and can leave the SCS at all nodes. We say that � is the

just exit transition for S. Note that since transitions can be non-deterministic, system

computations may be able to stay within S as well. The just exit simply guarantees

that all computations may go out. (That is, runs of S that stay within the SCS are

not necessarily unfair.)

� Compassionate exit: An SCS S has a compassionate exit if there is a compassionate

transition � such that the following veri�cation conditions are valid:

For every node m 2 S,

�(m) ! :enabled(�) or �(m) ^ � ! �0(succ(m)� S) ;

and for some node n 2 S, transition � is enabled at n:

�(n) ! enabled (�) :

This means that at every node in S, either � is disabled or � can lead out of S, and

there is at least one node n where � can indeed leave S. We say that n is the exit

node and � is the compassionate exit transition for S.

� Well-founded SCS: A cut-set of an SCS S is a set of edges E such that every loop in

S contains some edge in E (so removing E will disconnect S). An SCS S : fn1; : : : ; nkg

is well-founded if the nodes of S can be labeled with ranking functions fÆ1; : : : ; Ækg

(see De�nition 2.4.1) such that the following veri�cation conditions are valid: there is

a cut-set E in S such that for all edges (n1; n2) 2 E and every transition � ,

�(n1) ^ � ^ �
0(n2) ! Æ1(V) � Æ

0
2(V) ;
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and for all other edges (n1; n2) 62 E in S and for all transitions � ,

�(n1) ^ � ^ �
0(n2) ! Æ1(V) � Æ

0
2(V) :

This means that there is no tail(S)-computation: such a computation would have to

traverse at least one of the edges in E in�nitely often, which contradicts the well-

foundedness of the ranking functions.

We say that S has a fair exit if it has a just or a compassionate exit. Combined

with consecution, the fair exit veri�cation conditions ensure that a tail(S)-computation can

always follow a path that leaves S. Any run of the system that is forced to stay within

an SCS with a fair exit must be unfair.1 If S is well-founded, there can be no tail(S)-

computations at all. We now claim:

Proposition 5.3.4 If a GVD 	 for a system S satis�es the initiality and consecution

requirements, and all non-accepting SCS's have a fair exit or are well-founded, then L(S) �

L(	), that is, 	 is S-valid.

To show that a given diagram 	 is S-valid, the user must prove initiality and consecution,

and specify, for each non-accepting SCS, one of the following:

1. a just exit transition � ;

2. a compassionate exit transition � and its exit node n; or

3. well-founded ranking functions Æi and a cut-set E that prove that the SCS is well-

founded.

5.3.2 Diagrams as Abstract Systems

We now formalize how an S-valid GVD 	 can be seen as a property-preserving abstraction

	A of S, equipped with well-founded orders that allow more progress properties to be

proved for it.

We �rst note that both the well-founded orders and the considerations on enabling

conditions are local to the diagram: a fair transition only needs to be shown enabled or

1Since transitions are possibly non-deterministic, we cannot claim that every run that stays within one

of these SCS must be unfair.
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disabled at particular nodes, rather than at all states. In this sense, the use of GVD's

corresponds more to an application of the general simulation rule of Theorem 3.6.1 than of

Theorem 3.4.1, which assumes a simple transition mapping.

In terms of abstraction, we can understand this locality by adding control locations

to the abstract system that correspond to the nodes in the diagram. Intuitively, we need

control only because we expect correctly approximated enabling conditions. S will now be

a re�nement of 	A [KMP94]. The control locations of A are given by an unobservable

abstract control variable, as de�ned in Section 3.7, which the re�ned S is not required to

include. In Chapter 6, we will present an alternative representation of the abstract system

de�ned by a GVD that does not require this control variable.

Given an S-valid diagram 	, we now construct an abstraction 	A : hB;�A;TAi that

satis�es the conditions of the general simulation rule of Theorem 3.6.1:

1. The assertion basis B is the set of all atomic assertions that appear in 	. The abstract

system 	A contains a new unobservable control variable �, ranging over the �nite set

of diagram nodes N : fn1; : : : ; nkg.

To be precise, we use the notation �A(n) to refer to the abstract assertion that

corresponds to the label of n (see Proposition 3.8.4). For a set of nodes S, now

�A(S)
def
=
WA
n2S�

A(n) .

2. The abstract initial condition is

�A :
_A

n2I

�
�A(n) ^A � = n

�
;

where I is the set of initial nodes in 	. Thus, the diagram initiality condition implies

the initiality clause of Theorem 3.6.1.

3. The consecution veri�cation conditions associated with the diagram de�ne abstract

transitions that satisfy the consecution clause of Theorem 3.6.1. If the veri�cation

condition

�(n) ^ � ! �0(succ(n))

is proved for 	, then TA contains an abstract transition �An , with no fairness, with

transition relation

�An :
�
�A(n) ^A � = n

�
!
A
_A

m2succ(n)
(�A(m)0 ^A �0 = m) :
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4. Each SCS S with a fair exit de�nes a correspondingly fair transition �AS as follows:

(a) If S has a just exit transition � , then a just abstract transition �AS has transition

relation

�AS :
_A

n2S

��
�A(n) ^A � = n

�
^
A
_A

m2succ(n)�S

�
�A(m)0 ^A �0 = m

��
:

This means that �AS is enabled at all the nodes in the SCS, and when taken will

lead to one of the successor nodes outside S. Note that now computations of

the abstract system must leave the SCS, while it may have been possible for

computations of S to stay within it.

(b) If S has a compassionate exit transition � , let E be the nodes where � , if taken,

leads out of the SCS, and n0 be the node where � is known to be enabled (which

is also an element of E). Then a compassionate �AS has transition relation

�AS :

0
BB@
�_A

n2E
(� = n)

� VA
_A

n2E

��
�A(n) ^A � = n

�
!
A
_A

m2succ(n)�S

�
�A(m)0 ^A �0 = m

��
1
CCA

WA ���A(n0) ^A � = n0

�
^
A
_A

m2succ(n0)�S

�
�A(m)0 ^A �0 = m

��

This states that �As can only be enabled at the nodes in E, must leave the SCS if

taken at any node in E, and can always be taken at n0 to leave the SCS. Note that

� is known to be disabled at all nodes in S �E.

When � is fair, an unfair abstract version �A of � accounts for the nodes where � is

only expected to satisfy the consecution requirement.

Remark 5.3.5 (Control variable �) We can collect the transitions with no fairness re-

quirements into a single unfair transition. Similarly, we can collect all the abstract just

transitions that correspond to the same just concrete transition � into a single just abstract

transition. If there are no compassionate transitions, we can ignore the unobservable control

variable �: the enabling condition of the abstract just transitions will under-approximate

that of the original concrete transitions, so every abstract run that is unjust towards �A

will be unjust towards � as well (see Theorem 3.4.1 and its proof).

Notice that the abstract system that has a single just abstract transition for each just
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concrete one will, in general, satisfy more properties than the one that has a separate just

abstract transition for each SCS. Removing the control variable can also increase the number

of properties that the abstraction satis�es.

However, � is essential when compassionate transitions are present. If it were removed,

we could not ensure that every abstract run that is uncompassionate towards �A is, when

concretized, also uncompassionate towards � , unless we had exact information about the

enabled status of � at all the nodes in the diagram: the problem described in Remark 3.4.2

and Figure 3.4 could occur. The control variable � lets us focus our attention on particular

SCS's for which the approximation of the enabling condition is exact, and safely ignore the

rest of the abstract state space. 0

Proposition 5.3.6 For an abstract system 	A associated with a GVD 	,

L(	) � 
(L(	A))

where 
 accounts for the unobservable control location (see De�nition 3.7.2). Thus, if 	 is

S-valid, then 	A is an LTL-preserving abstraction of S (c.f. Proposition 3.3.2).

The equality L(	) = 
(L(	A) does not hold in general, since the diagram may include

extra acceptance conditions justi�ed by well-founded orders, which are not re
ected in 	A.

If the S-validity of 	 does not depend on well-founded orders, then

L(	) = 
(L(	A)) :

Proof: Consider a computation � : s0; s1; : : : ; in L(	), with associated accepting

path n0; n1; : : : through 	. De�ne ai
def
= �(si)^� = ni. Then �A : a0; a1; : : : is clearly

a run of 	A, and � 2 
(�A).

We now show that �A must be fair: if not, then there is some just (resp. com-

passionate) transition �AS , corresponding to a non-accepting SCS S in 	, that is

continuously (resp. in�nitely often) enabled but not taken. This would mean that

n0; n1; : : : in 	 remains within the non-accepting S, a contradiction.

If the acceptance conditions of 	 are justi�ed without using well-founded orders,

the reverse is also true: if a run � : s0; s1; : : : of 	 is not accepting (an thus not

in L(	)), then it is forced to eventually reside within a non-accepting SCS S of 	.

Since 	 is S-valid, the SCS S has a fair exit. Therefore, any corresponding run
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�A : a0; a1; : : : of 	
A is unfair towards the corresponding fair transition �AS , and thus

L(	) = L(	A). 0

That 	A is a correct abstraction of S can also be justi�ed using the general simulation

rule of Theorem 3.6.1 (Figure 3.5).

If acceptance conditions of a diagram 	 are justi�ed using well-founded orders, 	 may

prove more progress properties of S than 	A can. As we will see in Chapter 6, this can be

overcome if the model checker for 	A is told about the well-founded orders, which indicate

that certain cycles in the abstract state-space cannot be followed inde�nitely.

5.3.3 (	; ') Property Satisfaction: Concretization

Section 5.3.1 describes veri�cation conditions that prove that L(S) � L(	), that is, that the

diagram de�nes a correct abstraction of the system. To prove the S-validity of a property

', it remains to show that

L(	) � L(') :

This corresponds to checking that the diagram, when seen as an abstraction, satis�es a

property 'A such that 
('A) implies '.

This check can be performed using standard !-automata model checking, if we can relate

the nodes of the diagram with the atomic assertions in '. In both [BMS95] and [MBSU98],

this is done using a propositional labeling , where a diagram node n is labeled with a boolean

combination b of atomic assertions of ', provided we prove the validity of

�(n)! b :

We can think of this in two ways: in the �rst, the diagram and its propositional labeling

de�ne a new �nite-state !-automaton 	B, where each node is a state of the automaton,

labeled with the given propositions. This automata is an abstraction of S over a basis that

includes all the atoms of '. The property itself can be seen as an abstract property 'B over

its propositions, which can be model checked over 	B, and thus S q '.

In a second point of view, the original node labeling of the diagram de�nes an abstraction

	A over the atomic propositions that appear in the node labels, independently of ', proving

a property �A that is not necessarily equivalent to �t('). The propositional labeling, and

the !-automata check, then ensure that 
(�A) implies '.
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Figure 5.3: GVD for proving bakery accessibility 0 (`1 ! 1 `3)

Since our goal is to reuse abstractions, we prefer the second view. Once a diagram 	 is

proved to be a correct abstraction, that is, L(S) � L(	) = 
(L(	A)), any property that

can be model checked for 	A can be transferred over to S .

5.3.4 Example

Example 5.3.7 (bakery GVD) The GVD of Figure 5.3 proves accessibility,

' : 0 (`1 ! 1 `3) ;
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for bakery (Figure 2.1). For succinctness, this diagram uses encapsulation conventions

[MP94] based on those of Statecharts [Har87], where edges entering or leaving a compound

node are interpreted as entering or leaving all of its subnodes. The assertion that labels a

compound node is added as a conjunct to the label of each of its subnodes.

The acceptance condition F : ffn1g ; fn7g ; fn1; : : : ; n7gg means that diagram computa-

tions can remain inde�nitely at n1 or, if they leave n1 to reach `1 at n2, must move down

the diagram to reach `3. Thus all computations of the diagram satisfy 'A (which in this

case is identical to ' since it only references control variables).

This diagram has seven SCSs: fn1g : : : fn6g, and fn1; : : : ; n7g. It is easy to show that

the SCSs not in F have a just exit. For example, m2 is the just exit transition for fn3g,

since it is always enabled at that node and leads out of it. Similarly, fn2g, fn4g, fn5g, and

fn6g have just exit transitions `1, m3, m4, and `2.

Since no well-founded orders are needed to justify the acceptance conditions of the dia-

gram, L(	) = 
(L(	A)). Thus, 	A is a correct abstraction of S, so 	A q 'A implies that

S q '. Notice that the assertions on this diagram correspond to the bits
�
by1=0; by2=0; by1�y2

	
and the control variables of the abstract bakery of Figure 3.2, that is, 	A is an abstraction

over the same basis.

See [MBSU98] for an example that uses just and compassionate exits, and two di�erent

well-founded orders.

5.4 Veri�cation Rules: Abstract System Construction

Understanding standard veri�cation diagrams and rules as special cases of GVD's, it is

not diÆcult to see how the considerations in the previous section can be applied to them.

Figure 5.4 presents the chain rule for proving properties of the form 0 (p! 1 q) [MP93].

The abstraction that is implicitly generated by the rule is:

S
A :

D
V : hb'0 ; : : : ; b'mi ;�A : trueA;TA

E

Premises J1, J2 and J3 construct an abstraction for which

'A : 0

0
@
0
@ m_
j=0

A
1
A b'j !A

1 b'0

1
A
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For assertions p; q; '0; : : : ; 'm,

Just transitions �1; : : : ; �m,

J1. f'ig �

8<
:
_
j�i

'j

9=
; for all � 2 T consecution

J2. f'ig �i

8<
:
_
j<i

'j

9=
;, for i = 1; : : : ;m fairness I

J3. 'i ! enabled (�i) fairness II

J4. p !
m_
j=0

'j and '0 ! q concretization

S q p) 1 q

Figure 5.4: Rule chain

can be model checked. Each just transition �i is abstracted to a just abstract transition

�Ai : b'i ^A
_A

j<i
b'j 0

while all other transitions can be abstracted to

�A :
^A

i

�
b'i !A

_A

j�i
b'j 0

�
:

Premise J4 ensures that 
('A) implies ' : 0 (p! 1 q).

