
Chapter 5

Lower Bounds on the EMD

In the content-based retrieval systems described in [65] and [69], the distance between two

images is taken as the EMD between the two corresponding signatures. The query time is

dominated by the time to perform the EMD computations. In a nearest neighbor query,

the system returns the R database images which are closest to the given query. During

query processing, an exact EMD computation need not be performed if there is a lower

bound on the EMD which is greater than the Rth smallest distance seen so far. The goal

is to perform queries in time that grows in a sublinear fashion with the number of database

images. The motivation is system scalability to very large databases.

It is known ([68]) that the distance between the centroids of two equal-weight distri-

butions is a lower bound on the EMD between the distributions if the ground distance is

induced by a vector norm. There are, however, common situations in which distributions

will have unequal total weights. For example, consider once again the color-based retrieval

work described in [65]. Assuming all the pixels in an image are classi�ed, the weight of

every database signature is one. EMD comparisons between unequal-weight distributions

arise whenever the system is presented with a partial query such as: "give me all images

with at least 20% sky blue and 30% green". The query signature consists of two points in

CIE-Lab space with weights equal to 0:20 and 0:30, and therefore has total weight equal to

0:50. Since one cannot assume that all database images and queries will contain the same

amount of information, lower bounds on the EMD between unequal-weight distributions

may be quite useful in retrieval systems.

This chapter is organized as follows. In section 5.1, we extend the centroid-distance

lower bound to the case of unequal-weight distributions. In section 5.2, we present lower

bounds which use projections of distribution points onto random lines through the origin

and along the directions of the axes. In section 5.3, we show some experiments that use our
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98 CHAPTER 5. LOWER BOUNDS ON THE EMD

lower bounds in the previously mentioned color-based image retrieval system.

A preliminary version of most of the material in this chapter is contained in the technical

report [12].

5.1 Centroid-based Lower Bounds

The centroid x of the distribution x = (X;w) 2DK;m is de�ned as

x =

Pm
i=1 wixi

w�
:

In section 5.1.1 we shall prove that the distance between the centroids of equal-weight

distributions is a lower bound on the EMD between the distributions if the ground distance

is induced by a vector norm or if d = L22. There is also, however, a centroid-based lower

bound if the distributions are not equal weight. If x = (X;w) is heavier than y = (Y; u),

then all of the weight in y is matched to part of the weight in x. The weight in x which is

matched to y by an optimal 
ow is a sub-distribution x0 of x. Formally, a sub-distribution

x0 = (X 0; w0) of x = (X;w) 2 DK;m, denoted x0 � x, is a distribution with X 0 = X and

0 � w0 � w:

x0 = f (x1; w01); : : : ; (xm; w0m) g = (X;w0) 2 DK;m; 0 � w0j � wj for i = 1; : : : ; m:

In words, the points of a sub-distribution x0 are the same as the points of x and the weights

of x0 are bounded by the weights of x. One can visualize a sub-distribution x0 � x as the

result of removing some of the dirt in the piles of dirt in x. The minimum distance between

the centroid of y and the locus of the centroid of sub-distributions of x of total weight u�

is a lower bound on EMD(x;y). Details are given in section 5.1.2.

5.1.1 Equal-Weight Distributions

Let us �rst consider the case when the ground distance between points is induced by a

vector norm. This is true, for example, if the ground distance is one of the Lp distances

(p � 1).

Theorem 6 Suppose x = (X;w) 2 DK;m and y = (Y; u) 2 DK;n are distributions of equal

total weight w� = u�. Then

EMDjj�jj(x;y)� jjx� yjj

if the ground distance d(x; y) = jjx� yjj and jj � jj is a norm.
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Proof. The equal-weight requirement implies that for any feasible 
ow F = (fij),

mX
i=1

fij = uj and (5.1)

nX
j=1

fij = wi: (5.2)

Then ������
������
mX
i=1

wixi �
nX
j=1

ujyj

������
������ =

������
������
mX
i=1

nX
j=1

fijxi �
mX
i=1

nX
j=1

fijyj

������
������ ((5:1); (5:2))

=

������
������
mX
i=1

nX
j=1

fij(xi � yj)
������
������

�
mX
i=1

nX
j=1

jjfij(xi � yj)jj (�-inequality)

=
mX
i=1

nX
j=1

fij jjxi � yj jj (fij � 0)������
������
mX
i=1

wixi �
nX
j=1

ujyj

������
������ �

mX
i=1

nX
j=1

fij jjxi � yj jj:

Dividing both sides of the last inequality by w� = u� yields

jjx� yjj �
Pm
i=1

Pn
j=1 fij jjxi � yj jj
w�

(5.3)

for any feasible 
ow F . Replacing F by a work minimizing 
ow gives the desired result.

The centroid lower bound for the equal-weight case also holds when the ground distance

is L22, despite the fact that the square of the Euclidean norm is not itself a norm.

