
Chapter 6

The EMD under Transformation

Sets

A major challenge in image retrieval applications is that the images we desire to match

can be visually quite di�erent. This can happen even if these images are views of the

same scene because of illumination changes, viewpoint motion, occlusions, etc.. Consider

for example, recognizing objects by their color signatures. A direct comparison of color

histograms or an EMD between color signatures of imaged objects does not account for

lighting di�erences. In [28], Healey and Slater show that an illumination change results in

a linear transformation of the image pixel colors (under certain reasonable assumptions).

In a similar result, sensor measurements of multispectral satellite images recorded under

di�erent illumination and atmospheric conditions di�er by an a�ne transformation ([27]).

The general problem of comparing features modulo some transformation set also arises

in texture-based and shape-based image retrieval. In [69], the texture content signature of a

single texture image is a collection of spatial frequencies, where each frequency is weighted

by the amount of energy at that frequency. If the frequency features are represented in log-

polar coordinates, then scaling the texture results in a feature translation along the log-scale

axis, while rotating the texture results in a feature translation along the cyclic orientation

axis. These translations must be taken into account by a texture distance measure which

is invariant to scaling and/or rotation.

For shape-based retrieval, suppose we summarize the shape content of an image as a

collection of curves or feature points in the image. Then changes in viewpoint and/or view-

ing distances will result in changes in the coordinates of the extracted features, even though

we are looking at an image of the same scene. Allowing for a transformation is necessary,

for example, in matching point features in stereo image pairs. Even if the viewpoint and
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viewing distance for two images of the same scene are roughly the same, the images may

have been acquired at di�erent resolutions or drawn with di�erent drawing programs which

use di�erent units and have di�erent origin points. Direct comparison of summary feature

coordinates is not likely to capture the visual similarity between the underlying images.

The Earth Mover's Distance under a transformation set is the minimum EMD between

one distribution and a transformed version of the other distribution, where transformations

are chosen from a given set. The allowable transformations of a distribution are dictated by

the application. Sets of distribution transformations can be divided into three classes: those

with transformations that change (I) only the weights, (II) only the points, and (III) both the

weights and the points of a distribution. This chapter focuses on class (II) transformation

sets. The previously mentioned applications of lighting-invariant object recognition, scale

and orientation-invariant texture retrieval, and point feature matching in stereo image pairs

use class (II) sets.

Some applications may call for class (III) sets. Suppose, for example, that a distribution

point captures the location and properties of an image region, and that its corresponding

weight is the region area. The EMD between two such distributions implicitly de�nes

similar images as those in which regions of similar size and properties are close to one

another. This measure will not capture visual similarities present at di�erent scales within

two images unless we allow for a transformation of both region locations and areas. Such

transformations change both the points and weights of a distribution.

We have already seen an application involving a class (I) set. The scale estimation

problem described in section 4.5 is formulated as the EMD under transformation (EMDG)

problem

c0 = maxarg mingc2G EMD(x; gc(y)) ; (6.1)

where G = f gc : gc(y) = gc(Y; u) = (Y; cu); 0 < c � 1 g. In words, G consists of transfor-

mations gc that scale down the weights of a distribution by a factor c. The EMDG problem

is the boxed minimization in (6.1). Analysis of the function E(c) = EMD(x; (Y; cu)) in sec-

tion 4.5 revealed a lot of structure: E(c) decreases as c decreases until it becomes constant

for all c less than or equal to some c0. The scale estimate is c0, which is the largest weight

scale c that minimizes the EMD between x and (Y; cu). Please refer back to section 4.5 for

more details and an e�cient solution to (6.1) which takes full advantage of the structure of

E(c).

This chapter is organized as follows. In section 6.1, we give some basic de�nitions and

notation, including a formal de�nition of the Earth Mover's Distance under a transformation

set and related measures. In section 6.2, we give a direct, but ine�cient, algorithm to



6.1. DEFINITIONS AND NOTATION 125

compute a globally optimal (ow,transformation) pair that yields the EMD under class

(II) transformation sets. In section 6.3, we give an iteration for class (II) sets that always

converges monotonically, although it may converge to a transformation which is only locally

(as opposed to globally) optimal. The FT iteration is applicable to any transformation set

for which there is an algorithm to minimize a weighted sum of distances from one point set

to a transformed version of the other. This optimal transformation problem, which is also a

required subroutine for the direct algorithm, is the subject of section 6.4. In section 6.5, we

show how the FT iteration may still be applied for a useful class (III) transformation set.

In section 6.6, we consider some speci�c combinations of transformation set, ground

distance function, and feature space for which a globally optimal transformation can be

computed directly, without the aid of our iteration. We return to the FT iteration in

section 6.7, where we consider questions of convergence to only a locally optimal transfor-

mation. In section 6.8, we cover two miscellaneous topics: the tradeo�s in choosing between

the L22 and L2 ground distances, and the growth rate of the EMD with respect to trans-

formation parameters. Although the former topic is discussed in the context of the EMDG

problem, other criteria are also considered. Finally, in section 6.9 we apply the FT itera-

tion to the problems of (i) illumination-invariant object recognition, and (ii) point feature

matching in stereo image pairs.

In [12], we proposed the previously mentioned iteration for the case of translation.

6.1 De�nitions and Notation

The Earth Mover's Distance under transformation set G is de�ned as

EMDG(x;y) = min(min
g2G

EMD(x; g(y));min
g2G

EMD(g(x); y)); (6.2)

where g(x) is the result of applying the transformation g 2 G to the distribution x. In the

case that

(i) the transformations in G only modify the distribution points,

(ii) G is a transformation group (and therefore every element of G has an inverse element),

and

(iii) the ground distance d satis�es d(x; g(y)) = d(g�1(x); y) for all g 2 G,

we have EMD(x; g(y)) = EMD(g�1(x);y)), and de�nition (6.2) reduces to

EMDG(x;y) = min
g2G

EMD(x; g(y)) = min
g2G

EMD(g(x);y)): (6.3)
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Condition (ii) is satis�ed, for example, when G = T , the group of translations, and when G =

E , the group of Euclidean transformations (rotation plus translation). It is not satis�ed by

the set of similarity transformations S (uniform scaling plus rotation plus translation), linear

transformations L, and a�ne transformations A (linear plus translation). Transformations

that shrink a point set to a single point (scale parameter is zero) do not have inverses.

Condition (iii) is satis�ed, for example, with G = T and ground distance d equal to any

Lp distance function, and with G = E and the ground distance d equal to the L2 distance

function.

We can combine the partial matching allowed by EMD and the transformations allowed

by EMDG . The partial Earth Mover's Distance under transformation set G is de�ned as

EMD
G
(x;y) = min(min

g2G
EMD(x; g(y));min

g2G
EMD(g(x); y)): (6.4)

In the case that conditions (i), (ii), and (iii) hold, de�nition (6.4) reduces to

EMD
G
(x;y) = min

g2G
EMD(x; g(y)) = min

g2G
EMD(g(x);y)): (6.5)

Using the partial EMD under a transformation set may be useful, for example, in matching

point features in stereo image pairs. The fraction parameter  compensates for the fact

that only some features appear in both images, and the set parameter G accounts for the

appropriate transformation between corresponding features.

We shall now prove that the EMD under a transformation set is a metric when conditions

(i), (ii), and (iii) are satis�ed and the EMD itself is a metric. Recall that the EMD is a

metric on distributions when the ground distance is a metric and the distributions have

equal total weight. For a precise statement of the theorem, we need to de�ne equivalence

classes on distributions under the group G. Two distributions x and y are in the same

G-equivalence class i� x = g(y) for some g 2 G. The equivalence class E(x) that contains
distribution x is

E(x) = f g(x) : g 2 G g:

We say that two distributions x and bx are G-equivalent i� x; bx 2 E(x), and we denote this

equivalence as x � bx. Note that
EMDG(x;y) = EMDG(bx; by) 8x � bx;y � by:
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The EMD under a transformation group is then well de�ned on G-equivalence classes by

EMDG(E1; E2) = EMDG(x;y); 8x 2 E1;y 2 E2: (6.6)

Theorem 12 The EMD under a transformation group G is a metric on distribution G-
equivalence classes when conditions (i), (ii), and (iii) are satis�ed and the EMD itself is a

metric on distributions.

Proof. Obviously, EMDG(E1; E2) � 0 for every pair of G-equivalence classes E1 and E2

because the EMD is nonnegative. We need to show that EMDG(E1; E2) = 0 i� E1 =

E2. The nontrivial direction is to show that EMDG(E1; E2) = 0 implies E1 = E2. Fix

equivalence class representatives x 2 E1 and y 2 E2. If EMDG(E1; E2) = 0, then by

de�nitions (6.3) and (6.6) there exists g 2 G such that EMD(x; g(y)) = 0. Since the EMD

is a metric, we must have x = g(y). It follows that E1 = E2. The symmetry of EMDG

follows from the symmetry of the EMD. Finally, we need to show that the triangle inequality

holds. Suppose E1, E2, and E3 are equivalence classes with representative distributions x,

y, and z, and that

EMDG(E1; E2) = EMD(gx(x);y) and (6.7)

EMDG(E2; E3) = EMD(y; gz(z)): (6.8)

Here gx and gz are the transformations of x and z that yield the minimum value in (6.3).

Since gx(x) � x and gz(z) � z, it follows from (6.3) and (6.6) that

EMDG(E1; E3) � EMD(gx(x); gz(z)):

But the EMD is a metric between distributions, so it obeys the triangle inequality and

EMD(gx(x); gz(z)) � EMD(gx(x);y)+ EMD(y; gz(z)):

Combining the previous two inequalities with (6.7) and (6.8) gives the triangle inequality

EMDG(E1; E3) � EMDG(E1; E2) + EMDG(E2; E3)

that we desire.

For simplicity, we write about EMDG(x;y) in the remaining sections of this chapter as

if it were just ming2G EMD(x; g(y)).
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6.2 A Direct Algorithm

The transformed distribution g(y) = (g(Y ); u) 2 DK;n has the same weights as the original

distribution y. Thus F(x;y) = F(x; g(y)) and

EMDG(x;y) =
ming2G;F2F(x;y)WORK(F;x; g(y))

min(w�; u�)
: (6.9)

Clearly, it su�ces to minimize the work h(F; g) = WORK(F;x; g(y)) over the region

R(x;y) = f (F; g) : F 2 F(x;y); g 2 G g = F(x;y)� G.
The function h(F; g) is linear in F . It follows that for g �xed, the minimum value

minF2F(x;y) h(F; g) is achieved at one of the vertices (dependent on g) of the convex polytope

F(x;y). If we let V (x;y) = f v1(x;y); : : : ; vN (x;y) g denote this �nite set of vertices,

then

min
(F;g)2R(x;y)

h(F; g) = min
k=1;:::;N

min
g2G

h(vk(x;y); g): (6.10)

Assuming that we can solve the innermost minimization problem on the right-hand side

of (6.10), we can compute the numerator in (6.9) by simply looping over all the vertices in

V (x;y). Only a �nite number of ow values must be examined to �nd the minimum work.

Although this simple strategy guarantees that we �nd a globally optimal transforma-

tion, it is not practical because N is usually very large even for relatively small values

of m and n. The worst case complexity of the number of vertices in the feasible convex

polytope for a linear program is exponential in the minimum of the number of variables

and constraints.1 The beauty of the simplex algorithm for solving a linear program is that

it provides a method for visiting vertices of the feasible polytope in such a way that the

objective function always gets closer to its optimal value, and the number of vertices vis-

ited is almost always no larger in order than the maximum of the number of variables and

the number of constraints ([58]). In the next section, we give an iterative algorithm that

generates a sequence of (ow,transformation) pairs for which the amount of work decreases

or remains constant at every step.

6.3 The FT Iteration

The work function h(F; g) to minimize depends on both a ow vector F and a transformation

g. Given either variable, we can solve for the optimal value of the other. This leads us to

an iteration which alternates between �nding the best ow for a given transformation, and

1For a balanced transportation problem with m suppliers and n demanders, there are mn variables and

m+ n constraints (not including the nonnegativity constraints on the variables).
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Figure 6.1: FT Iteration Example. See the text for an explanation.

the best transformation for a given ow. The ow step establishes correspondences that

minimize the work for a �xed con�guration of distribution points, while the transformation

step moves the distribution points around so that the work is minimized for a given set of

correspondences. By alternating these steps we obtain a sequence of (ow,transformation)

pairs for which the amount of work decreases or remains constant at every step.

