
EFFICIENT MAINTENANCE AND RECOVERY OF DATA

WAREHOUSES

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Wilburt Juan Labio

August 1999

c
 Copyright 1999 by Wilburt Juan Labio

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Hector Garcia-Molina (Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Dallan Quass

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Jennifer Widom

Approved for the University Committee on Graduate Studies:

iii

Abstract

Data warehouses collect data from multiple remote sources and integrate the information as

materialized views in a local database. The materialized views are used to answer queries

that analyze the collected data for patterns, anomalies, and trends. This type of query

processing is often called on-line analytical processing (OLAP). So that OLAP queries can

be posed and answered easily, the data from the remote sources is \cleansed" and translated

to a common schema.

The warehouse views must be updated when changes are made to the remote information

sources. Otherwise, the answers to OLAP queries are based on stale data. Answering

OLAP queries based on stale data is clearly a problem especially if (answers to) OLAP

queries are used to support critical decisions made by the organization that owns the data

warehouse. Because the primary purpose of the data warehouse is to answer OLAP queries,

only a limited amount of time and/or resources can be devoted to the warehouse update.

Hence, we have developed new techniques to ensure that the warehouse update can be done

e�ciently.

Also, the warehouse update is not devoid of failures. Since only a limited amount of

time and/or resources are devoted to the warehouse update, it is most likely infeasible to

restart the warehouse update from scratch. Thus, we have developed new techniques for

resuming failed warehouse updates.

Finally, warehouse updates typically transfer gigabytes of data into the warehouse. Al-

though the price of disk storage is decreasing, there will be a point in the \lifetime" of a data

warehouse when keeping and administering all of the collected is unreasonable. Thus, we

have investigated techniques for reducing the storage cost of a data warehouse by selectively

\expiring" information that is not needed.

iv

Acknowledgments

This thesis is dedicated to my beloved wife Lena. Without her patience, love, caring and

encouragement, it would have not been possible for me to �nish my degree. This thesis

took �ve years to �nish. Lena has sacri�ced so much and has been with me every step of

the way. She was my inspiration in each page of this thesis.

Five years really does not seem that long because my advisor, Hector Garcia-Molina,

has made each day worthwhile. Hector taught me how to do good research and how to

have fun at the same time. I thank Hector for his tutelage, support, and for just being the

\dream" advisor I had hoped for coming into Stanford.

I thank my parents, Gregorio and Purisima, and my brother, Nathaniel, for their eternal

support. Whenever I was down, they were there for encouragement. Whenever I was up,

they were there to enjoy the fruits of my labor with me.

I thank my co-authors especially Brad Adelberg, Dallan Quass, Ramana Yerneni and

Jun Yang. I have learned much from each of them.

I thank my co-implementors of WHIPS: Claire Cui, Himanshu Gupta, Jun Yang, and

Yue Zhuge. It has been fun cramming for those demos.

I thank Je� Ullman and Jennifer Widom. What I learned from their classes was a solid

foundation of my research.

I thank Arturo Crespo { for opening my eyes to the beauty of nature; Narayanan

Shivakumar { for making me realize that things are easier than what they seem to be; and

Tom Schirmer { for the enjoyable lunches, dinners and afternoon visits.

Finally, I thank God. I believe nothing good comes from man without the blessing of

God : : : and I believe this thesis is good!

v

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Research Issues . 3

1.2 Overview of Warehouse Creation and Update 4

1.3 Contributions and Thesis Outline . 8

2 Detecting Source Changes 11

2.1 Introduction . 11

2.1.1 Problem Formulation . 12

2.1.2 Di�erences with Joins . 18

2.1.3 Outline . 19

2.2 Using Compression . 20

2.2.1 Set Di�erentials using Outerjoins . 20

2.2.2 Bag Di�erentials using Outerjoins 22

2.2.3 Compression Techniques . 25

2.2.4 Set Di�erentials and Compression 28

2.2.5 Bag Di�erentials and Compression 31

2.3 The Window Algorithm . 33

2.3.1 Window for Set Di�erentials . 33

2.3.2 Window for Bag Di�erentials . 36

2.4 Performance Evaluation . 38

2.4.1 Analytical IO Comparison . 38

vi

2.4.2 Evaluation of Implemented Algorithms 42

2.5 Related Work . 46

2.6 Chapter Summary . 48

3 Maintenance of the Data Warehouse 49

3.1 Introduction . 49

3.2 Preliminaries . 53

3.3 View and VDAG Strategies . 55

3.3.1 View Strategies . 55

3.3.2 VDAG Strategies . 58

3.3.3 Problem Statement . 60

3.4 Optimal View Strategy . 62

3.5 Minimizing Total Work . 65

3.5.1 Optimal VDAG Strategies . 65

3.5.2 Expression Graphs . 66

3.5.3 Classes of VDAGs with Optimal VDAG Strategies 68

3.5.4 MinWork Algorithm . 69

3.5.5 Practical Issues . 72

3.6 Optimal 1-way VDAG Strategies . 73

3.7 Experiments and Discussion . 77

3.8 Related Work . 81

3.9 Chapter Summary . 82

4 Optimizing the View Hierarchy 84

4.1 Introduction . 84

4.2 General Problem . 86

4.2.1 The VIS Problem . 86

4.2.2 Example . 90

4.3 Assumptions . 92

4.3.1 Database Model . 92

4.3.2 Change Propagation Model . 93

4.4 Optimal Solution Using A* Algorithm . 94

4.4.1 Algorithm Description . 94

4.4.2 Experimental Results . 98

vii

4.5 Rules of Thumb . 98

4.5.1 Schema and Notation . 100

4.5.2 When to Materialize Supporting Views 102

4.6 Heuristic Approaches . 109

4.6.1 Algorithm Descriptions . 109

4.6.2 Performance Results . 112

4.7 Additional Experiments . 115

4.7.1 Are Views or Indices Better When Space is Constrained? 116

4.7.2 The Importance of Propagating Updates Separately 117

4.7.3 Sensitivity Analysis . 120

4.8 Related Work . 121

4.8.1 Physical Database Design . 121

4.8.2 Rule Condition Maintenance . 124

4.9 Chapter Summary . 125

5 Expiring Warehouse Data 126

5.1 Introduction . 126

5.2 Framework . 129

5.3 Extension Marking . 134

5.3.1 Aggregates . 137

5.4 Extension Marking With Constraints . 139

5.4.1 Constraint Language . 139

5.4.2 Modifying Maintenance Subexpressions 142

5.4.3 Deriving NeededC . 145

5.5 Discussion . 151

5.6 Dynamic Setting . 153

5.7 Related Work . 155

5.8 Chapter Summary . 156

6 Recovery of the Load Process 157

6.1 Introduction . 157

6.2 Normal Operation . 163

6.2.1 Component DAG Design . 163

6.2.2 Successful Warehouse Load . 165

viii

6.3 Warehouse Load Failure . 166

6.3.1 Component Failures . 166

6.3.2 Data for Resumption . 167

6.3.3 Redoing the Warehouse Load . 167

6.4 Properties for Resumption . 168

6.4.1 Safe Filtering . 170

6.4.2 Identifying Contributors . 173

6.4.3 The Trades Example Revisited . 178

6.4.4 Practical Issues . 180

6.5 The DR Resumption Algorithm . 180

6.5.1 Example using DR . 181

6.5.2 Filters . 184

6.5.3 Re-extraction Procedures . 187

6.5.4 The Design and Resume Algorithms 188

6.5.5 Correctness of DR . 191

6.6 DR and Logging . 192

6.6.1 Using The Logs . 193

6.6.2 Log Placement . 197

6.7 Experiments . 199

6.7.1 Study of Transform Properties . 200

6.7.2 Resumption Time Comparison . 200

6.8 Chapter Summary . 208

7 WHIPS: A Data Warehouse System Prototype 210

7.1 Introduction . 210

7.2 WHIPS Architecture . 211

7.2.1 Data Representation . 211

7.2.2 Overview of WHIPS Components . 213

7.3 Warehouse Maintainer . 214

7.3.1 View Representation . 215

7.3.2 Deletion Installation Under DUP Representation 217

7.3.3 Maintenance Expressions . 218

7.3.4 Summary . 223

ix

7.4 Experiments . 223

7.4.1 View Representation . 224

7.4.2 Deletion Installation . 227

7.4.3 Aggregate Maintenance Expressions 228

7.5 Related Work . 230

7.6 Chapter Summary . 232

8 Conclusions and Future Work 233

8.1 Parallel VDAG Maintenance . 234

8.2 VDAG Design . 235

8.3 Cost-based Load Work
ow Recovery . 236

8.4 Recovery of View Maintenance . 236

8.5 Reducing the Deployment Time . 238

8.6 Approximate Query Answering . 240

8.7 Forecasting Warehouse Data . 240

A Chapter 3 Proofs 242

B Chapter 4 Cost Model 257

C Chapter 5 Proofs 261

Bibliography 272

x

List of Tables

2.1 List of Variables . 38

2.2 Comparison of Algorithms . 39

2.3 List of Parameters . 42

2.4 distcrit and dispcrit MB . 44

3.1 Number of View Strategies for a View De�ned Over n Views 57

4.1 Comparison of A* and Exhaustive Algorithms. 98

4.2 Notation Used in Rules of Thumb. 100

4.3 View Schemas. 101

4.4 Views Sets Pruned by NOGI. 112

4.5 Complex View Schemas. 113

5.1 Summary of Framework . 133

5.2 Comparison of NeededC and Needed Using ClerkCust 152

5.3 Comparison of NeededC and Needed Using TPC-D Query Q3 152

5.4 Comparison of NeededC and Needed Using TPC-D Query Q5 152

6.1 Properties and Functions of Transforms. 178

6.2 Declared and Inferred Properties of Input Parameters. 178

6.3 Batching Overhead (Lineitem) . 206

6.4 Batching Overhead (Q3) . 206

7.1 V1 . 218

7.2 ByParts . 218

7.3 4V1 . 220

7.4 5V1 . 220

xi

7.5 ByPartsSD . 220

7.6 5ByParts . 222

7.7 ByPartsSD [5ByParts . 222

7.8 4ByParts . 222

B.1 Cost Formulas . 259

B.2 Query-Optimizer Cost Formulas . 260

xii

List of Figures

1.1 The Data Warehousing Architecture . 2

1.2 A Simple VDAG Example . 5

2.1 Example F1 and F2 for Bag Di�erentials . 17

2.2 Sort Merge Outerjoin as a Set Di�erential Algorithm 21

2.3 Matching Algorithm . 24

2.4 Sort Merge Outerjoin as a Bag Di�erential Algorithm 25

2.5 Ngood days for Di�erent File Sizes . 27

2.6 Sort Merge Outerjoin Enhanced with the hK; bi Compression Format . . . 28

2.7 Sort Merge Outerjoin Enhanced with the hK; b; pi Compression Format . . 29

2.8 Sort Merge Outerjoin Enhanced with the hI; b; pi Compression Format for

Bag Di�erential . 32

2.9 The window Algorithm Data Structures . 33

2.10 Window Algorithm . 34

2.11 Window Algorithm for Bag Di�erentials . 37

2.12 IO Cost Comparison of Algorithms . 40

2.13 IO Cost and Compression Factor . 40

2.14 IO Cost and Varying Update and Insertion Rates 41

2.15 The Evaluation System . 41

2.16 E�ect of Distance on the Number of Extra Messages 43

2.17 E�ect of the Memory Size on the Number of Extra Messages 45

2.18 Comparison of the CPU Times . 46

2.19 Comparison of the Total Times . 46

3.1 Example VDAG of Materialized Views . 50

3.2 More Complex VDAG . 50

xiii

3.3 Example VDAG . 54

3.4 VDAG of a TPC-D Warehouse . 54

3.5 MinWorkSingle Algorithm . 64

3.6 VDAG . 67

3.7 Expression Graph (EG) . 67

3.8 MinWork Algorithm . 70

3.9 ConstructEG Algorithm . 71

3.10 Intuition of Prune . 74

3.11 Problem VDAG . 74

3.12 ConstructSEG Algorithm . 75

3.13 Prune Algorithm . 76

3.14 Q3 View Strategies . 78

3.15 Q5 View Strategies . 78

3.16 Q3 View Strategies Under Di�erent Changes 79

3.17 VDAG Strategies . 79

4.1 Warehouse with Primary View. 85

4.2 Warehouse with Supporting View. 85

4.3 VIS-Exhaustive Algorithm . 88

4.4 Example Schema. 91

4.5 A* Algorithm. 96

4.6 A Sample Solution Space. 99

4.7 Support for Rule 4.5.1 . 104

4.8 Support for Rule 4.5.2 . 105

4.9 Support for Rule 4.5.3. 107

4.10 Support for Rule 4.5.4. 108

4.11 A Left-deep Join Tree Considered by Rete. 111

4.12 Star Join with Low Update Rate. 114

4.13 Linear Join with High Update Rate. 114

4.14 E�ects of Space on Update Cost (Low Update Rate). 118

4.15 E�ects of Space on Update Cost (High Update Rate). 118

4.16 Evolution of the Physical Design. 119

4.17 E�ects of Simulating Updates with Insert/Delete. 119

xiv

4.18 Sensitivity of Optimal Solutions to Insert/Delete Rates. 120

5.1 Current state of O, L, and V . 127

5.2 Extension Partition of T . 131

5.3 E�ect of Expiration on T� and T exp . 131

5.4 E�ect of Constraints on T+ and T� . 131

5.5 Algorithm For Modifying a Maintenance Subexpression 144

5.6 ClosureC . 149

6.1 Load Work
ow . 159

6.2 Applicability of Algorithms . 160

6.3 Component DAG with Properties . 164

6.4 Redo Algorithm . 168

6.5 Safe Filtering of x2 . 169

6.6 Unsafe Filtering of x2 . 169

6.7 Example Component DAG . 174

6.8 Component DAG with Replicated Outputs 174

6.9 Identifying Attributes and Transitive Properties 181

6.10 Re-extraction Procedures and Filters Assigned 181

6.11 Assigning Input Parameter Filters . 186

6.12 Assigning Re-extraction Procedures . 188

6.13 DR Algorithm . 189

6.14 Removing Redundant Filters . 191

6.15 Assigning Input Parameter Filters . 196

6.16 Assigning Re-extraction Procedures . 197

6.17 DR-Log Algorithm . 198

6.18 Log Placement Algorithm . 199

6.19 Properties of Sagent Transforms and Input Parameters 200

6.20 Fact Table Creation DAG . 201

6.21 TPC-D View Creation DAG . 201

6.22 Resumption Time (Lineitem) . 202

6.23 Resumption Time (Q3) . 202

6.24 Savepoint Overhead (Lineitem) . 204

6.25 Savepoint Overhead (Q3) . 204

xv

6.26 Save vs. DR (Lineitem) . 206

6.27 Save vs. DR (Q3) . 206

6.28 Batch vs. DR (Lineitem) . 207

6.29 Batch vs. DR (Q3) . 207

7.1 Conceptual Representation . 211

7.2 Physical Representation . 211

7.3 WHIPS Components . 213

7.4 DUP Representation (V
dup
1) . 215

7.5 COUNT Representation (V count
1) . 215

7.6 Installing 4L Without Duplicates . 225

7.7 Installing 5L Without Duplicates . 225

7.8 Installing 4L With Duplicates . 226

7.9 Installing 5L With Duplicates . 226

7.10 Computing 4LO and 5LO . 227

7.11 Delta-computation and installation . 227

7.12 Cursor-delete vs. SQL-delete . 228

7.13 Cursor-delete vs. SQL Delete (with index) 228

7.14 Maintaining Aggregate View Vmany . 229

7.15 Maintaining Vmany . 229

7.16 Maintaining Vmany with Indices . 230

7.17 Maintaining Vfew . 230

A.1 Simpli�ed Expression Graph . 250

xvi

Chapter 1

Introduction

Many organizations collect vast amounts of information about their activities. For in-

stance, a large retail store (e.g., WalMart) typically collects gigabytes of point-of-sales data

per month [Car97]. The same retail store probably collects other types of information as

well, such as customer data, inventory data, advertisement data, employee data, etc. An

increasing number of organizations are realizing that the vast amounts of collected data can

and must be used to guide their business decisions [Inm96]. Typically, the management of

the organization wants to answer complex analytical queries (e.g., \What is the average rev-

enue for each product category?") based on the collected data. However, answering these

queries by accessing the organization's various data sources poses the following problems.

� The data sources are distributed across the organization. Hence, answering the ana-

lytical queries can be expensive since distributed data sources need to be accessed.

� The data sources are not optimized to handle complex analytical queries. For instance,

inventory data sources are on-line systems that process fairly simple queries (e.g.,

\Insert a new order," \Find the last order of product X").

� The data sources are not centrally administered and may have inconsistencies. For

instance, addresses may have di�erent formats in the various sources. In general, the

data from the various sources must be \cleansed" and made consistent to answer the

analytical queries.

To alleviate these problems, the data warehousing architecture has been proposed (e.g.,

[Inm92]). In this architecture, the information from the various data sources is integrated

1

CHAPTER 1. INTRODUCTION 2

ExtractorExtractor Extractor

Data
Sales

analyst

Analytical
Queries

Data Warehouse

Inventory
Data

Customer
Data

Cleansing Process

Figure 1.1: The Data Warehousing Architecture

into a central database (Figure 1.1). Custom extractors are created to obtain the data from

the various sources. The extracted data is then cleansed to resolve any inconsistencies. The

cleansed data from the various sources is then �ltered and integrated. We call the process

that performs the cleansing and the integration of the source data the cleansing process.

The cleansed and integrated data is then entered into the data warehouse. The extraction

and cleansing of the source data is done in advance of the queries to minimize the processing

required at query time.

Building a data warehouse provides a number of bene�ts.

� The processing of analytical queries is simpli�ed because only the data warehouse

needs to be accessed. As mentioned, the data extraction and the data cleansing are

done a priori. Also, additional structures can be built in the data warehouse to further

improve the e�ciency of query processing. For instance, indices as well as summaries

CHAPTER 1. INTRODUCTION 3

of the warehouse data can be created. Many analytical queries can be processed more

e�ciently by accessing summary data instead of the unsummarized or \detail" data

[LMSS95, SDJL96].

� The warehouse data can keep a historical record of the various source data. By

retaining all of this data, the current activity of an organization can be compared

against history. Historical data can also be used for forecasting the future activities

of an organization.

Numerous corporations have built data warehouses because of these bene�ts. However,

once a data warehouse is successfully created, managing and maintaining the data warehouse

is very challenging. We outline these challenges in Section 1.1. In this thesis, we provide

new techniques that will make the design, the deployment and the maintenance of a data

warehouse more e�cient and manageable. We also describe a research prototype that

integrates and implements many of the solutions proposed.

1.1 Research Issues

In order to successfully maintain a data warehouse, a number of interesting research issues

need to be resolved. For a survey, see [CD97, Wid95]. We outline a few of the interesting

research areas, and then describe the speci�c problems addressed in this thesis.

� E�cient Maintenance of a Data Warehouse. When the underlying data sources

change, the warehouse data needs to be updated to re
ect the changes. (Other-

wise, the answers to analytical queries are based on stale warehouse data.) Since the

primary purpose of a data warehouse is to answer analytical queries, only a limited

amount of time and computing resources can be allocated to the update. (Typically,

the warehouse update is performed o�ine, i.e., during the night, or during the week-

end when the query load is low.) Since updating the warehouse involves complex

processing of large amounts of data, it is a challenge to �nish the update during the

allocated time. To answer this challenge, developing and integrating numerous tech-

niques is required. More speci�cally, e�cient change detection algorithms are required

at the sources [LGM96], and these algorithms need to be combined with algorithms

that e�ciently compute and install the changes to the warehouse data [MQM97].

CHAPTER 1. INTRODUCTION 4

� Lowering the Storage Requirements of a Data Warehouse. Every time a data ware-

house is created or updated, gigabytes or even terabytes of data are loaded into the

data warehouse [JMS95]. Even though disk space keeps getting cheaper, the high cost

of administering numerous disks makes it impractical to keep all of the warehouse

data. Since some of the warehouse data may be accessed more often than other data,

selecting the appropriate data to compress, archive, or simply remove is an important

issue [GMLY98].

� Answering Analytical Queries E�ciently. Answering analytical queries may still take

hours even though it only requires accessing the data warehouse. In order to improve

the query processing, selecting the appropriate summary data and indices to create

is crucial [Gup97]. Once the appropriate summary data is selected, algorithms that

translate analytical queries to use the summary data are required [SDJL96]. It may

also be acceptable and more e�cient to compute approximate answers to analytical

queries as opposed to computing exact answers [AGPR99].

� Recovery of the Warehouse Load. When data is loaded into the warehouse, a signi�-

cant amount of time is spent on cleansing the extracted data. Because the cleansing

process involves complex processing of large amounts of data, it is not devoid of

failures. Unfortunately, the cleansing process is outside the control of the back-end

database of the data warehouse [Sag98]. Thus, in practice, we cannot rely on the

back-end database to recover failed warehouse loads. In order to avoid \redoing" the

entire cleansing process in case of failures, it is crucial to develop recovery algorithms

that can resume a warehouse load that failed during the cleansing process.

