
Chapter 2

Background

In this chapter, we give a history of previous work which is related to work contained in this

thesis. Along the way, we alert the reader to the high level di�erences between the previous

work and our work.

2.1 The 1D Shape Pattern Problem

The core of this thesis begins in chapter 3 with an algorithm to �nd a polyline shape pattern

within another polyline. Using this algorithm, one can summarize/simplify the description

of a polyline by �nding pieces of the polyline with more compact descriptions such as \line

segment", \corner", or \circular arc".

There are many methods for �nding geometric primitives in polylines. The classic pat-

tern recognition book [56] by Pavlidis is an early computer vision reference for approximat-

ing, within some error bound, polylines with many vertices by polylines with fewer vertices.

Some such approximation algorithms, which essentially �nd line segments within a poly-

line, are given in [56] in the chapter titled \Analytical Description of Region Boundaries

and Curves". Three excellent, contemporary works from the computer vision community

are the Lowe segmentation algorithm ([45]) to divide an edgel chain into straight segments,

the \strider" algorithm of Etemadi ([23]) to �nd straight segments and circular arcs, and

the Rosin and West algorithm ([62]) to identify line segments, elliptical arcs, and other

high-order curves.

The crucial issue in all such segmentation algorithms is where to stop one description

and to begin another. The three works [45], [23], and [62] are all similar in that their

breakpoint selection does not use more usual, curvature-based criteria such as curvature

zero crossings and extrema. Curvature is sensitive to noise, and the mentioned breakpoint

conditions may divide a curve that does not have constant curvature. For example, breaking
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descriptors at curvature extrema may result in the division of an elliptical arc into two or

more pieces. Regardless of the breakpoint strategy, a single pass through the polyline data

may not yield very good results. Each of the previously mentioned algorithms also has a

second phase that considers replacing two descriptions of adjacent curve pieces with a single

description over their union.

Etemadi's \strider" segmentation algorithm ([23]) uses a symmetry condition to deter-

mine an initial set of breakpoints. A chain of pixels is labelled as symmetric or asymmetric

using the midpoint R of the pixel chain and the line segment PQ connecting its endpoints.

The line through R and perpendicular to PQ splits PQ into two segments PS and SQ.

The chain from P to Q is in a symmetric state i� the di�erence in lengths of PS and SQ

is less than 1=
p
1 + L2, where L is the length of the chain. Note that circular arcs and

straight segments are symmetric chains. The strider algorithm adds pixels to a chain until

the chain is in an asymmetric state for three consecutive pixel additions. The process then

begins again from the �rst pixel which caused the chain to become asymmetric.

The segmentation algorithms of Lowe ([45]) and Rosin and West ([62]) both use a maxi-

mum deviation criterion to compute breakpoints and a scale invariant \signi�cance" formula

to decide whether to split a chain further. The Rosin and West algorithm is a generaliza-

tion of the Lowe algorithm to handle geometric primitives other than line segments. Lowe's

algorithm recursively computes a segmentation tree for a pixel chain. The entire chain is

approximated by a single segment and then split into two subchains at the pixel which de-

viates most from the approximation.1 The signi�cance of the approximation is the ratio of

the approximation length to the maximum deviation. The splitting algorithm then recurses

on the two subchains. The �nal segmentation into straight lines is computed by traversing

the tree up from the leaves and retaining a segment if it is more signi�cant than its children.

The above idea can be applied using any geometric primitive curve for which there is

a method for �tting such a curve to pixel chain data. The maximum deviation between

the �tted representation and the data can be obtained by computing the maximum of the

minimum distances from each chain pixel to the approximation curve. The signi�cance

measure remains the same ratio of approximation length to maximum deviation. The �rst

step in the Rosin and West strategy ([62]) is to compute a line segment representation

using Lowe's algorithm. The second step applies Lowe's algorithm again to divide the line

segment representation into higher order curves such as ellipses or superellipses. The step

1An earlier use of the idea to split at the point of maximum deviation is the Douglas-Peucker (poly)line

simpli�cation method ([16]). This method approximates a polyline with one of fewer vertices that is within
a given error bound ". If the error in approximating a polyline by a single line segment is greater than ",

then the polyline is split into two at the maximum deviation vertex, and the approximation procedure is

recursively applied to the two smaller polylines.
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one line segmentation is kept at the leaves of the step two segmentation tree, so not all

line segments are necessarily replaced by a higher order curve. Unlike in Lowe's algorithm,

the upward tree traversal considers any two adjacent approximations for combination into

a single approximation (versus considering only approximations with a common parent).

See [62] for algorithm details.

In the computational geometry community, the process of approximating a polyline

with a smaller number of segments is called the min-# problem. Given a polyline and an

error bound, the goal is to compute an approximation polyline with the fewest number of

vertices whose distance to the original polyline is within the error bound. If the vertices

of the approximation are required to be a subset of the n vertices of the original, then

the problem can be solved in O(n2) time using a graph formulation. The main idea is to

construct a graph G with nodes equal to the vertices of the given polyline and where there

is an edge from vi to vj i� the polyline from vi to vj can be approximated within the error

bound by a segment from vi to vj . The number of vertices in the smallest approximation

is equal to the number of edges in a shortest path between the nodes for the �rst and last

vertices. Chan and Chin [6] show how to compute G in O(n2) time (the brute force method

requires O(n3) time). Since a shortest path in G can be computed in O(n2) time, the overall

O(n2) bound follows.

Our work on the 1D shape pattern problem does not look for patterns from a particular

family of curves. Instead the input pattern can be any polyline shape. If the given \image"

polyline has n vertices and the pattern polyline has m vertices, then our algorithm requires

O(m2n2) time. This reduces to O(n2) time if the pattern is of constant size (e.g. m = 2

for a line segment and m = 3 for a corner). Our algorithm was inspired by the Arkin et al.

polygon shape metric work [3]. This work compares two polygons by comparing their

arclength versus turning angle graphs once the total arclength of both polygons has been

normalized to one unit. To make the metric invariant to rotation, the authors allow for

an up-down shift of the turning angle graph; to handle the arbitrariness of the �rst vertex

in a polygon description, the authors allow for a cyclic left-right shift of the turning angle

graph. There is some experimental evidence ([72]) that the turning angle graph is one of

the best shape descriptors for judging perceptual similarity.

We adopt the approach of matching turning angle graphs in our search for a pattern.

For the pattern problem, however, we need to allow for partial matching and changes in

scale (in addition to changes in orientation). Partial matching means that we match the

pattern graph to only a piece of the image graph. To handle a scale change, we allow the

arclength axis to be stretched or contracted before matching the graphs.
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2.2 Focused Color Searching

In the literature, focused color searching refers to the problem of �nding a color pattern or

model within a color image. The goal is to focus on a region of the image which contains

the pattern or ascertain that no such region exists. We refer to this problem as the color

pattern problem.