In this section, we consider distribution transformations that alter only the points of

a distribution, leaving distribution weights unchanged. If g is such a transformation, then

F(x; g(y)) = F(x;y) since y and g(y) have the same set of weights. Consider the following

iteration that begins with an initial transformation g(0):

F (k) = arg

0
@ min
F2F(x;g(k)(y))=F(x;y)

mX
i=1

nX
j=1

fijd
�
xi; g

(k)(yj)
�1A ; (6.11)

g(k+1) = arg

0
@min
g2G

mX
i=1

nX
j=1

f
(k)
ij d(xi; g(yj))

1
A : (6.12)

The minimization problem on the right-hand side of (6.11) is the familar transportation

problem. For now, we assume that there is an algorithm to solve for the optimal transfor-

mation in (6.12). This problem is the subject of section 6.4. Since this iteration alternates

between �nding an optimal Flow and an optimal Transformation, we refer to (6.11) and

(6.12) as the FT iteration. It can be applied to equal-weight and unequal-weight distribu-

tions.

Figure 6.1(a) shows an example with a dark and a light distribution that we will match

under translation starting with g(0) = 0. The best ow F (0) for g(0) is shown by the labelled

arcs connecting dark and light weights. This ow matches half (.5) the weight over a large

distance. We should expect the best translation for F (0) to move the .7 dark weight closer to
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the .8 light weight in order to decrease the total amount of work done by F (0). Indeed, g(1)

aligns these two weights as shown in Figure 6.1(b). The best ow F (1) for this translation

matches all of the .7 dark weight to the .8 light weight. No further translation improves the

work { g(2) = g(1) and the FT iteration converges.

The ow and transformation iterates F (k) and g(k) de�ne the WORK and EMD iterates

WORK(k) =
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k)(yj)
�
= WORK

�
F (k);x; g(k)(y)

�
;

EMD(k) =
WORK(k)

min(w�; u�)
:

The order of evaluation is

g(0) �! F (0)| {z }
WORK(0); EMD(0)

�! g(1) �! F (1)| {z }
WORK(1); EMD(1)

�! � � � :

By (6.11), we have

WORK(k+1) =
mX
i=1

nX
j=1

f
(k+1)
ij d

�
xi; g

(k+1)(yj)
�

�
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k+1)(yj)
�
: (6.13)

In detail, F (k) 2 F(x;y) = F(x; g(k)(y)), while F (k+1) 2 F(x;y) = F(x; g(k+1)(y)) is
optimal for g(k+1) over all ows in F(x;y). Therefore using F (k+1) with g(k+1) results in

less work than using F (k) with g(k+1). From (6.12), we know

WORK(k) =
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k)(yj)
�

�
mX
i=1

nX
j=1

f
(k)
ij d

�
xi; g

(k+1)(yj)
�
: (6.14)

Combining (6.13) and (6.14),

WORK(k+1) �WORK(k):

The decreasing sequence WORK(k) is bounded below by zero, and hence it converges ([38],

pp. 49{50). There is, however, no guarantee that the work iteration converges to the global

minimum of h(F; g) = WORK(F;x; g(y)).
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Using the exact same iteration with F(x;y) in place of F(x;y) will also yield a decreas-
ing sequence of WORK values (and, hence, a decreasing sequence of EMD values). This is

because F(x; g(y)) = F(x;y) when g does not change distribution weights. Therefore,

the FT iteration can also be used in an attempt to compute the partial EMD under trans-

formation when the transformations do not change the weights of a distribution. Please

refer back to section 4.4.1 for the details of the partial EMD.

6.3.1 Similar Work

The FT iteration is similar to the ICP (Iterative Closest Point) algorithm ([5]) used to

register 3D shapes. The computation of the optimal ow between distributions in the FT

iteration plays the role of the computation of closest \model shape" points to the \data

shape" points in the ICP iteration. Both these steps determine correspondences used to

compute a transformation that improves the EMD/registration. There are, however, a

number of important di�erences between the two algorithms and the contexts in which

they are applied.

As we noted in section 4.3.1, the EMD provides a distance between point sets (which are

distributions in which all weights are equal to one) as well as general distributions. The ICP

algorithm is used to register a data shape de�ned as a point set with a model shape de�ned

by a set of geometric primitives such as points, line segments, curves, etc.. If the model shape

is also de�ned as a set of points, then the ICP algorithm also seeks to minimize the distance

between two point sets under a transformation. The notion of point set distance de�ned

by the EMD, however, is di�erent than the notion of distance used in the ICP formulation.

The ICP algorithm's correspondence step computes the nearest neighbor in the model shape

for each data shape point, and sums up all these distances. The same model shape point

may be the nearest neighbor of many data shape points in the distance sum computation.

Therefore, the ICP algorithm uses a Hausdor�-like distance between point sets. In contrast,

when EMDG is used to match point sets under a transformation, the constraints that de�ne

the EMD imply a one-to-one matching of the points (see section 4.3.1). The correspondence

step for the FT iteration requires the solution of an assignment problem, whereas the

correspondence step in the ICP algorithm matches each data shape point independently

to its closest model shape point. The unconstrained matching in the ICP algorithm will

obviously be faster to compute than the constrained matching speci�ed by the EMD, but

the two iterations are trying to minimize di�erent point set distance metrics.

Using our EMD framework instead of the ICP framework to match point sets under

a transformation has the advantage that it can �nd the best subsets (with size speci�ed
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by ) of the given sets to match. In fact, the partial match parameter  can be used to

align di�erent sub-distributions (subsets) of two distributions (point sets) using di�erent

transformations. For example, one could �nd the transformation that works well for  =

20% of the data, remove the matched data, and repeat. The ICP algorithm could also be

applied in this piecewise manner, but the user must select the subsets of the data shape to

be matched, not just the subset size as in the partial EMD case.

Limiting our comparison of the FT iteration and the ICP iteration to point sets is unfair

to the FT iteration since the EMD can be used to match distributions of mass which are

more general than point sets. The mass at a point in one distribution can be matched to

the mass at many points in the other distribution, and vice-versa. The FT iteration in

general provides a many-to-many matching of distribution points, while the ICP iteration

(applied to a model shape point set) gives a many-to-one matching of model shape points

to data shape points, and the FT iteration applied to point sets gives a one-to-one matching

of points in the two sets. Furthermore, the amount of mass matched between two points is

used to weight the distance between the points; all the point distances have weight one in

the ICP iteration and the FT iteration applied to point sets. The many-to-many matching

speci�ed by the EMD is constrained by the distribution masses in such a way that the

matching process represents a morphing of one distribution into the another. As we shall

see in section 6.5, the FT iteration as presented thus far can be modi�ed to handle the

case in which transformations are allowed to modify both the distribution points and their

corresponding masses.

Another well-known application of the alternation idea is the Expectation-Maximization

or EM algorithm ([47, 48]) for computing mixture models in statistics. In this problem,

observed data are assumed to arise from some number of parametrized distributions. The

goal is to determine which data come from which distributions and to compute the param-

eter values of the distributions. The EM algorithm alternates between �nding the expected

assignments2 of the data to the distributions with �xed de�ning parameters (the E-step),

and �nding the maximum likelihood estimate of the parameter values given the expected

assignments (the M-step). The function to be optimized in this case is a likelihood function,

and the optimization problem is a maximization.

2The E-step computes the expected value E[Zij ] = P (Zij = 1), where Zij = 1 if the jth observation

arises from the ith distribution, and Zij = 0 otherwise.
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6.3.2 Convergence Properties

One way for the WORK iteration to converge is if F (k) is returned in step (6.11) as an opti-

mal ow for g(k), and g(k+1) = g(k) is returned in step (6.12) as an optimal transformation

for F (k). Denote the indicator function for this event as MUTUAL
�
F (k); g(k)

�
, since F (k)

is optimal for g(k), and g(k) is optimal for F (k). It is clear that

MUTUAL
�
F (k); g(k)

�
)

8>>><
>>>:

g(k) = g(k+1) = � � � ;
F (k) = F (k+1) = � � � ; and

WORK(k) = WORK(k+1) = � � � :

The WORK iteration converges to either a local minimum or a saddle point value if

MUTUAL
�
F (k); g(k)

�
is true.3

Now suppose that the routine that solves the linear program (LP) in (6.11) always re-

turns a vertex of F(x;y). The simplex algorithm and the transportation simplex algorithm,

for example, always return a vertex of the feasible polytope. This is possible since there

is always a vertex of the feasible polytope at which a linear objective function achieves its

minimum. With the assumption that the ow iterates are always vertices of F(x;y), there
will be only a �nite number of points (F; t) that the WORK iteration visits because there

are a �nite number of ow iterates, and each transformation iterate (other than the initial

transformation) must be an optimal transformation returned for one of the ow iterates. It

follows that there are only a �nite number of WORK values generated. Since the WORK it-

eration is guaranteed to converge, the WORK iterates must stabilize at one of these WORK

values. Suppose

WORK(k) = WORK(k+1) = � � � : (6.15)

Since there are only a �nite number of pairs (F; t) visited, condition (6.15) implies that

there must be a repeating cycle of pairs:

�
F (k); g(k)

�
; : : : ;

�
F (k+r�1); g(k+r�1)

�
;
�
F (k+r); g(k+r)

�
=
�
F (k); g(k)

�
; : : : :

3If g(k) occurs in the interior of R(F (k)) =
�
g : F (k) 2 arg minF2F WORK(F;x; g(y))

	
, then

(F (k); g(k)) cannot be a saddle point and the WORK iteration converges to a local minimum of
WORK(F;x; g(y)). The argument is toward the end of section 6.7.4, the paragraph beginning \Let us

now explicitly connect ...". In general, the possibility convergence to a saddle point cannot be eliminated.
All we know is that along the F axis though g(k), the minimum occurs at F (k), and along the g axis

though F (k), the minimum occurs at g(k). This does not imply anything about the value of WORK close to

(F (k); g(k)) along a \diagonal" through (F (k); g(k)).
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For r > 1, the WORK iteration converges even though the ow and transformation itera-

tions do not converge. However, such a nontrivial (ow,transformation) cycle is unstable

in the sense that it can be broken (for any real problem data) by perturbing one of the

transformation iterates by a small amount. In practice, the WORK iteration almost al-

ways converges because a length r = 1 cycle occurs. A cycle of length r = 1 starting at�
F (k); g(k)

�
is exactly the condition MUTUAL

�
F (k); g(k)

�
, and we previously argued that

the WORK iteration converges to a critical value in this case.

Finally, let us note that the WORK sequence will stabilize at the global minimum once

F (k) = F �, where (F �; g�) is optimal for some g�. This is because g(k+1) and g� both

solve (6.12), so h(F (k); g(k+1)) = h(F �; g�), which is the global minimum of the WORK

function. Since h can only decrease or remain the same with successive ow and transfor-

mation iterates, and h can never be less than the global minimum of the WORK function,

we must have

h(F �; g�) = WORK(k+1) = h(F (k+1); g(k+1)) = WORK(k+2) = h(F (k+2); g(k+2)) = � � � :

Similarly, if the transformation iteration ever reaches a transformation g(k) = g� at which the

minimum value of WORK occurs with some ow F �, then the WORK iteration converges

to the global minimum. Here we need the fact that F (k) and F � both solve (6.11).

Let us summarize the results of this section. The WORK iteration always converges.

We can arrange to have all ow iterates at the vertices of F(x;y). In this case, the

(ow,transformation) iterates must cycle. A cycle of length r > 1 will almost never occur,

and a cycle of length r = 1 implies that the (ow,transformation) sequence converges to a

critical point and, therefore, that the WORK sequence converges to either a local minimum

or a saddle point value. Thus, in practice the WORK iteration almost always converges to

a critical value. If the ow iteration ever reaches a vertex at which the minimum WORK

occurs with a suitable choice of transformation, then the WORK iteration converges to the

global minimum. Global convergence will also occur if the transformation iteration ever

reaches a transformation at which the minimum WORK occurs with a suitable choice of

ow.

Although we do not explore the possibility here, perhaps convergence of the FT itera-

tion can be accelerated by using the EMD values at the past few transformation iterates

to predict the transformation at which the EMD will be minimized. If the predicted trans-

formation causes an increase in the EMD, we could discard the prediction and just use

the solution to (6.12) as usual to de�ne the next transformation iterate. This approach

successfully accelerated the convergence of the previously mentioned ICP iteration ([5]).
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6.4 The Optimal Transformation Problem

Now consider the problem (6.12) of solving for the optimal transformation for a �xed F =

(fij):

min
g2G

mX
i=1

nX
j=1

fijd(xi; g(yj)): (6.16)

If we let

[a1 � � �aN ] = [x1 � � �x1x2 � � �x2 � � �xm � � �xm]; (6.17)

[b1 � � �bN ] = [y1 � � �yny1 � � �yn � � �y1 � � �yn]; and (6.18)

[c1 � � � cN ] = [f11 � � �f1nf21 � � �f2n � � �fm1 � � �fmn]; (6.19)

where N = mn, then the optimal transformation problem (6.16) can be rewritten as

min
g2G

NX
k=1

ckd(ak; g(bk)): (6.20)

In this form, the optimal transformation problem can be stated as follows: given a weighted

correspondence between point sets, �nd a transformation of the points in one set that

minimizes the weighted sum of distances to corresponding points in the other set.4 We

now discuss the solution of the optimal transformation problem for translation, Euclidean,

similarity, linear, and a�ne transformations with d equal to the L2-distance squared, as

well as the optimal translation problem with the L2-distance, the L1-distance, and a cyclic

L1-distance (to be explained shortly).