Before we describe the speci�c problems we address in this thesis, we introduce the

warehouse model that we work with. We also introduce some notation that will be used

throughout the thesis.

1.2 Overview of Warehouse Creation and Update

Warehouse Creation

Conceptually, a data warehouse is created using the following steps.

1. Extraction of source data.

CHAPTER 1. INTRODUCTION 5

1 V2 V3

V4

V

V5

Data Warehouse

Figure 1.2: A Simple VDAG Example

2. Cleansing of extracted data.

3. Materialized view initialization.

We now discuss each step in turn.

When a warehouse is created, data is extracted from the various remote data sources and

is used to initialize the warehouse. We assume the warehouse data is stored in a relational

database, referred to as the warehouse database for conciseness. We do allow duplicate

tuples in any relation, supporting bag semantics [Ull88]. Since the remote data sources may

not be relational, the extractors are responsible for transforming the data into the relational

model. (See [UW97] for algorithms for transforming data of a di�erent data model into the

relational model.) Hence, whether the remote data source is a relational database, an IMS

database or a
at �le, the extractor outputs the source data in the relational model. That

is, for each remote data source, the extractor obtains a set of tables f T g, and each table

T is a bag of tuples.

The extracted data is then cleansed by a cleansing process (see Figure 1.1). In Chapter 6,

we will show examples of typical operations involved in the cleansing process.

The cleansed data is used to initialize the warehouse data. The warehouse data is

modeled using a view directed acyclic graph (VDAG) as shown in Figure 1.2. Each node

V in the VDAG represents a materialized view containing warehouse data. A materialized

CHAPTER 1. INTRODUCTION 6

view V is a query over a set of tables from the sources and/or over other materialized

views, whose result is computed and stored in the data warehouse. The query is called the

de�nition of the materialized view V . The de�nition of V involves projection, selection, join,

and aggregation operations, and corresponds to SELECT-FROM-WHERE-GROUPBY SQL queries.

Although this thesis deals with a restricted form of view de�nition (e.g., HAVING clauses are

not considered), we believe the view de�nition considered is su�ciently general.

An edge (Vj ! Vi) in the VDAG indicates that the de�nition of view Vj refers to view

Vi (i.e., Vi is in the FROM clause of Vj 's de�nition). If a view V has no outgoing edges,

this indicates that V is de�ned over remote data sources. For simplicity, we assume that

a view V is de�ned only over remote data sources, or only over views at the warehouse.

We call views de�ned over remote data sources base views, and views de�ned over other

views (at the warehouse) derived views. Base views are de�ned using SELECT-FROM-WHERE

SQL queries over source tables. Although we do consider a powerful base view de�nition

language, base views are often de�ned to simply copy source tables. Derived views are

de�ned using SELECT-FROM-WHERE-GROUPBY SQL queries over other warehouse views.

The cleansed data is �rst inserted into the base views. The derived views are then

initialized (in topological order) by submitting their de�nition queries to the warehouse

database.

In today's warehouses, the base view data is often obtained by extracting and cleansing

on-line transaction processing (OLTP) source data. The resulting base views are often

called \dimension tables" or \fact tables." The fact tables are also often called \detail

data." Derived views, often called \summary tables," are de�ned over the base views to

summarize the detail data. Note however that derived views, as we have de�ned above,

are more general than summary tables which typically join dimension and fact tables, and

aggregate the result of the join. Analytical or On-Line Analytical Processing (OLAP)

queries are posed in terms of the warehouse views, and are answered by simply submitting

the query to the warehouse database.

Warehouse Update

When the data at the remote sources changes (e.g., there are new sales), the materialized

views in the warehouse need to be updated to re
ect the source changes. One strategy in

updating the data warehouse is to rebuild the warehouse from scratch. However, usually

incremental maintenance of the warehouse is much more e�cient. In this thesis, we focus

CHAPTER 1. INTRODUCTION 7

on developing techniques for incremental warehouse updates.

Conceptually, a data warehouse is (incrementally) updated using the following steps.

1. Extraction of source data changes.

2. Cleansing of extracted changes.

3. Materialized view maintenance.

The warehouse update can occur immediately after the source data changes. We call this

the immediate warehouse update. In today's warehouses, the changes to the remote sources

are often not detected and propagated to the warehouse immediately for two reasons. First,

the remote sources are often heavily-loaded OLTP sources that allot the extractor a short

time window to detect changes. Thus, when a source change does happen, it may not occur

within the allotted time window for detecting changes. Second, even after the changes have

been detected, data warehouse resources are only available to compute and install the deltas

to the warehouse views when the query load at the warehouse is low. Hence, it is important

to support a deferred warehouse update wherein changes at the sources are extracted when

the administrators of the data sources indicate it is appropriate to do so. Furthermore, the

detected changes are then propagated periodically when the query load at the warehouse

is low. The contributions we make in this thesis can support deferred warehouse update as

well as immediate warehouse update.

We now discuss each step of the warehouse update in turn. During the warehouse

update, the extractors are used to detect the changes of the remote sources. For each

table T obtained from each remote source by the extractors during warehouse creation, the

extractor detects the insertions to T (denoted 4T), the deletions to T (denoted 5T), and

the updates to T (denoted 4�T).

The detected deletions and insertions are then cleansed by the cleansing process. The

cleansing process for the warehouse update is probably di�erent from the cleansing pro-

cess used for warehouse creation. In particular, the cleansing process may use advanced

algorithms ([ZGMHW95]) that ensure that the changes to the base views are computed

consistently given the changes detected from the remote data sources. Assuming such al-

gorithms are in place, the output of the cleansing process is a set of correct base view

changes.

CHAPTER 1. INTRODUCTION 8

The changes of the base views are not applied directly to the base views. Instead they

are computed and stored in delta tables. We assume that 4V contains the insertions to V ,

and 5V contains the deletions to V , and 4�V contains the updates to V . Employing delta

tables allows standard view maintenance expressions to be used to compute the changes

of the the derived views. That is, if V is a derived view, a view maintenance expression

based on V 's de�nition is used to compute 4V , 5V , and 4�V . The warehouse update

must also install the changes computed for the warehouse views. That is, the tuples in 4V

are inserted into V , and the tuples in 5V are deleted from V , and the tuples in 4�V are

updated.

Warehouse Load

Finally, we use the term warehouse load to refer to the process of warehouse creation or

warehouse update. That is, whenever source data is loaded into the warehouse, the process

is called a warehouse load.

1.3 Contributions and Thesis Outline

In this thesis, we focus on: (1) reducing the warehouse update cost; (2) lowering the ware-

house storage requirement; and (3) developing algorithms for recovering the warehouse load

in case of failures. We now give an overview of our contributions in these three areas.

E�cient Change Detection (Chapter 2)

The �rst step in the warehouse update is change detection. Since many data sources allot a

short time for the extractor to detect changes, change detection must be done as e�ciently

as possible. Unfortunately, as we will discuss in Chapter 2, the extractor is often tasked

to detect changes by comparing large \snapshots" of the source data. We reduce the

problem of change detection given the snapshots to performing an outerjoin between the

old and new snapshots. Although the outerjoin operation can detect all and only the

changes, performing an outerjoin can be too expensive. We develop approximate change

detection algorithms that can be six times more e�cient than performing an outerjoin.

These algorithms may miss detecting updated source tuples or may report unchanged source

tuples as both deleted and inserted. However, we show that in practice, the approximate

change detection algorithms will most likely detect all the changed tuples.

CHAPTER 1. INTRODUCTION 9

E�cient View Maintenance (Chapter 3)

Once the remote source changes are detected and cleansed, the changes to the warehouse

views need to be e�ciently computed and installed (i.e., the third step of the warehouse

update). In Chapter 3, we show that there are numerous \strategies" for performing the

view maintenance step of the warehouse update. We then develop e�cient algorithms that

pick good strategies. We prove that under a reasonable cost model, the strategies picked

are optimal for each individual view, and are optimal for a large class of VDAGs. We show

experimentally that the resulting maintenance time using the strategies picked can be �ve

times shorter than the maintenance time of the conventional strategies.

Choosing Additional Structures to Improve Warehouse Update (Chapter 4)

In Chapter 4, we show that the warehouse update can be improved further by creating

additional indices and views. The problem then is to choose the appropriate combination

of indices and views to add. We show in Chapter 4 that there are too many choices to

consider and an exhaustive algorithm is infeasible. We develop an algorithm based on A*

search that picks the optimal combination of indices and views, but prunes as many as 99%

of the choices. Because of the enormity of the search space, this algorithm may still be too

slow. Hence, we develop greedy algorithms that may pick sub-optimal combinations but

are much more e�cient than the A*-based algorithm.

Selective Archiving of Warehouse Data (Chapter 5)

Because of recent developments in query answering using views, it is reasonable to assume

that most of the OLAP queries can be answered using only the derived views. That is,

the base views are used mostly for computing changes to derived views, but rarely for

answering OLAP queries. In Chapter 5, we develop a constraint language that can be used

over the base views (as well as derived views). We show that the language can describe

many types of constraints such as append-only, referential integrity, and key constraints.

Using the declared constraints, we develop an algorithm that identi�es base view tuples that

will never be used in computing the changes of the derived views. Under the assumption

that most OLAP queries can be answered using derived views, these base view tuples can

be archived, resulting in a signi�cant reduction of storage cost. For instance, we show

that with appropriate append-only constraints, close to 100% of typical detail data can be

archived. Although summary data can be archived also using the same method, we predict

CHAPTER 1. INTRODUCTION 10

that archiving detail data will su�ce in reducing storage requirements since most data in

the warehouse is detail data.

Recovery Algorithms for the Cleansing Process (Chapter 6)

The cleansing process of the warehouse load (i.e., the second step of warehouse creation and

warehouse update) is often done outside the control of the warehouse database. Since the

cleansing process is not devoid of failures, recovery algorithms are required to avoid redoing

the entire cleansing process in case of failures. As we will discuss in Chapter 6, developing

a recovery algorithm is di�cult because, for e�ciency reasons, intermediate results of the

cleansing process are often not saved in stable storage. Even if some intermediate results

are saved, it is still very di�cult to deduce what processing does not need to be redone.

The reason for this di�culty is that the cleansing process is quite complex and may involve

user-de�ned transformations of the extracted data. In Chapter 6, we develop a recovery

algorithm called DR that avoids redoing the entire cleansing process in case of failures. DR

does not rely on any low-level details of the cleansing process, but instead relies on high-

level properties of the transformations used in the cleansing process. We show that DR can

be much better than redoing the cleansing process, or dividing the cleansing process into

stages and redoing incomplete stages. We also develop a hybrid algorithm that combines

DR with staging.

The WHIPS Prototype (Chapter 7)

We present the WHIPS (WareHouse Information Processing at Stanford) prototype in

Chapter 7. WHIPS is not a new database system. It is a distributed application that

runs on top of the database, and that manages view maintenance. In Chapter 7, we discuss

the design decisions that were made in developing WHIPS. We show through experiments

why the design decision made were appropriate. These decisions provide guidelines for

anyone developing data warehouse management software that runs on top of a database.

The algorithms and techniques developed in this thesis build on previous work in view

maintenance, rule condition maintenance, database recovery, and query processing. We

discuss related work in the relevant chapters.

Chapter 2

Detecting Source Changes

2.1 Introduction

In this chapter, we focus on the detection and extraction of changes to the remote data

sources. The detection and extraction of changes depends on the facilities at the source. If

the source is sophisticated, say a relational database system with triggers, then this process

is relatively easy. In many cases, however, the source does not have advanced facilities

available for detecting changes (e.g., legacy sources), and there are essentially three ways

to detect and extract changes [IC94]:

1. The application running on top of the source is altered to send the changes to the

warehouse.

2. A system log �le is parsed to obtain the relevant changes (as done in the IBM Data

Propagator [Gol95]). Since log �les are used for recovery, this approach may not

require any modi�cation to the application.

3. The changes are inferred by comparing a current source snapshot with an earlier one.

Typically, the snapshots used are the same ones generated for backup, so this ap-

proach may not require modi�cation to the application either. We call the problem of

detecting di�erences between two source snapshots the snapshot di�erential problem;

it is the problem we address in this chapter.

Although the �rst two methods are usually preferred, they do have limitations and dis-

advantages. The �rst method requires that existing code be altered. In most cases the

11

CHAPTER 2. DETECTING SOURCE CHANGES 12

code is so \shopworn" that additional modi�cations are problematic. Since the changes

are recorded as they happen, this method also entails extra processing on top of normal

operations. The second method also has its di�culties. For instance, it is often the case

that DBA (database administrator) privileges are required to access the log, so site admin-

istrators are reluctant to provide access. Moreover, log �les often have a format that is

hard to decipher and DBMS vendors are usually not willing to disclose the format. It may

also be the case that the source does not even have (or need) a log. The third method is

used in practice when the other methods do not apply. Some commercial products, such as

the Prism Warehouse Manager [IC94], provide support for all three methods. However, as

far as we know, there are no published papers detailing the algorithms used by commercial

systems.

We stress that we are not arguing in favor of snapshot di�erentials as the best solution for

reporting changes to a warehouse. It clearly does not scale well: as the volume of source data

grows, we have to perform larger and larger comparisons. We are saying, however, that it is

a solution we are stuck with for the foreseeable future (until sophisticated database systems

become universal), and because di�erentials are such inherently expensive operations it is

absolutely critical that we perform them as e�ciently as possible. In this chapter we will

present very e�cient di�erential algorithms; they perform well because they exploit the fact

that the semantics of the problem permits certain
exibility as discussed below.

2.1.1 Problem Formulation

The snapshot di�erential problem can be formulated as the set di�erential problem or the

bag di�erential problem. Henceforth, snapshot di�erential refers to both the set and bag

di�erential problems.

Set Di�erential

For the set di�erential problem, we view a source snapshot as a �le containing a set of

distinct records. The �le is of the form fR1; R2; : : : ; Rng where Ri denote a record. Each

Ri is of the form hK;Bi, where K is the key and B is the rest of the record representing

one or more �elds. Each record has a unique key value. Without loss of generality, we refer

to B as a single �eld in the rest of the chapter.

For the set di�erential problem we have two snapshots, F1 and F2 (the later snapshot).

Our goal is to produce a �le FOUT that also has the form fR1; R2; : : : ; Rng where each

CHAPTER 2. DETECTING SOURCE CHANGES 13

record Ri has one of the following three forms.

1. hUpdate;Ki; Bji

2. hDelete;Kii

3. hInsert;Ki; Bii

The �rst form is produced when a record hKi; Bii in �le F1 is updated to hKi; Bji in �le F2.

The second form is produced when a record hKi; Bii in F1 does not appear in F2. Lastly,

the third form is produced when a record hKi; Bii in F2 was not present in F1. We refer

to the �rst form as updates, the second as deletes and the third as inserts. The �rst �eld

is only necessary in distinguishing between updates and inserts. It is included for clarity in

the case of deletes.1

Note that the key attribute K is used for �nding \matching" records to produce update

reports. Let us suppose that record hKi; Bji is in F2, and record hKi; Bii is in F1. Because

the key values of the two records are the same, we assume that the record hKi; Bji in F2

was the record hKi; Bii in F1 except that its B attribute may have been updated. In the

unlikely scenario that the key attribute is updated, the update is reported using a delete

and an insert.

It is important to realize that there is no unique report of changes that captures the

di�erence between two snapshots. At one extreme, a deletion can be reported for each

record in F1 and an insertion can be reported for each record in F2. Obviously, this type

of reporting can be wasteful. A record hKi; Bii in F1 that is also in F2 is reported as both

deleted and inserted when no report is necessary. Also, if hKi; Bii is in F1, and hKi; Bji is

in F2, a more concise update report is su�cient. (In Chapter 4, we show experimentally

the importance of reporting updates.) In either case, we call the delete and insert report

a useless pair since either no report is necessary, or a more concise update report su�ces.

More formally, a useless pair is a message sequence in one of the following two forms.

1. hDelete;Ki; Bii, : : : , hInsert;Ki; Bji

2. hInsert;Ki; Bji, : : : , hDelete;Ki; Bii

1In some applications, we may also want to �lter out some changes that we know in advance not to be
of interest to the warehouse (e.g., only cancer patient data is collected at the warehouse). However, for

simplicity, we assume that all of the changes are relevant to the warehouse.

CHAPTER 2. DETECTING SOURCE CHANGES 14

Note that Bi and Bj may be the same. The �rst form is called a useless delete-insert pair,

while the second form is called a useless insert-delete pair.

A useless insert-delete pair may introduce a correctness problem for set di�erentials.

As an example, suppose the warehouse maintains a copy of the source relation represented

by the snapshots. Upon receiving an insert report, the view maintenance algorithm will

attempt to insert the record into the copy of the source relation at the warehouse. It will

most likely be ignored since a record with the same key already exists. Thus, when the

delete is processed, the record with the key Ki will be deleted from the warehouse. On

the other hand, a useless delete-insert pair (which is composed of the opposite sequence)

does not compromise the correctness of the warehouse. However, it introduces overhead in

processing messages.

Since having useless pairs is not an e�ective way of reporting changes, one may be

tempted to require set di�erential algorithms to generate no useless pairs. However, strictly

forbidding useless delete-insert pairs turns out to be counterproductive! Allowing the gen-

eration of \some" useless delete-insert pairs gives the di�erential algorithm signi�cant
ex-

ibility and leads to solutions that can be very e�cient in some cases. We return to these

issues later when we quantify the savings of \
exible" di�erential algorithms over algo-

rithms that do not allow useless delete-insert pairs. Thus, in this chapter we do allow

useless delete-insert pairs, with the ultimate goal of keeping their numbers relatively small.

For set di�erentials, we do want to avoid useless insert-delete pairs since they may

compromise correctness. Useless insert-delete pairs can be eliminated by recording the

changes detected in a �le. A second pass can then be performed over the �le to eliminate

the useless pairs altogether. Since the size of the �le is probably much smaller than the

snapshots, the second pass will not be too expensive. We assume for the rest of the chapter

that all useless insert-delete pairs are eliminated by the method just outlined.

Finally, it is important to observe that using

F2 � F1;

to �nd insertions, and

F1 � F2;

to �nd deletions can produce useless pairs. That is, all of the updated records are reported

using useless pairs. Furthermore, the above strategy requires two minus (�) operations. The

CHAPTER 2. DETECTING SOURCE CHANGES 15

algorithms we propose in this chapter are much more e�cient. Also, most of the algorithms

are guaranteed to report updated records using update reports instead of useless pairs.

Bag Di�erential

For the bag di�erential problem, we view a source snapshot as a �le containing a bag of

records. The �le is of the form fR1; R2; : : : ; Rng where Ri denotes a record. Since the �le is

a bag, there may be duplicate records and the snapshots do not have key attributes. Recall

that key attributes were used in set di�erentials to detect \matching" records in the two

snapshots. That is, it was assumed that the record hKi; Bji in F2 was the record hKi; Bii

in F1 except that its B attribute may have been updated. By using the key attributes,

updated records can be more easily found.

Since bags do not have keys, one may be tempted to formulate the bag di�erential as

reporting all the records in F2 that are not in F1 as inserts, and all the records in F1 that

are not in F2 as deletes. We can then use

F2 �� F1;

to �nd the inserted records, and

F1 �� F2;

to �nd the deleted records. The operation F1 �� F2 removes m copies of a record R from

F1 if there are m copies of R in F2, and there are at least m copies of R in F1. If F1 has n

copies of R where n < m, all of the n copies of R are removed from F1.

The problem with the above strategy is that all of the updated records are reported

using useless pairs. (Useless pairs are de�ned for bag di�erentials shortly.) Furthermore,

the above strategy requires two expensive operations (��).

Although bags do not have keys, often there are attributes we call the identi�cation

attributes that have the following properties.

1. The number of records that have a speci�c identi�cation attribute I value, say I1, is

small. Since I is not a key attribute, it is not guaranteed that the number of records

with an Ij value is either one or zero.

2. The I attributes are not updated often.

Identi�cation attributes can be found given statistics on the domain sizes of the various

attributes, and statistics on how often certain attributes are updated.

CHAPTER 2. DETECTING SOURCE CHANGES 16

To illustrate, let us suppose we have a bank database. In the database, there is a table

recording the withdrawals. The table has the attributes accountID and time to record the

account from which money is withdrawed from, and the time of the withdrawal. Strictly

speaking, these two attributes do not constitute a key of the table. For instance, a par-

ticular account may belong to more than one person, and two or more of the owners may

withdraw money at the same time. Clearly, each withdrawal will most likely have a unique

combination of accountID and time values.

Just like key attributes, identi�cation attributes are useful in detecting updated records.

That is, given a record in hIi; Bii in F1, the update report can be produced by examining

the records in F2 with an Ii identi�cation attribute value.

Hence, we view each Ri to be of the form hI; Bi, where I is the identi�cation attribute

and B is the rest of the record representing one or more �elds. As in the set di�erential

problem, we refer to B as a single �eld without loss of generality.

For the bag di�erential problem we have two snapshots, F1 and F2 (the later snapshot).

Our goal is to produce a �le FOUT that also has the form fR1; R2; : : : ; Rng and each record

Ri has one of the following three forms.