Theorem 7 Suppose x = (X;w) 2 DK;m and y = (Y; u) 2 DK;n are distributions of equal

total weight w� = u�. Then

EMDjj�jj2
2(x;y)� jjx� yjj22;

where the ground distance d(x; y) = jjx� yjj22 and jj � jj2 is the Euclidean norm.
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Proof. Applying the Cauchy-Schwarz inequality (
P
k a

2
k)(
P
k b

2
k) � (

P
k akbk)

2 with ak =p
fij and bk =

p
fij jjxi � yj jj2 gives

0
@ mX
i=1

nX
j=1

fij

1
A
0
@ mX
i=1

nX
j=1

fij jjxi � yj jj22
1
A �

0
@ mX
i=1

nX
j=1

fij jjxi � yj jj2
1
A2

(5.4)

for every feasible 
ow F . The �rst factor on the left-hand side of (5.4) is equal to the total

weight u� = w�. From (5.3) in the proof of Theorem 6, the right-hand side of the inequality

is greater than or equal to jjx� yjj22u2�. Combining these facts with (5.4) shows that

Pm
i=1

Pn
j=1 fij jjxi � yj jj22

u�
� jjx� yjj22

for every feasible 
ow F . Replacing F by an optimal feasible 
ow yields the desired result.

5.1.2 Unequal-Weight Distributions

Let x = (X;w) 2 DK;m and y = (Y; u) 2 DK;n be distributions with w� � u�. In any

feasible 
ow F = (fij) from x to y, all of the weight uj must be matched to weight in x so

that
Pm
i=1 fij = uj , and the total amount of matched weight is

Pm
i=1

Pn
j=1 fij = u�. Let

xF = f (x1;
nX
j=1

f1j); (x2;
nX
j=1

f2j); : : : ; (xm;
nX
j=1

fmj) g = (X;wF ):

Clearly, wF� = u�. By Theorem 6 in the previous section, we know that

EMD(xF ;y) �
������xF � y

������ (5.5)

when the ground distance is induced by a vector norm jj � jj. Note that Theorem 7 implies

that the lower bound (5.5) also holds when d = L22 if we replace jj � jj by jj � jj22.
From (5.5), it follows that

EMD(xF ;y) � min
F 02F(x;y)

������xF 0 � y
������ ; (5.6)

where the minimum is taken over all feasible 
ows F 0 from x to y. Since (5.6) holds for

every feasible 
ow F from x to y, we can replace F by a work minimizing 
ow F � and

obtain

EMD(x;y) = EMD(xF
�

;y) � min
F 02F(x;y)

������xF 0 � y
������ : (5.7)
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The minimum on the right-hand side of the inequality (5.7) can be re-stated as the minimum

distance of the centroid of y to the centroid of any sub-distribution of x of total weight u�:

min
F 02F(x;y)

������xF 0 � y
������ = min

x0 = (X;w0) � x

w0� = u�

������x0 � y
������ : (5.8)

We now argue that (5.8) holds. Clearly, xF
0

is a sub-distribution of x with total weight

u� for every F 0 2 F(x;y). It remains to argue that any sub-distribution x0 � x with

total weight u� is xF
0

for some F 0 2 F(x;y). Let F 0 be any feasible 
ow between the two

equal-weight distributions x0 and y (the set of such feasible 
ows is nonempty). The feasible


ows F(x;y) between x and y are exactly those 
ows which match all u� of y-weight to

u� � w� of x-weight. Therefore, F(x0;y) � F(x;y), and F 0 2 F(x0;y)) F 0 2 F(x;y).
Combining (5.7) and (5.8) gives

EMD(x;y)� min

x0 = (X;w0) � x

w0� = u�

������x0 � y
������ : (5.9)

In section 5.1.2.1 we show how this minimization problem can be formulated as the mini-

mization of a quadratic function (if d = L2) subject to linear constraints. However, solving

this quadratic programming problem is likely to take more time than computing the EMD

itself. In section 5.1.2.2 we show how to compute a bounding box for the locus of the cen-

troid of any sub-distribution of x of total weight u�. The minimum ground distance from

the centroid of y to the bounding box is a lower bound of the EMD, although it is obviously

not as tight as the lower bound in (5.9).

5.1.2.1 The Centroid Lower Bound

Given a distribution x = (X;w) 2 DK;m, the locus of the centroid of sub-distributions of x

of weight �w�, 0 < � � 1, is

C�(x) =

� Pm
i=1 ewixiew� : 0 � ewi � wi; 0 < ew� = �w�

�
:

If we let vi = ewi= ew� and bwi = wi=(�w�), then

C�(x) =

(
mX
i=1

vixi : 0 � v � bw =
1

�

w

w�
; v� = 1

)
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or, in terms of matrix multiplication,

C�(x) = f Xv : 0 � v � bw =
1

�

w

w�
; 1Tv = 1 g: (5.10)

The symbol \1" is overloaded in the constraint 1T v = 1; on the left-hand side it is a vector of

m ones, while on the right-hand side it is simply the integer one. It is easy to see from (5.10)

that

C�1(x) � C�2(x) if �1 � �2:

The locus C�(x) is a convex polytope. The intersection of the 2m halfspaces v � 0 and

v � bw is a box P1. The intersection of P1 with the hyperplane 1Tv = 1 is another convex

polytope P2 of one dimension less. Finally, applying the linear map X to P2 gives the

convex polytope C�(x). In [4], Bern et al. characterize and provide algorithms to compute

the locus CL;H(S) of the centroid of a set S of points with approximate weights, where

weight wi lies in a given interval [li; hi] and the total weight W is bounded as L � W � H .