6.4.1 Translation

Suppose that G = T , the group of translations. If

d(xi; yj + t) = d(xi � yj ; t); (6.21)

then (6.20) can be written as

min
t2RK

NX
k=1

ckd(ak � bk; t):

4Note that some structure is lost in the rewrite from (6.16) to (6.20). In the setting of the FT iteration,

the N points ak consist of n copies of the set fxig
m

i=1, and the N points bk consist of m copies of the set

fyjg
n

j=1.
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Note that condition (6.21) holds for any Lp distance function d, as well as d = L22. This

minimization problem asks for a point t which minimizes a sum of weighted distances to a

given set of points. We show how to solve this minisum problem when d is the L2-distance

squared, the L1-distance, and the L2-distance in sections 6.4.1.1, 6.4.1.2, and 6.4.1.3, re-

spectively.

In section 6.4.1.4, we solve the optimal translation problem when points are located on

a circle, and ground distance is the length of the shorter arc connecting two points. This

problem arises, for example, when applying the FT iteration to compute an orientation-

invariant EMD between texture signatures in log-polar frequency space ([69, 68]). The

polar coordinates for spatial frequency (fx; fy) are (s; �), where the scale s =
q
f2x + f2y

and the orientation � = arctan(fy; fx). Roughly speaking, distributions are of the form

x = f((bsi; �i); wi)gmi=1, where bsi = log si and the ith element indicates that the texture has

a fraction wi of its total energy at scale si and orientation �i.

If we denote the distribution for another texture as f((b�j ;  j); uj)gnj=1, then the tex-

ture distance min� EMD(x; f((b�j;  j+� ); uj)g) is invariant to texture orientation. The
optimal translation problem is

min
� 

mX
i=1

nX
j=1

fij(jbsi � b�j j+ j�i � ( j +� )j2�) = (6.22)

mX
i=1

nX
j=1

fij jbsi � b�j j+min
� 

mX
i=1

nX
j=1

fij j�i � ( j +� )j2�;

where the absolute value subscript indicates distances are measured modulo 2�. The mini-

mization problem on the right-hand side of (6.22) is the subject of section 6.4.1.4.

Notice that using the logarithm of the scale in the texture signatures implies that a scale

change by factor k results in a shift by bk = log k along the log-scale axis. A scale-invariant

texture distance measure is minbk EMD(x; f((b�j + bk;  j); uj)g). The optimal translation

problem in this case is

minbk
mX
i=1

nX
j=1

fij(jbsi � (b�j + bk)j+ j�i �  j j2�) = (6.23)

mX
i=1

nX
j=1

fij j�i �  j j2� +minbk
mX
i=1

nX
j=1

fij jbsi � (b�j + bk)j:

The L1 minimization problem on the right-hand side of (6.23) is solved in section 6.4.1.2.

Finally, the texture distance minbk;� EMD(x; f((b�j + bk;  j +� ); uj)g) is invariant to
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both texture scale and orientation. The associated optimal translation problem

minbk;� 
mX
i=1

nX
j=1

fij(jbsi � (b�j + bk)j+ j�i � ( j + � )j2�) = (6.24)

minbk
mX
i=1

nX
j=1

fij jbsi � (b�j + bk)j+min
� 

mX
i=1

nX
j=1

fij j�i � ( j +� )j2�

can be solved by solving the minimization problems on the right-hand side of (6.24) sepa-

rately. In general, of course, the separability of the L1 distance into a sum of component

distances means that we can solve the optimal translation problem under L1 in any number

of dimensions, where each dimension may have a di�erent wrap around period or no wrap

around at all.

6.4.1.1 Minimizing a Weighted Sum of Squared L2 Distances

If d is the L2-distance squared, then it is well-known that the unique optimal translation is

given by the centroid di�erence

t�L22
= a � b =

PN
k=1 ckak

c�
�
PN
k=1 ckbk

c�
:

This result is easily proven using standard calculus.

6.4.1.2 Minimizing a Weighted Sum of L1 Distances

In this section, we consider the minisum problem when d is the L1-distance. The minimiza-

tion problem is

min
p

nX
i=1

wijjp� pijj1 = min
p

nX
i=1

wi

KX
k=1

���p(k) � p(k)i
��� (6.25)

= min
p

KX
k=1

 
nX
i=1

wi

���p(k) � p(k)i ���
!

min
p

nX
i=1

wijjp� pijj1 =
KX
k=1

 
min
p(k)

nX
i=1

wi

���p(k) � p(k)i
���
!
;
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where p(k) and p
(k)
i are the kth components of p and pi, respectively.

5 Thus, a solution to

the problem in one dimension gives a solution to the problem in K dimensions by simply col-

lecting the optimal location for each of the one-dimensional problems into a K-dimensional

vector. We shall see that an optimal location for the one-dimensional problem in dimension k

is the (weighted) median of the values p
(k)
1 ; : : : ; p

(k)
n . A point p at which the minimum (6.25)

is achieved is thus called a coordinate-wise median of p1; : : : ; pn (with weights w1; : : : ; wn).

Now suppose p1 � p2 � � � � � pn are points along the real line, and we want to minimize

g(p) =
nX
i=1

wijp� pij:

Let p0 = �1 and pn+1 = +1. Then

g(p) =
lX
i=1

wi(p� pi) +
nX

i=l+1

wi(pi � p) for p 2 [pl; pl+1]; l = 0; : : : ; n:

Over the interval [pl; pl+1], g(p) is a�ne in p:

g(p) =

0
@ lX
i=1

wi �
nX

i=l+1

wi

1
A p+

0
@ nX
i=l+1

wipi �
lX

i=1

wipi

1
A for p 2 [pl; pl+1]:

If we let

ml =
lX

i=1

wi �
nX

i=l+1

wi (6.26)

denote the slope of g(p) over [pl; pl+1], then �w� = m0 < m1 < � � � < mn = w� (assuming

wi > 0 8i), and ml+1 = ml + 2wl+1. The function g(p) is a continuous piecewise linear

function with slope increasing from a negative value at �1 to a positive value at +1,

and as such it obviously has a minimum value at the point when its slope �rst becomes

nonnegative. Let

l� = min f l : ml � 0 g:

If ml� 6= 0, then the unique minimum value of g(p) occurs at pl� . Otherwise, ml� = 0 and

the minimum value of g(p) is achieved for p 2 [pl�; pl�+1]. See Figure 6.2. In the special

case of equal-weight points, the minimum value occurs at the ordinary median value of the

points. If wi � w, then it follows easily from (6.26) that ml = w(2l� n). If n is odd, then

l� = dn=2e, ml� > 0, and the unique minimum of g(p) occurs at the median point pdn=2e.

5In this section and the next, weights are denoted by wi instead of ck, the total number of points is

denoted by n instead of N , and the summation of weighted distances is over the variable i instead of k. The

points pi are the di�erences ak � bk .
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Figure 6.2: The Minisum Problem on the Line with Unequal Weights. (a) p =
[27; 40; 51; 61; 71; 81; 92], w = [8; 4; 4; 2; 3; 3; 4]: l� = 3, ml� > 0, and there is a unique

minimum at p3 = 51. (b) p = [27; 40; 51; 61; 71; 81; 92], w = [8; 4; 4; 2; 3; 3; 8]: l� = 3,
ml� = 0, and the minimum occurs at every value in [p3; p4] = [51; 61].
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Figure 6.3: The Minisum Problem on the Line with Equal Weights. (a) p =

[27; 40; 51; 61; 71; 81; 92], w = [4; 4; 4; 4; 4; 4; 4]: l� = 4, ml� > 0, and there is a unique
minimum at the ordinary median p4 = 61. (b) p = [27; 40; 51; 71; 81; 92], w = [4; 4; 4; 4; 4; 4]:

l� = 3, ml� = 0, and the minimum occurs at every value in the interval [p3; p4] = [51; 71].

See Figure 6.3(a). If n is even, then l� = n=2, ml� = 0, and the minimum value of g(p) is

attained for every point in the interval [pn=2; p(n=2)+1]. See Figure 6.3(b).
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6.4.1.3 Minimizing a Weighted Sum of L2 Distances

The next minisum problem that we consider is when d is the L2-distance function:

min
p

nX
i=1

wijjp� pijj2 (6.27)

A point p at which this minimum is achieved is called a spatial median of the points p1; : : : ; pn

(with weights w1; : : : ; wn). The minimization problem (6.27) has a long history ([87]), and

has been referred to by many names, including the Weber problem, the Fermat problem,

the minisum problem, and the spatial median problem. In [87], Wesolowsky suggests the

Euclidean Minisum Problem.

A basic iteration procedure that solves (6.27) was proposed in 1937 by Weiszfeld ([84]).

Consider the objective function

g(p) =
nX
i=1

wijjp� pijj2:

If the points p1; : : : ; pn are not collinear, then g(p) is strictly convex and has a unique

minimum. If p1; : : : ; pn are collinear, then an optimal point must lie on the line through

the given points (if not, one could project the claimed optimal point onto the line, thereby

decreasing its distance to all the given points, to obtain a better point). In this case, the

algorithm given in section 6.4.1.2 for points on the real line can be used (the L2-distance

reduces to the absolute value in one dimension).

The objective function is di�erentiable everywhere except at the given points:

@g

@p
(p) =

nX
i=1

wi(p� pi)
jjp� pijj2

if p(k) 6= p1; : : : ; pn:

Setting the partial derivative to zero results in the equation

nX
i=1

wi(p� pi)
jjp� pijj2

= 0;

which cannot be solved explicitly for p. The Weiszfeld iteration replaces the p in the

numerator by the (k + 1)st iterate p(k+1) and the p in the denominator by the kth iterate

p(k), and solves for p(k+1):

p(k+1) =

8><
>:
P

n

i=1
wijjp

(k)�pijj
�1
2 piP

n

i=1
wijjp(k)�pijj

�1
2

if p(k) 6= p1; : : : ; pn

pi if p(k) = pi

:
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Here are some facts about this iteration (assuming the input points are not collinear).

� The iteration always converges. ([42])

� If no iterate p(k) is equal to one of the given points, then the iteration converges to

the global minimum location of g(p). ([42])

� The iteration can fail to converge to the global minimum location for a continuum of

starting values p(0) because some iterate p(k) becomes equal to a non-optimal given

point. ([7])

� If the optimal location is not at one of the given points, then convergence will be

linear. ([41])

� If the optimal location is at one of the given points, then convergence can be linear,

superlinear, or sublinear. ([41])

Since convergence to the global minimum location is not guaranteed, the iteration should

be run more than once with di�erent starting points.

It is conjectured in [7] that if the starting point is within the a�ne subspace P spanned

by the given points, then the Weiszfeld iteration is guaranteed to converge to the global

minimum location for all but a �nite number of such starting points. If this conjecture is

true, then the iteration will converge with high probability to the optimal location if one

chooses a random starting point in P . Note that P is the entire space Rd if the n�1 vectors
pn � p1; pn � p2; : : : ; pn � pn�1 span all of Rd. If the given points are random, this event

is very likely to occur if n � 1 � d. In regards to speeding up convergence, see [18] for an

accelerated Weiszfeld procedure.

6.4.1.4 Minimizing a Weighted Sum of Cyclic L1 Distances

In this section, we study the optimal translation problem on the real line when the feature

domain is circular. In other words, we assume the feature points are real numbers which

are de�ned only modulo T . Also, we assume the ground distance is the cyclic L1-distance

dL1;T (x; y) = min
k2Z
j(x+ kT )� yj:

If we identify feature values with arclengths on a circle of perimeter T , then dL1;T (x; y)

measures the smaller of the two arclengths that connect x to y along the circle. It is easy

to prove that 0 � dL1;T (x; y) � T=2. The intuition here is that a point should never

have to travel more than half the circle to arrive at another point. Suppose, for example,
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that features are angles in radians (T = 2�), x = �=4 = 45�, and y = 11�=6 = 330�.

Then dL1;T (x; y) = dL1;T (�=4; 11�=6) = 5�=12 = 75�, where the minimum is achieved

at k = 1. It should also be clear that dL1;T is cyclic with period T in both arguments:

dL1;T (x+ T; y) = dL1;T (x; y+ T ) = dL1;T (x; y).