1. hUpdate; Ii; Bi; Bji

2. hDelete; Ii; Bii

3. hInsert; Ii; Bii

Note that the report forms for updates and deletes in the bag di�erential are di�erent from

the report forms for updates and deletes in the set di�erential. The report form for inserts

is unchanged. Record hInsert; Ii; Bii still means that a record hIi; Bii was inserted into

F2. We provide the intuition behind the report forms for updates and deletes in the next

example.

EXAMPLE 2.1.1 Let us suppose that F1 and F2 are as shown in Figure 2.1. Note

that snapshot F1 has duplicate records, and both snapshots have records with the same

identi�cation attribute values. Since F1 has two hI1; B1i records, while F2 has only one

hI1; B1i record, a hI1; B1i record was deleted. However, reporting this delete as hDelete; I1i

is ambiguous because it could mean that one of the hI1; B1i records in F1 was deleted, or that

the hI1; B10i record in F1 was deleted. Hence, the delete must be reported as hDelete; I1; B1i,

CHAPTER 2. DETECTING SOURCE CHANGES 17

F2F1

< I1, B1 >
< I1, B1 >
< I1, B10 >
< I2, B2 >
< I2, B20 >

< I1, B1 >

< I1, B10 >
< I2, B3 >
< I2, B20 >

Figure 2.1: Example F1 and F2 for Bag Di�erentials

specifying that one of the hI1; B1i records was deleted. If both hI1; B1i records were deleted,

then there would be two hDelete; I1; B1i records in the bag di�erential.

The record hI2; B2i in F1 was also updated to hI2; B3i. Reporting this update as

hUpdate; I2; B3i is ambiguous because it could mean that hI2; B2i or hI2; B20i was updated

to hI2; B3i. Thus, the update must be reported as hUpdate; I2; B2; B3i specifying that a

hI2; B2i record was updated to hI2; B3i. 2

As the example illustrated, a delete report hDelete; Ii; Bii speci�es that one of the hIi; Bii

records in F1 was deleted. An update report hUpdate; Ii; Bi; Bji speci�es that one of the

hIi; Bii records in F1 was updated to hIi; Bji in F2. Finally, an insert report hInsert; Ii; Bii

speci�es that a record hIi; Bii was inserted into F2.

A useless insert-delete pair is de�ned similarly for the bag di�erential problem. That is,

it is a message sequence composed of hInsert; Ii; Bii followed (not necessarily immediately)

by hDelete; Ii; Bji. If Bi is the same as Bj , no changes were needed to be reported for

the record hIi; Bii. On the other hand, if Bj is di�erent from Bi, then the change could

have been reported more succinctly by hUpdate; Ii; Bi; Bji. Note that for bag di�erentials, a

useless insert-delete pair does not introduce any correctness problem. A useless delete-insert

pair is similar to a useless insert-delete pair except that the delete report comes before the

insert report. In this chapter, most of the bag di�erential algorithms we develop will not

report useless pairs.

For bag di�erentials, unnecessary updates can also be reported. For instance, let us

suppose F1 has the single record hI1; B1i, while F2 has two records hI1; B2i and hI1; B1i.

Clearly, the record hI1; B1i is unchanged while the record hI1; B2i was inserted. However,

the di�erence between F1 and F2 can also be reported as hI1; B1i being updated to hI1; B2i

(i.e., hUpdate; I1; B1; B2i), and hI1; B1i being inserted (i.e., hInsert; I1; B1i). Hence, an

CHAPTER 2. DETECTING SOURCE CHANGES 18

insertion plus an update is reported when a single insert report su�ces. More formally, an

unnecessary update is a message sequence in one of the following four forms.

1. hUpdate; Ii; Bi; Bji, : : : , hInsert; Ii; Bii

2. hInsert; Ii; Bii, : : : , hUpdate; Ii; Bi; Bji

3. hUpdate; Ii; Bj ; Bii, : : : , hDelete; Ii; Bii

4. hDelete; Ii; Bii, : : : , hUpdate; Ii; Bj ; Bii

The change reported by the �rst two sequences is more concisely reported as hInsert; Ii; Bji.

The change reported by the last two sequences is more concisely reported as hDelete; Ii; Bji.

In this chapter, we develop algorithms that avoid reporting unnecessary updates.

Why Ignore The Record Location?

Conceptually, we have represented snapshots as sets or bags because the physical location of

a record within a snapshot �le may change from one snapshot to another. That is, records

with matching keys are not expected to be in the same physical position in F1 and F2

because the source is free to reorganize its storage between snapshots. Also, insertions and

deletions may also change physical record positions in the snapshot.

2.1.2 Di�erences with Joins

The set di�erential problem is closely related to the problem of performing a join between

two relations. In particular, if we join F1 and F2 on the key attribute K and on the

condition that their B attributes di�er, we can obtain the update records required for the

set di�erential problem. However, the join does not capture the unmatched deleted and

inserted records. An outerjoin, however, can generate the inserts and deletes, although the

resulting records will not be in the desired format (they will have all �elds of both relations,

some with null values).

Using an outerjoin to perform bag di�erentials is further complicated by the presence of

duplicates. For instance, if F1 has two hI1; B1i records that are both updated to hI1; B2i,

the outerjoin will produce four update records of the form hUpdate; I1; B1; B2i. Clearly,

only two update records are required.

Still, join and outerjoin are so closely related to the snapshot di�erential problem that

the traditional join algorithms ([ME92],[HC94]) can be adapted to our needs. Indeed,

CHAPTER 2. DETECTING SOURCE CHANGES 19

in Section 2.2 we show these modi�cations. However, given the particular semantics and

intended application of the di�erential algorithms, we can go beyond the join-based solutions

and obtain new and more e�cient algorithms. The three main ideas we exploit are as follows:

� As discussed earlier, some useless delete-insert pairs are acceptable. In the context

of outerjoins, a useless delete-insert pair is equivalent to \reporting" two records as

\dangling" when they actually have matching keys. Traditional outerjoin algorithms

do not have useless delete-insert pairs. The extra
exibility we have allows algorithms

that are \sloppy" (but very e�cient) in matching records.

� For some data warehousing applications, it may be acceptable to miss a few of the

changes, especially if these \errors" are very infrequent. For example, if the warehouse

is used for statistical analysis or data mining, missing one sales record out of billions

may be acceptable. Thus, for di�erentials we can use probabilistic algorithms that

may miss some di�erences (with arbitrarily low probability), but that can be much

more e�cient. Again, traditional algorithms are not allowed any \errors," must be

very conservative, and must pay the price.

� Snapshot di�erentials are an on-going process running at a source (or intermediate

source). Since snapshot di�erentials are an on-going process, it possible to save some

of the information used in one di�erential to improve the next iteration. Traditional

join algorithms typically do not take advantage of data structures created during other

joins (other than existing general purpose indexes).

2.1.3 Outline

The rest of the chapter is organized as follows. We �rst present how the join algorithms

can be extended to perform snapshot di�erentials in Sections 2.2.1 and 2.2.2. We present

the record compression techniques to reduce snapshot size in Section 2.2.3 and show how

these techniques can be used with the outerjoin algorithms in Sections 2.2.4 and 2.2.5.

In Section 2.3, we introduce our window algorithm, representing a second class of e�cient

snapshot di�erential algorithms. The algorithms are analytically compared in Section 2.4.1;

we report on the implementation and evaluation of some of the algorithms in Section 2.4.2.

Section 2.5 brie
y reviews related research in the literature. We summarize the chapter in

Section 2.6.

CHAPTER 2. DETECTING SOURCE CHANGES 20

2.2 Using Compression

In this section we �rst describe existing join algorithms but we do not cover all the known

variations and optimizations of these algorithms. We believe that many of these further

optimizations can also be applied to the snapshot di�erential algorithms we present.

We �rst extend the join algorithms to handle set di�erentials (Section 2.2.1) and to

handle bag di�erentials (Section 2.2.2). After extending the join algorithms to handle

the snapshot di�erential problem, we study compression techniques to optimize them in

Sections 2.2.3 to 2.2.5. In the sections below, we denote the size of a �le F as jF j blocks

and the size of main memory as jM j blocks. We also exclude the cost of writing the output

�le in our cost analysis since it is the same for all of the algorithms.

2.2.1 Set Di�erentials using Outerjoins

The basic sort merge join �rst sorts the two input �les. It then scans the �les once and any

pair of records that satisfy the join condition are produced as output. The algorithm can

be adapted to perform an outerjoin by identifying the records that do not join with any

records in the other �le during the scan. The algorithm can be adapted with no extra cost

when two records are being matched: the record with the smaller key is guaranteed to have

no matching records.

Since set di�erentials are an on-going process running at a source, it is possible to save

the sorted �le of the previous snapshot. Thus, the algorithm only needs to sort the second

�le, F2. This sorting can be done using the multiway merge-sort algorithm. This algorithm

constructs runs which are sequences of blocks with sorted records. After a series of passes,

the �le is partitioned into progressively longer runs. The algorithm terminates when there

is only one run left. In general, it takes 2 � jF j � logjM jjF j IO operations to sort a �le with

size jF j ([Ull89a]). However, if there is enough main memory (jM j >
p
jF j), the sorting

can be done in 4 � jF j IO operations (sorting is done in two passes). The second phase of

the algorithm, which involves scanning and merging the two sorted �les, entails jF1j+ jF2j

IO operations for a total of jF1j+ 5 � jF2j IO operations.

The IO cost can be reduced further by just producing the sorted runs (denoted as

F2 runs) in the �rst phase. This improved algorithm, called SM, is shown in Figure 2.2.

Line 1 produces the sorted F2 runs, at a cost of only 2 � jF2j IOs. (File F1 has already been

sorted at this point.) The sorted F2 �le, needed for the next run of the algorithm, can then

CHAPTER 2. DETECTING SOURCE CHANGES 21

Algorithm 2.2.1 SM

Input F1 sorted, F2
Output Fout (the set di�erential), F2 sorted

Method

1. F2 runs SortIntoRuns(F2)

2. r1 read the next record from F1 sorted

3. r2 read the next record from F2 runs; F2 sorted Output(hr2:K; r2:Bi)

4. while ((r1 6= NULL) ^ (r2 6= NULL))

5. if ((r1 = NULL)_ (r1:K > r2:K)) then

6. Fout Output(hInsert; r2:K; r2:Bi)

7. r2 read the next record from F2 runs; F2 sorted Output(hr2:K; r2:Bi)

8. else if ((r2 = NULL) _ (r1:K < r2:K) then

9. Fout Output(hDelete; r1:Ki)

10. r1 read the next record from F1 sorted

11. else if (r1:K = r2:K) then

12. if (r1:B 6= r2:B) then

13. Fout Output(hUpdate; r2:K; r2:Bi)

14. r1 read the next record from F1 sorted

15. r2 read the next record from F2 runs; F2 sorted Output(hr2:K; r2:Bi)

3

Figure 2.2: Sort Merge Outerjoin as a Set Di�erential Algorithm

be produced while matching F2 runs with F1. In producing the sorted F2 �le (Lines 3, 7,

15), we read into memory one block from each run in F2 runs (if the block is not already

in memory), and select the record with the smallest K value. The merge process (Lines

4 through 15) now costs 2 � jF2j + jF1j IOs. Thus, when sort merge outerjoin is used as a

snapshot di�erential algorithm, the total cost incurred is jF1j+ 4 � jF2j IOs.

Another join method that we discuss here is the partitioned hash outerjoin algorithm.

In the partitioned hash outerjoin algorithm, the input �les are partitioned into buckets by

computing a hash function on the join attribute. Records are matched by considering each

pair of corresponding buckets. First, one of the buckets is read into memory (the smaller

one) and an in-memory hash table is built (assuming the bucket �ts in memory). The

second bucket is then read and a probe into the in-memory hash table is made for each

record in an attempt to �nd a matching record in the �rst bucket. Matching records are

merged and produced as output.

We now obtain the IO cost formula for the partitioned hash algorithm. Creating the

CHAPTER 2. DETECTING SOURCE CHANGES 22

buckets incurs 2�jF1j+2�jF2j IOs and the matching phase and merging phase incur jF1j+jF2j

IOs, assuming the buckets �t in memory. This assumption has a main memory requirement

of jM j >
p
min(jF1j; jF2j). If the buckets do not �t in memory, additional repartitioning

needs to be done. In general the IO cost is 2�logN(jF1j=jM j)�(jF1j+jF2j) with repartitioning

(where N is the number of buckets) [Gra93]. For the rest of the analysis, we assume that the

both buckets do �t in memory. In a similar manner to the sort merge outerjoin algorithm,

the buckets of the later snapshot can be saved for the next snapshot di�erential process.

Thus the total IO cost incurred is jF1j+ 3 � jF2j since only the second snapshot needs to be

partitioned into buckets.

The partitioned hash join algorithm can be modi�ed easily to perform set di�erentials.

The �rst phase is unchanged and is still used to partition both snapshots into buckets

by computing a hash function on the key attribute. In the second phase, each pair of

corresponding buckets (denoted BF1 and BF2) is processed. Assuming both buckets �t

in memory, both are read into memory for processing. For each record R1 in BF1 , the

record R2 (if any) in BF2 with a key of R1:K is found. If R1:B and R2:B are di�erent, the

appropriate update report is produced. Otherwise, no report is necessary. In either case,

both R1 and R2 are removed from the two buckets (in memory) once they are matched.

After all of the records in BF1 are processed, the remaining records in BF1 are reported as

deletes. The remaining records in BF2 are reported as inserts. It is easy to see that the IO

cost of the partitioned hash outerjoin algorithm is not altered with this modi�cation (given

that the two buckets �t in memory). To reduce the processing cost, an index on the key

attribute(s) can be constructed. This way, given a record R1 from BF1 , the record R2 in

BF2 with a key of R1:K can be found in O(log n) time, assuming there are n records in

BF2 .

2.2.2 Bag Di�erentials using Outerjoins

If the sort merge outerjoin algorithm SM (Figure 2.2) is used to compute bag di�erentials,

it can fail to match records that have not changed and report unnecessary updates. For

instance, let us suppose that F1 has the single record hI1; B1i, and that F2 has two records

hI1; B2i and hI1; B1i appearing in that sequence. That is, record hI1; B1i is unchanged and

record hI1; B2i was inserted. The sort merge outerjoin algorithm would match hI1; B1i of

F1 with the �rst record hI1; B2i of F2. An update report hUpdate; I1; B1; B2i is then be

produced. (Although SM actually produces hUpdate; I1; B2i, it can be modi�ed easily to

CHAPTER 2. DETECTING SOURCE CHANGES 23

produce the appropriate update report for the bag di�erential.) The second record hI1; B1i

is then reported as an insert. Clearly, we can avoid unnecessary updates by identifying that

hI1; B1i is unchanged and reporting hI1; B2i as an insert.

To avoid unnecessary update reports, the bag of records with the same I values for both

F1 and F2 need to be processed together. Let us suppose that BAG1 contains the records

from F1 with a identi�cation value of Ii. Let BAG2 contain the records from F2 with a

identi�cation value of Ii. To illustrate, let us suppose we are given the following two bags

containing the records with a identi�cation value of I1.

BAG1 : fhI1; B1i; hI1; B1ig

BAG2 : fhI1; B2i; hI1; B1i; hI1; B3ig

After the unchanged records (i.e., hI1; B1i) are identi�ed, they are removed from BAG1

and BAG2 to produce the bags BAG
0
1 and BAG

0
2.

BAG0
1 : fhI1; B1ig

BAG0
2 : fhI1; B2i; hI1; B3ig

At this point, there is no record in BAG0
1 that is also in BAG

0
2, and vice versa. If there are

the same number of records in BAG0
2 as in BAG0

1, we assume that the records in BAG0
1

were all updated since this generates the minimum number of change reports. If there are

more records in BAG0
2 (as in the case above), some records must have also been inserted.

Otherwise, there are more records in BAG0
1, and some records must have been deleted.

To produce the appropriate update reports, we �rst match the records in BAG0
1 and

BAG0
2 and (arbitrarily) designate which records have been updated as opposed to inserted or

deleted. In the example, the record hI1; B1i in BAG0
1 can be matched with either hI1; B2i

or hI1; B3i. That is, either hI1; B1i was updated to hI1; B2i or hI1; B3i. Let us suppose

hI1; B1i is matched with the latter record and the update report hUpdate; I1; B1; B3i is

produced. Any remaining \unmatched" records like hI1; B2i in BAG0
2 are reported as

inserts. Unmatched records in BAG0
1 are reported as deletes.

The matching algorithm Match is shown in Figure 2.3. The matching algorithm is

actually quite general since the input bags BAG1 and BAG2 do not need to have records

with the same identi�cation values. Lines 1{2 remove the records in BAG1 and BAG2

that have not changed using the �� operator. Lines 4{6 match records in BAG0
1 and BAG

0
2

based on the identi�cation attribute and produce the appropriate update report. A delete

CHAPTER 2. DETECTING SOURCE CHANGES 24

is reported in Line 8 if there are no records in BAG0
2 with the same identi�cation value as

the current record R1 from BAG0
1. Any remaining records in BAG

0
2 are reported as inserts

in Line 10.

The matching algorithm is general and can be used to compute the bag di�erential of

two snapshots. However, it is too ine�cient for use on large snapshots. Even when an in-

memory index on the identi�cation attribute is created, in the worst case, the complexity of

the matching algorithm is O(n1 �n2), where n1 is the number of records in BAG1, and n2 is

the number of records in BAG2. Thus, the matching algorithm should only be used when

the two input bags are small. The strategy then is to use sort merge outerjoin or partitioned

hash outerjoin to ensure that the inputs to the matching algorithm are relatively small. For

instance, the partitioned hash outerjoin can �rst partition the snapshots into buckets, and

then use the matching algorithm to process each pair of buckets. This way, the inputs to

the matching algorithm are not that large.

Algorithm 2.2.2 Match

Input BAG1, BAG2

Output FOUT (bag di�erential of BAG1 and BAG2

Method

1. BAG0
1 BAG1 �� BAG2

2. BAG0
2 BAG2 �� BAG1

3. for each record R1 in BAG0
1

4. if there is a record R2 in BAG0
2 where R2:I = R1:I then

5. FOUT Output(hUpdate; R1:I; R1:B; R2:Bi)

6. Remove R2 from BAG0
2

7. else

8. FOUT Output(hDelete; R1:I; R1:Bi)

9. for each record R2 remaining in BAG0
2

10. FOUT Output(hInsert; R2:I; R2:Bi)

3

Figure 2.3: Matching Algorithm

The SM outerjoin (Figure 2.2) can be modi�ed easily to use the matching algorithm to

perform bag di�erentials. The only portion that needs to be changed is when the records

being read have the same identi�cation value. In this case, the modi�ed sort merge outerjoin

(Figure 2.4) reads the next records in the two snapshots with the same identi�cation value

to produce the two bags BAG1 and BAG2 that are input to the matching algorithm (Lines

CHAPTER 2. DETECTING SOURCE CHANGES 25

13{14). The matching algorithm is then used to process BAG1 and BAG2 and produce the

appropriate reports. As long as the identi�cation attribute(s) is selected carefully so that

the number of records in BAG1 and BAG2 with the same identi�cation value is small, both

BAG1 and BAG2 should �t in memory. Assuming BAG1 and BAG2 do �t in memory, the

number of IOs incurred by the sort merge outerjoin is still jF1j+ 4 � jF2j IOs.

Algorithm 2.2.3 SM-Bag

Input F1 sorted, F2
Output Fout (the bag di�erential), F2 sorted

Method

1. Lines 1{10 in Figure 2.2

11. else if (r1:I = r2:I) then

12. if (r1:B 6= r2:B) then

13. BAG1 r1 plus all the records following r1 with same identi�cation value

14. BAG2 r2 plus all the records following r2 with same identi�cation value

15. Match(BAG1, BAG2)

16. r1 read the next record from F1 sorted

17. r2 read the next record from F2 runs; F2 sorted Output(hr2:I; r2:Bi)

3

Figure 2.4: Sort Merge Outerjoin as a Bag Di�erential Algorithm

The partitioned hash outerjoin algorithm can be modi�ed easily to compute bag di�eren-

tials given the matching algorithm (Figure 2.3). Recall that the �rst phase of the algorithm

partitions both snapshots into buckets by computing a hash function on the identi�cation

attribute. In the second phase, each pair of corresponding buckets (denoted BF1 and BF2) is

processed using the matching algorithm. (BF1 is the BAG1 input, BF2 is the BAG2 input.)

Although the records in BF1 and BF2 do not have the same identi�cation values, the match-

ing algorithm Match in Figure 2.3 is general enough to handle the situation. Assuming the

two buckets �t in memory, the IO cost of the modi�ed partitioned hash outerjoin algorithm

is still jF1j+3 � jF2j IOs. The processing cost can be reduced by creating in-memory indices

on the identi�cation attribute.

2.2.3 Compression Techniques

Our compression algorithms reduce the sizes of records and the required IO. Compression

can be performed in varying degrees. For instance, compression may be performed on the

CHAPTER 2. DETECTING SOURCE CHANGES 26

records of a �le by compressing the whole record (possibly excluding the key �eld) into n bits.