The intermediate assertions in the rule correspond to the nodes in a chain veri�cation

diagram [MP94], which have the same general form as the GVD shown in Figure 5.3. The

use of an unobservable control variable � is not required in this case, since only justice is

involved (see Remark 5.3.5). Like diagrams, veri�cation rules that rely on compassion will

require such added control.
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5.5 Dynamic Abstraction: Deductive Model Checking

Deductive model checking [SUM99] is a method for the interactive model checking of pos-

sibly in�nite-state systems, generalizing the classic model checking procedure outlined in

Section 2.3.1. The procedure itself is presented in detail in [SUM99, Sip98], so here we focus

on those aspects relevant to the abstraction point of view espoused in this thesis.

Rather than explicitly building the (S;:') product graph as described in Section 2.3.1,

DMC starts with a general skeleton of the product and progressively re�nes it. This graph is

called the falsi�cation diagram for S and '. As their name suggests, falsi�cation diagrams

are dual to the Generalized Veri�cation Diagrams of Section 5.3. The acceptance condition

of a falsi�cation diagram is derived from the tableau atoms for :'. Instead of showing that

every computation of S can stay within an accepting SCS, as in the GVD case, we now

show that every computation of S must end in a non-accepting SCS.

Figure 5.5 shows an outline of the Deductive Model Checking (DMC) procedure. The

procedure repeatedly applies one of a set of transformations to the falsi�cation diagram,

until a counterexample computation is found or it is clear that no such computation can

exist. At any given point, the falsi�cation diagram represents all the computations of the

system that may possibly violate the temporal property. The procedure can also produce

a counterexample, as we will see in Section 5.5.3.

5.5.1 DMC as Abstraction Re�nement

By abstraction re�nement , we mean the process of improving the approximations repre-

sented by an abstract system. This includes making 99 transitions smaller and 89 ones

larger, while retaining the soundness of the approximation. Re�nement also includes ob-

taining better bounds on enabling conditions and adding new well-founded orders.

Deductive Model Checking can be understood as the process of re�ning an abstraction

of S, while simultaneously model checking it. The DMC transformations may be classi�ed

into two groups: the �rst performs model checking tasks, discarding the portions of the

product graph that are not relevant to the property being proved. The second performs

abstraction re�nement, justi�ed by veri�cation conditions.

Figure 5.6 presents this alternative view of DMC. After each re�nement step we have

three mutually exclusive possibilities:
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System S Temporal Property '

Computations of S Models of :'

No computation is a model Some computation is a model

Falsi�cation

Diagram

�� T:'

Transformations

S q ' Counterexample

(candidates for testing)

Figure 5.5: Outline of Deductive Model Checking (DMC)
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System S Temporal Property '

Computations of S Models of :'

Finite-State

Model Check

SA1 q 'A

SA2 q 'A

SA3 q 'A

succeedsfails:

re�ne

succeedsfails:

re�ne

succeedsfails:

re�ne

S q '

or counterexample

S q '

or counterexample

S q '

or counterexample

Figure 5.6: Deductive Model Checking viewed as abstraction re�nement
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1. The abstract system can be successfully model checked, that is, SA q 'A, where 
('A)

in this case is equivalent to '. Since SA is a correct abstraction of S, this means that

S q '.

2. The abstract model checker can �nd, in the constrained 89 abstract relation for SA,

a counterexample to ', in which case we know that S q= '.

3. The abstract model checker can only determine that SA q= 'A, �nding an abstract

counterexample, but cannot determine if a concrete counterexample exists. Thus, it

may be the case that S q ', but SA is too abstract to prove or disprove it. In this

case, the abstraction must be re�ned .

A model checker specially tailored for this task is presented in Chapter 6. A practical

consequence is that a procedure similar to DMC can be implemented using a theorem prover

and a model checker as black boxes, provided that the model checker gives feedback suÆ-

cient to select the next re�nement transformation. If DMC succeeds, then a corresponding

abstraction exists that can be model checked by the method of Section 6.4. (Since DMC is

complete, the converse is also true.)

Similarly, GVD's can also be incrementally constructed with the help of model check-

ing tools. In particular, the user need not specify all the well-founded orders, acceptance

conditions and SCS's in advance: a model checker should help identify them when neces-

sary. Furthermore, the SCS's that provide guidance in DMC can be obtained from a model

checker, as we will see in Section 6.4.

Remark 5.5.1 We should note that DMC provides an interactive, goal-oriented way of

�nding a suitable abstraction. Furthermore, it can selectively re�ne only those transitions

and abstract states that are relevant to the property being proven. Thus, it can o�er

signi�cant savings even for the purely �nite-state case. The abstraction is computed \on-

the-
y," so that not even the entire abstract state-space has to be expanded. We can retain

this advantage by applying DMC to the �nite-state abstraction|see Section 6.4. 0

The initial abstraction: The initial falsi�cation diagram is the product of the :' tableau

and the abstract system

S
A
1 :

Dn
b1 : true

A
o
; � : b1; T

E
;
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where each concrete transition �i is approximated by �Ai : trueA. This is the coarsest ab-

straction of S, with basis B :
n
b1 : true

A
o
, and only tautological (generally valid) temporal

properties will hold for it. The initial 99-approximations �A89i are false
A.

In DMC, edges in the product graph are labeled by sets of transitions (see Remark 2.1.4).

Initially, every edge is labeled by the set of all transitions.

Model Checking

� (Model checking transformations): The DMC transformations that remove empty

edges, unsatis�able and unreachable nodes, and nodes with no successors, correspond

to model checking the current abstraction.

Note that in the abstraction framework, the only unsatis�able nodes removed are those

that are propositionally unsatis�able. In DMC, the assertions from the tableau nodes

and the states are combined and simpli�ed. This corresponds to using theorem proving

to decide relationships between the elements of the basis, ruling out unsatis�able

combinations.

To perform these steps, DMC identi�es unful�lling SCS's, according to the underlying

tableau, and unfair and terminating SCS's, according to what is known about the transi-

tions, as we will see below in Section 5.5.2. The procedure also keeps track of new SCS's

as old ones are disconnected. In Chapter 6, a �nite-state model checking algorithm will

perform the equivalent tasks.

Re�nement: More Speci�c Transitions

We now consider two ways in which an abstraction can be re�ned. First, more information

can be obtained about particular transitions by proving veri�cation conditions that had not

been considered previously, given a �xed basis. In the second, new assertions are added to

the basis. DMC provides transformations analogous to each of these:

Note 5.5.2 (DMC Nodes) A DMC node n is of the form n : hA; fi, where A is a atom

from the temporal tableau of :', used to de�ne the acceptance conditions (ful�lling SCS's

are accepting), and f is an assertion. As before, we de�ne the label of the node as the

assertion that corresponds to it: �(n)
def
= f .
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DMC uses edge labels to keep track of which transitions could be taken at an edge.

Transitions are removed from a label when we show that they cannot be taken at that edge:

� (remove edge label): If an edge from (A1; f1) to (A2; f2) is labeled with a transition

� , and the assertion

f1(V) ^ f2(V
0) ^ �(V;V 0)

is unsatis�able, remove � from the edge label.

Edges with an empty label, and unreachable nodes, are removed.

This is equivalent to the elimination method of [BLO98] (see Section 4.10) and has the e�ect

of conjoining f1 !
A :Af 02 to the transition relation of �

A. However, in DMC the re�nement

is local to a given edge: the transformation does not a�ect other edges where � appears.

We can optimize DMC by sharing the new information learned about �A throughout the

falsi�cation diagram. This has the e�ect of caching the proved veri�cation conditions,

reusing them whenever possible. We return to this in Section 6.4.

Re�nement: Finer Abstract Domain

The second way to re�ne an abstract system is to choose a �ner abstract domain, by

introducing new basis elements. Node splitting transformations can be understood as doing

precisely this:

� (binary split): Replace a node (A; f) by the two nodes

N1 : (A; f ^ �) and N2 : (A; f ^ :�)) :

� (n-ary split): Replace a node (A; f) by the j + 1 nodes

N1 : (A; f ^ p1)

...

Nj : (A; f ^ pj)

Nj+1 : (A; f ^ :(p1 _ : : : _ pj))

Removing edges after a split is equivalent to re�ning abstract transitions under a new

extended basis. As described in Section 4.7.3, computing the abstraction that results from
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adding new basis elements or test points can be done without repeating the previous work.

5.5.2 DMC, Fairness and Well-founded Orders

In DMC parlance, a transition � is fully enabled at a node n if �(n) � enabled(�). We know

that a transition cannot be taken at an SCS S if it has been removed from all the edge

labels in S. An SCS is then considered unfair if some just (resp. compassionate) transition

is fully enabled at all (resp. some) nodes in S and is missing from all the edges in S.

Similarly to GVD's, DMC discards SCS's according to the following criteria:2

� They are not accepting, with respect to the acceptance conditions of the original

tableau T:' (dual to ignoring accepting SCS's in GVD's).

� They are unfair, in the sense that no run can stay in the SCS without being unfair

(dual to fair exit in GVD's). This requires proving �(n) ! enabled (�) for a � that

does not label outgoing edges from n.

� They have a terminating edge (see below) that cannot be traversed in�nitely many

times (dual to well-founded SCS's).

Also similarly to GVD's, Deductive Model Checking assigns ranking functions to the

nodes of an SCS, to show that a computation cannot forever reside within the SCS, travers-

ing all its edges and visiting all its nodes:

De�nition 5.5.3 (Terminating edge) An edge et in an SCS S : fn1; : : : ; nkg is termi-

nating if there are ranking functions fÆ1; : : : ; Ækg mapping states into a well-founded domain

D such that:

1. for every edge e : (n1; n2) in S and every � 2 e

�(n1) ^ � ^ �
0(n2)! Æ1(V) � Æ2(V

0)

and

2. for every � 2 et,

�(n1) ^ � ^ �
0(n2)! Æ1(V) � Æ2(V

0) :

2The author apologizes for the profusion of 3-letter acronyms in this and a few other sentences.
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We say that an SCS S for which a tail(S)-computation cannot exist is terminating .3 The

DMC procedure proves the termination of SCS's by identifying terminating edges. Clearly,

if et is terminating in S, then no tail(S)-computation can traverse et in�nitely many times.

Such edges are removed from consideration, yielding smaller SCS's, until all ful�lling SCS's

can be shown to be unfair, unreachable or terminating.

In some cases, the ranking function for a node depends on the route taken to reach that

node. An unfolding transformation makes copies of SCS nodes and allows proving that an

SCS cannot support a computation even when suitable ranking functions cannot be found

for the original SCS. We will use a simple version of unfolding in Chapter 6, so we now

de�ne a version of it adapted to our needs:

De�nition 5.5.4 (Unfolding an SCS) For an SCS S with k nodes fn1; : : : ; nkg, the re-

sult of unfolding S is a new graph U(S) obtained as follows:

1. Make k copies S1; : : : ; Sk of S, retaining the same node and edge labels.

2. Remove node ni from copy Si. Redirect all incoming edges to this node to reach the

copy of node ni in Si�1, where i� 1 = i+ 1 modulo k.

With this machinery in place, DMC is relatively complete, as proved in [SUM99, Sip98]. As

usual, this assumes that the assertion language is expressive enough and that a complete

proof procedure for the required veri�cation conditions is available.

Concretization: DMC does not require an explicit concretization step, since the asser-

tions in :' are built into the initial falsi�cation diagram. Thus, the abstract property 'A

corresponds exactly to the original concrete ', that is, 
('A) = '.

5.5.3 Counterexamples in DMC

So far, we have only used the (standard) 99-approximation. Deductive Model Checking can

also be used to �nd counterexamples, by collecting additional information that corresponds

to the generation of an abstraction that also preserves existential properties (see Section 3.5).

This is done by marking edges as executable, which corresponds exactly to the constrained

(89) transition relation of Section 4.9:

3This de�nition is very similar to the well-founded SCS's of GVD's (Section 5.3.1) but since the require-

ments and context di�er slightly in each case, we prefer to use di�erent terms.
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� (executable transition in DMC). Given an edge (n1; n2) labeled with transition

� , mark � as executable if the following formula is valid:4

�(n1) ! 9V
0:
�
�(V;V 0) ^ �0(n2)

�
:

This has the e�ect of adding �(n1) ^
A �0(n2) as a disjunct to �A89 . The set of executable

edges in a falsi�cation diagram describes the corresponding �A89 abstract transitions. Thus,

we say that the 89-subgraph is the one given by the executable edges.

Dually to the \fully enabled" requirement on fair transitions for DMC and GVD's,

the existence of counterexamples requires that fair transitions that are not taken be fully

disabled at the given nodes, that is, �(n) � :enabled(�). We can then de�ne:

De�nition 5.5.5 (Fully fair) A transition is fully taken at an SCS if it is marked as

executable for an edge in the SCS. An SCS S is fully just (resp. fully compassionate) if

every just (resp. compassionate) transition is either fully taken in S or fully disabled at

some node (resp. all nodes) in S.

A counterexample exists if there is a reachable, ful�lling, fully fair SCS S in the 89-

subgraph; a tail (S)-computation will not violate any fairness requirements. Note that all

the assertions in the respective nodes should be satis�able. This is the case if the initial

condition is satis�able and the 89-approximation is sound. We return to the generation of

counterexamples based on 89-approximations in Section 6.4.