In order to apply the FT iteration for translation with the cyclic L1-distance, we need

to minimize

WORK(F;x;y� t) =
mX
i=1

nX
j=1

fijdL1;T (xi; yj + t):

over t. As is the L1 case in section 6.4.1.2, the multidimensional case in RK can be solved

by solving K one-dimensional problems.6 Therefore, consider the minimization problem

min
t2R

WORK(F;x;y� t) = min
t2R

mX
i=1

nX
j=1

fij min
k2Z
j(xi + kT )� (yj + t)j (6.28)

given a �xed ow F . Since dL1;T is cyclic with period T , the WORK function is cyclic in t

with period T : WORK(F;x;y�(t+T )) = WORK(F;x;y� t). Therefore, for every feasible
ow F there will be a WORK minimizing translation t 2 [0; T ). We can also assume that

xi; yj 2 [0; T ) since these numbers need only be de�ned up to a multiple of T when using

ground distance dL1;T .

The inner minimization of (6.28) can be trivially rewritten as

min
k2Z
j(xi + kT )� (yj + t)j = min

k2Z
jkT � (yj + t� xi)j:

If we restrict xi; yj ; t 2 [0; T ), then (yj + t�xi) 2 (�T; 2T ). The above minimum will never

be achieved outside the set f �1; 0; 1; 2 g, so

min
k2Z
j(xi + kT )� (yj + t)j = min

k2f �1;0;1;2 g
j(xi + kT )� (yj + t)j for xi; yj; t 2 [0; T ):

If we let

h(t) = h(F;x;y; t) =
mX
i=1

nX
j=1

fij min
k2f �1;0;1;2 g

jkT � (yj + t � xi)j; (6.29)

then we have argued that

min
t2R

WORK(F;x;y� t) = min
t2[0;T )

h(t) if xi; yj 2 [0; T ):

We now consider the function h(t) in more detail.

6The period can be di�erent in each dimension.
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In order to better understand h(t), we can partition the real line into intervals over

which argmink2f �1;0;1;2 g jkT � (yj + t � xi)j is constant. If we let zij = xi � yj , then

jkT � (yj + t� xi)j = jkT + zij � tj, and

arg min
k2f �1;0;1;2 g

jkT + zij � tj =

8>>>>><
>>>>>:

�1 if �1 � t < �1
2
T + zij

0 if �1
2T + zij � t < 1

2T + zij

1 if 1
2
T + zij � t < 3

2
T + zij

2 if 3
2T + zij � t < +1

:

The plan now is to divide each of the above intervals into two parts: one in which kT+zij < t,

and the other in which kT+zij � t. This will allow us to express mink2f �1;0;1;2 g jkT+zij�tj
as a linear function in t over these subintervals (i.e. we can eliminate the min operator and

the absolute value function). Toward this end, de�ne the intervals

Iijkl = [(k + l
2)T + zij ; (k+

l+1
2 )T + zij) i = 1; : : : ; m; j = 1; : : : ; n;

k = �1; 0; 1; 2; l= �1; 0;
(k; l) 6= (�1;�1); (k; l) 6= (2; 0);

Iij(�1)(�1) = [�1;�T + zij) i = 1; : : : ; m; j = 1; : : : ; n; and

Iij20 = [2T + zij ;+1) i = 1; : : : ; m; j = 1; : : : ; n:

Here

Iij(�1)(�1) [ Iij(�1)0 = [�1;�1
2
T + zij ];

Iijk(�1) [ Iijk0 = [(k� 1

2
)T + zij ; (k+

1

2
)T + zij) k = 0; 1; and

Iij2(�1) [ Iij20 = [
3

2
T + zij ;+1);

so that argmink2f �1;0;1;2 g jkT + zij � tj = k� for t 2 Iij(k�)(�1) [ Iij(k�)0. Furthermore,

min
k2f �1;0;1;2 g

jkT + zij � tj =

8<
: k�T + zij � t if t 2 Iij(k�)(�1)
t� k�T � zij if t 2 Iij(k�)0

:

The above notation will now be used to rewrite h(t) in a form that makes its structure more

apparent.

We can get rid of the absolute value and minimization in (6.29) with the following
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algebraic manipulations:

h(t) =
mX
i=1

nX
j=1

fij min
k2f �1;0;1;2 g

jkT + zij � tj

=
mX
i=1

nX
j=1

fij

2X
k=�1

0X
l=�1

[t 2 Iijkl]jkT + zij � tj

=
mX
i=1

nX
j=1

fij

2X
k=�1

([t 2 Iijk(�1)](kT + zij � t) + [t 2 Iijk0](t� kT � zij))

h(t) =

0
@ mX
i=1

nX
j=1

fij

2X
k=�1

([t 2 Iijk0]� [t 2 Iijk(�1)])

1
A t+ (6.30)

0
@ mX
i=1

nX
j=1

fij

2X
k=�1

([t 2 Iijk(�1)]� [t 2 Iijk0])(kT + zij)

1
A :

If we let eijkl = (k + l
2)T + zij , then the breakpoint set

E = f eijkl : i 2 [1::m]; j 2 [1::n]; k 2 [�1::2]; l 2 [�1::0]; (k; l) 6= (�1;�1) g

divides the real line into intervals over which the coe�cient of t and the coe�cient of 1 = t0

in (6.30) are constant. On each such interval, the equation of h(t) is that of a line. Therefore,

h(t) is a piecewise linear function of t.

The minimum of h(t) over [0; T ) can be computed by visiting the breakpoints eijkl in

sorted order, updating the line equation for h(t) as we go along. The line function for h(t)

at t = �1 is given by

h(�1) =

0
@� mX

i=1

nX
j=1

fij

1
A t+

0
@�T mX

i=1

nX
j=1

fij +
mX
i=1

nX
j=1

fijzij

1
A :

This follows from (6.30) and the fact that �1 2 Iij(�1)(�1). Thus the sweep algorithm sets

the initial slope m to m0 and the initial intercept b to b0, where

m0 = �
mX
i=1

nX
j=1

fij and b0 = �T
mX
i=1

nX
j=1

fij +
mX
i=1

nX
j=1

fijzij :

There are two types of elementary steps over a breakpoint t = eijkl. In the case l = �1,
the sweep line moves from Iij(k�1)0 into Iijk(�1). By subtracting the Iij(k�1)0 terms and

adding in the Iijk(�1) terms in (6.30), we see that the updates to the slope and intercept
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when l = �1 are

m  m� fij + (�fij) = m� 2fij and (6.31)

b  b� (�fij((k� 1)T + zij)) + fij(kT + zij)

= b+ fij((2k � 1)T + 2zij): (6.32)

In the case l = 0, the sweep line moves from Iijk(�1) into Iijk0. From (6.30), we see that

the updates to the slope and intercept when l = 0 are

m  m� (�fij) + fij = m+ 2fij and (6.33)

b  b� fij(kT + zij) + (�fij(kT + zij))

= b� 2fij(kT + zij): (6.34)

The sweep algorithm maintains the minimum value seen so far as it proceeds from

t = �1 to t = 1. The value of the function h(t) is checked at any breakpoint 0 � t =

eijkl < T at which the slope of the line equation for h(t) changes from negative to positive.

The locations of such sign changes in slope are local minimum locations for h(t) in [0; T ).

Computing h at a local minimum location t = eijkl is done via h(eijkl) = meijkl + b, where

m and b are the slope and intercept after the update for passing eijkl. Since we want to

compute the minimum of h(t) over t 2 [0; T ), we must also check the value of h(0) when

we have the formula for h(t) over the interval that contains zero. Finally, we can stop the

sweep once we reach a breakpoint eijkl � T .

One �nal note to make is that at most m + n � 1 of the mn values fij , i = 1; : : : ; m,

j = 1; : : : ; n, are nonzero if F = (fij) is an optimal vertex ow, as is returned by the

transportation simplex algorithm ([32]). There is no reason to stop the sweep at eijkl for

which fij = 0 since the values of m and b do not change at these points (see the update

formulae (6.31){(6.34)). This is obvious since the summation for h(t) in (6.29) is the same

with or without the (i; j)th term when fij = 0. The desired minimum can be computed by

sweeping over the set

E0 = f eijkl : fij 6= 0; i 2 [1::m]; j 2 [1::n]; k 2 [�1::2]; l 2 [�1::0]; (k; l) 6= (�1;�1) g

instead of the set E. Note that jEj = 7mn, while jE0j � 7(m + n � 1). The sorting of

the points in E0 takes time O((m+ n) log(m + n)), and then the sweep over the points in

E0 takes time O(m + n) since only a constant amount of work needs to be done at each

elementary step.
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6.4.2 Euclidean and Similarity Transformations

The optimal transformation problem for G = E , the group of Euclidean transformations,

and d = L22 is

min
(R;t)2E

NX
k=1

ckjjak � (Rbk + t)jj22;

where R is a rotation matrix. For a �xed R, the optimal translation must be t�(R) = a�Rb.
Thus, the optimal Euclidean problem reduces to

min
R

NX
k=1

jjbak �Rbbkjj22 = min
R
jj bA� R bBjj2F; (6.35)

where the columns of bA and bB are the vectors bak = pck(ak � a) and bbk = pck(bk � b), and
jj � jjF denotes the Frobenius matrix norm ([25]). Here we have also used the assumption

that the ck are nonnegative. The best rotation problem (6.35) is solved completely in [81].

The minimization problem (6.35) is easier to solve if we only require that R is orthogonal

(i.e. we drop the requirement det(R) = 1). Under this assumption, (6.35) is known as the

orthogonal Procrustes problem ([25]). If U�V T is an SVD of bA bBT , then the minimum value

is jj bAjj2F + jj bBjj2F � 2tr(�), and is achieved at R = UV T .

The optimal transformation problem for G = S, the set of similarity transformations,

allows for an additional scaling factor:

min
(s;R;t)2S

NX
k=1

ckjjak � (sRbk + t)jj22:

The special case of this problem in which ck � 1=N is solved in [81] using the solution

to (6.35). It is not di�cult to repeat the analysis for general ck and solve the optimal

similarity problem as we have posed it, but we omit the details.

6.4.3 Linear and A�ne Transformations

Finally, we consider the optimal transformation problem for linear and a�ne transforma-

tions with the L2-distance squared. When G = L, the set of linear transformations, the
optimal transformation problem becomes

min
L2L

NX
k=1

ckjjak � Lbkjj22:
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Assuming that ck � 0, an equivalent formulation is

min
L2L

NX
k=1

jjbak � Lbbkjj22 = min
L2L
jj bA� L bBjj2F;

where the columns of the matrices bA and bB are the vectors bak = pckak and bbk = pckbk.
An optimal linear transformation is L� = bA bBy, where bBy is the pseudo-inverse ([25]) of bB.
In the case G = A, the set of a�ne transformations, the optimal transformation problem

allows for an additional translation:

min
(L;t)2A

NX
k=1

ckjjak � (Lbk + t)jj22:

The optimal translation for a �xed L is t�(L) = a � Lb. Hence, with eak = ak � a andebk = bk � b,

min
(L;t)2A

NX
k=1

ckjjak � (Lbk + t)jj22 = min
L2L

NX
k=1

ckjjeak � Lebkjj22;
and the a�ne problem reduces to the linear problem.

6.5 Allowing Weight-Altering Transformations

When a transformation g changes the weights of the distributions that it acts upon, in

general F(x;y) 6= F(x; g(y)). This is because the constraints that de�ne the feasible ows
between two distributions depend on the weights in the distributions. Recall that there

were two steps in proving that WORK sequence is decreasing when distribution weights

are unchanged: (1) F (k+1) is a better ow for g(k+1) than the ow F (k), and (2) g(k+1) is

a better transformation for F (k) than the transformation g(k). The inequality (6.14) which

expresses step (2) still holds when distribution weights are not �xed. This is because g(k+1)

is optimal for ow F (k) over all allowable transformations, and g(k) is one of the allowable

transformations. The inequality (6.13) which expresses step (1), however, may not hold

when distribution weights are changed. The ow F (k+1) is optimal for transformation

g(k+1) over all ows in F(x; g(k+1)(y)), but ow F (k) may not be in the set F(x; g(k+1)(y))
{ the ow F (k) was chosen from the set F(x; g(k)(y)).

It is easy to see that inequality (6.13) will hold if

F(x; g(k+1)(y)) � F(x; g(k)(y)); (6.36)

for then F (k) 2 F(x; g(k)(y)) implies F (k) 2 F(x; g(k+1)(y)). Thus when we have an
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\increasing" sequence of feasible regions as speci�ed by condition (6.36), we are guaranteed

to get a decreasing WORK sequence. This, however, is not the end of the story because we

are really after a decreasing EMD sequence. Remember that EMD(k) is equal to WORK(k)

divided by the smaller of the total weights of x and g(k)(y), and the weight g(k)(y) is no

longer constant over k.

The problem outlined above is that the WORK and the EMD sequences are not related

by a constant multiplicative factor. We can get around this problem by a change of variables

that moves the minimum total weight normalization factor into the de�nition of the ow.