An early paper in this �eld is by Swain and Ballard ([77]) who introduced the Histogram

Backprojection algorithm. If we denote the image and model color histograms as I = (Ij)
n
j=1

and M = (Mj)
n
j=1, respectively, then the �rst step in Histogram Backprojection is to

compute the quotient histogram R = (Rj)
n
j=1, where Rj =Mj=Ij . The value Rj represents

the probability that an image pixel with color j belongs to an occurrence of the model in the

image, assuming that the model appears in the image. If the model appears in the image,

then Ij =Mj +Cj, where Cj is the number of pixels in the image with color j that are not

part of the model. This analysis assumes that the model described by histogram M is the

same size in pixels as its occurrence within the image described by histogram I (which is

true if the model is cut out from the image). The more \clutter" pixels Cj of color j, the

less likely it is that a random image pixel with color j is part of the model.

The second step in Histogram Backprojection is to replace the image color at every

pixel with its probability of being part of the model, thus forming the backprojection image.

Pixels with color j are replaced by the con�dence value min(Rj; 1). White (con�dence close

to one) regions in the backprojection image are places where the model is likely to occur,

and black (con�dence close to zero) regions are places where the model is unlikely to occur.

The �nal step in the Histogram Backprojection algorithm is to �nd the location of the

maximum value in the backprojected image after it has been convolved with a mask of the

same area as an expected occurrence of the model. This convolution sums con�dence values

over local areas, and the location of the maximum in the result is the place where the model

is most likely to occur.

In the same paper [77], Swain and Ballard also introduce a measure of histogram distance

called Histogram Intersection. The Histrogram Intersection between image histogram I and

model histogram M is de�ned as

H(I;M) =

Pn
j=1min(Ij ;Mj)Pn

j=1Mj

: (2.1)

The numerator of (2.1) is the number of pixels from the model that have corresponding pixels

of the same color in the image. The normalization in the denominator of (2.1) guarantees

0 � H(I;M) � 1. This measure was used to determine the identity of an unknown model
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at a known position in the image. A weighted version of this measure, however, is also at

work behind the scenes of the Histogram Backprojection algorithm to �nd the unknown

location of a known model in an image. Let LS denote the local histogram taken over a

w�h rectangular subregion S of the image. Now suppose that the �nal Backprojection step

uses a w� h rectangular mask of all ones. If we let Sw�h denote the collection of all w� h
image subwindows, then the place where the model is most likely to occur is the solution

to the optimization problem

arg max
S2Sw�h

X
(k;l)2S

1 �min(Mj(k;l)=Ij(k;l); 1) = arg max
S2Sw�h

nX
j=1

LSj min(Mj=Ij ; 1) (2.2)

= arg max
S2Sw�h

nX
j=1

 
LSj

Ij

!
min(Mj ; Ij);

where j(k; l) is the histogram bin index for the image color at pixel (k; l), and we have used

the fact that min(Mj=Ij ; 1) = min(Mj ; Ij)=Ij. The weight quantity L
S
j =Ij is the fraction of

image pixels of color j that appear in window S.

One major problem with the original Swain and Ballard approach is that its �nal con-

volution step essentially assumes the size at which the model occurs in the image. The idea

of Ennesser and Medioni in [22] is to compare histograms of local image areas of di�erent

sizes and locations to the model histogram using weighted Histogram Intersection to mea-

sure histogram similarity. The authors suggest using the weighted Histogram Intersection

formula bHW (LS ;M) =
nX
j=1

Wjmin(L
S
j ;Mj);

with weights Wj = 1=Ij or Wj = Rj =Mj=Ij . Here it is assumed that the model histogram

M is normalized to match the total amount of information in the image subwindow S:Pn
j=1Mj =

Pn
j=1L

S
j . The quantity min(LSj ;Mj) is the number of pixels from the scaled

model that have corresponding pixels of the same color in the image subwindow S. The

weightWj is an attempt to give more importance to colors j that are more distinctive in the

matching process. If the local histogram region S contains the model, then min(LSj ;Mj) =

LSj (remember that the model histogram is normalized to the same total bin count as the

local image histogram) and bHR(L
S ;M) =

Pn
j=1 L

S
j (Mj=Ij), which is the same value used

in the Backprojection algorithm. This last observation follows from (2.2) and that fact that

Mj � Ij (due to the normalization of the size of M).

Ennesser and Medioni's Local Histogramming algorithm looks for model matches as

it slides a local window across the image. For each center location of the local window,

the algorithm increases the size of the window until the weighted Histogram Intersection
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measure given above starts decreasing. There is some amount of manipulation to ensure

that this scale estimation process avoids local maxima as the window is grown, and that a

model is not found in pieces by overlapping local windows. See [22] for some details. The

bottom line, however, is that the Local Histrogramming algorithm tries to �nd the model by

an exhaustive search over scale-position space, where a (scale,position) pair is evaluated by

a weighted Histogram Intersection between a local image histogram and the scaled model

histogram. Swain and Ballard's Backprojection algorithm is an exhaustive search only over

position since they assume the scale parameter. The similarity measure used to check a

position is a weighted Histogram Intersection between the global image histogram and the

model histogram, where the weights are dependent on the position (and assumed scale).

The same exhaustive search over scale-position space using local image histograms is

performed by Vinod et al. in [83, 82], but with an upper bound on the Histogram Inter-

section measure that can be used to prune quickly unattractive (scale,position) pairs. The

Histogram Intersection between the model histogram and two local histograms for image

regions of similar position and scale will be similar since the two regions have many pixels

in common. If the Histogram Intersection between the model and one such local histogram

is small, then the Histogram Intersection between the model and the other local histograms

will also be small. For any two focus regions S and T , the authors show that the Histogram

Intersection measures �S and �T with the model histogramM are related by the inequality

�T � min(jS \ T j; �SjSj) + jT � Sj
jT j :

The goal of the authors' Active Search algorithm is to output image regions that have

a Histogram Intersection with the model of at least some threshold �. The Histogram

Intersection for an image region T need not be computed if the above inequality proves

that it must be less than � using the result of a previous Histogram Intersection with a

region S. See [82] for the details of Active Search. In [83], the authors report that only on

the order of 0:5% of possible focus regions require a Histogram Intersection computation.

Although this is an excellent pruning rate, it can still leave thousands of (scale,position)

pairs to be checked in the three-dimensional scale-position search space, especially if very

small scale model appearances must be found.