The locus C�(x) = C1;1(X) if [li; hi] = [0; bwi].
Now suppose that y = (Y; u) 2 DK;n is a lighter distribution than x. In the previous

section we argued that the EMD is bounded below by the minimum ground distance from

y to a point in Cu�=w�(x). We denote this minimum distance as CLOC(x;y) because it

uses the locus of the centroid of sub-distributions of x of weight u�. Thus EMD(x;y) �
CLOC(x;y). If d = L2, then this lower bound can be computed by minimizing a quadratic

objective function subject to linear constraints:

(CLOC(x;y))2 = min
v

jjXv� yjj22

subject to

v � 0

v � bw =
1

u�
w

1Tv = 1:

The above minimization problem consists ofm variables and 2m+1 linear constraints which

are taken directly from (5.10). It can be written more compactly as

(CLOC(x;y))2 = min
p2Cu�=w�(x)

jjp� yjj22; (5.11)

where it is assumed that u� � w�.
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5.1.2.2 The Centroid Bounding Box Lower Bound

As previously mentioned, the computation of the CLOC lower bound as described in the

previous section is likely to require more time than an exact EMD computation. Yet the

centroid locus C�(x) can still be very useful in �nding a fast to compute lower bound on

the EMD. The idea is to precompute a bounding box B�(x) for C�(x) for a sample of

� values, say � = 0:05k for k = 1; : : : ; 20. When given a lighter query distribution y at

query time, the minimum distance from y to the bounding box B�y(x) is a lower bound on

EMD(x;y), where �y is the largest sample � value which does not exceed the total weight

ratio u�=w� (the correctness of �y follows from the containment property (5.14)). We call

this lower bound the CBOX lower bound (the C stands for centroid and the BOX comes

from bounding box), and it is formally de�ned as

CBOX(x;y) = min
p2Bu

�
=w

�(x)
jjp� yjj; (5.12)

where, once again, it is assumed that u� � w�. This lower bound computation will be

very fast because the bounding boxes are precomputed and the query time computation of

the minimum distance of the point y to the box B�y(x) is a constant time operation (it is

linear in the dimension K, but does not depend on the number of points in x or y). When

d = L22, we replace the norm jj � jj in (5.12) with jj � jj22.

If we write the matrix X in terms of its rows as

X =

2
6664
rT1
...

rTK

3
7775 2 RK�m; then Xv =

2
6664
rT1 v
...

rTKv

3
7775 2 RK :

The computation of an axis-aligned bounding box for the centroid locus C�(x) can be

accomplished by solving the 2K linear programs

ak = min
v

rTk v; bk = max
v

rTk v k = 1; : : : ; K

subject to

v � 0

v � bw =
1

�w�
w (5.13)

1Tv = 1:
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Each of these linear programs has m variables and 2m + 1 constraints. The axis-aligned

bounding box for the centroid locus C�(x) is

B�(x) =
KY
k=1

[ak; bk]:

As with the true centroid loci C�(x), we have a containment property for the bounding

boxes B�(x):

B�1(x) � B�2(x) if �1 � �2: (5.14)

This fact can be veri�ed by observing that the constraints over which the minima ak

and maxima bk are computed get weaker as � decreases (the only constraint involving

� is (5.13)). Note also that the box B�(x) includes its \interior" so that the lower bound

CBOX(x;y) is zero if y lies inside B�y(x). Using the CBOX lower bound instead of the

CLOC lower bound trades o� computation speed for pruning power since the former is

much faster to compute, but1

EMD(x;y)� CLOC(x;y)� CBOX(x;y):

Nevertheless, the pruning power of the CBOX lower bound will be high when the query

distribution is well-separated from many of the database distributions (which implies that

the centroids will also be well-separated).

5.2 Projection-based Lower Bounds

For v on the unit sphere SK�1 in RK , the projection projv(x) of the distribution x =

(X;w) 2 RK;m along the direction v is de�ned as

projv(x) = f (vTx1; w1); (vTx2; w2); : : : ; (vTxm; wm) g = (vTX;w) 2 D1;m:

In words, the projection along v is obtained by using the lengths of the projections of the

distribution points along v and leaving the corresponding weights unchanged. The following

lemma shows that the EMD between projections is a lower bound on the EMD between the

original distributions. See Figure 5.1.

