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Abstract

 

I have developed and evaluated a computable, normative framework for intelligent

alarms: automated agents that allocate scarce attention resources to concurrent processes

in a globally optimal manner.  I have been motivated to undertake this research by the

inadequacy of current alarmsÑparticularly of those in the intensive-care unit (ICU) set-

ting.  Although their underlying approaches allow current alarm systems to detect events

of varying complexity, these systems lack an integrated understanding of the competition

among processes for attention.  Thus, the aims of my research are twofold:  (1) to develop

a domain-independent method for allocating scarce attention resources among concurrent

processes, and (2) to evaluate this methodÕs potential usefulness in a real-world ICU set-

ting.

My approach rests on decision-theoretic foundations, and relies on Markov decision pro-

cesses to model time-varying, stochastic systems that respond to externally applied

actions.  I developed a process model that enables partial amounts of attention to be

applied over a speciÞed time horizon.  I then used separable-optimization techniques to

build a framework that allocates attention to a collection of such processes.  Given a col-

lection of continuing processes and a speciÞed time horizon, my framework computes two

quantitative metrics for each process:  (1) an attention allocation, which reßects how much

attention the process is awarded, and (2) an activation price, which reßects the processÕs

priority in receiving the allocated attention amount.  My framework computes these met-

rics efÞcientlyÑin time proportional to the number of processes being maintained.



 

v

 

I have developed a prototype, S

 

IMON

 

, that computes these alarm signals for a simulated

ICU.  My validity experiments investigate whether sensible input results in sensible out-

put.  The results show that S

 

IMON

 

 produces alarm signals that can be explained from the

normative basis, and that are consistent with sound clinical judgment. To assess computa-

bility, I used S

 

IMON

 

 to generate alarm signals for an ICU that contained 144 simulated

patients; the entire computation took about 2 seconds on a machine with only moderate

processing capabilities.  I thus conclude that my alarm framework is valid and comput-

able, and therefore is potentially useful in a real-world ICU setting.
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1

C h a p t e r  1

Introduction

In this dissertation, I develop a normative framework for intelligent alarms.  I am moti-

vated by the inadequacy of real-world alarmsÑparticularly of those in the intensive-care

unit (ICU) setting.  My hypothesis is that we can compute, in real time, normatively sound

alarm signals that allocate the attention of busy agents among a set of concurrent pro-

cesses that they are managing.

1.1 The alarm task

People rely on alarms in many real-world scenarios.  A watch alarm is set to chime at a

preset time; a Þre alarm is triggered when the density of ambient smoke particles exceeds

a certain threshold; a pager vibrates when its ownerÕs attention is being requested.  Alarms

help seismic scientists detect earthquakes; they help industrial engineers control manufac-

turing-plant processes; they help ICU clinicians manage the health of critically ill patients.

From these and other examples, we can make a few observations about alarms in general.

An alarm is an automated agent1 that monitors one or more time-varying quantities, and

that issues alarm signals, or alerts, in response to these monitored inputs (Figure 1.1).

The alarm employs a reasoning mechanism that transforms the time-varying inputs into
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alerts.  Alerts convey meaningful summaries of the inputs, and are thus informative.

Alerts also convey a sense of urgency:  They draw attention to events that may be impor-

tant to consider now, rather than later.  Hence, alerts are also necessarily intrusive.

1.1.1 Alarms as monitoring assistants

To have a conversation about how alarms should behave, we must examine the monitoring

tasks that alarms are intended to support.  Figure 1.2a depicts a generic monitoring task.

An agent2 is responsible for managing an ongoing process.  She observes the process over

time, performing actions on the process as the observations indicate.

Figure 1.2b depicts the same monitoring scenario, but with an alarm interposed between

the process and the agent.  The alarm observes the process over time and issues an alert

whenever the process needs an action that requires the agentÕs presence.  In this manner,

the alarm untethers the agent from the process:  She is free to perform other tasks, as long

as she can respond to alerts in a timely, effective manner.

1. For convenience, I refer to alarms as devices in this dissertation.  However, an alarm
may be a human agent who faithfully carries out an alert protocol; for example, an inven-
tory-control clerk reports shortages of various stocked items to the purchasing manager,
who then acts on such information.

Figure 1.1. Generic alarm. 
An alarm is a device that generates alarm signals, or alerts, in response to a set of time-
varying input quantities.

2. For the remainder of the dissertation, I use agent to refer to the decision maker who
manages the concurrent processes.

alarm
time-varying

quantities alerts
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By acknowledging the role of alarms as monitoring assistants, we immediately conclude

that an intelligent alarm is action based:  It generates alerts based on a processÕs need for

an agentÕs attention.

1.1.2 Alarms as multitasking assistants

An agent manages a process with the help of an alarm because she is unable (or unwilling)

to devote all her attention to that process.  In general, the agent manages several concur-

rent processes to which she cannot attend simultaneously.  Figure 1.3 illustrates how a

busy agent may divide her attention among a set of three processes:  At any given

moment, she attends to one process, while leaving the other two processes unattended.

Alarms can help our agent to multitask among the processes that she manages.  Suppose

that each process is monitored by an action-based alarm.  Then this system of alarms can

issue alerts according to the attention needs of particular processes.  Problems arise,

Figure 1.2. Generic monitoring task. 
An agent is responsible for managing an ongoing process.  In (a), the agent attends to the
process at all times.  In (b), an alarm attends to the process continuously, alerting the agent
whenever the process needs the agentÕs active intervention.

process

agent

observation

alert

action

(a) (b)

agent
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process

observationaction
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however, whenever there are simultaneous alerts that each request the agentÕs attention.

Despite the agentÕs best intentions, she must attend to only one process, while temporarily

forgoing the others.  This problem of managing competing alerts illustrates the need for

alerts that communicate not only a processÕs need for attention, but also the urgency of

that need.  Such alerts would enable the agent to attend to the most urgent process, while

maintaining an awareness of the imminent attention needs of the other processes.

1.2  Real-world alarms

Despite their ubiquitous importance, alarms in the real world often fall short of the ideal.

They can detect conditions of varying complexity, but they do not issue alerts that neces-

sarily reßect the need for an agentÕs intervention.  Furthermore, the intrusiveness of these

alerts does not necessarily reßect the urgencies of the corresponding situations.

1.2.1 Current alarm approaches

I have been motivated, in particular, by the inadequacies of current ICU alarms.  The most

prevalent ICU alarms monitor a set of phyiologic parameters over time; an alert is issued

Figure 1.3. Monitoring multiple processes under attention constraints. 
An agent multitasks among three processes.  Over the interval of time shown, the agent
switches her attention among the processes, in an effort to manage optimally the collection
of processes.

Process 1

Process 2

Process 3

time

unattended attended
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whenever any of the parameters fall outside its normal range.  Unfortunately, this simple

alert strategy has been shown to be ineffective:  False-alert3 rates as high as 93 percent

have been reported in various studies [Deller et al., 1992; Kestin et al., 1988; Meijler,

1987].  False alerts are problematic because they can divert the attention of clinicians

away from more important tasks.  Furthermore, they are a source of irritation, often caus-

ing clinicians to switch the alarms offÑa phenomenon known as the cry wolf syndrome

[Sykes, 1989].  Other examples of nonideal alerts are false-negative alerts and true-posi-

tive alerts with inappropriate delays [P�te-Cornell, 1986].  In general, nonideal alerts

impede the efforts of ICU clinicians to multitask optimally among their patients.

Researchers have developed numerous techniques for addressing the inadequacies of

range-checking alarm approaches.  These enhanced alarm approaches range from Þltering

algorithms that remove spurious transients from individual signals, to approaches that per-

form higher level inferences by integrating the information obtained from multiple sig-

nals.  (I survey current alarm approaches in Chapter 2.)  Although such approaches allow

current alarm systems to detect events of varying complexity, these systems lack an inte-

grated understanding of the competition among processes for attention.  For example, con-

sider an ICU clinician who is confronted by a set of simultaneous alerts that originate

independently from several different patients (Figure 1.4).  The alerts may draw attention

to potentially interesting events concerning the patients, but the clinician must still decide

how to act, given the competing alerts. 

1.2.2 Normative alarm approaches

Quinn [1989] envisioned an alarm system that organizes and displays alerts in a linear

hierarchy, according to each alertÕs relative need for attention.  A clinician using such an

alarm system would service the alert at the top of the queue, while maintaining an aware-

ness of other, pending alerts.  My thesis research was inspired by this vision of an intelli-

gent alarm.  In pursuing this vision, however, I discovered that none of the existing alarm

3. False alerts are those that are retrospectively judged to provide no added value to the
care of the patient.
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approaches explicitly allocated scarce attention resources among concurrent processes.

Thus, my research aims were twofold:  (1) to develop a domain-independent framework

for the attention-allocation problem, based on normatively sound reasoning principles;

and (2) to evaluate this methodÕs potential usefulness in a real-world ICU setting.

1.3 SIMON:  A prototype, normative alarm system

I developed a program, SIMON, that generates decision-theoretic alarm signals for a ward

of simulated ICU patients who are being ventilated mechanically.  SIMONÕs patient models

are based, in part, on the outputs of a validated prototype ventilator-management advisor.

Figure 1.4. The problem of multiple, independent alerts. 
An agent is confronted by simultaneous alerts that originate independently from multiple
processes.  Although each alert may result from a sophisticated inference procedure, the
alerts, taken together, do not help the agent to allocate her attention among the processes.
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1.3.1 Clinical scenario

Consider the following scenario of an ICU with three simulated patients who have been

admitted for separate, potentially life-threatening illnesses (Table 1.1).4 Each patient

receives ongoing life support, which enables his body a chance to heal itself.  The physio-

logic status of each patient is monitored through telemetry; changes in physiology may

warrant a change in the standing treatment protocol.  Any change in treatment, however,

must be administered by the ICU clinician, Dr. Seiver, who physically attends to each

patient at the bedside.

Despite his best intentions, Dr. Seiver can attend to only one patient at a time.  Thus, he

relies on alarm systems that monitor each patientÕs telemetry, to help him determine where

his attention is needed.  Under the old alarm system, harsh, audible alerts originated inde-

pendently and frequently from each bedside, alerting Dr. Seiver to conditions ranging

from a loosely attached oxygen-saturation monitor (usually not an emergency), to a pre-

cipitous, unexplained drop in cardiac output (usually an emergency).  Regardless of an

alertÕs actual urgency, Dr. Seiver was obligated to service it immediately; in most cases,

the urgency arose more from a desire to stop the noise and return to his original task, than

from the cause of the alert.

4. I describe the models for these patients in Section 6.4.

Table 1.1. Three patients and their medical conditions. 

ID # Name Condition

1 Mr. Dickinson congestive heart failure

2 Ms. DiÕAnno pulmonary embolism

3 Mr. Bayley pneumonia
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1.3.2 Alarm signals computed by SIMON

Now, Dr. Seiver uses a new alarm system, SIMON, that helps him to set priorities for allo-

cating his limited attention among the three patients.  SIMON integrates physiologic data

obtained from all the patients, and summarizes the alert status of each patient with two

numerical measures:

• A priority measure, indicating the order in which the patient needs attention

• An attention allocation, indicating how much attention the patient needs  

These alarm signals are then displayed on a portable, integrated monitor typiÞed by

Figure 1.5, with the higher priority patients listed farther up.  Note that, in addition to the

physiologic measurements, two input values affect the computed alarm metrics:

• The available attention:  the effective number of available ICU clinicians  

• The attention horizon:  the duration over which the available attention is to be

allocated

For the scenario illustrated in Figure 1.5, there is 1 available attention unit—because Dr.

Seiver is working alone5—and the attention horizon is set to 6 minutes.  Upon consulting

the monitor, Dr. Seiver decides to attend to patient 2, to whom he expects to devote 76 per-

cent of his attention over the next 6 minutes.  During this same time interval, Dr. Seiver

also expects to devote 16 percent of his attention to patient 1, and 8 percent of his attention

to patient 3.

A change in either input would alter SIMONÕs output.  For example, suppose that Dr.

Seiver wants to know how he should allocate his attention over the next 60 minutes.

Figure 1.6 illustrates the results of changing the attention horizon from 6 minutes to 60

minutes.  Dr. Seiver would still Þrst attend to patient 2, but his background awareness of

the other patients would increase:  Over the next 60 minutes, he would now expect to

devote 26 percent of his attention to patient 1, and 24 percent of his attention to patient 3.        

5. The available attention would increase if Dr. Seiver recruits additional clinicians.
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Figure 1.5. Displayed alarm signals for three patients (T  = 6 minutes). 
Displayed are SIMONÕs alarm signals for the patients of Table 1.1, given an attention hori-
zon T  = 6 minutes and 1 available attention unit.  The priorities are displayed in microutils
per attention unit, where a util denotes the probability of a patientÕs survival.  The attention
allocations are a recommended partitioning of the available attention units.  In this exam-
ple, higher-priority patients have higher attention allocations; this correspondence does
not hold in general.

Figure 1.6. Displayed alarm signals for three patients (T  = 60 minutes). 
Displayed are SIMONÕs alarm signals for the patients of Table 1.1, given an attention hori-
zon T  = 60 minutes and 1 available attention unit.  The values differ from those of
Figure 1.5:  The priority measures increase with T, but the relative priorities remain the
same.  Also, with increased T, the attention allocations become closer to one another.
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1.3.3 Time-varying alarm signals

SIMONÕs alarm signals are time-varying, in general, because they are based on inputs that

may vary over time.  Changes in input can occur in several ways.  A patient may experi-

ence a change in physiology; he may undergo a change in treatment; his illness may

evolve from one type to another.  He may be discharged from the ICU:  His condition may

stabilize to the point that he no longer needs ICU treatment, or he may die despite his

receiving aggressive life support.  The ICU could admit an additional patient; the ICU

could gain or lose clinician resources.  In general, one or more of these changes would

change the optimal attention allocation, and would thus cause SIMONÕs output to change.  

Figure 1.7. Displayed alarm signals for two patients (T  = 6 minutes). 
Displayed are SIMONÕs alarm signals for an ICU that contains only patients 1 and 3 (see
Table 1.1), given an attention horizon T  = 6 minutes and 1 available attention unit.

Figure 1.8. Displayed alarm signals for two patients (T  = 60 minutes). 
Displayed are SIMONÕs alarm signals for an ICU that contains only patients 1 and 3 (see
Table 1.1), given an attention horizon T  = 60 minutes and 1 available attention unit.
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To witness an update in SIMONÕs output, let us return to Dr. SeiverÕs ICU scenario.  Recall

that the alarm signals for T  = 6 minutes and T  = 60 minutes are shown in Figures 1.5 and

1.6, respectively.  Suppose that Ms. DiÕAnno (patient 2) is successfully treated and dis-

charged.  Dr. Seiver receives an alert on his portable monitor; upon checking the monitor,

he notes that only two patients remain in the ICU.  With fewer patients, Dr. Seiver is able

to devote more attention to each of them than previously possible.  In other words, the

attention that had been allocated to Ms. DiÕAnno is now reallocated to Mr. Dickinson and

Mr. Bayley.  Figures 1.7 and 1.8 depict the updated alarm signals for attention horizons of

6 minutes and 60 minutes, respectively.

SIMON has additional capabilities, and can produce interesting behaviors, beyond those

that I have demonstrated here.  I discuss SIMONÕs architecture in Chapter 5 and character-

ize its behavior in Chapter 6.

1.4 SIMONÕs underlying approach

SIMONÕs outputs originate from the alarm approach that I develop in this dissertation.

Figure 1.9 illustrates a schematic of my alarm approach.  Each process has a correspond-

ing model that interprets the measurements obtained from it.  The process models, in turn,

are considered together by an overarching framework.  Given an available attention

amount and an attention horizon, this framework computes a priority measure and an

attention allocation for each process.  Although I use SIMON to simulate various ICU sce-

narios, the underlying approach is domain independent:  ICU clinicians are examples of

agents, and patients are examples of processes.

Note that my framework produces two quantitative alarm measures for each process, in

contrast to the linear alert hierarchy suggested by Quinn [1989].  My research demon-

strates, in fact, that the general notion of urgency cannot be captured by a single quantita-

tive measure.  In Section 2.5.3, I review prior work on a one-dimensional urgency

measure that has been developed for a speciÞc class of processes.



12 1.0 Introduction

1.5 Guide for the reader

In Chapter 2, I present a survey and an analysis of methodologies that have been devel-

oped to address the alarm problem.  Building on decision-theoretic foundations, I develop

my alarm approach in Chapters 3 and 4.  In Chapter 5, I describe SIMON, a program that

uses my approach to generate alarm signals for a simulated ICU.  In Chapter 6, I describe

how I used SIMON to test my research hypothesis.  Finally, in Chapter 7, I reßect on my

workÕs contributions to various disciplines, and point to directions for future research.

Figure 1.9. Schematic of SIMONÕs underlying approach. 
Observations from each process are interpreted by a corresponding model.  An integrated
alarm considers the collection of processes taken as a whole.  The integrated alarm com-
putes, for each process, a pair of alarm signals; each pair of  alarm signals is represented as
a black arrow.  The agent considers the set of alarm signals and allocates her attention
among the processes, as indicated by the grey arrows.
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C h a p t e r  2

Alarm Approaches

The intelligence of an alarm system depends on the underlying reasoning, or methodol-

ogy, that it uses to generate alerts.  Previous approaches to intelligent alarms have relied

on methods that vary in sophistication.  In this chapter, I survey these alarm approaches.  I

provide examples from medicine and other domains, and I place my thesis research in the

context of this previous work.

The majority of alarm approaches can be subdivided into groups that are characterized by

a small set of methodologic distinctions.  My exposition is guided, although not restricted,

by the hierarchy of distinctions shown in Figure 2.1.  For instance, when I discuss diag-

nostic alerts, I include both static and temporal examples.

2.1 Input-signal processing

Alarm approaches can be distinguished broadly by how they handle multiple, simulta-

neous signals acquired from a single process.  In observation-based approaches, each

signal is processed independently; alerts are based on features recognized in the individual

signals (Figure 2.2a).  Event-based approaches, on the other hand, process observations
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from multiple sources in an integrated manner; alerts are based on features identiÞed in

the signals, which are taken together (Figure 2.2b).

In the following subsections, I investigate various observation-based approaches to gener-

ating alerts.  I describe event-based approaches in Section 2.2.

2.1.1 Simple range checking

The simplest, and most widely implemented alarm models are based on thresholds of mea-

sured signals.  An inventory-control alarm triggers when the number of stocked items falls

below a predetermined threshold; a smoke alarm is activated when the density of smoke

Figure 2.1. Methodologic distinctions. 
I survey alarm approaches according to this hierarchy of distinctions.  The alarm approach
developed in this dissertation is indicated by the bold-faced rectangle.
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particles exceeds a predetermined threshold; an intensive-care unit (ICU) alarm sounds

when one or more physiologic parameters fall outside their normal ranges.

Although sufÞcient for some domains, the simple-threshold alarm approach has been

shown to be ineffective in many others.  For example, false alerts that occur in the moni-

toring of critically ill patients are well documentedÑfalse-alert rates of 33, 75, and 93

percent have been reported in various critical-care settings [Deller et al., 1992; Kestin et

al., 1988; Meijler, 1987].  It is possible to increase a simple-threshold alarmÕs speciÞcity

(the probability of an alert condition, given an alert) by adjusting the thresholds to broaden

the normal range; however, such an adjustment also decreases the alarmÕs sensitivity (the

probability of an alert, given an alert condition).  Clinicians typically tolerate a false-alert

rate that balances these opposing effects.

Figure 2.2. Observation-based versus event-based alarm approaches. 
Observation-based (a) and event-based (b) alarm approaches differ in how they handle
multiple observations from the same source.  Observation-based alerts use features present
in the individual observations, whereas event-based alerts use process characteristics
inferred from the observations considered together.
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2.1.2 Intelligent range checking

To improve the performance of simple-threshold alarms, researchers have employed

methods that address the various sources of false alerts.

2.1.2.1 Real-time Þlters for noise and transients

The signals that are obtained from ICU patients or other physical systems often contain

noise and transients that obscure the underlying quantities of interest.  For example,

momentary data spikes often originate from artifacts in the measurement process.  Also,

parameter values may drift for reasons that do not necessarily indicate an alert.  Restless

patients may exhibit erratic variations in their physiologic measurements; patients with

complex illnesses such as multiple-organ failure may exhibit characteristic, low-frequency

hemodynamic oscillations [Dagum et al., 1995].

Median or low-pass Þlters can be used to reduce noise and transients whenever data are

sampled frequently and inexpensively.  Although such Þltering may be useful in critical-

care settings, the resulting loss of information makes the technique less appropriate for

domains that are characterized by relatively sparse data, such as monitoring of childrenÕs

growth [Haimowitz, 1994].

2.1.2.2 Custom-tailored thresholds for heterogeneous patients

A generic set of normal parmeter ranges may not apply to any speciÞc patient.  In fact,

critically ill patients often have Ònormal rangesÓ that are abnormal for the healthy patient

population.  For example, we would expect an elderly man who has a longstanding history

of cardiovascular disease to have lower cardiac output and higher arterial blood pressure,

compared to a young, healthy woman with no cardiovascular disease.

To address the diverse monitoring needs of patients, several researchers developed meth-

ods that assign custom-tailored thresholds for speciÞc categories of patients [Beneken &

van der Aa, 1989].  Moret-Bonillo and associates [1992] used a symbolic rule set to assign

ventilator-assisted patients into categories, each associated with a predetermined set of

lower and upper thresholds.  van Oostrom and colleagues [1993] employed a statistical



2.2 Temporal reasoning 17

clustering approach to perform a similar classiÞcation task for patients undergoing intra-

operative anesthesia.

2.1.2.3 Thresholds that incorporate temporal risk factors

Many other real-world phenomena confound the search for optimum thresholds.  For

example, true alerts that are issued too late may result in losses that could have been

avoided with earlier warning.  For example, a cardiac-arrest alert is a true alert, but of

more value are alerts for cardiac rhythm disturbances that, if untreated, will lead to cardiac

arrest.  Also, false alerts can have consequences beyond the immediate cost of a needless

response:  Individuals who have responded to numerous false alerts may discount or even

ignore future alerts (the cry-wolf phenomenon).

P�te-Cornell [1986] considered the effects of delayed warnings, the cry-wolf phenome-

non, and other real-world factors in developing a probabilistic model for a threshold-based

warning system.  Her model focuses primarily not on alert sensitivities and speciÞcities,

but rather on the costs and beneÞts associated with an alert; the optimal threshold maxi-

mizes an aggregate measure of these costs and beneÞts.

2.2 Temporal reasoning

Compared to their observation-based counterparts, event-based alarm approaches typi-

cally involve more-complex reasoning, and they generally elucidate more about the under-

lying process.  Event-based approaches are thus often described as intelligent.  Intelligent

alarm approaches vary widely, however, and can be differentiated by how the underlying

models handle the notion of time.  This difference is illustrated in Figure 2.3 and is dis-

cussed next.

2.2.1 Static inference

Models that perform static inference do not consider time explicitly.1  Static models inter-

pret observations via mechanisms that do not distinguish between measurements or events
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that occur at different times.  Note that this characterization does not imply that static

models cannot represent temporal concepts.  For example, a prediction model may have a

variable labeled Òdeath in 5 years.Ó  What makes this model static is its inability to reason

about death that occurs within any time other than Þve years.

Researchers have used myriad static modeling formalisms to prototype intelligent medical

alarms.  van der Aa [1990] used a rule-based approach to develop an expert alarm system

that diagnosed faults in the anesthesia breathing circuit, a network of conduits that enables

ventilated patients who are undergoing surgery to rebreathe oxygen and anesthestic gases

that they have exhaled.  Anesthesia alarms based on neural networks [Orr & Westenskow,

1. Other phrases used to describe static models include domain models, time-invariant
models, atemporal models, and memoryless models.

Figure 2.3. Static versus temporal models. 
Static and temporal models differ in how they interpret observations from a process at a
given time.  (a) Static models interpret a constellation of observations by determining
which present, underlying conditions best explain those observations.  (b) Temporal mod-
els, in contrast, may consider past or future states of the world, or both.  Whereas static
models can be used to represent notions of time, temporal models are distinguished by
their underlying formalisms, which are designed to deal with time explicitly.

present
state

past
states

future
states

process process

static
model

static inferences temporal inferences

observations observations

(a) (b)

temporal
model



2.2 Temporal reasoning 19

1994] and belief networks [Beinlich & Gaba, 1989]  also were  prototyped.  Hayes-Roth

and colleagues [1992] employed a blackboard architecture that supported heterogenous

modes of reasoning.  Other intelligent approaches to patient monitoring are reviewed in

various sources [see, e.g., Gravenstein et al., 1983; Gravenstein et al., 1987; Uckun,

1994].

In addition to using them to assist in the acute monitoring of bedridden patients, research-

ers have also used static alarm models to infer various pathological conditions from medi-

cal records or other databases.  Alerts from these sytems are typically presented as

reminders that help physicians to cope with ever-increasing amounts of information

[McDonald, 1976].  Alert rules have been used in medical information systems for drug-

interaction monitoring [Speedie et al., 1987] and laboratory-test interpretation [Connelly

et al., 1996], and in the HELP hospital information system [Haug et al., 1994].

Applications of static alarm models also include decision-support systems that make

explicit predictions; these predictions, in turn, help experts to focus limited attention

resources.  A classic example is the APACHE prognostic scoring system, which predicts

the survival of ICU patients [Knaus et al., 1991].  APACHE and its successors, APACHE

II and APACHE III, are based on statistical prediction models that are constructed from

large databases of cases.  Other scoring systems designed to allocate limited resources

effectively are reviewed by Esserman and associates [1995].  Note that these statistical

models are essentially static, despite their ability to predict the future.  For example,

APACHE III can produce risk estimates for patients who have different lengths of stay in

the ICU, but, in doing so, it does not consider temporal relationships among these different

risk estimates.

2.2.2 Temporal inference

Models that perform temporal inference, or dynamic models, are distinguished from

static models by their explicit representation and manipulation of time.  Through various

representations, temporal models capture inferential or mechanistic relationships between

the values of process parameters at different times.  Examples of temporal inference
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include the formulation of a diagnosis based on temporal patterns of observations [Shahar,

1994; Haimowitz, 1994], and the prediction of future process values from past observa-

tions [West & Harrison, 1989; Weigend & Gershenfeld, 1993].

An intelligent alarm can beneÞt in several ways from the ability to reason about time.

Many monitoring applications emphasize the importance of detecting changes in relevant

parameter values; such strategies go beyond declaring particular situations normal or

abnormal [Philip, 1989].  In addition, many diagnostic alarms depend on their ability to

interpret multivariate temporal trends [Haimowitz, 1994; Shahar, 1994].  Finally, many

alarms depend on early warnings that allow respondents to avert the consequences of

impending disasters [P�te-Cornell, 1986; Horvitz & Seiver, 1997].  For example, warnings

issued by a Þre alarm should allow enough time for building occupants to evacuate, and

for ÞreÞghters to keep property damage in check.

The simplest temporal-inference methods are single-variable trend detectors.  These meth-

ods can enhance the alert capabilities of range-checking methods by detecting pathologic

changes that occur within the normal ranges.  For example, a falling mean arterial pressure

(MAP) may indicate an internal bleeding process, which commences before the MAP

drops below the normal range.  Unfortunately, these enhanced detection capabilities come

at the expense of additional false alertsÑfor example, those that result from artifactual

measurement spikes or other physiologically meaningless trends.  Certain such artifacts

can be eliminated with the same Þltering techniques that augment range-checking alarms.

Single-parameter Þlters, however, can improve the speciÞcity of trend-detecting alarms to

only a certain extent; more speciÞc alerts require the coordinated analysis of multiple

parameter values and trends.  Avent and Charlton [1990] review biomedical applications

of trend detection.  Shahar [1994] and Haimowitz [1994] describe novel, artiÞcial-intelli-

gence (AI) approaches to temporal inference.

Models that perform temporal inference do not need to rely on formalisms that are distinct

from those used for static inference.  Fagan [1980] used data-directed rule sets to represent

temporal relations in the design of VM, one of the earliest ICU-monitoring prototypes.

Fukui and Masuzawa [1989] describe another ICU-monitoring system that uses a
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 approach to temporal inference.  I discuss temporal extensions of belief

networks and decision models in Sections 2.4.1 and 2.4.2.

The alarm methodology presented in this dissertation builds on the Markov decision pro-

cess (MDP):  a temporal decision model with decision-theoretic foundations.  I further

characterize this methodology in Sections 2.4 and 2.5.  But Þrst, let us ponder the problem

of reasoning under uncertainty, and my reasons for choosing the decision-theoretic basis

over other uncertain-reasoning formalisms.

2.3 Uncertainty management

Probability and statistics have been studied in centuries past, but uncertain reasoning did

not receive attention from the AI community until the late 1960s and early 1970s.  Before

that time, AI was largely regarded as symbolic reasoning built on a foundation of logic;

intelligence meant the ability to manipulate concepts, rather than to crunch numbers.

Enthusiasm for AI grew as symbolic-reasoning methods found their way from artiÞcial

block worlds to more complex real-world domains such as medicine and oil wildcatting.