None of the works discussed in this section attempt to verify that the positional dis-

tribution of colors in an image window are similar to the positional distribution of the

model or pattern colors. The algorithms only report image regions that have a similar color

histogram to that of the model. In this thesis, we are interested in verifying positional

similarity as well as color similarity. This positional veri�cation is part of the last stage of
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our matching algorithm which also tries to adjust the pattern scale and location to make

the positions match as well as possible.

The �rst phase of our matching algorithm is to estimate, using only color information,

the scale at which the pattern might occur in the image. Although our scale estimation al-

gorithm does not work with a histogram color respresention, its instantiation on histograms

amounts to scaling the model histogram until the point at which further increases in scale

start to decrease similarity to the global image histogram. The Backprojection algorithm as-

sumes the scale is given, while Local Histogramming and Active Search exhaustively search

for the best scale at each position.

Armed with our scale estimate, the second stage of our search stategy seeks to �nd

quickly a very small set of promising positions in the image to check for a positionally

consistent match. By \very small", we mean fewer than �ve image locations. If our rep-

resentation were histogram-based, then these would be the locations of relative maxima in

the backprojected image after being convolved with a mask whose size matches our scale

estimate. Although our algorithm uses constant color image regions instead of pixels as

its basic units of information, the idea of backprojection is still used to identify image re-

gions which are likely to be part of the pattern if it appears in the image. Our notion of

a promising image region is also one in which there is a small distance between the color

histogram of the region and the color histogram of the pattern. However, we only examine

areas around image regions that have high probability of being part of a pattern occurrence

in our search for promising locations (this requires preprocessing before query time). In

other words, we only use the centers of image regions with a high con�dence color as the

centers of regions to be checked as promising, instead of using every pixel in the image as

in the previously described works.

An important improvement in our application of Swain and Ballard's backprojection

idea is the use of a pattern scale estimate in computing the con�dences/probabilities that

an image pixel of a particular color is part of a pattern occurrence. The true probability for

a color c is the number of image pixels with color c that are part of a pattern occurrence

within the image, divided by the total number of image pixels with color c. In [77], Swain

and Ballard use the number of model pixels of color c as the numerator of this ratio. This

gives the correct probabilities if the model is cut out from the image, but it can give very

inaccurate probabilities for more general model inputs.

The most computationally expensive part of our search algorithm is the �nal stage in

which we try to adjust the scale and position at which we believe the pattern occurs within

the image. This stage makes use of both the colors and their spatial distribution in the image

and in the pattern. The adjustment process is started from each of the promising locations
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found in the previous step. The Local Histogramming and Active Search algorithms also

adjust scale in an attempt to get a better Histogram Intersection value, but they do so by

�xed step region growing which does not consider the underlying data (color or position)

to help determine how much to grow.

2.3 From Histogram Intersection to the Earth Mover's Dis-

tance

The major problem with histograms and the common bin-to-bin distance measures de�ned

between histograms is the use of arbitrary bin boundaries. Histogram distance or similarity

measures usually only match pixels in corresponding bins. This is certainly true of the

Histogram Intersection similarity measure described above, as well as a simple L1 distance

between histograms which sums up the absolute di�erence in bin amounts over all the

bins. Two pixels with very similar colors might be placed in adjacent bins if an arbitrary

bin boundary is drawn between the locations in color space. Once this is done, bin-to-

bin histogram comparison measures will never be able to match these two very similar

pixels. The fault here lies both with the representation and the distance measure. Usually

histogram bins are de�ned by a uniform subdivision of the underlying attribute (e.g. color)

space axes. With this uniform subdivision, the bins in every histogram for every image cover

the exact same region in the attribute space. This makes it easy to de�ne distance measures

between two histograms for any two images by simply comparing corresponding bins, but

such bin-to-bin distance measures do not account for the arbitrariness of the histogram

representation.

The notion that is missing in bin-to-bin histogram comparison measures is the distance

between bins. In the color case, a distance between bins speci�es how di�erent the colors

in one bin are from the colors in another bin. This dissimilarity will be relatively low for

bins which cover adjacent regions in the color space. The problem of using regularly spaced

bin boundaries can be overcome to a great extent by allowing matching across bins, and

penalizing according to the distance between bins. This is exactly what is done in the

histogram distance measure

D(I;M) = min
F=(fij)

nX
i=1

nX
j=1

fijdbin(bin i in I; bin j in M); (2.3)

where fij represents the amount of bin i from the image histogram which is matched to bin

j of the model histogram. The distance asks for the minimum cost matching of the mass
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in the two histograms. Here we have left out some constraints on F = (fij), including the

constraints
Pn
j=1 fij � Ii and

Pn
i=1 fij �Mj which state that the amount of mass from one

histogram that can be matched to a bin of the other histogram cannot exceed the amount

of mass in that bin.

Given the freedom to match across di�erent regions of attribute space, there is no need

to de�ne these regions by a regular subdivision. Such a representation does not taylor itself

to the data in an image and can be quite ine�cient in space. If an image contains no red,

then the bins of the histogram that correspond to shades of red will all have zero color mass.

From this image's point of view there is no need to consider these attribute space regions

in the distance function (2.3). We could compute the histogram of an image using regular

subdivisions of the attribute space, throw away the zero bins, and re-number the nonzero

bins in sequential order. This makes the image summary more e�cient in space, but can

be improved further by de�ning regions in attribute space according to the image data.

Suppose, for example, we want regions in attribute space which are summarized by a single

attribute value to have diameter less than some threshold. Such a cluster of attribute mass

might cross arbitrary bin boundaries even when the bin spacing matches the threshold, thus

representing this cluster by more than one entry. Each image can have a di�erent number

of clusters which cover di�erent regions in attribute space as e�ciently as possible. Thus

we can change the bin-based distance measure (2.3) to the cluster-based measure

D(I;M) = min
F=(fij)

mX
i=1

nX
j=1

fijdcluster(cluster i in I; cluster j in M); (2.4)

Here the image hasm clusters, the model has n clusters, and we must restrict
Pn
j=1 fij � Ii

and
Pm
i=1 fij �Mj . The distance measure (2.4) (once the constraints on F have been fully

speci�ed, and the proper normalization has been applied) represents the Earth Mover's

Distance (EMD) between distributions of mass in an attribute space. A more precise de-

scription of the EMD and the distributions on which it operates will be given in chapter 4.

See the works of Rubner et al. [69, 68] and Gong et al. [26] which e�ectively argue for the use

of clustering over histogramming in color-based image retrieval. Experiments in [68] show

the superiority of the EMD for color-based image retrieval over many bin-to-bin histogram

dissimilarity measures, including Histogram Intersection ([77]), and cross-bin measures, in-

cluding a common quadratic-form distance ([51]).
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2.4 The Earth Mover's Distance

The history of the Earth Mover's Distance begins in 1781 when Gaspard Monge posed the

following optimization problem.