5.6 Related Work

The possibility diagrams of [KMP98] and the non-Zenoness diagrams of [Sip98, BMSU99]

(see Section 2.1.4) are veri�cation diagrams that also specify a 89 transition relation, al-

lowing existential properties to be proved. Such diagrams can describe 89 and 99 abstract

relations in a common diagrammatic form.

As with the generation of 89-approximations (Section 4.9), an important issue in practice

is the strength of the validity checker and theorem proving available, and how well they

handle existential quanti�ers.

4Recall that veri�cation conditions are implicitly universally quanti�ed.
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Other top-down methods for model checking in�nite-state systems have been proposed,

which are related to DMC. These are addressed in Chapter 7.

Summary: We have seen how Generalized Veri�cation Diagrams and the �nal falsi�cation

diagram produced by a Deductive Model Checking proof de�ne an abstract system, using

well-founded orders and fairness considerations local to each SCS. In the following chap-

ter we discuss how the underlying abstractions can be represented independently of any

particular property to be proved, and automatically model checked. This will also allow

combining them into more re�ned abstractions for which more temporal properties can be

model checked.



Chapter 6

Combining Extended Abstractions

The previous chapter shows how deductive rules and deductive-algorithmic methods build

abstractions that make �ne distinctions concerning fair transitions and well-founded orders.

While such abstractions must in general be found interactively, we would like to reuse

them as automatically as possible once they have been constructed and their correctness is

established.

Consider the scenario where the user of a veri�cation tool such as STeP (Section 2.7) is

analyzing a particular system S. This user may prove properties f'1; : : : ; 'ng of S using

one or more applications of abstraction generation, veri�cation rules, GVD's, and DMC.

When proving a new property 'n+1 of S, it would be convenient to automatically test if

'n+1 can be model checked over the combination of the abstractions already built.

It is important to note that this is more general than simply checking the validity of

('1 ^ : : : ^ 'n)! 'n+1 ;

even if this check were not purely propositional. The combination we propose can uncover

interactions between the generated abstractions. Each proof should facilitate the next,

regardless of the method used and the type of temporal property proved. Even when a

proof fails, the partially constructed abstraction can help build the next one.

Our combination method avoids directly computing the cross product of the abstrac-

tions, but instead merges the constraints on S implied by each one. In particular, this

means that the unobservable control variables from the previous chapter, which are really

an artifact of the formula being proved, may be ignored.

98
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6.1 The Extended Input

Together with the abstract transition relations, an abstraction will now include additional

information in the form of a fairness table and a termination table, which contain purely

propositional (�nite-state) information.

Note 6.1.1 (Transition-mapped abstractions) Throughout this chapter, we will as-

sume that abstractions are transition-mapped for fair transitions: each concrete fair tran-

sition �i corresponds to a single abstract transition �Ai .

6.1.1 The Fairness Table

The abstraction method of Chapter 3 only lets abstracted transitions retain their fairness

constraints if their enabling condition is abstracted precisely , following Theorem 3.4.1. This

is a strong requirement, and in Chapter 5 we saw that partial information about the enabling

conditions can still be useful. In general, we have upper and lower bounds, of the form:


(enabled�(�)) � enabled(�) (under-approximation)

enabled (�) � 
(enabled+(�)) (over-approximation)

where enabled�(�) and enabled+(�) are abstract assertions. These correspond, of course,

to proving veri�cation conditions of the form p ! enabled(�) and q ! :enabled(�) for

assertions p and q.

Such bounds can be obtained by applying the approximation procedure of Chapter 4 to

concrete enabling conditions, that is, computing �(+; C; enabled (�)) and �(�; C; enabled (�))

or, alternatively, computing the enabling condition of an under- or over-approximated ab-

stract transition. We collect this information in a fairness table:

De�nition 6.1.2 (Fairness table) A fairness table contains the following information for

abstract transitions �A1 ; : : : ; �
A
n that correspond to fair concrete transitions �1; : : : ; �n:

Transition �A fairness of � enabled�(�)

(over-approximation of �) (just or compassionate) (lower bound)

�A1 fjust j compg LA1
...

...

�An fjust j compg LAn
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Transition �A fairness of � enabled�(�)

`A
1

just `1
`A2 just `2 ^ (b

y2=0 _ by1�y2)

`A3 just `3
`A4 just `4

mA
1 just m1

mA
2 just m2 ^ (b

y1=0 _ :by1�y2)

mA
3 just m3

mA
4 just m4

Table 6.1: Fairness table for abstract bakery

where each transition �Ai appears at most once.

Explicit upper bounds in the table would be redundant, since any upper bound on

enabled(�) that is found independently of �A should be conjoined with �A to get a more

precise over-approximation (if it is not already subsumed by �A). Note that a fairness table

can be easily extracted from a partial or complete GVD or DMC proof (see Chapter 5).

Example 6.1.3 (Fairness table for bakery) Table 6.1 shows a Fairness table for the

bakery abstract version shown in Figure 3.2. In this case, the concrete enabling conditions

are exactly approximated in the abstract system, so the lower bounds are tight.

bakery transitions `0 and m0 are not fair, so `A0 and mA
0 do not appear in the table.

6.1.2 The Termination Table

We will also want to reuse the ranking functions gathered for a given system. The relevant

information can be summarized as follows: if a transition � is taken at a state satisfying 
(p)

and reaches a state that satis�es 
(q), then a value over particular well-founded domain D is

(a) always decreased, or (b) not increased. This is justi�ed by de�ning ranking functions Æ1

and Æ2 at p and q, as done by DMC and GVD's in Chapter 5, and proving the appropriate

veri�cation conditions. As with the fairness bounds, we gather this information in a table:
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De�nition 6.1.4 (Termination table) A termination table contains the following infor-

mation:

Transition Ranking Functions Precondition Postcondition Result

�A1 hÆ1;1; Æ1;2i preA1 postA1 f� j �g

...
...

...
...

...

�An hÆn;1; Æn;2i preAn postAn f� j �g

where Æi;1 and Æi;2 are ranking functions with the same domain Di, and preAi and postAi are

assertions. Each �Ai and pair hÆi; Æji can appear multiple times.

This table implicitly de�nes well-founded relations over �. The main point to note con-

cerning these tables is that they contain purely propositional, �nite-state information1. The

veri�cation conditions that justify a termination table row i with result � (resp. �) are:


(preAi )(V) ^ �i(V;V
0) ^ 
(postAi )(V

0)! Æi;1(V) � (resp. �) Æi;2(V
0)

and �

(preAi )(V) _ 
(post

A
i )(V)

�
! (Æi;1(V) 2 Di ^ Æi;2(V) 2 Di) :

A termination table is S-valid i� these veri�cation conditions are S-valid. Note that the

well-foundedness of (the relation induced by) a ranking function depends on possibly local

conditions on the system states. For example, if N is a �xed constant and x an integer-

valued system variable, the ranking function Æ1 : N�x is well-founded provided N � x+k1,

for some constant k1. The ranking function Æ2 : x is well-founded provided x > k2. In the

table, these conditions are built into preAi and postAi .

Example 6.1.5 (Termination Table for Bakery) Our abstract version of the bakery

program has basis

n
by1=0 : y1 = 0; by2=0 : y2 = 0; by1�y2 : y1 � y2

o
:

If we add

bN�max : N � max(y1; y2)

1Only identi�ers for the ranking functions are needed, as we will see.
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Transition Ranking Functions Precondition Postcondition Result

`A
1

(y1 := y2 + 1) hÆmax; Æmaxi by1�y2 bN�max �

`A1 (y1 := y2 + 1) hÆmax; Æmaxi true bN�max �

mA
1 (y2 := y1 + 1) hÆmax; Æmaxi :(by1�y2) bN�max �

mA
1 (y2 := y1 + 1) hÆmax; Æmaxi true bN�max �

`A4 (y1 := 0) hÆmax; Æmaxi bN�max ^ by1�y2 true �

mA
4 (y2 := 0) hÆmax; Æmaxi bN�max ^ :(by1�y2) true �

"
`0; `2; `3;

m0;m2;m3

#
hÆmax; Æmaxi bN�max true �

Table 6.2: Termination table for abstract bakery

we can construct a termination table for bakery featuring ranking function

Æmax : N �max(y1; y2)

whose domain is the set of non-negative integers, as shown in Table 6.2.

Recall that in general each row of a termination table includes a pair of ranking functions

Æi and Æj over the same well-founded domain D. The table de�nes a set of predicates over

�A � �A, as follows:

De�nition 6.1.6 (Predicates P
Æi;j;k
� ,P

Æi;j;k
� , P

Æi;j;k
?

) A termination table de�nes an ab-

stract (�nite-state) predicate P
Æi;j;k
� (resp. P

Æi;j;k
� ) for each Æi, Æj and transition �Ak :

P
Æi;j;k
� (VA;V

0
A) (resp. P

Æi;j;k
� (VA;V

0
A))

def
=

_A

r

�
preAr (VA) ^

A postAr (V
0
A) ^

A �Ak (VA;V
0
A)
�

where r ranges over all the rows in the table where Æi, Æj and �k appear with result � (resp.

�). If there are no such rows, the predicates are falseA. We de�ne

P
Æi;j;k
?

(VA;V
0
A)

def
= :A

�
P
Æi;j;k
� (VA;V

0
A) _

A P
Æi;j;k
� (VA;V

0
A)
�
:



6.1. THE EXTENDED INPUT 103

These abstract predicates satisfy the following:


(P
Æi;j;k
� (VA;V

0
A))

\
�k(V;V

0) �
�

V;V 0

�
j Æj(V

0) � Æi(V)
	


(P
Æi;j;k
� (VA;V

0
A))

\
�k(V;V

0) �
�

V;V 0

�
j Æj(V

0) � Æi(V)
	


(P
Æi;j;k
?

(B;B0)) �
�

V;V 0

�
j �k(V;V

0) ^ Æj(V
0) � Æi(V)

	
:

Intuitively, P
Æi;j;k
� (resp. P

Æi;j;k
� ) is true when the value of Æj after taking �k is known to be

smaller than (resp. not greater than) the value of Æi at the current state. The relation P
Æi;j;k
?

holds when the change is unknown. Note that we can use the under-approximation pro-

cedure �(�; C; f) of Chapter 4 to generate these abstract predicates, provided we identify

suitable ranking functions and that the validity checker can reason about them. Alterna-

tively, given concrete pre and post assertions, the under-approximation procedure can be

used to obtain the corresponding termination table entries.

These predicates are all that needs to go in the table, but we prefer the hÆi; Æji notation

to make the connection with DMC and GVD's clearer.

De�nition 6.1.7 (Ranking function node labeling �Æ) Let G be a graph where each

node n is labeled by a propositional formula �(n) and edges are labeled by sets of transitions.

A ranking function node labeling �Æ maps each node in G to a ranking function Æn from the

termination table.

The edge labeling induced by �Æ is as follows: an edge (n1; n2), with �Æ(n1) : Æi and

�Æ(n2) : Æj labeled with transitions T , is labeled under �Æ as

�; if P
Æi;j;k
� (�(n1); �(n2)) holds for all �k 2 T ; else

�; if P
Æi;j;k
� (�(n1); �(n2)) holds for all other �k 2 T ; else

? that is, P
Æi;j;k
?

(�(n1); �(n2)) holds for some �k 2 T .

The well-foundedness or termination of an SCS in GVD's (Section 5.3.1) or DMC (Sec-

tion 5.5.2) can be expressed in terms of these node and edge labels in a straightforward

way. Given �Æ, the induced edge labeling can be easily and automatically computed using a

termination table. When G is the (abstract) Kripke structure, the node label �(s) is simply

the valuation of the state-variables at s.



104 CHAPTER 6. COMBINING EXTENDED ABSTRACTIONS

6.2 Handling Fairness and Well-Foundedness

The detailed fairness and well-foundedness information described above can be built into

the abstraction in three main ways:

� Encode the information as new fairness constraints in the abstract system (this is sug-

gested, e.g., in [DGH95, Dams96]). These constraints are best encoded as acceptance

conditions for a �nite-state !-automaton that represents A, so this approach would

be best suited when working in an automata-theoretic model checking framework (see

Section 2.3.2).

� Represent the constraints as a temporal logic formula CA, and then model check

CA !A 'A rather than 'A. We sketch a way of doing this in Section 6.3.

� Modify the �nite-state model checker to account for the explicitly indicated fairness

and well-foundedness constraints. We present this in Section 6.4.

6.3 Temporal Encoding

6.3.1 Encoding Fairness

The temporal constraints are reminiscent to those used in the general simulation and re�ne-

ment rules of [KMP94] and Theorem 3.6.1. However, we now use only abstract formulas,

including under-approximations of the concrete enabling conditions. This yields a purely

propositional temporal constraint.

De�nition 6.3.1 (Temporal constraint CAFair) For a transition-mapped abstraction A :

hVA;�A;TAi of S : hVC;�C ;TCi:

C
A
�

def
=

8>>><
>>>:

(enabled�(�A)) ) 1

�
:Aenabled�(�A) _A taken(�A)

�
if � is just

0 1 enabled�(�A) ) 1 taken(�A) if � is compassionate

trueA otherwise

Then:

C
A
Fair

def
=

^
�2TC

C
A
� :
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Note that since abstract formulas are boolean, the taken predicate can be expressed

simply by replacing each primed proposition b0 by 2 b . Thus, the rigid quanti�cation or

extended syntax needed in the (�rst-order) concrete case (see Section 3.6) is no longer

necessary.

Lemma 6.3.2 (Soundness of CAFair)

L(SC) � 
(L(SA) \ L(CAFair))) :

Proof: Consider a computation �A : a0; a1; : : : of S
A. If �A does not satisfy CA� for

some � , then all the sequences � : s0; s1; : : : in 
(�A) fail to be computations of S:

Given a fairness table, we know that � is enabled at all 
(enabled�(�A))-states.