An example of such a change of variables has already been given in section 4.5 on scale

estimation, where the change of variables is bfij = fij=c and c is the total weight of the

lighter of the two distributions being compared (in section 4.5, we used hij instead of bfij as
the new variables). This change of variables yielded a collection of transportation problems

(one for each c) with increasing feasible regions F((X;w=c);y) as c is decreased. It followed
that E(c), the EMD between x and the transformed y as a function of the transformation

parameter c, decreases as c decreases. In this case, the distribution transformations are

transformations that scale down all the weights in the distribution by a factor c and leave

the distribution points unchanged.

The same change of variables allows the FT iteration to be applied with some sets of

transformations which alter both the weights and the points of distributions. Such trans-

formations may be needed, for example, if a distribution point contains the position of an

image region with some property and the corresponding weight is the region area; applying

a similarity transformation with non-unit scale to region positions causes a change in region

areas. Next we show how to apply the FT iteration in this case, where a distribution point

is (L; a; b; x; y) in a combined CIE-Lab color space and image position space. The feature

point (L; a; b; x; y) with weight w is meant to indicate that there is a region in the image

plane with area w that has centroid (x; y) and color (L; a; b).

We denote the distribution summaries of the image and the pattern as

x = f (x1; w1); : : : ; (xm; wm) g = f ((a1; p1); w1); : : : ; ((am; pm); wm) g; and

y = f (y1; u1); : : : ; (yn; un) g = f ((b1; q1); u1); : : : ; ((bn; qn); un) g;

respectively, where xi = (ai; pi) divides feature point xi into its color components ai and

position components pi, and yj = (bj; qj) divides feature point yj into its color components

bj and position components qj . We assume that the ground distance dcp in the combined
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color-position space is given by

dcp(x; y) = dcp((a; p); (b; q)) = dL2(a; b) + �dL22
(p; q);

where the parameter � trades o� between distance in color space and distance in position

space.7 We also assume that the weight normalization w� = u� = 1. Finally, we denote

similarity transformations by g = (s; �; t). The action of g on distribution y is de�ned by

g((bj; qj); uj) = ((bj ; sR�qj + t); �s2uj);

where � is a constant factor relating the scale s in positional units to the corresponding

scale in area units (which need not be exactly the square of the position units since we have

assumed u� = 1). In the analysis that follows, we de�ne the area scale c = �s2.

Our EMD under similarity transformation problem is

EMDS(x;y) = min
g2S

min
F2F(x;g(y))

Pm
i=1

Pn
j=1 fij(dL2(ai; bj) + �dL22

(pi; g(qj)))

c
:

If we let bfij = fij=c, then the problem becomes

EMDS(x;y) = min
g2S

minbF2bF(x;g(y))
mX
i=1

nX
j=1

bfij(dL2(ai; bj) + �dL22
(pi; g(qj)));

where the feasible region bF(x; g(y)) = F((X;w=c);y) as de�ned in section 4.5 by condi-

tions (4.17), (4.18), and (4.19).

The minimization problems to be solved by the FT iteration are

bF (k) = arg

0
@ minbF2 bF(x;g(k)(y))

mX
i=1

nX
j=1

bfij(dL2(ai; bj) + �dL22
(pi; g

(k)(qj)))

1
A ; (6.37)

g(k+1) = arg

0
@min
g2S

mX
i=1

nX
j=1

bf (k)ij (dL2(ai; bj) + �dL22
(pi; g(qj)))

1
A : (6.38)

Since g does not change the color component of a distribution point, we can compute g(k+1)

7If colors are represented in CIE-Lab space, then the Euclidean distance is the natural choice for a

distance in color space. The analysis that follows, however, does not require the distance in color space to

be L2.
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de�ned in equation (6.38) by solving

g(k+1) = arg

0
@min
g2S

mX
i=1

nX
j=1

bf (k)ij dL22
(pi; g(qj))

1
A : (6.39)

Section 6.4.2 discusses the solution to this optimal similarity transformation problem. Solv-

ing for bF (k) in (6.37) is still a transportation problem.

If we de�ne

EMD(k) =
mX
i=1

nX
j=1

bf (k)ij (dL2(ai; bj) + �dL22
(pi; g

(k)(qj)));

then, as previously argued, we will get a decreasing EMD sequence if we can guarantee

bF(x; g(k+1)(y)) � bF(x; g(k)(y)) 8k: (6.40)

If g(k) = (s(k); �(k); t(k)), then (6.40) will hold if s(k+1) � s(k) 8k. So the FT iteration will

yield a decreasing EMD sequence if we only allow scale to decrease as the iteration proceeds.

For the speci�c case of allowing a similarity transformation, this can be accomplished as

follows. In computing g(k+1), �rst perform the minimization over the set of similarity

transformations as in (6.39) to get a similarity transformation (s(k+1); �(k+1); t(k+1)). If

s(k+1) � s(k), then set g(k+1) = (s(k+1); �(k+1); t(k+1)). Otherwise, set g(k+1) to the best

Euclidean transformation with �xed scale s(k) : g(k+1) = (s(k); �(k+1); t(k+1)) where

(�(k+1); t(k+1)) = arg

0
@min
g2E

mX
i=1

nX
j=1

bf (k)ij dL22
(pi; g(s

(k)qj))

1
A :

This optimal Euclidean transformation problem is discussed in section 6.4.2.

6.6 Some Speci�c Cases

There are some speci�c cases of transformation set, ground distance function, and feature

space that are worth mentioning in our discussion of the EMD under transformation sets.
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6.6.1 The Equal-Weight EMD under Translation with d = L2
2

Recall from section 6.4.1.1 that if d is the L2-distance squared, then the unique optimal

translation for a �xed ow is given by the centroid di�erence

t�L22
= a � b =

PN
k=1 ckak

c�
�
PN
k=1 ckbk

c�
;

where the ak, bk, and ck are de�ned by the distribution points and the �xed ow as

in (6.17), (6.18), and (6.19). In terms of the original points and ow vector,

t�
L22

=

Pm
i=1

Pn
j=1 fijxiPm

i=1

Pn
j=1 fij

�
Pm
i=1

Pn
j=1 fijyjPm

i=1

Pn
j=1 fij

: (6.41)

If x and y are equal-weight distributions (and  = 1), then
Pm
i=1 fij = uj ,

Pn
j=1 fij = wi,

and
Pm
i=1

Pn
j=1 fij = w� = u� for any feasible ow F = (fij). Using these facts in

equation (6.41) shows that the best translation for any feasible ow F = (fij) is t
�
L22

= x�y.
Therefore, the FT iteration described in section 6.3 is not needed in the equal-weight case

to compute EMDT ;L22
(x;y). Instead, simply translate y by x�y (this lines up the centroids

of x and y) to get by and compute EMD(x; by).

6.6.2 The Equal-Weight EMD under Translation on the Real Line

In this section, we assume that the ground distance is the absolute value between points on

the real line (d = L1). Recall the de�nition in section 4.3.2 of the CDF ow FCDF between

two equal-weight distributions x = (X;w) and y = (Y; u) on the real line:

fCDFij = j[Wi�1;Wi] \ [Uj�1; Uj ]j;

where
Wk = W (xk) =

Pk
i=1wi and

Ul = U(yl) =
Pl
j=1 uj :

Here the points and corresponding weights in the distributions are numbered according to

increasing position along the real line: x1 < � � � < xm and y1 < � � � < yn. In Theorem 5,

we showed that the CDF ow FCDF is an optimal ow between x and y if d = L1. Now

denote the translation of y by t as

y� t = f (y1 + t; u1); (y2 + t; u2); : : : ; (yn + t; un) g:
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y1 x1 x2 x3 x4y2 y3

fCDF11

fCDF21

fCDF31

0
y1x1 x2 x3 x4y2 y3

fCDF11

fCDF21

fCDF31

(a) (b)

Figure 6.4: The Equal-Weight EMD under Translation in 1D with d = L1. The same ow

FCDF is optimal for (a) x and y, and (b) x and y� t. We re-use the labels yj in (b) instead
of using yj + t in order to make all the labels �t in the given space.

Since the sorted order of the points of y� t is the same as the sorted order of the points of
y, and the weights of y � t are the same as the weights of y, the CDF ow between x and

y is the same as the CDF ow between x and y � t. By Theorem 5, this CDF ow is also

an optimal ow between x and y � t. See Figure 6.4 for an example.

Now for �xed t, the optimal transformation step (6.11) in the FT iteration is to compute

�(t) = min
F2F(x;y)

WORK(FCDF;x;y� t):

Since the CDF ow is optimal for every t 2 R,

�(t) =
mX
i=1

nX
j=1

fCDFij jxi � (yj + t)j:

Rewriting the 2D index as a 1D index, we have

�(t) =
NX
k=1

fCDFk jzk � tj:

Functions of this form were studied extensively in section 6.4.1.2 where we gave the solution

to this \minisum problem" on the line. This solution gives us the EMD under translation
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since

EMDT (x;y) =
minF2F(x;y);t2RWORK(FCDF;x;y� t)

min(w�; u�)
=

mint2R �(t)

min(w�; u�)
:

The function �(t) is piecewise linear with monotonic slope increasing from a negative value

at t = �1 to a positive value at t = +1 (see Figures 6.2 and 6.3). Thus, �(t) is convex

and has its minimum at a point t at which the slope �rst becomes nonnegative.

Once the m points in x and the n points in y have been sorted, the CDF ow FCDF can

be computed in �(m+n) time using the second algorithm labelled EMD1 given on page 78

in section 4.3.2. The result of this algorithm is an array of �(m + n) records containing

a pair (i; j) and the ow value fij . Any pair (i; j) not appearing in this array has ow

value fij = 0. To compute the optimal translation (and the actual value of the EMD under

translation) using the results in section 6.4.1.2, we need to �nd the �rst index k at which

the slope mk ,

m0 = �
NX
k=1

fCDFk = �w� = �u�;

mk+1 = mk + 2fCDFk+1 ;

is greater than or equal to zero. This can be done by sorting the returned ow pairs (i; j) by

increasing 1D index k in time �((m+n) log(m+n)), and then tracking the slope mk while

marching through the previously sorted ow array in time O(m + n) (the array traversal

can stop once it reaches k such that mk � 0). This algorithm to compute the EMD under

translation between equal-weight distributions on the line requires �((m + n) log(m+ n))

time.

6.6.3 The Equal-Weight EMD under G with m = n = 2

In this section, we consider the problem of matching equal-weight distributions x and y with

two points each (m = n = 2) under a general transformation set G, where g 2 G changes

only the points in a distribution. Without loss of generality, we assume the unit-weight

normalizations w� = u� = 1.

The conditions which de�ne the feasible ow set F(x;y) = F(x; g(y)) are f11 � 0,

f12 � 0, f21 � 0, f22 � 0, and

f11 + f12 = w1; (6.42)

f21 + f22 = w2 = 1� w1; (6.43)
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f11 + f21 = u1; (6.44)

f12 + f22 = u2 = 1� u1: (6.45)

Using (6.42){(6.45), we can write all ow variables in terms of f11:

f12 = w1 � f11
f21 = u1 � f11; and

f22 = 1� w1 � f21 = 1� (w1 + u1) + f11:

9>>>=
>>>;

(6.46)

From (6.46), we see that

max(0; (w1+ u1)� 1) � f11 � min(u1; w1) (6.47)

is a necessary condition for F = (fij) to be feasible since ow variables must be nonnegative.

Also, every f11 which satis�es (6.47) de�nes a feasible ow F according to equations (6.46).

Thus, we have argued that the set of feasible ows F(x;y) is also de�ned by conditions (6.46)
and (6.47).8

Using (6.46), we may write the work done by F to match x and y as

WORK(F;x;y) = f11d11 + f12d12 + f21d21 + f22d22

= ((d11+ d22)� (d12 + d21))f11

+ (w1d12 + u1d21 + (1� (w1 + u1))d22):

When we allow a transformation g 2 G, the point distances dij become functions dij(g) of
g, and we have

WORK(F;x; g(y)) = ((d11(g) + d22(g))� (d12(g) + d21(g)))f11 (6.48)

+ (w1d12(g) + u1d21(g) + (1� (w1 + u1))d22(g)):

Since w� = u� = 1,

EMDG(x;y) = min
F2F(x;y);g2G

WORK(F;x; g(y)): (6.49)

From (6.48), we see that the minimum in (6.49) must be achieved at one of two feasible

8Note that F(x;y) de�ned by (6.47) is nonempty. Since distribution weights are nonnegative, we have
min(u1; w1) � 0. Without loss of generality, suppose w1 � u1. Then min(u1; w1)�((w1+u1)�1) = 1�u1 � 0

(since u� = 1, u1 � 0 implies u1 � 1), and hence min(u1; w1) � max(0; (w1+ u1)� 1). The case u1 � w1 is

similar.
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ows F 1 or F 2. More precisely, an optimal F for a given g is

f11 =

8<
: f111 = min(u1; w1) if d11(g) + d22(g) < d12(g) + d21(g)

f211 = max(0; (u1+ w1)� 1) if d11(g) + d22(g) � d12(g) + d21(g)
;

where f12, f21, and f22 follow from (6.46).