When one must transport soil from one location to another, the custom is

to give the name clearing to the volume of soil that one must transport and the

name �lling (\remblai") to the space that it must occupy after transfer.

Since the cost of the transportation of one molecule is, all other things being

equal, proportional to its weight and the interval that it must travel, and con-

sequently the total cost of transportation being proportional to the sum of the

products of the molecules each multiplied by the interval traversed; given the

shape and position, the clearing and �lling, it is not the same for one molecule

of the clearing to be moved to one or another spot of the �lling. Rather, there

is a certain distribution to be made of the molecules from clearing to �lling,

by which the sum of the products of molecules by intervals travelled will be

the least possible, and the cost of the total transportation will be a minimum.

(Monge in [50], p. 666, as quoted in [60], p. viii)

If c(x; y) denotes the per unit mass cost of transporting material from x 2 A to y 2 B for

equal-volume sets A and B, then Monge's mathematical formulation is to compute

inf
t

Z
x2A

c(x; t(x)) dx

over all volume preserving maps t : A ! B. In this original formulation, c(x; y) is the

Euclidean distance between x and y, the objective function is nonlinear in t, and the set of

admissible transportations t is nonconvex.

A major development in the mass transfer problem (MTP) came in 1942 when Kan-

torovich reformulated the problem as a linear optimization over a convex set. If A and

B are distributions of mass with density functions w(x) and u(y), respectively, then Kan-

torovich asked to compute

inf
f

Z
x

Z
y
c(x; y)f(x; y) dxdy

over all probability density functions f(x; y) with �xed marginals
R
x f(x; y) dx = u(y) andR

y f(x; y) dy = w(x). Here it is assumed that A and B have equal total mass
R
xw(x) dx =R

y u(y) dy. In Kantorovich's formulation, the objective function is linear in f , and the set

of admissible f 's is convex.

When A and B are (�nite) discrete distributions of equal total mass, where A has mass

wi at location xi and B has mass uj at location yj , then Kantorovich's formulation becomes
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the transportation problem ([32]) from mathematical programming: compute

min
F=(fij)

X
i

X
j

fijcij

such that

fij � 0;
X
i

fij = uj ;
X
j

fij = wi;

where cij = c(xi; yj). Here F is a density function on f xi g � f yj g with �xed marginals

w = (wi) and u = (uj).
2 If we think of transforming A into B, the fij is the amount of

mass at xi which 
ows to yj .

In this thesis, we are mainly concerned with the discrete MTP. Readers interested in the

continuous MTP, its history, theory, connection with the discrete MTP, modi�cations, and

applications should see the recent two volume work [60],[61] of Rachev and R�uschendorf, as

well as Rachev's survey paper [59].

Often a result for the �nite, discrete MTP has a corresponding result for the continuous

MTP. For example, in section 5.1.1 we prove that if c(x; y) = jjx�yjj for a vector norm jj�jj or
c(x; y) = jjx�yjj22, then the cost c(�x; �y) between the centroids �x =

P
i wixi and �y =

P
j ujyj

is a lower bound on the EMD between the �nite, discrete distributions f (xi; wi) g and

f (yj ; uj) g (here we assume
P
iwi =

P
j uj = 1). Virtually the same proof with summations

replaced by integrals shows that the distance between the means �x =
R
x xw(x) dx and

�y =
R
y yu(y) dy is a lower bound on the EMD between the probablity distributions w(x)

and u(y). This should not be surprising because an integral is just the limit of a Riemann

sum. The proof of a continuous MTP result can follow the summation manipulations done

in the proof of the discrete MTP result, but care must be exercised to ensure that limit

signs can be interchanged or can \pass though" functions when necessary.

For another example of a property that holds for both the continuous and discrete MTPs,

consider the problem of matching a �nite, discrete distribution f (y1; u1); : : : ; (yn; un) g to a
translate f (y1 + t; u1); : : : ; (yn + t; un) g. In section 6.7.3, we prove that the matching fij =
�ijuj which matches all the mass at yi to the mass at yi+t is optimal. The same proof, which

uses the previously discussed centroid lower bound, shows that f(x; y) = �(x� (y� t))u(y)
is an optimal matching between u(y) and u(y� t). A consequence, for example, is that the

EMD between two uniform normal distributions with means �1,�2 and equal variances is

jj�1 � �2jj22 when c(x; y) = jjx� yjj22.
There are not many explicit results in the literature for the EMD between two continuous

2The discrete formulation follows from the continuous one by putting w(x) =
P

i
wi�(x�xi) and u(y) =P

j
uj�(y � yj), where �(x) is the Dirac delta distribution.
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distributions, but there is a nice result for matching two normal distributions. Let N(�;�)

denote a normal distribution with mean � and covariance matrix �. If c(x; y) = jjx� yjj22,
then (p. 119 in [60],[59],[53],[17])

EMD(N(�1;�1); N(�2;�2)) = jj�1 � �2jj22 + tr(�1 +�2 � 2(�
1=2
2 �1�

1=2
2 )1=2): (2.5)

This result is symmetric in �1 and �2 since it can be shown that tr((�
1=2
2 �1�

1=2
2 )1=2) =

tr((�
1=2
1 �2�

1=2
1 )1=2). For uniform Gaussians in RK with �1 = �21IK and �2 = �22IK ,

formula (2.5) reduces to

EMD(N(�1; �
2
1IK); N(�2; �

2
2IK)) = jj�1 � �2jj22 +K(�1 � �2)

2;

which agrees with our result for the equal-variance case �1 = �2. The result (2.5) is

actually a consequence of a more general theorem which also yields the EMD between

uniform distributions over equal-volume ellipsoids (p. 119 in [60],[17]).

Let us now return to the case of discrete distributions with a discussion of the match

distance between histograms de�ned by Werman, Peleg, and Rosenfeld in 1985 ([86]). The

main contribution of this work is the use of a distance between bins as given in (2.3). The

match distance is de�ned between two histograms H0 = (h0i )
n
i=1 and H1 = (h1i )

n
i=1 with

equal total bin counts
P
i h

0
i =

P
i h

1
i . The unfolding of histogram H = (hi)

n
i=1 is de�ned

to be the multiset UF(H) with hi copies of bin i. For example, the unfolding of the 2D

histogram

H =

2
6664
2 0 0

0 0 1

0 3 0

3
7775 is UF(H) = f (1; 1); (1; 1); (2; 3); (3; 2); (3; 2); (3; 2) g ;

where bins are labelled by (row,column) pairs. The cost of a 1-1 match between UF (H0) and

UF (H1) is the sum of the distances between matching bins. The match distance between

H0 and H1 is the cost of the minimum cost 1-1 matching between the multisets UF (H0)

and UF (H1).