One of the Þrst expert systems to incorporate an uncertain-reasoning mechanism was

MYCIN, an antibiotic-therapy advisor developed by Shortliffe and colleagues during the

early 1970s [Buchanan & Shortliffe, 1984].  Shortliffe and other researchers recognized

that AI had to address uncertainties that were inherent in real-world reasoning tasks, if AI

was to model those tasks with Þdelity.

2.3.1 Uncertainty in the real world

Uncertainty abounds.  We monitor a physical system to learn the values of various

quantities about which we are uncertain.  Often, however, our measurements serve only to

reduce, rather than to eliminate, such uncertainties; the quantities in which we are

interested express themselves only in part through the quantities that we can observe.

Even when we believe that our understanding of a particular process is accurate, we

cannot always predict that processÕs future evolution with absolute certainty.  Unmodeled,

rule-based
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exogenous inßuences, called stochastic inßuences, can confound our most detailed

prediction algorithms [West & Harrison, 1989; Dagum et al., 1995]; even when a natural

system is largely deterministic, inÞnitesimal perturbations conspire to make the system

virtually unpredictable beyond a limited time horizon [Gleick, 1987].

It is in the face of such uncertainties that we deliberate and act.  When we must choose

among alternatives, we may ponder and evaluate the future consequences of each alterna-

tive in the context of our present understandings.  Such decisions would be straightfor-

ward if we could asscociate a predictable, certain outcome with each alternative, and if we

had a way of assessing the relative desirability of different outcomes.  In reality, the uncer-

tainty in prospective outcomes forces us to resort to some form of approximate reasoning.

2.3.2 Uncertain reasoning in AI

The simplest way to deal with uncertainty is to abstract it away.  We can reason solely

from heuristics expressed in binary logic, provided that we have a means of transforming

real-world observations and concerns into rules and queries that are composed of only true

or false assertions.  Rule-based expert systems use such an approach [Buchanan & Short-

liffe, 1984].  The use of expert heuristics can assist powerfully in our endeavors to reason

about a complex, deterministic domain; however, as Tversky and Kahneman [1974; 1981]

demonstrated through psychological studies, people making even simple decisions, in the

face of uncertainty, are prone to errors in reasoning if they adhere rigidly to commonly

held rules of thumb.  Thus, expert systems can fail if, when applied to situations character-

ized by uncertainty, they rely on the heuristics that people use.

The alternative to abstracting away uncertainty is to deal with it explicitly.  The premise

here is that uncertainty, when it cannot be eliminated, can and should be quantiÞed.  An

uncertain-reasoning formalism provides a structured language that we can use to represent

varying degrees of belief or conÞdence, and a set of computation rules that dictates how

we should combine and otherwise manipulate such uncertain propositions.  Early exam-

ples of uncertain-reasoning formalisms in AI are certainty factors [Shortliffe & Buchanan,



2.3 Uncertainty management 23

1975] and fuzzy logic [Zadeh, 1983; Becker et al., 1997]; there are many others [Shafer &

Pearl, 1990].

2.3.3 The emergence of decision theory

Despite its early roots and routine use in engineering applications, decision theory2

[Bayes, 19583; von Neumann & Morgenstern, 1947; Savage, 1954] was not widely

embraced as a viable uncertain-reasoning formalism by the AI community before the mid-

1980s.  Early demonstrations of decision-theoretic expert systems in medicine [Gorry &

Barnett, 1968; de Dombal et al., 1972] did not deter the widespread belief that the required

computations could not scale up to large, complex domains without the introduction of

grossly unrealistic assumptions of independence.  Decision theory was thus judged by

many researchers in the 1970s and early 1980s as a number-crunching formalism of theo-

retical interest, impractical for the ÒintelligentÓ reasoning tasks being attacked by AI tech-

niques [Rich, 1983; Horvitz et al., 1988].

Advances in computation and a renewed critique of uncertain-reasoning formalisms

brought decision theory into the AI spotlight.  Fundamental inconsistencies and other

weaknesses in nonÐdecision-theoretic formalisms were elucidated [Heckerman, 1986;

Horvitz & Heckerman, 1986; Heckerman & Shortliffe, 1992].  The developments of belief

networks and inßuence diagrams enabled the structuring of domain knowledge [Jensen,

1996; Pearl, 1988; Shachter, 1988; Howard & Matheson, 1981]; researchers invented

techniques to perform efÞcient inference within such structures [Huang & Darwiche,

1996; Dagum & Luby, 1997].  Sequential decision models, already well established in the

engineering literature [Howard, 1960; Howard, 1971; Ross, 1983], found renewed interest

among AI researchers [Puterman, 1994; Dean et al., 1995].  High-proÞle, real-world appli-

cations of decision theory were deployed [Horvitz & Barry, 1995].

2. Decision theory encompasses probability theory.

3. This reference is a reprint of the original work published in 1763.
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Heckerman [1990] argued, concisely and persuasively, that decision theory stands out

among other uncertain-reasoning formalisms for its self-consistency, its unambiguous rep-

resentation of assumptions, its generality, its well-developed theory, and its normative

basis.  The normative basis is crucial, in light of demonstrated human tendencies to think

about uncertainty incorrectly (see Section 2.3.2).  Howard [1988] asserted the need for

normative reasoning Òwhen we are tempted to think what may not be so,Ó and emphasized

a strict adherence to the axioms in the following excerpt:

Some decision theorists have questioned the normative concepts.  They desire

to weaken the norms until the normative behavior agrees with the descriptive

behavior of human beings, to construct theories of decision making that are

both normative and descriptive.  A momentÕs reßection shows that if we have a

theory that is both normative and descriptive, we do not need a theory at all.  If

a process is natural, like breathing, why would you be even tempted to have a

normative theory? [Howard, 1988, p. 683]

2.4 Decision analysis

Decision analysis is the application of decision theory [Howard, 1988; Heckerman, 1990].

In developing the alarm framework presented in this dissertation, I chose to adopt a deci-

sion-theoretic foundation of reasoning.  My work can therefore be regarded as decision-

analytic research.

The computations involved in a decision analysis depends on the underlying reasoning

objective.  I discuss brießy the objectives of diagnosis, control, and attention allocation,

showing how these objectives relate to one another.

2.4.1 Diagnosis

Diagnosis involves applying expert knowledge to a set of observations with the goal of

determining the setÕs most probable explanation.  Whether the explanation is a known

cause or merely a recognized syndrome, diagnostic reasoning typically requires the expert
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interpretation of multiple observations in concert.  Diagnostic models thus fall under the

category of event-based approaches.

Decision-theoretic diagnosis in AI typically involves inference on a belief network [Hor-

vitz et al., 1988; Heckerman & Shortliffe, 1992].  Examples of diagnostic belief networks

in medicine include the ALARM network for the detection of critical events in anesthesia

[Beinlich & Gaba, 1989], and QMR-DT, a comprehensive belief network of diseases and

Þndings in internal medicine [Shwe et al., 1991].  Investigators have also endeavored to

incorporate temporal reasoning into the belief-network paradigm.  Laursen [1994] devel-

oped a belief-network to interpret constellations of ICU-measurement data and their

recent trends.  Other researchers have also investigated the application of temporal exten-

sions of belief network models [Dagum et al., 1995; Long, 1996; Tudor et al., 1998].

2.4.2 Control

Control is the purposeful, ongoing manipulation of a process.  A typical control problem is

framed around a set of actions, one of which is applied to the process at any given time.

The goal is to determine the action that best satisÞes a prespeciÞed objective.  The best

action may vary with process state; for example, when we are managing the ventilator set-

tings of a mechanically ventilated ICU patient, the optimal ventilator settings depend on

the patentÕs physiologic state, which may vary over time.  Control encompasses diagnosis,

in that the best action usually depends on what is happening with the process (e.g., a pro-

gressive illness).  The diagnostic step may be performed separately, or it may be implicitly

embedded in the control procedure.

Decision-theoretic control typically relies on a temporally extended decision model.  The

various approaches all involve the prediction and valuation of future effects of present

actionsÑor inactions.  The most general approach of practical interest is the MDP, a

multistage decision model in which states of the world at time t inßuence states of the

world at time t +1 [Howard, 1960; Howard, 1971; Puterman, 1994].  Figure 2.4  illustrates

an inßuence diagram for a generic MDP.  To compute optimal actions for an MDP, we
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must consider how various alternative actions affect future decision scenarios, whose

chosen actions have ramiÞcations even further into the future, and so on. 

The complexity that arises from this interleaving of future states and future actions has

driven researchers to develop special modeling techniques that circumvent these difÞcul-

ties.  Horvitz and colleagues characterized a particular class of time-critical decision prob-

lems for which time-dependent utilities could be assessed directly [Horvitz & Seiver,

1997; Horvitz & Rutledge, 1991].  Seiver [1992] compressed future decisions and their

effects into aggregate variables, which were then assessed directly by domain experts.

Although Rutledge and associates [1993], in their design of a ventilator-management

Figure 2.4. Markov decision process. 
In this inßuence diagram of a generic Markov decision process (MDP), circles denote
states of the world, squares denote actions to be decided on, and diamonds denote value
parameters.  Time is divided into discrete epochs, indexed by integers in this Þgure.  Sup-
pose that t  denotes the present epoch.  The instantaneous reward Rt is inßuenced by the
current state St and the current action Dt; the latter two quantities inßuence the next state
St+1.  The total value at time t , Ut, is a discounted sum of the instantaneous rewards from
time t  onwards.  MDPs are explained in Section 3.2.

…

…

Dt Dt+1 Dt+2
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advisor, also abstracted away future states and future decisions, they used a physiologic

model (as opposed to an expertÕs direct assessment) to predict the steady-state effects of

alternative ventilator settings; these steady-state effects were then, in turn, evaluated

according to a utility model developed by Farr [1991].

2.4.3 Attention allocation

Many real-world processes require human attention to ensure optimal control.  In an atten-

tion-allocation problem, there are several processes competing for a limited amount of

human attention resource.  Under such circumstances, not every process can be managed

optimally; the goal, instead, is to manage the collection of processes optimally, given the

constraints on attention resource.

The attention-allocation problem introduces additional modeling challenges beyond those

of the control problem.  Whereas performing control involves determining an optimal

action, the decision whether to allocate attention depends on what action is currently being

carried out:  Whenever the current, or default, action is the optimal action, no attention is

needed.  Thus, in evaluating the effects of attention, an attention-allocation model must

take into account such default actions, in addition to computing the optimal action.

Another modeling challenge, more serious than that of considering default actions, con-

cerns the attention horizonÑthat is, the interval of time during which limited attention is

allocated.  Suppose that we are allocating an amount of attention that is to be expended

only during the present instant (i.e., and no further into the future).  For each process, we

can determine the optimal action, compare it with the current action, and compute the

amount by which the process would beneÞt from receiving attention.  We would then

grant attention to the processes that stand to beneÞt the most.4

4. This scenario assumes that we value each process independently, and that our objec-
tive is to maximize the sum total value of the individual processes.
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The difÞculty arises when we wish to consider attention horizons beyond the present

instant.  In ascertaining a processÕs need for attention in the future, we need to reason

about future states (which have not occurred) and future actions (which have not been

chosen).  Therefore, when, at the present time, we allocate attention to be used for a lim-

ited duration into the future, we are making assumptions about how these future actions

will be chosen.  A decision-analytic, attention-allocation model makes these assumptions

explicit; the assumptions need to be chosen with care.

2.5 Attention models

How to allocate attention is the heart of the alarm problem.  Compared to the diagnosis

and control problems, however, the attention-allocation problem has received little atten-

tion from decision-analytic researchers.  This discrepancy can be attributed to the afore-

mentioned difÞculties inherent in formulating and solving such a problem.  Recall that, to

model the effects of attention over a future duration, we have to make assumptions about

actions that have not been chosen.  Particular sets of assumptions deÞne particular prob-

lem formulations, which in turn are suitable for particular classes of monitoring domains.

In other words, the Þrst step in designing an attention-allocation model is to formulate a

clear problem deÞnitionÑa difÞcult but necessary task that does not confront researchers

who are commited exclusively to the computational challenges of diagnosis and control.

We can appreciate the necessity and beneÞt of making such assumptions by understanding

the exact problem that attention-allocation formulations attempt to approximate.  In Sec-

tions 2.5.1 and 2.5.2, I examine a strict MDP formulation of a single decision maker who

is multitasking among several processes.  This exact formulation is difÞcult to solve, and I

argue that even readily available solutions to this problem are not useful as alarm signals.

In Section 2.5.3, I review pioneering decision-analytic work on an important class of

attention-allocation problems, pathologic-process problems, and examine the assumptions

that enable this problem formulation.  Finally, in Section 2.5.4, I propose a generalization

of the model of Section 2.5.3, which leads to the problem formulation (and solution) fea-

tured in this dissertation.
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2.5.1 Multiple processes in concert

Consider a collection of independently operating processes, each modeled as an MDP.  We

can control this set of processes optimally by solving the control problem for each process

separately.  The situation changes, however, when attention resources that are necessary

for optimal control become scarce.  For example, suppose that we have a decision maker

who is responsible for managing these processes, and who can attend to only one of them

at a time.  In this scenario, the processes become linked:  The decision maker cannot pay

attention to one process without neglecting the others.  Thus, the processes must be con-

sidered in concert, even though they are physically disconnected from one another.

We can construct an amalgamated MDP that captures our decision maker as she is multi-

tasking among these processes (Figure 2.5).  We deÞne the state space as the cross-product

of the state spaces of the constituent processes, and the set of alternatives as the processes

themselves.  The optimal (or recommended) process to which to attend depends on the

combination of states occupied by the constituent processes.  The optimal policy is a set of

recommendations, each corresponding to a unique state combination; we compute the

optimal policy using the policy iteration algorithm developed by Howard [1960].

2.5.2 Problems with the amalgamated MDP

Although amalgamating a collection of processes as a single, continuous-time MDP is the-

oretically sound, there are several pragmatic concerns associated with building and using

an alarm system based on this approach:

• Computational complexity.  The state space of the amalgamated MDP increases

exponentially with the number of concurrent processes; given N processes of M

states each, there are a total of MN states to consider.  In practice, the computa-

tional effort required for policy iteration is polynomial in the number of states

[Littman et al., 1995].  This computational burden renders policy iteration

impractical for problems that have nontrivial magnitudes of N or M.
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Figure 2.5. Modeling of several processes as a single MDP. 
A decision maker monitors N  processes, but can attend to only one of them at a time.  This
decision scenario is modeled as a single MDP.  Each constituent process is in turn an MDP
with default alternatives; each chance node State i  (time t) represents the state of process
i  at time t .  The decision to select a process at time t  is represented by the decision node
Dt; each decision Dt , along with the process states at time t , inßuences the process states
at time t  + 1.  Immediate rewards Rt and the accumulated reward Ut pertain to the entire
collection of processes.
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• Nonintuitive explanations.  Decision rules that make up the policy are of the

form, “If process 1 is in state j 1, process 2 is in state j 2, …, process N is in state

j N, then pay attention to process k.”  Such rules are unwieldy as alarm signals

because they force users to think collectively about processes that are physically

separate from one another.

• Consultation and switching overhead.  Optimal policies yield maximum expected

benefits only when they are followed.  However, it is unrealistic to expect users to

consult an alarm that updates its recommendations continually.  First, the mere

act of consulting the alarm diverts attention from the processes under manage-

ment.  Second, people usually take time to switch their attention between pro-

cesses (e.g., the processes may be located at some distance apart from each

other).  During these momentary diversions, no process receives attention; there-

fore the optimal policy cannot be followed in practice.

• Disempowerment through micromanaging.  There are also philosophical con-

cerns associated with an alarm that micromanages a decision maker’s every step.

Alarms are generally meant to facilitate, rather than to dictate, the management of

an expert’s responsibilities.  In medicine, in particular, decision-support systems

that function as passive consultants are more readily accepted than are those that

behave as intrusive advisors [Shortliffe, 1987].  Unfortunately, the micromanag-

ing advice that the amalgamated MDP produces (“go to process 1; now attend to

process 3,” etc.) is disempowering and intrusive by nature.

In summary, there are serious, practical problems associated with the amalgamated MDP.

Its computational complexity is daunting.  The exact recommendation, even if available, is

too confusing, too difÞcult to follow in practice, and too intrusive.

2.5.3 Binary attention allocations

Working around the difÞculties presented by the amalgamated MDP, Horvitz developed

attention-allocation models for an important class of time-critical decision problems,
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which he referred to as pathological-process problems [Horvitz, 1995; Horvitz & Seiver,

1997].  A pathological process is one whose fate depends largely on the presence and

timing of an initial, rapid burst of corrective action; the effects of subsequent actions and

observations are comparatively negligible.  For example, the fate of a patient who suffers

an abdominal hemorrhage from blunt trauma depends on the duration of bleeding as well

as on interventions designed to counteract the effects of such bleeding, such as the

administration of ßuids.  For a given process state, the cost of delaying action for a

duration T can be represented as a time-dependent utility that is directly assessed.

For such pathological processes, Horvitz demonstrated that the expected cost of delayed

action (ECDA) can be readily computed for various delays T.  A decision maker who is

tending to several processes simultaneously can identify which processes need immediate

attention most urgently by ranking them in decreasing order of ECDA.  An application of

ECDA is the Vista project at the NASA Mission Control Center, which displays selec-

tively propulsion-system information that is most relevant to decisions that operators must

make urgently [Horvitz & Barry, 1995].  Horvitz and Seiver [1997] discuss the potential

use of ECDA in trauma-care triage and transportation.

Although the ECDA measure is useful because of its simplicity, it is built on numerous

assumptions that limit its application scope.  Models for computing ECDA were devel-

oped for pathological processes, for which time-dependent utilities had been assessed pre-

viously.  However, many processes are not pathological processes:  We often do want to

consider the interleaving of future actions and observations in our attention-allocation

decisions.  For example, in deciding how to treat a patient with congestive heart failure

now, we should take into account how we would treat her under various future circum-

stances that, in turn, are inßuenced by our present choice of treatment.

Related to the pathological-process assumption is the independent computation of ECDA

measures for each process.  Although convenient, this property of ECDA lies in stark

contrast to the intricate interdependence among processes in the exact, multiple-process

formulation of Section 2.5.1.  We must consider this interdependence whenever we want

to reason about the effects of shifting attention between different processes; otherwise,
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whatever attention we allocate to a process must remain with that process for the entire

duration of consideration.  Thus, the ECDA measure forces us to allocate attention to

processes in an all-or-none fashion:  Each process either is controlled optimally, or is

completely neglected during the attention horizon T.

2.5.4 Partial attention allocations

My alarm methodology improves the ECDA method of allocating attention in two impor-

tant ways.  First, I represent the constituent processes as MDPs; thus, I enable my atten-

tion-allocation model to consider the shifting of attention resources between different

processes.  Second, my model permits the allocation of partial amounts of attention among

the processes.  For example, a decision maker could allocate one-third of her attention to

one process and two-thirds to another.  This commitment of attention means that she

switches her attention between the two processes frequently and randomly for a duration

T, such that one-third of her time is expended on the Þrst process and two-thirds of her

time is expended on the second.  Although this partial-attention model is an approximation

of real-world actions, it is a more precise approximation than the ECDA model, which

permits our decision maker to spend the entire duration T on only one of the processes.

These generalizations of ECDA are signiÞcant from both a functional and a methodologi-

cal standpoint.  Functionally, my alarm methodology allocates partial amounts of attention

to a set of concurrent processes.  To allocate attention in an all-or-none fashion, as ECDA

does, closely approximates the optimal allocation in only certain catastrophic situations.

Methodologically, my model attacks the interdependencies among processes that occur

when attention resources are scarce, while avoiding the difÞculties associated with an

exact, dictatorial problem formulation (see Sections 2.5.1 and 2.5.2).  ECDA, in contrast,

assumes that these interdependencies are negligible.  There are additional points of com-

parison in Section 4.7; we shall be in a better position to appreciate them after we learn

about the inner workings of my alarm methodology in Chapters 3 and 4.
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2.6 Summary

In this chapter, I reviewed previous designs for intelligent alarms.  I guided my survey by

differentiating these approaches according to a small set of methodologic distinctions.

Despite their variety, most of these approaches did not address the problem of allocating

limited attention resources among concurrent processes that are in need of such attention.

An intelligent alarm determines where scarce attention resources should be directed.  We

found that such an alarm needs to infer higher-level events from raw process observations;

to consider impending criticalities in addition to those present; and to compute, in the face

of various uncertainties, how much a process can expect to beneÞt from receiving various

amounts of attention.  In addition, we discovered that, when attention resources are scarce,

we must consider the future evolution of each a set of concurrent processes togetherÑ

rather than separately.  We reviewed recent work that addresses this difÞcult problem, and

we previewed how the alarm methodology developed in this dissertation advances this

state of the art.
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C h a p t e r  3

Utility of Partial Attention

In this chapter, I present a model of the utility of partial attention applied to an ongoing

process.  I develop the concepts of attention and partial attention using key elements from

the theory of Markov decision processes (MDPs).  The resulting utility formulation

informs busy decision makers how partial compromises in short-term attention affect the

overall utilities of the processes they are managing.

3.1 Overview

To model the effects of attention on a process, we need a framework for reasoning about

processes in general.  In Section 3.2, I introduce the MDP, a general model that is useful

for studying time-varying stochastic systems that respond to externally applied actions.  I

present key results from the theory of MDPsÑresults that concern the long-term, overall

utility of a process under different action strategies.  These developments provide a foun-

dation for the remaining sections.  In Section 3.3, I investigate, within the MDP frame-

work, what it means to provide or withhold attention from a process.  The effects of

withholding attention for various durations T are studied in Section 3.4.  Finally, in Sec-

tion 3.5, I develop the concept of partial attention.  I construct a computational model of
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the utility of partial attention applied to a process, and I reßect on the nature and the poten-

tial applicability of this model.

3.2 Background

The MDP is a model for describing complex systems that evolve over time.  Although the

basic theory is well established [Howard, 1960; Howard, 1971; Ross, 1983], MDP-based

models remain a subject of active investigation [Puterman, 1994; Dean et al., 1995].  A

few key features of the MDP are worth noting at the outset.  An MDP is stochastic in that

its future behavior cannot be predicted with certainty:  The systemÕs behavior is

inßuencedÑrather than necessarily determinedÑby its present state and by any actions

that are presently being applied.  The decisions in an MDP are indexed over time:  In each

decision, a decision maker observes the state of the system, then decides on actions to be

applied to the system at that time.

In this section, I develop and illustrate the concept of an MDP, emphasizing notation and

highlighting results that are used throughout this dissertation.  I adapt the development

and running example presented by Howard [1960].  The study of MDPs is predicated on a

basic understanding of Markov processes and their associated reward structures, alterna-

tives, and policies.  Therefore, let us begin by examining these components.

3.2.1 Markov processes

Our Þrst goal is to describe the dynamic behavior of a system that changes over time.  We

use the basic concepts of the state of a system and transitions that occur between different

states.  The state is deÞned by one or more state variables that assume speciÞc values at

each point in time; each combination of values deÞnes a distinct state.  We say that the

system occupies a particular state whenever the state variables assume the unique combi-

nation of values corresponding to that state.  Thus, at any particular time, the system occu-

pies exactly one state; at different times, the system may occupy different states.  We say

that a transition occurs whenever the system changes state.
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3.2.1.1 States and transitions

A Markov process is a mathematical model that is useful for describing the transition

behavior of many complex systems.  We specify a particular Markov process as

• A set of states:  We assume a finite number of states 1, …, N.

• A transition matrix:  For an N-state Markov process, we specify an N-by-N

matrix A with components aij , where the indices i  and j  refer to the i th row and

j th column, respectively.  We assume that the matrix A is constant over time.

How we specify and interpret the values of the transition matrix depends on whether we

are describing a continuous-time or a discrete-time process.  In a discrete-time process,

state transitions occur only at speciÞc time points between equally spaced intervalsÑfor

example, every hour.  In a continuous-time process, the state can change at random inter-

vals.  The theories for continuous-time and discrete-time Markov processes are parallel, as

are the methods used to analyze those processes.  We henceforth consider only continu-

ous-time Markov processes.

We describe the transition behavior of a continuous-time Markov process by specifying

the off-diagonal elements of the A matrix.  Let us call aij the transition rate from state i

to state j , for i  ≠ j .  The transition rates are nonnegative and are interpreted as follows.

Over a short time interval dt, a system that is in state i  transitions to a different state j  with

probability aij dt.  The diagonal elements of the A matrix are deÞned such that each row

sums to zero:

 

Let us illustrate the continuous-time Markov process by introducing an example called the

foremanÕs dilemma [Howard, 1960].  A machine-shop foreman has a machine that may

either be working (state 1) or not working (state 2).  When it is working, the machine

breaks down with probability 5dt  in a short time interval dt; when it is not working, the

aii aij
i j≠
∑–= , for i 1 … N., ,=
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machine is repaired with probability 4dt in dt.1  Figure 3.1 illustrates a transition diagram

for this process.  Formally, we describe this two-state process with the transition matrix

. (3.1)

3.2.1.2 Predicted future states

We can use the transition matrix A to answer questions about the future of the process.

Because we cannot predict with certainty how the process will unfold, we must ask about

probabilities of different states at various times in the future.

Let pj(t) denote the probability that the process is in state j  at time t .  We use the row vec-

tor2  to summarize the state probability distribution at time t .

By convention, we consider t  = 0 to be the present instant; we are interested in predicting

p(t) for future times t  > 0.

From the interpretation of transition rates as transition probabilities over an inÞnitesimal

time interval, it can be shown that the state probabilities at time t  are governed by the

linked differential equations

Figure 3.1. A Markov process. 
This Þgure depicts a transition diagram for a two-state, continuous-time Markov process.
The nodes working and not working represent the states.  A possible transition between
two states is represented by a directed arc and by an associated transition rate.  For exam-
ple, the transition rate from working to not working is 5.

1. The unit of time is irrelvant for this working example.

2. The state probability vector p(t) and its variants are row vectors.  All other vectors
mentioned in this document are column vectors.
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. (3.2)

These equations can be written in matrix form as

. (3.3)

We can solve Equation 3.3 conveniently by using Laplace transformations.  Let pppp (s) be

the Laplace transform of the state probability vector p(t).  By taking the Laplace trans-

form and rearranging, we obtain

 , (3.4)

where the vector p(0) corresponds to our knowledge of the state at the present time.  We

then obtain the state probability vector p(t) by taking the inverse Laplace transform of

Equation 3.4.

Let us apply these results to the foremanÕs example.  Suppose that, at time t  = 0, we are

interested in the probability that the machine will be working at time t  in the future.  We

instantiate Equation 3.4 with the matrix A from Equation 3.1:

; (3.5)

. (3.6)

Expanding each component using partial fractions yields

, (3.7)
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which can be rewritten as

. (3.8)

Designating H(t) as the inverse Laplace transform of the matrix (sI Ð A)Ð1, we obtain

. (3.9)

The desired solution for the foremanÕs machine is thus the inverse Laplace transform of

Equation 3.4, with H(t) given by Equation 3.9:

. (3.10)

Note that an exact numerical solution requires that we specify p(0), our knowledge of the

state at the present time.  For example, if the machine is currently working (state 1), we

apply  to Equation 3.10 and obtain

 ,

which can be written as two separate functions  =  +  and  =  Ð 

(Figure 3.2a).  If the machine is currently not working (state 2), we use 

and obtain  =  Ð  and  =  +  (Figure 3.2b).

Note that p(t) approaches  for large t , whether the machine is presently in state 1 or

in state 2.  In general, we say that a Markov process is ergodic whenever the quantity

 is independent of the starting state .  For an ergodic process, we refer to the

limiting state probabilities  for j  = 1, É, N, or simply p = .

Note that we can calculate p directly by zeroing the left-hand side of Equation 3.3 and

solving the resulting system of equations pA = 0.  We employ this technique whenever we

are interested in only the limiting state probabilities.
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The analytical developments for multichain (nonergodic) Markov processes are funda-

mentally similar to those of their ergodic counterparts; indeed, many multichain processes

can be reformulated as ergodic through a redeÞnition of state [Howard, 1960].  We hence-

forth consider only those Markov processes that are of the ergodic variety.

3.2.2 Markov processes with rewards

We are now ready to add rewards to our working model.  In this subsection, I describe the

stream of rewards that a Markov process generates over time.  The reward at a given

instant depends on the transition behavior of the associated process at that instant.

3.2.2.1 Reward-matrix formulation

We deÞne an N-state Markov reward process (MRP) as a Markov process with an asso-

ciated N-by-N  reward matrix R.  The components rij of R are speciÞed independently,

and are interpreted as follows:

• Diagonal elements:  For i  = 1, …, N, the quantity rii  is the reward per unit time

that the process earns while in state i .

• Off-diagonal elements:  Each off-diagonal element rij  ( ) denotes the reward

earned whenever the process transitions from state i  to state j .  Note that the units

of the off-diagonal elements differ from those of the diagonal elements.