In the case of justice, if the constraint CA� is violated then there is an enabled�(�A)

state followed only by states where enabled�(�A) ^A :Ataken(�A) holds. But then

� would also be enabled at those states in �, since enabled�(�A) is a lower bound,

but never taken, since �A is an over-approximation of � (so 
(:Ataken(�A)) implies

:taken(�)). Thus � is not just towards � .

The case of compassion is similar: the constraint CA� is violated if from some

point in �A onwards, enabled�(�A) holds in�nitely often but :Ataken(�A) is always

true. This means that in the corresponding states of any � 2 
(�A), transition � is

in�nitely often enabled but never taken, so � is unfair towards � . 0

6.3.2 Encoding Well-founded Orders

Rows in the termination table where Æi and Æj are the same ranking function can be similarly

encoded as temporal constraints. For such rows, the following temporal constraint states

that if the ordering is known to decrease in�nitely many times, then it must have a chance

to increase in�nitely many times as well:

C
A
Æi
: 0 1

0
@ _
�k2T

P
Æi;i;k
� (VA;V

0
A)

1
A ! 0 1

0
@ _
�k2T

P
Æi;i;k
?

(VA;V
0
A)

1
A :

Again, since we are dealing with purely propositional formulas, the primed variables can be

expressed using 2 . Since the order is well-founded, we have:
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Lemma 6.3.3 (Soundness of CAÆi )

L(SC) � 
(L(SA) \ L(CAÆi ))) :

Proof: Consider a run �A : a0; a1; : : : of S
A that does not satisfy CAÆi . Assume that �

is a run of S in 
(�A). Then
W
k P

Æi;i;k
� holds in�nitely often at �A; at the corresponding

states in �, the well-founded order Æi is guaranteed to decrease. However,
W
k P

Æi;i;k
?

,

which includes all the steps at which Æi could increase, holds only �nitely many times.

This contradicts the well-foundedness of the relation. Thus, 
(�A) cannot contain

any computation of S. 0

6.3.3 A Mixed Approach

The temporal encoding can be simpli�ed by augmenting the abstract transition system.

For each ranking function Æi, two new bits b�i and b�i, initially falseA, are added to VA.

Each abstract transition is augmented as follows: for each row in the termination table for

transition �A, with a single ranking function Æi and result � (resp. �), the conjunct

b�
0
i (resp. b�i) $

A
�
preA ^A postA

0
�

is added to transition �A. All other transitions are augmented to set b�i and b�i to false
A.

The constraint CAÆi is then simply encoded as

0 1 b�i ! 0 1 :
�
b�i _ b�i

�
:

Example 6.3.4 (Model checking growth beyond any bound) A single ranking func-

tion is used in the bakery termination table of Example 6.1.5, so the simple temporal en-

coding is suÆcient in this case. Furthermore, since the guards are approximated exactly, we

can retain the original fairness constraints, and let a standard model checker handle them.

We would like to prove

' : 1 0 :((`0 _ `1) ^ (m0 _m1)) ! 1 (max(y1; y2) > N)
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for the original bakery program. Adding the new bit

bN�max : N � max(y1; y2)

to the abstraction SA, it is suÆcient to check that SA satis�es

'A : 1 0 :((`0 _ `1) ^ (m0 _m1)) ! 1 :bN�max ;

which in this case is equivalent to �t('). Indeed, we can model check CAÆmax
! 'A over SA,

or model check

(0 1 b� ! 0 1 : (b� _ b�))! 'A

over an augmented transition system as described above. This proves that ' is valid over

the original bakery program. Notice that we have proved that bakery is in�nite-state by

algorithmically model checking a �nite-state abstraction.

The result is analogous to the DMC proof for the same property presented in [Sip98,

BMSU98]. That proof uses the invariants

`2 ^ (m3 _m4) ) y2 < y1 (:by1�y2)

m2 ^ (l3 _ l4) ) y1 � y2 (by1�y2)

These invariants are implied by the safety component of the abstraction, so there is no need

to prove them separately.

In general, we can conjoin all the constraints CAÆi that correspond to termination table

rows where Æi = Æj . However, it is clear that this simple approach does not capture all

the usable information in the termination table, since it does not consider the interaction

between di�erent ranking functions; contrast this with the node labelings of DMC and

GVD's.

Example 6.3.5 Figure 6.1 shows a simple three-state abstract FTS. Assume that the ter-

mination table is:

Transition Ranking Functions Precondition Postcondition Result

�A1 hÆ1; Æ2i A B �

�A
2

hÆ2; Æ3i B C �

�A3 hÆ3; Æ1i C A �
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��
�A
3

�A
2

�A1
�

C : Æ3

B : Æ2A : Æ1

Figure 6.1: Pairwise constraints are not enough for mixed hÆi; Æji pairs

where Æ1, Æ2 and Æ3 are ranking functions over the same domain. All other results are

implicitly \?": for instance, when we go from node A to node B, we do not know if Æ3

increases; when going from B to C, we are not sure about Æ1. Regardless of the initial

condition, it is clear that this FTS satis�es

'A : 1 (0 A _ 0 B _ 0 C) :

However, there are no simple pairwise constraints CAÆi over ranking functions fÆ1; Æ2; Æ3g that

imply 'A.

Note that pairwise encoding is suÆcient for our bakery example (Example 6.3.4), since

its termination table (Table 6.1.5) does not have mixed pairs of ranking functions. In the

following section we show that, indeed, using mixed pairs is not essential.

6.3.4 Single vs. Mixed Pairs of Ranking Functions

We allow termination table rows to contain di�erent ranking functions for convenience.

However, we can show that from the theoretical point of view, this 
exibility is not required.

First, we note:

Proposition 6.3.6 Let S be an abstract SCS whose nodes are disjoint: if ni 6= nj, then


(�(ni)) \ 
(�(nj)) = ;. Then for any node labeling �Æ for S, there is a node labeling �0Æ

that uses a single ranking function and induces the same edge labeling for S.
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Proof: If n1; : : : ; nk are the nodes in S, and the node labels are disjoint, we can

de�ne �0Æ as:

�0Æ(V)
def
=

8>>><
>>>:

if 
(�(n1))(V) then �Æ(n1)(V) else

if 
(�(n2))(V) then �Æ(n2)(V) else

: : : else 
(�(nk))(V)

Clearly, the edge labels for S induced by � and �0 are the same. The new order is

well-founded since all ranking functions are assumed to have the same well-founded

domain. 0

We can ensure that the nodes of an abstract SCS are disjoint by adding a (�nite-domain)

control variable that takes a di�erent value at each node. This variable plays a role similar

to that of the unobservable control variable of Section 5.3, but it should now be present in

the concrete system as well.

Example 6.3.7 For the SCS of Example 6.3.5, we can introduce a new ranking function,

ÆABC , de�ned as follows:

ÆABC(V)
def
= if A(V) then Æ1(V) else if B(V) then Æ2(V) else Æ3(V) :

Adapting DMC terminology, we say:

De�nition 6.3.8 (T -terminating SCS) Given a termination table T , an SCS S is T -

terminating if for any in�nite path � : n0; n1; : : : through S, there is a mapping from each

position i to a ranking function Æi such that the induced edge labeling contains in�nitely

many \�" and no \?". We call this a suitable mapping for �.

A suitable mapping is a node labeling for the in�nite graph described by �, where each

position contains a unique node. Thus, di�erent occurrences of the same node in S can be

labeled with a di�erent Æ in �. Intuitively, the labeling on a node may depend on the path

taken to reach that node, so we need a di�erent copy of that node for each case. Thus,

an SCS can be T -terminating but have no terminating edge (see De�nition 5.5.3), which

explains the need for unfolding in DMC (De�nition 5.5.4). However, we have:

Proposition 6.3.9 To determine if an SCS S is T -terminating for a given termination

table T , only �nitely many node labelings for a �nite number of �nite graphs must be con-

sidered.
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Proof: (Outline) An in�nite path � has a suitable mapping if and only if there is

a �nite cycle (where we identify some of the di�erent node occurrences that have the

same labels) that can be labeled to include at least one \�." Only the smallest such

cycles need to be considered, of which there is a �nite number. 0

A more eÆcient procedure, suggested by N. Bj�rner, constructs a graph G from S, whose

nodes are the pairs hn; ei for a node n and edge e in S, and where hn1; e1i and hn2; e2i are

connected by an edge in G if e1 is an edge from n1 to n2 in S. It is suÆcient to ensure that

each cycle in this graph corresponds to a path � with a suitable mapping. This, in turn,

can be done by taking the product of G and a graph that represents T , whose nodes are the

ranking functions Æi and whose edges are the rows in T . It may also be possible to adapt

the method for �nding ranking function labelings presented in Section 6.4 for this task.

In Section 6.4 we will see that for any �nite-state abstraction, there are only �nitely

many SCS's that must be shown to be terminating. If �nitely many node labelings for �nite

graphs are needed for each, then by Proposition 6.3.6 it is theoretically suÆcient to use a

termination table with a single ranking function Æi in each row. In this case, the conjunction

of the pairwise temporal constraints CAÆi will be enough as well. This observation shows that

the termination table constraints do not go beyond those expressible by regular !-automata.

The conditional ranking functions above requires anticipating what the SCS's of interest

are. However, we would like to use an existing termination table to model check new

properties, as we will do in Section 6.4, so an eÆcient implementation of a T -termination

test for mixed hÆi; Æji pairs is preferred.

6.3.5 The Combined Fairness and Termination Constraint

To summarize this section, instead of model checking 'A, we can model check

 ^
D

C
A
Æi;j

!
^ C

A

Fair ! 'A :

To fully capture the information in the termination table, this requires that each row use

a single ranking function. Another potential drawback of this approach is that the formula

to be model checked can be quite large, leading to ineÆciency if its tableau is explicitly

constructed.2 An alternative is to express the temporal constraints in the �-calculus and

2In general, the complexity of LTL model checking is exponential in the size of the formula.
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then use symbolic model checking [BCJM96], as done for LTL under fairness in the STeP

symbolic model checker [Bj�98b].

The �nal alternative we consider is to incorporate the constraints directly into the model

checking process, which we describe in the following section.

6.4 Extended Model Checking

Based on the insights provided by DMC and GVD's, we now propose an explicit-state model

checking algorithm for �nite-state abstractions that takes advantage of the extra information

concerning the enabling conditions of fair transitions and well-founded orders described in

Section 6.1. We call this an extended abstract model checking (EXMC) procedure.
3

This procedure is simply a static version of Deductive Model Checking (see Section 5.5),

where we assume that a �xed amount of knowledge about the concrete system is given a

priori and expressed in terms of a �nite-state abstraction.

6.4.1 The EXMC Input

The inputs to the algorithm are an abstract LTL property 'A to be model checked, and an

extended abstract system SA, which includes the following components:

� A standard (99) �nite-state abstract transition system with no fairness requirements,

which de�nes the runs of SA.

� A fairness table for SA.

� A termination table for SA.

� Optional: a set of constrained (89) abstract transition relations (see Sections 3.5

and 4.9).

We will only speak of the runs of SA, as de�ned by the over-approximated abstract

transition relations. Informally, the computations of SA are those runs that do not contra-

dict the fairness and termination tables. We will write SA q 'A if the EXMC procedure can

establish that that no run �A of SA can satisfy :'A and include, in 
(�A), a computation

3The \EXMC" acronym for this procedure is not to be confused with the classic EMC model checking

program of Edmund M. Clarke et.al. [BCDM86].
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of S that satis�es the constraints expressed by the fairness and termination tables. This

will imply that S q 
('A).

6.4.2 The EXMC Procedure

For convenience, in this section we assume that the Kripke structure (and the product graph)

has one edge per transition, rather than a single edge labeled with multiple transitions (see

Remark 2.1.4). The Extended Model Checking algorithm is:

1. Compute the product graph GA : SA�T:'A (see De�nition 2.3.2). Recall that a nodeD
sA; a

E
is initial in GA i� sA is initial in SA and a is initial in T:'A .

For a node n :
D
sA; a

E
, let �(n)

def
= sA ^A assertionsA(a), where assertionsA(a) is the

set of assertions in the tableau atom a, treated as propositional formulas.

Remove nodes n where �(n) is propositionally unsatis�able. Let each transition �A

label an edge from n1 to n2 i� �(n1) ^
A �A ^A �0(n2) is satis�able. Again, this is a

propositional test.

2. We say that a (propositional) predicate p holds at a node n if �(n) ! p is (proposi-

tionally) valid.

An SCS S is unjust towards a just transition � if the predicate enabled�(�) holds at

all nodes in S and �A does not label any edge in S.

S is uncompassionate towards a compassionate transition � if the predicate enabled�(�)

holds at some node n in S and �A does not label any edge in S.

S is unfair if it is unjust or uncompassionate towards some � .

3. We say that an SCS S is adequate if and only if it is returned by the following test:

(a) If S is unful�lling or unjust, fail. Otherwise:

(b) If S is uncompassionate towards � , recursively invoke the procedure on all maxi-

mal SCS's (MSCS's) of the subgraph of S obtained by removing the nodes where

enabled�(�) holds. fail if all these calls fail.

Otherwise (S is ful�lling, just and compassionate):

(c) Choose a ranking function node labeling �Æ for S and compute the induced edge

labeling (see De�nition 6.1.7 above, where each edge is now labeled by a single
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transition). We say that �Æ is suitable for S if no edge is labeled \?" and some

edge is labeled \�."

If a suitable �Æ is found, recursively invoke the adequacy procedure on all the

MSCS's obtained by removing the edges labeled \�" from S. succeed if any of

these tests succeeds; fail if all these tests fail.