Lemma 3 Let v 2 SK�1. Then EMDL2(x;y)� EMDL1(projv(x); projv(y)).

1The inequality CLOC(x;y) � CBOX(x;y) follows from the fact that B�(x) � C�(x) (since B�(x) is a

bounding box for C�(x)) and the de�nitions (5.11) and (5.12).
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v

jjxi � yjjj2

xi
yj

jvTxi � vTyjj � jjxi � yjjj2

Figure 5.1: The Projection Lower Bound. The EMD with d = L2 between two distributions

is greater than or equal to the EMDwith d = L1 between the projections of the distributions

onto a line through the origin. This is because all ground distances decrease or remain the

same after projection. See Lemma 3 and its proof.

Proof. This theorem follows easily from the de�nition of the EMD and the fact that

jvTxi � vT yj j = jvT (xi � yj)j
= jjvjj2 jjxi � yj jj2 j cos�v;(xi�yj)j
= jjxi � yj jj2 j cos �v;(xi�yj)j

jvTxi � vT yj j � jjxi � yj jj2:

The following theorem is an immediate consequence of Lemma 3.

Theorem 8 Let V = fv1; : : : ; vLg � SK�1 and

PMAX(V;x;y) = max
v2V

EMD(projv(x); projv(y))

Then EMD(x;y)� PMAX(V;x;y).

For this lower bound to be of practical use, we must be able to compute it e�ciently. In

section 4.3.2, we presented a straightforward, �(m + n) time algorithm to compute the

EMD between equal-weight distributions on the real line. In combination with Theorem 8,

this algorithm provides the means to compute quickly a lower bound on the EMD between
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two equal-weight distributions.

One pruning strategy is to pick a set of random directions V along which to perform

projections, and apply Theorem 8 to obtain a lower bound. The hope is that the di�erences

between two distributions will be captured by looking along one of the directions in V .

Another pruning strategy is to use the set of orthogonal axis directions for the set V . The

following corollary is an immediate consequence of Theorem 8.

Corollary 3 Let E = fe1; : : : ; eKg � SK�1 be the set of axis directions, and let

PAMAX(x;y) = PMAX(E;x;y):

Then EMD(x;y)� PAMAX(x;y).

Looking along the space axes is intuitively appealing when each axis measures a speci�c

property. For example, suppose that distribution points are points in the CIE-Lab color

space ([88]). If two images are very di�erent in terms of the luminance values of pixels, then

comparing the signature projections along the L-axis will reveal this di�erence and allow

the system to avoid an exact EMD computation.

When the projection directions are the coordinate axes, we can prove a lower bound

which involves the sum of the EMDs along axis directions.

Theorem 9 If

PASUM(x;y) =
1p
K

KX
k=1

EMD(projek (x); projek (y));

then EMD(x;y)� PASUM(x;y).

Proof. The proof uses the fact that jjajj2 � (1=
p
K)jjajj1 for any vector a 2 RK ([25]). It

follows that

mX
i=1

nX
j=1

fij jjxi � yj jj2 � 1p
K

mX
i=1

nX
j=1

fij jjxi � yj jj1

=
1p
K

mX
i=1

nX
j=1

fij

KX
k=1

���x(k)i � y(k)j

���
=

1p
K

KX
k=1

mX
i=1

nX
j=1

fij

���x(k)i � y(k)j

���
mX
i=1

nX
j=1

fij jjxi � yj jj2 � 1p
K

KX
k=1

mX
i=1

nX
j=1

fij

���x(k)i � y(k)j

��� ;
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where the superscript (k) denotes the kth component of a vector. Therefore,

min
F2F(x;y)

mX
i=1

nX
j=1

fij jjxi � yj jj2 � min
F2F(x;y)

1p
K

KX
k=1

mX
i=1

nX
j=1

fij

���x(k)i � y
(k)
j

���
� 1p

K

KX
k=1

min
F2F(x;y)

mX
i=1

nX
j=1

fij

���x(k)i � y
(k)
j

���
=

1p
K

KX
k=1

(min(w�; u�)� EMD(projek(x); projek(y)))

=
1p
K

min(w�; u�)
KX
k=1

EMD(projek(x); projek(y))

min
F2F(x;y)

mX
i=1

nX
j=1

fij jjxi � yj jj2 � 1p
K

min(w�; u�)
KX
k=1

EMD(projek(x); projek(y)):

Dividing both sides of the last inequality by min(w�; u�) gives the desired result.

Note that PASUM(x;y) may be rewritten as

PASUM(x;y) =
p
K

 PK
k=1 EMD(projek (x); projek (y))

K

!
:

This alternate expression makes it clear that PASUM(x;y) is a better lower bound than

PAMAX(x;y) i� the square root of the dimension times the average axis projection distance

is greater than the maximum axis projection distance.

Our projection bounds require EMD computations between distributions on the real line.