A block or a group of blocks can also be compressed into n bits. There are also numerous

ways to perform compression such as computing the check sum of the data, hashing the

data to obtain an integer or simply omitting �elds in a record that are not important in

the comparison process. Compression can also be lossy or lossless. In the latter case, the

compression function guarantees that two di�erent uncompressed values are mapped into

di�erent compressed values. Lossy compression functions do not have this guarantee but

have the potential of achieving higher compression factors. Henceforth, we assume that we

are using a lossy compression function. We ignore the details of the compression function

and simply refer to it as Compress(x).

There are a number of bene�ts from processing compressed data. First of all, the

compressed intermediate �les, such as the buckets for the partitioned hash outerjoin, are

smaller. Thus, there will be fewer IO when reading the intermediate �les. Moreover, the

compressed �le may be small enough to �t in memory. Even if the compressed �le does

not �t entirely in memory, some of the join algorithms may still bene�t. For example, the

compressed �le may result in buckets that �t in memory which improves the matching phase

of the partitioned hash outerjoin algorithm.

Compression is not without its disadvantages. As mentioned earlier, a lossy compression

function may map two di�erent records into the same compressed value. Thus, the snapshot

di�erential algorithm is probabilistic and may not be able to detect all the changes to a

snapshot. We now show that the algorithm may fail to detect changes with a probability

of 2�n, where n is the number of bits for the compressed value. Assume that we are

compressing an object (which may be the B �eld, or the entire record, or an entire block,

etc.) of b bits (b > n). There are then 2b possible values for this object. Since there are only

2n values that the compressed object can attain, there are 2b=2n original values mapped

to each compressed value. Thus for each given original value, the probability that another

value maps to the same compressed value is ((2b=2n)� 1)=2b, which is approximately 2�n

for large values of b. For su�ciently large values of n, this probability can be made very

small. The expression 2�n, henceforth denoted as E, gives the probability that a single

comparison is erroneous. For example, if the B �eld of the record hK;Bi is compressed

into a 32-bit integer, the probability that a single comparison (of two B �elds) is erroneous

is 2�32 or approximately 2:3 � 10�10. However, as we compare more records, the likelihood

that a change is missed increases. To put this probability of error into perspective, let

CHAPTER 2. DETECTING SOURCE CHANGES 27

0

50

100

150

200

250

300

350

400

26 28 30 32 34 36 38 40

of

 Y
ea

rs

of bits

Expected # of Good Days vs. Bits used for compression

256MB
512MB

1024MB
2048MB

10240MB

Figure 2.5: Ngood days for Di�erent File Sizes

us suppose we perform a di�erential on two 256 MB snapshots daily. We now proceed

to compute how many days we expect to pass before a record change is missed. We �rst

compute the probability (denoted as pday) that there is no error in comparing two given

snapshots (that is, there is no error in one day). Let us suppose that the record size is 150

bytes which means that there are approximately 1,789,570 records for each �le.

pday = (1� E)records(F) = (1� 2:3 � 10�10)1;789;570 = 0:99979169 (2.1)

Using this probability, we can compute the expected number of days (denoted asNgood days)

before an error occurs.

Ngood days = (1� pday) �
X
1�i

i � pi�1day =
1

1� pday
= 2; 430 days (2.2)

The expected number of days comes out to be 2,430 days, or more than 6.7 years! We

believe that for some types of warehousing applications, such as data mining, this error rate

will be acceptable.

It is evident from the equations above that as the number of records increases, the

expected number of days before an error occurs goes down. This is shown more clearly in

Figure 2.5. The graph shows that a 10 GB �le will encounter more errors than a 256 MB

�le. However, as the number of bits used for compressing the B �eld is increased, the the

CHAPTER 2. DETECTING SOURCE CHANGES 28

expected number of years before an error occurs can be made comfortably large even for

large �les.

For the algorithms we will present here, we consider two ways of compressing the records.

For both compression formats, we do not compress the key, and we denote the compressed

B �eld as b. The �rst format is simply compress a record hK;Bi into hK; bi. (For bag

di�erentials, a record hI; Bi is compressed into hI; bi.) For the second form, the only

di�erence is that a pointer is appended forming the record hK; b; pi. (For bag di�erentials,

a record hI; Bi is compressed into hI; b; pi.) The pointer p points to the corresponding disk

resident uncompressed record. The use of the pointer will be explained when we describe

the algorithms. We use u to represent the ratio of the size of the original record to that of

the compressed record (including the key and pointer, if any). So, if an uncompressed �le

is size jF j, the compressed size will be jF j=u blocks long.

Algorithm 2.2.4 SMC1

Input f1 sorted, F2
Output Fout (the set di�erential), f2sorted
Method

1. F2 runs SortIntoRuns(F2)

2. r1 read the next record from f1 sorted (other r1 reads later on are also from f1 sorted)

3. r2 read the next record from F2 runs;

f2 sorted Output(hr2:K; Compress(r2:B)i)

4.-6.Lines 4{6 of Figure 2.2

7. r2 read the next record from F2 sorted;

f2 sorted Output(hr2:K; Compress(r2:B)i)

8.-11. Lines 8{11 of Figure 2.2

12. if (r1:b 6= Compress(r2:B)) then

13.-14. Lines 8{11 of Figure 2.2

15. r2 read the next record from F2 sorted;

f2 sorted Output(hr2:K; Compress(r2:B)i)

3

Figure 2.6: Sort Merge Outerjoin Enhanced with the hK; bi Compression Format

2.2.4 Set Di�erentials and Compression

We now augment the sort merge outerjoin with compression. We assume that the com-

pressed sorted F1 �le was produced in the previous di�erential (denoted as f1 sorted, with

CHAPTER 2. DETECTING SOURCE CHANGES 29

Algorithm 2.2.5 SMC2

Input f1 sorted, F2
Output Fout (the set di�erential), f2 sorted

Method

1. f2 runs SortIntoRuns � Compress(F2)

2. r1 read the next record from f1 sorted

3. r2 read the next record from f2 runs; f2 sorted Output(hr2:K; r2:b; r2:pi)

4. while ((r1 6= NULL) ^ (r2 6= NULL))

5. if ((r1 = NULL)_ (r1:K > r2:K)) then

5a. rfull read record in F2 with address r2:p

6. Fout Output(hInsert; r2:K; rfull:Bi)

7. r2 read the next record from f2 runs; f2 sorted Output(hr2:K; r2:b; r2:pi)

8. else if ((r2 = NULL) _ (r1:K < r2:K) then

9. Fout Output(hDelete; r1:Ki)

10. r1 read the next record from f1 sorted

11. else if (r1:K = r2:K) then

12. if (r1:b 6= r2:b) then

12a. rfull read record in F2 with address r2:p

13. Fout Output(hUpdate; r2:K; rfull:Bi)

14. r1 read the next record from f1 sorted

15. r2 read the next record from f2 runs; f2 sorted Output(hr2:K; r2:b; r2:pi)

3

Figure 2.7: Sort Merge Outerjoin Enhanced with the hK; b; pi Compression Format

a size of jF1j=u). For this algorithm, we use the hK; bi compression format. The modi�ed

sort merge algorithm called SMC1 is shown in Figure 2.6. Note that only the steps that

di�er from the SM outerjoin algorithm (Figure 2.2) are shown explicitly. Lines 3, 7 and 15

now �rst compress the B �eld before producing an output into f2 sorted (which is needed in

the next di�erential). Also, when detecting the updates in Line 12, the compressed versions

of the B �eld are compared.

The sorting phase of the algorithm incurs 2 � jF2j IOs (since it generates only the sorted

runs as in Algorithm 2.2.1). The matching phase (Line 4 onwards) incurs jF2j + jf1j IOs

since the two �les are scanned once. Lastly, the sorted f2 sorted must be produced for the

next di�erential, which costs jf2j IOs. The total cost is then jf1j+ 3 � jF2j+ jf2j IOs.

Greater improvements may be achieved by compressing not only the �rst snapshot

but also the second snapshot before the �les are matched. When the second snapshot

CHAPTER 2. DETECTING SOURCE CHANGES 30

arrives, it is read into memory and compressed sorted runs are written out. In essence, the

uncompressed F2 �le is read only once. The problem introduced by compressing the second

snapshot is that when insertions and updates are detected, the original uncompressed record

must be obtained from F2. In order to �nd the original (uncompressed) record, a pointer to

the record must be saved in the compressed record. Thus, for this algorithm, the hK; b; pi

compression format must be used. The full algorithm called SMC2 is shown in Figure 2.7.

Line 5a (Line 12a) shows that when an insertion or update is detected, the pointer p of the

current record is used to obtain the original record in order to produce the correct output.

Line 1 of Algorithm 2.2.5 only incurs jF2j+jf2j IOs instead of 2�jF2j IOs. Lines 4 through

15 incur jf1j+ jf2j+ U + I IOs, where U and I are the number of updates and insertions

found. An additional jf2j IOs are needed to write out the sorted f2 �le. As a result, the

overall cost is jf1j+ jF2j+ 3 � jf2j+U + I . The savings in IO cost is signi�cant especially if

there are few updates and inserts. Moreover, we are also assuming that each access using

the pointer p requires a random IO. The disk access can be optimized by recording all

the pointers that need to be accessed. After the di�erential is performed, these recorded

pointers are used to produce the inserts and the updates. By sorting the pointers, the cost

of probing the original snapshot is lessened since the IO operations are no longer random.

The partitioned hash outerjoin is augmented with compression in a very similar manner

to the sort merge outerjoin. We assume that the compressed bucket �les for the �rst

snapshot (denoted collectively as f1) was produced in the previous snapshot di�erential.

When the second snapshot arrives, the buckets are created as explained in Section 2.2.1,

incurring 2 � jF2j IOs. The corresponding buckets are matched by reading the smaller

bucket (which is most likely a bucket in f1) into main memory. An in-memory hash table

is constructed and the algorithm proceeds in a similar fashion to the partitioned hash

outerjoin. The only di�erence is that the compressed B �elds are compared when searching

for an update. In addition, the records in the buckets of F2 are compressed and written into

a bucket �le f2. After processing all of the F2 buckets, the set of compressed buckets that

comprise f2 is also complete and ready for the next snapshot di�erential. The matching

phase incurs jf1j+ jF2j IOs to read in the buckets and jf2j to write out the buckets for the

next snapshot di�erential. Therefore, the overall cost is jf1j+ 3 � jF2j+ jf2j IOs.

Like the sort merge outerjoin, greater performance gains can be made by compressing the

buckets of F2 before the matching phase. Similarly, the hK; b; pi compression format is used.

In this case, only jF2j+jf2j IO operations are needed to bucketize F2 into a set of compressed

CHAPTER 2. DETECTING SOURCE CHANGES 31

buckets denoted as f2. The matching phase is similar except that pointers must be followed

to report inserts and updates. As a result, the overall IO cost is jf1j+ jF2j+2 � jf2j+ I +U .

As in the sort merge outerjoin, we can also argue that the probes on F2 through p can be

recorded and can be done more e�ciently after processing f2.

The performance gains can even be greater if the compression factor u is high enough

such that all of the buckets of F1 �t in memory. In this case, all the buckets for F1 are

simply read into memory (jf1j IOs). The �le F2 is then scanned, and for each record in

F2 read, the in-memory buckets are probed. The compressed buckets for F2 can also be

constructed for the next di�erential during this probe. The overall cost of this algorithm is

only jf1j+ jF2j+ jf2j IOs. Note that the cost is independent of the number of updates and

inserts unlike the algorithm discussed previously. Unfortunately, this optimization cannot

be used for the sort merge outerjoin because constructing the compressed sorted �le for F2

cannot be done by just scanning through F2 once.

2.2.5 Bag Di�erentials and Compression

The bag di�erential algorithms developed in Section 2.2.2 can also be augmented with

compression. However, the compression format hI; bi cannot be used. Intuitively, this is

because for bag di�erentials, the old values for the B attribute are required in reporting

deletes and updates. That is, to unambiguously report that a record hIi; Bii was deleted,

it must be reported as hDelete; Ii; Bii. Similarly, to unambiguously report that a record

hIi; Bii was updated to hIi; Bji, it must be reported as hIi; Bi; Bji. In both cases, the old

value of the B attribute (i.e., B1) is required. Unfortunately, assuming a lossy compression

function, the B attribute value cannot be recovered from the compression format hI; bi.

On the other hand, the uncompressed B attribute value can be obtained from the

compression format hI; b; pi by following the pointer p that points to the uncompressed

record on disk. Thus, in this section, we augment the sort merge outerjoin as well as the

partitioned hash outerjoin with the compression format hI; b; pi.

The sort merge outerjoin SMC2 that uses the compression format hI; b; pi for set dif-

ferential is shown in Figure 2.7. The algorithm requires only slight modi�cations for it to

apply to bag di�erentials as shown in Figure 2.8. First, when a deletion is detected (Line

8a), the uncompressed record must be read to obtain the old value of the B attribute. Sec-

ond, when the identi�cation values of the two records match, the algorithm is modi�ed to

read the next records in the two snapshots with the same identi�cation value. Again, these

CHAPTER 2. DETECTING SOURCE CHANGES 32

records must be processed together to avoid reporting unnecessary updates. The bag of

records from F1 denoted BAG1, and the bag of records from F2 denoted BAG2, are input

to the matching algorithm discussed previously (see Figure 2.3). The matching algorithm

also needs to be modi�ed slightly since it is taking as input compressed records as opposed

to uncompressed ones. Hence, whenever an update, or a delete or an insert is detected,

the matching algorithm must follow the appropriate pointers to obtain the uncompressed

B values.

Recall that the IO cost of the sort merge outerjoin using the compression format hI; b; pi

to perform set di�erentials is jf1j + jF2j + 3 � jf2j + I + U . This equation assumes that I

insertions and U updates are reported. IO operations are incurred whenever insertions and

updates are reported because an uncompressed record must be read from the disk to create

the report. In the case of bag di�erentials, the uncompressed record must also be located

to report a deletion. Hence, the IO cost of the sort merge outerjoin using the compression

format hI; b; pi is jf1j + jF2j + 3 � jf2j + I + U + D, where D is the number of deletions

reported. The IO cost of the sort merge outerjoin can be high if there are a lot of changes

detected. If there are only few changes detected, the bene�t of compressing the snapshots

can be substantial as we will show in Section 2.4.

Algorithm 2.2.6 SMC2-Bag

Input f1 sorted, F2
Output Fout (the bag di�erential), f2sorted
Method

1.-8.Lines 1{8 of Figure 2.7

8a. rfull read record in F1 with address r1:p

9.-12.Lines 9{12 of Figure 2.7

13. BAG1 r1 plus all the records following r1 with same identi�cation value

14. BAG2 r2 plus all the records following r2 with same identi�cation value

15. Match(BAG1, BAG2) // Algorithm 2.2.2

16. r1 read the next record from f1 sorted

17. r2 read the next record from f2 runs; f2 sorted Output(hr2:I; r2:b; r2:pi)

3

Figure 2.8: Sort Merge Outerjoin Enhanced with the hI; b; pi Compression Format for Bag

Di�erential

In Section 2.2.4, we also modi�ed the partitioned hash outerjoin algorithm to use the

hI; b; pi compression format to perform set di�erentials. For the algorithm to perform bag

CHAPTER 2. DETECTING SOURCE CHANGES 33

di�erentials, it must use the matching algorithm Match (Figure 2.3) to process each pair

of buckets as explained in Section 2.2.2. The matching algorithm follows the appropriate

pointers whenever an update, or a delete or an insert is detected. Because the original

B attribute value is required in producing a deletion report, the IO cost of the algorithm

increases by D where D is the number of deletions detected. (The IO cost increases from

(jf1j+ jF2j+ 2 � jf2j+ I + U) to (jf1j+ jF2j+ 2 � jf2j+ I + U +D).)

TAIL HEAD

12

3

Age Queue

9

8

7

6

5

 4

Buckets
Input Buffer 2

Aging Buffer 1

Input Buffer 1

Aging Buffer 2

Figure 2.9: The window Algorithm Data Structures

2.3 The Window Algorithm

2.3.1 Window for Set Di�erentials

In the previous section, we described algorithms that compute the di�erential of two snap-

shots based on outerjoin algorithms. We saw that the snapshots are read multiple times.

Since the �les are large, reading the snapshots multiple times can be costly. We now

present an algorithm that reads the snapshots exactly once. This new algorithm works well

when matching records are physically \nearby" in the �les. As mentioned in Section 2.1.1,

matching records cannot be expected to be in the same position in the two snapshots, due

to possible reorganizations at the source. However, we may still expect a record to remain

CHAPTER 2. DETECTING SOURCE CHANGES 34

Algorithm 2.3.1 Window

Input F1, F2, n (number of blocks in the input bu�er)

Output Fout (the set di�erential)

Method

1. input buffer 1 Read n blocks from F1
2. input buffer 2 Read n blocks from F2
3. while ((input buffer 1 6= EMPTY) ^ (input buffer 2 6= EMPTY))

4. Match input buffer 1 against input buffer 2

5. Match input buffer 1 against aging buffer 2

6. Match input buffer 2 against aging buffer 1

7. Insert contents of input buffer 1 into aging buffer 1

8. Insert contents of input buffer 2 into aging buffer 2

9. input buffer 1 Read n blocks from F1
10. input buffer 2 Read n blocks from F2
11. Report records in input buffer 1 as deletes

12. Report records in input buffer 2 as inserts

3

Figure 2.10: Window Algorithm

in a relatively small area, such as a block, cylinder, or track. This is because �le reorga-

nization algorithms typically rearrange records within a physical sub-unit. The window

algorithm takes advantage of this, and of ever increasing main memory capacity, by main-

taining a moving window of records in memory for each snapshot. Only the records within

the window are compared in the hope that the matching records occur within the window.

Unmatched records are reported as either an insert or a delete, which can lead to useless

delete-insert pairs. As discussed in Section 2.1.1, a small number of these may be tolerable.

For the window algorithm, we divide available memory into four distinct parts as shown

in Figure 2.9. Each snapshot has its own input bu�er (input bu�er 1 is for F1) and aging

bu�er. The input bu�er is simply the bu�er used in transferring blocks from disk. The

aging bu�er is essentially the moving window mentioned above.

The algorithm is shown in Figure 2.10 and we now proceed to explain each step. Lines

1 and 2 simply read a constant number of input block of records from �le F1 and �le F2 to

�ll input bu�er 1 and input bu�er 2, respectively. This process will be done repeatedly by

Lines 9 and 10. Before the input bu�ers are re�lled, the algorithm guarantees that they are

empty. Lines 4 through 6 are concerned with matching the records of the two snapshots.

CHAPTER 2. DETECTING SOURCE CHANGES 35

In Line 4, the matching is performed in a nested loop fashion. This is not expensive since

the input bu�ers are relatively small. The matched records can produce updates if the B

�elds di�er. The slots that these matching records occupy in the bu�er are also marked as

free. In Line 5, the remaining records in input bu�er 1 are matched against aging bu�er 2.

Since the aging bu�ers are much larger, the aging bu�ers are actually hash tables to make

the matching more e�cient (Figure 2.9). For each remaining record in input bu�er 1, the

hash table that is aging bu�er 2 is probed for a match. As in Line 4, an update may be

produced by this matching. The slots of the matching records are also marked as free. Line

6 is analogous to Line 5 but this time matching input bu�er 2 and aging bu�er 1. Lines 7

and 8 clear both input bu�ers by forcing the unmatched records in the input bu�ers into

their respective aging bu�ers. The same hash function used in Lines 4 and 5 is used to

determine which bucket the record is placed into. Since new records are forced into the

aging bu�er, some of the old records in the aging bu�er may be displaced. These displaced

records constitute the deletes (inserts) if the records are displaced from input bu�er 1 (input

bu�er 2). The displacement of old records is explained further below. The steps are then

repeated until both snapshots are processed. At that point, any remaining records in the

aging bu�ers are output as inserts or deletes.

In the hash table that constitutes the aging bu�er there is an embedded \aging" queue,

with the head of the queue being the oldest record in the bu�er, and the tail being the

youngest. Figure 2.9 illustrates the aging bu�er. Each entry in the hash table has a

timestamp associated with it for illustration purposes only. The �gure shows that the

oldest record (with the smallest timestamp) is at the head of the queue. Whenever new

records are forced into the aging bu�er, the new records are placed at the tail of the queue.

If the aging bu�er is full, the record at the head of the queue is displaced as a new record

is enqueued at the tail. This action produces a delete (insert) if the bu�er in question is

aging bu�er 1 (aging bu�er 2).

Since �les are read once, the IO cost for the window algorithm is only jF1j+ jF2j regard-

less of memory size, snapshot size and number of updates and inserts. Thus the window

algorithm achieves the optimal IO performance if compression is not considered. However,

the window algorithm can produce useless delete-insert pairs in Steps 6 and 7 of the al-

gorithm. Intuitively, the number of useless delete-insert pairs produced depends on how

physically di�erent the two snapshots are.