Figure 3.2. State-probability functions (foremanÕs example). 
These graphs illustrate the state probabilities p1(t) and p2(t) as a function of time t , for
when (a) the machine is in state 1 at time t  = 0, and (b) the machine is in state 2 at t = 0.
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3.2.2.2 Earning-rate vector formulation

For purposes of analysis, it is convenient to consider the expected reward per unit time

that the system earns at each state.  We deÞne an earning-rate vector q = ,

where each earning rate qi is deÞned in terms of the transition matrix and reward matrix

elements, according to

. (3.11)

An MRP can be completely described by its transition matrix A and its earning-rate vector

q.  In many processes, specifying the vector q is more natural than is specifying the

reward matrix R.  For example, the machine in the foremanÕs example might earn $6 per

hour in state 1 and Ð$3 per hour in state 2.  The MRP is then speciÞed completely as

, (3.12)

where the matrix A comes from Equation 3.1.  This MRP is illustrated in Figure 3.3.

3.2.3 Rewards accumulated over time

How much we can expect an MRP to earn over a given time interval?  We can answer such

questions by using knowledge of the process state at the start of the interval.  We now con-

sider two separate, closely related criteria for quantifying accumulated rewards. 

Figure 3.3. A Markov reward process. 
The process generates rewards that accumulate over time.  It generates $6 per unit time
when  in the working state, and Ð$3 per unit time when in the not working state.
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3.2.3.1 Undiscounted rewards

For an MRP that is currently operating in state i , let vi(t) denote the total reward that we

expect the process to generate between now (t  = 0) and time t  in the future.  From the def-

inition of earning rate in Section 3.2.2.2, it can be shown that the total rewards vi(t) sat-

isfy the linked differential equations 

. (3.13)

Using the total-reward vector v(t) = , we can rewrite (3.13) as

    . (3.14)

As in our prior development of the Markov process, the Laplace transform provides a con-

venient method of solution.  Let  be the Laplace transform of the total-reward vector

.  By taking the Laplace transform of Equation 3.14 and solving for , we Þnd that

. (3.15)

The inverse Laplace transform of Equation 3.15 then yields the total-reward vector . 

The vector v(0) =  from Equation 3.15 deserves special attention.  It

materializes from the process of solving Equation 3.14, and must be manually speciÞed as

part of any solution .  We interpret v(0) as follows:  When the process terminates in

state i , it generates the terminal reward vi(0), for i  = 1, É, N; we call v(0) the termi-

nal-reward vector.  In considering the total reward  accumulated between now (t  =

0) and time t , the terminal-reward vector v(0) stipulates an amount received at time t , the

end of the interval under consideration.  Note that the actual terminal reward that we

expect at time t  depends on the state probabilities p(t) at time t , and can be computed as

the dot product of p(t) and v(0).

Let us apply the analysis of Equation 3.15 to the foremanÕs MRP from Equation 3.12.  If

we assume that v(0) is identically zero, then v(t) is the inverse Laplace transform of the

td
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vector .  We can perform this compuation methodically by employing a

strategy analogous to Equations 3.5 through 3.9.  We obtain

,

or  and .  The total expected reward in time t  is

v1(t) if the machine is presently in state 1, and is v2(t) if the machine is in state 2.  These

functions are displayed in Figure 3.4.

Note that, as , both v1(t) and v2(t) asymptotically approach straight lines.  The

slopes of these lines are called the gains of the process.   In an ergodic process, the gains

for all of the vi(t)Õs are identical, so we can properly refer to a single gain g.  Thus, for an

N-state ergodic MRP, we can express the asymptotic total values as

. (3.16)

When we are interested in only the total values accumulated over a long time, we can

afford to bypass the exact analysis of Equation 3.15.  If we take the time derivative of

Figure 3.4. Total-value functions (foremanÕs example). 
This graph depicts v1(t) and v2(t), the total expected rewards that are accumulated
between now and time t  from now, when the present state is 1 or 2, respectively.  
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Equation 3.16 and substitute the result into the left-hand side of Equation 3.13, we obtain

the following system of N  equations with N  + 1 unknowns:

. (3.17)

By solving this system with vN set to zero, we can compute the gain g  and the values vi to

within a mutually shared additive constant; we call each resulting vi the relative value of

the process for state i .  For an ergodic process, the gain g  is the incremental reward per

additional unit of time of operating the process, whereas the quantities vi Ð vj (for i  ≠ j)

tell us how much better it is to be in state i  than in state j .  It is important to remember that

these interpretations are valid only when we are considering rewards far into the future.

Let us apply this procedure to the foremanÕs MRP (Equation 3.12).  We set v2 to zero and

solve the system (3.17), obtaining the solutions g  = 1 and v1 = 1.  The gain of 1 tells us

that the process is expected to earn $1 for each additional hour that it operates, regardless

of its present state.  The relative values v1 = 1 and v2 = 0 indicate that the foreman should

be willing to pay up to $1 to trade in a nonworking machine for a working machine.

3.2.3.2 Discounted rewards

When considering future rewards, we often consider a particular reward amount more

valuable if we receive it sooner.  For example, $100 in our posession now is worth more

than the same amount promised a year from now, because the money that we possess can

be used to earn a yearÕs worth of compounded interest.  Also, when we extol the value of

delayed gratiÞcation in colloquial terms, we are typically referring to a future reward that

is worth the waitÑin other words, a future reward that is sufÞciently greater than the

present reward that we forgo.  We can model this time preference by incorporating a dis-

count rate α into our preceding discussion ( ).    We deÞne α such that a reward

x  that is received after an inÞnitesimal time interval dt  is now worth (1 Ð α dt) x.  If we are

modeling the cost of money, we can interpret α as a continuous compounding rate.

g qi aij vj
j 1=

N

∑+= , for i 1 2 … N, , ,=
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The analysis for this type of discounting parallels that of the undiscounted scheme.  For an

MRP in state i , let us now call vi(t) the present value of the rewards expected between

now and time t .  (We also call these quantities discounted total rewards.)  It can be

shown that the present values vi(t) satisfy

, (3.18)

or, in matrix form,

. (3.19)

The Laplace transform of v(t) is then

, (3.20)

where v(0) is the terminal-reward vector (see page 43).

Suppose that, in the foremanÕs example, we are interested in computing discounted total

rewards with a discount rate of .  We apply Equation 3.20 using α =  and the values of

A and q from Equation 3.12, and we again assume that v1(0) = v2(0) = 0.  Taking the

inverse Laplace transform of the resulting expression then yields

,

where .  These solutions are graphed in Figure 3.5.

Note that as , the present values v1(t) and v2(t) approach constants, which we refer

to as the limiting present values v1 and v2, respectively.  In general, this behavior holds

for the discounted total values generated by an MRP, provided that .  
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When we are interested in solely the limiting present values, we can bypass the analysis

prescribed by Equation 3.20.  For large t , vi(t) → vi; substituting vi for vi(t) in

Equation 3.18 yields the system

, (3.21)

which can be solved for the limiting present values vi.  In matrix form, Equation 3.21

reduces to .  Again, it is important to remember that the concept of lim-

iting present values applies to only those processes that have long duration.

3.2.4 Markov decision processes

Thus far, we have investigated processes that generate rewards that depend only on their

state trajectories.  We are now ready to consider processes whose transition and reward

properties can be inßuenced by the ongoing activities of a decision maker.  To consider

such processes, we introduce alternatives and decisions into our working model.

In a Markov decision process (MDP), each state is associated with a Þnite set of alterna-

tives.3  We describe an N-state MDP by specifying, for each alternative k  associated with

state i , the following:

Figure 3.5. Discounted total rewards (foremanÕs example). 
(a) For small values of t , the plots for v1(t) and v2(t) resemble those of Figure 3.4.  (b)
As t  becomes very large, both of these functions asymptotically approach constant values. 
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• Transition rates:  For each state j  ≠ i , we specify a transition rate .  We then

assign , for each state i  (See Section 3.2.1.1 on page 37.)

• Earning rate:  We specify the earning rate .  Alternatively, we can first assess a

reward rate  and transition rewards  ( ), and then use Equation 3.11 to

compute .  (See Section 3.2.2 on page 41.) 

We now extend our story of the foremanÕs dilemma to incorporate alternatives.  An MDP

for this modiÞed foremanÕs dilemma is presented in Table 3.1; its diagrammatic counter-

part is shown in Figure 3.6.  When the machine is working (state 1), the foreman can

choose one of two maintenance regimens.  He can employ a normal maintenance strategy,

under which the machine will earn $6 per hour and break down with probability 5dt in a

short time interval dt.  Alternatively, he can employ an expensive maintenance program,

which would reduce the machineÕs earnings to $4 per hour but decrease to 2 per hour the

rate of breaking down.  When the machine is not working (state 2), the foreman can

choose between a normal repair program and an expensive repair program.  The transition

and earning rates for these latter alternatives are enumerated in Table 3.1.

3. Markov decision processes with continuous alternative sets also exist (e.g., [Ross,
1983]), but they are beyond the scope of our consideration.  

Table 3.1. The foremanÕs dilemma. 
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3.2.5 Policies

We cannot predict how an MDP will behave a priori because its evolution over an interval

of time depends on the alternatives chosen during that interval.  However, if we decide in

advance how alternatives are to be chosen, then we can make predictions about the MDPÕs

future behavior.  We call such an imposed alternative-choosing strategy a policy.

A policy is a set of decision rules that specify, for each state, which alternative is to be

chosen.4  We encode a policy for an N-state MDP using the vector d = ,

where each di is the numerical index of the alternative prescribed for state i .  In the fore-

manÕs dilemma, for example, the policy  stipulates that the machine undergo nor-

mal maintenance when it is operational (d1 = 1), and undergoes express repair when it is

broken (d2 = 2). 

Figure 3.6. A Markov decision process. 
Shown is a transition diagram for the MDP speciÞed in Table 3.1.  For a given state i , the
choice of alternative, k, determines the transition properties and the earning rate.   For
example, when the process is in the not working state (state 2), the Þrst alternative (k = 1)
yields an earning rate of Ð$3 and a transition rate of 4 to the working state, whereas the
second alternative (k = 2) yields earning and transition rates of Ð$5 and 7, respectively.

4. This deÞnition corresponds to that of a stationary policy.  More complex policy struc-
tures exist.  However, when we are considering accumulated rewards earned by an MDP
over an inÞnite horizon, the optimal policy is always a stationary policy.
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3.2.5.1 MRP induction

Policies, MDPs, and MRPs are related to one another in an important manner (Figure 3.7).

Under a speciÞed policy, the transition and reward properties of an MDP are characterized

by a corresponding MRP.  For example, the policy d1 = 1, d2 = 1 applied to the foremanÕs

dilemma results in the MRP of Equation 3.12.  In general, for an MDP, we say that a pol-

icy induces an MRP.  For example,

;

.

3.2.5.2 Comparison of policies

Given two policies A and B, we say that policy A is superior to policy B if the MRP

induced by A yields a greater accumulated reward than the MRP induced by B.  Clearly,

the mechanics of such a comparison involve specifying the present state, the time interval

of interest, and the criterion that we use to value the rewards accumulated during that

interval (see Section 3.2.3 on page 42).  

As an example, let us consider the total earnings in the foremanÕs dilemma under an inÞ-

nite horizon (t  → ∞) and a discount rate α =  .  We investigate each policy by computing

Figure 3.7. The relationship among policies, MDPs, and MRPs. 
A Markov reward process results from applying a policy to a Markov decision process.
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the present values for the MRP induced by that policy (Equation 3.21).  The present values

for each policy are shown in Table 3.2.

Comparing the present values under each policy, we see that if we are in state 1, then the

policy d1 = 2, d2 = 2 yields the maximum return ($18.22).  If we are in state 2, the same

policy  is superior to all others.  Thus,  the policy  is in some sense optimal,

because it produces a maximum return regardless of in which state we happen to be.  This

policy suggests that the machine should receive expensive maintenance when it is work-

ing and express repair when it is not working, and that the long-term rewards justify these

more expensive alternatives.

We might ask whether the existence of an optimal policy in this problem is mere coinci-

dence.  It turns out that, for an inÞnite horizon MDP, we can always Þnd a policy that pro-

duces a maximum return, regardless of the present state [Howard, 1960].  This guarantee

holds for both undiscounted and discounted criteria for appraising streams of predicted

rewards.

3.2.5.3 Optimal policies

We now formally deÞne optimal policies for an inÞnite-horizon MDP.  Let us begin with

the discounted scenario.  For an inÞnite-horizon MDP with a nonzero discount rate, we

say that a policy is optimal if there is no policy that is superior to it, in the following

sense:  Given policies A and B with corresponding present values  and , policy A is

superior to policy B if at least one  > , and no  > .  For the undiscounted

Policy (d) Present Values (v)
d1 d2 v1 v2

1 1 9.5488 8.5610

1 2 13.1284 12.2202

2 1 15.3818 14.2364

2 2 18.2195 17.2317

Table 3.2. Comparison of candidate policies. 
The present values of candidate policies for the foremanÕs dilemma are shown.  Rewards
are assumed to be accumulated over an inÞnite horizon with discount rate .  The quantity
vi for a given policy is the expected value if the process is in state i .  For example, under
the policy d1 = 1, d2 = 2, the process is worth $13.13 if it is in state 1.
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scenario, we compare policies Þrst according to their gains, then according to their relative

values:  Given policies A and B with respective gains gA, gB and relative values , ,

policy A is superior to policy B if gA > gB.  If gA = gB, then policy A is superior to policy

B if at least one  > , and no  > .

How do we Þnd an optimal policy for an inÞnite-horizon MDP?  In general, it is impracti-

cal to search exhaustively as we did in Table 3.2.  If k(i) is the number of alternatives for

state i , then there are  policies to consider; in other words, for a Þxed number

of alternatives, the number of policies grows exponentially with the number of states.

Fortunately, we do not need to perform such an unguided search:  A procedure has been

developed that takes a policy A and produces a superior policy B, if one exists [Howard,

1960].  The method of policy iteration involves repeated applications of this procedure,

and is always guaranteed to produce an optimal policyÑusually in a small number of

steps.  Variants of policy iteration have been developed for the undiscounted and dis-

counted scenarios.

3.2.5.4 Constant-value policies

For an MDP with undiscounted future rewards, the MRP induced by a policy generates a

total reward amount that increases linearly with the amount of time t  that the process

operates, for large values of t  (see Figure 3.4 on page 44).  For these processes, we have

seen that the method of policy iteration attempts to maximize the gain and, if necessary,

the relative values.  On the other hand, when we discount future rewards, the total reward

increases toward a constant as  (see Figure 3.5 on page 47).  In these scenarios, the

policy-iteration algorithm searches for a policy that optimizes the relative values.

The ensuing developments are based on MDPs whose inÞnite-horizon policies have con-

stant values.  We henceforth restrict our attention to discounted processes, and to undis-

counted processes with a gain of zero.
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3.3 Attention

The preceding discussion on MDPs lays the groundwork for our investigation of processes

that receive varying amounts of short-term attention.  We now begin using this foundation

to describe formally the notion of attention.  Our concept of what it means to give a pro-

cess attention requires only a modest extension of the existing MDP framework. 

3.3.1 Default alternatives and policies

Recall that an MDP associates a Þnite set of alternatives with each state (see Section

3.2.4).  For each state, let us distinguish one of the associated alternatives as the default

alternative for that state.  Since the alternatives for a given state may be ordered arbi-

trarily, let us adopt the convention of designating alternative 1 as the default alternative for

that state.

For the foremanÕs dilemma (Table 3.1 on page 48), we can specify the default alternatives

as follows.  When the machine is working, the default alternative is to employ a normal

maintenance regimen (alternative 1 for state 1).  When the machine is not working, the

default alternative is to employ a normal repair program (alternative 1 for state 2).  We can

of course specify other alternatives as default alternatives by simply reassigning the

numeric indices associated with the alternatives for a given state.

For any MDP with default alternatives speciÞed, we can talk about its default policy.  The

default policy of an MDP is the set of decision rules that speciÞes the default alternative

for each state.  According to our numbering convention, the default policy for an N-state

MDP is d1 = 1, d2 = 1, É, dN = 1, or simply an N-element vector of 1s.  For example, the

default policy for the foremanÕs dilemma is encoded as .1 1
T
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3.3.2 Attention and the optimal policy

The notion of attention can now be deÞned as the enabling of an MDPÕs optimal policy:

The MDP operates under the optimal policy whenever attention is applied; otherwise, the

MDP operates under the default policy.  For example, in the foremanÕs dilemma under an

inÞnite horizon and a discount rate of , deciding whether or not to apply attention

amounts to choosing between the optimal policy  and the default policy .5

In general, we can apply this model of attention to any MDP that has speciÞed default

alternatives and discount criteria (Figure 3.8).  We use policy iteration to compute, for a

given discount criterion, the optimal policy and the optimal valuesÑthe total-value vec-

tor  that results from executing this policy for all time.  The optimal policy then induces an

optimal MRP, whereas the default policy induces a default MRP (see Section 3.2.5.1).

5. In general, it is possible for the default and optimal alternatives for one or more states
to coincide.  Whenever the process is in such a state, its immediate transition and reward
behaviors do not depend on the attention received (or not received) at that time.

Figure 3.8. Conversion of an MDP into default and optimal reward processes. 
This Þgure illustrates the steps involved in converting an MDP to a form that is useful for
our working process model.  The default MRP is the reward process that prevails when-
ever the process is unattended; the optimal MRP prevails when attention is applied.  The
optimal values are the expected total rewards for each starting state when the optimal pol-
icy is applied for all time.  Only the default MRP, optimal MRP, and optimal values are
needed for subsequent analysis.
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Note that the preceding procedure always produces an equivalent MDP with the alterna-

tives no attention and attention speciÞed appropriately for each state.  The default MRP

describes the transition and reward properties of the process when that process is not

receiving attention; the optimal MRP describes these process properties when attention is

applied.  We employ the default MRP, the optimal MRP, and the optimal values in our sub-

sequent analysis.

3.4 Delayed attention

An MDP generates rewards according to the policy that is applied to the process.  In the

special case of a stationary policy (one that is applied over all time), we can compute the

total expected reward by analyzing the MRP that is induced by that policy:  solving the

system (3.17) in the case of an undiscounted process, or solving (3.21) for a discounted

process.  The situation is more complicated when a policy may vary over time.  To com-

pute total rewards for such nonstationary policies, we must apply methodically the math-

ematical machinery of Section 3.2.

In this section, we analyze a particular class of nonstationary policies.  We consider an

MDP that is unattended for a period of time T  before receiving attention thereafter.  From

our development of the notion of attention in Section 3.3, we saw that leaving a process

unattended is the same as operating the process under its default policy, whereas giving

attention is the same as operating the process under its optimal policy.  Thus, the situation

that we wish to consider corresponds to applying the default policy for T, then applying

the optimal policy thereafter (Figure 3.9).  Our goal is to compute the total expected

reward under these conditions.

3.4.1 Notation

Our analysis builds on the development of Section 3.3.  To faciliate our subsequent expo-

sition, we let the pairs A0, q0 and A1, q1 denote the default MRP and optimal MRP, respec-

tively.  Furthermore, we let v1 denote the vector of optimal values that results from
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applying the MRP A1, q1 over all time.  In the case of the foremanÕs dilemma with a dis-

count rate of , we have

; (3.22)

; (3.23)

and , (3.24)

where v1 is obtained by applying the system of equations (3.21) to the MRP A1, q1.

3.4.2 Value of delayed attention

We can now state our problem as follows.  Given a process that is in state i  with discount

rate α, what total reward can we expect to accumulate over the interval 0 ≤ t  < ∞, if we

operate the MRP A0, q0 for 0 ≤ t  < T, then operate the MRP A1, q1 for t  ≥ T?  

Let us designate vi(T) as our target quantity.  We decompose vi(T) additively into two

subquantities:  the rewards accumulated during the interval 0 ≤ t  < T, and the rewards

accumulated for t  ≥ T.  However, for a given state j  at time t  = T, the second subquantity

is simply the jth element of the optimal value vector v1.  Thus, we can compute vi(T) by

summing the expected rewards from the MRP A0, q0 over the Þnite interval 0 ≤ t  < T, and

Figure 3.9. Delayed attention. 
Delaying attention for time T is implemented in the MDP framework as application of the
default policy for time T, and application of the optimal policy thereafter.  Note that when
T  is zero, there is no delay of attention, and the optimal policy is applied over all time.
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incorporating a terminal reward amount that is determined by v1 and the state-probability

distribution of the process at time T.  Figure 3.10 depicts this computational strategy.

To make the strategy concrete, we adapt the analysis of Equation 3.20.  Using A0 as the

transition matrix, q0 as the reward vector, and v1 as the terminal-reward vector, we have

; (3.25)

. (3.26)

Substituting t  = T  into Equation 3.26 yields the vector v(T) = , from

which we obtain the desired quantity vi(T).

Figure 3.11 illustrates the results of applying Equations 3.25 and 3.26 to the foremanÕs

dilemma (Equations 3.22 through 3.24, α = ).  Whether the machine is currently in state

1 or in state 2, the value of delaying attention decreases asymptotically as the delay

amount increases.  In other words, the cost of delaying attention increases with increasing

delay.

Figure 3.10. Computational model for the value of delayed attention. 
Consider a process that is in state i  at t  = 0.  During the interval 0 ≤ t  < T, state transitions
occur according to the transition matrix A0, and rewards are expected according to the
reward vector q0 and the state-probability distributions during this interval.  At time T, the
process terminates and yields a terminal reward that is determined in part by the optimal
values v1.  This terminal reward incorporates the rewards generated by the MRP A1, q1 for
times beyond T.  
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3.5 Partial attention

We have reasoned about the effects of leaving a process unattended for a limited period of

time.  Let us now extend our present conversation by examining various degrees of par-

tial attention administered during that time period.  For example, we would like to talk

about the foreman devoting one-third of his attention to the machine over the next hour.

The phrase partial attention is a misnomer when we consider time at a microscopic level,

because at any instant in time a process is either receiving attention or not receiving atten-

tion.  When we are considering more measurable units of time, however, we can speak

meaningfully about applying partial attention to a process.  Suppose that our foreman

devotes 20 minutes of his attention to the machine over the next hour.  Then, in an impre-

cise sense, we can say that the machine receives one-third of the foremanÕs attention dur-

ing that hour.  Our statement would be imprecise in that those 20 minutes could be

distributed in any one of an inÞnite number of ways.

Figure 3.11. Value of delayed attention (foremanÕs example). 
Each quantity vi(T) is the total discounted reward expected from a delay of attention for a
period T  when the machine is currently in state i .   As the delay T  increases, the default
policy prevails for longer periods of time before the optimal policy takes over, and the
expected total reward decreases.
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In this section, we develop the concept of partial attention by building on our working

analysis of the MDP.  Our goal is to derive a measure of the total expected reward gener-

ated by a process that initially receives a fraction of attention θ (where 0 ≤ θ ≤ 1) for a

duration T, before receiving full attention thereafter (Figure 3.12).  To derive this exact

numeric quantity from the inexact notion of partial attention, we must assume a particular

distribution of attention during the interval 0 ≤ t  < T.  We now delve into the mechanics

of this assumption, then ponder its meaning and potential usefulness.

3.5.1 Uniform distribution of attention

Consider a fraction of attention θ that is applied during the time interval 0 ≤ t  < T.

Although our concept of attention fraction is thus far imprecise, we can immediately con-

clude that the process somehow receives attention for θT time units (and consequently no

attention for (1 Ð θ)T time units).  What remains to be speciÞed is how the applied atten-

tion is distributed over the speciÞed interval.

Our model of partial attention assumes that the available attention θT  is temporally dis-

tributed in a uniform manner over the interval 0 ≤ t  < T.  We can picture this interval par-

titioned into a large number of equally spaced subintervals of length ∆t , each subinterval

containing θ∆t  time units of attention (Figure 3.13).  In the limit as ∆t  → 0, the desired,

effective partial level of attention θ is applied throughout the interval [0, T).

Figure 3.12. Partial attention. 
A process receives a fraction of attention θ for a duration T  before receiving full attention.
This formulation of partial attention is illustrated in more detail in Figures 3.13 and 3.14.
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3.5.2 Hybrid default-optimal policies

Now how does the process actually behave under partial attention?  In the model outlined

in the previous paragraphs, we saw that the attention fraction θ applies to every time point

within the interval [0, T).  We are thus confronted with the problem of modeling partial

levels of attention applied to instants in timeÑa concept that we have previously declared

invalid (see page 58).

Fortunately, we can obtain an effective attention fraction of θ by modeling the process

dynamics at each instant as an uncertain prospect.  When the available time is uniformly

distributed, the level of attention at each time point is characterized by θ:  For every

instant 0 ≤ t  < T, the process receives attention with a probability θ and no attention with

probability 1 Ð θ.  Equivalently, for these instants, the optimal MRP A1, q1 transpires with

probability θ; the default MRP A0, q0 transpires with probability 1 Ð θ (Figure 3.14).

Reßection shows that these dynamics are summarized by a hybrid MRP Aθ,  qθ whose ele-

ments are weighted sums of the corresponding elements, the default and optimal MRPs.

Therefore, we have, in matrix form,

Figure 3.13. Uniform distribution of partial attention. 
Each inÞnitesimal subinterval ∆t  within [0, T) contains θ∆t  time units of attention.
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;

 

(3.27)

 

.

 

(3.28)

 

3.5.3 Value of partial attention

 

Now we are ready to compute the value of applying partial attention for a limited amount

of time.  Let  denote the total expected reward of a process in state 

 

i

 

 that receives

partial attention 

 

θ

 

 for a duration 

 

T

 

 before receiving full attention.  Assume a discount rate

 

α

 

.  We adapt the analysis for the value of delaying attention (Equations 3.25 and 3.26),

with the hybrid MRP 

 

A

 

θ

 

,  q

 

θ 

 

taking the place of the default MRP 

 

A

 

0

 

, q

 

0

 

.  We obtain:

 

;

 

(3.29)

 

.

 

(3.30)

 

Figure 3.14.

 

Partial attention at an instant in time. 

 

At each instant, the process receives attention with probability 

 

θ

 

 and no attention with
probability 1 Ð 

 

θ

 

.  The expected attention amount for an inÞnitesimal interval 

 

dt

 

 is 

 

θ

 

dt

 

;
integrating this expression over [0, 
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Substituting 

 

t

 

 = 

 

T

 

 into Equation 3.30 yields the vector 

 

v

 

θ

 

(

 

T

 

) = , from

which we obtain the desired quantity  (see Figure 3.15).

In general, Equation 3.30 cannot be computed in closed form for an unspeciÞed attention

fraction 

 

θ

 

:  Small changes in 

 

θ 

 

may cause the inverse Laplace transform to vary not only

in its numerical elements, but also in its functional formÑsometimes abruptly.  However,

a closed-form expression can be obtained from Equation 3.30 for any 

 

speciÞc

 

 value of 

 

θ

 

.

So, if we are interested in how the quantity  varies with 

 

θ

 

, we must compute 

numerically for a speciÞed, discrete sample set {

 

θ

 

1

 

, 

 

θ

 

2

 

, É }.

 

3.5.4 Examples

 

Let us invoke once again our running example of the foremanÕs dilemma (Equations 3.22

through 3.24) with a discount rate 

 

α

 

 = .  Figure 3.16 plots the machineÕs expected returns

for different levels of attention 

 

θ

 

 over the next hour (

 

T

 

 = 1).  Whether the machine is in

the 

 

working

 

 (

 

i

 

 = 1) or 

 

not working

 

 (

 

i  = 2) state, the total returns  increase with θ in

an approximate linear fashion.6  

We can simultaneously vary the delay T  and the level of attention θ.  An example is

shown in Figure 3.17.

Figure 3.15. Computational model for the value of partial attention. 
Starting from state i  at t  = 0, the process transitions and generates rewards according to
the hybrid MRP Aθ, qθ.  At time T, the process terminates and yields a terminal reward
that incorporates the rewards generated by the MRP A1, q1 for times greater than T.  

6. In Section 4.6 and Chapter 5, we shall examine more complex modelsÑmodels for
which an asymptotic exponential function characterizes more accurately the change in
value with respect to θ. 
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Figure 3.16. Total rewards as a function of attention fraction. 
This Þgure plots the total expected rewards  and  as a function of the attention
fraction θ.  To generate these plots, I instantiated Equations 3.29 and 3.30 iteratively with
values of θ ranging from 0 to 1 in increments of 0.01. 

Figure 3.17. Varying of delay and attention level simultaneously. 
This surface diagram displays the value of the machine in state 1, as a function of the
delay T  and the attention level θ.  The value decreases with decreased attention level and
increased delay. 
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3.5.5 Discussion

In the analysis that culminated with Equation 3.30, we constructed exact formulae for the

value of partial attention applied to a process for a duration of time.  In obtaining these

exact expressions, we assumed that the applied attention was distributed uniformlyÑthat

the process received the same partial level of attention for the entire duration of interest.

Let us reßect on what this approximation means for the decision maker.  In Section 3.5.2,

we adopted a probabilistic interpretation of the uniformly distributed attention fraction θ.

At every instant, the decision maker is either attending or not attending to the process;

whether or not the process receives attention may differ between neighboring instants.

Thus, a decision maker characterized by our model randomly switches between applying

attention and withholding attention at an inÞnite rate, in a manner that provides the pro-

cess an expected attention fraction of θ over the duration of interest.