The match distance between H0 and H1 is, in fact, the Earth Mover's Distance between

the distributions
�
(bin i; h0i )

	
and

�
(bin i; h1i )

	
:

min
F=(fij)

nX
i=1

nX
j=1

fijdbin(bin i; bin j)
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such that

fij � 0;
nX
i=1

fij = h0j ;

nX
j=1

fij = h1i :

It turns out that a transportation problem with all integer masses has an optimal 
ow

F = (fij) with only integer values ([32]). Such an optimal 
ow is therefore also an optimal

1-1 matching between UF (H0) and UF (H1).

The match distance is used by Peleg, Werman, and Rom [57] as a uniform framework

for changing the spatial and gray-level resolution of an image. In this work, images are 2D

histograms of photons where the value of bin/pixel (i; j) is its gray level I(i; j). The authors

pose the problem of reducing the number of gray levels in an image from 2G+ 1 (labelled

0::2G) to G+1 as an optimization problem that seeks an image I 0 with gray levels 0::G such

that the match distance between I and 2I 0 is as small as possible, where the bin distance

is the Euclidean distance between pixel locations. This problem is reduced to computing

a minimal sum-of-distances pairing of pixels in I with odd gray level. See [57] and [85] for

details. Since the minimal pairing computation takes time O(m3), where m is the number

of pixels in I with odd gray level, the authors suggest using a linear time algorithm to �nd

an approximately optimal matching.

Peleg, Werman, and Rom also formulate a change in spatial resolution from N pixels

f xi g in I to N 0 pixels f yj g in I 0 as a match distance problem. The �nal gray level at pixel
yj is taken to be a linear combination of the pixels in I : I 0(yj) =

P
i �ijI(xi). The match

distance is used to compute the weights �ij between N
0I and NI 0 (which both have total

mass NN 0). In other words, one multiset has N 0 copies of every pixel in I and the other

multiset has N copies of every pixel in I 0. If the optimal matching is rij , then �ij = rij=N

so that the gray level range of I 0 is the same as that of I . The authors point out that their

formulation is not restricted to rectangular grids and can be adapted to weight some pixels

(for example, those close to an image edge) more heavily than others.

The previously discussed works concentrate on the case when the total mass of the two

distributions is equal. In this thesis, we pay close attention to the partial matching case

in which one distribution is \heavier" than the other. For example, in section 5.1.2 we

use the centroid lower bound between equal-mass distributions to derive a lower bound

on the EMD between unequal-mass distributions. In the unequal-mass case, some of the

mass in the heavier distribution is not matched to mass in the lighter distribution. In this

dissertation, we also focus on the problem of �nding an optimal transformation (from a

prede�ned set of transformations) of the mass locations in one distribution so that its EMD

to another distribution is minimized. Finally, we note that our focus is on the EMD between

distributions of masses located at points. This does not expose the full generality of the
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EMD, for the EMD can be used to compare two weighted collections of any objects for which

there is a notion of distance of between objects to provide the costs in the transportation

problem. We could use the EMD, for example, to compare two distributions of distributions,

where the cost between the lower level distributions is itself an Earth Mover's Distance.

The seminal work which developed the EMD for use in content-based image retrieval is

Rubner's thesis ([64]). We shall refer to his work throughout this dissertation.

2.5 Matching under Transformation Groups

In measuring visual similarity, it is often important to allow some transformation of locations

in feature space before measuring the distance between two collections of attributes. In the

color case, for example, changing the lighting of a scene causes some transformation of

the underlying pixel colors. The images of the same scene under di�erent illuminations

may still look quite similar even though the pixel values may be quite di�erent. Directly

comparing histograms with Histogram Intersection or distributions of color mass with the

EMD will not capture such visual similarity. Another example of the importance of allowing

transformations is when the underlying attribute is (or includes) the image plane position

of ink on a page. Two images of the same object from di�erent distances and viewpoints

will be visually similar despite di�erences in scale, orientation, and image location. Directly

comparing the position of the ink will not capture this visual similarity.

Although not its intended purpose, the EMD de�nes a distance between point sets if

one considers the mass at each point in a set to be one unit. The EMD between point

sets is the minimum of the average distance between corresponding points taken over all

one-to-one correspondences between the sets. In the next two subsections, we consider two

other widely used distances between point sets along with the methods used to compute

these distances under transformation groups.

2.5.1 The Hausdor� Distance

The Hausdor� distance between �nite point sets A = f a1; : : : ; am g and B = f b1; : : : ; bn g
is de�ned as

H(A;B) = max(h(A;B); h(B;A));

where

h(A;B) = max
a2A

min
b2B

�(a; b) (2.6)

is the directed Hausdor� distance from A to B, and �(a; b) is the distance between points

a and b. The directed Hausdor� distance h(A;B) from A to B is small whenever each
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point of A is close to some point in B. The directed distance is appropriate when trying

to �nd a model within an image, since we want all the points in the model set to be

close to some point in the image set, but not necessarily vice-versa. In this case, we use the

directed distance from the model point set to the image point set. The symmetric Hausdor�

distance H(A;B) is small when each point in A is close to some point in B, and each point

in B is close to some point in A. The Hausdor� distance de�nes a metric between �nite

point sets if the underlying point distance � is a metric. The Hausdor� distance can be

computed trivially in O(mn) time, but with some cleverness ([1]) this time can be improved

to O((m+ n) log(m+ n)).

In contrast to the EMD applied to point sets, the Hausdor� distance does not use one-to-

one correspondences between points. In the directed distance computation (2.6), the same

point b 2 B can be the nearest neighbor to many di�erent points a 2 A. This many-to-one
matching can be quite advantageous for problems involving very large point sets which do

not require one-to-one correspondences. To be fair to the EMD, it is more general than the

Hausdor� distance in the sense that it can be used to match distributions, of which point

sets are a special case.

For a transformation group G, the Hausdor� distance under G is de�ned as

MG(A;B) = min
g2G

H(A; g(B)):

In words, we �nd the transformation g 2 G which matches A and g(B) as closely as possible.

The problem of computing the Hausdor� distance under a transformation group has been

considered for various transformation groups G (e.g. translation, Euclidean), with di�erent

norms � (e.g. L2 or L1), and in di�erent dimensions d (e.g. 1, 2, � 3). An O(n logn) time

algorithm for the translation case in one dimension is given in [63]. In [8], Chew et al.

give an algorithm for the translation case with the L1 point distance that runs in time

O(n3 log2 n) in dimension d = 2 in time O(n(4d�2)=2 log2 n) in dimension d � 3. For point

sets in the plane with the L2 distance, the Hausdor� distance under translation can be

computed in O(n3 logn) time ([35]) and the Hausdor� distance under Euclidean transfor-

mations (translation plus rotation) can be computed in O(n5 log n) time ([9]). In presenting

the time bounds, we have assumed that m = O(n).