To quantify this di�erence, we de�ne the concept of the distance of two snapshots. We

CHAPTER 2. DETECTING SOURCE CHANGES 36

want the distance measure to be symmetric and independent of the size of the �le. While

the reason for the �rst property is obvious, the reason for the second is more subtle. If the

measure is not independent of the size of the �le, we may end up with a measure that is

unbounded. For instance, if the distance of two snapshots is de�ned to be the sum of the

absolute value of the di�erences in positions of matching records, this sum may become

arbitrarily large for large snapshots. Moreover, such a measure can be misleading since

two small snapshots that are in opposite order will have a small distance measure when

intuitively they should have a large distance.

The equation below exhibits the two desired properties.

distance =

P
R1�F1;R2�F2;match(R1;R2)

jpos(R1)� pos(R2)j

max(records(F1); records(F2))2=2
(2.3)

The function pos returns the physical position of a record in a snapshot. The boolean func-

tion match is true when records R1 and R2 have matching keys. The function records

returns the number of records of a snapshot �le. F represents the larger of the two

�les. Thus, this equation sums up the absolute value of the di�erence in position of

the matching records and normalizes it by the maximum distance for the given snapshot

�le sizes. The maximum distance between two snapshots is attained when the records

in the second snapshot are in the opposite order (the �rst record is exchanged with the

last record, the second record with the second to the last, and so on) relative to the �rst

snapshot. If records(F1) = records(F2), it is easy to see that in the worst case the av-

erage displacement of each record is records(F)=2, and hence the maximum distance is

records(F) � records(F)=2. If the �les are of di�erent sizes, using the larger of the two �les

gives an upper bound on the maximum distance. Our distance metric will be used in the

following section to evaluate the window algorithm.

2.3.2 Window for Bag Di�erentials

The window algorithm can be modi�ed easily to perform bag di�erentials. Recall that

for set di�erentials, the window algorithm �rst �lls the two input bu�ers. Given a record

hI1; B1i in input bu�er 1 (or aging bu�er 1), the window algorithm looks for the record in

input bu�er 2 or aging bu�er 2 that has a identi�cation value of I1. If found, the window

algorithm checks if the B attributes of the two records are the same. If the B attributes

do not match, the appropriate update report is produced. However, in computing bag

di�erentials, there may be more than one record in input bu�er 2 and aging bu�er 2 with

CHAPTER 2. DETECTING SOURCE CHANGES 37

Algorithm 2.3.2 Window-Bag

Input F1, F2, n (number of blocks in the input bu�er)

Output Fout (the bag di�erential)

Method

1. input buffer 1 Read n blocks from F1
2. input buffer 2 Read n blocks from F2
3. while ((input buffer 1 6= EMPTY) ^ (input buffer 2 6= EMPTY))

4. Match input buffer 1 against input buffer 2 and aging buffer 2

looking for unchanged records

5. Match input buffer 2 against input buffer 1 and aging buffer 1

looking for unchanged records

6. Match input buffer 1 against input buffer 2 and aging buffer 2

looking for updated records

7. Match input buffer 2 against input buffer 1 and aging buffer 1

looking for updated records

8. Insert contents of input buffer 1 into aging buffer 1

9. Insert contents of input buffer 2 into aging buffer 2

10. input buffer 1 Read n blocks from F1
11. input buffer 2 Read n blocks from F2
12. Report records in input buffer 1 as deletes

13. Report records in input buffer 2 as inserts

3

Figure 2.11: Window Algorithm for Bag Di�erentials

a identi�cation value of I1. If the window algorithm is not modi�ed and processes the �rst

record it �nds in input bu�er 2 or aging bu�er 2 with a identi�cation of I1, it will report an

update when the B attributes do not match. However, reporting this update is unnecessary

if the record hI1; B1i is also in input bu�er 2 or aging bu�er 2. Hence, the window algorithm

must be modi�ed to �nd the record (if any) with a B attribute of B1 as well. This way, the

algorithm detects unchanged records �rst and avoids reporting unnecessary updates. The

modi�ed algorithm is shown in Figure 2.11. It is clear that the modi�ed window algorithm

still has an IO cost of jF1j+ jF2j.

CHAPTER 2. DETECTING SOURCE CHANGES 38

Variable Description Default Values

M Memory Size 32 MB

B Block Size 16K

F File Size 256 MB or 1024 MB

R Record Size 150 bytes

records(F) Number of Rows 1,789,569 or 7,158,279

r Compressed Record Size 10 or 14 bytes

u Compression Factor 15 or 10

U + I Number of Inserts and Updates 1% of records(F)

IO Number of IOs N/A

X Intermediate File Size N/A

E Probability of Error N/A

Table 2.1: List of Variables

2.4 Performance Evaluation

2.4.1 Analytical IO Comparison

We have outlined in the previous sections algorithms for computing set di�erentials: per-

forming sort merge outerjoin (SM), performing a partitioned hash outerjoin (PH), per-

forming a sort merge outerjoin with two kinds of record compression (SMC1, SMC2), per-

forming partitioned hash outerjoin with two kinds of record compression (PHC1, PHC2)

and using the window algorithm (W). SMC1 denotes sort merge outerjoin with a record

compression format of hK; bi (similarly for PHC1); SMC2 uses the record compression

format hK; b; pi (similarly for PHC2).

Recall that we also modi�ed the above algorithms to compute bag di�erentials. Fur-

thermore, we showed that the IO cost of the bag di�erential algorithms are almost the

same as those of the set di�erential algorithms. Thus, we focus only one the set di�erential

algorithms in this section (including Section 2.4.2).

We compare the set di�erential algorithms in terms of IO cost, size of intermediate �les,

and the probability of error. This study serves as an illustration of potential di�erences

between the algorithms in a few realistic scenarios.

Table 2.1 shows the variables that will be used in comparing the algorithms. We assume

that the snapshots have the same number of records. The number of records (records(F))

CHAPTER 2. DETECTING SOURCE CHANGES 39

Algorithm IO256 IO1024 X256 (MB) X1024 (MB) Probability

(%savings) (%savings) of Error (E)

SM 81,920 327,680 16384 65,536 0

SMC1 51,336 (37%) 205,346 (37%) 16,384 65,536 2:3 � 10�10

SMC2 40,833 (50%) 163,333 (50%) 1,639 6,554 2:3 � 10�10

PH 65,536 (20%) 262,144 (20%) 16,384 65,536 0

PHC1 18,568 (77%) 205,346 (37%) 16,384 65,536 2:3 � 10�10

PHC2 19,660 (76%) 156,779 (52%) 1,639 6,554 2:3 � 10�10

W 32,768 (60%) 131,072 (60%) 0 0 0

Table 2.2: Comparison of Algorithms

are calculated using F=R, where R is the record size (150 bytes). The compressed record

size is 10 bytes for the hK; bi format and 14 bytes for the hK; b; pi format. This leads to

compression factors of 15 and 10 respectively.

Table 2.2 shows a summary of the results computed for the various algorithms. The two

columns labeled IO256 and IO1024 show the IO cost incurred in processing 256 MB and 1024

MB snapshots for the di�erent algorithms. Using the sort merge outerjoin as a baseline, we

can see that the partitioned hash outerjoin (PH) reduces the IO cost by 20%. Compression

using the hK; bi record format achieves a 37% reduction in IO cost over sort merge using

SMC1, and a 50% reduction using SMC2. For the 256 MB �le, the compressed �le �ts in

memory which enables the PHC1 and PHC2 algorithms to build a complete in-memory

hash table, as explained in Section 2.2.4. The reduction in IO cost for these two algorithms,

in this case, surpasses even that of the window algorithm.

However, when the larger �le is considered, the compressed �le no longer �ts in the

32 MB memory. Thus the PHC1 and PHC2 algorithms achieve more modest reductions

in this case (37% and 52% respectively). Other than these two algorithms, the reductions

achieved by the other algorithms are unchanged even with the larger �le.

Figure 2.12 shows how the algorithms compare when the size of the snapshots is varied

over a range. The values of other parameters are unchanged. Note that we have not plotted

SMC1 and SMC2 since their plots are almost indistinguishable from PHC1 and PHC2

respectively beyond a �le size of 500 MB. Also note the discontinuity in the graph for PHC1

and PHC2. PHC1 is able to build an in-memory hash table if the �le is smaller than 500

MB (and �les smaller than 320 MB for PHC2). If the partitioned hash outerjoin algorithms

CHAPTER 2. DETECTING SOURCE CHANGES 40

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000 2500

IO
 C

os
t (

10
00

0
IO

s)

File Size (MB)

IO Performance vs. File Size

SM
PH

PHC1
PHC2

Window

Figure 2.12: IO Cost Comparison of Algo-

rithms

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16 18 20

IO
 C

os
t (

10
00

0
IO

s)

Compression Factor

IO Performance vs. Compression Factor

SM
SMC1
SMC2

PH
PHC1
PHC2

Window

Figure 2.13: IO Cost and Compression

Factor

are able to build an in-memory hash table, they can even outperform the window algorithm.

Clearly, the IO savings for compression algorithms depend on the compression factor.

Figure 2.13 illustrates that when the compression factor is low, the algorithms with com-

pression perform worse than PH (even worse than SM in case of SMC1 and SMC2).

The other point that this graph illustrates is that the bene�ts of compression are bounded

(which is to be expected from the IO cost equations). Thus, going beyond a factor of 10 in

this case does not buy us much.

The performance of the compression algorithms that use the pointer format (algorithms

PHC2 and SMC2) depend on the number of updates and inserts. If U + I is higher than

what we have assumed, PHC1 and SMC1 outperform PHC2 and SMC2. Figure 2.14

shows the performance of the algorithms with di�erent U + I . This shows that PHC2 and

SMC2 are only useful for scenarios with relatively few changes between snapshots (less

than say 2 percent of the records). By manipulating the IO cost equations, it is not hard

to show that if U + I is greater than 1.7%, PHC1 and SMC1 incur less IO than PHC2

and SMC2.

The next two columns in Table 2.2 (X256 andX1024) examine the size of the intermediate

�les. In the case of the SM , PH , SMC1 and PHC1 algorithms, uncompressed intermediate

�les need to be saved. In the case of the SMC2 and PHC2 algorithms, the compressed

versions of these �les are constructed, which leads to a more economic disk usage. The

window algorithm, on the other hand, does not construct any intermediate �les.

The last column (labeled E) illustrates the probability of a missed matching record

CHAPTER 2. DETECTING SOURCE CHANGES 41

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

IO
 C

os
t (

10
00

0
IO

s)

I+U (% or records(F))

IO Performance vs. Input and Update Rate

SM
SMC1
SMC2

PH
PHC1
PHC2

Window

Figure 2.14: IO Cost and Varying Update and Insertion Rates

pair. Note that both record compression formats result in the same probability of error

although the two formats have di�erent compression factors. This is because the B �eld is

compressed into a 32 bit integer for both formats.

In closing this section, we stress that the numbers we have shown are only illustrative.

The gains of the various algorithms can vary widely. For example, if we assume very large

records, then even modest compression can yield huge improvements. On the other hand, if

we assume very large memories (relative to the �le sizes), then the gains become negligible.

Snapshot

Generator

Message

Comparator

snapshot pair

minimal set of

messages from window

algorithm

set of messages

Snapshot

Diff Algo

Algorithm Specific
Parameters

Snapshot Pair

Parameters

SDAbox

Figure 2.15: The Evaluation System

CHAPTER 2. DETECTING SOURCE CHANGES 42

Snapshot Parameters Default Values

Size of B �eld 150 bytes

R Size of Record 156 bytes

Number of Records 650,000

F File Size 100 MB

dispavg 50,000 records

U Number of Updates 20% of records(F)

Window Parameters Default Values

AB Aging Bu�er Size 8 MB

IB Input Block Size 16K

Table 2.3: List of Parameters

2.4.2 Evaluation of Implemented Algorithms

In WHIPS, we have implemented the sort merge outerjoin and the window algorithm to

compute the snapshot di�erentials. We have also built a snapshot di�erential algorithm

evaluation system, which we used to study the e�ects of the snapshot pair distance on the

number of useless delete-insert pairs that is produced by the window algorithm. We will

also use the evaluation system to compare the actual running times of the window algorithm

and the sort merge outerjoin algorithm. The evaluation system is depicted in Figure 2.15.

The snapshot generator produces a pair of synthetic snapshots with records of the form

hK; Bi. The snapshot generator produces the two snapshots based on the following pa-

rameters: size of the B �eld, number of records, average record displacement (dispavg) and

percentage of updates. The �rst snapshot is constructed to have ordered K �elds with the

speci�ed number of records and with the speci�ed B �eld size. Table 2.3 shows the default

snapshot pair parameters.

Conceptually, the second snapshot is produced by �rst copying the �rst snapshot. Each

record Rj in the second snapshot is then swapped with a record that is, on average (uni-

formly distributed from 0 to 2 � dispavg), dispavg records away from Rj . Based on the

speci�ed percentage of updates, some of the records in the second snapshot are modi�ed

to simulate updates. Insertions and deletions are not generated since they do not a�ect

the number of useless delete-insert pairs produced. Notice that dispavg is not the distance

measure between snapshots. It is a generator parameter that indirectly a�ects the resulting

CHAPTER 2. DETECTING SOURCE CHANGES 43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55E
xt

ra
 M

es
sa

ge
s/

T
ot

al
 N

um
be

r
of

 R
ec

or
ds

Distance

Effect of Distance on the Number of Extra Messages

F = 50 MB
F = 75 MB

F = 100 MB

Figure 2.16: E�ect of Distance on the Number of Extra Messages

distance. Thus, after generating the two snapshots, the actual distance of the two snapshots

is then measured.

The two snapshots are then passed to the di�erential algorithm (in the SDABOX)

being tested. Note that any of the previous algorithms discussed can be plugged into

the SDABOX. In the experiments that we present here we focus on the window and the

sort merge outerjoin algorithms. Algorithm speci�c parameters are also passed into the

SDABOX. By varying the aging bu�er size and the input bu�er size parameters passed

into the SDABOX, we can study how these parameters a�ect the window algorithm. Table

2.3 also shows the default window parameters. These were used unless the parameter was

varied in an experiment.

After the snapshot di�erential algorithm is run, the output of the algorithm is compared

to what was \produced" by the snapshot generator. Since the snapshot generator synthe-

sized the two snapshots, it also knows the minimal set of di�erences of the two snapshots

(which is the set of records of the �rst snapshot that it modi�ed to produce the second).

The message comparator can then check for the correctness of the output and count the

number of extra messages.

The experiments we conducted enable us to evaluate, given the size of the aging bu�er,

and the size and the distance of the snapshots, how well the window algorithm will perform

CHAPTER 2. DETECTING SOURCE CHANGES 44

File Size records(F) distcrit dispcrit MB

50 MB 162,500 0.44 5.11

75 MB 325,000 0.34 7.91

100 MB 650,000 0.24 11.2

Table 2.4: distcrit and dispcrit MB

in terms of the number of extra messages produced. In the �rst experiment, we varied the

dispavg (and indirectly the distance) and measured the number of extra messages produced.

This experiment was performed on three pairs of snapshots whose sizes ranged from 50 MB

to 100 MB. Figure 2.16 shows that, as expected, as the distance of the snapshots increases

beyond the capacity of the aging bu�er, the number of extra messages increases. As the

number of extra messages sharply rises, the graphs exhibit strong
uctuations. This is

because the synthetic snapshots were produced randomly and only one experiment was

done for each distance. (Only one experiment was done for each distance since it is hard

to create two or more synthetic snapshot pairs with exactly the same distance.) For each

snapshot size, there is a critical distance (distcrit) which causes the window algorithm to

start producing extra messages with the given aging bu�er size.

For a system designer, it is helpful to translate distcrit into a critical average physical

displacement. For instance, if the designer knows that records can only be displaced within

a cylinder and the designer can only allocate 8 MB to each aging bu�er, it is useful to know

if the window algorithm produces few useless delete-insert messages in this scenario. We

now capture this notion by �rst manipulating the de�nition of distance (Equation (2.3) in

Section 2.3.1) to show that distcrit of the di�erent snapshot pairs can be translated into a

critical average physical displacement (in terms of MB). Since there are no insertions nor

deletions in the synthetic snapshot pair, we can de�ne a critical average record displacement

(denoted as dispcrit) which is related to distcrit as shown in Equation (2.5).

distcrit =

P
R1�F1;R2�F2 ;match(R1;R2)

jpos(R1)�pos(R2)j

records(F)2=2
(2.4)

=
records(F)�dispcrit

records(F)�records(F)=2 (2.5)

dispcrit MB = dispcrit �R = distcrit � (records(F)=2) �R (2.6)

Using the size of the record (R), we can translate the distcrit into a critical average

physical displacement (denoted as dispcrit MB which is in terms of MB) using Equation

CHAPTER 2. DETECTING SOURCE CHANGES 45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 4 6 8 10 12 14 16

N
um

be
r

of
 E

xt
ra

 M
es

sa
ge

s

Memory Size (1MB)

Effect of Memory Size on the Number of Extra Messages

Window

Figure 2.17: E�ect of the Memory Size on the Number of Extra Messages

(2.6). Table 2.4 shows the result of the calculations for the di�erent snapshot pairs. The

distcrit of the snapshot pairs are estimated from Figure 2.16. This table shows, for example,

that the window algorithm can tolerate an average physical displacement of about 11.2 MB

given an aging bu�er size of only 8 MB to compare 100 MB snapshots. Thus, if a system

designer knows that the records can only be displaced within, say a page (which is normally

smaller than 11.2 MB), then the designer can be assured that the window algorithm will

not produce excessive amounts of extra messages.

In the next experiment, we focus on the 100 MB snapshots. Using the parameters listed

in Table 2.3, we varied the size of the aging bu�er from 1.0 MB to 16 MB. The dispavg

was set at 50,000 with a resulting distance of 0.34, which is well above the distcrit. Figure

2.17 shows that once the size of the aging bu�er is at least 12.8 MB, no extra messages are

produced. This is to be expected since we showed previously (Table 2.4) that the tolerable

dispcrit MB for the 100 MB �le is 11.2 MB. Using the same snapshot pair, we also varied

the input block size from 8 K to 80 K. The variation had no e�ect on the number of extra

messages and we do not show the graph here. Again, this is to be expected, since the size

of the aging bu�er is much larger than the size of the input block. Thus, even if the input

block size is varied, the window size stays the same. We also varied the record size (keeping

the size of the snapshot constant) and this showed no e�ect on the number of extra messages

CHAPTER 2. DETECTING SOURCE CHANGES 46

0

50

100

150

200

250

300

350

0 20 40 60 80 100

T
im

e
(s

)

Size of Snapshots (MB)

Comparison of the CPU Times

Window
Sort Merge

Figure 2.18: Comparison of the CPU

Times

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

T
im

e
(s

)

Size of Snapshots (MB)

Comparison of the Total Time Elapsed

Window
SortMerge

Read

Figure 2.19: Comparison of the Total

Times

produced.

Lastly we compared the CPU time and the clock time (which includes the IO time)

that the window algorithm consumes to that of the sort merge outerjoin based algorithm.

We ran the simulations on a DEC Alpha 3000/400 workstation running UNIX. We used

the UNIX sort utility in the implementation of the sort merge outerjoin. (UNIX sort

may not be the most e�cient, but we believe it is adequate for the comparisons we wish

to perform here.) We used the same input block size for both the window and the sort

merge outerjoin algorithms (16 K). The dispavg of the two snapshots was set so that the

resulting distance was 0.05 (within the distcrit for all �le sizes). The analysis in the previous

section illustrated that the window algorithm incurs fewer IO operations than the sort merge

outerjoin algorithm. Figure 2.18 shows that the window algorithm is also signi�cantly less

CPU intensive than the sort merge based algorithm. As expected then, Figure 2.19 shows

that the window algorithm outperforms the sort merge outerjoin in terms of clock time.

Moreover, Figure 2.19 also shows that the CPU time is a small fraction of the clock time

in the window algorithm. Thus, the IO comparisons of Section 2.4.1 are indeed useful.

2.5 Related Work

Snapshots were �rst introduced in [AL80]. Snapshots were then used in the system R*

project at IBM Research in San Jose [Loh85]. The data warehouse snapshot can be updated

CHAPTER 2. DETECTING SOURCE CHANGES 47

by maintaining a log of the changes to the database. This approach was de�ned to be a

di�erential refresh strategy in [KR87]. Note that one way of implementing the di�erential

refresh strategy is to use triggers. Every time there is a change to the source, the trigger is

set o� and the appropriate change is recorded in the log. If snapshots were sent periodically,

this was called the full refresh strategy. Again, we focus on the case where the source strategy

is full refresh. [LHM+86] also presented a method for refreshing a snapshot that minimizes

the number of messages sent when refreshing a snapshot. The method requires annotating

the base tables with two columns for a record address and a timestamp. We cannot adopt

this method in data warehousing since the sources are autonomous.

Reference [CRGMW96] investigates algorithms to �nd di�erences in hierarchical struc-

tures (e.g., documents, CAD designs). Our focus here is on simpler, record structured

di�erences, and on dealing with very large snapshots that may not �t in memory.

There has also been recent complementary work on copy detection of �les and docu-

ments. Tools have been created to �nd similar �les in a �le system [MW94]. Copy detection

mechanisms for documents have been proposed in an attempt to safeguard intellectual prop-

erty on the Internet ([BDGM95], [SGM95]). These mechanisms ultimately provide as output

the extent of the similarity of two �les. The snapshot di�erential problem is concerned with

detecting the speci�c di�erences of two �les as opposed to measuring how di�erent (or sim-

ilar) two �les are. Also related are [BGMF88] and [FWA86], which propose methods for

�nding di�ering pages in �les. However, these methods can only detect a few changes and

assume that no insertions or deletions have taken place.