In reality, decision makers cannot multitask in such a idealized, frenzied manner.  Atten-

tion is typically granted to the process or withheld in favor of another task for a measur-

able length of time.  Also, there is usually a time cost associated with switching between

tasks.  Thus, Equation 3.30 is an exact implementation of an approximate model of a deci-

sion makerÕs limited attention.  The approximation is unrealistic when the process transi-

tions much faster than the decision makerÕs ability to switch to or away from the process.

However, when process dynamics are slow in comparison to the decision makerÕs multi-

tasking abilities, the model of partial attention represented by Equation 3.30 is plausible.

3.6 Summary

In this chapter, I described the development of formulae for the utility of processes that

receive partial levels of attention over a speciÞed temporal horizon.  My analysis applies

to processes that can be modeled as a continuous-time MDP.  To model the notion of

attention, I augmented the MDP model with default alternatives and default policies.  With

these added elements, I deÞned giving attention as applying the optimal policy, and
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withholding attention as applying the default policy.  Moving beyond policies that are

applied uniformly over all time, I derived formulas for the utility of a process that receives

no attention for a limited duration before receiving full attention thereafter.  I then

extended these analyses to incorporate the notion of applying partial attention over a

limited duration.  My model of partial attention is plausible for processes whose transition

rates are sufÞciently small, relative to the decision makerÕs ability to switch tasks quickly.

The need to compromise attention is often unavoidable in situations that involve multiple

processes competing for limited amounts of available attention.  Knowing how partial

compromises in short-term attention affect the long-term health of different processes can

help decision makers to allocate their limited attention rationally.  The manner in which

this allocation occurs is the subject of the following chapter.
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C h a p t e r  4

Alarm Signals for
Concurrent Processes

Having studied a single process under various degrees of partial attention, we are now

ready to consider the simultaneous operation of a collection of such processes.  In this

chapter, I present a model of the management of concurrent, continuing processes under

constraints on the available attention resources.  The model is constructed as an optimiza-

tion problem, and is grounded in decision theory, as the components of the optimization

build on ideas and developments from the previous chapter.

In analyzing this model, I highlight particular numerical metrics as alarm signals.  These

metrics serve to inform, rather than to dictate.  They can guide the attention of busy agents

who are managing several processes to which they cannot attend all at once.

4.1 Overview

This chapter is built on the construction and analysis of a particular optimization problem

formulation, the convex separable problem.  In Section 4.2, I construct a separable

problem that captures the dilemma of a single decision maker who must allocate her

attention among a collection of processes.  In Section 4.3, I extend this basic problem

formulation to incorporate various scenarios that involve the allocation of multiple
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attention units.  The heart of the chapter is presented in Sections 4.4 and 4.5, in which I

use the theory of convex separable optimization to model the allocation of attention

among a set of concurrent processes.  In analyzing the convex separable problem, I extract

a priority measure and an attention-allocation measure for each process; these measures

constitute the alarm outputs of my framework.  In Section 4.6, I explain how we can

engineer the problem formulation of Section 4.3 as a convex separable problem, for a

large class of processes.  I also demonstrate how the best attention-allocation strategy can

depend on how far into the future we choose to look.  Finally, in Section 4.7, I reßect on

recent work on the allocation of scarce attention among concurrent processes, and I show

how my framework advances the state of the art.

4.2 From single processes to multiple processes

Suppose that a decision maker is managing a particular, ongoing process.  We can use the

model presented in Chapter 3 to compute the utility1 of applying a partial level of attention

to this process.  The notion of partial attention becomes especially relevant when we intro-

duce other tasks or processes that can also beneÞt from this decision makerÕs attention.

By representing the other processes as separate instances of the model of Chapter 3, we

can begin to discuss meaningfully the problem of allocating a personÕs limited attention

among multiple, concurrent processes (Figure 4.1).2

4.2.1 Notation

We assume that there are N independently operating processes; we index them using the

variable j , with j  ∈ {1 , É, N}.  Our discussion uses the following notation:

1. Throughout the remainder of the dissertation, I use utility and expected utility synony-
mously.

2. Person and people can be interpreted more generally as agent and agents, respectively.
I use the former terms for the sake of readability. 
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• xj:  The number of attention units assigned to process j

• uj(xj):  The expected utility of process j  under an attention amount xj

• T:  The attention horizon

The attention amount xj is applied to process j  for a duration T, starting from the present

time t  = 0.  Each process j  shares the same attention horizon T.

We are interested in computing and using the utility function uj(xj).  In addition to the

attention amount xj and the global parameter T, we employ the following process-speciÞc

quantities in our calculation:

Figure 4.1. Implicit and explicit representations of competing processes. 
In (a), a decision maker devotes a partial level of attention θ to a process; the remaining
attention 1 Ð θ is devoted to unspeciÞed, other processes.  In (b), a decision maker allo-
cates attention fractions θ1, É, θN to corresponding processes 1, É, N, where the θjs add
up to 1.  Note that (b) can be viewed as an explicit rendition of (a), where the unspeciÞed
Òother processesÓ are now speciÞed.  (In the remainder of the chapter, we speak of allocat-
ing attention amounts xj instead of attention fractions θj .)
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•

 

κ

 

j

 

:  The 

 

attention capacity

 

 of process 

 

j ,

 

 or the maximum number of attention

units assignable to it

 

•

 

, :

 

  

 

The 

 

transition matrix

 

 and 

 

reward vector,

 

 respectively, for process 

 

j

 

when it is receiving 

 

x

 

j

 

 units of attention

 

•

 

α

 

j

 

:  The 

 

discount rate

 

 for rewards accumulated by process 

 

j

 

 (Section 3.2.3.2)

 •  i  j  :  The  current state   of process  j   (Section 3.2.1)

Now suppose that each 

 

κ

 

j

 

 = 1, that is, that up to 1 attention unit can be assigned to each

process.

 

3

 

  Then, we can compute 

 

u

 

j

 

(

 

x

 

j

 

) through a straightforward adaptation of the devel-

opments of Chapter 3, by regarding 

 

x

 

j

 

 as the attention fraction

 

 

 

applied to process 

 

j .

 

  We

begin the computation with the following fundamental quantities:

 

•

 

, :  The transition matrix and reward vector, respectively, of the default pol-

icy for process 

 

j  

 

(i.e., when it is receiving no attention)

 

•

 

, :  The transition matrix and reward vector, respectively, of the optimal

policy for process 

 

j

 

 (i.e., when it is receiving 1 attention unit)

 

•

 

:  The 

 

optimal-value vector

 

 for process 

 

j

 

 (under 1 attention unit) 

Here, we compute , , and  from

 

 

 

, , and 

 

α

 

j  

 

using policy iteration (Sections

3.3 and 3.4).  We substitute these quantities into Eqs. 3.27 and 3.28, obtaining the transi-

tion and reward matrices for the hybrid policy corresponding to the attention amount 

 

x

 

j

 

:

 

;

 

(4.1)

 

.

 

(4.2)

 

Next, we use the Laplace transform to compute the 

 

total-value vector

 

 that results from

operating the  hybrid policy for a time 

 

t ,

 

 then operating the optimal policy thereafter (Sec-

tion 3.5.3):
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; (4.3)

. (4.4)

Finally, we instantiate the solution of Equation 4.4 with the attention horizon T, and we

extract the scalar component corresponding to the current state i j:

, (4.5)

where  denotes the i j th element of .4

We use the notation uj(xj) to emphasize this relationship between utility and applied

attention, acknowledging that uj also depends on the time-varying process state i j, the

process parameters , , , , , α j, κ j, and the global parameter T.

4.2.2 Independent processes with additive utilities

We are interested in the overall utility of the N  processes.  We assume that we are dealing

with separate processes that operate independently; thus, changes in an attention amount

xj affect only the corresponding process utility uj(xj).  Furthermore, we assume that the

overall utility comprises the individual process utilities in an additive manner.  Using the

symbol U  to denote the overall utility, we can therefore write

. (4.6)

Although the individual utilities u1, É, uN are independently determined by their

corresponding attention amounts x1, É, xN, they are, in general, not independent of one

another.  We shall see that the constraint on the total available attention introduces

4. To preserve clarity of exposition, I do not distinguish between value  and utility  in this
dissertation.  The equating of utility with value corresponds to the assumption of risk neu-
trality in decision analysis.  
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dependencies among the individual xjs, and therefore introduces dependencies among the

individual ujs.

4.2.3 Basic optimization formulation

Using the notation of Sections 4.2.1 and 4.2.2 for describing individual processes, I now

present an initial formulation of the multiple-process monitoring problem.  A decision

maker must allocate an amount of attention xj to each process j, where j  = 1, É, N.  The

attention amounts are constrained to sum to 1.  Each process j  yields a utility uj(xj).  The

overall utility U(x1, É, xN) is the sum of the component utilities uj(xj).  The objective is

to maximize this overall utility:

(4.7)

(4.8)

, (4.9)

where U(x1, É, xN) is given by Equation 4.6.

I present methods for solving Eqs. 4.6 through 4.9 in Section 4.4.  But let us Þrst extend

our current problem formulation to handle a larger class of resource-constrained, process-

monitoring problems.

4.3 Allocation of multiple attention units

Thus far, we have thought of the multiple-process problem as the optimal partitioning of a

single personÕs attention.  However, by manipulating the right-hand side of Equation 4.8,

we can talk about partitioning the attention of more than one person.  We would also like

to talk about allocating more than one person to a process.  For example, a certain process

might require the attention of two people to operate optimally.

maximize U x1 … xN, ,( )

subject to xj
j 1=

N

∑ 1=

and 0 xj 1≤ ≤ for j 1 … N, ,=
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In this section, I generalize our existing framework to incorporate such possibilities.

These generalizations are simple from a mathematical-modeling standpoint, but the

semantics of the revised framework merit careful consideration.

4.3.1 Incorporation of different resource constraints

Suppose that C  people are available to manage a set of N  tasks.  We can generalize our

current problem formulation by substituting C  into the right-hand side of Equation 4.8.

Larger values of C  allow more favorable attention allocations, which in turn permit

greater overall utility.

When C  = N, the only solution to the optimization problem is to assign  for each

process j .  Problems arise when C  > N Ñwhen the amount of available attention resource

exceeds the combined resource capacities of all the processes.  This technical difÞculty

can be resolved easily with an additional variable x0 that accounts for any unused atten-

tion (0 ≤ x0 ≤ C); we modify the left-hand side of Equation 4.8 to incorporate x0.

4.3.1.1 Attention units versus people units

The optimization-problem formulation treats C  as a fungible, continuous resource that is

partitioned, into fractional amounts as necessary, to achieve maximum overall utility.  It

can therefore be problematic to speak of C  as an available number of people, since people

typically come in discrete units.  Therefore, I refer to C  as an attention amount, measured

in units of attention, or attention units Ñrather than people units.  The magnitude of C

conveys the attention resources of that equivalent number of people, with the understand-

ing that such resources can be partitioned continuously.

4.3.1.2 Meta-level decision maker

Now that we have allowed multiple attention units to be allocated, we must clarify the

identity of the decision maker.  For C  = 1, we described a single decision maker striving

to multitask among several processes.  However, this story does not adapt readily to situa-

tions where C  ≠ 1, because the allocation of multiple attention units is performed by one

xj 1=
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decision maker.  Thus, although the quantity C  represents available human activity, it is

easier to think of C  as a fungible resource that is allocated by an intelligent decision

maker at the meta-level.  This situation is akin to a manager partitioning and assigning a

large workforce to different tasks.

4.3.2 Incorporation of different attention capacities

Thus far, we have assumed that it takes the full attention of one person, or 1 attention unit,

to operate a process optimally.  However, we can imagine a process that requires multiple

units of attention to operate optimally.  We can accommodate such processes by relaxing

the previous assumption that the attention capacities κ j all equal 1.

We must decide exactly what it means for a process to receive arbitrary amounts of atten-

tion.  Suppose a process j  operates optimally when it receives κ j  units of attention.  We

can construct hybrid default-optimal matrices for xj  (≤ κ j) units of attention according to

the effective attention fraction xj /κ j.  We start with the following quantities:

• , :  The transition matrix and reward vector, respectively, of the default pol-

icy for process j  (i.e., when it is receiving no attention)

• , :  The transition matrix and reward vector, respectively, of the optimal

policy for process j  (i.e., when it is receiving κ j units of attention)

• :  The optimal-value vector for process j  (under κ j units of attention) 

For an attention amount xj, we compute the transition and reward matrices for the hybrid

default-optimal policy under a partial level of attention xj /κ j  (Section 3.5.2):

; (4.10)

. (4.11)

We then compute uj(xj) in a manner analogous to Eqs. 4.3 through 4.5, substituting ,

, and  for , , and , respectively:
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; (4.12)

; (4.13)

. (4.14)

Although our use of the notation uj(xj) emphasizes the relationship between utility and

attention allocation, it is important to remember that uj also depends on the current state

ij , the process parameters , , , , , α j, κ j, and the global parameter T.

Figure 4.2 illustrates the dynamic determinants of uj .

4.3.3 Revised problem formulation

The added notions of variable attention constraints and variable attention capacities permit

the following generalization of the basic problem formulation of Section 4.2.  We are

given C  attention units, and we must optimally allocate xj of them to each process j , for

j  = 1, É, N.  Each process j  has an attention capacity κ j and yields a utility uj(xj) that is

obtained from Eqs. 4.10 through 4.14.  The overall utility U(x1, É, xN) to be maximized

is the sum of the component utilities uj(xj).  We write

Figure 4.2. Determinants of process utility. 
The utility of process j , uj, depends on the attention amount xj and on numerous of other

quantities, including i j , the current state of process j , and T, the attention horizon of inter-

est.  The other determinants of uj Ñκ j, , , , , , and α j Ñare intrinsic pro-

cess parameters, and are not shown explicitly.  The total expected utility from these inputs

is denoted by ; we use uj(xj) to denote this quantity to emphasize our interest in

how this utility changes with the attention amount x j.
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(4.15)

(4.16)

. (4.17)

Note that problems arise when the total available attention C  exceeds the total attention

capacity .  We can remedy such scenarios by introducing an additional variable

x0, to which all excess avilable attention units are allocated, and modifying the left-hand

side of Equation 4.16 accordingly.  (Note that 0 ≤ x0 ≤ C.)  Figure 4.3 depicts the resulting

optimization scenario.  Because the need for x0 arises only when there is no meaningful

constraint on the available attention, I henceforth assume that 0 ≤ C  ≤ .

Figure 4.3. Distribution of attention among concurrent processes. 
A limited amount of attention C  is to be distributed among N  processes.  When process j
receives an attention amount xj, it yields an expected utility uj(xj).  The total utility U
depends on the values assigned to x1, É, xN, and is equal to the sum of the process utili-
ties uj(xj) for j  = 1, É, N.  Unused attention resources are incorporated into the special
variable x0, where 0 ≤ x0 ≤ C.  The xjs must add up to C.
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4.3.4 Overview of solution methodology

Eqs. 4.15 through 4.17 typify a separable optimization problem:  The constrained

resource (the available attention) separates into a sum of components x1, É, xN, and the

objective function U  separates into a sum of functions uj of the respective components xj.

This separability permits efÞcient solutions to what would otherwise be an intractable

search for optimal solutions in the joint space of x1, É, xN.

Our framework for managing concurrent process relies on the analysis of convex separa-

ble problemsÑseparable problems with additional assumptions about the form of the

utility functions.  In Section 4.4, I begin our investigation of convex separable problems

by considering only the equality constraint (4.16).  Then, in Section 4.5, I incorporate the

inequality constraints (4.17).  Finally, in Section 4.6, I describe practical methods for mod-

eling the utility of a process under various levels of attention.  We are particularly inter-

ested in Markov decision processes whose utility functions satisfy the assumptions of the

convex separable problem.

4.4 Convex separable problems

We now explore the solution of convex separable problems with a single equality con-

straint [Luenberger, 1984].  Our problem is this:

(4.18)

(4.19)

by strategically choosing x1, É, xN.  We assume that each uj(xj) is increasing:  that uj

increases as xj increases.  Furthermore, we assume that each Ðuj(xj) is strictly convex:

maximize uj xj( )
j 1=

N

∑

subject to xj
j 1=

N

∑ C=
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 ∂2uj  / ∂xj  < 0 for all xj .
5  (4.20)

In other words, uj increases with diminishing returns as xj increases, for j  = 1, É, N.

We can rewrite (4.18) and (4.19) as

(4.21)

, (4.22)

where x = [x1 É xN]T, U(x) = , and h(x) = .  When convey-

ing basic results from optimization theory, we use the notation of (4.21) and (4.22); when

we exploit separability, we recruit the more speciÞc form of (4.18) and (4.19).

4.4.1 First-order necessary conditions

Suppose that a point x satisÞes the constraint h(x) = 0 and is a local extremum (maximum

or minimum) of the objective function U(x), where both h  and U  have continuous Þrst-

order partial derivatives.  Classic optimization theory asserts the following Þrst-order nec-

essary condition:  For any such point x, there exists a real number λ such that

. (4.23)

Equation 4.23, together with the constraint (4.22), is a system of N  + 1 equations in N  + 1

unknowns (comprising x and λ).  Instantiated with the separable problem (4.18) and

(4.19), this system of equations becomes

; (4.24)

. (4.25)

5. Setting this condition is equivalent to asserting that each uj(xj) is strictly concave.
The optimization literature typically adheres to a cost-minimization framework with con-
vexity assumptions; here, I adopt a utility-maximization framework with concavity
assumptions.  I use the term convex, however, to remain consistent with the language of
the optimization literature.

maximize U x( )

subject to h x( ) 0=

uj xj( )
j 1=
N∑ xjj 1=

N∑( ) C–
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xj∂
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The parameter λ is called a Lagrange multiplier for historical reasons.  I discuss the

meaning and signiÞcance of λ in Section 4.4.5.

4.4.2 Second-order sufÞcient conditions

Suppose that x* and λ* satiÞes the system (4.22) and (4.23).  If h  and U  have continuous

second-order partial derivatives, then U(x*) is guaranteed to be a strict local maximum

under the following second-order condition:  The matrix

(4.26)

is negative deÞnite on the plane M = {y: y = 0}, that is, yTL(x*)y > 0, for y ∈  M,

y ≠ 0.

Note that, for the separable problem (4.18) and (4.19),  vanishes for all x, and

 reduces to a diagonal matrix.  Furthermore, the convexity requirement (4.20)

causes the diagonal elements of  to be negative.  From these observations, we see

that the matrix L(x*) is diagonal with negative elements, which automatically renders it

negative deÞnite on the entire space of x*, and therefore on M.  Thus we can be conÞdent

that any solution x*, λ* to the system (4.24) and (4.25) locally maximizes the overall utility

U(x) =  under the constraint .

4.4.3 Local duality

We have established that solving the constrained optimization problem involves solving a

system of N + 1 equations with N + 1 unknownsÑthe N-component vector x and the

Lagrange multiplier λ.  Thus, any solution x* to the optimization problem has an associ-

ated Lagrange multiplier λ*.  It turns out that, under certain local convexity assumptions,

we can formulate an unconstrained, dual optimization problem in which the parameter λ is

the primary unknown.  Any solution λ* to the dual problem would then have an associated

point x* that we can determine by invoking the Þrst-order conditions (4.23) with λ = λ*.  

L x*( ) U x*( )∇ 2 λ* h x*( )∇ 2–=

h x*( )∇

h x( )∇ 2

U x( )∇ 2

U x( )∇ 2

uj xj( )
j 1=
N∑ xjj 1=

N∑ C=
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Although duality plays an important role in the theory of optimization, we are more inter-

ested in its practical ramiÞcations.  SpeciÞcally, the dual problem is often easier to solve

than is the original problem.  Let us examine the theory of duality to see how we can use it

to solve the convex separable problem (4.18) and (4.19) efÞciently.

4.4.3.1 Local-duality theorem

Suppose that the constrained problem

(4.27)

(4.28)

has a local solution at x* with corresponding value r* = U(x*) and Lagrange multiplier λ*.

Suppose also that the matrix  is negative deÞnite.  Let the

dual function φ be deÞned according to

. (4.29)

Then, the local-duality theorem asserts that the unconstrained dual problem

(4.30)

has a local solution at λ* with corresponding value r* = φ(λ* ) = U(x*).

4.4.3.2 Exploitation of local duality

A prominent obstacle to putting local duality to work is the task of computing the dual

function φ(λ).  Performing this computation involves Þnding, for a given λ, the point x

that maximizes the quantity .  Setting the gradient of this quantity to 0

yields the following system of N equations in N unknowns (with λ held constant):

, (4.31)

which is identical to the set of Þrst-order necessary conditions in Equation 4.23.  Solving

this system yields a locally unique solution, which we designate as x(λ).  We obtain the

dual function, then, by substituting x(λ) into Equation 4.29:

maximize U x( )

subject to h x( ) 0=

L x*( ) U x*( )∇ 2 λ* h x*( )∇ 2–=

φ λ( ) maxx U x( ) λh x( )–[ ]=

minimize φ λ( )

U x( ) λh x( )–

U x( )∇ λ h x( )∇– 0=
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. (4.32)

In general, our ability to exploit local duality depends primarily on how easily x(λ) is

obtained.  Given x(λ), however, it turns out that we do not need to compute φ(λ) at all.  To

see why, consider what happens when we attempt to minimize φ(λ).  Differentiating

Equation 4.32 with respect to λ yields, by the chain rule,

,

where the gradient ∇ is taken in the space of x.  Since x(λ) is deÞned as the point that

maximizes , the gradient of this expression vanishes, and 

reduces to .  To solve the constrained optimization problem (4.27) and (4.28),

then, we take the following steps:

• Compute x(λ) by solving .

• Solve the dual problem (4.30) by solving .

• For each root λ*, compute x* = x(λ*).

Remember that this use of local duality assumes, for each solution x*, λ*, that the matrix

 is negative deÞnite (see Section 4.4.2).

4.4.3.3 Solution of convex separable problems

Let us invoke the procedure given previously to solve the convex separable problem:

(4.33)

. (4.34)

Our Þrst step is to compute x(λ).  We instantiate the Þrst-order conditions and obtain the

following for j  = 1, É, N:

, (4.35)

φ λ( ) U x λ( )( ) λh x λ( )( )–=

φ' λ( ) U x λ( )( )∇ λ h x λ( )( )∇–[ ] x' λ( ) h x λ( )( )+=

U x λ( )( ) λh x λ( )( )– φ' λ( )

h x λ( )( )
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which can be rewritten as

, (4.36)

where the function λ j(xj) is deÞned as the right-hand side of Equation 4.35.  The convex-

ity assumption ∂2uj / ∂xj < 0 implies that λ j(xj) is monotonic and therefore invertible.

Thus, we can invert Equation 4.36 to obtain the desired components of x(λ):

. (4.37)

Armed with x(λ), we construct and solve the constraint , or

 .6 (4.38)

Finally, for a solution λ*, we use Equation 4.37 to determine the corresponding x*.

4.4.4 Global optimality

We have found that the required conditions for local duality are satisÞed automatically by

the convexity assumptions (4.20).  It turns out that these convexity assumptions are stron-

ger than what is needed to employ local duality, and that these stronger assumptions lend a

stronger interpretation to any solution x*, λ* obtained through the local-duality procedure

presented in Section 4.4.3.

Equation 4.20 implies that the objective function U(x) =  is concave.7  Fur-

thermore, the constraint h(x) is afÞne (linear plus a constant).  In general, these two condi-

tions, taken together, guarantee that any locally optimal solution x*, λ* to the optimization

problem (4.21) and (4.22) is globally optimal.  Thus, we can be conÞdent that any solution

we obtain from solving (4.37) and (4.38) is a globally optimal solution.

6. People typically employ numerical methods to solve this equation.  An analytic solu-
tion can be achieved only when the functions uj(xj) are formulated conveniently.

7. Maximizing the concave objective function U(x) is equivalent to minimizing the con-
vex objective function ÐU(x).

λ λ j x j( )=

xj λ( ) λ j
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4.4.5 Sensitivity

Given a maximizing point x*, what can we say about its associated Lagrange multiplier λ?

In this subsection, we Þnd that λ can be interpreted mathematically as a local sensitivity

parameter, and economically as a marginal price.  We shall also see, in the speciÞc case of

the convex separable problem, that λ can be interpreted as an equilibrium price.

4.4.5.1 Sensitivity theorem

Consider the family of constrained problems:

(4.39)

. (4.40)

Suppose that, for c  = 0, there is a local solution x*, λ that satisÞes the second-order sufÞ-

ciency conditions for a strict local maximum.  Then, there exists an x(c) that is well-

deÞned and continuous over some interval containing 0, such that x(c) is a local maxi-

mum of (4.39) and (4.40), and x(0) = x*.  Furthermore, the sensitivity theorem asserts that

. (4.41)

Equation 4.41 states that a small increase in resource ∂c  increases the quantity U(x(c))

by an amount λ∂c.  The parameter λ can thus be interpreted as a marginal priceÑa price

associated with small changes in the constraint.  Since the optimization solution varies

with the total resource C, we may also speak of a quantity λ (C) that measures the local

sensitivity of overall utility to variations in total resource in the neighborhood of C.   

4.4.5.2 Equilibrium prices

We can glean more insight into the Lagrange multiplier λ for the speciÞc case of the con-

vex separable problem.  Recall that each process j  has an associated utility function uj(xj)

that increases in xj with diminishing returns, and an associated function λ j(xj) that we

deÞned in terms of uj(xj):

maximize U x( )

subject to h x( ) c=

c∂
∂

U x c( )( )
c 0=

λ=
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. (4.42)

Equation 4.42 states that the quantity λ j(xj) measures the sensitivity of the individual util-

ity uj to variations in resource allocated to process j  in the neighborhood of xj.  Because

uj(xj) is increasing and concave, λ j(xj) is a positive quantity that decreases in magnitude

as xj increases.  In other words, additional resource increments result in progressively

smaller increments in process utility, for each process j .  We can thus think of λ j as a local

marginal priceÑthat is, as a marginal price local to the individual process j .

The global constraint (4.34) introduces a mutual dependence among the local marginal

prices.  SpeciÞcally, for any optimal allocation , É, , the Þrst-order necessary con-

ditions require that the corresponding local marginal prices , É,  all be

equal.  Combining (4.35) with (4.42), we obtain

. (4.43)

In other words, we can interpret the global sensitivity parameter λ as an equilibrium

price:  a marginal price that holds across all processes under an optimal attention alloca-

tion x*.  Stated from the dual point of view, each local marginal price must be set to the

global equilibrium price if the set of s is to optimize the overall utility and simulta-

neously satisfy the resource constraint.

4.4.6 Example:  Portfolio management

We have seen how duality enables a straightforward procedure for solving a convex sepa-

rable problem.  Let us apply this procedure to the portfolio managerÕs problem.  An

investor hires four consultants to manage a portfolio for a period of time.  The portfolio

comprises three funds.  From previous experience with similar funds, she assesses, for

each fund j , the expected proÞt uj (quantiÞed in millions of dollars) resulting from an

effective number of consultants xj managing the fund (Figure 4.4):

λ j x j( )
xj∂
∂

uj xj( )= for j 1 … N, ,=

x1
* xN

*

λ1
* x1

*( ) λN
* xN

*( )

λ λ j x j
*( )= for j 1 … N, ,=

xj
*
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She wishes to determine how much of the consultantsÕ combined attention should be allo-

cated to each fund.  Her goal is to maximize the total expected proÞts from this portfolio.

After conÞrming that we have indeed a convex separable problem,8 our Þrst step is to

compute the components of x(λ).  We compute λ j(xj) by differentiating uj, obtaining

Figure 4.4. Utility functions (portfolio example). 
Illustrated for each of the three funds are the expected proÞts, in millions of dollars, as a
function of the effective number of allocated consultants.

8. Although u2(x2) is concave, it does not increase for all x2.  However, this fact does not
present a problem for our analysis.
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We then invert these relations to obtain the desired functions 

 

x

 

j

 

(

 

λ j).  Equating the λ js as λ

and applying the constraint yields the equation , which is sat-

isÞed by λ = 0.564829.  We then compute  = x j(λ) for each fund j:

,

which yields a total proÞt of  million dollars.

Figure 4.5 illustrates this solution graphically:  The relationships between each λ j and xj

are plotted, and the horizontal line indicates the marginal price at the optimal solution.

Let us brießy illustrate the role of λ  as a sensitivity parameter.  We can repeat the preced-

ing analysis for constraints that deviate slightly from the original example.  The results of

one such experiment are shown in Table 4.1.  Note that, for these small deviations in total

resource, the actual incremental proÞt is approximated closely by the original equilibrium

price of λ = 0.564829 million dollars per consultant.

Figure 4.5. Marginal prices (portfolio example). 
For each of the three funds, the marginal price decreases as the effective number of con-
sultants increases.  The solution to the optimization problem is represented by the horizon-
tal line and its points of intersection with the marginal-proÞt curves.  At the solution, the
individual marginal proÞts are equal, such that the corresponding attention units sum to 4.
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The procedure of Section 4.4.3.3 breaks down for more extreme values of 

 

C.

 

  For exam-

ple, when 

 

C

 

 = 1, the procedure yields the ÒoptimalÓ solution  = 0.409466,

 = ,  = 0.748676.  Unfortunately, our manager cannot allocate negative

consultant equivalents.  Thus, we need to amend our current framework by incorporating

boundary conditions such as  x  2    ≥   0.  