The Hausdor� matchers of Rucklidge et al. ([36],[70]) are aimed at the practical problem

of �nding a binary model within a binary image. Here the point set de�ned by a binary image

is the nonnegative integer point set which includes exactly the locations of the pixels which

are \on" in the image. In [36], a rotated, translated version of the model can be located,

while in [70] an a�ne transformation of the model is allowed. The underlying distance
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measure is the directed Hausdor� distance under Euclidean transformations in [36], and

the directed Hausdor� distance under a�ne transformations in [70]. Actually, these works

use a more robust version of the Hausdor� distance which prevents outliers from a�ecting

the distance computation. The partial directed Hausdor� distance from the model point

set B to the image point set A is de�ned as

hK(B;A) = Kth
b2Bmin

a2A
�(a; b);

where Kth
b2B denotes the Kth ranked distance of the distances mina2A �(a; b) 8b 2 B, and

0 < K � n = jBj. The user speci�es the fraction f , 0 < f � 1 which determines K = bfnc.
In this way, the user does not need to know the number of points in the model. The fraction

f allows for a fraction 1 � f of the points in the model to be outliers (not near any image

points).

The Hausdor� matchers described in [36] and [70] both search in a discretized trans-

formation space. The search space is limited to a �nite (but usually very large) number of

transformations by the user. The transformation space is discretized into a rectangular grid

so that moving by one grid unit in transformation space produces only a small change in

the transformed model. The authors leverage o� the fact that if the Hausdor� distance is

large for a particular grid transformation, then it will also be large at grid transformations

in a neighborhood of that transformation. This allows some transformations to be elimi-

nated from consideration without explicitly computing the Hausdor� distance. In [36], the

search algorithm loops over all grid transformations and skips transformations that can be

ruled out by Hausdor� distances evaluated at previously visited grid cells. Here \ruled out"

means that it can be proven that a transformation yields a Hausdor� distance which is (1)

larger than a user speci�ed threshold if all matches within a given threshold are desired or

(2) larger than the best Hausdor� distance seen so far if the user only wants the best match

to be reported.

In [70], the a�ne search space is six-dimensional, so developing e�cient search techniques

is crucial. A multi-level cell decomposition strategy is used instead of a loop over all grid

transformations. The initial space of transformations to search is tiled with rectilinear cells

of equal size (i.e. an equal number of grid transformations inside). If a cell can be proven

not to contain a transformation which needs to be reported to the user, then it is not

searched further. Otherwise, the cell is marked as \interesting". After considering all the

cells at the current level, each of the interesting ones are subdivided and the process is

repeated. This search process is a breadth �rst search in the tree representing the recursive

cell decomposition. In the case when a single match is required (either any match or the
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minimum distance match), a best-�rst search in which we investigate the most promising

interesting cells �rst will help reduce the total search time. See [70] for the measure used

to rank interesting cells.

The same idea of a hierarchical search in a discretized transformation space is used

again by Rucklidge ([71]) to �nd a gray level model in a gray level image. In this work,

the search accounts for an a�ne transformation of the geometry of the gray level pattern.

The pruning strategies given are applicable to a number of block distance functions such

as SSD (sum of squared di�erences) and MAD (mean absolute deviation), and other func-

tions which use the gray level di�erences between corresponding pixels of the image and

the transformed model. Distance functions which compare the gray level of a transformed

model pixel to a neighborhood of the corresponding image pixel can also be accomodated

to account for noise and small shape changes which cannot be captured by an a�ne trans-

formation. The following results were reported: (1) correct identi�cation of a translated

version of a 28 � 70 model within a 640� 480 image examining only 1303 cells versus the

approximately 250000 possible translations, (2) correct registration of a �gure under rigid

motion examining about 7:2� 107 cells compared to the approximately 5� 109 rigid grid

motions, and (3) correct patch-by-patch matching of two a�nely-related images examining

only 6:8� 108 cells compared to over 2� 1013 possible transformations. No running times

were given.

The main strength of the works [36], [70], and [71] is that these methods do not miss

any good matches and are guaranteed to report the globally optimal match under whatever

distance measure (SSD, MAD, etc.) is used. In contrast, our search strategy will move from

any point in transformation space to a locally optimal transformation, with no guarantee

that this transformation is globally optimal. The key to the correctness and e�ciency of

our strategy lies in the e�cient selection of a few good initial transformations from which

to begin our iteration so that it will converge to an optimal or nearly optimal transfor-

mation. The key to the correctness of Rucklidge's works is that all transformations are

potentially considered, while the key to their e�ciency is the ability to prune large areas of

the transformation space without explicitly considering individual transformations.

The pruning rates reported in [36], [70], and [71] are quite impressive, but there are

still many transformations that must be explicitely considered { probably too many for

the application of content-based image retrieval (CBIR) in which hundreds or thousands of

pattern problems must be solved within a minute or so. Given our CBIR motivation, it is

more important for us to solve almost all pattern problems correctly and very quickly, rather

than to solve all pattern problems correctly but more slowly. Another main di�erence in

our approaches is the behavior of our approaches in an area around the best match. Even
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in the case when only the best match must be reported (as opposed to all matches within

a certain threshold), the Rucklidge algorithms must consider many transformations around

the best match because around any good match are other good matches which although

not globally optimal are near optimal enough to be quite di�cult to eliminate without a

closer look. In our approach of following a downhill path in transformation space (i.e. a

sequence of transformations which always improves the EMD value), getting close to the

best match speeds up the convergence of the iteration. If \close" is close enough, the

downhill iteration will move from suboptimal but good matches near the optimal match to

the optimal one, and it will do so without visiting every good match in the neighborhood of

the best one. Finally, we note that we have also extended the EMD for robustness reasons so

that only some mass in the lighter distribution needs to be matched to mass in the heavier

distribution.

2.5.2 The ICP Iteration

The iterative closest point (ICP) iteration ([5]) was developed to register two 3D shapes.