In section 4.3.2, we gave a very e�cient algorithm to compute the EMD between equal-

weight distributions (with the L1-distance as the ground distance). If the distributions have

di�erent total weight, we must fall back on the transportation simplex method to compute

the 1D EMD. Using arguments similar to those used in section 4.3.2, we can, however,

compute a lower bound on the EMD between unequal-weight distributions on the line. The

idea to determine intervals over which certain amounts of mass must 
ow in any feasible


ow.

Once again consider the interval (rk; rk+1), and WLOG assume w� > u� and that x-

weight is moved to match all the y-weight. When there is more x-weight than y-weight in

both (�1; rk] and [rk+1;1), then there will be feasible 
ows in which no x-weight travels

through (rk; rk+1). If there is more x-weight than y-weight in (�1; rk], but less x-weight
than y-weight in [rk+1;1), then (u��U(rk))�(w��W (rk)) of the x-weight must be moved

from rk to rk+1 in order to cover the y-weight in [rk+1;1). See Figure 5.2(a). If there is

less x-weight than y-weight in (�1; rk], but more x-weight than y-weight in [rk+1;1),
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(a)

W (rk)

U(rk)

>

w� �W (rk)

u� � U(rk)

<

rk rk+1

(u� � U(rk))� (w� �W (rk))

(w� � u�) + U(rk)

U(rk)

>

u� � U(rk)

u� � U(rk)

=

rk rk+1

Case. w� > u�, W (rk) > U(rk), w��W (rk) < u� � U(rk)

(b)

W (rk)

U(rk)

<

w� �W (rk)

u� � U(rk)

>

rk rk+1

U(rk)�W (rk)

U(rk)

U(rk)

=

w� � U(rk)

u� � U(rk)

>

rk rk+1

Case. w� > u�, W (rk) < U(rk), w��W (rk) > u� � U(rk)

Figure 5.2: Flow Feasibility for Unequal-Weight Distributions on the Real Line. x = (X;w)

and y = (Y; u) are distributions in 1D with w� > u�. All y-weight must be covered by

x-weight. (a) W (rk) > U(rk), w� �W (rk) < u� � U(rk). In any feasible 
ow from x to y,

at least (w� �W (rk))� (u� � U(rk)) of x-weight must travel from rk to rk+1 during the


ow. (b) W (rk) < U(rk), w� �W (rk) > u� � U(rk). In any feasible 
ow from x to y, at

least U(rk)�W (rk) of x-weight must travel from rk+1 to rk during the 
ow.
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then U(rk) �W (rk) of the x-weight must be moved from rk+1 to rk in order to cover the

y-weight in (�1; rk]. This case is illustrated in Figure 5.2(b). Under the assumption that

w� > u�, it cannot be the case that there is less x-weight than y-weight in both (�1; rk]
and [rk+1;1).

Pseudocode for the lower bound described in the previous paragraph is given below.

The routine is named FSBL because the lower bound follows simply from 
ow feasibility

(FeaSiBiLity) conditions.

function emdlb = FSBL(x;y)

/* assumes K = 1, w� � u�, ground distance is L1 */

/* assumes x1 � x2 � � � � � xm, y1 � y2 � � � � � yn */

work = wcumsum = ucumsum = r = 0

/* �rst increment of work will be 0, regardless of r */

wsum =
Pm
i=1 wi

usum =
Pn
j=1 uj

i = j = 1

xnext = x1
ynext = y1
while ((i � m) or (j � n))

next = min(xnext,ynext)

if (usum-ucumsum > wsum-wcumsum)

work += ((usum-ucumsum)-(wsum-wcumsum))*(next-r)

elseif (ucumsum > wcumsum)

work += (ucumsum-wcumsum)*(next-r)

end if

if (xnext � ynext)

wcumsum += wi
i += 1

xnext = (i � m) ? xi : 1
else

ucumsum += uj
j += 1

ynext = (j � n) ? yj : 1
end if

r = next

end while

return (work / usum)

end function

We have argued that

Theorem 10 If x and y are distributions on the real line, then EMD(x;y)� FSBL(x;y).
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If w� = u�, then (u� � U(rk) > w� �W (rk)) � (W (rk) > U(rk)), (u� � U(rk)) � (w� �
W (rk)) = W (rk)� U(rk), and the routine computes the exact value EMD(x;y).

Theorem 11 If x and y are equal-weight distributions on the real line, then EMD(x;y) =

FSBL(x;y).

Assuming that the points in x 2 D1;m and y 2 D1;n are in sorted order, the routine FSBL

runs in linear time �(m + n). The combined sorted list r1; : : : ; rm+n of points in x and

y is discovered by walking along the two sorted lists of points. At any time during the

algorithm, there is a pointer to the next x and next y value to be considered. The value

rk+1 then follows in constant time from the value of rk.