4.5 Incorporation of boundary conditions

 

With a few technical modiÞcations, we can use the methods of the previous section to

solve convex separable problems that stipulate boundary conditions on the resource allo-

cations.  Let us revisit our original problem formulation:

 

(4.44)

(4.45)

 

,

 

(4.46)

 

where, for each process 

 

j

 

, we have 

 

∂

 

2

 

u

 

j

 

 / 

 

∂

 

x

 

j

 

 < 0 for all 

 

x

 

j

 

.

 

Table 4.1.

 

Sensitivity experiment (portfolio example). 

 

The effects of small variations in the total resource amount 

 

C

 

 are shown.  Note that the
optimized proÞt 

 

U

 

(

 

x

 

(

 

c

 

)) increases with 

 

C.

 

  Furthermore, the normalized proÞt response

 

∆

 

U /

 

∆

 

C

 

 closely approximates the equilibrium price of 

 

λ

 

 = 0.564829 at 

 

C

 

 = 4.

C U(x(c)) ∆U/∆C

3.95 2.90284 0.565988

3.97 2.91418 0.565524

3.99 2.92549 0.565061

4.01 2.93679 0.564597

4.03 2.94807 0.564134

4.05 2.95932 0.563670

x1
*

x2
* 0.158142– x3

*

maximize uj xj( )
j 1=

N

∑

subject to xj
j 1=

N

∑ C=

and  0 xj κ j≤ ≤ for j 1 … N, ,=
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It is possible to extend the theoretical framework of Section 4.4 to incorporate inequality

constraints.  Such an extension, however, requires additional parameters and notation, and

does not move us closer to developing efÞcient algorithms for solving (4.44) through

(4.46).  Rather than explore this more general theory, let us investigate two speciÞc

approaches for dealing with the boundary conditions (4.46).

4.5.1 Methods for dealing with boundaries

The requirement  means that it is impossible to allocate less than 0 attention

units or more than κj attention units to process j .  Thus, we must never allow such an allo-

cation to occur during any optimization procedure.  Whenever there is an attempt to allo-

cate negative attention units to a process j , we must enforce the minimum allocation of 0

attention units.  Similarly, whenever there is an attempt to allocate attention beyond the

processÕs attention capacity, we must enforce the maximum attention allocation κ j.

The following methods for handling boundary conditions assume that 0 ≤ C  < ;

larger values of C  result in a degenerate problem with no effective resource constraint.

4.5.1.1 Method 1:  Elimination of boundary processes

One way to satisfy the boundary conditions is Þrst to eliminate processes that do not meet

those boundary conditions, then to reoptimize the reduced set of processes.  An algorithm

for this strategy is presented in the following function, BOUNDED-OPTIMIZE.  There are

two input parameters:  P, the set of processes to be optimized, and C, the number of avail-

able attention units.  The subroutine OPTIMIZE(P , C) performs the procedure in Section

4.4.3.3 and returns a solution pair (x, λ), where x denotes a set of assignments of values to

variables.  The initial call is BOUNDED-OPTIMIZE({1, É, N}, C).  

0 xj κ j≤ ≤

κ jj 1=
N∑
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BOUNDED-OPTIMIZE(P , C):

• z := ∅

• Loop

1. (x, λ) := OPTIMIZE(P , C)

2. Q := { j  ∈  P  | xj  < 0}

3. If Q = ∅ then break  (*exit loop *)

4. z := z ∪ { xj  ← 0 | j  ∈  Q}

5. P := P –Q  (* set difference *)

• Loop

1. R  := {j  ∈  P  | xj > κ j}

2. If R = ∅ then break  (* exit loop *)

3. z := z ∪ { xj  ← κ j  | j  ∈  R}

4. C := C – 

5. P := P –R  (* set difference *)

6. (x, λ) := OPTIMIZE(P, C)

• x := x ∪ z

• Return (x, λ)

4.5.1.2 Method 2:  RedeÞnition of the dual function

By slightly modifying the inverse marginal functions xj(λ), we can adapt the procedure of

Section 4.4.3.3 to handle the boundary conditions .  This method involves

computing and using the boundary prices λ j(0) and λ j(κ j); note that these quantities are

the maximum and minimum values, respectively, of the marginal price for process j .  An

attempt to overallocate corresponds to an equilibrium price less than λ j(κ j), whereas an

equilibrium price that exceeds λ j(0) leads to unintended negative allocations.  The modi-

Þed procedure is as follows:

κ jj R∈∑

0 xj κ j≤ ≤
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• For each process j , compute the function

, (4.47)

where .

• Solve for λ:

. (4.48)

• Using the solution λ*, compute  = xj(λ*) for each process j .

Note that, in general, the equilibrium price λ* matches the individual marginal prices

λ j( ) for only those processes in which 0 <  < κ j .

4.5.2 Example: A family of portfolio problems

Let us revisit the portfolio managerÕs problem, this time including boundary conditions in

our analysis.  We were given  = ,  = , and

 = .  Suppose that each fund can be managed by up to three consult-

ants:  κ1 = κ2 = κ3 = 3.  Then, our goal is to maximize the sum of the uj(xj)s, subject to

x1 + x2 + x3 = C  and 0 ≤ xj ≤ 3, where C  is the total number of available attention units.  

Using either method from Section 4.5.1, we can verify that the solution for C  = 1 is

 = 0.318239,  = 0,  = 0.681761; this solution has an associated equilibrium price

λ = 0.758588 that is shared by only the Þrst and third funds.  More interesting is how the

solution varies with the resource constraint C:  Figure 4.6 illustrates the optimal attention

allocations for values of C  ranging from 0 to 5.  The corresponding marginal prices and

optimized total proÞts are shown in Figures 4.7 and 4.8, respectively.  We can also com-

pute the fractional optimal allocations, , which provide additional

insight into the solution (Figure 4.9).

xj λ( )

κ j

λ j
1– λ( )

0





=

λ λ j κ j( )<

λ j κ j( ) λ λ j 0( )≤ ≤

λ λ j 0( )>

λ j x j( )
xj∂
∂

uj xj( )=

xj λ( )
j 1=

N

∑ C=

xj
*

xj
* xj

*

u1 x1( ) ln x1 1+( ) u2 x2( ) 0.7x2 0.03 x2( )2
–

u3 x3( ) 1.5 1 e x3––( )

x1
* x2

* x3
*

ϕ j
* C( ) xj

* C( ) C⁄≡
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Figure 4.6. Optimal attention allocations (portfolio example). 
Graphed are the optimal attention allocations , ,  for the portfolio management
problem as the available number of consultant attention units C  is varied between 0 and 5.

Figure 4.7. Equilibrium prices (portfolio example). 
The equilibrium price λ decreases as more consultant attention resources C  are made
available to the portfolio management problem.
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Figure 4.8.

 

Total utility (portfolio example). 

 

An increase in consultant resources 

 

C

 

 increases the maximum attainable total proÞt

 

U

 

(

 

C

 

) =  +  + .

 

Figure 4.9.

 

Fractional optimal allocations (portfolio example). 

 

At low values of 

 

C,

 

 most of the consultant resources are allocated to funds 1 and 3.  As 

 

C

 

increases toward 5 and beyond, it is optimal to allocate roughly 60 percent of the consult-
antsÕ attention to fund 2, and 20 percent to each of funds 1 and 3. 
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4.5.3 Activation prices

 

The 

 

activation price

 

 

 

λ

 

j

 

(0), a measure of the 

 

priority

 

 of process 

 

j ,

 

 provides further insight

into our problem.  Activation prices are process-speciÞc parameters that can be computed

apart from any optimization procedure.  For example, we can compute activation prices

for the portfolio managerÕs problem as follows:

 

.

 

4.5.3.1 ClassiÞcation of processes as active or latent

 

In discussing the role of activation prices, we often refer to processes as either being

active or latent.  Under a given resource constraint 

 

C,

 

 a process 

 

j

 

 is 

 

active

 

 if  > 0;

otherwise, it is 

 

latent

 

 (i.e.,  = 0).

 

9

 

  Now let us return to the family of portfolio-man-

agement problems discussed in Section 4.5.2.  Figure 4.10 depicts an alternative represen-

tation of the solutions from Figure 4.6; different shaded regions correspond to attention

units allocated to different processes.  Observe that, when 

 

C

 

 is close to 0, only process 3 is

active.  As 

 

C

 

 increases beyond roughly four-tenths of an attention unit, process 1 becomes

active.  Finally, process 2 enters the picture when 

 

C

 

 surpasses approximately 1.2 attention

units. 

 

4.5.3.2 Prioritization of processes under scarce resources

 

With active and latent processes deÞned, we can now increase our understanding of

Figure 4.10.  Listed in descending order, the activation prices are 

 

λ

 

3

 

(0) = 1.5, 

 

λ

 

1

 

(0) = 1.0,

and  = 0.7Ñin the same order that the corresponding processes become active as  C 

is increased.  In general, processes with higher activation prices require smaller resource

amounts to become active.

The activation prices can also help us to determine exactly where on the 

 

C

 

 axis a process

becomes active.  The key to computing these critical points is to note that a process 

 

j

 

 is

active only when its activation price 

 

λ

 

j

 

(0) exceeds the equilibrium price 

 

λ

 

(

 

C

 

).  For

 

9. I use the term 

 

latent

 

 instead of 

 

inactive

 

 to acknowledge that a process may become
active following a state transition or some other transformation.

λ1 0( ) 1.0= λ2 0( ) 0.7= λ3 0( ) 1.5=

xj
* C( )

xj
* C( )

λ2 0( )
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example, in the portfolio managerÕs problem, process 1 becomes active when

 

λ

 

 = 

 

λ

 

1

 

(0) = 1.0.  Substituting this equilibrium price into Equation 4.48 yields

 

.

 

Thus, process 1 starts becoming active when 

 

C

 

 = 0.405465 attention units.  A similar cal-

culation reveals that process 2 becomes active when 

 

C

 

 surpasses 1.10971 attention units.

Figure 4.11 depicts the fractional distribution of attention for various resource amounts 

 

C.

 

 

 Note that the activation prices and the optimal allocations reveal different, related aspects

of the solution to the optimization problem.  For example, process 3 has the highest activa-

tion price, and therefore consumes most of the attention in resource-starved situations.

However, it is process 2 that consumes an increasingly larger fraction of resources, as they

become more available.

 

4.5.3.3 Analysis of the addition or removal of a process

 

In addition to their role in setting priorities on processes, the activation prices help us to

predict whether adding or removing a process would disturb the presiding optimal atten-

tion distribution.  As an illustration, let us return to the portfolio managerÕs problem with

 

Figure 4.10.

 

Distribution of attention under varying resource constraints. 

 

This Þgure displays optimal attention distributions, as a function of the available attention

 

C,

 

 for the portfolio managerÕs problem.  Note that, for low 

 

C,

 

 only process 3 is active; as

 

C

 

 increases, Þrst process 1 and then process 2 becomes active.
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C  = 1.  We found that the optimal allocation was  = 0.318239,  = 0,  =

0.681761, with an associated equilibrium price λ = 0.758588.  We also determined, inde-

pendent of the optimization procedure, that the activation prices were λ1(0) = 1.0,

λ2(0) = 0.7, and  = 1.5.

Now consider what happens when we remove a process from this system.  If we remove

process 2, we should expect no change in the optimal attention allocation, because process

2  has no attention units assigned to it (i.e.,  = 0).  On the other hand, removing process

1 frees up 0.318239 attention units, which are then redistributed to the other processes.

(Similarly, the removal of process 3 results in a redistribution of 0.681761 units of atten-

tion to processes 1 and 2.)  In general, removing a process j  disturbs the prevailing atten-

tion allocation only when  > 0.

We can recast this story in terms of activation prices.  Recall that, during the optimization,

a process receives attention only when its activation price exceeded the equilibrium price

λ .  Thus, for the removal of a process k  to warrant a redistribution of attention, we must

have  > λ .  Note that, under these circumstances, the modiÞed attention distribution

has associated with it a new equilibrium price λ', where λ' < λ .  

Figure 4.11. Fractional attention allocations as a function of resource. 
This Þgure displays varying fractional attention allocations for the portfolio managerÕs
problem; the contents are derived from Figure 4.10 with .
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A similar analysis holds for adding a process.  When we add a process k  to a set of pro-

cesses P  with equilibrium price λ, we disturb the optimal attention allocation only if kÕs

activation price  exceeds λ .  Such a disturbance, when it occurs, obliges each pro-

cess in P  to redistribute various amounts of attention to process k.  Concomitantly, the

equilibrium price increases from λ  to λ', and inactivates any process m ∈  P  for which

λ' >  > λ (see Section 4.5.3.2).

4.6 Incorporation of partially attended processes

Now that we are equipped to analyze a set of processes given their utility functions uj(xj),

let us confront the challenge of producing the functions themselves.  On Þrst glance, there

seems to be no challenge:  The procedure of Section 4.3.2 speciÞes a series of steps for

computing uj(xj).  Unfortunately, it computes uj only for speciÞc values of xj; it does not,

in general, produce uj(xj) in closed, functional form.  Thus, we cannot compute expres-

sions for the Þrst derivative λ j(xj) and, more important, its inverse.  We need such expres-

sions to utilize the optimization strategies developed in Sections 4.4 and 4.5.

Fortunately, for a large class of processes, we can approximate uj(xj) with a simple expo-

nential form that satisÞes the required convexity assumption.  Let us explore this approxi-

mation by way of example to see how it can simplify our optimization strategy.

4.6.1 Example:  Cows on a farm

Consider the following description of a particular cow on a farm.  Whenever the cow is

healthy (state 1), it produces milk at a rate equivalent to $10 per day.  Otherwise, the cow

is sick (state 2), and its production rate slows to $2 per day.  Whether the cow is healthy

depends on its previous health state and on whether or not the cow is supervised.  Under

no supervision, a healthy cow becomes sick with probability 1dt in a short time interval

dt, and a sick cow heals at one-Þfth that rate.  Supervision enhances both a healthy cowÕs

ability to resist illness (transition rate 0.5), and a sick cowÕs ability to become healthy

(transition rate 1).  Transition diagrams for this process are shown in Figure 4.12.

λk 0( )

λm 0( )
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To maximize any aggregate earning measure, the cow should be kept healthy as often as

possible; the optimal policy is to supervise the cow whether it is healthy or sick.  We spec-

ify that the cow is by default not supervised; thus, to give attention to the cow would be to

supervise the cow, and to give no attention would be to leave the cow unsupervised.  Fur-

thermore, let us assume that it takes the attention of 4 farm workers to supervise the cow

(i.e., κ = 4), that we are considering an attention horizon of 1 week (T  = 7), and that the

discount rate for earnings is α = .

To determine accumulated proÞt as a function of attention, we employ the procedure sum-

marized in Section 4.3.2.  From the problem statement, we immediately extract

.

We use policy iteration to obtain

;

.

Figure 4.12. A Markov decision process (cow example). 
At any given moment, the decision to supervise determines the cowÕs dynamic properties.
For example, when the cow is sick, supervising the cow enables a transition rate of 5 to
healthy, whereas leaving the cow unsupervised permits transitions to healthy at a rate of
only 0.2.  In this particular example, the earning rates are $10 for the healthy state and $2
for the sick state, regardless of whether the cow is supervised.
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We compute transition matrices for intermediate amounts of attention x (where 0 ≤ x  ≤ 4)

according to Eqs. 4.10 and 4.11:

; (4.49)

. (4.50)

Application of Eqs. 4.3 and 4.4 then yields the accumulated discounted earnings:

; (4.51)

(4.52)

From , we extract  for a cow that is currently healthy, or

 for a presently sick cow.  These relationships are plotted in Figure 4.13.

Figure 4.13. Utility-attention relationships (cow example). 
Plots for total value as a function of attention units are shown for state 1 and state 2.  These
plots were generated for values of x between 0 and 4 in increments of 0.04.  Separate iter-
ations of Eqs. 4.49 through 4.52 were required for each distinct value of x.
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Now suppose that we have several similar cows characterized by different numerical

parameters, and a group of farm workers who supervise these cows.  To Þnd the optimal

attention allocation, we need concave utility functions 

 

u

 

j

 

(

 

x

 

j

 

) for each cow 

 

j .  

 

Although

the curves in Figure 4.13 do appear to be concave, they were generated from a numerical

procedure, not a closed-form expression.  Let us see how we can produce closed-form

expressions that approximate utility-attention relationships typiÞed by those in

Figure 4.13. 

 

4.6.2 Exponential utility-attention modeling

 

For a large class of processes, we can approximate the utility-attention relationship with

the following concave exponential form:

 

,

 

(4.53)

 

where 

 

A,

 

 

 

B,

 

 and 

 

γ

 

 are positive constants, and  denotes an approximation of the actual

utility-attention function 

 

u

 

(

 

x

 

).

We can solve for these three constants given three values of 

 

u

 

(

 

x

 

).  One convenient strat-

egy is to use the values 

 

u

 

(0), 

 

u

 

(

 

κ

 

/2), and 

 

u

 

(

 

κ

 

):  the utilities of no attention, one half of the

attention capacity, and the full attention capacity, respectively.  Substituting these values

into Equation 4.53 yields the system

or, deÞning ,

Solving this system yields the following cascaded formulae for 

 

A,

 

 

 

B,

 

 and 

 

γ

 

:
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γx–
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,

,

,

.

Let us apply this approximation to the cow example.  For a healthy cow (state 1), we have

u(0) = 30.406, u(κ /2) = 75.783, and u(κ) = 82.599, where κ = 4.  Applying the preceding

equations yields the approximation .

Figure 4.14 illustrates the exact and approximate utility-attention functions, and their dif-

ference.  Note how the approximate utility  underestimates the exact utility u(x) for

x  < 2 and overestimates it for x  > 2.  We can reduce the magnitude of these errors by

using more sophisticated curve-Þtting approaches.  For example, we could use additional

or different values of the exact utility to select more strategic values of A, B, and γ.  Alter-

natively, we could employ other concave forms of  altogether. 

Figure 4.14. Comparison of approximate and exact utilities (cow example). 
(a) The approximate and exact utilities,  and u  respectively, both increase as the atten-
tion amount x increases, with diminishing returns.  (b) The approximate utility underesti-
mates the exact utility for x  < 2 and overestimates it for x  > 2.
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ũ x( )
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4.6.3 Separable optimization

Given closed-form representations of the utility of a process for various amounts of atten-

tion, we can now utilize the optimization strategies developed in Sections 4.4 and 4.5.  If

each process j  has an associated utility function , then the convex

separable problem we want to solve assumes the speciÞc form

,

where Aj, Bj, γj, and κ j are process pararameters, x1 through xN are allocation variables,

and C  is the total amount of attention resource.  Thus, to solve this optimization problem,

we instantiate the procedure of Section 4.5.1.2, which produces the following steps:

• For each process j , construct the function

.

• Find the equilibrium price λ* that satisÞes the equation .

• Compute the optimal allocations  = xj(λ*) for each process j .

Let us apply these steps to the following example involving two cows.  Suppose that we

would like to allocate C attention units to two cows of the sort described in Section 4.6.1,

with the Þrst cow ( j  = 1) being healthy and the second cow ( j  = 2) being sick.  If we apply

uj xj( ) Aj Bje
γ j xj–

–=

maximize Aj Bje
γ j xj–

–[ ]
j 1=

N

∑

subject to xj
j 1=

N
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xj λ( )
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----ln
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-----------–  
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
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

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λ Bjγ je
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xj λ( )
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the approximation procedure of Section 4.6.2 with an attention horizon T  = 7, we obtain

the following utility functions for the two cows: 

We can then use the steps on page 90 to determine the optimal attention allocation.

Figure 4.15 displays the optimal attention allocation for values of C  between 0 and 8.

Compared to the healthy cow, the sick cow merits an additional amount of attention that

remains constant for most values of C (Figure 4.15a); with increasing C, the proportion

of attention allocated to the sick cow approaches that of the healthy cow (Figure 4.15b).

4.6.4 Variation of the attention horizon

In addition to varying the total attention resource C, we can also vary the attention hori-

zon T  and observe how the solution behaves.  Figure 4.16 displays the result of one such

experiment (C  = 4).  Note that, when T  is approximately less than 0.3, all the available

attention is concentrated on the sick cow.  For large values of T, the solution asymptoti-

cally approaches 1.951 attention units assigned to the healthy cow and 2.049 attention

units assigned to the sick cow.

Figure 4.15. Optimal attention allocations (two-cow example). 
(a) Optimal attention allocations  and  are plotted for various resource con-
straints C.  (b) The same information is plotted with .
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Suppose that we are given a set of 

 

N

 

 processes, numbered such that 

 

λ

 

1

 

(0) > É > 

 

λ

 

N

 

(0).

Then, in general, for , we can expect the available attention to concentrate on pro-

cess 1, with any remaining attention concentrated on process 2, and so on.

 

4.7 Discussion

 

Decision-theoretic methods for managing concurrent processes under resource constraints

have been investigated in the recent past.  Let us see how my method for distributing

continuous amounts of attention advances the state of the art.

 

4.7.1 Expected cost of delayed action

 

When we are managing concurrent processes with limited attention resources, we must

temporarily forgo the optimal treatment of certain processes in favor of those that need

attention more urgently.  To address tradeoffs inherent in prioritizing one process over

another, Horvitz developed a decision-theoretic measure of the 

 

expected cost of delayed

action (ECDA)

 

 of a process.  He deÞned ECDA as the difference in expected value of

taking immediate ideal action and delaying ideal action until a time 

 

T

 

 from now.  For a

 

Figure 4.16.

 

Effect of attention horizon on attention allocations (two-cow example). 

 

Illustrated are optimal allocations of 4 available attention units for different values of the
attention horizon 

 

T.

 

  (a) For 

 

T

 

 < 0.3, all of the available attention is allocated to process 2.
(b) As 

 

T

 

 increases, the attention distribution converges asymptotically toward 1.951 atten-
tion units for process 1, and 2.049 attention units for process 2.
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general process, to delay action means to control the process in a prespeciÞed default

manner; to take ideal action means to impose an optimal state of control from that time

forward.

Although it can be unwieldy to compute ECDA for a general process, Horvitz character-

ized a class of processes, pathologic processes, for which we can assess directly the cost

of various delays T, given speciÞc current states.  For such processes, computing ECDA

reduces to computing a probability distribution over the current state, and then using this

probability distribution to compute the expected cost of delay.  Horvitz demonstrated this

formulation of ECDA in various applications, including a system for setting priorities for

the display of propulsion-system information at the NASA Mission Control Center, and a

prototype system for triaging and transporting victims of a catastrophic trauma scene

[Horvitz & Barry, 1995; Horvitz & Seiver, 1997].

We can think of ECDA as a special case of my framework.  For a continuous-time Markov

decision process with speciÞed default alternatives, the ECDA for a delay T  is simply

, where i  is the current state, κ is the attention capacity, and each  is

computed according to Eqs. 4.13 and 4.14.  Stated otherwise, the ECDA is the expected

difference in value from applying full attention immediately, versus applying no attention

for a time period T; in both cases, full attention is conferred after T.

4.7.2 From binary to continuous states of attention

My framework for distributing attention among concurrent processes generalizes the con-

cept of ECDA by allowing the allocation of continuously divided amounts of attention.

For a process j , we can consider allocating 0 ≤ xj ≤ κ j attention units over a horizon of

interest T.  The ECDA concept, on the other hand, considers only the possibilities of

applying no attention (xj = 0) or full attention (xj = κ j) during T.

We can appreciate this difference by considering the application of each methodology to

the following multiple-process monitoring scenario.  Consider N  processes with attention

capacities κ1 = É κN = 1, and an attention amount C  = 1 to be allocated over a horizon T.

vi
κ

0( ) vi
κ

T( )– vi
κ

t( )
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In the ECDA framework, the problem is to decide which process should receive this unit

of attention.  Assuming additive costs, the ECDA framework selects the process j  that

minimizes the sum total ECDA of all processes k  ≠ j , that is, the process with the highest

ECDA for a delay T (Figure 4.17a).

My framework casts the attention-allocation problem as one of deciding how much atten-

tion to allocate to each process.  In contrast with ECDA, my framework can allocate por-

tions of the available attention to multiple processes; such a plan entails multitasking

among processes that can operate while receiving less than their full attention capacities

(Figure 4.17b).10

Figure 4.17. Strategies for allocating attention among multiple processes. 
Illustrated are N  processes with attention capacities κ1 = É = κ N = 1 over an attention
horizon T.  One attention unit is to be allocated among these processes.  (a) The ECDA
methodology decides which process should receive this attention.  (b) My attention-
distribution methodology, in contrast, considers how this attention can be divided and
distributed among the processes.

10.  The ability to operate processes at partial levels of attention also allows us to model
scenarios where the attention capacities κ j differ from one another.
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There are certain catastrophic situations (e.g., T  → 0 or C  → 0) for which the best plan

may be to concentrate all the available attention on a few urgent processes.  However, the

ability to multitask usually produces greater overall utility than we can attain by assigning

all the available attention to one process.

4.7.3 From one-dimensional to two-dimensional urgency measures

Although ECDA can serve as a priority measure for pathologic processes, my research

demonstrates that this one-dimensional notion of urgency does not scale up to the general,

attention-allocation problem.  Given an attention amount C  and an attention horizon T,

my alarm framework produces, for each process j , a priority measure λ j(0) and an atten-

tion allocation .  Each type of measure captures a different aspect of the allocation

of attention over the Þnite duration T; both the portfolio-management example from Sec-

tions 4.4 and 4.5 and the example of the large intensive-care unit from Section 6.3 illus-

trate how processes that have higher priority do not necessarily need more attention.

Although the ECDA framework also embodies a notion of a temporal horizon T, it con-

siders only the effects of actions that are applied at the present instant.  This assumption

enables the one-dimensional notion of urgency that is captured by the ECDA metric.

4.8 Summary

In this chapter, we confronted the challenge of apportioning limited short-term attention

resources among a collection of concurrent processes.  We saw how this problem can be

formulated as a convex separable problem, whose components represent processes that

can operate at partial levels of short-term attention, in the sense described in Chapter 3.

As in Chapter 3, we recognized two aspects of the attention assigned to a process j:  (1)

the attention amount xj in the context of the processÕs attention capacity κ j, and (2) the

temporal horizon T  over which this attention is applied.

xj
* C( )
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In analyzing the convex separable problem, we identiÞed metrics that provided insight

into different aspects of the optimal management of these processes.  Given an attention

amount C, the optimal attention allocations  indicate how this attention should be

shared among the processes.  We also investigated the activation prices λ j(0) for each pro-

cess j , and showed how they provide a basis for prioritizing processes when resources are

scarce.  These alarm signals can help to focus the attention of a group of agents who are

managing several processes to which they cannot attend all at once.

We used relatively simple examples to illustrate various concepts presented in this chapter.

In Chapter 5, we see how these concepts can scale up to a more complex problem of real-

world interest.

xj
* C( )
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C h a p t e r  5

Simulated Patients
and Patient Wards

Thus far, I have motivated and presented a methodology for generating quantitative,

decision-based alarm signals for a set of concurrent, continuing processes.  In this chapter,

I describe the SIMON1 alert system, a program that applies this methodology to the

important problem of monitoring multiple patients in a busy intensive-care unit (ICU).

Using the methods of Chapter 4, SIMON produces alarm signals for a collection of

simulated ICU patients who are being ventilated mechanically.  Each patient, in turn, is

modeled as a process (of the type developed in Chapter 3) whose parameters are derived

in part from VentPlan [Rutledge et al., 1993].2  I used the alarm signals produced by

SIMON to support the validation phase of this research, described in Chapter 6.

I present SIMONÕs overall architecture in Section 5.1.  Then in Sections 5.2 and 5.3, I

develop a schema, or template, for the ICU-patient models used in my research.  I illus-

trate the use of this schema by way of example in Section 5.4.

1. SIMON stands for System for Intelligent MONitoring.  I developed SIMON using Math-
ematica 3.0 on a 180 MHz, PowerPC 604e machine running MacOS 8.1.

2. VentPlan is a validated prototype ventilator-management advisor that computes the
utilities of alternative ventilator settings in a patient-speciÞc manner.  I use the utilities of
VentPlan to construct models that represent realistic ICU patients.
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5.1 Architecture

Let us begin by reviewing the architecture of the SIMON alert system.  To produce alert

signals for a collection of patients, SIMON requires up-to-date information on each patient,

as well as the values of user-controlled parameters that specify the planning horizon and

the total available attention resources. 

5.1.1 Single patient unit

Consider a single, critically ill patient.  The patient receives ongoing life support, which

gives his body a chance to heal itself.  He is monitored through devices that provide infor-

mation on his current physiologic status.  Observed changes in telemetry indicate possible

underlying physiologic changes that warrant a change in treatment protocol.  However,

any change in treatment requires the attention of a capable clinician who physically

attends to the patient at the bedside.

In determining how to allocate attention, SIMON interacts not directly with the physical

patient, but rather with a computational representation, or a model, of that patient.  The

model represents key aspects of the patientÕs static and dynamic characteristics.  SIMON

uses different models to simulate different types of patients, and interprets observed data

from each patient in light of speciÞc characteristics that are captured in the corresponding

model.