Given a 3D \model" shape and a 3D \data" shape, the goal is to �nd the rotation and

translation of the data shape which registers it with part of the model. Here the wordmodel

is used in the exact opposite of the way it is used in the previous discussion of Hausdor�

matchers { the model shape is searched for the data shape pattern. The model shape can

be represented as the union of any collection of geometric primitives such as points, line

segments, curves, triangles, etc., as long as there is a routine available to compute the point

on a primitive which is closest to a given point. The data shape must be represented as (or

decomposed into) a point set. The distance from the data shape point set B = f b1; : : : ; bn g
to the model shape primitive set A = f a1; : : : ; am g is given by

DICP(B;A) =
nX
j=1

min
a2A

d2(bj; a) =
nX
j=1

min
a2A

min
p2a

jjp� bj jj22;

where d(b; a) is the L2 distance from point b to the closest point on the geometric primitive

a. If we assume that the model is represented as a 3D point set, then the ICP distance

function becomes

DICP(B;A) =
nX
j=1

min
a2A

jja� bj jj22:

The ICP distance from B to A is very similar to the Hausdor� distance from B to A, except

that DICP sums up the distances to the nearest neighbors instead of taking the maximum.
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The ICP iteration is designed to solve the optimization problem

DICP
G (B;A) = min

g2G
DICP(g(B); A) = min

g2G

nX
j=1

min
a2A

jja� g(bj)jj22;

where G = E , the group of Euclidean transformations. The idea here is to alternately

compute (1) the distance minimizing transformation for a �xed set of nearest neighbor

correspondences, and then (2) the nearest neighbor correspondences for a �xed data shape

transformation. More precisely, the two steps are

 (k)(j) = argmin
i
jjai � g(k)(bj)jj22 8j = 1; : : : ; n and (2.7)

g(k+1) = argmin
g2G

nX
j=1

jja (k)(j) � g(bj)jj22: (2.8)

The correspondence  (k) maps the index of a point in g(k)(B) to the index of the closest

point in A. The use of the Euclidean distance squared facilitates the transformation step

because the least squares optimization problem (2.8) has a known, closed-form solution

for G = E (and for many other transformation sets G). It is not di�cult to show that

the sequence < DICP(g(k)(B); A) >k is a monotonically descreasing, convergent sequence

starting with any initial transformation g(0). The least squares registration (2.8) reduces

the average distance between corresponding points during each iteration, while the the

nearest neighbor correspondences reduce the individual distance from the points in the

transformed data shape to corresponding points in the model.

The idea behind the ICP iteration is a very general one. To see this, we shall rewrite

the correspondence step as

 (k) = argmin
 2	

nX
j=1

jja (j) � g(k)(bj)jj22; (2.9)

where 	 is the set of all functions from [1::n] to [1::m]. Since the functions in 	 are

not restricted in any way, the solution to (2.9) makes  (k)(j) 2 [1::m] equal to the index

of the point in A which is closest to g(k)(bj) (as in (2.7)). Computing DICP
G

(B;A) is an

optimization problem over 	 � G. The ICP iteration alternates between �nding the best

 2 	 for a �xed g 2 G, and the best g 2 G for a �xed  2 	. In this way, a path in

	 � G is traced out for which the ICP objective function always decreases or remains the

same. The ICP iteration is an example of the general alternation strategy in which the path

followed in search space always proceeds downhill along subpaths over which some subset

of the search space variables are constant. Mathematically, the alternation idea applies
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to any optimization problem optV=V1[V2[���[VNf(V1; V2; : : : ; VN) for which one can solve

V �
i (V1; : : : ; Vi�1; Vi+1; : : : ; VN) = arg optVif(V1; V2; : : : ; VN).

When the objective function to be minimized is bounded below, the go downhill strategy

employed by the alternation strategy is guaranteed to converge, albeit possibly to only a

local (as opposed to global) minimum (an analogous statement holds for the alternation

strategy applied to maximization problems). This is the case in the ICP iteration since

the distance function to be optimized is nonnegative. Of course, the main drawback of the

alternation strategy is that there is no guarantee of convergence to the global optimum.

Our method for computing the EMD under a transformation set applies the alternation

strategy to obtain a decreasing, convergent sequence of EMD values. As in the ICP problem

of registering shapes, there is a step to determine the best correspondences for a �xed

transformation. The correspondence step in matching distributions with the EMD is more

complicated than (2.9). In the EMD case, there is a real-valued variable fij that indicates

how much mass at location i in one distribution is matched to location j in the the other

distribution. The correspondences F = (fij) must be constrained so that each location does

not match more mass than it possesses. In addition to allowing transformations of mass

locations, we can also handle some sets of transformations which alter both mass locations

and amounts.

The key to the e�ective use of a correspondence-transformation alternation to solve

CBIR matching problems is the selection of a small number of promising transformations

from which to start the iteration. The number must be small for e�ciency reasons, and one

of the initial transformations must be close to the globally optimal one so that one of the

sequences converges to an optimal or to a nearly optimal match. In the case when the whole

model shape matches the data shape, the ICP authors suggest a method for computing a

good initial rotation from eigenshape analyses of the model and data shapes. A promising

initial translation in this case lines up the centroids of the two shapes. This is a good initial

transformation strategy when all the data in the model shape is matched, but comparing

global descriptors such as those mentioned above will not work in the partial matching case

when the data shape matches only some (possibly very small) amount of the model. In this

case, the authors suggest a dense sampling of the transformation space to produce a set of

initial transformations.

Even in the case of partial matching, it may be possible to quickly determine a few very

promising places in an image to look for a pattern. Consider the color pattern problem. If,

for example, there is a yellow blob in the pattern and yellow appears only in a few places

within the image, then one of those few places is likely to contain the pattern if it appears

at all within the image. Even if yellow appears in many places within the image, it may
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be possible to quickly eliminate most of these places based on the other colors surrounding

the yellow. The pattern will not match an image region which has very di�erent colors or

very di�erent ratios of color amounts even if the same colors are present. These two simple

checks do not use the positions of the colors within in an image region. The number of image

regions checked for initial pattern placement can be kept quite low by using only the most

distinctive pattern colors with respect to the image to select these regions. By examining

the amounts of the most distinctive pattern colors in the pattern and in the image, one can

often obtain a very good estimate of the pattern scale. This scale estimate is crucial in the

preceeding discussion since the scale determines how much of the image to compare to the

pattern.

The basic ideas discussed above are also applicable to the shape pattern problem in

which only di�erences in scale and location, not in orientation, are allowed. The orienta-

tion of ink on the page in the shape pattern problem plays the same role as color in the

color pattern problem: the orientation does not change under the allowable transformations.

Distinctive pattern orientations with respect to the image (i.e. orientations which occur in

the image mainly in an image region which contains the pattern) give a lot of leverage in

computing a scale estimate and possible locations of the pattern within the image. Even

if the rotated versions of the pattern are to be located in the image, distinctive relative

orientations may give the needed leverage to determine e�ciently a small set of initial sim-

ilarity transformations. The ideas discussed above are used to select initial transformations

in SEDL, which is our CBIR pattern problem system.