The FSBL lower bound may be substituted for the EMD function in the PMAX,

PAMAX, and PASUM lower bounds to obtain e�cient to compute, projection-based lower

bounds

PMAXFSBL(V;x;y) = max
v2V

FSBL(projv(x); projv(y))

= PMAX(V;x;y) when w� = u�

PAMAXFSBL(x;y) = max
k=1;:::;K

FSBL(projek(x); projek(y))

= PAMAX(x;y) when w� = u�

PASUMFSBL(x;y) =
1p
K

KX
k=1

FSBL(projek (x); projek (y))

= PASUM(x;y) when w� = u�

in which x and y are not necessarily equal weight. The second equality in each of the three

pairs of equalities follows directly from Theorem 11 and the de�nitions of PMAX(V;x;y),

PAMAX(x;y), and PASUM(x;y).

5.3 Experiments in Color-based Retrieval

In this section, we show some results of using the lower bounds CBOX, PMAXFSBL,

PAMAXFSBL, and PASUMFSBL in the color-based retrieval system described in [65]. This

system summarizes an image by a distribution of dominant colors in the CIE-Lab color

space, where the weight of a dominant color is equal to the fraction of image pixels which

are classi�ed as that color. The input to the system is a query and a number R of nearest
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images to return. The system computes the EMD between the query distribution and each

of the database distributions. The ground distance is d = L2.

If the query is a full image (e.g. an image in the database), then the query distribution

and all the database distributions will have total weight equal to one. In this query-by-

example setting, the system �rst checks the distance between distribution centroids before

performing an exact EMD computation. If the centroid distance is larger than the Rth

smallest distance seen before the current comparison, then the system does not compute

the EMD and simply considers the next database image. An R-nearest neighbor database

image to the query cannot be missed by this algorithm because the centroid distance is a

lower bound on the EMD between equal-weight distributions. When the query is a partial

query (such as \give me all the images with at least 20% sky blue"), the system in [65]

performs an exact EMD computation between the query and every database image.

To use the CBOX lower bound for partial queries, some additional preprocessing is

needed. At database entry time, the distribution x = (X;w) of an image is computed and

stored, as well as the centroid bounding boxes B�(x) for � = 0:05k, k = 1; : : : ; 20. Given a

query distribution y = (Y; u) of weight u� � w�, let �y denote the largest sample � value

which does not exceed the total weight ratio u�=w�. The system computes the distance

between y and the nearest point in B�y(x). This is the CBOX lower bound. To use the

PMAXFSBL lower bound, a set V of L (speci�ed later) random projection directions and

the L position-sorted projections of each database distribution along the directions in V

are computed and stored at database load time. At query time, the query distribution is

also projected along the directions in V . To use the PAMAXFSBL and PASUMFSBL lower

bounds, theK position-sorted projections of each database distribution along the space axes

are computed and stored at database entry time. At query time, the same axis projections

are performed on the query distribution.

There are many factors that a�ect the performance of our lower bounds. The most

obvious is the database itself. Here, we use a Corel database of 20000 color images which

is dominated by outdoor scenes. The order in which the images are compared to the query

is also important. If the most similar images to a query are processed �rst, then the Rth

smallest distance seen will be relatively small when the dissimilar images are processed, and

relatively weak lower bounds can prune these dissimilar images. Of course, the purpose of

the query is to discover the similar images. Nonetheless, a random order of comparison

may help ensure good performance over a wide range of queries. Moreover, if a certain type

of query is more likely than others, say, for example, queries with large amounts of blue

and green (to retrieve outdoor images containing sky and grass), then it would be wise to

pre-determine a good comparison order to use for such queries. In the results that follow,
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however, the comparison order is the same for all queries, and the order is not specialized

for any particular type of query.

The number R of nearest images to return is yet another factor. For a �xed comparison

order and query, the number of exact EMD calculations pruned is inversely related to

the size of R. This is because the Rth smallest distance (against which a lower bound is

compared) after comparing a �xed number images is an increasing function of R. In all

the upcoming experiments, the number of nearest images returned is �xed at R = 20. In

terms of the actual lower bounds, a system may be able to achieve better query times by

using more than one bound. For example, a system might apply the CBOX lower bound

�rst, followed by the more expensive PASUMFSBL bound if CBOX fails, followed by an even

more expensive exact EMD computation if PASUMFSBL also fails. The hope is that the

lower bound hierarchy of CBOX, PASUMFSBL, and EMD speeds up query times in much

the same way that the memory hierarchy of primary cache, secondary cache, and main

memory speeds up memory accesses. Our experiments, however, apply one lower bound

per query. For the PMAXFSBL lower bound, the number L of random directions must be

speci�ed. This parameter trades o� between pruning power and computation speed. The

more directions, the greater the pruning power, but the slower the computation. In our

work, we use the heuristic L = 2K (without quanti�able justi�cation), where K is the

dimension of the underlying point space (so L = 6 in the color-based system).