Figure 5.1 illustrates a patient-monitoring unit, or patient unit,  consisting of a physical

patient and his corresponding patient model.  The model processes speciÞc queries con-

cerning the patient, taking into account measurements obtained from the patient, actions

applied to the patient, and fundamental patient characteristics, as encoded in the model.

Thus, a Òpatient,Ó from SIMONÕs point of view, is a patient unit in the sense just described.

I often use the term patient to refer to the physical patient in conjunction with his corre-

sponding model.
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5.1.2 Patient-unit interface

Figure 5.2 illustrates the two types of interactions that occur between SIMON and a typical

patient unit j .  The quantity xj denotes the amount of attention applied to patient j , and the

quantity λ j denotes the marginal beneÞt per unit of additional attention.  The attention is

applied for a positive duration T  starting from the present time.3  Given a speciÞed value

of T , there is a correspondence between the quantities xj and λ j:  The model produces λ j

given xj and T, or xj given λ j and T.  SIMON relies on both types of interactions in com-

puting its alarm signals.

Figure 5.1. A patient unit. 
A patient unit consists of a physical patient and a patient model.  The physical patient is
observed and treated over time, as indicated by the information paths patient observations
and patient controls, respectively.  The patient model is a computational representation of
the patient.  The model produces inferences in response to incoming queries by consider-
ing prior knowledge about the patient and ongoing information obtained from monitors
attached to the patient.

3. These quantities are discussed in detail in Chapter 4.

Figure 5.2. Patient-unit interface. 
A patient unit can process two types of queries.  Given an attention horizon T , it can infer
the marginal price λ j of an attention amount xj, or the attention amount xj that corre-
sponds to a given marginal price λ j.

patient
patient
model

patient observations

model queries

patient controls

model inferences

patient
unit j T

x j

λ j
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5.1.3 Multiple patients

A typical ICU ward contains several patients who are being managed by a limited clini-

cian-resource pool.  SIMON produces alarm signals to assist these clinicians in utilizing the

limited attention resources intelligently.  Figure 5.3 illustrates the interactions involved in

producing such signals.  SIMON receives a query that comprises an available attention

amount and an attention horizon of interest.  SIMON, in turn, computes alarm signals by

coordinating a series of computations with each patient unit.

In an ICU setting, SIMON would be used to generate alarm signals on a continuing basis.

To accomplish this behavior, SIMON must receive a continuous stream of queries and up-

to-date patient information.  The alarm signals change in response to changes in the query,

the patient composition, or the state of one or more patients.

Figure 5.3. SIMON alert system. 
SIMON computes alarm signals by integrating relevant information from each patient unit.
The alarm signals are generated in response to speciÞc queries.  The information exchange
that occurs along each bidirectional arrow conforms to the protocol shown in Figure 5.2.

patient
unit 1

patient
unit 2

patient
unit N

query

alert signals
SIMON
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5.1.4 SIMON interface

Figure 5.4 depicts a generic user interface for SIMON.  For each patient j , the activation

price λ j(0) and the attention allocation  are displayed, along with an appropriate

patient identiÞer, in descending order of λ j(0).  Given λ1(0) > λ 2(0) > É > λN(0), SIMON

recommends that an attention amount C, over an attention horizon T, should be utilized

by Þrst allocating  attention units to patient 1, then allocating  attention units

to patient 2, and so on.

In the speciÞc example shown in the Þgure,  >  > , as indicated by the

relative lengths of the horizontal bars.  Note that the highest-priority patient (ID 1) is not

necessarily the patient who warrants the most attention (ID 2).  The two alarm concepts

are related, but convey separate notions.  In general, we should recognize the difference

between a processÕs priority and the amount of attention that is assigned to that process.

Figure 5.4. SIMON interface. 
SIMON computes alert signals based on information received from the patient units, and
the user-speciÞed parameters T  (the attention horizon) and C  (the available attention
amount).  The alert signals λ j(0) and  for each patient j  are displayed alongside a
corresponding patient identiÞer.  The patients are prioritized and listed in descending order
of λ j(0) (i.e.,  λ1(0) >  λ 2(0) >É>  λ N(0)).

xj
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5.2 Patient-model structure

Having reviewed the architecture of SIMON, let us turn our attention to the patient models

themselves.  I build these models using continuous-time Markov-process components and

the concepts developed in Chapter 3.  The models share a common process structure, but

differ from one another in the way that this structure is parameterized.  I develop the struc-

ture in this section; a strategy for quantifying it is described in Section 5.3.

5.2.1 Physiologic states

While he is in the ICU, a patient can assume one of two physiologic states:  an unstable

state and a critical state.  From the unstable state, the patient can deteriorate to the critical

state, whereas a critical-state patient can improve to the unstable state.  In addition, there

are two ways for the patient to leave the ICU.  An unstable-state patient can improve to a

stable state and be discharged to the ßoor, whereas a patient in the critical state may

devolve to the dead state.  These state transitions are shown in Figure 5.5a.

Figure 5.5. Physiologic states. 
These diagrams depict continuous-time Markov-process representations of an ICU
patient.  In (a), the patient transitions between the unstable and critical states, eventually
terminating in either the stable state or the dead state.  In (b), the stable and dead states are
aggregated into a departed state.  The thick arrows indicate transitions that yield a reward
of 1.  The remaining, thin arrows denote transitions that yield no reward.

stable unstable critical dead

departed

unstable critical

(b)

(a)
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The desired outcome is for the patient to make the transition to the stable state.  I endow

this transition with a reward of 1; it is distinguished in the Þgure by a thick arrow.  Thin

arrows denote the other transitions, which yield no reward.  A patient who enters the dead

state loses all possibility of making a rewarding transition.

Figure 5.5b depicts an alternative representation of the scenario modeled by Figure 5.5a.

The stable and dead states are aggregated into a single departed state.  A transition from

unstable to departed means that the patient has left the ICU alive; one from critical to

departed indicates that he has died.  A reward is associated with only the former transition,

which is distinguished from the other transitions by a thick arrow.

For the purpose of computing expected rewards, the two models shown in Figure 5.5 are

equivalent.  However, the preceding structural transformation is necessary for computa-

tional purposes, because the process machinery of Chapter 3 applies to only ergodic pro-

cesses.   To maintain clinical relevance, I continue my exposition by augmenting the

model of Figure 5.5a, recognizing that I can always convert this working model to an

equivalent, ergodic form suitable for computation.

5.2.2 Alternative treatments

I now incorporate treatments to our working model.  At any given moment, our patient is

receiving one of two types of treatments:  a conservative maintenance  treatment, or an

aggressive treatment.  These treatments inßuence patient dynamics differently; different

transition rates prevail depending on the selected treatment.  The maintenance regimen is

preferred whenever the patient is unstable; a critical patient necessitates the more aggres-

sive therapy.  A state diagram for this Markov decision process (MDP) is shown in

Figure 5.6.

5.2.3 Transitory and persistent attention effects

Recall that a process that is receiving attention operates according to its optimal policy,

whereas the same process that is receiving no attention operates according to its default
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policy (see Section 3.3).  We have seen that the optimal policy is to treat an unstable

patient conservatively and a critical patient aggressively.  To model the favorable effects

of attention, though, we need a default policy, which stipulates how the patient is treated

when he is unattended.

There are several such default policies, depending on which treatment options require that

the patient be afforded attention.  For example, we could specify that the aggressive-treat-

ment option is available only under attention, or, equivalently, that the patient undergoes

maintenance treatment when he is receiving no attention.  In this scenario, the effects of

attention are transitory, in that nondefault treatments are terminated when the attention is

withdrawn.  Such attention effects are analogous to a push-and-hold button, which can

remain pushed only when it is receiving human attention (Figure 5.7a). 

Not all treatments in medicine are transitory.  For example, when we adjust an ICU

patientÕs ventilator settings, the effects of our attention are persistent:  Treatments

Figure 5.6. Physiologic states in the context of different treatments. 
Illustrated is a continuous-time MDP, representing an ICU patient who can receive one of
two treatments at any given time.  The transition rates between states depend on which
treatment the patient is receiving.  The transition from unstable to stable garners a reward
of 1, as indicated by the thick arrow.  (The states are indexed as follows:  state 1 is unsta-
ble, state 2 is critical, state 3 is stable, and state 4 is dead.)
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introduced under attention remain in place after the attention is withdrawn.  The

persistence of treatment settings is exempliÞed by a control knob, which can be adjusted

only when it is receiving human attention.  For our patient models, I consider two possible

ventilator settings:  a maintenance setting and an aggressive setting.  Such a ventilator-

setting mechanism is analogous to a toggle switch, shown in Figure 5.7b.

 

5.2.4 Modeling persistence

 

The persistent effects of adjusting a ventilator require additional modeling, because the

model must remember the treatment that is being administered whenever attention is with-

drawn.  We can encode such memory effects by introducing an additional state variable to

our working model.

To apply this modeling strategy to our patient, I consider the possible physiologic condi-

tions (unstable and critical states) in conjunction with the possible treatments (mainte-

nance and aggressive).  There are a total of four physiologyÐtreatment combinations, each

combination a possible state in our revised patient model.  In addition, I retain the two

 

Figure 5.7.

 

Transitory and persistent attention effects. 

 

The distinction between transitory and persistent attention effects is exempliÞed by the
difference in the response of a push-and-hold button (a) and a toggle switch (b).  In (a), the
effects of attention are transitory:  Attention enables the option of providing aggressive
treatment, whereas the withdrawal of attention necessitates the termination of any such
treatment.  In (b), the effects of attention are persistent:  Attention enables the option of
switching treatments, whereas the withdrawal of attention results in continued administra-
tion of only the most recent treatment.  
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absorbing states (stable and dead), which represent the two ways that the patient can leave

the ICU.  Thus, there are a total of six patient states to consider.

We must also revise our concept of alternatives. Although I continue to provide either

maintenance or aggressive treatment to our patient, I now distinguish our alternatives by

whether the ventilator setting can be adjusted.  In the Þrst alternative, 

 

continue prevailing

treatment,

 

 the ventilator settings cannot be changed; the second alternative, 

 

ensure opti-

mal treatment,

 

 adjusts the ventilator settings, as necessary, to provide maintenance treat-

ment to an unstable patient and aggressive treatment to a critical patient.  As in the

previous model, an unstable patient can change to stable or critical, whereas a critical

patient can make a transition to unstable or to dead.  Figure 5.8 depicts our revised patient

model.
 

Figure 5.8.

 

Physiologic states with persistent treatment effects. 

 

This continuous-time MDP represents an ICU patient whose ventilator settings can be left
unchanged (alternative 1) or adjusted to the optimal setting (alternative 2).  Transitions
from an unstable to a stable state yield a reward of 1, as indicated by the thick arrows.
Note that the states are indexed: (1)
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5.3 Patient parameters

 

The preceding model structure must be quantiÞed for it to be a complete patient model.  To

construct models that represent realistic ICU patients, I employ a parameterization strat-

egy that incorporates outputs from VentPlan, a validated prototype ventilator-management

advisor  [Rutledge et al., 1993].  Sections 5.3.1 through 5.3.5 describe the speciÞcation of

transition rates; the remaining parameters are discussed in Section 5.3.6.

 

5.3.1 VentPlan physiologies and treatments

 

VentPlan computes recommended ventilator settings of ICU patients by interpreting the

patientsÕ physiologic measurements.  The physiologic and treatment variables used by

VentPlan are shown in Table 5.1.  For a given set of physiologic values, VentPlan com-

putes the predicted steady-state effects of alternative ventilator settings.  The predicted

effects, in turn, are evaluated according to a multiattribute utility function [Farr, 1991].

The recommended treatment maximizes the expected value of this utility.

The utility computed by VentPlan is inversely related to the probability that the patient

will transition to a less desirable state during a time interval of interest.  I exploit this inter-

pretation of VentPlanÕs utilities in assessing transition rates for our patient model.

 

Table 5.1.

 

VentPlan variables. 

 

Shown here are the principal quantities that are processed by VentPlanÕs mathematical
model.  The physiologic variables encode the patientÕs health status, and the treatment
variables specify the ventilator settings.  (Not shown are other parameters that VentPlan
uses to infer the patientÕs physiology, and to predict the effects of alternative treatments.)
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5.3.2 Patient states

 

Our patient models assume that the physiologic state can be observed directly through

appropriate telemetry.  I associate a set of physiologic values 

 

Θ

 

u

 

 with the unstable state,

and a ÒworseÓ set of physiologic values 

 

Θc with the critical state.  Using VentPlan, I

compute optimal ventilator settings Xu and Xc for each of these respective physiologies; I

designate Xu as the maintenance treatment and Xc as the aggressive treatment.  Each

physiologyÐtreatment combination deÞnes a patient state in our model.  The patient states

and their corresponding VentPlan descriptions are shown in Table 5.2.

The resulting assignment of patient states should be consistent with the patientÕs clinical

scenario.  An unstable state should always be more desirable than a critical state, and,

given a physiologic state, the optimal treatment should always be more desirable than non-

optimal treatments.  Let u(Θ, X) denote the utility (computed by VentPlan) of applying

treatment X  to a patient with physiologic state Θ.  Our clinical scenario, then, requires that

u(Θu, Xu) > u(Θu, Xc) > u(Θc, Xc) > u(Θc, Xu).  The Þrst and third inequalities are satis-

Þed automatically by VentPlanÕs utility-maximization routine; the second inequality holds

for valid physiologic-state speciÞcations Θu and Θc.

Table 5.2. Patient states. 
The states of the patient model from Figure 5.8 are deÞned in terms of VentPlan input and
output variables.  The symbols Θu and Θc denote the unstable and critical physiologic
states, respectively; Xu and Xc denote the recommended respective maintenance and
aggressive ventilator treatments.  Not shown are the absorbing states stable and dead.

STATE
DESCRIPTION

(PHYSIOLOGY; TREATMENT)
VENTPLAN 

VALUES

1 unstable; maintenance Θu, Xu

2 critical; maintenance Θc, Xu

3 unstable; aggressive Θu, Xc

4 critical; aggressive Θc, Xc



5.3 Patient parameters 121

5.3.3 Deterioration and death rates

I now convert the utilities of our patient states into appropriate transition rates.  I begin by

assessing the probability of an adverse change in physiology over a 24-hour period, p24, as

a function of VentPlanÕs utility, u, for a patient suffering from congestive heart failure

(CHF).4  Figure 5.9 illustrates the assessed quantity p24 as a function of u.

Given a value of p24, I can now obtain a continuous-time transition rate k  by noting that

the probability y(t) of remaining in the current physiologic state after an elapsed time t  is

governed by the differential equation

, (5.1)

where t  is measured in hours, and by the conditions y(0) = 1 and y(24) = 1 Ð p24.  Solving

Equation 5.1 in conjunction with these conditions yields the transition rate k  as a function

of p24:

Figure 5.9. Assessment of 24-hour probabilities of adverse physiologic changes. 
The quantity p24, the probability of an adverse change in physiology over a 24-hour
period, is plotted as a function of u, the utility computed by VentPlan, for simulated
patients with varying degrees of CHF.  The assessed points are satisÞed by the quadratic
equation p24(u) = 0.999928 Ð 1.81227u + 0.816943u2.  (Note:  This mapping does not
cover extremely ill patients for whom the utility is less than or equal to 0.)

4. The probabilities were assessed by Geoffrey Rutledge, M.D., Ph.D., an emergency-
medicine specialist with extensive experience in the management of critically ill patients.
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. (5.2)

For each patient state, we can use this derivation procedure to calculate the instantaneous

transition rate to the next less desirable state.  Recall that adverse physiologic changes pro-

ceed from unstable to critical to dead.  I describe the transition rates from unstable to crit-

ical as deterioration rates, and the transition rates from critical to dead as death rates.

Table 5.3 summarizes the assignment of these parameters.

5.3.4 Recovery and discharge rates

I now specify the various rates of transitions to more desirable patient states.  Unfortu-

nately, VentPlan does not compute quantities that reßect such healing rates, because its

utility model was designed for the sole purpose of minimizing patient hazards [Farr 1991;

Rutledge et al., 1993].  Therefore, I assess these healing rates separately.

One strategy for specifying clinically plausible healing rates involves the modulation of

assessed base healing rates.  For a given physiologic state, the base healing rate is the rate

of transitions to a more desirable physiologic state when no adverse forces are acting on

Table 5.3. Deterioration and death rates. 
The deterioration and death rates for the model of Figure 5.8 are summarized here.  Each
pair (Θ, X) denotes a physiologyÐtreatment combination for a patient state.  The quantity
u(Θ, X) is the utility from VentPlan, p24(u) is the 24-hour probability of adverse physio-
logic changes (assessed according to Figure 5.9), and k(p24) is the transition rate obtained
from Equation 5.2.

k p24( ) 1
24
------ln 1 p24–( )–=

CURRENT 
STATE

TRANSITION RATES

PARAMETERS VALUES

1 , k(p24(u(Θu, Xu)))

2 , k(p24(u(Θc, Xu)))

3 , k(p24(u(Θu, Xc)))

4 , k(p24(u(Θc, Xc)))

a12
1

a14
2

a26
1

a26
2

a34
1

a34
2

a46
1

a46
2
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the patient.5  Since illness does impede the healing process, I compute, for each patient

state, an effective healing rate by attenuating the base healing rate h  according to the

adverse-transition rate k  confronted by the patient.  Figure 5.10 depicts a linear implemen-

tation of this strategy.  When k  assumes its minimum value, the effective healing rate is

equal to h; at the other extreme, when k  = kmax, the effective healing rate is zero.

I use the preceding parameterization strategy to specify healing rates for the model shown

in Figure 5.8.   I begin by assessing hu and hc, the base healing rates for the unstable and

critical physiologies, respectively.  Then, for each state i , I compute the effective healing

rate by using the adverse-transition rate ki to modulate the appropriate base healing rate.  I

describe the transition rates from unstable to stable as discharge rates, and the transition

rates from critical to unstable as recovery rates.  The assignment of values to these rate

parameters are summarized in Table 5.4.

I often refer to a transition rate aij in terms of its multiplicative inverse, (aij)
Ð1.  I describe

(aij)
Ð1 as the transition time from state i  to state j .  Disregarding all transitions to states

other than j , a process starting in state i  will remain in state i  with probability  (and

therefore will be found in state j with probability ) after an amount of time (aij)
Ð1

elapses.6

5. Technically, our simulated patients do not heal in response to treatments; rather, they
heal on their own, at various stochastic rates that are inßuenced by the choice of treatment.
The goal of treatment is to help patients get better before they get worse.

Figure 5.10. Modulation of base healing rate. 
This diagram illustrates the computation of an effective healing rate for a generic, current
physiologic state.  The quantity h  denotes the base healing rate, and k  denotes the adverse
transition rate.  We compute the effective healing rate by using k  to attenuate h.  (Note
that kmax and kmin are the adverse-transition rates for the VentPlan utilities 0 and 1, respec-
tively.)

h
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5.3.5 Treatment rates

The remaining unspeciÞed transition rates,  and , relate to the correction of inap-

propriate treatment, which can happen only under attention.  I assume that these correc-

tions take effect rapidly, at rates of (1 minute)Ð1.

5.3.6 Other model parameters

We now have a process structure complete with transition rates.  The remaining parame-

ters specify rewards associated with the process, and the number of attention units

required to operate the process optimally.  I allow only the latter to vary between patients.

5.3.6.1 Reward parameters

As noted in Section 5.2.1, I associate a reward of 1 with transitions from the unstable to

the stable condition; transition rewards are otherwise 0.  In other words, I specify

6. Note:  ; .

Table 5.4. Discharge and recovery rates. 
Formulae for computing the discharge and recovery rates for the model of Figure 5.8 are
shown here.  The quantities hu and hc are base healing rates assessed for the unstable and
critical states, respectively.  For each state i , ki is the adverse-transition rate computed via
the formulae displayed in Table 5.3.

1
e
--- 0.368≈ 1 1

e
---– 0.632≈

CURRENT 
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TRANSITION RATES

PARAMETERS VALUES

1 , 

2 , 

3 , 

4 , 
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,

and  for the other combinations of i , j , and k.  I also employ, for each patient, a

discount rate α = 0.02 (see Section 3.2.3).  This reward scheme appraises the intrinsic

value of each patientÕs life equally, but favors patients who are discharged sooner.

5.3.6.2 Total attention capacity

For each patient j , I specify the attention capacity κ j, the number of clinicians needed to

treat this patient optimally on a continuing basis.  This value is typically 1 for a patient

supported by mechanical ventilation; however, the optimal treatment of patients with com-

plex illnesses or other concomitant challenges may require the attention of more than one

clinician.  (The parameter κ j is discussed in Chapter 4.)

5.4 Example:  Congestive heart failure

Let us construct a model for Mr. Dickinson, a 61-year-old man who is recovering from a

heart attack.  Mr. Dickinson is being monitored in the ICU for signs of CHF.  In CHF, the

heart loses its normal ability to pump blood to the systemic circulation.  There is a

decrease in cardiac output and a concomitant increase in the pulmonary wedge pressure.

In severe CHF, this pressure causes ßuid to Þll the lungs; a physiologic shunt results from

the impaired oxygenation of blood ßowing through the pulmonary capillaries.  Severe

CHF exacerbates itself when untreated, and is therefore life threatening.

5.4.1 Patient speciÞcation

Table 5.5 speciÞes a patient model for Mr. Dickinson.  The unstable and critical physio-

logic states differ in their values for cardiac output Q  and shunt fraction fS.7  The dis-

charge and recovery times are 2 days and 1 day, respectively.  Mr. Dickinson has no

special conditions that require his attention capacity to be greater than 1.  The values in

r15
1

r15
2

r35
1

r35
2

1= = = =

r ij
k

0=
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Table 5.5 describe Mr. DickinsonÕs particular condition; other patients who are suffering

from nonidentical illnesses would be described by a different set of numerical values.

5.4.2 Computational issues

The parameters that describe Mr. DickinsonÑor another ICU patientÑmust be converted

into a form suitable for processing SIMONÕs queries (see Figure 5.2).  This transformation

involves a series of automated steps.  The Þrst step is performed once:  The patient

description is compiled into an MDP of the type shown in Figure 5.8 (see Section 5.3).

The remaining steps occur in response to each query from SIMON:

• MDP compilation.  The MDP, along with the patient parameters κ and α (see

Section 5.3.6) and the query parameter T, is compiled via the methods presented

in Sections 4.6.1 and 4.6.2.  The result is a set of utility functions {u1(x), u2(x),

u3(x), u4(x)}, one for each nonterminating patient state (see Table 5.2).8

7. I note, in passing, that VentPlan recommends treating the unstable patient with 25-per-
cent oxygen, and the critical patient with 50-percent oxygen, with the other treatment
parameters virtually unchanged.  An increased inspired-oxygen fraction helps the lungs to
compensate for the loss of blood oxygenation, at the expense of introducing new toxicities
associated with abnormally high oxygen concentrations. 

Table 5.5. Patient-model speciÞcation for Mr. Dickinson. 
We specify a patient model using these thirteen parameters.  The parameters are subse-
quently compiled into a form suitable for processing SIMONÕs queries (see Section 5.4.2).

8. We do not keep stable or dead patients in the ICU; therefore, we have no use for utility
functions corresponding to these patient states.

PHYSIOLOGIC 
STATE

PHYSIOLOGIC PARAMETERS

Q Vds fS RQ

Unstable 3.0 l/min 150 ml 150 ml/min 0.110 0.9

Critical 2.5 l/min 150 ml 150 ml/min 0.260 0.9

BASE DISCHARGE RATE

hu

BASE RECOVERY RATE

 hc

ATTENTION CAPACITY

κ

(48 hr)Ð1 (24 hr)Ð1 1

V̇O2
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• Utility-function selection. The current state i  is ascertained, and the appropriate

utility function ui(x) is selected.

• Query processing.  The function ui(x) is differentiated, such that the function

λ i(x) is obtained.  SIMON then uses λ i(x) and κ to process the query, as follows

(see Section 4.5):

1. A query (x, T)  is answered with λ i(x) for 0 ≤ x < κ, or with 0 

for x ≥ κ.

2. A query (λ , T) is answered with  for λ i(κ) < λ  < λ i(0), 

with 0 for λ  ≥ λ i(0), or with κ for λ  ≤ λ i(κ).

The MDP-compilation step is by far the most expensive computationally.  We can achieve

signiÞcant computational savings by specifying, in advance, values of T  that can be

allowed in queries.  The utility functions can then be precomputed for each possible value

of T, prior to the real-time processing of queries.

5.5 Summary

I have built a prototype application, SIMON, that implements the alarm methodology of

Chapters 3 and 4.  SIMON was designed to meet the important challenge of managing a

busy ICU by allocating scarce attention resources intelligently.  Currently, SIMON is

equipped to produce alarm signals for collections of simulated ICU patients.  

To produce patient models that represent realistic clinical scenarios, I designed an abstract

patient model that was based, in large part, on the outputs of a validated prototype ventila-

tor-management advisor.  I demonstrated that I can create a simulated patient by instantiat-

ing this abstract model with a small set of clinically meaningful parameters.

Given several such patients, SIMON produces alarm signals that allocate limited attention

resources to where they are most needed.  To characterize the behavior of SIMON, I con-

ducted a series of controlled experiments, which I describe in Chapter 6.

λ i
1– λ( )
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C h a p t e r  6

Alarm Signals for a Busy
Intensive-Care Unit

To meet the need for sensible alerts, I developed a decision-theoretic alarm methodology

that embodies the related concepts of process priority and the amount of attention that a

process merits.  I created a prototype, SIMON, that applies this methodology to the problem

of monitoring patients in a busy intensive-care unit (ICU), and I evaluated the methodol-

ogy by running SIMON on a number of simulated ICU scenarios.  I report on the evaluation

process and results in this chapter.

My evaluation proceeded along the dimensions of validity and computability.  Validity is

concerned with correctness; the relevant question is whether SIMON produces clinically

sensible outputs, given inputs that are clinically sensible.  In Sections 6.1 and 6.2, I show

how I answered this question by investigating how SIMONÕs alarm signals respond to con-

trolled changes in the patient population used as input.

Computability is concerned with scalability; it asks how well a methodology adapts

when it moves from small to large problems.  We saw, in Section 2.5.2, that the overall

state space grows exponentially with the number of patients in a given collection.   In Sec-

tion 6.3, I report how I demonstrated the scalability of my approach by applying SIMON to

a simulated ICU that contains numerous patients.
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6.1 Case 1:  Comparing different states

Our Þrst case study covers four patients in an ICU who have the same illness as Mr. Dick-

inson (Table 6.1), our heart-attack patient from Chapter 5.  Each patient occupies a differ-

ent state, but the patients are otherwise identical.  I refer to these patients using numbers

that describe their current state (Table 6.2).   

Let us see how SIMON allocates limited attention resources to these patients.  We shall Þnd

it particularly useful to visualize trends in SIMONÕs outputs, trends that occur when the

query values T  (the attention horizon) and C  (the total available attention) are varied.  

Table 6.1. Patient-model speciÞcation. 
Shown are parameters that describe the four patients used in my Þrst set of experiments.  I
used variations of this patient-model speciÞcation in the later case studies.

Table 6.2. Patient-numbering scheme (case 1). 
The four patients in this case study are numbered according their current state; the num-
bering scheme parallels that of the patient model in Figure 6.1.

PHYSIOLOGIC 
STATE

PHYSIOLOGIC PARAMETERS

Q Vds fS RQ

Unstable 3.0 l/min 150 ml 150 ml/min 0.110 0.9

Critical 2.5 l/min 150 ml 150 ml/min 0.260 0.9

BASE DISCHARGE RATE

hu

BASE RECOVERY RATE

 hc

ATTENTION CAPACITY

κ

(48 hr)Ð1 (24 hr)Ð1 1

V̇O2

PATIENT 
NUMBER

CURRENT STATE

(PHYSIOLOGY; TREATMENT)

1 unstable; maintenance

2 critical; maintenance

3 unstable; aggressive

4 critical; aggressive
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6.1.1 Activation prices

Given an attention horizon T, there is an activation price λ j(0) associated with each

patient j .  I computed the activation prices λ j(0) as function of T  for our four patients, and

plotted the results in Figure 6.2.  For virtually all values of T, we observe that the activa-

tion price of patient 2 greatly exceeds those of the other patients.  For patients 1, 3, and 4,

we observe that λ 3(0) > λ 4(0) > λ 1(0).

The activation price of a process determines the priority that that process commands in

accessing scarce attention resources.  In our case scenario, it is patient 2, the improperly

treated critical patient, who receives top priority in this regard.  As additional attention

resources become available, the other patientsÑin the order 3, 4, and 1Ñbecome eligible

to receive them.  In general, improperly treated patients have priorities higher than those

Figure 6.1. Physiologic states with persistent treatment effects. 
The abstract patient model of Figure 5.8 is reproduced here for the readerÕs convenience.
The states are indexed: (1) unstable-maintenance; (2) critical-maintenance; (3) unstable-
aggressive; (4) critical-aggressive; (5) stable; and (6) dead.
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of properly treated patients; within each category, the critical patient has priority higher

than that of the unstable patient.

 

6.1.2 Attention allocations

 

In contrast to the activation prices, the attention allocations depend not only on the atten-

tion horizon 

 

T,

 

 but also on the available attention 

 

C.