2.6 The FOCUS Image Retrieval System

The FOCUS (Fast Object Color-based qUery System) image retrieval system designed by

Das et al. ([14]) addresses the color pattern problem in the CBIR context. An important

non-technical contribution of the FOCUS work is that it highlights the importance of par-

tial matching in CBIR systems without assumptions about scale, orientation, position, or

background. The system operates in two phases. During the �rst phase, database images

which do not contain all the colors present in the query pattern are eliminated from fur-

ther consideration. The second phase uses spatial color adjacency relationships to �lter the

phase one results.

The preprocessing step for phase one identi�es the peaks in local color (HSV) histograms

measured over a uniform grid of rectangular image subregions. These peaks are recorded as

the colors present in the image. Local histograms are used instead of a global histogram to

help prevent color peaks in the occurrence of a query pattern from being masked or shifted
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by peaks from the background colors. Ideally, one of the local histogram subregions should

be the image area which is exactly the query occurrence since this would guarantee an

image color peak which exactly matches a query color peak. Of course, this cannot be done

because the problem under investigation is to �nd the query. The color peaks for all images

in the database are collected into an indexing structure which supports range queries. Each

peak is tagged with the image and the cell within the image in which it occurs. The phase

one index also includes a frequency table which speci�es the number of images that will be

returned by a range query (over a �xed size range) for every point in a discretization of the

HSV color space.

At phase one query time, the peaks in a global color histogram over the query image

are computed. For each query peak, a range query centered at that peak is performed to

identify all database images with a similar color. Using the frequency table, the query peaks

are processed in order of increasing number of returned images. The image lists for each

query peak are joined to form a list of images that have peaks matching every query peak.

The result of phase one is this list of images along with a set of peak correspondences for

each image on the list.

The preprocessing step for phase two matching builds a spatial proximity graph (SPG)

that captures the spatial adjacency relationships between color regions in an image. The

nodes in an image SPG correspond roughly to (color peak,cell) pairs. The construction

process starts with a list of color peaks for each cell. Two color peaks are connected if it is

possible that their underlying regions are adjacent in the image; there is an edge between

two color peaks if the peaks are in the same cell or if two peaks of the same color are

four-neighbors on the cell grid. There is some collapsing of connected nodes of the same

color to obtain scale invariance. See [14] for details. The edges in an SPG show all possible

pixel level adjacencies that could occur (although the SPG construction does not perform

any pixel level processing), but some false adjacencies may be included.

During phase two, the SPG of each image returned in the phase one result is searched

for an occurrence of the query SPG as a subgraph. If an image SPG does not contain the

query SPG, then it is assumed that the image does not contain the query. The subgraph

search is done after each image SPG node label is replaced by the query color label of the

matching peak (obtained from the phase one result). Image nodes whose color does not

match any query color are eliminated before the search. The reduced image SPG can be

checked for the query subgraph in time O(nm), where n is the size of the query adjacency

matrix and m is the maximum number of occurrences of a color label in the reduced image

SPG (usually � 3 according to [14]). The distance between a query and database image

is given by the sum of HSV distances between query and corresponding image peaks. The
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phase two matching removes images from the phase one result list ordered by this distance

function.

The main high-level di�erence between SEDL and FOCUS is that we use absolute po-

sition information, while Das et al. use relative position information. One positive conse-

quence of using relative information is that adjacencies of color regions remain the same

regardless of the scale, orientation, position, or continuous deformation of a pattern oc-

curence within an image. In the FOCUS work, there is no transformation to estimate in

order to determine if the pattern is present. The search for an optimal transformation is

replaced by the search for a subgraph in the image SPG. Underlying both searches is the

question of which regions can match one another.

In FOCUS, a query region can only match an image region whose color is most similar to

that of the query region (and is within some threshold). Deciding which color in the query

matches which color in the image makes the subgraph isomorphism problem computation-

ally feasible. Position information is used to determine if a pair of image regions can match

a pair of query regions. A pair of adjacent regions cannot match a pair of non-adjacent

regions. In contrast, we decide which regions can match by using a continuous distance

measure that is a weighted combination of color and position distance between regions.

Our notion of a good match is that for each query region there is a nearby image region of

a similar color. This translates into a small combined color-position distance. Of course,

our choice to use such a distance function forces us to make the very di�cult decision of

how much to weigh the individual color and position distances.

The corresponding di�culty in FOCUS is the lack of robustness that may result from

using the possibly-adjacent-to relation { the absence of a single edge in the image SPG

can cause the algorithm to conclude that the pattern does not exist within the image. The

FOCUS answer to this problem is to err on the side of introducing false adjacencies in

favor of missing true adjacencies. Recall that their SPG (spatial proximity graph) captures

all possible spatial adjacencies between image colors. False adjacencies may be introduced

because the graph construction works at the level of cells instead of pixels.

The size of the cell is crucial here. At one extreme, using a single cell equal to the whole

image will give many false adjacencies, but results in a very small SPG to match. In this

case, the nodes of the SPG are all the colors present in the image and there is an edge

between every pair of colors. Also, the likelihood that query color peaks will be masked by

background colors increases as the cell size increases. At the other extreme, using cells which

are pixels results in no false adjacencies but gives very large SPGs that cannot be matched

in times which are acceptable for an image database application. Suppose, for example,

there is an orange and blue checkerboard that �lls one cell. Then this cell contributes a
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blue node connected to an orange node. If we change the cell size to the size of a single

checkerboard square, then each checkboard square contributes one blue or orange node and

all four-neighbors of opposite colors are connected. The challenge faced by the FOCUS

work is to choose the cell size so that there are not too many false adjacencies but so that

the sizes of the SPGs are small enough to match SPGs quickly.

In [14], Das et al. report a recall rate of 90% and a precision of 75% after phase two.

These results are excellent, although the results obtained directly from their web demo

at http://vis-www.cs.umass.edu/~mdas/color_proj.htmlwere not as good (08/17/98).

In section 7.5.1, we show that SEDL achieves better recall and competitive precision results.

FOCUS, however, has a sizeable advantage over SEDL in speed, requiring less than a second

on average for a query in a database of 1200 images of product advertisements and nature

images. SEDL requires an average of about 40 seconds per query on a size 361 subset of

the FOCUS database.

Finally, we note that FOCUS never really veri�es the occurrence of the pattern within

the image. It simply eliminates images that cannot possibly contain the pattern. The hope

is that the pattern is distinctive enough to eliminate almost all images except those that

contain the pattern. In this elimination process, FOCUS does not use the sizes of uniform

color regions or the amounts of colors present. In contrast, SEDL uses this information to

estimate the scale and location of the pattern within the image. Another di�erence is that

SEDL can show the user where it believes the pattern is located, while FOCUS cannot do

so. Such feedback may be useful if users can change system parameters in an attempt to

improve query results. A further discussion of di�erences between SEDL and FOCUS is

given in section 7.5.1.3.