Since we know that the minimum in (6.49) is achieved at one of the ows F 1 or F 2

given above, we can compute

EMDG(x;y) = min

�
min
g2G

WORK(F 1;x; g(y));min
g2G

WORK(F 2;x; g(y))

�

by solving an optimal transformation problem for each of F 1 and F 2.

6.7 Global Convergence in F � G?

This section is devoted to the following question: Under what conditions does the FT it-

eration converge to the global minimum of WORK(F;x; g(y)) : F(x;y) � G �! R�0?

There are many parameters here, including (1) the transformation set G, (2) the ground
distance d, (3) the dimension of the underlying points, (4) whether or not x and y are

equal-weight distributions, and (5) the distributions x and y themselves. Here we shall

only consider transformations which modify the distribution locations but not their corre-

sponding weights.

In section 6.7.1, we consider the problem for unequal-weight distributions x and y. We

call this the \partial matching" case because some of the weight in the heavier distribution

will be unmatched. In di�erent regions of G, di�erent parts of the heavier distribution may

be used in an optimal ow, and this makes it impossible to prove a guarantee of global

convergence.

In section 6.7.2, we argue that the FT iteration is guaranteed to converge to the global

minimum of WORK(F;x; g(y)) if either (1) there is a transformation g� which is the unique

optimal transformation for every feasible ow, or (2) there is a feasible ow F � which is

the unique optimal ow for every transformation. These may seem like highly constrained

situations, but we have already encountered an example of (1), namely the EMD under

translation between equal-weight distributions with ground distance d = L22. We also

discuss the e�ect of removing the uniqueness requirement from (1) and (2).

In section 6.7.3, we consider the case of matching a distribution to a translated version

of itself. The EMD under translation is obviously zero in this perfect matching case. We

briey describe experiments which show that in practice the FT iteration converges to the
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global minimum of zero.

In section 6.7.4, we demonstrate that there can be transformations which are locally

but not globally optimal even for equal-weight comparisons. We give an example of equal-

weight distributions in the plane with two points each (m = n = 2) for which there are

local minima in F � T for the L2 and L1 ground distances. We also show that the WORK

function with the L22 distance can have local minima if G is the group of rotations.

If there are local minima in F � G, then it is hard to have a guarantee of convergence

to the global minimum. If there is a local minimum at (F 0; g0), then g0 is locally optimal

for F 0, and F 0 is locally optimal for g0. But holding g = g0 �xed yields a WORK function

which is linear in F , so a locally optimal ow for g0 must be a globally optimal ow for

g0. In many cases there are no local minima of the WORK function in g when F is held

�xed (e.g. when G = T , d = Lp), so a locally optimal transformation for F 0 is a globally

optimal transformation for F 0. We have already seen that the FT iteration gets stuck at

(F; g) when F and g are mutually optimal for each other.

6.7.1 Partial Matching

When one distribution is heavier than the other, some of the mass in the heavier distribution

is unmatched in a feasible ow. In di�erent regions of G, di�erent parts of the heavier

distribution may be used in an optimal ow. This fact allows one to develop examples that

possess local minima.

Imagine a distribution x composed of two spatially separated sub-distributions bx and ex
which are equal-weight, say 1

2w� each. Now consider matching x to a distribution y with

weight u� = 1
2w�. Of all the transformations g which place g(y) in the bx part of the point

space, there will be an optimal transformation bg�. If the sub-distributions bx and ex are

separated enough, the corresponding ows will not involve any mass from ex. Similarly, of
all the transformations g which place g(y) in the ex part of the point space, there will be an

optimal transformation eg�. Assuming that bg�(y) does not match bx equally as well as eg�(y)
matches ex, one of bg� and eg� is only a locally optimal transformation. Figures 6.5 and 6.6

show examples in 1D and 2D, respectively.

We can also create examples in which there are as many local minima as we like if we

allow the ratio u�=w� to be arbitrarily small. If x is L well-separated copies y � tl of y,
then EMD(x;y � tl) = 0 for l = 1; : : : ; L. We can produce � L � 1 only locally optimal

translations by slightly perturbing the points in each copy of y. In general, there may be

no overlap in the mass of the heavier distribution used to match the mass in the lighter

distribution in di�erent parts of the transformation space.
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Figure 6.5: A Local Minimum in a 1D Partial Matching Case. (a) Distributions over the
real line x and y are shown on the bottom line in blue and red, respectively. Translating

y by t1 = �6 gives EMD(x;y � t1) = :6(0) + :1(3) + :3(1) = :6, while translating y by
t2 = 7 gives EMD(x;y � t2) = :2(2) + :5(1) + :3(1) = 1:2. The translation t1 yields the
global minimum, while the translation t2 yields a local minimum as one can see from (b)

the graph of EMD(x;y� t) v. t.



6.7. GLOBAL CONVERGENCE IN F � G? 159

(a)

0 2 3-1-3

-3

-1

0

1

3

4

.5

.5

.6

.4

.3

.7

.5
.1

.4

.3

.5

.2

t1 = [�3 4]T t2 = [3 4]T

(b)

0

2

4

6

8

−5

0

5
0

1

2

3

4

5

6

t
y

EMD(x,y+t) v. t  (d=L
2
)

t
x

E
M

D

Figure 6.6: A Local Minimum in a 2D Partial Matching Case. (a) Distributions over the

plane x and y are shown in blue and red, respectively. Translating y by t1 = [�3 4]T

gives EMD(x;y � t1) = :5(0) + :1(2) + :4(2) = 1:0, while translating y by t2 = [3 4]T

gives EMD(x;y� t2) = :5(0) + :3(
p
2) + :2(2)

:
= :824. The translation t2 yields the global

minimum, while the translation t1 yields a local minimum as one can see from (b) the graph

of EMD(x;y� t) v. t.
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6.7.2 One Optimal Flow or Transformation

If g� is the unique optimal transformation for every feasible ow, then the WORK sequence

converges to the global minimum work value in only a couple of iterations:

g(0) �! F (0) �! g(1) = g� �! F (1) �! g(2) = g� �! F (2);

where WORK(F (1);x; g(1)(y)) = WORK(F (1);x; g(2)(y)) = WORK(F (2);x; g(2)(y)) is the

global minimum. We have already encountered such a case. For equal-weight distributions

with G = T and d = L22, t
� = �x� �y is the unique optimal translation for every feasible ow.

If there is a unique optimal ow F � for every transformation, then the WORK sequence

also converges to the global minimum work value in only a couple of iterations:

g(0) �! F (0) = F � �! g(1) �! F (1) = F � �! g(2) �! F (2) = F �;

where WORK(F (1);x; g(1)(y)) = WORK(F (1);x; g(2)(y)) = WORK(F (2);x; g(2)(y)) is the

global minimum. We have seen a case which comes close to meeting this requirement. For

equal-weight distributions on the real line with G = T and d = L1, the CDF ow FCDF

is optimal for every t 2 T , although it is not necessarily the unique optimal ow for every

t 2 T . We have been unable to rule out (even in this speci�c case) the possibility that

� bF and F � are both optimal for some g(k) = bg,
� bF is returned by the transportation problem solver instead of F �,

� bg is optimal for F (k) = bF ,
� bg is returned by an optimal transformation solver as optimal for F (k), and

� ( bF; bg) is not a globally optimal (ow,transformation) pair.

In this case, the FT iteration converges to ( bF; bg) which is not globally optimal. We have

also been unable to rule out the analogous possibility in the case when one transformation

g� is optimal for for every ow, but g� is not the unique optimal transformation for every

ow.

Now suppose that F � is an optimal ow for every transformation. If the FT iteration

ever reaches a transformation g(k) for which F � is the unique optimal ow, then the iteration

will converge to the global minimum work value. Here we are guaranteed that F (k) = F �,

and we argued in section 6.3.2 that the FT iteration converges to the global minimum

if the ow sequence ever reaches a globally optimal ow. Similarly, if g� is an optimal
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transformation for every ow, then the FT iteration converges to the global minimum if it

ever reaches a ow F (k) for which g� is the unique optimal transformation.

6.7.3 A Perfect Match under Translation

It is clear that EMDT (y;y��y) = 0, where the translation that best aligns y and y��y
is t� = ��y. Is the FT iteration guaranteed to converge to the global minimum in this

perfect matching case? We begin exploring this question by considering the EMD between

y and y��y without allowing a translation.

Theorem 13 The EMD between a distribution and a translation of the distribution is

EMD(y;y��y) =

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
:

Proof. The ow F ID de�ned by f IDij = �ijuj , where �ij = 1 if i = j and �ij = 0 if i 6= j,

gives normalized WORK values

WORK(F ID;y;y��y)

u�
=

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
:

Since the EMD is the normalized WORK value for the optimal ow, we have

EMD(y;y��y) �

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
: (6.50)

Is there a feasible ow which requires less work than the size of �y for either ground

distance? The answer is \no". By the centroid lower bound theorems 6 and 7 (and the fact

that y ��y = y+ �y), we know that

EMD(y;y��y) �

8<
: jj�yjjp if d = Lp (p � 1), and

jj�yjj22 if d = L22
: (6.51)

The result follows from the opposite inequalities (6.50) and (6.51).

It is somewhat surprising that no matter how small or large the shift �y, there is no better

ow than matching a point to its translate.

If two points yk and yl have equal weights uk = ul � �, then F ID will not be the unique

optimal ow between y and y��y if �y = yl � yk and d = Lp. In this case, the following
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slight modi�cation bF of F ID is also an optimal feasible ow:

bfij =
8>>><
>>>:
ui if i = j, i 6= k, i 6= l,

uk = ul � � if (i; j) = (k; l) or (i; j) = (l; k), and

0 otherwise:

When d = Lp and �y = yl � yk , we have

dkk = d(yk; yk + �y) = jj�yjjp;
dll = d(yl; yl +�y) = jj�yjjp;
dkl = d(yk; yl +�y) = 2jj�yjjp; and

dlk = d(yl; yk +�y) = 0:

In order to match the mass at yk and yl, the ow F ID spends an amount of work equal to

�dkk + �dll = 2jj�yjjp�, while the ow bF spends the same amount of work �dkl + �dlk =

2jj�yjjp� in a di�erent way.

If we replace �y by �y + t, then we see that F ID is an optimal ow between y and

(y��y)� t = y� (�y+ t) for every translation t. Global convergence of the FT iteration

is guaranteed when F ID is the unique optimal ow for every t (see section 6.7.2). From

the above discussion, however, we know that F ID will not be the unique optimal ow for

t = (yl � yk) � �y if uk = ul. On the other hand, F ID is optimal for every t, so it is

potentially returned as F (k) for every translation iterate t(k). F ID might be returned even

when it is not the unique optimal ow for t(k). Of course, once the FT iteration reaches a

ow iterate F (k) = F ID, the corresponding WORK sequence immediately converges to the

global minimum WORK of zero.

The transportation simplex algorithm used to compute F (k) is an iterative algorithm.

There are a few common rules for computing an initial feasible solution to the transportation

problem, including the northwest corner rule, Vogel's method, and Russell's method ([32]).

Applying the northwest corner rule to the transportation problem speci�ed by y and (y �
�y)� t results in F ID as the initial feasible solution for every t. Since F ID is optimal, the

transportation simplex algorithm will return F ID for every t when the northwest corner rule

is used. In this case, the FT iteration is guaranteed to converge to the global minimum.

The northwest corner rule is faster than Vogel's and Russell's methods, but it produces

an initial solution which is usually not as close to optimal. Consequently, more iterations

are usually required with the northwest corner rule. In general, the transportation simplex

algorithm will �nd an optimal solution faster using Vogel's or Russell's method because

fewer iterations will be required. In constrast to the northwest corner rule, these methods
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use the transportation problem costs (which are the ground distances in the EMD context)

to compute an initial solution.

The EMD code that we use in our work applies Russell's method. The initial solution

computed by this method is not necessarily F ID, so there is no guarantee that the trans-

portation simplex algorithm will return F ID if there is another optimal ow. In practice,

however, the FT iteration always converged to the global minimum of zero in hundreds of

randomly generated, perfect-translation examples with d = L2. In these random examples,

the points in y were chosen with coordinates uniformly distributed in [0; 1], and we varied

the point space dimension (1, 2, and higher dimensions), whether points all have the same

weight or not (if not, then the weight vector u is random), and whether �y + t(0) is the

di�erence between two points in y or not (if not, then the initial translation t(0) is random).