If there is no suitable �Æ for S, recursively invoke the procedure on the result of

unfolding S (see De�nition 5.5.4). If this fails, succeed, returning the current

SCS.

4. Invoke the above adequacy procedure on each reachable MSCS in GA. If no adequate

SCS is found, report that SA q 'A. Otherwise, return an adequate reachable SCS

and a path that leads to it from an initial state as an abstract counterexample.

Note again that the EXMC procedure only performs propositional checks, and that all

structures are �nite.

The use of unfolding in section 3 (c) of the algorithm can be replaced by a T -termination

test, which should return a cycle in the SCS for which no suitable mapping exists, as

a counterexample, or else fail, indicating that the SCS is T -terminating and thus not

adequate. The EXMC procedure should never apply unfold twice in succession: if the main

ring in an unfolded SCS cannot be broken, the above adequacy test should fail, returning

the original SCS.

If an SCS is unful�lling (resp. unjust), then all of its subgraphs are unful�lling (resp.

unjust). Thus, there is no need to check sub-SCS's, except for the case of compassion. Note

also that there is no need for backtracking when choosing a labeling: once a labeling is

found for S under which an edge can be removed, other labelings for S do not have to be

considered.

Figure 6.2 modi�es the example of Figure 6.1 to illustrate the interactions that can occur

between fairness and well-founded orders. The SCS fA;B;Cg does not directly violate any

well-founded order. However, assume that the compassionate transition �A
1
is fully enabled

at A. Then �A1 should be taken in�nitely many times if a computation remains within this

SCS, decreasing the well-founded order in�nitely many times, a contradiction. The EXMC

procedure detects that such an SCS is inadequate by removing �A1 and then detecting that

the resulting SCS is uncompassionate towards �A1 .
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��
�A3 �A2

�A1 :comp

�

C : Æ3

B : Æ2A : Æ1

�A4

�

Figure 6.2: Interaction between fairness and ranking functions

Finding Ranking Function Labelings

Part (c) of the adequacy test is non-deterministic: we try all possible labelings �Æ of S. The

search for a suitable one can be carried out as follows:

For eÆciency, each edge will be marked with the pairs hÆi; Æji that fail for that edge.

Let all edges in S be unlabeled and �Æ := fg.

procedure extend(�Æ):

If �Æ labels all the nodes in S, succeed with �Æ;

else choose an unlabeled node n and a node label Æi

that is not know to fail for any of the edges at n.

Let �Æ := �Æ [ fn Æig.

Compute the new edge labels induced by �Æ.

If any edge label is \?," fail and mark that edge

to indicate the failure of the corresponding label pair.

Call extend(�Æ). If it fails, choose the next Æi for n.

If all Æj 's have been chosen, fail

The �rst two node labels, Æi and Æj , should be chosen such that at least one edge is labeled

\�." New labels that induce \�" labels should be preferred. If D is the number of rows in

the termination table, the procedure considers at most D2 pairs of labels for each edge in
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the SCS, so the number of tests is polynomial in the number of edges in the SCS and the

number of rows in the fairness table.

The basic EXMC algorithm can be improved in may ways. For instance, the �nite-state

version of DMC itself can be used to expand the product graph in a top-down manner,

hoping to avoid the expansion of the entire state-space (see Section 5.5). In this case,

�(n) will characterize a set of abstract states, rather than a single one, but the de�nitions

and essentials of the algorithm remain unchanged. The tableau T:'A can be generated

\on-the-
y" as well.

Theorem 6.4.1 (Soundness of EXMC) If SA is a correct abstraction of S (including S-

valid fairness and termination tables) and the EXMC procedure reports that SA q 'A, then

S q 
('A).

Proof: (Outline) Any computation of S must be included in 
(�A) for some run �A

of SA. The product graph G of SA and T:'A describes all the runs of SA that satisfy

:'A.

We say that a run �A of SA is adequate if 
(�A) contains a computation of S.

An adequate run of SA that satis�es :'A must eventually remain within an adequate

SCS of G: otherwise, all runs in 
(') must violate a fairness requirement of S or

contradict a well-foundedness constraint.

There are no adequate SCS's if the adequacy test fails on the MSCS's of G. Thus,

if EXMC reports that SA q 'A, there are no adequate runs of SA, which means that

no computation of S satis�es :', that is, S q '. 0

Theorem 6.4.2 (Relative Completeness of EXMC) For any state-quanti�ed LTL prop-

erty ', if S q ' then there is a �nite-state abstract system SA, with �nite fairness and ter-

mination tables, such that SA q �t(') can be checked by EXMC. This assumes, as usual, that

the concrete assertion language is suÆciently expressive and that complete proof methods

are available for establishing the veri�cation conditions that justify the correctness of SA.

Proof: (Outline) Deductive Model Checking is relatively complete [SUM99, Sip98]:

if ' is S-valid, then there is a DMC proof of it (assuming that the assertion language

is expressive enough and that we can prove all valid veri�cation conditions).
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The �nal falsi�cation diagram G produced by a DMC proof, including all the

nodes that it generates, together with the veri�cation conditions that show that G

cannot support a :'-computation, describes an extended abstract system for which

the property can be successfully model checked:

1. As the assertion basis B, take the set of all atomic formulas that appear in G.

2. As the abstract initial condition, take the disjunction

�A :
_A

n2I

�
:assertionsA(n) _A �A(n)

�

over the set I of initial nodes in G. Notice that we can over-approximate �A to

trueA for the states that are not relevant to the property being model checked.

3. The abstract transition relations are given by the edges that are missing from

� , as described in Section 5.5. Transitions are only removed from an edge if the

corresponding veri�cation condition

�
�(n1) ^ � ^ �

0(n2)
�

is unsatis�able, that is, no pair of states that satis�es � is represented by this

edge. This adds the conjunct �A(n1)!
A :A�A(n2)

0 to �A.

4. The fairness table entry for �A has as enabled�(�) the disjunction
WA
n �

A(n) over

all the nodes n where � was proved to be enabled in order to show that an SCS

is unfair.

5. The termination table contains an entry

�A; hÆ1; Æ2i ; pre i : �
A(n1); post i : �

A(n2); � (or �)

for each veri�cation condition used to justify a terminating edge (see De�ni-

tion 5.5.3).

We now must show that EXMC will also prove that SA q 'A. Notice that in this

case, 
('A) = ', since all of the atoms of ' are in the basis.4

4Since DMC simpli�es formulas as it goes along, it could be the case that the basis contains more re�ned

atoms instead, but 
('A) will still be equivalent to '.
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If the DMC proof is successful, each ful�lling SCS has been shown to be un-

reachable, unfair or terminating. We can assume without loss of generality that all

the transformations that removed SCS's, including the unfolding transformation, were

saved for last in the DMC proof.

It should be clear that if DMC discards an unfair or unful�lling SCS, then EXMC

will do so as well, by the construction of the abstract system above. We are left with

the terminating ones. The DMC completeness proof tells us that if an SCS with n

nodes cannot support a concrete computation, then there is a well-founded order that

disconnects U(S) into a set of smaller SCS's. Thus, assuming that the termination

table has the required information, unfolding is suÆcient for detecting T -terminating

SCS's. 0

The above proof assumes that the given termination table T includes all the necessary

well-founded orders. Furthermore, it assumes that we have exactly the ones that the DMC

proof uses. However, EXMC may succeed even when other ranking functions are given, by

using a general T -termination test.

Remark 6.4.3 Generalized Veri�cation Diagrams (Section 5.3) are also relatively complete

for state-quanti�ed LTL properties [BMS95]. Given a GVD that proves S q ', we can

construct an extended abstract system SA, as follows:

1. The assertion basis B is the set of all atomic assertions that appear in 	.

2. The abstract initial condition and over-approximated transition relations are given by

the initiality and consecution conditions of the diagram.

3. If �(m) ! enabled(�) is proved to show that an SCS has a fair exit, then �A(m) is

added as a disjunct to enabled�(�) in the fairness table for SA.

4. If the veri�cation condition

�(n1) ^ � ^ �
0(n2) ! Æ1(V) � (resp. �) Æ02(V)

is proved to show that an SCS is well-founded, a corresponding row

�A; hÆ1; Æ2i ; preAi : �A(n1); postAi : �A(n2)
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is added to the termination table for SA.

For this abstract system SA, EXMC can show that SA q 'A, where 
('A) implies '.

Note that we do not need the unobservable control variable � used in Section 5.3.2, so

this construction is simpler. 0

The model checker �nds, among the space of all possible deductive rules that could be

applied, one that proves the property given the available veri�cation conditions, if such

exists.

Disclaimer: With these techniques, chances are that we will not be able to show termina-

tion, say, of the famous (open) \3n+ 1" Collatz problem, equivalent to proving

' : 0 (n > 0! 1 n = 1)

for the following one-transition FTS, where n is an integer-valued system variable:5

Transition �1 (just) : if even(n) then n
0 = n=2 else n0 = 3n+ 1 :

But chances also are that the correctness of actual systems does not depend on the (pre-

sumed) termination of such functions. Hopefully, the system designers are not assuming

the termination of the Collatz problem while developing the design; and if they did, the

design is probably wrong anyway, and bugs rather than proofs should be found (unless, of

course, the designers can also solve the open problem itself).

6.4.3 Counterexample Generation

If ' is not S-valid, the above procedure can only identify abstract counterexamples that

are potential concrete ones. If we are given constrained (89) transition relations �A89 (see

Sections 3.5 and 4.9) we can also search for a concrete counterexample. This procedure uses

upper bounds on the enabling conditions of all concrete fair transitions (which can default

to trueA).

Again, we present the algorithm for a product structure where each node n is labeled

with an abstract assertion �(n) rather than a single abstract state.

5Paul Erd�os is said to have said, \Mathematics is not yet ready for such problems."
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1. Label each edge in the (SA; T:') product graph with the 89-transitions that can be

taken along it. That is, an edge (s1; s2) is labeled with � if

�(n1) ! 9V
0
A:
�
�A89(VA;V

0
A) ^ �

0(n2)
�

is propositionally valid. Note that the existential quanti�cation is now �nite. We call

this the 89-subgraph, following De�nition 3.5.1.6

2. In this 89-subgraph, �nd a ful�lling SCS reachable from an initial node.

3. Check that the SCS is \fully fair," as follows: we say that �A89 is fully disabled at a

node n if �(n) � :enabled+� . An SCS is fully fair if every just (resp. compassionate)

transition is either taken in S (that is, it labels an edge in the 89-subgraph) or is fully

disabled at some (resp. all) nodes in S. This is analogous to the DMC De�nition 5.5.5.

4. Well-founded orders can also be used to identify counterexamples. The classic example

is a program loop that forms an SCS S, where the condition for exiting the loop is

at node n: all edges except one, e1 : hn; nini, can be labeled as executable. An edge

e2 : hn; nouti will lead out of the SCS. We may be able to establish that if �(n) holds,

then either e1 or e2 can always be taken, leading to nin or nout. If we can show that

S is terminating, then we can be sure that eventually e2 will be taken, and nout can

be reached.

We say that a reachable, ful�lling and fully fair SCS is fully adequate.

Proposition 6.4.4 A fully adequate SCS in the (SA;:'A)-product graph contains a con-

crete counterexample to the S-validity of '.

Proof: (Outline) By induction, we construct the concrete counterexample computa-

tion s0; s1; : : : starting from an initial node and following the executable edges in the

89-subgraph, to reach the fully adequate SCS and then in�nitely often traverse all its

edges and visit all its nodes. Since the SCS is ful�lling and fair, this is a computation

of S that satis�es :'. 0

6In practice, this subgraph can be generated by symbolic forward propagation of the 89 transitions from

the initial condition.
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Note that we assume that every just or fair concrete transition is represented by an

abstract �A89 transition; otherwise, we could not guarantee that an SCS is fully fair.

The constrained 89 transition relation can, in general, be used to model check CTL*

over the abstraction. Weak preservation then guarantees that model checked properties can

be transferred to S. The formulation and eÆcient implementation of such a model checker

is left for future work.

6.4.4 Abstraction Generation Revisited

Consider again the abstraction generation procedure presented in Chapter 4. In Section 4.3,

we propose a conservative generation of abstract systems, based on Lemma 3.4.6, where

the fairness of an abstract transition is retained only if the enabling condition is exactly

approximated. This approach lets us apply a standard �nite-state model checker to the

abstract system and transfer model checked properties to the concrete one.

A more aggressive approach also computes lower bounds on the enabling conditions of

the other fair transitions, building a fairness table. If ranking functions are identi�ed, a

termination table is generated as well. We may then use an Extended Model Checker to

model check the abstract system given the additional information, and, as before, transfer

the resulting properties over to the concrete system.

The essential idea remains the same: pre-compute as much as possible, safely approx-

imating the concrete system, and leave the combinatorics to a model checker, which can

mix and match abstract transitions, enabling conditions, well-founded orders and SCS's.

6.5 Combining the Input

The information from two separate abstractions A1 and A2 can be easily combined into a

new abstraction A, as follows:

� The set of system variables of A is the union of the system variables of A1 and A2.

� If �A1 and �A2 are the standard (99) transitions for � in each system, the transition for

�A in A is �A1 ^
A �A2 .

If �A891 and �
A
892 are the 89-transitions for � , then �

A
89 in A is �A891 _

A �A892.

� The fairness tables are merged simply by disjoining the lower bounds (their union is

also a lower bound).
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� The two termination tables are merged by taking their union.7

Note that the new abstraction has, in general, smaller 99 transitions and larger 89 ones,

and thus will satisfy more CTL* properties.