All experiments were conducted on an SGI Indigo2 with a 250 MHz processor, and

query times are reported in seconds (s). The exact EMD is computed by the transportation

simplex method as described by Hillier and Lieberman in [32]. The color signature of

a typical database image has eight to twelve points. The time for an EMD calculation

between two such images varies roughly between half a millisecond and one millisecond

(ms). The EMD computation time increases with the number of points in the distributions,

so EMD computations involving a partial query distribution with only a few points are,

in general, faster than EMD computations between two database images. The time for an

EMD computation between a database image and a partial query with three or fewer points

is typically about 0:25ms.

We begin our experiments with a few very simple queries. Each of these queries consists

of a distribution with exactly one color point in CIE-Lab space. The results of the three

queries
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 2.210

CBOX 19675 0.193

PMAXFSBL 19715 0.718

PAMAXFSBL 19622 0.441

PASUMFSBL 18969 0.536

Figure 5.3: Query C.1.1 { 20% Blue. (a) query results. (b) query statistics.

C.1.1 at least 20% (sky) blue ,

C.1.2 at least 40% green , and

C.1.3 at least 60% red

are shown in Figure 5.3, Figure 5.4, and Figure 5.5, respectively. In these examples, all

the lower bounds result in query times which are less than the brute force query time, and

avoid a large fraction of exact EMD computations. The CBOX and PASUMFSBL bounds

gave the best results on these three queries.

The next set of examples consists of randomly generated partial queries. The results for

the �ve queries
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.043

CBOX 19634 0.233

PMAXFSBL 10172 2.552

PAMAXFSBL 16222 1.124

PASUMFSBL 18424 0.754

Figure 5.4: Query C.1.2 { 40% Green. (a) query results. (b) query statistics.

(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 2.920

CBOX 19621 0.240

PMAXFSBL 15903 1.505

PAMAXFSBL 17125 0.871

PASUMFSBL 18182 0.785

Figure 5.5: Query C.1.3 { 60% Red. (a) query results. (b) query statistics.
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 4.240

CBOX 18704 0.496

PMAXFSBL 17989 1.323

PAMAXFSBL 17784 1.035

PASUMFSBL 18418 0.832

Figure 5.6: Query C.2.1 { 13.5% Green, 3.4% Red, 17.8% Yellow. The total weight of the

query is u� = 34:7%. (a) query results. (b) query statistics.

C.2.1 13.5% green, 3.4% red, 17.8% yellow ,

C.2.2 26.0% blue, 19.7% violet ,

C.2.3 16.8% blue, 22.2% green, 1.8% yellow ,

C.2.4 22.8% red, 24.2% green, 17.3% blue , and

C.2.5 13.2% yellow, 15.3% violet, 15.3% green

are shown in Figure 5.6 through Figure 5.10, respectively. The CBOX lower bound

gives the best results for queries C.2.1 and C.2.2, but its performance drops by an order of

magnitude for C.2.3, and it is completely ine�ective for C.2.4 and C.2.5. Indeed, the CBOX

lower bound pruned only 1 of 20000 database images for query C.2.5. The CBOX behavior

can be explained in part by the locations of centroids of the query distributions and the

database distributions. See Figure 5.11. Roughly speaking, the e�ectiveness of the CBOX

bound is directly related to the amount of separation between the database distributions

and the query distribution, with larger separation implying a more e�ective bound. The



116 CHAPTER 5. LOWER BOUNDS ON THE EMD

(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.812

CBOX 18631 0.453

PMAXFSBL 16472 1.452

PAMAXFSBL 17032 1.010

PASUMFSBL 17465 1.037

Figure 5.7: Query C.2.2 { 26.0% Blue, 19.7% Violet. The total weight of the query is

u� = 45:7%. (a) query results. (b) query statistics.

(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 4.073

CBOX 1631 3.999

PMAXFSBL 10550 3.235

PAMAXFSBL 11690 2.648

PASUMFSBL 15386 1.612

Figure 5.8: Query C.2.3 { 16.8% Blue, 22.2% Green, 1.8% Yellow. The total weight of the

query is u� = 40:8%. (a) query results. (b) query statistics.
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.969

CBOX 26 4.158

PMAXFSBL 3606 4.342

PAMAXFSBL 3399 4.010

PASUMFSBL 12922 2.324

Figure 5.9: Query C.2.4 { 22.8% Red, 24.2% Green, 17.3% Blue. The total weight of the

query is u� = 64:3%. (a) query results. (b) query statistics.

(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 3.375

CBOX 1 3.560

PMAXFSBL 9608 2.924

PAMAXFSBL 10716 2.381

PASUMFSBL 15562 1.492

Figure 5.10: Query C.2.5 { 13.2% Yellow, 15.3% Violet, 15.3% Green. The total weight of

the query is u� = 43:8%. (a) query results. (b) query statistics.
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Figure 5.11: Distribution Centroids for Corel Database Images and Example Queries. The

centroids of the color signature distributions of a random subset of 5000 images in the Corel

database are plotted as dots, and the centroids for the queries C.2.* and C.3.* are plotted

as stars. The locations of blue (C.1.1), green (C.1.2), red (C.1.3), yellow, and violet are

plotted as x's.
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query C.2.1 consists almost entirely of green and yellow. As one can see from Figure 5.11,

the centroid of C.2.1 is very isolated from the database centroids. The approximately equal

amounts red, green, and blue in query C.2.4 result in a centroid which is close to a large

number of database centroids. The same statement holds for query C.2.5 which has green

and yellow in one corner of the CIE-Lab space, and violet at the opposite corner.