6.7.4 Equal-Weight Comparisons with Local Minima

In section 6.7.1, we showed examples of unequal-weight comparisons with local minima.

These local minima arose because di�erent parts of the heavier distribution were used in

an optimal ow for di�erent areas of the transformation space. In this section, we show

that there can be local minima even when all the mass in one distribution must be matched

to all the mass in the other distribution everywhere in transformation space. This is the

matching requirement imposed by the EMD when the distributions are equal-weight.

The main example of this section consists of two distributions over the plane, each

having two points (m = n = 2). See Figure 6.7(a). We seek to match these distributions

under translation using the L2 and L1 ground distances.

In section 6.6.3, we analyzed the m = n = 2 matching problem under G. Recall that

there are two feasible ows F 1 and F 2 such that

F 1 2 argminF2F(x;y)WORK(F;x; g(y)) if d11(g) + d22(g) � d12(g) + d21(g) and

F 2 2 argminF2F(x;y)WORK(F;x; g(y)) if d11(g) + d22(g) � d12(g) + d21(g):

Here dij(g) = d(xi; g(yj)). If G = T and d = Lp or d = L22, then dij(t) = d(xi; yj + t) =

d(�ij ; t), where �ij = xi � yj .
Now consider the sets

T1 = f t : d11(t) + d22(t) < d12(t) + d21(t) g and

T2 = f t : d11(t) + d22(t) > d12(t) + d21(t) g :

If T1 = ;, then F 2 is optimal for every t 2 T ; if T2 = ;, then F 1 is optimal for every
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Figure 6.7: A Local Minimum in a 2D Equal-Weight Case. (a) Distributions x and y over

the plane are shown in blue and red, respectively. (b) The translation t = [0 2]T of y is
locally optimal for both d = L2 and d = L1. The optimal ow for this translation is the

same for both ground distances, as is the EMD: EMD(x;y�t) = :6(0)+:4(4) = 1:6. (c) The
globally optimal translation of y for d = L2 is t = [0 :258]T . This yields EMD(x;y� t) =
:4
p
12 + :2582 + :2(2� :258) + :4

p
12 + :2582

:
= 1:175. (d) The globally optimal translation

of y for d = L1 is t = [0 0]T . This yields EMD(x;y� t) = :4(1) + :2(2) + :4(1) = 1:2.
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t 2 T . In our example, x1 = (�1; 0), x2 = (0; 2), y1 = (0; 0), y2 = (�1; 2), �11 = [�1 0]T ,
�12 = [0 �2]T , �21 = [0 2]T , and �22 = [1 0]T . For d = L22, it is easy to check that

(d11(t) + d22(t))� (d12(t) + d21(t)) = �6 for every t 2 T .9 Thus T2 = ;, and (as expected)

the FT iteration converges to the global minimum on this example with d = L22.

In general with d = L2 or d = L1, both T1 and T2 will be nonempty. This, however,

does not imply that there are local minima. With d = L2 or d = L1, the functions

WORK(F 1;x;y � t) and WORK(F 2;x;y � t) are convex in t. If the global minima of

these functions occur in T1 and T2, respectively, then the larger of these values is a local

minimum of WORK(F;x;y� t) and the smaller is the global minimum. This is precisely

what happens in the example of Figure 6.7(a). A local minimum can also exist along the

boundary between T1 and T2 where d11(t)+d22(t) = d12(t)+d21(t). More generally, a local

minimum may occur in the interior of a transformation space region with constant optimal

ow, or along the boundary between two such regions.

Figure 6.7(b) shows y translated by a locally optimal translation t = [0 2]T for both

d = L2 and d = L1, along with the corresponding optimal ow for both cases. The globally

optimal translations for the L2 and L1 distances are given in Figures 6.7(c) and 6.7(d),

respectively. Finally, graphs of EMD(x;y � t) versus t for the L2 and L1 distances are

shown in Figures 6.8 and 6.9, repectively. In Figure 6.10, we show that the locally optimal

and globally optimal translations occur in regions of the translation space for which there

are di�erent optimal ows. We also prove that t = [0 2]T is locally optimal for both the L2

and L1 ground distances.

Let us now explicitly connect a local minimum in �(g) over G with a local minimum of

WORK(F;x; g(y)) over F � G. Suppose that a local minimum of �(g) occurs at g0 in the

interior of a region R(F �) = f g : F � 2 argminF2F WORK(F;x; g(y)) g. In words, g0 is

inside the region of transformation space with constant optimal ow F �. Then there exists

a neighborhood NG
" (g

0) 2 G around g0 of size " > 0 such that NG
" (g

0) � R(F �) and �(g) �
�(g0) for every g 2 NG

" (g
0). For every (F; g) 2 F �NG

" (g
0), we have WORK(F;x; g(y)) �

WORK(F �;x; g(y)) = �(g) � �(g0) = WORK(F �;x; g0(y)). The �rst inequality follows

from the optimality of F � over NG
" (g

0), whereas the second inequality follows from the local

optimality of g0 over NG
" (g

0). Since WORK(F;x; g(y)) � WORK(F �;x; g0(y)) for every

(F; g) 2 F �NG
" (g

0), there is a local minimum of WORK(F;x; g(y)) at (F �; g0). Of course,

this logic depends upon being able to �t an open neighborhood inside R(F �), where F � is

optimal for g0. This cannot be done, for example, if R(F �) is the single point g0. A similar

9The fact that this quantity is independent of t is not speci�c to the particular example of this section.

With d = L2
2, (d11(t) + d22(t))� (d12(t) + d21(t)) = �2(xT1 y1 + xT2 y2 � xT1 y2 � xT2 y1) for every t 2 T . It

follows that there will be one ow which is optimal for every translation.
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Figure 6.8: Graphs of EMD v. t Showing a Locally Optimal Translation for d = L2. (a)
EMD v. t for the 2 � 2 example shown in Figure 6.7(a) with d = L2. There is a locally

optimal translation at t = [0 2]T , while the globally optimal translation is t = [0 :258]T . (b)
A slice of the graph in (a) at tx = 0.
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Figure 6.9: Graphs of EMD v. t Showing a Locally Optimal Translation for d = L1. (a)
EMD v. t for the 2 � 2 example shown in Figure 6.7(a) with d = L1. There is a locally

optimal translation at t = [0 2]T , while the globally optimal translation is t = [0 0]T . (b) A
slice of the graph in (a) at tx = 0.
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Figure 6.10: A Closer Look at a Locally Optimal Translation. The translation t = [0 2]T is

locally optimal in the example shown in Figure 6.7(a) for d = L2 and d = L1. For both these
ground distances, EMD(x;y� t) = 1:6 (see Figure 6.7(b)). (a) Here we show y translated

by t + v = [0 2]T + v, where jjvjj is small. (b) All translations in the darkest gray area
have the same optimizing ow shown in part (a) for d = L2. Here EMD(x;y� (t + v)) �
:6jjvjj2 + :4(4 � jjvjj2) = :2jjvjj2 + 1:6. Since the EMD is 1.6 when v = 0, we see that

there is a local minimum at t = [0 2]T . The global minimum at t = [0 :258]T occurs
in an area of translation space where a di�erent ow is optimal. (c) All translations in

the darkest gray area have the same optimizing ow shown in part (a) for d = L1. Here
EMD(x;y � (t + v)) � :6(jvxj + jvyj) + :4(jvxj + (4 � jvyj)) = 1:0jvxj + :2jvyj + 1:6. Since

the EMD is 1.6 when v = 0, we see that there is a local minimum at t = [0 2]T . The
global minimum at t = [0 0]T occurs in an area of translation space where a di�erent ow

is optimal.
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connection can be made between a local minimum of (F ) at F 0 2 F and a local minimum

of WORK(F;x; g(y)) over F �G if we can �t an open neighborhood inside the set S(g�) of

feasible ows which have g� as their optimal transformation, where g� is optimal for F 0.

Of the L1, L2, and L22 ground distances, only the L22 distance is guaranteed to yield

a WORK function in which a locally optimal translation must be globally optimal. The

globally optimal translation for d = L22 is the one that lines up the centroids of the two

distributions. The centroid of a weighted point set is the point from which the weighted

sum of L22 distances to the points in the set is minimized. Recall from section 6.4.1.3 that

the spatial and coordinate-wise medians are the points from which the weighted sum of

L2 and L1 distances, respectively, are minimized. In general, the optimal translation to

match two distributions with the EMD, however, is not the spatial median for d = L2 and

is not the coordinate-wise median for d = L1. Indeed, the spatial medians for x and y are

(0; 2) and (0; 0), respectively, and the coordinate-wise medians are also (0; 2) and (0; 0). In

both cases, the locally optimal translation t = [0 2]T lines up the medians, but the globally

optimal translation does not.

The magic of the EMD under translation with d = L22 does not extend to the EMD under

rotation with d = L22. In the plane, we seek a rotation angle � such that EMD(x; R�y) is

minimized. Even when the L22 ground distance is used, there can be only locally optimal

rotation angles. This is clearly shown in Figure 6.11 which contains plots of the EMD versus

� for the example in Figure 6.7(a).

6.8 Odds and Ends

We have not yet discussed the choice of ground distance function used in EMD computa-

tions. In section 6.8.1, we consider the tradeo�s in choosing betwen the Euclidean distance

and the Euclidean distance squared. One criterion of comparison is solving EMD under

transformation problems, although we consider the ground distance choice for other criteria

as well. In section 6.8.2, we briey consider the question: how fast can the EMD between

one distribution and a transformed version of another change with respect to the trans-

formation parameters. If the EMD for a given transformation is large, then the EMD for

a nearby transformation will also be large if the EMD does not change too quickly. This

information may allow a search for an optimal transformation to eliminate a region of the

search space without computing the EMD for many transformations in that region.
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Figure 6.11: Graphs of EMD v. � Showing a Locally Optimal Rotation for d = L22. (a)
EMD v. � for the 2� 2 example shown in Figure 6.7(a) with d = L22. (b) The globally and

locally optimal rotations lie in regions of the rotation space for which there are di�erent
optimal ows. The di�erence function (d11(�) + d22(�))� (d12(�) + d21(�)) and its absolute

value are the dashed and dotted plots, respectively. The plot of the absolute value shows
where the di�erence function becomes zero and the optimal ow changes.
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6.8.1 L2
2 versus L2

The EMD takes a \ground distance" function between points and builds upon it a distance

function between sets of weighted points. An appropriate ground distance is application-

dependent. In the case where the points are located in the CIE-Lab color space, it is natural

to use the Euclidean distance as the ground distance since this feature space was specially

designed so that perceptual color distance is well-approximated by the L2 distance. In other

feature spaces, the choice may not be so clear. When there is no clear reason to prefer one

ground distance over another, it is worth considering the L2-distance squared even though

L22 is not a point metric.

When comparing equal-weight distributions we would like the EMD to be metric so

that we cannot have the non-intuitive situation in which two distributions are similar to

a third but not to each other. Using an Lp ground distance guarantees that the EMD

is a metric between equal-weight distributions. Although this is not the case for L22, the

EMD is at most a factor of two away from satisfying the triangle inequality for three given

distributions. See section 4.1, formula (4.6).

Another criterion for comparing ground distances is the availability of e�cient, e�ective

lower bounds to prune unnecessary EMD computations. In section 5.1.1, we showed that the

centroid distance lower bound between equal-weight distributions is valid for both the Lp

and L22 ground distances. In section 5.1.2, we used the bound for equal-weight distributions

to get a bound on the EMD between unequal-weight distributions. We showed that the

minimum ground distance between the centroid of the lighter distribution y and the centroid

of any sub-distribution of x with the same weight as y is a lower bound on EMD(x;y).

Recall that this CLOC lower bound and the more practical CBOX lower bound apply with

any ground distance for which the equal-weight centroid bound holds, and this includes

d = L22 as well as d = L2.

Using L22 also has many advantages in computing the EMD under transformation sets.

Consider, for example, the problem of computing the EMD under translation. Applying the

FT iteration requires a solution to the optimal translation problem. We gave algorithms

for this problem for each of the L1, L2 and L
2
2 point distances, but even in the equal-weight

case there can be locally optimal translations that are not globally optimal when d = L1 or

d = L2 is used. In the equal-weight case with d = L22, there are no translations which are

only locally optimal. The L22 distance has an even bigger advantage in the FT iteration for

higher order transformation sets such as the sets of Euclidean, similarity, linear, and a�ne

transformations. Sum-of-squares optimization problems are well-studied in mathematics,

and there are solutions to the optimal transformation problem for each of the listed sets
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yl

xk

xi = yj

matchings

xi $ yl, xk $ yj

xi $ yj, xk $ yl

Figure 6.12: Matching Pairs of Points. The two possible matchings of f xi; xk g to f yj ; yl g.
Here xi = yj .