As usual, an OBDD representation can facilitate the process, specially if we have an

OBDD that relates the assertions (\bits") that only appear in A1 with those that only

appear in A2 (containing, e.g., invariants, or previously proved relationships between the

respective assertions). If the combined system has a large number of system variables, �nite-

to �nite-state abstraction can be performed|we must then be willing to throw away bits

as well as collect them.8

Example 6.5.1 (Second termination table for bakery) If we add

8<
: bN�y1 : N � y1;

bN�y2 : N � y2

9=
;

we can construct a new termination table for Bakery featuring ranking functions

Æ1 : N � y1; Æ2 : N � y2

with the non-negative integers as their domain, as described in Table 6.5.1.

This table lets us prove

' : 1 0 :((`0 _ `1) ^ (m0 _m1)) ! 1 (y1 > N)

To relate this table and the one in Example 6.1.5 (Figure 6.2), we can add the axiom

bN�max
$

�
bN�y1 _ bN�y2

�
:

7Techniques can be devised for eliminating redundancies from the resulting table, but we leave them for

future work.
8A large number of bits can be particularly problematic for symbolic model checking. It should be

interesting to see how the recently proposed satis�ability-based symbolic model checking [BCCZ98] performs

on these combined abstractions.
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Transition Ranking Functions Precondition Postcondition Result

`A
1

(y1 := y2 + 1) hÆ1; Æ1i bN�y1 ^ by1�y2 bN�y1 �

mA
1 (y2 := y1 + 1) hÆ1; Æ1i bN�y1 true �

`A1 (y1 := y2 + 1 hÆ2; Æ2i) bN�y2 true �

mA
1 (y2 := y1 + 1 hÆ2; Æ2i) bN�y2 ^ :(by1�y2) bN�y2 �

"
`0; `2; `3;

m0;m2;m3

# "
hÆ1; Æ1i

hÆ2; Æ2i

# "
bN�y1

bN�y2

#
true �

Table 6.3: Second termination table for abstract bakery

6.6 Discussion

The common framework of abstraction we have presented lets us optimize the workings of

veri�cation tools such as STeP. The following components generate abstractions:

� Assertion-based abstraction generator (Chapter 4).

� Standard veri�cation diagrams and rules (Section 5.1).

� GVD's and DMC (Sections 5.3 and 5.5).

For a given system, the veri�cation conditions proved using one or more of the above

methods can be collected into a common abstraction, even when the method fails. Since

these �rst-order formulas can be expensive to prove, they should be reused as much as

possible. A theorem proved once by the theorem-prover can be used many times by the

model checker. Thus, our slogans are:

� No wasted veri�cation conditions, and

� Leave the combinatorics to the model checking tools.

The framework we propose can also be used in an iterative re�nement framework, fol-

lowing the process used in Figure 5.6. If EXMC fails and cannot produce a concrete coun-

terexample, one of the following actions can be carried out by the user:

� Add a new element to the abstraction basis.
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� Prove extra veri�cation conditions for the current abstraction, improving the 99 or

89 abstraction. This includes improving the lower bounds enabled�(�).

� Provide new ranking functions Æi and Æj , with pre and post to go with them, which

are added to the termination table.

Note that the search for counterexamples is dual to the standard abstraction re�nement

process: starting with a transition system that is most abstract but has no transitions, we

add edges whenever they are known to exist.

6.7 Related Work

6.7.1 Finite-State Model Checking

There are many variants and optimizations of �nite-state model checking algorithms (see

Section 2.3) that could be adapted to EXMC. (For in�nite-state model checking, see Sec-

tion 7.3.) \On-the-
y" model checking algorithms, such as the one for CTL* presented in

[BCG95] and the ones for LTL in SPIN [Hol91] and STeP construct only the portion of the

state-space required by the given formula, rather than labeling the entire state-space.

Partial order reductions [GW91, Pel94] are used to avoid the state explosion that arises

from the interleaving of independent transitions. The \partial model checking" of [And95]

performs consecutive transformations of the system and its �-calculus speci�cation. Another

approach to combat the state explosion is exploiting symmetry in the state-space [CFJ93,

ES93].

6.7.2 Combining Abstractions

Hierarchical Veri�cation Diagrams [BMS96] combine veri�cation diagrams by taking their

product, as automata. This approach has two main drawbacks compared to the one we

propose: �rst, the combination does not capture all the interaction between the two ab-

stractions. Second, we have seen that the control points of a veri�cation diagrams are an

artifact of the formula being proved; but when the product of two diagrams is computed,

the number of new control con�gurations can grow exponentially, which may not have been

necessary. In our approach, it is up to the model checker to explore the portion of the

abstract state-space that is relevant to the new temporal property, independently of the
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particular properties that may have been proved before: the abstractions used to prove

them are more useful.

On the other hand, the diagrams in [BMS96] are used for hierarchical veri�cation and

existential quanti�cation over 
exible variables, subjects that we do not address.

Reusing Abstractions: The authors of [BLO98] have recently proposed concretizing the

reachable state-space of a failed ABA when proving invariants (private communication),

using this as a lemma in a new attempted proof.

Combining Abstract Interpretations: A re�nement-based method for combining ab-

stract interpretations is presented in [DS97], starting with an over-approximated control


ow graph of the program being veri�ed. A �lter , which constrains the set of computations

of the current abstraction, is represented in temporal logic as an automaton or as a set of

transitions. Universal properties can then be model checked relative to the set of �lters

available. This is implemented in the FLAVERS static analysis tool. Filters are applied to

�nite-state software abstractions in [DP98].

The relationship between model checking, program analysis and abstract interpretation

is described in [Sch98, SS98]).

6.7.3 Fairness Diagrams

The Fairness Diagrams of [dAM96] present a diagram-based methodology for universal tem-

poral properties that features re�nement, well-founded orders and fairness considerations.

A proof begins with an initial fairness diagram that directly corresponds to the system.

This diagram is then transformed into one that corresponds directly to the speci�cation,

or which can be shown to satisfy it by purely algorithmic methods. A simulation rule

that accounts for fairness justi�es the transformations. An abstract system can be re�ned

and transformed according to the simulation rule, independently of any temporal property,

model checked, and re�ned again.

Doing justice to their name (no pun intended), fairness is represented quite generally in

these diagrams, which can also be seen as abstractions. Fairness constraints on the system

are combined with ranking functions to justify diagram constraints and generate new ones.

Like DMC and GVD's, the methodology provides a (relatively) complete proof system.

The relationship between the formalisms of Fairness Diagrams, GVD's and DMC is

discussed in [dAMSU97]. This paper also presents an alternative to the unfolding rule,
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based on Fairness Diagrams, which requires an additional set of assertions labeling the

nodes of the SCS.

Compared to Fairness Diagrams, the approach proposed in this chapter attempts to

isolate the information known about the system in a form that can be model checked,

avoiding the direct construction of a diagram and the introduction of (unnecessary) abstract

control variables.

In the following chapter, we discuss a broader range of work related to the main themes

of this thesis.



Chapter 7

Related Work

There is a very large amount of research on abstraction, present and past, and we cannot

possibly hope to include all of it here. Thus, we focus only on work that addresses themes

similar to those in this thesis, and give representative samples for the rest, giving up (as

one should do for most practical theorem proving applications) any claim of completeness.

Most methods that combine deductive and algorithmic veri�cation through abstraction

can be classi�ed according to the following criteria:

� whether the abstraction is constructed a priori or or dynamically re�ned (static vs.

dynamic);

� whether the abstraction generation is tailored speci�cally for the property of interest

(bottom-up vs. top-down);

� whether the process is automatic or interactive.

Bottom-up methods operate independently of any particular formula to be veri�ed:

the resulting abstractions are meant to preserve a wide class of properties. Top-down

methods use the formula to be veri�ed to guide the construction of an abstraction that

proves it. Focusing on a particular formula allows for coarser, less re�ned abstract systems,

for which fewer properties hold, but which can be easier to construct and model check.

As an example, the abstraction generation of Chapter 4 is mostly bottom-up, while the

diagram-based methods discussed in Chapter 5 are top-down.

126
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7.1 Static Abstractions

We now survey two classes of static methods: the �rst generates abstractions automatically

using abstract interpretation (Sections 7.1.1), and includes the important special case of

invariant generation (Section 7.1.2). The second checks the correctness of given abstractions

(Section 7.1.3). The �rst approach is more automatic, while the second is more 
exible.

7.1.1 Finding A Using Abstract Interpretation

Abstract interpretation [CC77] provides a general framework and a methodology for au-

tomatically producing abstract systems given a choice of the abstract domain �A. Most

applications of classic abstract interpretation can be considered to be bottom-up, since they

abstract the system independently of any particular property to be proved.

Abstract interpretation is usually meant to be compositional in the following sense:1

each operation in the concrete program P is approximated as a corresponding abstract

operation, producing an abstract program PA. By construction, PA will be guaranteed

to be a correct abstraction of S. Furthermore, PA can be eÆciently generated, since the

abstraction process is local to each statement in P. As usual, properties that can be proved

for PA will then carry over to P.

In our terminology, this approach avoids producing the abstract Kripke structure explic-

itly: the abstract program PA is symbolically executed to generate it instead. Chapter 4

can be understood as a simple attempt to perform generic abstract interpretation using

theorem proving, compositionally in the boolean structure of the transition relations.

The classic abstract interpretation framework is intended (implicitly) for proving safety

properties, and did not consider temporal logic or model checking. This is no longer the

case: [LGS+95] presents weakly- and strongly-preserving abstractions for the �-calculus,

showing how abstract interpretation can also be compositional over parallel composition.

[CGL94] presents abstract interpretation for �nite-state systems that is weakly-preserving

for 8CTL*, and notes that the resulting abstractions preserve all of CTL* when they are

strongly preserving. [CIY95] de�nes a measure of optimality of abstractions, by which

the largest possible set of properties is preserved. [DGG94] present abstract interpretation

frameworks that preserve various fragments of CTL*. This is extended to the �-calculus in

[DGG97]. All of these frameworks weakly preserve CTL* by using two di�erent abstract

1This use of the word is generally di�erent from what is meant by \compositional veri�cation."
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transition relations for existential and universal path quanti�cation. Chapter 3 presents a

special case of such temporal abstract interpretation, extended to include fairness, which

most related work does not consider.

The relationship between model checking and abstract interpretation continues to be

the subject of much research, see e.g., the recent workshops [Bos97, Bos98] on the subject.

For instance, [LV97] shows how veri�cation methods in logic programming can be explained

in terms of abstract interpretation.

Classic (and less classic) static program analysis for software systems based on abstract

interpretation has been recently re-formulated in terms of model checking. [Sch98, SS98]

describes how many program analysis techniques can be understood as the model checking of

particular classes of abstractions. This work also addresses the combination and re�nement

of abstractions, as discussed in Section 6.7.2. [CC99] combines model checking and the

approximated �xpoint analysis of abstract interpretation.

7.1.2 Invariant Generation

Invariant generation is an important special case of static analysis. In Section 4.8, we saw

that the concretization of the reachable state-space of the abstract system is an invariant

of the concrete one. Furthermore, any over-approximation of this state-space is also an

invariant.

Abstract interpretation is used in [BBM97] to automatically generate invariants for

general in�nite-state systems. The abstract program PA is symbolically executed to �nd

conservative approximations to the reachable state-space. Fixpoints of the abstract pro-

gram express invariances that can then be concretized to invariants of the original system.

Widening , a classic abstract interpretation technique, is used to speed up or ensure con-

vergence of the abstract �xpoint operations, by performing safe over-approximations. The

abstract domains that can be used to perform such computations include the assertion-based

abstract domain itself, as well as set constraints, linear arithmetic, and polyhedra. These

invariant generation methods have been implemented as part of STeP (see Section 2.7).

Using the same framework, [BBM97] also presents a top-down procedure for proving

LTL safety properties. To prove ', an assertion graph for ' is built, representing the

computations that satisfy '. The nodes in this graph then can then be strengthened to

produce, in e�ect, a safety veri�cation diagram that proves '. The strengthening can be

performed as a �xpoint computation over the graph. In the case of invariances, this is
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equivalent to �nding an inductive assertion that implies the invariance to be proved (see

Section 5.1).

Invariant generation using the assertion-based abstract domain is the focus of [GS97]

(see Section 4.10).

7.1.3 Checking Preservation Using Theorem-Proving

System abstractions can always be constructed manually, and then proved correct. Typi-

cally, the correctness of the abstraction relation (the equivalent of Theorem 3.3.3) is estab-

lished using theorem proving, while the abstract system itself is model checked. [Hun93]

constructs an abstraction based on data independence (see Section 7.3.1) and modular ver-

i�cation. Deductive modular decomposition is used in [KL93] to reduce the correctness of

a large system to that of smaller components that can be model checked. Abstraction is

used in [RSS95] and [DF95] to obtain subgoals that can be model checked; the correctness

of the abstraction is proved deductively.

Rules for proving simulation between systems are presented in [KMP94], as described in

Section 3.6. Veri�cation rules and (Generalized) Veri�cation Diagrams are also an instance

of static abstraction, as discussed in Chapter 5.

7.1.4 Generating SA Using Assertions and Theorem Proving

The procedure of Chapter 4 constructs a �nite-state abstraction using decision procedures,

and can be regarded as bottom-up and static. As described in Section 4.10, the approaches of

[GS97] and [BLO98] are closely related, since they generate assertion-based abstractions as

well. However, they are geared towards generating invariants and proving safety properties,

so they do not consider fairness or the 89 transition relation.

A similar method for generating abstract systems is presented in [LS98], intended for the

practical analysis and debugging of complex software systems. A set of control predicates

de�nes the abstraction, which is generated using an approximated weakest precondition

(wpc) operation as well as abstract interpretation of program operations. The resulting

�nite-state abstractions are model checked by SPIN [Hol91]. This approach uncovered bugs

in the software for a NASA spacecraft controller.