 

   Given a horizon 

 

T

 

 and attention

amounts 

 

C

 

1

 

 > 

 

C

 

2

 

, we expect that, for each patient 

 

j ,

 

  

 

≥

 

 .  Let us witness

this trend, and investigate other trends in the attention allocations for our case scenario.

 

6.1.2.1 Holding 

 

T

 

 and varying 

 

C

 

 

Plots of the attention allocations, as a function of the total available attention 

 

C,

 

 are shown

for various values of 

 

T

 

 in Figure 6.3.  Two common trends prevail in these plots.  First,

note that with increasing 

 

C,

 

 the patients are activated in the order 2, 3, 4, and 1Ñas pre-

dicted by their activation prices.

 

1

 

  Second, for all values of 

 

C,

 

 it appears that  

 

≥

 

 

 

≥

 

  

 

≥

 

 .  This latter trend does not hold in not general:  Section 6.3

describes a case that exhibits attention allocations that do not parallel the activation prices.

 

Figure 6.2.

 

Activation prices versus 

 

T

 

 (case 1). 

 

In (a), we see that 

 

λ

 

2(0) greatly exceeds λ j(0) of the other patients, for virtually all values
of T.  The activation prices of the other patients are more easily compared in (b).  Note
that, in general, λ j(0) increases with T, conÞrming the intuitive idea that the effects of
attention increase with the duration for which that attention is applied.

1. Activated patients command nonzero amounts of attention.
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Trends also occur 

 

between

 

 the plots in Figure 6.3.  To highlight one of them, we focus on

the attention allocations for 

 

C

 

 = 2 in each plot.  We observe that, when the attention hori-

zon is short (i.e. 1 hour),  = 1,  

 

≈

 

 0.65,  

 

≈

 

 0.20, and  

 

≈

 

 0.15.  That is, patients 2

and 3 merit about one-half and one-third of the available attention, respectively, with the

remaining one-sixth divided between patients 4 and 1.  As 

 

T

 

 increases, however, this pref-

erential assignment of attention becomes less extreme.  At 

 

T

 

 = 48 hours, for example,

 

Figure 6.3. Attention allocations versus C  for Þxed T  (case 1). 
The attention allocations  for case 1 are plotted for T  = 1, 3, 6, 12, 24, and 48 hours.  
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patient 2 commands about 37 percent of the available attention, while the remaining

patients command about 21 percent each.

 

6.1.2.2 Holding 

 

C

 

 and varying 

 

T

 

 

We can appreciate the smoothing of attention allocations that occurs with increasing atten-

tion horizons by examining Figure 6.4, which shows plots of attention allocations as a

function of 

 

T,

 

 for various values of 

 

C.

 

  As 

 

T

 

 

 

→

 

 

 

∞

 

, the attention allocations appear to con-

verge toward a stable set of values.  Going in the other direction, as 

 

T

 

 approaches 0, the

attention distribution polarizes, and the available attention becomes concentrated on the

processes that have the highest activation prices (see Section 4.6.4).

 

6.1.3 Global measures

 

We can gain insight into a collection of processes, taken as a whole, by examining various

global measures that result when we compute alarm signals for the individual processes.

Let us see what we can learn about the collection of patients from case 1.

 

6.1.3.1 Equilibrium prices

 

The equilibrium price 

 

λ

 

(

 

C

 

) is the sensitivity of total utility to small changes in available

attention in the neighborhood of 

 

C

 

 (see Section 4.4.5).  In Figure 6.5, I plot 

 

λ

 

(

 

C

 

) for var-

ious values of the attention horizon 

 

T.

 

  At 

 

T

 

 = 1 hour, 

 

λ

 

(

 

C

 

) bottoms out at approximately

one-half of an attention unit; when 

 

T

 

 is increased to 48 hours, the point of negligible

incremental returns appears to occur at one-third of an attention unit. 

Practical consequences arise from the shape of the 

 

λ

 

(

 

C

 

) curves.  Suppose that there is an

attention amount 

 

C

 

 = 

 

C'

 

, such that the beneÞt of any extra attention beyond 

 

C'

 

 is negligi-

ble.  Then any extra attention beyond 

 

C'

 

 may be expended more wisely on other tasksÑ

for example, on taking care of another collection of patients.  Excluding the possibility of

other tasks, we can say that the speciÞc distribution of any additional attention beyond 

 

C'

 

is practically irrelevant.  In other words, once each patient 

 

j

 

 receives (C') attention

units, any extra attention units may be distributed arbitrarily with little consequence.

xj
*
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6.1.3.2 Total utilities

I plot the total utility U(C) for various values of T  in Figure 6.6.  In each plot, the value of

U  appears to plateau at approximately 1.701 for large values of C.  However, the mini-

mum total utility U(0) descends lower for larger T.  This trend is consistent with the

increase in λ values and other beneÞt measures as the attention horizon increases.

Figure 6.4. Attention allocations versus T  for Þxed C  (case 1). 
The attention allocations  for case 1, as a function of T, are plotted for C  = 0.5, 1,
1.5, 2, 2.5, and 3 attention units.

20 40 60 80

0.2

0.4

0.6

0.8

1

20 40 60 80

0.2

0.4

0.6

0.8

1

20 40 60 80

0.2

0.4

0.6

0.8

1

20 40 60 80

0.2

0.4

0.6

0.8

1

20 40 60 80

0.2

0.4

0.6

0.8

1

20 40 60 80

0.2

0.4

0.6

0.8

1

TT

TT

TT

j  =  2 

j   =  3,  4,  1 

j   =  2 

j   =  3,  4,  1 

j  =  2 

j   =  3,  4,  1 

j  =  2 

j   =  3,  4,  1 

j  =  2 

j  =  3,  4,  1 

j  =  2 

j  =  3,  4,  1 

C  =  1.5 

C  =  2.5 C  =  3 

C   =  2 

C   =  1 C  =  0.5 
at

te
nt

io
n 

al
lo

ca
ti

on
at

te
nt

io
n 

al
lo

ca
ti

on
at

te
nt

io
n 

al
lo

ca
ti

on

attention horizon attention horizon

at
te

nt
io

n 
al

lo
ca

ti
on

attention horizon attention horizon

at
te

nt
io

n 
al

lo
ca

ti
on

attention horizon attention horizon

at
te

nt
io

n 
al

lo
ca

ti
on

 

x

 

j

 

*

 

x

 

j

 

*

 

x

 

j

 

*

 

x

 

j

 

*

 

x

 

j

 

*

 

x

 

j

 

*

xj
* C( )



 

136

 

6.0 Alarm Signals for a Busy Intensive-Care Unit

 

6.2 Varying individual patient parameters

 

In the next several case studies, we examine how changes in individual patient parameters

affect the patientÕs ability to command scarce attention resources.

 

6.2.1 Experimental protocol

 

Each of the case studies occurs in an ICU that contains only two patients.  One patient

(patient 1) is identical to Mr. Dickinson (Table 6.1); the other patient (patient 2) differs

from the Þrst by a single parameter value.  The two patients are in the same state (see

Table 6.2).  The available attentionÑand thus the total attention allocatedÑis one-half of

the sum of both patientsÕ attention capacities.  The attention horizon is 

 

T

 

 = 12 hours.

 

Figure 6.5.

 

Equilibrium price versus 

 

C

 

 for Þxed 

 

T

 

 (case 1). 

 

The equilibrium prices 

 

λ

 

(

 

C

 

) for case 1 are plotted for 

 

T

 

 = 1, 3, 12, and 48 hours.  The
point of negligible incremental returns occurs at a fraction of an attention unitÑ
approximately 1/2 for 

 

T

 

 = 1 hour and 1/3 for 

 

T

 

 = 48 hours.  As expected, the 

 

λ

 

 values
increase with 

 

T,

 

 because the effects of attention increase with the duration of attention.
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We can think of patient 1 as a control subject and patient 2 as an experimental subject.

Instead of noting separate attention allocations  and Ñas we did in Section 6.1Ñwe

observe the 

 

attention ratio

 

 of the two patients, the ratio of  to 

 

.

 

  

 

We use 

 

ζ

 

i

 

 to denote

the attention ratio  when both patients are in state 

 

i .

 

  When the two patients are

identical, 

 

ζ

 

i

 

 

 

= 1.  Our goal is to see how 

 

ζ

 

i  

 

is affected by speciÞc changes in the character-

istics of patient 2.

 

6.2.2 Case 2:  Varying the attention capacity

 

I begin by varying the attention capacity 

 

κ

 

 of the experimental patient.  I Þx the attention

capacity of the control patient at 1.  Thus, for a given 

 

κ

 

, the experimental patient requires

 

κ

 

 times the amount of attention that the control patient needs, to be treated in the same

optimal manner.

 

Figure 6.6.

 

Total utility versus 

 

C

 

 for Þxed 

 

T

 

 (case 1). 

 

The total utilities 

 

U

 

(

 

C

 

) for case 1 are plotted for 

 

T

 

 = 1, 3, 12, and 48 hours.  The utility
plateaus occur at the values of 

 

C

 

 where the equilibrium prices of Figure 6.5 bottom out.

1 2 3 4

1.6985

1.699

1.6995

1.7005

1.701

1.7015

1 2 3 4

1.695

1.696

1.697

1.698

1.699

1.701

1 2 3 4

1.675

1.68

1.685

1.69

1.695

1 2 3 4

1.685

1.6875

1.69

1.6925

1.695

1.6975

 

C

C

C
C

U

 

(

 

C

 

)

 

U

 

(

 

C

 

)

 

U

 

(

 

C

 

)

 

U

 

(

 

C

 

)

 
T  =  48 

T  =  3 T   =  1 

T   =  12 

ut
ili

ty

available attention

available attention

available attentionavailable attention

ut
ili

ty
ut

ili
ty

ut
ili

ty

x1
* x2

*

x2
* x1

*

x2
* x1

*⁄



 

138

 

6.0 Alarm Signals for a Busy Intensive-Care Unit

 

Figure 6.7 plots, for each state 

 

i ,

 

 the attention ratio 

 

ζ

 

i

 

 = 

 

 

 

as a function of 

 

κ

 

.  In each

plot, we observe that 

 

ζ

 

i

 

 increases with 

 

κ

 

 in an approximate, linear fashion.  We are not

surprised to witness that 

 

ζ

 

i

 

(1) = 1, although it is interesting that 

 

ζ

 

i

 

(

 

κ

 

) 

 

≠

 

 

 

κ

 

 in general.  In

any event, these results, taken together, suggest that a patientÕs ability to command atten-

tion is directly proportional to the effort required for that patient to be treated optimally.

 

6.2.3 Case 3:  Varying healing-rate parameters

 

In the next series of experiments, I manipulate the healing-rate parameters 

 

h

 

u

 

 and 

 

h

 

c

 

.

Recall that 

 

h

 

u

 

 is the base discharge rate, the maximum rate at which the patient can

improve from the unstable state, whereas 

 

h

 

c

 

 is the base recovery rate, the maximum rate at

which the patient can improve from the critical state (see Section 5.3.4). 

 

Figure 6.7.

 

Attention ratios for experimental 

 

κ

 

 values (case 2). 

 

The attention ratio 

 

ζ

 

i

 

 is plotted as a function of 

 

κ

 

, the experimental patientÕs attention
capacity, for each state 

 

i .

 

  The experimental patientÕs ability to command attention, com-
pared to that of the control patient, increases approximately linearly with 

 

κ

 

.
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6.2.3.1 Varying the base discharge rate

 

I begin by varying the base discharge rate 

 

h

 

u

 

 

 

of the experimental patient.  I often describe

 

h

 

u

 

 in terms of the 

 

base discharge time

 

 

 

t

 

u

 

 = (

 

h

 

u

 

)

 

Ð1

 

.  The base discharge time of the control

patient is held constant at 48 hours.  Figure 6.8 plots, for each state 

 

i , the attention ratio ζ i

as a function of tu. 

In all these plots, ζ i
  falls below 1 as tu increases above 48 hours.  In other words, when a

patientÕs ability to improve from the unstable state is compromised, his pull on the avail-

able attention is weakened.  We might be tempted to object to this result on the notion that

we should be more concerned about patients who are more sick.  However, this result does

not tell us to shift our concern away from sick patients; it merely suggests that patients

who stand to beneÞt most from additional attention should get that additional attention.

Figure 6.8. Attention ratios for experimental tu values (case 3). 
For each state i , the attention ratio ζ i is plotted as a function of tu, the base discharge time
of patient 2.  For tu ≥ 48 hours, ζ i decreases below 1 as tu increases.  This trend continues
for tu < 48 hours, but the trend is reversed at low values of tu for i  = 1, 3, and 4.
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Interesting phenomena occur when I decrease the base discharge time of patient 2 below

48 hours.  For each state i , ζ i increases as tu is decreased from 48 hours to 24 hours; we

expect this behavior because a decreased healing time increases the effectiveness of atten-

tion, and therefore the patientÕs pull on the available attention.  However, for i  = 1, 3, and

4, ζ i stops increasing at a certain point (roughly tu = 15 hours for i  = 1 and tu = 6 hours

for i  = 2, 3), and then decreases as we continue to lower tu.  To understand this behavior,

we again invoke the normative idea that patients who beneÞt the most from additional

attention should get that additional attention.  At low values of tu, where ζ i decreases with

decreasing t u, small amounts of attention have an extraordinarily positive effect on the

patientÕs ability to improve from the unstable state to the stable state.  But once he is in the

stable state, the patient needs no further attention.

It is interesting that the reversal of ζ i does not occur for i  = 2Ñthe improperly treated

critical state.  To gain insight into this exception, we note that the risk of death from state 2

is generally much higher than that from the other states.  We can surmise that the condition

of patients in state 2 is so severe that any attention conferred serves mainly to prevent

death, rather than to facilitate discharge.  Lower values of tu increase the pull on available

attention because patients who are discharged faster are in less danger of dying.

6.2.3.2 Varying the recovery rate

We now study the effects of varying the experimental patientÕs base recovery rate hc.  I

often refer to the base recovery time tc = (hc)
Ð1.  We hold the control patientÕs base

recovery time constant at 24 hours.  Figure 6.9 plots, for each state i , the attention ratio ζ i

as a function of tc.

For i  = 1, 2, and 4, we note that, as tc decreases below 48 hours, ζ i
  increases, but reverses

direction for low values of tc.  The initial increase in ζ i can be explained by the notion that

a critically ill patient who responds more quickly to proper treatment commands more

attention.  At low values of tc, the trend reverses because small amounts of attention have

an extraordinarily positive effect on the patientÕs ability to improve from a critical state to

an unstable state, from which the patient can most readily leave the ICU alive.
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The results for i  = 3 are mystifying at Þrst glance.  Here, we see ζ i increasing with tc, in

contrast with what we saw for i  = 1, 2, and 4.  We can readily distinguish state 3 from

states 2 and 4:  Only the latter are directly affected by changes in the recovery rate.  The

question, then, is how state 3 differs from state 1.  Given that both states are unstable, why

does state 3 attract more attention with increasing tc, whereas state 1 generally attracts less

attention with increasing tc?

The key to this mystery lies in the mechanisms that translate attention into beneÞt.  To iso-

late the dominant mechanisms of attention for states 1 and 3, we imagine that tc is inÞ-

nitely largeÑthat is, a patient who reaches a critical state has no hope for recovery.  Then,

the importance of discharging an unstable patient quickly becomes paramount.  From state

3, more attention always helps, because it facilitates a transition into state 1, from which a

Figure 6.9. Attention ratios for experimental tc values (case 3). 
For each state i, the attention ratio ζ i is plotted as a function of tc, the base recovery time
of patient 2.  For i  = 1, 2, and 4, ζ i increases as tc decreases below 48 hours, but the trend
is reversed at low values of tc.  For i  = 3, ζ i increases with increasing tc.
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successful discharge can most readily occur.2  In contrast, no amount of attention can

improve the situation in state 1, because state 1 is already the most desirable state for our

patient.

We can now appreciate the essential difference between states 1 and 3.  In state 1, the pri-

mary effect of attention is to faciliate recovery from a subsequent critical state.  A patient

who recovers more quickly commands more attention, although beyond a certain recovery

rate, the required attention decreases in response to continued increases in the recovery

rate.  In state 3, attention serves mainly to facilitate a transition into state 1, where the

effective discharge rate is highest.  A patient who is placed in greater jeapordy by a transi-

tion to a critical state has a greater need for such attention.

6.2.4 Case 4:  Varying physiologic parameters

We have one Þnal set of parameters to investigate:  parameters that deÞne the physiologic

states themselves.  Although there are 10 such parameters, it is not helpful to study the

individual role of each, as real physiologic changes typically affect several parameters in a

correlated manner.  Our goal, instead, is to explore how meaningful variations in the char-

acterization of a physiologic state affect a patientÕs pull on the available attention.

In each of the following experiments, I continue comparing the attention allocations of an

experimental and a control patient.  Our patients are still being monitored for some type of

congestive heart failure (CHF), in which a decrease in cardiac output causes a increase in

the physiologic shunt fraction.  However, I use other control patients in place of Mr. Dick-

inson.

6.2.4.1 Varying the severity of the critical state

I begin by manipulating the critical state.  Table 6.3 speciÞes our control patient for this

series of experiments.  I produced experimental patients by modifying the critical state as

2. Remember that the effective discharge rates for states 1 and 3 differ because the dete-
rioration rate for state 3 exceeds that of state 1 (see Sections 5.3.3Ð5.3.4).
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follows:  I introduced various deviations ∆Q  in the cardiac output Q, each in conjunction

with an increase in shunt fraction ∆fS = Ð0.28 ∆Q.   I computed, for each state i , the atten-

tion ratio ζ i
  as a function of Q; the plots of the results are shown in Figure 6.10.

The geometric irregularities in Figure 6.10 deserve explanation.  I generated these plots, in

contrast to the smooth plots of Figures 6.7 through 6.9, by varying parameters that affect

patient dynamics in complex ways.  The critical-state parameters determine the death rates

from states 2 and 4, which in turn help to determine the effective recovery rates from these

respective states.  Thus, the deÞnition of critical state affects four distinct transition rates

in the process model of Figure 6.1.  Furthermore, the discontinuities in these plots appear

to stem from discontinuities inherent in VentPlanÕs quantitative models.3

Given these complications in the translation of physiologic-parameter effects, we are reas-

sured by the gross trends that emerge from these experiments.  In each of these plots, we

note that ζ i increases with decreasing Q.  In other words, patients who are in more danger

Table 6.3. Control patient for critical-state experiments (case 4). 
This table speciÞes the control patient that I used to study the effects of varying the critical
state.  Experimental patients who have different severities of critical CHF are speciÞed via
a coordinated manipulation of the shaded parameters:  A change in cardiac output ∆Q
(measured in l/min) is accompanied by a change in shunt fraction ∆fS = Ð0.28 ∆Q.

3. VentPlanÕs utility measure does not respond smoothly to changes in the physiologic
parameters.  Sometimes, small parameter changes do not affect the utility.  In other
instances, a small change in input parameter can cause the utility to skip to a new value.

PHYSIOLOGIC 
STATE

PHYSIOLOGIC PARAMETERS

Q Vds fS RQ

Unstable 3.00 l/min 150 ml 150 ml/min 0.110 0.9

Critical 2.25 l/min 150 ml 150 ml/min 0.190 0.9

BASE DISCHARGE RATE

hu

BASE RECOVERY RATE

hc

ATTENTION CAPACITY

κ

(48 hr)Ð1 (24 hr)Ð1 1

V̇O2



144 6.0 Alarm Signals for a Busy Intensive-Care Unit

of dying from a critical state command greater attention.  This result conÞrms our intuition

that more attention should be given to those patients who stand to lose more from neglect.

6.2.4.2 Varying the health of the unstable state

Let us now focus on the unstable state.  Our control patient for this series of experiments is

speciÞed in Table 6.4.  I produced experimental patients by modifying the unstable state:  I

introduced various deviations ∆Q  in the cardiac output Q, each in conjunction with an

increase in shunt fraction ∆fS = Ð0.28 ∆Q.   I computed, for each state i , the attention

ratio ζ i
  as a function of Q; the results are plotted in Figure 6.11.   

As in the previous set of experiments, these plots exhibit irregularities that arise from the

complex relationship between physiologic-state parameters and various process-transition

rates.  Fortunately, we witness gross trends that, once again, make clinical sense.  In each

Figure 6.10. Attention ratios for experimental critical states (case 4). 
For each state i , the attention ratio ζ i is plotted as a function of Q, the cardiac output of
the critical state.  Note that the shunt fraction fS varies with Q; see Table 6.3.  I generated
the plots by computing ζ i for Q  varying in increments of 0.05 l/min.
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Table 6.4. Control patient for unstable-state experiments (case 4). 
This table speciÞes the control patient that I used to study the effects of varying the unsta-
ble state.  I generated experimental patients by adjusting the cardiac output Q  and the
shunt fraction fS simultaneously:  For a cardiac-output adjustment ∆Q  (measured in liters
per minute), I adjusted the shunt fraction by an amount ∆fS = Ð0.28 ∆Q.

Figure 6.11. Attention ratios for experimental unstable states (case 4). 
For each state i, the attention ratio ζ i is plotted as a function of Q, the cardiac output of
the unstable state.  The shunt fraction fS varies with Q, as noted in the caption of
Table 6.4.  I generated the plots by computing ζ i for Q  varying in increments of 0.05 liters
per minute.

PHYSIOLOGIC 
STATE

PHYSIOLOGIC PARAMETERS

Q Vds fS RQ

Unstable 2.75 l/min 150 ml 150 ml/min 0.180 0.9

Critical 2.40 l/min 150 ml 150 ml/min 0.260 0.9
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of these plots, ζ i increases with increasing Q.  In other words, patients who recover to a

more healthy stateÑthat is, an unstable state with a higher effective discharge rateÑ

command greater attention.  (Recall that healthier patients get discharged faster.)  This

result conÞrms the idea that available attention should be awarded preferentially to

patients who stand to beneÞt the most from it.

6.3 Case 5:  Simulating a large patient ward

After I tested SIMONÕs validity with a barrage of sensitivity experiments, I evaluated how

well SIMONÕs alarm methodology scaled up to large-sized problems.  In my next series of

experiments, I used SIMON to generate alarm signals for a simulated ICU that contains 144

patients.

The computational features that are built into the theory of separable optimization give us

reason to be optimistic about the outcome of this investigation (see Section 4.4).  When

we allocate attention among N  processes, we are really performing a search in N-dimen-

sional Euclidean space.  Separable optimization reduces this problem to a search in one-

dimensional Euclidean space, with a constant factor proportional to the magnitude of N.

Thus, we should expect SIMONÕs time complexity to grow linearly with the problem size

N.

6.3.1 Simulating 144 heterogenous patients

To perform a simulation that produces interesting output, we need a heterogenous collec-

tion of patients.  I produced 144 different patients by permuting possible values of various

patient parameters (Tables 6.5 and 6.6); the situation faced by each patient is a unique, but

minor, variation of the CHF scenario faced by Mr. Dickinson.  The total attention capacity

is 288 attention units; two-thirds of the patients have an attention capacity greater than 1.   

I spawned separate patient models for T  = 1, 6, 12, and 24 hours, using the compilation

techniques of Section 5.4.2.  The entire patient-creation process took about 90 minutes on
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a 180-MHz PowerPC 604e machine running MacOS 8.1.  I then used SIMON to generate

alarm signals for attention amounts C  ranging from 0 to 288, in increments of 4.  I

repeated this procedure for each of the T  values.  The entire computation took under 10

minutes, or under 2.1 seconds for each set of alarm signals.

6.3.2 Attention allocations

To highlight different aspects of the attention allocations, I plot these allocations for

different ranges of C.  Figure 6.12 illustrates the results for C  ≤ 36.  The patient groups

labeled A and B exemplify an interesting and important phenomenon.  Note that group B

commands more attention than group A when attention resources are scarce (C  < 5); that

Table 6.5. Permutable patient parameters (case 5). 
I generated 144 unique patients by permuting the parameter values shown in the table.
The three physiologic-state deÞnitions are shown separately in Table 6.6.

Table 6.6. Permutable physiologic-state deÞnitions (case 5). 
This table speciÞes values for the three permutable physiologic-state deÞnitions referred
to in Table 6.5.  Each of these deÞnitions is crafted such that the critical condition is less
desirable than the unstable condition.  Not shown are the remaining physiologic-parameter
values, common to both conditions:  Vds = 150 ml,  = 150 ml/min, and RQ = 0.9.

PATIENT PARAMETERS
PERMUTABLE VALUES

DESCRIPTION SYMBOL

Physiologic states see Table 6.6

Discharge rate hu (24 hr)Ð1, (48 hr)Ð1

Recovery rate hc (24 hr)Ð1, (36 hr)Ð1

Attention capacity κ 1, 2, 3

Current state i 1, 2, 3, 4

PARAMETER 
SET

UNSTABLE STATE CRITICAL STATE

Q fS Q fS

1 3.0 0.110 2.5 0.260

2 2.7 0.210 2.2 0.260

3 3.0 0.110 2.7 0.210

V̇O2
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is, group B has priority higher than that of group A.  However, for C  ≥ 15, group A

commands a greater amount of attention than group B.  This example demonstrates that

higher-priority processes do not always need more attention than their lower-priority

counterparts.

If we are observant, we may have legitimate concerns about the paucity of lines at C  = 36:

Only 24 lines can be discerned for the 144 patients.  It turns out that this graphical obser-

vation is explained in part by the results, in part by artifact.  At C  = 36, only 72 of the 144

patients are activated; the remaining patients receive 0 attention units.  Of these 72

patients, MathematicaÕs plotting facilities can recognize only 24 as unique.  We shall

encounter similar plotting artifacts in subsequent result displays. 

Figure 6.12. Attention allocations versus C  ≤ 36 for Þxed T  (case 5). 
These plots summarize attention allocations for the 144-patient scenario for C  ≤ 36.  The
attention allocations  are plotted for T  = 1, 6, 12, and 24 hours.  The patients labeled
A and B are discussed in the text.
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Figure 6.13.

 

Attention allocations versus 

 

C

 

 

 

≤

 

 144 for Þxed 

 

T

 

 (case 5). 

 

Attention allocations  for the 144-patient scenario for 

 

C

 

 

 

≤

 

 144 are plotted for 

 

T

 

 = 1,
6, 12, and 24 hours.  The patients labeled 

 

A

 

 are discussed in the text.

 

Figure 6.14.

 

Attention allocations versus 

 

C

 

 

 

≤

 

 288 for 

 

T

 

 = 24  (case 5). 

 

Displayed are the results of the 144-patient scenario for 

 

C

 

 

 

≤

 

 288, with 

 

T

 

 set at 24 hours.
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The results for 

 

C

 

 

 

≤

 

 144 are shown in Figure 6.13. Not surprisingly, the patients who

receive no attention at 

 

C

 

 = 36 become activated at higher values of 

 

C.

 

  Note that group

 

A

 

Õs attention allocations continue to climb above those of the other patients.  The explana-

tion of this behavior is easiest to discern in the 

 

T

 

 = 1 plot:  The patients in group 

 

A

 

 have an

attention capacity 

 

κ

 

 = 3, in contrast with patients whose attention capacities are 1 or 2.

Although group 

 

A

 

Õs greater attention capacity does not automatically earn a higher priority

(see Figure 6.12), these patients have an increasing pull on the available attention, as more

attention becomes available. 

To demonstrate how the attention allocation for each patient approaches his attention

capacity with increasing 
 

C, 
 

I produced a plot of attention allocations for the entire range

of 

 

C 

 

(Figure 6.14).

 

Figure 6.15.

 

Equilibrium prices versus 

 

C

 

 for Þxed 

 

T

 

 (case 5). 

 

Equilibrium prices 

 

λ

 

(

 

C

 

) for case 5 are plotted for 

 

T

 

 = 1, 6, 12, and 24 hours.

5 10 15 20 25 30 35

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

5 10 15 20 25 30 35

0.002

0.004

0.006

0.008

0.01

0.012

5 10 15 20 25 30 35

0.005

0.01

0.015

0.02

5 10 15 20 25 30 35

0.005

0.01

0.015

0.02

0.025

0.03

0.035

C

C

C

C

λ C( ) λ C( )

λ C( ) λ C( )

T  =  24 

T  =  6 T  =  1 

T  =  12 

eq
ui

lib
ri

um
 p

ri
ce

eq
ui

lib
ri

um
 p

ri
ce

available attention available attention

eq
ui

lib
ri

um
 p

ri
ce

available attention available attention

eq
ui

lib
ri

um
 p

ri
ce



 

6.4 Case 6: Simulating other disease categories

 

151

 

6.3.3 Equilibrium prices

 

Associated with the aforementioned attention allocations are equilibrium prices that tell us

how much we can expect our entire 144-patient ICU to beneÞt from small attention

increments.  In Figure 6.15, I plot these equilibrium prices 

 

λ

 

(

 

C

 

) for various values of the

attention horizon 

 

T.

 

  In each of these plots, the magnitude of 

 

λ

 

(

 

C

 

) appears negligible for

 

C

 

 > 30:  The Þrst 30 attention units are worth much more to our ICU than are any

additional units.  If additional attention units were made available, their speciÞc

distribution would be practically inconsequential.