(see sections 6.4.2{6.4.3).

The fact that L22 is not a point metric often allows more \natural" optimal ows than

for Lp metrics. Consider matching point sets with the EMD. If two points from di�erent

sets are on top of each other, then there is always an optimal ow which pairs these two

points. This is easily seen with the aid of Figure 6.12. If d = Lp, then by the triangle

inequality d(xi; yl) + d(xk; yj) � d(xk; yl). Thus matching xi $ yl, xk $ yj is at least as

expensive as matching xi $ yj , xk $ yl. In fact, if xi(= yj), xk, and yl are not collinear,

then the matching with the zero cost correspondence xi $ yj is strictly less expensive.

Figure 6.13 gives examples in 1D and 2D to illustrate our previous point. The 1D

example in Figure 6.13(a) is due to Jorge Stol� ([76]). Both ows shown in Figure 6.13(a)

are optimal for d = L1 and d = L2, each requiring 6 units of work. The ow on the left

costs 36 work units with d = L22, while the more natural ow on the right costs 6 work units

and is the unique optimal ow for d = L22. Figure 6.13(b) shows an example in 2D. The

ow on the left is optimal for d = L1 and d = L2, and it is the unique optimal ow since the

duplicate point (0; 0) is not involved in a collinearity with two other points from the two

sets. The ow on the right is the unique optimal ow for d = L22. The two point sets are

close to di�ering by a translation. The correspondences on the right are a lot better for the

FT iteration to �nd the globally optimal translation. Using an Lp ground distance results in

\greedy" ows which may give wrong correspondences to the optimal transformation step

of the FT iteration.

6.8.2 Sensitivity and Growth Rate

The EMD is insensitive to small perturbations of mass locations. After all, the EMD is a

weighted average distance between points, and small changes in point locations result in

small changes in inter-point distances. More precisely, we have the following result.
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Figure 6.13: Optimal Point Set Matchings under L2 and L
2
2. The matchings are indicated

by dark lines connecting the points. (a) This is a 1D example where the point sets have
been o�set vertically for clarity. The left and right ows are both optimal for L2, while the

right ow is the unique optimal ow for L22. (b) In this 2D example, the left ow is the
unique optimal ow for L2 and the right ow is the unique optimal ow for L22.
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Theorem 14 If

jd(xi; g(yj))� d(xi; yj)j � D(g) 8i; j; (6.52)

then

jEMD(x; g(y))� EMD(x;y)j � D(g): (6.53)

Proof. Condition (6.52) implies

d(xi; g(yj)) � d(xi; yj) + D(g) 8i; j and (6.54)

d(xi; yj) � d(xi; g(yj)) + D(g) 8i; j: (6.55)

We shall use (6.54) to show that EMD(x; g(y))� EMD(x;y) � D(g). Inequality (6.55)

implies EMD(x;y)� EMD(x; g(y))� D(g) in a completely analogous fashion. Combining

these two results yields (6.53).

From (6.54), it follows that

X
i

X
j

fijd(xi; g(yj)) �
X
i

X
j

fijd(xi; yj) +D(g)min(w�; u�) 8F 2 F(x;y):

The left-hand side of the inequality decreases with the replacement of F by an optimal ow

F �(g) = (f�ij(g)) between x and g(y). Thus

X
i

X
j

f�ij(g)d(xi; g(yj)) �
X
i

X
j

fijd(xi; yj) +D(g)min(w�; u�) 8F 2 F(x;y):

The result follows by dividing both sides by min(w�; u�), and replacing F by an optimal

ow between x and y.

Note that this result holds regardless of whether or not x and y have equal total weight.

For any Lp norm, we have the reverse triangle inequality j jjAjjp�jjBjjp j � jjA�Bjjp.10

In particular,

j jjxi � (yj + t)jjp � jjxi � yj jjp j � jjtjjp:

Thus, Theorem 14 implies11

���EMDjj�jjp(x;y� t1)� EMDjj�jjp(x;y� t2)
��� � jjt1 � t2jjp: (6.56)

10Short proof. Apply the triangle inequality twice: (1) jjAjjp�jjBjjp � jjA�Bjjp, and (2) jjBjjp�jjAjjp �
jjB �Ajjp = jjA� Bjjp.

11The result (6.56) is of the same form (6.53) if we put z = y � t2. Then z � (t1 � t2) = y � t1 and

t = t1 � t2.
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In [36], Huttenlocher et al. use an analogous result for the Hausdor� distance to prune

translations during the search for a binary model pattern within a binary image. If

EMDjj�jjp(x;y� t1) � �, then EMDjj�jjp(x;y� t2) � �� jjt1 � t2jjp.
Now consider matching planar distributions with d = L2. How fast can EMD(x; R�y�t)

change with respect to the Euclidean transformation (R�; t)? Here we have

j jjxi � (R�yj + t)jj2 � jjxi � yj jj2 j � jjyj �R�yj � tjj2 � jjyj � R�yj jj2 + jjtjj2;

where the �rst and second inequalities follow from the reverse and the ordinary triangle

inequalities, respectively. But jjyj � R�yj jj2 � j�j jjyjjj2 because the length of the arc

from yj to R�yj is at least the distance between these two points. We can therefore apply

Theorem 14 with D = jjtjj2 + j�j(maxj jjyjjj2). The larger the quantity maxj jjyj jj2, the
weaker the bound (6.53). If we do not replace jjyj jj2 by maxj jjyjjj2 in D, then following

the proof of Theorem 14 shows12

���EMDjj�jj2(x; R�1y� t1)� EMDjj�jj2(x; R�2y � t2)
��� �

jjt1 � t2jj2 + j�1 � �2j
X
j

(uj=u�)jjyjjj2 if u� � w�:

Here we pay an average (instead of worst case) rotational penalty, where each point's norm

contribution is weighted by its fraction of the total distribution mass.

6.9 Some Applications

In this section, we apply the FT iteration described in section 6.3 to the problems of

illumination-invariant object recognition and point feature matching in stereo image pairs.

All experiments were conducted on an SGI Indigo2 with a 250 MHz processor. The algo-

rithms to solve the transportation problem ([32], pp. 213{229), and the optimal translation,

Euclidean, and similarity transformation problems are implemented in C, while the solutions

to the optimal linear and a�ne problems are written in Matlab.13

6.9.1 Lighting-Invariant Object Recognition

Under the assumption of a trichromatic system with a three-dimensional linear model for

the surface reectance functions of object surfaces, Healey and Slater ([28]) showed that

12More precisely, use the facts that j jjxi� (R�1
yj + t1)jj2 � jjxi� (R�2

yj + t2)jj2 j � jj(R�2
yj �R�1

yj) +

(t2 � t1)jj2 � j�2 � �1j jjyjjj2 + jjt2 � t1jj2, and
P

i
fij = uj for any feasible ow F = (fij) when u� � w�.

13Thanks to Yossi Rubner for providing his transportation problem code.
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(B)alloon (C)halk (D)ragon (L)emur (P)lant (T)iger (W)aldo

Figure 6.14: Lighting-Invariant Object Recognition { A Small Object Database. An object
database imaged under white, yellow, green, and red light is shown in rows 1, 2, 3, and 4,

respectively. For some objects, color signatures are computed over only the area outlined in
red as shown in row 1. The color signatures for all images of the same object are computed

over the same image area, although we only show the red rectangle in the images taken
under white light.

an illumination change results in a linear transformation of image pixel colors.14 In the

following experiment, we use a subset of the objects used in [28]. There are four images of

each object, one under nearly white illumination and the other three under yellow, green,

and red illumination.15 Figure 6.14 shows the seven database objects imaged under white,

yellow, green, and red light.

As in [69], we summarize each image by a set of dominant colors (without regard to

position) obtained by clustering in color space, where a color is weighted by the fraction of

image pixels classi�ed as that color. We use the clustering algorithm described in [65] in the

RGB color space with a minimum bucket size of 16 units in R, G, and B, and we discard

clusters with weight less than 0.5%. This produced color signatures with an average of 27

colors.

Our experiment consists of using each image as the query, where the desired distance

between images is the EMD under a linear transformation of the corresponding color signa-

tures (with the L2-distance squared as the ground distance between points in RGB space).

To compare a database signature x to a query signature y, we applied the FT iteration

twice (with G = L): once to transform y so that it is as close as possible to x, and once

14This result also holds for images of scenes with more than one object if all surfaces of all objects have

the same basis reectance functions.
15Thanks to David Slater for providing these images.
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Figure 6.15: Lighting-Invariant Object Recognition { Query Results. The label at the top of

each column shows the query image. The row labels are the illuminants (W)hite, (Y)ellow,
(G)reen, and (R)ed. The entry in position (Z;AX) is the rank of image AZ in the result for

query image AX . For example, the dragon image for the yellow illuminant is returned as
the second closest image when the query image is the dragon image for the green illuminant

(Z = Y ,A = D,X = G { see the boxed entry). The number at the bottom of each column
is the total of the ranks in that column, where 10 is the ideal value. The query precision
is perfect for 21 of the 28 queries, and the average rank sum is 10.4. One run of the FT

iteration required an average of 7:4 steps and 4:6 seconds to converge.

to transform x so that it is as close as possible to y. Both trials were started with the

initial transformation equal to the identity map. We use the smaller of these results as

the distance between x and y. The minimum result is equal to EMDL(x;y) if a globally

optimal transformation is found, and is greater than EMDL(x;y) otherwise. Ideally, the

closest images to the image of an object are the other three images of the same object.

Figure 6.15 shows the results of our experiment.16 These results are excellent, but not

perfect as in [28]. It is possible that we are not �nding the globally optimal transformation

in some comparisons. Also, the linear transformation model loses accuracy when we replace

the color of a pixel by the centroid of a cluster in color space.

6.9.2 Feature Matching in Stereo Images

As we described in section 6.1, the partial EMD under a transformation set can be used

to compute the best partial matching of two point sets when one set is free to undergo

16The results obtained with all signatures computed over entire images are very similar to the given results.
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some transformation.17 This is exactly the problem we have in matching features extracted

from images of the same scene taken from di�erent viewpoints. The fraction parameter

 compensates for the fact that only some features appear in both images, and the set

parameter G accounts for the appropriate transformation between corresponding features.

In our experiments, we extract 50 features of a gray level image using an algorithm due to

Shi and Tomasi ([74]).18 The points in the distribution summary of an image are its feature

locations (measured in pixels), and the weight of each point is one.19 The ground distance

is the L2-distance squared between image coordinates. We set  = 0:5, so only 25 of the 50

features per image will be matched. Each of the three examples given below uses a di�erent

transformation set G, although the initial transformation used in the FT iteration is the

identity map in all cases.

In our �rst example, we match features in two images of a motion sequence in which the

camera moves approximately horizontal and parallel to the image plane. Figure 6.16(top)

shows the results of applying the FT iteration with G = T in an attempt to minimize the

partial EMD under a translation of the point features. For this camera motion, all image

points translate along the same direction, but the amount of translation for an image point

is inversely proportional to the depth of the corresponding scene point ([80]). Thus, the

model of a single translation vector is not accurate in general. It is accurate for a set of

features that correspond to scene points with roughly the same depth. In this example, the

FT iteration matched features on objects toward the back of the table.

The images in the example depicted in Figure 6.16(middle) are also from a motion

sequence. Here, however, the camera motion is a forward motion perpendicular to the

image plane. The match results shown are the result of applying the FT iteration with

G = S in an attempt to minimize the partial EMD under a similarity transformation. In

our �nal example, we match features extracted from images of a toy hotel taken from two

di�erent viewpoints. Here we apply the FT iteration with G = A in an attempt to minimize

the partial EMD under an a�ne transformation of feature locations. The match results are

shown in Figure 6.16(bottom). In all three cases, it appears that the FT iteration converged

to a globally optimal transformation. In many examples, however, running the iteration

once leads to only a locally optimal solution.

17Recall that the same code used to solve the transportation problem can be used to solve the assignment

problem and to compute the partial EMD.
18Thanks to Stan Birch�eld for his implementation of this feature extraction algorithm.
19Using the gray levels in a small area around a feature in addition to its location may improve matching

results. However, corresponding pixels in images of a scene from di�erent viewpoints may have gray level

di�erences which are not small. Therefore, using gray level information may hurt matching results if we do

not account for such di�erences.
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Figure 6.16: Point Feature Matching in Stereo Images { Results. The �rst two columns

in each row show two images and the locations of 50 features in each image. The last
column shows the result of matching the features using the FT iteration with an initial
transformation equal to the identity map. Here  = 0:5, so only 25 features are matched in

each example. We report the number of steps S and the time T in seconds (s) for the FT
iteration to converge. (top) G = T , S = 11, T = 1:77s. (middle) G = S, S = 4, T = 1:08s.

(bottom) G = A, S = 8, T = 36:21s.
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