The generation of assertion-based abstractions is given a top-down 
avor by including in

the basis the atomic subformulas of the temporal property ' being veri�ed. Furthermore,
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for invariances, better abstractions can be obtained if the invariant to be proved is assumed

when generating the abstraction [BLO98] (again, see Section 4.10).

7.1.5 Abstraction for Finite-state Systems

To �nish this section, we note that there is much work on applying abstraction to purely

�nite-state systems as well, particularly large hardware systems. See, for instance, [Lon93,

MHF98]. Abstracting from the �nite-state case to an in�nite-state abstract domain has

proved useful here, namely, by using uninterpreted function symbols, by symbolically exe-

cuting the system using a decidable logic, e.g., [BD94, JSD98, BBCZ98].

A method for automatic datapath abstraction is presented in [HB95], generalizing the

notion of data-independence (see Section 7.3.1).

Automatic methods for eliminating variables from �nite-state software speci�cations are

presented in [BH97], depending on the property being veri�ed. This reduces the number of

variables in the system that is model checked.

7.2 Dynamic Abstractions: Finding A Through Re�nement

We now review methods for constructing an abstract system A that are based on the general

idea of re�ning an initial conservative approximation.

To prove ' for S, an initial weakly-preserving �nite-state abstractionA can be suggested.

If model checking shows that A q ', the veri�cation is complete. However, if this model

checking fails, A can be used as the starting point for producing a �ner abstraction, A0,

which is also weakly-preserving for S but satis�es more properties. This process may be

repeated until the property is proved (or, perhaps, disproved), as described in Figure 5.6.

Like the more static techniques of Section 7.1, these methods may be classi�ed as

bottom-up or top-down, depending on whether they consider a particular formula to be

veri�ed.

7.2.1 Bottom-up: Partition Re�nement

Many bottom-up methods are reminiscent of simulation- and bisimulation-equivalence pro-

cedures, which are well-known in the case of �nite-state systems (independently of abstrac-

tion).
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A method for �nding the coarsest bisimulation for a possibly in�nite-state system (thus

preserving CTL*) is presented in [BFH+92]. If two elements of an equivalence class are not

bisimilar, the class is split according to pre and post operations on the transition relation.

The procedure keeps track of accessible states as much as possible, to avoid spending time

re�ning inaccessible portions of the state-space. This method is combined with abstract

interpretation in [Fer93].

Re�nement-based generation of a weakly-preserving 8CTL* abstraction, i.e., simulation

equivalence, is presented in [DGG93]. The details of the algorithm are restricted to �nite-

state systems. In [DGD+94], this method is combined with abstract interpretation, using

OBDDs, for �nite-state systems.

7.2.2 Top-Down Re�nement

As described in Section 5.5, Deductive Model Checking can be classi�ed as a dynamic,

top-down re�nement method. The re�nement operations of DMC, based on pre- and post-

conditions, are similar to those in the bottom-up [BFH+92] (see above). However, DMC

uses the temporal tableau for :' as a starting point, includes fairness constraints, and

tracks potential counterexamples.

As discussed in Section 6.7.3, Fairness Diagrams [dAM96] present an alternate dynamic

re�nement method that combines the top-down and bottom-up approaches. Fairness Di-

agrams are extended to hybrid systems in [dAKM97], and related to GVD's and DMC in

[dAMSU97]. See [Sip98] for more on Deductive Model Checking, GVD's, and their appli-

cation to the veri�cation of real-time and hybrid systems.

Another top-down approach is presented in [DGH95], as a \truly symbolic" model check-

ing procedure, analyzing the separation between data and control. A tableau-based proce-

dure for 8CTL generates the required veri�cation conditions in a top-down, local manner,

similarly to DMC.

7.2.3 Failure-based Re�nement

Re�ning abstractions based on the failure of model checking for the abstract system has

been investigated in more detail in the case of �nite-state systems, where it can be performed

automatically.

[Kur94] presents error trace analysis for �nite-state systems: if model checking the ab-

straction produces an abstract counterexample �A, the concrete system is executed along
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corresponding concrete paths. If a concrete counterexample is found, the property is dis-

proved; otherwise, the failure of the counterexample can be used to further restrict the

abstraction, producing a new one for which �A is not a computation. [BSV93] present a

BDD-based procedure to carry out re�nement: a conservative abstraction is progressively

re�ned, at each step ruling out a set of false counterexamples.

An automatic BDD-based method for �-calculus symbolic model checking (which in-

cludes CTL*), for �nite-state systems, is presented in [Par97, PH97]. Subformulas are over-

and under-approximated, depending on their polarity, to control the BDD size. The overall

procedure preserves positive results, and a dual procedure can be made to preserve negative

ones. If model checking fails, the set-di�erence between the model checking result and the

set of initial states can be used as a starting point to re�ne the abstraction. The computa-

tions for individual formulas can be made more precise, until the desired property can be

established.

A similar approximated BDD-based symbolic model checking procedure is presented in

[KDG95], this time based on the abstract interpretation framework of [Dams96], but does

not perform re�nement. Such abstractions do not change the state-space of the system, but

instead approximate the transition relation to produce smaller BDDs.

7.3 Model Checking for In�nite-State Systems

Many ideas behind the algorithmic model checking of decidable classes of in�nite-state

systems, including real-time and hybrid systems, are closely related to abstraction and

re�nement. Evidently, these methods can be considered top-down, since they model check

particular temporal properties.

For in�nite-state systems, state-space exploration must be adapted if it is to remain an

algorithmic procedure. For many classes of in�nite-state systems for which model checking

is decidable the exploration of a �nite quotient of the state-space is suÆcient, e.g., for certain

classes of real-time and hybrid systems [ACH+95]. For others, the right choice of abstract

assertion language ensures convergence of �xpoint operations [HH95, KMM+97, BGP97].

Reductions for hybrid systems that explicitly use abstraction are presented in [OSY94]. The

underlying principles are explored for the case of safety properties in [EN98].

A number of \local model checking" procedures for in�nite-state systems e.g., [BS92],

can be said to fall somewhere in between deductive rules and model checking, similarly to
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GVD's. [Lev98] uses an abstract constraint language to model check �rst-order �-calculus

formulas for possibly in�nite-state systems. The local �-calculus model checking algorithm

for real-time systems of [SS95] can be regarded as a variant of the DMC procedure, spe-

cialized to real-time systems: it re�nes a �nite representation of an in�nite product graph,

splitting nodes to satisfy clock constraints that depend on the property and system being

checked.

In all of these cases, some form of abstraction is used, to make the in�nite-state space

manageable. Often, a �nite approximation or quotient of the in�nite state-space is explored

instead. Since a useful abstraction does not usually satisfy all the properties of the original

system, abstractions must often be re�ned before the property of interest can be proved.

[DW95, Won95] uses abstract interpretation to establish general safety properties of

real-time systems. A general algorithm is presented that performs forwards and backwards

over- and under-approximations, This procedure is then specialized to the case of real-time

systems.

A method for \model checking" �nite abstractions of formulas over in�nite domains is

presented in [Jac95]. A class of exact abstractions allows concrete theorems to be proved or

disproved at the abstract level, while approximations may produce false counterexamples.

The Nitpick system [JD96, Jac96], an example of a \lightweight" veri�cation system (see

Section 8.2), uses similar ideas to detect errors in software systems. Constraints are used

to reduce a potentially in�nite number of con�gurations to a �nite number that can be

automatically checked. Temporal logic is not explicitly used in this work|implicitly, it is

invariants that are checked.

7.3.1 Data Independence

The often-used notion of data independence for reactive systems is de�ned in [Wol86].

Brie
y, a system is data-independent if the particular values of the (possibly in�nite-state)

data that it manipulates are not relevant to the behavior of the system. Thus, for instance,

a protocol that transmits messages may be proved correct regardless of the type of messages

it transmits. Similarly, a hardware system that moves data between di�erent registers but

does not change the data or branch depending on its value is data-independent as well.

Data-independent systems are described as \essentially �nite-state." The same can be

said for systems that have �nite-state assertion-based abstractions that do not use well-

founded orders, a class of systems that includes the data-independent ones: only �nitely
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Method Re�nement? uses '? automatic?

Static Analysis and Invariant Generation static bottom-up automatic

(Abstract Interpretation)

Assertion Graphs static top-down automatic

(Intermediate Assertions)

(Generalized) Veri�cation Diagrams static top-down interactive

Deductive Model Checking dynamic top-down interactive

Fairness Diagrams dynamic [both] interactive

Partition Re�nement dynamic [both] [both]

In�nite-state Model Checking dynamic top-down [both]

Table 7.1: Classi�cation of some abstraction methods

many distinctions concerning the data are made, which can be captured by a �nite number of

assertions. (This distinction is relative to the particular property being veri�ed|programs

can be said to be data-independent with respect to some properties, but not others.)

In contrast, note that the use of well-founded orders makes it possible to reason about

unbounded sequences of operations on data of unbounded size.

Issues of data, control, and data-independence are discussed in, for instance, [DGH95,

HB95]. Wolper points out how propositional logics of programs [FL79, KT89] isolate pro-

gram properties from �rst-order complexity. Our abstract systems can also be analyzed

using such logics.

7.4 Combined Methods

Table 7.1 summarizes the classi�cation of methods in this chapter. For general in�nite-state

systems, the automatic methods are incomplete, and the complete methods are interactive.

There are many ways in which theorem proving, model checking, invariant generation

and abstraction can be combined. The STeP system (see Section 2.7) integrates all of these

components. General-purpose theorem provers such as HOL and the Boyer-Moore prover

have been equipped with OBDD's. The PVS system provides an OBDD-based procedure for

the evaluation of �-calculus formulas that can be used to perform symbolic model checking

[RSS95, HS96, ORR+96].
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[DF95] applies abstraction and error trace analysis to in�nite-state systems. The ab-

stract system is generated automatically given a data abstraction that maps concrete vari-

ables and functions to abstract ones. The abstraction is based on a simulation relation, so

it is weakly preserving for 8CTL*. If an abstract counterexample is found that does not

correspond to a concrete one, an assumption that excludes this counterexample is gener-

ated. This is a temporal formula that is expected to hold of the concrete system S. The

model checker, which can take such assumptions into account, is then again used to check

the original property. The process is iterated until a concrete counterexample is found, or

model checking succeeds under a given set of assumptions. At this point, the assumptions

can be proved over the concrete system, using deductive veri�cation (theorem proving). If

they hold, the proof is complete. The assumptions are provided by the user, and are often

simple invariants which are easy to prove, deductively, over S.

[RS99] presents a framework that combines abstraction, abstraction re�nement and

theorem proving in a way similar to that espoused in this thesis, specialized to the case of

invariants, where the di�erent components are treated as \black boxes." After an assertion-

based abstraction is generated (using the method of [GS97]), abstract counterexamples are

analyzed to re�ne the abstraction or produce a concrete counterexample, in an iterative

process similar to that of Figure 5.6. Conjectures generated during the re�nement process

are given to the theorem prover, and the process repeated.
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Conclusions

We have shown how a number of deductive-algorithmic veri�cation methods share the com-

mon feature of justifying, deductively, the correctness of an abstraction that can then be

model checked, and presented ways in which these abstractions can be incrementally con-

structed and combined. In our framework, theorem proving is used to reason about relations

over the (possibly unbounded) data values in the system. The results are expressed as a

�nite-state abstraction, so that algorithmic model checking can perform the required state-

space exploration and combinatorial reasoning, which remains hidden to the user.

By \compiling" all the information produced by deductive methods into an abstraction,

we reuse the results of theorem proving as much as possible, maximizing the bene�ts of

algorithmic tools and minimizing the need for user interaction. The EXMC procedure of

Chapter 6 is intended to maximize the number of temporal properties that can be auto-

matically model checked once such abstractions are built, taking advantage of the extra

precision o�ered by ranking functions and bounds on fair transitions.

Our framework leads naturally to an abstraction re�nement methodology, where the

search for a suitable abstract system is iterative, guided by the user (see Figure 5.6). The

tools we propose can provide quick user feedback during such a process.

Dynamic methods such as Deductive Model Checking (Section 5.5) and Fairness Dia-

grams (see Section 6.7.3) can be viewed as abstraction re�nement, and interleave the model

checking and the theorem proving. However, they expose the combinatorial complexity to

the user, making them less directly applicable to larger systems and complex properties.

On the other hand, they allow more precision and �ner distinctions to be made. The same

can be said for the static method of Generalized Veri�cation Diagrams, which can force the

136
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user to explicitly consider a large number of points in the abstract state-space and a large

number of SCS's. The approach we propose can help these methods scale up, leaving the

combinatorial reasoning to automatic tools. Note, however, that graphical formalisms such

as GVD's and DMC can still be used for the essential (and unavoidable) user interaction.

8.1 Future Work

All of the algorithms we present are, of course, open to improvement, and the practical

implications of our framework remain to be explored. It is very desirable to make further

improvements to the approximation procedures of Chapter 4.

EÆcient implementations for the Extended Model Checking of Chapter 6 should also be

developed, perhaps adapting existing �nite-state model checking tools. The complexity of

this �nite-state procedure should be related to the complexity of standard model checking

problems as well. Other extensions include adapting the EXMC procedure to all of CTL*.

8.1.1 Finite and In�nite Domains

This thesis focuses on abstraction from the in�nite-state to the �nite-state. Clearly, the

same methods can also be used to abstract from �nite-state to �nite-state (fewer bits).

Furthermore, the general techniques we present can be adapted to assertion languages

other than purely propositional logic, and the use of more powerful assertion languages at

the abstract level should be investigated.