 

6.4 Case 6:  Simulating other disease categories

 

Thus far, we have been dealing with simulated patients who each suffer from some type of

CHF.  I next simulated other disease categories through an appropriate manipulation of

VentPlanÕs physiologic parameters.  In my Þnal series of experiments, I tested S

 

IMON

 

 on a

simulated ICU that contained three patients, each of whom was recovering from one disor-

der: congestive heart failure, pulmonary embolus, or pneumonia.

 

6.4.1 Patient descriptions

 

Table 6.7 displays pertinent identifying information for our three patients.  The pathophys-

iology of Mr. Dickinson (patient 1) has been discussed in Section 5.4.1.  Brief descriptions

of the physiologic challenges faced by patients 2 and 3 follow.

 

Table 6.7.

 

Description of three patients (case 6). 

 

ID # NAME CONDITION DESCRIPTION

1 Mr. Dickinson congestive heart failure Table 6.1

2 Ms. DiÕAnno pulmonary embolism Table 6.8

3 Mr. Bayley pneumonia Table 6.9
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6.4.1.1 Pulmonary embolism

 

Ms. DiÕAnno is a 76-year-old woman who has been bedridden over the past several years

for a variety of ailments.  Thirty-six hours ago, she was admitted to the emergency room

for sudden-onset dyspnea and pleuritic chest pain.  She was subsequently admitted to the

ICU after being diagnosed as having a pulmonary embolism:  A blood clot from her sys-

temic venous circulation (most likely the deep leg veins) had lodged in a pulmonary ves-

sel, occluding blood ßow to a region of her lung.  Such functional obliteration of

pulmonary vasculature impairs gas exchange through ill-deÞned mechanisms that increase

both the physiologic shunt and the physiologic dead space.  Hypoxemia occurs.  Pulmo-

nary embolism can be rapidly fatal if not corrected promptly; patients who receive treat-

ment need to be monitored for recurrence.

Parameters that encode Ms. DiÕAnnoÕs pulmonary embolism are shown in Table 6.7.  The

critical state is marked by an increase in the dead space 

 

V

 

ds

 

 and the physiologic shunt frac-

tion 

 

f

 

S

 

.  Furthermore, the occlusion of overall blood ßow decreases the cardiac output 

 

Q.

 

 

From this patient speciÞcation, I compiled a patient model suitable for S

 

IMON

 

 by modify-

ing slightly the procedure outlined in Section 5.4.2.  For a given physiology recognized by

VentPlan, a pulmonary-embolism patient deterioriates to a more seriously ill state twice as

 Table 6.8.  Pulmonary-embolism patient (case 6). 

PHYSIOLOGIC 
STATE

PHYSIOLOGIC PARAMETERS

Q Vds fS RQ

Unstable 3.0 l/min 150 ml 150 ml/min 0.110 0.9

Critical 2.5 l/min 200 ml 150 ml/min 0.260 0.9

BASE DISCHARGE RATE

hu

BASE RECOVERY RATE

 hc

ATTENTION CAPACITY

κ

(48 hr)Ð1 (24 hr)Ð1 1

V̇O2
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quickly as does a CHF patient.

 

4

 

  Therefore, I doubled the deterioration rates and death

rates of Section 5.3.3.

 

6.4.1.2 Pneumonia

 

Mr. Bayley, a 46-year old man who has a history of smoking, was admitted to the ICU

four days ago following a routine cholecystectomy.  During the course of his stay, he

developed a fever that persisted for three days, despite the use of intravenous antibiotics

that covered gram-positive bacteria.  These signs and the results of radiologic studies

caused his physicians to suspect a nosocomial (hospital-acquired) pneumonia.  Compared

to their community-acquired counterparts, nosocomial pneumonias are more aggressive

and more resistant to conventional antibiotic therapy; they are associated with a signiÞ-

cantly higher mortality rate.

Table 6.9 displays a quantitative description of Mr. BayleyÕs medical condition.  From a

cardiopulmonary standpoint, pneumonia manifests itself as a hypermetabolic state, in

which increased oxgyen consumption  is supported by increased cardiac output 

 

Q.

 

  In

addition, a concomitant disturbance in the ventilationÐperfusion ratio increases the physi-

ologic shunt fraction 

 

f

 

S

 

.  Severe pneumonia, such as those that often result from nosoco-

mial infection, can cause hypoxia and death. 

 

4. This assessement was made by Dr. Rutledge, the creator of VentPlan.

 

Table 6.9.

 

Pneumonia patient (case 6). 

V̇O2

PHYSIOLOGIC 
STATE

PHYSIOLOGIC PARAMETERS

Q Vds fS RQ

Unstable 3.0 l/min 150 ml 150 ml/min 0.110 0.9

Critical 4.5 l/min 150 ml 250 ml/min 0.210 0.9

BASE DISCHARGE RATE

hu

BASE RECOVERY RATE

hc

ATTENTION CAPACITY

κ

(48 hr)Ð1 (24 hr)Ð1 1

V̇O2
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6.4.2 Attention allocations

It would be ideal to provide optimal treatment for all three of these patients on a continu-

ing basis.  But when attention resources are limited, the best we can do is to allocate them

wisely.  I computed, for various values of T, the recommended attention allocations for

the three patients in the unstable, properly treated state, as a function of the total available

attention C; the results are plotted in Figure 6.16.  What is apparent immediately in all of

these plots is the order in which the patients receive priority:  As C  is increased from 0,

patient 2 is activated Þrst, followed by patients 1 and 3.  Furthermore, we witness 

≥  ≥  for all C.          

We conclude broadly from these results that Ms. DiÕAnno (patient 2) commands measur-

ably more attention than does either Mr. Dickinson (patient 1) or Mr. Bayley (patient 3).

Figure 6.16. Attention allocations versus C  for Þxed T  (case 6). 
The attention allocations  for case 6 are plotted for T  = 0.1, 0.5, 1, and 6 hours.
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The exact amounts are worth looking at.  Suppose that 

 

C

 

 = 1Ñthat one clinician is avail-

able to care for the three patients.  If the clinician is considering the next 6 minutes of her

time (

 

T

 

 = 0.1 hours), she should devote about 75 percent of her attention to Ms. DiÕAnno,

15 percent to Mr. Dickinson, and 10 percent to Mr. Bayley.  
5

   Over a longer time horizon,

however, these attention allocations become less centered on Ms. DiÕAnno.  For example,

at 

 

T

 

 = 6 hours, Ms. DiÕAnno commands about 40 percent of the total attention, and the

other two patients each command about 30 percent.

 

Figure 6.17.

 

Attention allocations versus 

 

T

 

 for Þxed 

 

C

 

 (case 6). 

 

The attention allocations  for case 6, as a function of 

 

T,

 

 are plotted for 

 

C

 

 = 0.5, 1,
1.5, and 2 attention units.

 

5. Note that when the attention horizon 

 

T 

 

is sufÞciently small, the continuous-multitask-
ing assumption (discussed in Chapter 3) becomes unrealistic.  I use 

 

T

 

 = 0.1 hours to dem-
onstrate an attention allocation focused mostly on Ms. DiÕAnno.
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I plotted the attention allocations as a function of the horizon 

 

T,

 

 for various values of 

 

C,

 

in Figure 6.17.  Again, we see that patient 2 is allocated notably more attention than either

patients 1 or 3.  The available attention concentrates on the patients that have the highest

priority as 

 

T

 

 approaches 0.

Remember that these attention allocations were computed under the assumption that the

three patients are unstable and are being properly treated.  Naturally, the attention alloca-

tions would change if any patient were to devolve to a critical state.

 

6.4.3 Equilibrium prices

 

The equilibrium prices 

 

λ

 

(

 

C

 

) are plotted for various values of 

 

T

 

 in Figure 6.18.  Compared

with the 

 

λ

 

 plots that we encountered previously, in these it is difÞcult to judge, without

controversy, how much attention is sufÞcient.  In particular, for 

 

T

 

 = 0.1, graphically dis-

cernible gains are predicted until 

 

C

 

 is close to its maximum value of 3.

 

Figure 6.18.

 

Equilibrium price versus 

 

C

 

 for Þxed 

 

T

 

 (case 6). 

 

The equilibrium prices 

 

λ

 

(

 

C

 

) for case 6 are plotted for 

 

T

 

 = 0.1, 0.5, 1, and 6 hours.
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The preceding observation reinforces an important point stressed by this dissertation, and

by decision theory in general.  The question is 

 

not

 

 how much attention is sufÞcient for any

given patient.  Rather, the question is how we should allocate limited attention resources

to all the patients.  It does no good to our patients to pronounce arbitrarily whether we

have helped them enough, when we are given only a limited amount of attention to allo-

cate.  We can only do our best.  If our best efforts are insufÞcient, there may be a justiÞca-

tion for mobilizing attention resources from outside the ICU.

 
6.5 Summary

 
In this chapter, I reported on my evaluation of the alarm methodology that I developed in

Chapters 3 and 4.  To demonstrate validity, I investigated how S

 

IMON

 

Õs outputs responded

to controlled changes in input.  The results corresponded with clinical intuition and, in

some cases, elucidated clinical insights that were not immediately apparent from the

patient models.  To demonstrate computational scalability, I applied S

 

IMON

 

 to a simulated

ICU that contained 144 patients.  For these patients, S

 

IMON

 

 produced a complete set of

attention allocations in under 2.1 seconds on a machine that had only moderate processing

capabilities.  These results, and their timeliness, show that my methodology can scale up

gracefully to problems that involve many concurrent processes.  I thus conclude that my

alarm methodology is both valid and computable.



 

158



 

159

 

C h a p t e r  7

 
Conclusions

 

In this chapter, I summarize my work on developing a computable, normatively sound

methodology for intelligent alarms.  I reßect on the contributions made to various disci-

plines, and I delineate various possibilities for future research.

 

7.1 Summary of dissertation

 

In Chapter 1, I reßected on the monitoring tasks that alarms are intended to support, and  I

established that an intelligent alarm produces alerts that allocate the attention of busy

agents among a set of concurrent processes they are managing.  Unfortunately, current

alarms fall short of this ideal; I discussed, in particular, how current intensive-care unit

(ICU) alarms, which are typically based on thresholds for individual measured parame-

ters, often encourage nonoptimal attention allocations.  

In Chapter 2, I surveyed various methods that researchers have developed to improve the

current state of alarms.  Although these methods perform inferences of varying sophistica-

tion, most of them do not explicitly consider the problem of attention allocation.  Indeed,

we saw that there are difÞcult, fundamental challenges in even 

 

formulating

 

 an attention-

allocation problem:  Any formulation that manipulates quantitative attention amounts
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7.0 Conclusions

 

must incorporate simplifying assumptions about the future evolution of processes.  Fortu-

nately, these assumptions can be made transparent under the decision-theoretic basis.

I developed my alarm approach in Chapters 3 and 4.  In Chapter 3, I used Markov decision

processes (MDPs) to model the value of applying a partial amount of attention over a

limited 

 

attention horizon

 

 

 

T

 

 into the future.  In Chapter 4, I presented a framework that

used separable-optimization techniques to allocate an 

 

available attention

 

 amount 

 

C

 

among a set of concurrent, continuing processes.  Given 

 

C

 

 and 

 

T,

 

 my framework

computes 

 

two

 

 alert measures for each process:

 
•

 
an 

 
activation price,

 
 which reßects the 

 
priority,

 
 or the order by which the process

merits attention
 

•

 

an 

 

attention allocation,

 

 which indicates 

 

how much

 

 of the available attention the

process should receive over 

 

T

 

In Chapter 5, I described S

 

IMON

 

, a program that applies my alarm approach to the problem

of monitoring multiple patients in a busy ICU.  I elaborated, in particular, a schema that I

developed for creating realistic ICU-patient models.  Then, in Chapter 6, I evaluated my

alarm approach.  To assess validity, I asked whether S

 

IMON

 

 produces sensible output given

sensible input.  The results showed that S

 

IMON

 

 produces alarm signals that can be

explained from the normative basis, and that are consistent with sound clinical judgment.

To assess computability, I used S

 

IMON

 

 to generate alarm signals for an ICU that contained

144 simulated patients; the entire computation took about 2.1 seconds on a machine with

only moderate processing capabilities.  I thus concluded that my alarm framework is valid

and computable, and therefore is potentially useful in a real-world ICU setting.

We noted, in passing, that processes with higher priority measures do not necessarily have

higher attention allocations.  This observation conÞrmed the complementary roles of the

two alert measures.
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7.2 Contributions

 

My dissertation research makes contributions in the Þelds of critical-care medicine, deci-

sion analysis (DA), artiÞcial intelligence (AI), and medical informatics.

 

7.2.1 Critical-care medicine

 

My work contributes to the Þeld of critical-care medicine by addressing the inadequacies

of current alarms in the critical-care setting.

 
7.2.1.1 Cost-effective ICU management

 

Critical-care medicine is a multidisciplinary specialty that encompasses the care of

patients who are being treated in an ICU [Seiver, 1992].  The cost of ICU care is signiÞ-

cant, accounting for 1 percent of the gross national product [RafÞn et al., 1989].  Virtually

every medical subspecialty has been affected by recent pressures to produce cost-effective

health care.  Critical-care medicine, in particular, has undergone intense scrutiny:  Dispro-

portionate portions of health-care resources are expended on ICU patients, many of whom

do not survive the hospitalization [Esserman et al., 1995; Oye & Bellamy, 1989].

Alarms can improve the cost-effectiveness of critical care by issuing alerts according to

the attention needs of individual patients.  They can help ICU clinicians to maintain multi-

ple patients concurrently, thereby increasing the effective utilization of scarce ICU-clini-

cian resources.  Also, an attention-based alarm can reduce the costs (monetary and patient

risk) of unnecessary monitoring by utilizing only those patient measurements that affect

the decision to confer attention.  These beneÞts, however, can be realized fully only if the

alarms function as intended.  Current ICU alarms do not optimally allocate the attention of

clinicians among the patients they are managing.

 

7.2.1.2 The promise of intelligent alarms

 

To address the inadequacies of current ICU alarms, I considered the domain-independent

alarm task.  Current alarms are inadequate because their underlying methodologies,

however sophisticated, do not address explicitly the problem of attention allocation.  I
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developed a normative framework for producing alarm signals that optimally allocate the

attention of busy agents among a set of concurrent processes.

To assess the potential applicability of my alarm framework in the critical-care setting, I

developed a prototype, S

 

IMON

 

, that allocates scarce clinician resources for a simulated

ICU.  S

 

IMON

 

Õs patient models are based, in large part, on the outputs of a validated proto-

type ventilator-management advisor [Rutledge et al., 1993].  S

 

IMON

 

Õs outputs were consis-

tent with clinical intuition and, in some cases, elucidated clinical insights that were not

immediately apparent from the patient models.  S

 

IMON

 

 was able to generate alarm signals

in real time, even for a large, simulated ICU on a platform with only moderate processing

capabilities.  Thus, my alarm approach proved to be valid and computable in a realistic,

simulated ICU setting.  Alarm signals that allocate the attention of ICU clinicians (or of

busy agents in general) did not exist prior to my dissertation research.

 

7.2.2 Decision analysis

 

My work on intelligent alarms contributes to DA by deÞning and implementing a norma-

tive concept of attention allocation among concurrent, continuing processes.  Tradition-

ally, DA has focused on building and solving normative models of single-shot decisions:

their alternatives, their preferences, and their uncertainties.  This simple model was the

basis of all subsequent research that sought to expand the scope and applicability of DA.

 

7.2.2.1 From normative foundations to practical applications

 

Recently, DA researchers have been interested in modeling decisions that occur over time.

Such interest has spurred the development of sequential decision models [Gorry & Bar-

nett, 1968] and multistage decision models, in particular the MDP [Howard, 1960;

Howard, 1971; Ross, 1983; Puterman, 1994].  Although the notion of time opened up

broad, new avenues of researchÑsuch as the problem of decision-theoretic controlÑthe

problem of allocating attention among multiple, concurrent processes under constraints of

time and attention resource remained largely unchartered.  
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Horvitz [1995] conducted pioneering, decision-theoretic research on the attention-alloca-

tion problem by developing the notion of ECDA for a particular class of time-critical pro-

cesses.  He used the ECDA measure to assign priorities to multiple processes that are

competing for the immediate attention of a limited supply of agents [Horvitz & Barry,

1995; Horvitz & Seiver, 1997].  However, ECDA was built on numerous assumptions that

limited its application scope (Sections 2.5.3 and 4.7.1).

 

7.2.2.2 New possibilities in attention allocation

 

From a DA standpoint, my dissertation research extends the boundaries of decision-theo-

retic attention allocation in the following manners:
 

•
 

Problem deÞnition.
 

  I showed that the deÞnition of an attention-allocation prob-

lem posed difÞcult challenges.  SpeciÞcally, I had to make assumptions about the

processes being modeled, to formulate an attention-allocation problem that is

tractable and is meaningful to the end user.  I used my meta-analysis of the atten-

tion-allocation problem to guide my choice of assumptions.

 

•

 

Partial attention.

 

  Binary notions of attention were modeled in the research that

led to the ECDA measure.  My alarm approach generalized this all-or-none

notion of attention by deÞning and modeling 

 

fractions of attention

 

 applied over a

given attention horizon (Sections 2.5 and 4.7).  

 

•

 

Expanded process scope.  

 

The ECDA measure was developed for a class of pro-

cesses that embody two assumptions:  (1) the effects of immediate action domi-

nate over the effects of subsequent observations and actions; (2) the ECDA

function (utility versus time) is assessed by a domain expert, for each possible

process state.  My alarm framework explicitly considers the effects of interleaved

observations and actions over the attention horizon.  Furthermore, my utilities of

partial attention are computed from MDP parameters, rather than assessed arbi-

trarily by an expert.  Thus, my work extends the range of processes that can be

managed with the help of an attention allocation, or alarm system.
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• New alarm concepts.  ECDA is a one-dimensional measure of urgency that does

not scale up to the general attention-allocation problem.  My alarm framework

generates two alarm signals for each process:  its activation price and its attention

allocation.  These measures constitute a nondeterministic guide for how busy

agents should allocate their future attention resources.

7.2.3 ArtiÞcial intelligence

AI researchers develop methodologies that simulate intelligent behavior.  My work con-

tributes to AI by providing a normative, computable framework for intelligent alarms that

can help a group of busy agents to manage a broad class of time-varying, stochastic pro-

cesses that respond to externally applied actions.

7.2.3.1 A mission in evolution

Classic AI emphasized symbolic manipulation as a means of achieving intelligent infer-

ences [Simon, 1969].  Early AI researchers developed expert systems that were based on

the chaining of rules [Buchanan & Shortliffe, 1984]; rule-based expert systems still enjoy

a broad application scope today.  During the mid-1970s, however, AI researchers, faced

with uncertainties that are inherent in complex domains, acknowledged the need to incor-

porate uncertainty into their symbolic-reasoning frameworks [Shortliffe & Buchanan,

1975].  In general, a systematic approach to uncertain reasoning required a quantitative (or

pseudoquantitative) measure of an intelligent agentÕs degree of belief.  Shafer and Pearl

[1990] reviewed various approaches to modeling uncertainty in artiÞcial intelligence.

During the early 1980s, AI researchers also began to incorporate the notion of time into

their frameworks, to achieve intelligent inferences in complex, dynamic domains [Fagan,

1980; Shahar, 1994; Haimowitz, 1994].  Uckun [1994] reviewed various AI approaches to

the difÞcult problem of monitoring ICU patients.  Researchers developed ICU-monitoring

prototypes that embodied different reasoning approaches, to take advantage of the unique

advantages of each approach [Hayes-Roth et al., 1992; Rutledge et al., 1993].
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Recently, AI researchers have been concerned wtih how to monitor dynamic environments

in ways that respect the scarcity of real-world resources.  Because many problems in AI

are NP-hard, several researchers looked speciÞcally at the problem of allocating scarce

computational resources in time-critical monitoring applications [Horvitz, 1990; Ash et

al., 1993; Rutledge, 1995].  Horvitz [1995], in particular, built on his earlier work by

investigating methods for allocating scarce attention resources for a particular class of

time-critical processes.

7.2.3.2 My contributions

From an AI perspective, my aim was to develop and to build a prototype for an intelligent

solution to the alarm problem.  I contributed to AI in the following manners:

• Attention-allocation framework and prototype.  I argued that an intelligent alarm

allocates the attention of busy agents among a set of concurrent processes they

are managing.  I developed a normatively sound approach for performing this

attention allocation.  I built a prototype, SIMON, that generates decision-theoretic

alarm signals for a simulated ICU, and used it to verify the validity and computa-

bility of my alarm approach.

• New applications for decision theory.  Since the mid-1980s, several researchers

paved the way for decision theoryÕs eventual acceptance as a sound and comput-

able approach to automated reasoning (Section 2.3.3).  In developing and evalu-

ating a decision-theoretic framework for alarms, I further strengthened the

argument for adopting decision-theoretic approaches to intelligent reasoning.

• Computational developments.  Because AI problems are typically NP-hard, their

solutions often embody computational techniques that are designed to overcome

this intractability.  My alarm approach performs inference on a state space whose

size increases exponentially with the number of processes N.  By designing a

model of partial attention that reasons about attention amounts, and by employing

techniques from the theory of separable optimization, I enabled my alarm

approach to perform this inference in time proportional to N.
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7.2.4 Medical informatics

My work contributes to medical informatics by addressing a real-world, medical informa-

tion-management problem, and by developing and prototyping a novel, interdisciplinary

approach to solving that problem.

7.2.4.1 An interdisciplinary Þeld

Medical informatics is the study of methodologies for representing, transmitting, process-

ing, and displaying medical information [Greenes & Shortliffe, 1990; Shortliffe & Per-

reault, 1990].  It is inherently interdisciplinary, drawing from diverse Þelds such as

biomedicine, computer science, decision science, information science, cognitive science,

information science, management science, and several other component disciplines.  Med-

ical informatics evolved in response to the increasing need for intelligent, automated man-

agement of voluminous, complex medical information. 

7.2.4.2 My interdisciplinary contributions

My research contributes to medical informatics in several dimensions: 

• Critical-care medicine.  My work contributes to research on intelligent alarms for

the ICU setting.  In analyzing the inadequacies of current ICU alarms, I identiÞed

the root problem as an informatics problem.  I developed an original, domain-

independent solution to the alarm problem, and then validated its output in a sim-

ulated ICU environment.

• DA and AI.  In addressing the informatics problem of producing intelligent alerts

in the critical-care setting, I developed methodologies that, in and of themselves,

can be considered contributions to the Þelds of DA and AI.  I elaborated on these

domain-independent contributions in Sections 7.2.2 and 7.2.3.
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• Interdisciplinary developments.  Medical-informatics research has a unique his-

tory of combining techniques from different disciplines, in the greater effort to

attack real-world, medical-information management challenges.  My alarm

framework embodies techniques from DA, stochastic dynamic process theory,

and optimization theory. 

7.3 Future research

I propose several avenues of research to develop improved methods for allocating scarce

attention resources among a set of concurrent processes.

7.3.1 Problem deÞnition

I have established that an intelligent alarm assists busy agents in the allocation of scarce

attention resources, and that framing an attention-allocation problem requires making

assumptions about how such attention would be utilized in the future.  My framework for

intelligent alarms assumes that a decision maker can allocate partial amounts of attention

to each of a set of concurrent process.  Furthermore, it assumes that her attention is distrib-

uted uniformly over a Þnite duration, which means that she multitasks continuously and

randomly among the processes (Section 3.5).

Although my framework for attention allocation advances the state of the art (Sections 2.5

and 4.7), its built-in assumptions limit its application scope.  The notion that decision

makers multitask continuously and randomly among processes is a mathematical idealiza-

tion that approximates certain real-world situations more closely than it does others.  For

example, the continuous-multitasking model may describe reasonably the activities of cli-

nicians in an ICU where interventions are performed quickly and patients are located in

close proximity to one another; however, lengthy interventions or long travel times

between patients would make the approximation less accurate.1  One possibility for future

work is to characterize, more precisely, the class of processes that can be described accu-

rately by my alarm framework.
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Another opportunity for future investigation is to develop alternative frameworks for allo-

cating attention.  There may be other ways to approximate the exact, intractable scenario

of Section 2.5, such that the computational outputs can be construed meaningfully as

alarm signals.  These alarm signals would assume forms, and have meanings, different

from those of the numerical measures of my framework.  Once developed, such approxi-

mations could describe the allocation of attention in certain domains that are not as well-

described by my framework. 

7.3.2 Model of partial attention

In Chapter 3, I described a model of partial attention that is based on the continuous-time

MDP.  The MDP is the most general model of stochastic processes for which practical

solutions have been developed [Howard, 1971; Puterman, 1994].  I developed my model

in continuous time because the required mathematics is clean, and the semantics of apply-

ing partial attention over a continuous-time interval is straightforward.

Nonetheless, we can extend the application scope of my intelligent-alarm framework by

developing models of partial attention for other classes of stochastic processes.  The most

straightforward possibility is to develop a discrete-timeÐMDP model of partial attention.

A discrete-time model may be useful in applications for which there are a limited number

of decisions to be made over the attention horizon.  We can develop a discrete-time ver-

sion of the model in Chapter 3 by using z-transforms to manipulate transition probabili-

ties, in a manner analogous to the use of Laplace transforms to manipulate transition rates

[Howard, 1960; Howard, 1971].  Although using z-transforms presents no new analytical

barriers, the discrete-time model introduces semantic challenges that did not exist in the

continuous-time realm.  Namely, if we have an attention horizon of N discrete periods,

then the notion of continuously divided amounts of attention becomes suspect:  We cannot

talk about continuous, random multitasking, when there are only N opportunities to switch

1.  Lengthy and long refer to amounts of time that are signiÞcant, in comparison with the
total duration of interest.
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tasks during the attention horizon.  The form, meaning, and applicability of alarm metrics

in the discrete-time realm need to be elucidated through further research.

Another opportunity for future work is to develop a model of partial attention that is based

on the partially observable Markov decision process (POMDP).  The POMDP generalizes

the MDP:  In a POMDP, states of the world at time t inßuence states of the world at time

t +1, but the states can be observed only indirectly, through proxy quantities that provide

probabilistic information about the states.  Algorithms for solving POMDPs were Þrst

developed by Sondik [1971; 1978]; the POMDP is now Þnding increasing use as a model-

ing formalism in current artiÞcial-intelligence research [Cassandra et al., 1997; Monahan,

1982].  The POMDP presents signiÞcant computational challenges because of the need to

maintain a probability distribution over the set of possible current states [Sondik, 1971];

in constrast, the MDP requires merely that we observe and remember the current state.

Thus, to allocate scarce attention resources among multiple, concurrent POMDPs in a

tractable manner will be even harder.  However, if we meet this challenge, we can greatly

broaden the application scope of decision-theoretic models for attention allocation.

We can also explore the possibility of assessing the utility function directly.  Horvitz and

associates characterized a class of processes for which the utility as a function of the atten-

tion horizon can be assessed directly [Horvitz & Seiver, 1997; Horvitz & Rutledge, 1991].

Future work that builds on mine may similarly involve identifying domains for which we

can directly assess the utility as a function of attention horizon and attention amount.

7.3.3 Optimization

In Chapter 4, I modeled the allocation of scarce attention resources as a convex separable

optimization problem.  My adoption of optimization techniques was facilitated by my

modeling of attention as a scalar quantity (Sections 2.5.4 and 3.5).  The independent oper-

ation of multiple processes enabled me to introduce the separability assumption grace-

fully.  I imposed the convexity assumption, thereby guaranteeing that the locally optimal

attention allocation is globally optimal (Sections 4.4 and 4.5).  Although the utility of par-

tial attention is an algorithmically generated function, I used closed-form exponential



170 7.0 Conclusions

expressions to model the utility function.  This approximation enabled me to convert the

convex separable problem into a one-dimensional line search, the computational complex-

ity of which increases linearly with the number of processes (Section 4.6).

The convexity assumption merits further analysis.  For the MDP models used in this dis-

sertation, the expected utility as a function of the amount of attention allocated increased

with diminishing returns.  However, it is not clear which MDP models exhibit this convex-

ity property.  We must do additional work to delineate the class of MDP models for which

the convexity assumption holds.

The accuracy of the optimization can be improved through additional engineering.  We

can improve on the curve-Þtting technique of Section 4.6.2 by using additional points, or

by Þtting a more complex parameterized expression.  Alternatively, we can eschew the use

of exact expressions and explore instead the possibility of developing and using numerical

approximations of the utility of partial attention.

The attention allocations as a function of the attention horizon T also can be better under-

stood.  The meaning of T, and the examples of Section 4.6 and Chapter 6, suggest that the

available attention concentrates on the highest-priority processes as T approaches 0.

Future work may uncover a theoretical basis for this behavior.

7.4 Concluding remarks

Many challenges remain in our quest to realize an intelligent alarm.  There remain unre-

solved issues in the framing, solving, and prototyping of an attention-allocation approach.

We should, however, be encouraged by the results of my work, which suggest that a com-

putable, normatively sound approach to the alarm problem can be achieved.  It is my hope

that my contributions will inspire future researchers who are interested in developing deci-

sion-theoretic solutions to the alarm problem.  By exercising care in framing the alarm

problem, and by adopting fundamentally sound approaches in our solutions, we can best

position ourselves to build alarms that serve their intended purposes.
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