The snapshot di�erential problem is also related to text comparison, for example, as

implemented by UNIX di� and DOS comp. However, the text comparison problem is

concerned with the order of the records. That is, it considers a sequence of records, while

the snapshot di�erential problem is concerned with a set of records. Reference [HT77]

outlines an algorithm that �nds the longest common subsequence of the lines of the text,

which is used in the UNIX di�. Report [LGM95] takes a closer look at how this algorithm

can be adopted to solve the snapshot di�erential problem, although the solution is not as

e�cient as the ones presented here.

The methods for solving the snapshot di�erential problem proposed here are based on

joins which have been well studied; [ME92] and [Sha86] are good surveys on join process-

ing. The snapshot di�erential algorithms proposed here are used in the data warehousing

system WHIPS. An overview of the system is presented in [HGMW+95]. After the changes

CHAPTER 2. DETECTING SOURCE CHANGES 48

of multiple sources are detected, the changes are integrated using methods discussed in

[ZGMHW95].

Note that there are also cases wherein knowledge of the semantics of the information

maintained at the warehouse helps make change detection simpler. For instance, if the

warehouse keeps a history of all the data contained at the source, then it makes sense to

simply pass complete snapshots to the warehouse. We have an outline of these special cases

in report [LGM95].

2.6 Chapter Summary

We have de�ned the snapshot di�erential problem and discussed its importance in data

warehousing. The algorithms we have proposed are \extensions" of traditional join algo-

rithms, but take advantage of the semantics of the problem, i.e., the
exibility allowed for

snapshot di�erentials. All of our proposed algorithms are relatively simple, but we view

this simplicity as essential for dealing e�ciently with large �les. In summary, we have the

following results:

� By augmenting outerjoin algorithms with record compression, we have shown that

very signi�cant savings in IO cost can be attained. We have also illustrated that the

probability that an error will occur if compression is used can be made negligible while

still being e�cient enough.

� We have introduced the window algorithm which works extremely well if the snapshots

are not too di�erent. Under this scenario, this algorithm outperforms the join-based

algorithms and its running time is comparable to simply reading the snapshots once.

We have de�ned the concept of snapshot pair distance to characterize quantitatively

the scenarios where the algorithm is applicable.

Chapter 3

Maintenance of the Data

Warehouse

3.1 Introduction

Once the changes to the remote data sources are detected (Chapter 2) and go through data

cleaning (Chapter 6), the changes to the warehouse views need to be e�ciently computed

and installed. During the time that warehouse views are being updated, a process we call

the \view-update," either OLAP queries are not processed or OLAP queries compete with

the view-update for resources. To reduce OLAP down time or interference, it is critical to

minimize the work involved in a view-update and shrink the view-update window.

As mentioned in Chapter 1, the derived data at the warehouse is often stored in ma-

terialized views. Previous work ([GL95], [Qua96]) has developed standard expressions for

maintaining a large class of materialized views incrementally. However, there are still nu-

merous alternative \strategies" for implementing these expressions, and these strategies

incur di�erent amounts of work and lead to di�erent length update windows.

EXAMPLE 3.1.1 Let us consider the warehouse depicted by the view directed acyclic

graph (VDAG) shown in Figure 3.1. There are four materialized views: CUSTOMER, OR-

DER, LINEITEM, and V. The edge from V to CUSTOMER indicates that view V is de�ned

on view CUSTOMER (and similarly for the other edges). Unlike V, the CUSTOMER, OR-

DER and LINEITEM views are de�ned on remote data sources.

Periodically, the changes (i.e., inserted, deleted and updated tuples) of CUSTOMER,

49

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 50

ORDER LINEITEM CUSTOMER

V

Figure 3.1: Example VDAG of Materialized

Views

CUSTOMERLINEITEMORDER

V V’

Figure 3.2: More Complex VDAG

ORDER and LINEITEM are computed from the changes of remote data sources. The

changes of the remote data sources can be detected using algorithms discussed in Chap-

ter 2, or other methods. View maintenance algorithms that handle remote and autonomous

sources, like the algorithms developed in [ZGMHW95], may then be used to compute the

changes to CUSTOMER, ORDER and LINEITEM. Once the changes of these views are

obtained, the changes of V need to be computed, and the changes of all the views need

to be installed. There are many ways to perform these update tasks using standard view

maintenance expressions.

One strategy for updating V , denoted Strategy 1, is (as in [CGL+96]):

1. Compute the changes of V considering at once all the changes of CUSTOMER, OR-

DER, LINEITEM, and using the prior-to-update states of these views.

2. Install the changes of all four views. Installation of changes involves removing deleted

tuples, adding inserted tuples, and changing updated tuples.

In Strategy 2, the changes of V are computed piecemeal, considering the changes of each

of its base views one at a time:

1. Compute the changes of V only considering the changes of CUSTOMER (and the

original state of the views).

2. Install the changes of CUSTOMER. (The following steps will see this new state.)

3. Compute the changes of V only considering the changes of ORDER.

4. Install the changes of ORDER. (This new state will be seen by the next step.)

5. Compute the changes of V only considering the changes of LINEITEM.

6. Install the changes of LINEITEM.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 51

7. Install the changes of V.

In [GMS93], the correctness of both these strategies was discussed. Speci�cally, it was

shown that both strategies compute the same �nal \database state" (i.e., extension of all

warehouse views). However, it was not shown how to choose among the strategies. In

particular, the strategies can result in signi�cantly di�erent length update windows. For

instance, we show later in the chapter that if CUSTOMER, ORDER and LINEITEM are

TPC-D relations [Com], and V is de�ned using the TPC-D \Shipping Priority" Query, the

update window can be two to three times longer if Strategy 1 is used instead of Strategy 2!

We show experimentally that for views with more complex de�nitions than V , even larger

disparities in update windows exist across di�erent update strategies.

For the simple VDAG of Figure 3.1, there are 11 strategies in addition to Strategies 1

and 2. For instance, a slight variant of Strategy 2 computes the changes of V based on

the changes of LINEITEM �rst, then ORDER, and then CUSTOMER. In some cases, this

variant may have a shorter update window than Strategy 2, but in other cases Strategy 2

may be better. 2

The previous example illustrated that even for a single view, there are many update strate-

gies. Finding optimal strategies for a single view is one challenge we address in this chapter.

In the next example, we illustrate that the update strategies for a VDAG of views cannot be

constructed by simply picking the strategies for each view independently. In this chapter,

we also address the problem of �nding optimal strategies for a VDAG of views.

EXAMPLE 3.1.2 Let us consider the VDAG shown in Figure 3.2. This VDAG now

includes a second view V 0 de�ned over CUSTOMER, ORDER and LINEITEM. Say we

update V using Strategy 2 (Example 3.1.1), and V 0 is updated using the following Strategy

3:

1. Compute the changes of V 0 only considering the changes of LINEITEM.

2. Install the changes of LINEITEM. (These changes are visible to the following steps.)

3. Compute the V 0 changes considering the changes of CUSTOMER and ORDER.

4. Install the changes of CUSTOMER and ORDER.

5. Install the changes of V 0.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 52

Note that in Strategy 2, the �fth step occurs after the changes of CUSTOMER and

ORDER, but not LINEITEM, have been installed. On the other hand, in Strategy 3 the

third step occurs after the changes of LINEITEM have been installed, but not the changes

of CUSTOMER and ORDER. Since only one of these states can be achieved,1 we cannot

combine Strategy 2 and Strategy 3. On the other hand, it is possible to combine Strategy

1 and Strategy 3 in a consistent manner. 2

The previous example showed that we may not be able to construct a correct strategy

for a VDAG of views by combining independently chosen single view strategies. Even if

we can, the combined strategy may not be the best among all correct strategies. In this

chapter, we de�ne formally the notion of a correct update strategy for a VDAG of views,

and we develop techniques to obtain correct and e�cient update strategies for a VDAG of

views.

One could argue that standard database query optimizers may be able to generate

e�cient view-update strategies by leveraging their pro�ciency in �nding good plans for

a query or even a set of queries. However, today's query optimizers assume that during

the execution of the queries the database state does not change. As illustrated by our

examples, view-update strategies employ sequences of computation and installation steps.

More importantly, each step may change the database state, which in turn a�ects the rest

of the steps. Hence, picking the best strategy involves:

� Choosing the set of queries (for update computations) and data manipulation expres-

sions;

� Sequencing these queries and data manipulation expressions; and

� Ensuring that the chosen sequence results in the correct �nal database state.

To our knowledge, query optimizers do not handle these tasks. As a result, the warehouse

administrator (WHA) is often saddled with the task of creating \update scripts" for the

warehouse views. Since there are many alternative update strategies, the WHA can easily

pick an ine�cient update strategy, or even worse an update strategy that incorrectly updates

the warehouse. Furthermore, the WHA may have to change the script frequently, since what

strategy is best depends on the current size of the warehouse views and the current set of

changes.

1We do not assume that multiple versions of the warehouse data are maintained.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 53

In this chapter, we develop a framework for studying the space of update strategies. We

make the following speci�c contributions:

� We characterize the correctness and optimality of update strategies for a VDAG of

views.

� We develop a very e�cient algorithm called MinWorkSingle that �nds an update

strategy that minimizes the work incurred in updating a single materialized view.

� Based on MinWorkSingle, we develop an e�cient heuristic algorithm called MinWork

that produces a good update strategy for a general VDAG of materialized views. We

show that for a large class of VDAGs, the MinWork update strategy is actually the

least expensive.

� We also develop a search algorithm called Prune that produces the least expensive

update strategy for an even larger class of VDAGs.

� Based on performance experiments with a TPC-D scenario, we demonstrate that the

MinWorkSingle and MinWork update strategies result in update windows that are

signi�cantly shorter than the update windows of conventional update strategies.

The rest of the chapter is organized as follows. In Section 3.2, we brie
y review our

warehouse model (discussed in Chapter 1). Alternative update strategies for a VDAG of

views are discussed in Section 3.3. There we also de�ne formally the problem of minimizing

the work incurred. In Sections 3.4, 3.5 and 3.6 we present our algorithms and discuss prac-

tical issues surrounding their implementation. In Section 3.7, we show through experiments

that our algorithms can signi�cantly reduce update windows. Related work is discussed in

Section 3.8.

3.2 Preliminaries

Warehouse Model

As a reminder of our warehouse model discussed in Chapter 1, Figure 3.3 shows a simple

example of a VDAG with three base views (i.e., V1,V2,V3) and two derived views (i.e.,

V4, V5). As a more concrete example, Figure 3.4 shows the VDAG representation of a

warehouse that contains six TPC-D relations as base views. In this example, ORDER and

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 54

V1 V2 V3

V4

V5

Figure 3.3: Example

VDAG

Q10Q5Q3

SUPPLIER NATION REGIONORDER LINEITEM CUSTOMER

Figure 3.4: VDAG of a TPC-D Warehouse

LINEITEM represent fact tables, and the other base views represent dimension tables. The

derived views Q3, Q5 and Q10 represent summary tables de�ned over the TPC-D base

views. Often, derived views that further summarize Q3, Q5 and Q10 can also be de�ned.

We de�ne Level(V) to be the maximum distance of V to a base view. For instance, in

Figure 3.3, Level(V1) = Level(V2) = Level(V3) = 0, Level(V4) = 1, and Level(V5) = 2. We

use MaxLevel(G) to denote the maximum Level value of any view in a VDAG G.

View De�nitions and Maintenance Expressions

Recall from Chapter 1 that view de�nitions in our model (denoted Def(V)) involve pro-

jection, selection, join, and aggregation operations. For instance, views Q3, Q5 and Q10

of Figure 3.4 may be de�ned using TPC-D queries that are SELECT-FROM-WHERE-GROUPBY

SQL statements.

An edge (Vj ! Vi) in the VDAG means that Vi appears in Def(Vj). Moreover, it

implies that changes of Vi lead to Vj changes.
2 In Chapter 1, we discussed that the changes

of Vi include inserted, deleted and updated tuples. For simplicity of presentation, we do

not show explicitly these three types of deltas, instead lumping them together in a single

delta table. We use delta table �V to represent the changes of V .

The changes of the base views arrive periodically at the warehouse. In today's ware-

houses, the period is often daily or weekly. The changes of the base views are then used

to compute the changes of the derived views. If V is a derived view, view maintenance ex-

pressions based on Def(V) are used to compute �V . For instance, if view V4 in Figure 3.3

is de�ned as �P(V2�V3), the following standard maintenance expression ([GL95], [Qua96])

that uses three terms (i.e., �P(�V2�V3), �P(V2��V3), �P(�V2��V3)) computes �V4.

�V4 �P(�V2�V3) [�P(V2��V3) [�P(�V2��V3) (3.1)

2In some special cases (e.g., if certain integrity constraints hold), Vi changes may not produce Vj changes.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 55

When executing maintenance expressions like (3.1), the inserted, deleted and updated

tuples in the delta tables must be handled appropriately. For instance, the term �P(�V2�V3)

involves joining the deleted tuples of �V2 with V3 and storing them as deleted tuples of �V4,

and doing the same for the inserted and updated tuples of V2.

After the changes of a view are computed, they are used in computing changes of other

derived views, and installed. The install operation inserts the inserted tuples, and deletes

the deleted tuples, and changes the updated tuples.

Compute and Install Expressions

We abstract maintenance computations by the function Comp. The formula for comput-

ing �V from the changes of the set of views V is denoted by Comp(V;V). For instance,

Comp(V4; fV2; V3g) represents the �V4 computation of Expression (3.1). As another ex-

ample, Comp(V4; fV2g) represents the computation of the changes of V4 based solely on

the changes of V2, i.e., �V4 �P(�V2�V3). Note that Comp(V4; fV2g), having just one

term (i.e., �P(�V2�V3)), can be obtained from the expression for Comp(V4; fV2; V3g) by

assuming �V3 is empty, and simplifying the expression.

We use Inst(V) to denote the operation of installing �V into V . For example, Inst(V4)

represents the expression V4 V4 [�V4. We call expressions denoted by Inst install

expressions. Even though standard view maintenance expressions can be used to obtain the

changes of derived views, given the changes of views they are de�ned over, we show that

there are numerous \strategies" for updating a derived view.

3.3 View and VDAG Strategies

We now de�ne view strategies which are used to update a single view, and VDAG strategies

which are used to update a VDAG of views. We also illustrate how one can de�ne the

space of correct VDAG strategies based on the notion of correct view strategies for the

individual views of the VDAG. Finally, we formally de�ne the \total-work minimization"

(TWM) problem as �nding the correct VDAG strategy that incurs the minimum amount

of work.

3.3.1 View Strategies

For a view V de�ned over n views V1; : : : ; Vn, there are many possible ways of updating V .

We call each way a view strategy. One view strategy for V is to compute �V based on all

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 56

of the changes f�V1; : : : ; �Vng simultaneously as shown below.

h Comp(V; fV1; : : : ; Vng); Inst(V1); : : : ; Inst(Vn); Inst(V) i (3.2)

Notice that view strategy (3.2) has two \stages", a stage for propagating the underlying

changes (i.e., using the Comp expression), and a stage for installing the changes (i.e., using

the Inst expressions). Having two stages is consistent with the framework proposed in

[CGL+96] that a view is updated using a propagate stage and an install stage. In this

chapter, we call strategies like (3.2) dual-stage view strategies.3

Another possible view strategy for V is to compute �V by considering each �Vi in

f�V1; : : : ; �Vng one at a time, as shown below.

h Comp(V; fV1g); Inst(V1); : : : ; Comp(V; fVng); Inst(Vn); Inst(V) i (3.3)

Each Comp expression in view strategy (3.3) computes a subset of the changes of V . We

assume that the changes computed by the various Comp expressions for V are gathered in

delta table �V , and eventually installed together by Inst(V). We call view strategies like

(3.3) 1-way view strategies. Notice that view strategy (3.3) propagates the changes of V1

�rst, then of V2, and so on. For a view de�ned over n views, there are a total of n! 1-way

view strategies that can be obtained by using di�erent change propagation orders.4 For

instance, another 1-way view strategy for V shown below processes the changes of Vn �rst,

then of Vn�1, and so on. As we will see in subsequent sections, view strategies (3.2), (3.3)

and (3.4) may incur signi�cantly di�erent amounts of work.

h Comp(V; fVng); Inst(Vn); : : : ; Comp(V; fV1g); Inst(V1); Inst(V) i (3.4)

Dual-stage view strategies as well as 1-way view strategies have been proposed in the

literature ([GMS93], [CGL+96]). However, the issue of �nding optimal view strategies has

not been studied. Moreover, we will see later that di�cult problems arise when constructing

correct and e�cient VDAG strategies by combining optimal view strategies for individual

views of the VDAG.

3Actually, for a view de�ned over n other views, a total of (n + 1)! dual-stage view strategies can be

obtained by reordering the Inst expressions. That is, once f�V1; : : : ; �Vng are used to compute �V , the

changes can be installed in any order. Fortunately, we only need to consider one dual-stage strategy per
view since all dual-stage view strategies for a given view can be shown to incur the same amount of work.

4Actually, there are 2(n!) 1-way view strategies because the last two Inst expressions, e.g., Inst(Vn) and

Inst(V) in view strategy (3.3), can be swapped. However, it can be shown that swapping these expressions
does not a�ect the work incurred by the view strategy. Hence, we only consider n! 1-way view strategies.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 57

Beyond the 1-way and dual-stage view strategies, there is a multitude of other correct

view strategies. To see this, we can look at a 1-way view strategy as one that partitions

f�V1; : : : ; �Vng into n singleton sets, and processes the sets, one at a time. On the other

hand, a dual-stage view strategy does not partition f�V1; : : : ; �Vng at all, and processes all

the changes simultaneously. Other ways of partitioning the view set will yield other view

strategies.

Once the partitions are decided upon, the propagation order among the various parti-

tions needs to be chosen. The combined choices of partitioning and their order of processing

yields

To illustrate the enormity of the space of view strategies, Table 3.1 shows the number

of view strategies for a view de�ned over n views, where n ranges from 1 to 6. According

to Table 3.1, views Q3, Q5, and Q10 of the TPC-D VDAG (Figure 3.4) have 13, 4683, and

75 view strategies respectively.

n # of view strategies

1 1

2 3

3 13

4 75

5 541

6 4683

Table 3.1: Number of View Strategies for a View De�ned Over n Views

Table 3.1 actually counts the number of correct view strategies. In De�nition 3.3.1, we

formally describe the notion of correctness of a view strategy. Intuitively, conditions C1 and

C2 state that all the changes must be propagated and installed by a correct view strategy.

That is, certain Comp and Inst expressions must be in the correct view strategy.5 On the

other hand, conditions C3, C4, and C5 state that the Comp and Inst expressions must be

in a particular order. Speci�cally, condition C3 states that �Vi must not be installed until

all Comp expressions that use it are done. Condition C4 states that when the changes

of V are computed using multiple Comp expressions, the changes of a view used in a

Comp expression must be installed before the next Comp expression for V can be executed.

5Conditions C1 and C2, and our algorithms can be extended to avoid using expressions that propagate

and install �Vi when �Vi is empty.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 58

Condition C5 states that the changes computed for V can only be installed after they are

completely computed. Finally, condition C6 states that there are no duplicate expressions

in the correct view strategy.

De�nition 3.3.1 (Correct View Strategy) Let Ei < Ej if expression Ei is before ex-

pression Ej in the view strategy. Given a view V de�ned over a set of views V , a correct

view strategy
�!
E for V is a sequence of Comp and Inst expressions satisfying the following

conditions.

� C1: 8Vi 2 V : (Comp(V; f: : :Vi : : :g) 2
�!
E).

� C2: 8Vi 2 (V [fV g): (Inst(Vi) 2
�!
E).

� C3: 8Vi 2 V : (Comp(V; f: : :Vi : : :g) < Inst(Vi)).

� C4: 8Vi: 8Vj : (Comp(V; f: : :Vi : : :g) < Comp(V; f: : :Vj : : :g)))

(Inst(Vi) < Comp(V; f: : :Vj : : :g)).

� C5: 8Vi 2 V : (Comp(V; f: : :Vi : : :g) < Inst(V)).

� C6: 8Ei 2
�!
E : 8Ej 2

�!
E : (i 6= j)) (Ei 6= Ej).

2

Notice that combinations of these conditions avoid incorrect view strategies that are

not explicitly prohibited in the conditions. For instance, because of conditions C3 and

C4, it is not possible to have two Comp expressions that propagate �Vi. For instance,

both Comp(V; fVi; Vjg) and Comp(V; fVi; Vkg) cannot be simultaneously present in a cor-

rect view strategy. More speci�cally, C3 states that Inst(Vi) must be after both Comp

expressions. On the other hand, if Comp(V; fVi; Vjg) < Comp(V; fVi; Vkg), C4 states that

Inst(Vi) must be before Comp(V; fVi; Vkg), a contradiction. Similarly, Comp(V; fVi; Vjg) <

Comp(V; fVi; Vkg) also leads to a contradiction.