This will support, for instance, �nite- to in�nite-state abstractions, which can be par-

ticularly useful in the case of complex hardware, as mentioned in Section 7.1.5. It will

also allow in�nite- to in�nite-state abstractions, where the abstract domain features a more

tractable assertion language amenable to model checking and other automated tools (c.f.

invariant generation, see Section 7.1.2).

8.1.2 Parameterized Systems

The techniques we present do not address the case of parameterized systems, which compose

an unbounded, parameterized number of processes. Deductive methods are especially well-

suited for verifying such systems, in an interactive setting. The relationship between the

methods we propose and those used for parameterized system veri�cation, e.g., [CGB89,

KM89, WL89, MP90, LHR97, Nam98] should be explored.
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8.1.3 Modular Speci�cation and Compositional Veri�cation

Like abstraction, modular speci�cation and compositional veri�cation (widely understood)

can play a very important role in �ghting the state-explosion problem (for a small sample

of work in the area, see [dRLP98]). The interaction between compositional veri�cation and

abstraction for the �nite-state is studied in [Lon93]; these methods should be extended and

adapted to the in�nite-state case.

Modularity and abstraction for in�nite-state systems are addressed in [MCF+98, KP98].

Encouraging preliminary results relevant to this thesis are presented in [MCF+98]. A de-

tailed STeP speci�cation of the steam boiler hybrid system case study [ABL96] was debugged

by generating �nite-state abstractions that were then model checked. The abstraction pro-

cedure from Chapter 4 eliminated the real-time and hybrid portions of the system to yield

�nite-state (weakly-preserving) abstractions. Since the system was modularly speci�ed,

individual modules could be abstracted as well.

8.2 Mediumweight Formal Methods

Two frequently cited obstacles to the application of formal methods to real-world system

design is their cost and the time it takes to apply them. Often, the product deadline is

much closer than the time it would take to specify and verify it.

In [JW96], Jackson and Wing advocate lightweight formal methods, which are char-

acterized by partiality in language, modeling, analysis and composition. In order to be

more automatic and usable, such methods should be willing to use less expressive but more

tractable speci�cation languages, be able to analyze partial speci�cations of large systems,

and give a higher priority to the �nding of bugs rather than the construction of proofs.

The pure, unadulterated application of theorem proving can be heavyweight and, when

not in the hands of an experienced user, expensive and slow. On the other hand, invariant

generation and static analysis tools are lightweight, eÆciently proving a limited class of

properties. Combinations of abstraction, model checking, re�nement and modularity can

result in mediumweight methods, which can prove more complex properties more quickly

with a moderate amount of user interaction.

Even though design errors should be quickly found, the process of �nding them should

facilitate the proof of system properties (with the caveats of Section 1.2). Proven properties

can focus the attention on other conjectured properties and aspects of the system where bugs
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may be found. Thus, while initial negative results can help debug the system, positive results

will establish simple properties that will be useful in more complex, global falsi�cation,

veri�cation, debugging and proofs.

We hope that this thesis is a contribution towards this goal. In particular, the methods

we present can be used for a faster iteration of the basic abstract-model check-re�ne loop,

so the right abstraction, or a counterexample, can quickly be found.
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99-approximation, 70

89-approximation, 70

89-subgraph, 43, 96, 119

9CTL* (existential temporal logic), 17

8CTL* (universal temporal logic), 17

� (abstraction function)

approximated, 53

of sets of states, 32

�t (abstraction for temporal formulas), 34

`i (control assertion), 14

mi (control assertion), 14

f (complement), 12


 (concretization function), 32

of sets and relations, 32, 70

of temporal formulas, 34

) (abbreviation for 0 (p! q)), 17

jjljj (set of l-states), 16

L(	) (language of a GVD), 77

L(') (temporal models of '), 19, 24

L(S) (computations of S), 13

q (state), 10

q (system), 18

q (temporal), 17

�-calculus, 25, 110

�Æ (ranking function label), 103

�(n) (node label)

in EXMC, 115

in DMC, 92

in GVD's, 77

!-automata, 10, 21, 24, 77, 84, 104

'-state (state satis�es '), 10

P(�C) (power set of �C), 32

R (transition relation), 9

� (set of states), 9, 11

�A (abstract domain), 32

S q ', 18

S-valid (system validity), 18

T' (temporal tableau of '), 21

� (initial condition), 9

T (s1; s2), 12

U -variant (of sequences and states), 47

V (system variables), 10

X[U ] (set of U -variants of X), 47

enabled (enabling condition), 12

enabled�(�); enabled+(�), 99

�lter (CA; P ) (propositional �lter), 67

inf(�) (in�nity set), 77

post (postcondition), 10, 12

pre (precondition), 10, 12

preAi , post
A
i (termination table), 101

tail(S)-computation, 78

taken(�), 45, 105

wpc (weakest precondition), 10, 12, 129
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abstract context, 66

abstract interpretation, 31, 127{129

abstract system, 31

extended, 111

abstraction, 3

of 8CTL* temporal formula, 34

transition mapped, 99

abstraction function, 32

abstraction re�nement, 88

acceptance condition, 21, 77

accessibility, 20

assertion, 10, 11

assertion graph, 128

assertion language, 10, 11, 53

atom (tableau), 21

atomic formula, 11

automata, see omega (!)-automata

automata-theoretic model checking, 24

automated deduction, 2, 28, 129

auxiliary variables (rigid), 18, 45

backwards propagation, 24

bakery program, 13

abstract version, 37

accessibility GVD, 85

proof in�nite-state, 107

second termination table, 122

termination table, 102

BDD, see binary decision diagram

behavior graph, 22

binary decision diagram (BDD), 11, 25,

67, 69

explosion problem, 25

binary relation, 27

bisimulation, 32, 130

black box, 91, 135

model checker, 21

validity checker, 29, 52

boolean algebra, 47

boolean homomorphism, 48

bootstrapping invariants, 69

branching-time temporal logic (CTL*), 16

bugs, 5, 6, 57, 118

clock variables, 14

clocked transition system (CTS), 14{16,

63

Collatz problem, 118

compassion, 13, 40, 79

uniform, 40{42

compassionate transition, 13

complete boolean algebra, 47

completeness, 2, 26, 95

in theorem proving, 126

computation, 13

U -variants, 47
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of a GVD, 77

computation-tree temporal logic (CTL), 16,

17, 18

concrete system, 31

concretization function 
, 32

of sets and relations, 32, 70

of temporal formulas, 34

concurrency, 1, 13

modeled by interleaving, 14

conservative transition relation, 43

constrained (89) transition relation, 43,

70, 95

constraint logic programming (CLP), 11

context, 54

abstract, 66

continuous function, 33, 48

control locations, 81

counterexample computation, 2, 69

abstract, 113

concrete, 118{120

counterexamples, 43

CTL, see computation-tree temporal logic

CTL*, see branching-time temporal logic

CTS, see clocked transition system

cut-set, 79

data abstraction, 135

data independence, 129, 133{134

decision procedures, 28

Deductive Model Checking (DMC), 88{

96, 111

deductive veri�cation, 2, 25, 75

democratic Kripke structure, 43

description relation, 33

disclaimer, 118

discrete variables, 14

DMC, see Deductive Model Checking

edge labels

in EXMC (one transition/edge), 112

in DMC (set of transitions), 92

in Kripke structure, 11

in product graph, 23

induced by node labeling �Æ, 103

not used in diagrams, 77

elimination method, 72, 93

enabled (enabling condition), 12

enabled transition, 12

enabling condition, 38{42

encapsulation conventions, 86

executable edge, 95

existential temporal properties, 17, 43{45

EXMC, see Extended Model Checking

explosion problem

OBDD, 25

state, 24

Extended Model Checking (EXMC), 111{

120

fair exit (in GVD), 80

fair paths, 45

fair transition systems (FTS), 10{14

fairness, 13, 38{42

Fairness Diagrams, 124, 131

fairness table, 99

fairness-reducing transition mapping, 61

falsi�cation diagram, 88

�nite-state systems, 2
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Fischer mutual exclusion algorithm, 15, 63

complete version, 64


exible variables, 18

formal falsi�cation, 6

formal method, 5

forwards propagation, 24

free transition relation (99), 70

FTS, see fair transition systems

ful�lling SCS, 21

fully disabled transition, 96

fully enabled transition, 94

fully fair SCS, 96

Galois connection, 32

Galois insertion, 33, 48

Generalized Veri�cation Diagrams, 76{86

S-valid, 77

guard (see also enabling condition), 63

GVD, see Generalized Veri�cation Diagrams

hardware systems, 2, 25, 130

homomorphism (boolean), 48

hybrid systems, 2, 30, 131, 132

idling transition, 13

incremental abstraction construction, 68

inductive assertion, 26, 75

in�nite trees, 24

in�nite-state systems, 2

initial condition, 11

initial nodes, 22, 77

initial tableau atom, 21

interleaving, 13, 14

invariance formula, 19

invariance rule, 25, 75

invariants, 27

bootstrapping, 69

just exit, 79

just transition, 13

justice, 13, 79

knowledge representation, 4

Kripke structure, 9

89-subgraph, 96

democratic, 43

edge labeling, 11

fair, 50

liberal transition relation, 43

linear arithmetic, 128

linear-time temporal logic (LTL), 17, 23

literal, 16

logical omniscience, 4

LTL, see linear-time temporal logic

M�uller acceptance condition, 77

measurements, 64

model checking, 2, 20{25

automata-theoretic, 24

constrained, 28

deductive, 88{96, 111

explicit-state, 23, 25

extended, 111

extended (EXMC), 111{120

LTL, 110

partial, 123

symbolic, 25, 111

models (of LTL), 19

monotonic checkValid, 65



158 INDEX

mu (�)-calculus, 25, 110

mutual exclusion, 20

bakery, 13

Fischer (real-time), 15

negation-normal form, 16, 34

next value, 45

non-determinism, 1, 79

non-Zeno, 15, 160

diagrams, 96

expressed in CTL, 18

OBDD, see binary decision diagram

omega (!)-automata, 10, 21, 24, 77, 84,

104

one-bounded overtaking, 20

ordered binary decision diagram (OBDD),

see binary decision diagram

overlapping transitions, 66

parameterized systems, 137

past temporal operators, 18

path formula, 16

polarity, 57

polyhedra, 128

possibility diagrams, 96

possible world, 9

power set, 32

primed expressions, 12

primed variables, 11

product graph, 22

progress properties, 19, 76, 78

PVS, 29, 73

ranking function, 27, 100

ranking functions

in DMC, 94

node label �Æ, 103

table (see also termination table), 100

reachable state-space, 12, 75

reactive system, 9{14

real-time systems, 2, 14, 131, 132

re�nement

of abstractions, 88, 90, 91, 93

of systems, 46, 81

relative completeness, 2, 26, 95, 115

of EXMC, 115{118

rigid quanti�cation, 18, 45, 105

rigid variable, 18

run

fair (see also computation), 13

of a diagram, 77

of a system, 12

safety property, 19, 63, 78

satis�ability, 21

scienti�c method, 64

SCS (strongly connected subgraph)

T -terminating, 109

ful�lling, 21

fully adequate, 119

fully fair (in DMC), 96

inadequate, 112

of GVD, 77

of temporal tableau, 21

terminating, 95

unfolding, 95, 113, 124

well-founded, 79

set constraints, 128
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slogans, 122

soundness, 26

SPIN model checker, 21, 123

Stanford Temporal Prover (STeP), 8, 16,

30, 98

abstraction generation, 64

explicit-state model checking, 123

invariant generation, 128

symbolic model checking, 111

validity checking, 54

Stanford Validity Checker (SVC), 29, 54

state explosion problem, 2, 24

state formulas, 16

di�erent from assertions, 11

state transition graph, 12

state-quanti�ed temporal property, 18

state-space, 9, 11

STeP, see Stanford Temporal Prover

Streett acceptance condition, 77

strong fairness (compassion), 13

strongly connected subgraph, see SCS

SVC, see Stanford Validity Checker

symbolic model checking, 25, 111

system variables, 10, 11

T -terminating SCS, 109

tableau (temporal), 21

tableau atom, 21

tactics, 29, 73

taken(�), 45, 105

temporal logic, 1, 16{20

branching-time (CTL*), 16

computation-tree (CTL), 16, 17, 18

linear-time (LTL), 17, 23

propositional, 18

temporal property

possibility, 43

progress, 19

safety, 19

state-quanti�ed, 18

universal and existential, 17

temporal tableau, 21

terminating edge (in DMC), 94

termination table, 100{103

theorem proving, see automated deduc-

tion

tick transition, 14

transient SCS (in GVD), 78

transition, 11

fully disabled, 96

fully enabled, 94

overlapping, 66

taken on an edge, 11

transition relation, 9

conservative, see constrained

constrained (89), 43, 70, 95

formula, 11

free (99), 70

liberal, see free

transition systems, 11

clocked, 14{16

fair, 10{14

transition-mapped abstraction, 41, 61, 99

fairness-reducing, 41

tree automata, 24

undecidability, 4

unfair run, 13
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unfolding (an SCS), 95, 113

uniform compassion, 40{42

universal closure, 12

universal temporal formula, 17

universal temporal logic (8CTL*), 17

unobservable variables, 47, 46{47, 81, 98

user interaction, 4, 29, 122

validity checker, 54

monotonic, 65

SVC, 29, 54

veri�cation conditions, 12

for GVD's, 77{80

veri�cation diagrams (see also GVD's), 77

chain diagram, 87

possibility, 96

veri�cation rules, 74{76

wait-for rule, 76

weak fairness (justice), 13

weakest precondition, 10, 12, 129

well-founded orders, 27

well-founded SCS, 79

widening, 128

Zeno, see non-Zeno