The distances of the centroids for C.2.2 and C.2.3 to the database centroids are (i) about

the same, and (ii) are smaller than the distance for C.2.1 and larger than the distances for

C.2.4 and C.2.5. Observation (ii) helps explain why the performance of CBOX on C.2.2 and

C.2.3 is worse than the performance on C.2.1, but better than the performance on C.2.4

and C.2.5. Observation (i) might lead one to believe that the CBOX performance should be

about the same on C.2.2 and C.2.3. The statistics, however, show that this is not the case.

To understand why, we must remember that the queries are partial queries. The relevant

quantity is not the centroid of a database distribution, but rather the locus of the centroid

of all sub-distributions with weight equal to the weight of the query. Consider images with

signi�cant amounts of blue and green, and other colors which are distant from blue and

green (such as red). The other colors will help move the distribution centroid away from

blue and green. However, a sub-distribution of such an image which contains only blue and

green components will have a centroid which is close to blue and green, and hence close to

the centroid of C.2.3. The distance between the query centroid and this image centroid may

be large, but the CBOX lower bound will be small (and, hence, weak). From Figure 5.11

and the results of C.2.2 and C.2.3, one can infer that there are many more images that

contain blue, green, and signi�cant amounts of distant colors from blue and green than

there are images that contain blue, violet, and signi�cant amounts of distant colors from

blue and violet. The centroid is a measure of the (weighted) average color in a distribution,

and the average is not an accurate representative of a distribution with high variance (i.e.

with colors that span a large portion of the color space).

The projection-based lower bounds PMAXFSBL, PAMAXFSBL, PASUMFSBL compare

two distributions by comparing the distributions projected along some set of directions.

There is hope that these bounds will help when the CBOX bound is ine�ective. In queries

C.2.3, C.2.4, and C.2.5, the projection-based lower bounds prune far more EMD calculations

than the CBOX bound. However, pruning a large number of EMD calculations does not

guarantee a smaller query time than achievable by brute force because of the overhead of

computing a lower bound when it fails to prune an EMD calculation. In all the random

partial queries C.2.*, the query times for PMAXFSBL, PAMAXFSBL, and PASUMFSBL

were less than the query times for brute force processing, except for the PMAXFSBL and

PAMAXFSBL bounds in query C.2.4. In particular, the PASUMFSBL bound performed very
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 15.768

CBOX 19622 0.535

PMAXFSBL 19635 1.522

PAMAXFSBL 19548 1.062

PASUMFSBL 18601 1.847

Figure 5.12: Query C.3.1 { Sunset Image. (a) query results. (b) query statistics.

well for all the queries. Since the projection-based lower bounds are more expensive to

compute than the CBOX lower bound, they must prune more exact EMD calculations than

CBOX in order to be as e�ective in query time.

The queries in the �nal two examples of this section are both images in the Corel

database. The results of the queries

C.3.1 and

C.3.2

are shown in Figure 5.12 and Figure 5.13, respectively. The distributions for queries

C.3.1 and C.3.2 contain 12 and 13 points, respectively. Notice that the brute force query

time for the C.3.* queries is much greater than the brute force query time for the C.1.*

and C.2.* queries. The di�erence is that both the query and the database images have a

\large" number of points for the C.3.* queries. All the lower bounds perform well for query

C.3.1, but the CBOX lower bound gives the lowest query time. Recall that the CBOX lower

bound reduces to the distance between distribution centroids for equal-weight distributions.

The centroid distance pruned many exact EMD calculations for C.3.1 because most of the
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(a)

(b)

Lower Bound # Pruned Query Time (s)

NONE 0 14.742

CBOX 9571 8.106

PMAXFSBL 15094 5.893

PAMAXFSBL 13461 6.741

PASUMFSBL 17165 3.343

Figure 5.13: Query C.3.2 { Image with Trees, Grass, Water, and Sky. (a) query results. (b)

query statistics.

weight in the distribution is around yellow and orange, far from the centroids of the database

images (as one can see in Figure 5.11). The blue, green, and brown in query C.3.2 span a

larger part of the color space than the colors in C.3.1, the query centroid is close to many

database centroids (once again, see Figure 5.11), and the centroid distance lower bound

does not perform as well as for C.3.1. The projection-based lower bounds, however, each

give a better query time for query C.3.2 than the centroid-distance bound. Recall that

the lower bounds PMAXFSBL, PAMAXFSBL, and PASUMFSBL reduce to the stronger lower

bounds PMAX, PAMAX, and PASUM for equal-weight distributions. The PASUMFSBL

lower bound yields a tolerable query time for query C.3.2.
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