Note also that for a base view V which is not de�ned over any warehouse views (i.e.,

V = f g), V 's correct view strategy is h Inst(V) i.

3.3.2 VDAG Strategies

Like a view strategy, a VDAG strategy is simply a sequence of compute and install expres-

sions. Informally speaking, a correct VDAG strategy uses a correct view strategy to update

each view in the VDAG.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 59

EXAMPLE 3.3.1 Consider the VDAG shown in Figure 3.3. A VDAG strategy should

indicate how changes are propagated to all the views. One possible VDAG strategy prop-

agates the changes of V2 to V4, then propagates the changes of V3 to V4, then propagates

the changes of V4 to V5, and �nally propagates the changes of V1 to V5.

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g); Inst(V3);

Comp(V5; fV4g); Inst(V4); Comp(V5; fV1g); Inst(V1); Inst(V5) i (3.5)

Note that VDAG strategy (3.5) \uses" (contains as a subsequence) the following correct

view strategies for V4 and V5 respectively.

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g); Inst(V3); Inst(V4) i

h Comp(V5; fV4g); Inst(V4); Comp(V5; fV1g); Inst(V1); Inst(V5) i

Also, for any base view Vi (i.e., V1, V2, V3), VDAG strategy (3.5) \uses" h Inst(Vi) i. 2

The previous example illustrated that a correct VDAG strategy uses correct view strate-

gies to update each view in the VDAG. However, we know that starting from a set of correct

view strategies, one for each view of the VDAG, we may not be able to construct a correct

VDAG strategy (see Example 3.1.2 of Section 3.1). In Sections 3.5 and 3.6, we present

algorithms that not only �nd correct VDAG strategies but also ensure that the strategies

they produce are very e�cient. In the rest of this section, we formalize our notions of cor-

rectness and e�ciency of VDAG strategies. First, we de�ne the concept of a view strategy

\used" by a VDAG strategy.

De�nition 3.3.2 (View Strategy Used by a VDAG Strategy) Given a VDAG strat-

egy
�!
E , and a view Vj de�ned over views V , the view strategy used by

�!
E for Vj is the sub-

sequence
�!
Ej of

�!
E composed of the following expressions: (1) Comp(Vj; f:::g); (2) Inst(Vj);

and (3) Inst(Vi), where Vi 2 V . 2

The next de�nition formalizes the conditions that are required of a correct VDAG strat-

egy. Condition C7 states that a correct VDAG strategy must update each view using a

correct view strategy. Condition C8 states that a correct VDAG strategy can only prop-

agate changes of Vj after they have been computed. Condition C8 implicitly imposes an

order between expressions from view strategies of di�erent views in the VDAG.

De�nition 3.3.3 (Correct VDAG Strategy) Given a VDAG G with views V and edges

A, a correct VDAG strategy is a sequence of Comp and Inst expressions
�!
E such that

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 60

� C7: 8Vi 2 V :
�!
E uses a correct view strategy

�!
Ei for Vi.

� C8: 8Vi 2 V : 8Vj 2 V : 8Vk 2 V : (Comp(Vk; f: : :Vj : : :g) 2
�!
E

and Comp(Vj; f: : :Vi : : :g) 2
�!
E)) (Comp(Vj; f: : :Vi : : :g) < Comp(Vk; f: : :Vj : : :g)).

2

3.3.3 Problem Statement

We use a functionWork to represent the amount of work involved in executing an expression

{ Comp or Inst. Given a VDAG strategy
�!
E = hE1; : : : ; Eni, we de�ne Work(

�!
E) asP

i=1::nWork(Ei). Notice that Work(Ei) depends on the expressions that precede Ei,

since these expressions change the database state that Ei is executed in. The problem we

address in this chapter is stated as follows.

De�nition 3.3.4 (Total-Work Minimization (TWM) Problem) Given a VDAG, �nd

the correct VDAG update strategy
�!
E such that Work(

�!
E) is minimized. 2

Since TWM is only concerned with correct VDAG strategies, henceforth, \VDAG strate-

gies" refer only to \correct VDAG strategies." Similarly, \view strategies" refer only to

\correct view strategies."

In order to estimate Work(Ei), various metrics can be used. We adopt a metric called

linear work metric. The linear work metric is a simple metric that focuses on the essen-

tial components of the work involved in executing the Comp and Inst expressions. The

algorithms that we develop in this chapter produce optimal update strategies under the

linear work metric. In Section 3.7, we study the relative performance of various update

strategies for the TPC-D VDAG by executing the strategies on a commercial RDBMS, and

measuring the corresponding update windows. Our study demonstrates that the strategies

produced by our algorithms have signi�cantly shorter update windows than conventional

update strategies. The results of the study suggest that the linear work metric employed

by our algorithms e�ectively tracks real-world execution of update strategies.

The linear work metric is based on the following execution model of Comp expres-

sions. Recall that Comp typically represents a maintenance expression with a set of terms

(e.g., Expression (3.1) of Section 3.2 has three terms). In general, we assume that a com-

pute expression of the form Comp(W;Y) has a total of 2jYj � 1 terms, where each term

considers a combination of delta or non-delta forms of the views in Y . For example, in

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 61

Comp(W; fV1; V2g), one term evaluates the changes of W based on �V1 and V2, a second

term computes W changes based on V1 and �V2, and the third term considers �V1 and �V2.

Each of these terms must in addition consider the rest of the views that participate in the

de�nition of W . In our example, if W is de�ned over V1, V2 and V3, then the �rst term of

Comp(W; fV1; V2g) will have as input �V1, V2 and V3; the second term will have as input

V1, �V2 and V3; and the �nal term will have as input �V1, �V2 and V3. We consider an

execution model that evaluates each of these terms separately. Thus, the work estimate for

a Comp expression is obtained by estimating the work for each of its terms and adding up

these estimates.

Notice that our term-execution model is independent of the speci�cs of the view def-

initions. Incremental view maintenance expressions for views involving arbitrary select,

project, join operations, followed by arbitrary aggregate operations �t this pattern. Thus,

the results we develop in this chapter are valid for all these maintenance expressions. We

now formally state our work metric based on the term-execution model discussed above.

De�nition 3.3.5 (Linear Work Metric) The work estimate for an Inst expression is

proportional to the size of the set of changes being installed. The estimate for a Comp

expression is the sum of the estimates for each of its terms; the estimate for a term is

proportional to the sum of the sizes of the operands of the term. 2

EXAMPLE 3.3.2 Consider the VDAG shown in Figure 3.3, with V4 de�ned as �P(V2�V3).

Comp(V4; fV2g) has one term: �P(�V2�V3). Its work estimate is c � (j�V2j+ jV3j), where c

is a proportionality constant. Similarly, the estimate for Comp(V4; fV2; V3g) can be derived

(by considering its 3 terms) as c � ((j�V2j+ jV3j) + (j�V3j+ jV2j) + (j�V2j+ j�V3j)). Finally,

note that the work estimate for Inst(V4) is i � j�V4j, where i is a proportionality constant.

2

The linear work metric is similar to metrics that have been used in state-of-the-art algo-

rithms for warehouse design ([HRU96], [SDN98]), and it can be quite e�ective in modeling

complex update computations. Estimating the work of an install expression as being pro-

portional to the size of the delta table is reasonable because the expression needs to scan in

the delta table to install the changes. When estimating the work of a compute expression,

we note that each term in the compute expression contains at least one delta table. Since

delta tables tend to be small, all intermediate results in the evaluation of a term tend to be

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 62

small. Therefore, the work incurred in evaluating a term is often dominated by scanning

into memory the term's operands. Accordingly, we estimate the work of a term as being

proportional to the sum of the sizes of its operands. Then, the work estimate of a com-

pute expression is obtained by adding the work estimates of all the terms in the compute

expression.

3.4 Optimal View Strategy

In this section, we present algorithmMinWorkSingle that produces an optimal view strategy

for a given view, under the linear work metric. In Section 3.7, we will show that even if the

underlying database does not have a linear work metric, the MinWorkSingle view strategy

is still very e�cient.

We showed previously that there are numerous possible view strategies for a single

view. Fortunately, under the linear work metric, we can restrict our attention to 1-way

view strategies only.

Theorem 3.4.1 For any given view, the best 1-way view strategy is optimal over the space

of all view strategies. 2

The detailed proof of Theorem 3.4.1, and of other theorems and lemmas that follow, are

furnished in Appendix A. The basic intuition is that in any view strategy for V that is not

1-way, a Comp expression that computes the changes of V based on multiple deltas can be

replaced by a set of Comp expressions each involving a single delta such that the total work

of this set of Comp expressions is smaller than the work incurred by the replaced Comp

expression.

Theorem 3.4.1 is very signi�cant because the set of 1-way view strategies is much smaller

than the set of all view strategies. For instance, the view Q5 in Figure 3.4 has a total of

4683 view strategies, out of which only 720 are 1-way. Thus, the search for an optimal

view strategy can be limited to the set of 1-way view strategies. Next, we will present

another theorem that helps us avoid examining all the 1-way view strategies and identify

the best 1-way strategy very e�ciently. The following example illustrates how the various

1-way view strategies di�er in e�ciency and it provides the basic intuition behind the next

theorem.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 63

EXAMPLE 3.4.1 Let us again consider view V4 (Figure 3.3) de�ned over V2 and V3, and

compare the two 1-way view strategies for V4 shown below.

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g); Inst(V3); Inst(V4) i (3.6)

h Comp(V4; fV3g); Inst(V3); Comp(V4; fV2g); Inst(V2); Inst(V4) i (3.7)

Clearly, the work incurred by the Inst expressions (i.e., Inst(V2), Inst(V3), Inst(V4)) are

the same. This is not the case for the Comp expressions. Although the same set of Comp

expressions are used, the view extensions accessed by the Comp expressions are di�erent.

To illustrate, we use V 0
2 to denote V2 after �V2 is installed. Similarly, V

0
3 denotes V3 after

�V3 is installed. In general, the expression Comp(V4; fV2g) in view strategy (3.6) uses �V2,

and V3, and possibly V4. On the other hand, the same expression Comp(V4; fV2g) in view

strategy (3.7) uses �V2, and V 0
3, and possibly V4. Hence, the only di�erence in the use of

Comp(V4; fV2g) in the two view strategies is that V 0
3 is used in view strategy (3.7), while

V3 is used in view strategy (3.6).

In general, the earlier �V3 is installed in a view strategy, the more often will V 0
3 be used

by the compute expressions in the view strategy. If it so happens that V 0
3 is larger than

V3, then using V 0
3 is more expensive than using V3. In this case, it is good to delay the

installation of �V3. On the other hand, if V 0
3 is smaller than V3, then it is good to install

�V3 as early as possible.

In fact, under a linear work metric we can be much more precise about the installation

and propagation order of the various changes. For instance, if we �rst propagate and install

the changes of V3 (as in view strategy (3.7)), any subsequent compute expression that used

to access V3, will access V
0
3 instead. Hence, the work incurred by these compute expressions

is increased by c � (jV 0
3j � jV3j). (Of course, if (jV 0

3j � jV3j) is negative, the work incurred

actually decreases.) Similarly if we �rst propagate and install the changes to V2 (as in

view strategy (3.6)), the work incurred by subsequent compute expressions is increased by

c � (jV 0
2j� jV2j). Hence, in this example, we would want to propagate and install the changes

of V3 before the changes of V2 if (jV
0
3j � jV3j) < (jV 0

2j � jV2j). 2

The example illustrated how an optimal 1-way view strategy for some view V can be

obtained. Assuming V is de�ned over the views V , we �rst obtain a view ordering
�!
V

that arranges the views in V in increasing jV 0
i j � jVij values based on the current set of

changes. Given
�!
V , an optimal 1-way view strategy is the one that propagates and installs

the changes in an order consistent with
�!
V . A 1-way view strategy for V is consistent with

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 64

Algorithm 3.4.1 MinWorkSingle

Input: V , de�ned over views V

Output: an optimal view strategy
�!
E for V

1.
�!
E h i

2. For each Vi 2 V estimate jV 0i j � jVij based on the current set of changes

3.
�!
V views in V ordered by increasing jV 0i j � jVij values

4. For each Vi 2
�!
V in order

5. Append Comp(V; fVig) to
�!
E

6. Append Inst(Vi) to
�!
E

7. Append Inst(V) to
�!
E

8. Return
�!
E

3

Figure 3.5: MinWorkSingle Algorithm

a view ordering
�!
V if for every Inst(Vi) < Inst(Vj) in the strategy (where Vi 6= V and

Vj 6= V), then Vi < Vj in
�!
V .

Theorem 3.4.2 Given a view V de�ned over the views V, let the view ordering
�!
V arrange

the views in increasing jV 0
i j � jVij values, for each Vi 2 V. Then, a 1-way view strategy for

V that is consistent with
�!
V will incur the least amount of work among all the 1-way view

strategies for V . 2

The main intuition behind the proof (in Appendix A) was illustrated by Example 3.4.1.

Based on Theorem 3.4.1 and Theorem 3.4.2, algorithm MinWorkSingle (Figure 3.5)

produces an optimal view strategy. The view strategy produced byMinWorkSingle is correct

since it satis�es the conditions for a correct view strategy (De�nition 3.3.1). Speci�cally,

MinWorkSingle appends all the necessary Comp and Inst expressions (Lines 5{7) required

by C1 and C2. By appending Inst(Vi) right after Comp(V; fVig) and before the next

Comp expression, MinWorkSingle guarantees that the output view strategy satis�es C3

and C4. Appending Inst(V) last ensures that C5 is satis�ed. Since MinWorkSingle does

not duplicate any expression, C6 is satis�ed.

We summarize the behavior of algorithm MinWorkSingle in the following theorem.

Theorem 3.4.3 Given a view de�ned over n other views in the warehouse, MinWorkSingle

�nds an optimal view strategy for the view in O(n log n) time. 2

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 65

3.5 Minimizing Total Work

We have seen that for a derived view V , a 1-way view strategy consistent with a certain view

ordering based on the current set of changes of the views that V is de�ned on is optimal. In

this section, we show a similar result for VDAG strategies. That is, for a VDAG, we show

that a \1-way VDAG strategy" consistent with a certain ordering of all the VDAG views

based on the current set of changes is optimal among all VDAG strategies. Based on this

result, we present an e�cient algorithm to �nd optimal VDAG strategies.

Unlike in the case of view strategies, it is not always possible to obtain a \1-way VDAG

strategy" consistent with a given view ordering. In such cases, our algorithm �nds VDAG

strategies that may not be optimal. In this section, we study the conditions required to

be satis�ed by a VDAG for our algorithm to obtain an optimal VDAG strategy. Based on

these conditions, we identify large classes of VDAGs for which optimal VDAG strategies

are guaranteed by our algorithm.

3.5.1 Optimal VDAG Strategies

Intuitively, a VDAG strategy that uses good view strategies for its derived views tends to

incur less amount of work than one that uses worse view strategies. In the following theorem

we capture the relationship between optimal VDAG strategies and the view strategies they

use.

Theorem 3.5.1 Given a VDAG G, a VDAG strategy for G that uses optimal view strate-

gies for all the views of G is optimal over all VDAG strategies for G. 2

Observe that all VDAG strategies for G incur the same amount of work for their Inst

expressions. In the proof (presented in Appendix A), we further argue that a VDAG strategy

that uses optimal view strategies minimizes the total amount of work incurred by the Comp

expressions.

From Section 3.4, we know that given a view Vi that is de�ned over views Vi, the 1-way

view strategy
�!
Ei that is consistent with

�!
Vi that orders the views in Vi in increasing jV

0j�jV j

values is optimal. It can be shown that
�!
Ei is also consistent with the view ordering

�!
V that

orders all of the VDAG views in increasing jV 0j � jV j values. This view ordering is called

the desired view ordering. Note that the desired view ordering depends on the current set

of changes.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 66

We say a VDAG strategy is a 1-way VDAG strategy if it only uses 1-way view strategies.

Furthermore, a VDAG strategy is consistent with
�!
V if it only uses view strategies that are

consistent with
�!
V . Clearly, a 1-way VDAG strategy that is consistent with the desired

view ordering uses only optimal view strategies. It follows from Theorem 3.5.1 that this

VDAG strategy is optimal.

Theorem 3.5.2 For any VDAG G, a 1-way VDAG strategy for G that is consistent with

a desired view ordering is an optimal VDAG strategy for G. 2

We illustrate the interaction between Theorem 3.5.1 and Theorem 3.5.2 by the following

example.

EXAMPLE 3.5.1 Consider the VDAG shown in Figure 3.6 (same as Figure 3.3 copied

over for local reference). Let (jV 0
4j � jV4j) < (jV 0

2j � jV2j) < (jV 0
1j � jV1j) < (jV 03j � jV3j) <

(jV 0
5j � jV5j) based on the current set of changes. That is, a desired view ordering

�!
V is

h V4; V2; V1; V3; V5 i.

A 1-way VDAG strategy consistent with a desired view ordering is

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g); Inst(V3);

Comp(V5; fV4g); Inst(V4); Comp(V5; fV1g); Inst(V1); Inst(V5) i:

The above VDAG strategy is optimal and uses the following optimal view strategies for V4

and V5:

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g); Inst(V3); Inst(V4) i:

h Comp(V5; fV4g); Inst(V4); Comp(V5; fV1g); Inst(V1); Inst(V5) i:

2

3.5.2 Expression Graphs

We have established that a 1-way VDAG strategy consistent with a desired view ordering

is optimal. Here, we describe our approach to constructing such a VDAG strategy.

For a given VDAG G, all possible 1-way VDAG strategies for G have the same set of

expressions, called the 1-way expressions of G. The set of 1-way expressions of a given

VDAG G contains Comp(Vj; fVig) whenever view Vj is de�ned over view Vi in G. Also

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 67

V1 V2 V3

V4

V5

Figure 3.6: VDAG

V

V

V

VComp(V4, {V2}) Inst(V3)Comp(V4, {V3})Inst(V2)

Inst(V4) Inst(V1)Comp(V5, {V4}) Comp(V5, {V1})

Inst(V5)

Figure 3.7: Expression Graph (EG)

included is an Inst(Vi) expression for each view Vi in G. The various 1-way VDAG strategies

for G di�er in the sequencing of the 1-way expressions of G. The correctness conditions

(of Section 3.3) impose certain dependencies among these 1-way expressions (e.g., for any

two derived views Vi and Vj , Comp(Vj; fVig) must follow Comp(Vi; f:::g)). Additional

dependencies are imposed when we attempt to �nd VDAG strategies that are consistent

with a particular view ordering (e.g., for a derived view V de�ned over views Vi and Vj , if

Vi precedes Vj in the view ordering, Comp(V; fVig) must precede Comp(V; fVjg)). A 1-way

VDAG strategy for G consistent with a given view ordering is a permutation of the set of

1-way expressions of G that satis�es all dependencies.

We use the notion of an expression graph to capture the set of 1-way expressions of a

VDAG and their dependencies. Given a VDAG G and a view ordering
�!
V , the expression

graph of G with respect to
�!
V , denoted EG(G;

�!
V), has the 1-way expressions of G as

its nodes. The expression graph has an edge from expression Ej to expression Ei if a

dependency dictates that Ej must follow Ei. Once we construct an expression graph for a

VDAG with respect to a desired view ordering, we can obtain an optimal VDAG strategy

by topologically sorting the expression graph.

Theorem 3.5.3 Given a VDAG G, if EG(G;
�!
V) is acyclic where

�!
V is a desired view

ordering, a topological sort of EG(G;
�!
V) yields an optimal VDAG strategy for G. 2

The proof of the theorem is in Appendix A where we show that the topological sort

of EG(G;
�!
V) results in a 1-way VDAG strategy that is consistent with the desired view

ordering
�!
V . We now illustrate the generation of an optimal VDAG strategy, based on this

theorem.

EXAMPLE 3.5.2 Consider the VDAG shown in Figure 3.6. Let a desired view ordering
�!
V be h V4; V2; V1; V3; V5 i based on the current set of changes (as in Example 3.5.1).

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 68

Figure 3.7 shows the expression graph constructed from the VDAG and the view ordering
�!
V . Each derived view has a set of Comp expressions, one for each view it is de�ned over.

Each view in the VDAG has an Inst expression.

The edges of the expression graph indicate the dependencies. For instance, the edge

from Comp(V5; fV4g) to Comp(V4; fV2g) indicates that the former should appear after the

latter in any 1-way VDAG strategy for this VDAG. This dependency is due to C8.

Some edges of the expression graph are shown with a label
�!
V to emphasize that the

corresponding dependencies are due to the view ordering with which the 1-way VDAG strat-

egy should be consistent. For instance, the edge from Comp(V4; fV3g) to Comp(V4; fV2g)

indicates that
�!
V requires that the changes of V2 be propagated before the changes of V3

(note that V2 < V3 in
�!
V).

The expression graph of this example happens to be acyclic. So, a topological sort of

the graph is possible, and yields a 1-way VDAG strategy that is consistent with the view

ordering
�!
V . For instance, we can obtain the following VDAG strategy:

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g); Inst(V3);

Comp(V5; fV4g); Inst(V4); Comp(V5; fV1g); Inst(V1); Inst(V5) i:

Note that this is the same optimal VDAG strategy that we discussed in Example 3.5.1.

Trivial variations of this optimal VDAG strategy may be obtained by other topological

sorts. 2

3.5.3 Classes of VDAGs with Optimal VDAG Strategies

We have seen that whenever the constructed expression graph with respect to a desired view

ordering is acyclic, we can obtain an optimal VDAG strategy in a straightforward manner.

The acyclicity of the expression graph depends not only on the VDAG but also on the

desired view ordering being considered. (In fact, we can show that if the edges due to the

view ordering dependencies are removed, the resulting expression graph is always acyclic.)

The view ordering in turn depends on the current set of changes. In general, a given VDAG

may have an acyclic expression graph with one desired view ordering (i.e., based on a set

of changes) and a cyclic expression graph with another desired view ordering (i.e., based

on another set of changes). However, there are speci�c classes of VDAGs which will always

have acyclic expression graphs. The important thing about these classes of VDAGs is that

for these VDAGs we can always �nd optimal VDAG strategies in a straightforward manner

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 69

no matter what changes are being propagated. We identify two such classes of VDAGs

below.

De�nition 3.5.1 (Tree VDAGs) A tree VDAG is one in which no view is used in the

de�nition of more than one other view. 2

The class of tree VDAGs may appear very simple, but it encompasses a large number

of VDAGs that occur naturally in many warehouse contexts. A simple example of a tree

VDAG is shown in Figure 3.6. Based on the following lemma, one can easily �nd optimal

VDAG strategies for tree VDAGs. The proof of the lemma is furnished in Appendix A.

Lemma 3.5.1 For a tree VDAG, every view ordering results in an acyclic expression graph.

2

De�nition 3.5.2 (Uniform VDAGs) A VDAG G is a uniform VDAG if every derived

view at Level i is de�ned over views all of which are at Level (i� 1). 2

Uniform VDAGs have a well-de�ned notion of Level for each view. The TPC-D ware-

house shown in Figure 3.4 has a uniform VDAG. In this uniform VDAG, all base views

have Level 0 and all derived views have Level 1. The class of uniform VDAGs, although

quite large, does not encompass the class of tree VDAGs. For instance, the tree VDAG of

Figure 3.6 is not a uniform VDAG. At the same time, there are uniform VDAGs that are

not tree VDAGs. For instance, the uniform VDAG for the TPC-D warehouse (Figure 3.4)

is not a tree VDAG.

Based on the following lemma, we can easily generate optimal VDAG strategies for

uniform VDAGs. The proof of the lemma is furnished in Appendix A.

Lemma 3.5.2 For a uniform VDAG, every view ordering results in an acyclic expression

graph. 2

3.5.4 MinWork Algorithm

Based on our observations above, we develop an algorithm called MinWork to generate

VDAG strategies that minimize the total amount of work. In particular, MinWork relies

on the approach of expression graph construction in order to �nd good VDAG strategies.

The algorithm is formally presented in Algorithm 3.5.1 of Figure 3.8.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 70

Algorithm 3.5.1 MinWork

Input: VDAG G with nodes V and edges A

Output: 1-way VDAG strategy
�!
E

1.
�!
E h i

2. For each Vi 2 V estimate jV 0
i j � jVij

based on the current set of changes

3.
�!
V V ordered by increasing jV 0

i j � jVij

4. EG ConstructEG(G;
�!
V)

5. If EG is acyclic then

6.
�!
E topological sort of EG

7. Else

8.
�!
V 0 ModifyOrdering(

�!
V)

9. EG0 ConstructEG(G;
�!
V 0)

10.
�!
E topological sort of EG0

11. Return
�!
E

3

Algorithm 3.5.2 ModifyOrdering

Input: VDAG G, view ordering
�!
V

Output: modi�ed view ordering
�!
V 0

1.
�!
V 0 h i

2. For l = 0 to MaxLevel(G)

3.
�!
Vl subsequence of

�!
V composed

of all and only views with a

Level value of l

4. Append
�!
Vl to

�!
V 0

5. Return
�!
V 0

3

Figure 3.8: MinWork Algorithm

As shown in the �gure, MinWork �rst computes a desired view ordering based on the

current set of changes. Then it constructs the expression graph of the VDAG with respect

to this desired view ordering. ConstructEG (Figure 3.9) includes one node for each 1-

way expression of G. It then connects the nodes based on dependencies imposed by the

correctness conditions, and the dependencies imposed by the given view ordering. If the

constructed expression graph is acyclic, MinWork obtains the optimal VDAG strategy by a

topological sort of the expression graph. Otherwise, it computes a modi�ed view ordering

(using ModifyOrdering shown in Algorithm 3.5.2, Figure 3.8) which is guaranteed to yield

an acyclic expression graph of the VDAG . Then, it generates a VDAG strategy for the

input VDAG that is consistent with this modi�ed view ordering.

It is clear that given a VDAG that results in an acyclic expression graph with respect

to the desired view ordering, MinWork produces an optimal VDAG strategy. This leads to

the following result that follows from Theorem 3.5.3, Lemma 3.5.1 and Lemma 3.5.2.

Theorem 3.5.4 Given a VDAG G, and a desired view ordering
�!
V , MinWork produces

optimal VDAG strategies if EG(G;
�!
V) is acyclic. In particular, MinWork always produces

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 71

Algorithm 3.5.3 ConstructEG

Input: VDAG G = hV;Ai, view ordering
�!
V

Output: EG of a 1-way VDAG strategy consistent with
�!
V

Initialize EG with no nodes and no edges.
1. For each node Vi 2 G(V), add Inst(Vi) as an EG node.
2. For each edge Vj ! Vi 2 G(V), add Comp(Vj ; fVig) as an EG node.
3. For nodes Comp(V; fVig); Comp(V; fVjg) in EG

4. If Vi < Vj in
�!
V Then

5. Add Comp(V; fVjg)! Comp(V; fVig) as an EG edge labeled
�!
V .

6. For each node Vi 2 G(V), for each edge V ! Vi 2 G(A)
7. Add Inst(Vi)! Comp(V; fVig) as an EG edge (for C3).

8. For each edge Comp(V; fVjg)! Comp(V; fVig) in EG
9. Add Comp(V; fVjg)! Inst(Vi) as an EG edge (for C4).

10. For each node Vi 2 G(V), for each edge V ! Vi 2 G(A)
11. Add Inst(V)! Comp(V; fVig) as an EG edge (for C5).

12. For each edge Vk ! Vj 2 G(E), for each edge Vj ! Vi 2 G(E)
13. Add Comp(Vk; fVjg)! Comp(Vj ; fVig) as an EG edge (for C8).

14. Return EG
3

Figure 3.9: ConstructEG Algorithm

optimal VDAG strategies for tree VDAGs and uniform VDAGs. 2

When the given VDAG results in a cyclic expression graph with respect to the desired

view ordering, MinWork produces a 1-way VDAG strategy that is consistent with a view

ordering
�!
V 0 that is produced by ModifyOrdering based on the desired view ordering. Mod-

ifyOrdering produces
�!
V 0 by �rst ordering the views based on their Level values (i.e., lower

level views �rst). ModifyOrdering then orders the views with the same Level value based

on the desired view ordering. The following theorem (proven in Appendix A) ensures that

MinWork will always be able to generate a 1-way VDAG strategy no matter how complex

the input VDAG is using the modi�ed view ordering.

Theorem 3.5.5 Given a VDAG G and a view ordering
�!
V , we can come up with a view

ordering
�!
V 0 = ModifyOrdering(G,

�!
V) such that EG(G,

�!
V 0) is acyclic. That is, MinWork

will always succeed in producing a VDAG strategy. 2

The use of a modi�ed view ordering when a desired view ordering yields cyclic expression

graphs may leadMinWork to produce sub-optimal VDAG strategies. However, the modi�ed

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 72

view ordering re
ects as much of the desired view ordering as possible. This results in

MinWork producing near optimal plans, when it misses optimal plans.

Finally, we note that MinWork has a worst case time complexity of O(n3) where n is

the number of views in the VDAG. The most complex part of the algorithm, taking O(n3)

time, is building the expression graph using ConstructEG. All other parts take at most

O(n2) time.

3.5.5 Practical Issues

We now outline how to resolve a number of practical and important issues regarding the

implementation of MinWork on top of a commercial RDBMS. In particular we discuss

the following issues: (1) how to implement MinWork using SQL stored procedures and a

high level programming language like C++; (2) how to determine a desired view ordering.

We provide this discussion to show that if the warehouse is built on top of a commercial

RDBMS, MinWork can be implemented by a WHA easily without changing the internals

of the RDBMS.

Implementing MinWork

The key observation is that given a VDAG, the set of 1-way expressions used by the Min-

Work VDAG strategy is known a priori. That is, for each edge Vj ! Vi in the VDAG, a

compute expression Comp(Vj; fVig) will be used, and for each node Vi in the VDAG, an

install expression Inst(Vi) will be used. Only the order of the expressions in the strategies

depends on the changes being processed at the warehouse. Hence, based on the VDAG of

the warehouse, a set of stored procedures is de�ned, one for each compute or install expres-

sion. This leads to e�cient execution of the VDAG strategy because the stored procedures

need not be parsed and go through all the optimization steps every time the warehouse

needs to be updated.

Using the above technique, we de�ne the following approach to warehouse update pro-

cessing:

1. Given a set of view de�nitions, the corresponding VDAG is generated.

2. Given the VDAG generated in the previous step, the set of stored procedures for the

compute and install expressions are de�ned.

3. Each time the warehouse needs to be updated, MinWork is invoked to produce a

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 73

VDAG strategy.

4. The resulting VDAG strategy is executed with the help of the stored procedures

de�ned in the second step.

Computing a desired view ordering

Recall that MinWork needs to �nd a desired view ordering which is based on jV 0j � jV j

values for each view V . Estimates of jV j should be available from the metadata. To

estimate jV 0j, we can �rst estimate j�V j, and then compute jV 0j based on j�V j and jV j.

Estimates of j�V j are obtained easily for base views since the changes are provided before

the warehouse update starts. Estimates of j�V j for derived views can be obtained using

standard query result size estimation methods [Ull89b]. That is, assuming V is de�ned over

views fV1; : : : ; Vng, and estimates of fj�V1j; : : : ; j�Vnj; jV
0
1j; : : : ; jV

0
njg have been obtained

(i.e., we proceed bottom-up), j�V j can be estimated using standard methods.

3.6 Optimal 1-way VDAG Strategies

We just showed that for VDAGs and view orderings that result in acyclic expression graphs,

an optimal VDAG strategy can be obtained e�ciently using MinWork. If the expression

graph is cyclic, �nding an optimal VDAG strategy is very hard, and the optimal VDAG

strategy may not even be a 1-way VDAG strategy. However, since we showed that certain

1-way view strategies are optimal for single views, and certain 1-way VDAG strategies are

optimal for VDAGs and view orderings with acyclic expression graphs, we focus on the

problem of �nding the best 1-way VDAG strategy.

In this section, we present a search algorithm called Prune that avoids examining much

of the solution space but is guaranteed to produce the best 1-way VDAG strategy.

Even though Prune restricts its search to 1-way VDAG strategies, the set of 1-way

VDAG strategies is still potentially very large. Prune pares down the search space by

partitioning the set of 1-way VDAG strategies and considering only one representative

VDAG strategy from each partition. Figure 3.10 illustrates how the technique reduces the

search space. In the �gure, each point represents a 1-way VDAG strategy, but only the

marked points are considered by Prune.

Prune partitions the 1-way VDAG strategies based on which view ordering the 1-way

VDAG strategies are strongly consistent with. A 1-way VDAG strategy
�!
E is strongly

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 74

partitions
1-way VDAG strategies

Figure 3.10: Intuition of Prune

V1 V2 V3

V4

V5

Figure 3.11: Problem VDAG

consistent with a view ordering
�!
V if Inst(Vi) < Inst(Vj) in

�!
E implies that Vi < Vj in

�!
V .

Partitioning 1-way VDAG strategies based on which view ordering the VDAG strate-

gies are strongly consistent with is correct because each 1-way VDAG strategy is strongly

consistent with exactly one view ordering, as stated in the next lemma.6 Hence, all 1-way

VDAG strategies that are strongly consistent with the same view ordering are placed in the

same partition.

Lemma 3.6.1 Every 1-way VDAG strategy is strongly consistent with some view ordering
�!
V . Furthermore, a 1-way VDAG strategy is strongly consistent with exactly one view

ordering
�!
V . 2

Lemma 3.6.1 follows from the fact that any VDAG strategy
�!
E must have exactly one

Inst expression for each VDAG view (i.e., by C6 and C7). Hence,
�!
E must be strongly

consistent with the view ordering
�!
V (and no other view ordering) that orders all of the

VDAG views based on the order of appearance of the Inst expressions in
�!
E .

While a 1-way VDAG strategy
�!
E is strongly consistent with exactly one view ordering

�!
V , there may be a number of 1-way VDAG strategies that are strongly consistent with
�!
V . Thus, there may be a number of 1-way VDAG strategies in each partition. The next

theorem states that all the VDAG strategies in a partition incur the same amount of work.

Theorem 3.6.1 Given a view ordering
�!
V , all the 1-way VDAG strategies that are strongly

consistent with
�!
V incur the same amount of work. 2

The theorem holds because 1-way VDAG strategies use the same set of expressions. Fur-

thermore, it can be shown that if two VDAG strategies are strongly consistent with the same

view ordering, each Comp expression runs on the same \database state" in both VDAG

6On the other hand, 1-way VDAG strategies cannot be partitioned based on which view ordering the

1-way VDAG strategies are consistent with because a 1-way VDAG strategy may be consistent with more
than one view ordering.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 75

strategies. Since we know that the work incurred by any Inst expression is the same, the

theorem follows. For details of the proof, see Appendix A.

In summary, based on the above theorems, Prune can search over 1-way VDAG strategies

by considering the set of view orderings and by examining one 1-way VDAG strategy that

is strongly consistent with each ordering. However, Prune needs to handle the complication

that given a view ordering
�!
V , there may not exist a (correct) 1-way VDAG strategy that

is strongly consistent with
�!
V . For instance, for the VDAG shown in Figure 3.11, there is

no 1-way VDAG strategy that is strongly consistent with
�!
V = hV4; V1; V2; V3; V5i. This is

because Comp(V4; fV3g) must be after Inst(V2) for C4 to hold, and for the VDAG strategy

to be strongly consistent with
�!
V . However, Comp(V4; fV3g) must be before Inst(V4) and

therefore before Inst(V2), for C8 to hold.

To handle this complication, Prune (Figure 3.13) constructs a strong expression graph

(SEG) that is similar to the expression graph that MinWork constructs. If a cyclic SEG

is constructed, then there is no 1-way VDAG strategy that is strongly consistent with the

given view ordering. Otherwise, Prune produces a candidate 1-way VDAG strategy by

topologically sorting the expressions in the SEG. Prune returns the 1-way VDAG strategy

that incurs the least amount of work.

Algorithm 3.6.1 ConstructSEG

Input: VDAG G = hV;Ai, view ordering
�!
V

Output: SEG of a 1-way VDAG strategy strongly consistent with
�!
V

Initialize SEG with no nodes and no edges
1{2. Lines 1{2 of ConstructEG (Figure 3.9)
3. For nodes Inst(Vj); Inst(Vi) in SEG

4. If Vi < Vj in
�!
V Then

5. Add Inst(Vj)! Inst(Vi) as an SEG edge
6{13. Lines 6{13 of ConstructEG
14. Return SEG

3

Figure 3.12: ConstructSEG Algorithm

To construct the SEG, Prune uses ConstructSEG which is almost identical to Con-

structEG (see Figure 3.9). The only di�erence is thatConstructSEG adds an edge Inst(Vj)!

Inst(Vi) if Vi is before Vj in the input view ordering
�!
V . Unlike ConstructEG, ConstructSEG

adds this edge even when there is no view V that is de�ned on both Vi and Vj . This edge

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 76

guarantees that Inst(Vi) is before Inst(Vj) in the topological sort (if possible) of the con-

structed SEG. This in turn guarantees that the 1-way VDAG strategy produced is strongly

consistent with
�!
V .

Algorithm 3.6.2 Prune

Input: G = hV;Ai

Output: an optimal VDAG strategy
�!
E

1.
��!
Ebest h i // incorrect VDAG strategy with in�nite amount of work

2. For each view ordering
�!
V

3. SEG ConstructSEG(G;
�!
V)

4. If SEG is acyclic Then

5.
�!
E topological sort of the expressions in SEG

6. If Work(
�!
E) < Work(

��!
Ebest) Then

7.
��!
Ebest

�!
E

8. Return
��!
Ebest

3

Figure 3.13: Prune Algorithm

Since Prune examines each view ordering, and examines a representative VDAG strategy

consistent with each view ordering, it is easy to prove that Prune �nds the best 1-way VDAG

strategy (see Appendix A).

Theorem 3.6.2 Prune is guaranteed to produce the best 1-way DAG strategy for a given

VDAG. 2

We note that Prune examines n! view orderings, where n is the number of VDAG views.

Also, ConstructSEG, like ConstructEG, runs in O(n3) time in building an SEG. Since an

SEG needs to be constructed for each view ordering, Prune runs in O(n! � n3) time.

Compared with the space of all 1-way VDAG strategies for a given VDAG, Prune

searches over a very small set of 1-way VDAG strategies and thus is relatively quite e�cient.

However, it can be improved further while still guaranteeing that an optimal 1-way VDAG

strategy is produced. For instance, it is not necessary to examine all possible view orderings.

More speci�cally, if there are no views de�ned on V , �V can be installed at any point in

the VDAG strategy after �V has been computed. If we remove all such views from the

view ordering, we only need to consider O(m!) view orderings, where m is the number of

VDAG views with a view de�ned on them. For instance, for the TPC-D VDAG shown in

Figure 3.4, there are n = 9 views, but there are only m = 6 views with some view de�ned

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 77

over them. Hence, Prune can be optimized to examine only 6! = 720 strategies, instead of

9! = 362880 strategies.

Just like MinWork, Prune should be implemented by creating SQL stored procedures

for each expression that will be used by the Prune VDAG strategy. Observe also that

Prune (Figure 3.13) compares various VDAG strategies in terms of their total work under

the linear work metric. In order to estimate the total work of a VDAG strategy, we need

estimates for jV j, j�V j and jV 0j for each view V . We already showed in Section 3.5.5 how

these values can be obtained using standard result size estimation methods.

3.7 Experiments and Discussion

We have developed algorithms that minimize the work incurred in view or VDAG strategies.

However, minimizing the work incurred may not translate to the minimization of the update

window. When a strategy is executed, many factors that a�ect the update window (e.g.,

bu�ering of the intermediate results and the particular join and aggregation methods used

in computing these intermediate results) are too complex to be modeled by our simple work

metric.

In order to understand how well the strategies generated by our algorithms perform in

practice, we conducted a series of experiments. In particular, we tested various strategies

using Microsoft SQL Server 6.5 running on a Dell XPS D300 with a Pentium II 300 MHz

processor and 64 MB of RAM. In our experiments, we measured the actual time it took to

execute the strategies. The results of our experiments show that the strategies generated

by our algorithms do indeed yield short update windows.

In all of the experiments, we used the TPC-D warehouse shown in Figure 3.4. The base

views CUSTOMER (denoted C for conciseness), ORDER (O), LINEITEM (L), SUPPLIER

(S),NATION (N) and REGION (R) are copies of TPC-D relations populated with synthetic

data obtained from [Com]. The derived views Q3, Q5 and Q10 were de�ned using the TPC-

D \Shipping Priority" query, \Local Supplier" query, and \Returned Item Reporting" query

respectively.

Unless otherwise speci�ed, the remote information sources were changed so that base

views C, O, L, S, and N decreased in size by 10%. Base view R, the smallest of the six,

was left unchanged. According to the sizes of the base views, the desired view ordering is

h L;O;C; S;N;R i (i.e., L is the largest base view). (Note that the three derived views can

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 78

be ignored in the view ordering since there are no views de�ned on them.) In one of the

experiments, we investigated other possible changes to the remote information sources.

T
im

e
(s

ec
)

1-way
2-way
dual-stage
MinWorkSingle

40

30

20

10

View Strategies

(46.25 sec)

(20.91 sec)

Figure 3.14: Q3 View Strategies

dual-stage

T
im

e
(s

ec
)

400

300

200

100 (69.65 sec)

(422.25 sec)

View Strategies

MWS

Figure 3.15: Q5 View Strategies

Experiment 1

In the �rst experiment, we examined the various view strategies for Q3. Since Q3 is only

de�ned over 3 views, there were only 13 view strategies to compare, one from each partition.

Figure 3.14 shows the result of the experiment. Each bar depicts a view strategy, and the

height of the bar gives the amount of time it took to perform the view strategy. The graph

shows numerous results.

First, the graph shows that 1-way view strategies update Q3 in the least amount of

time. That is, the dual-stage view strategy is worse than all of the 1-way view strategies.

Also, any \2-way" view strategy that uses an expression Comp(Q3;V), where jVj = 2, is

worse than all of the 1-way view strategies.

Second, the graph shows that the MinWorkSingle view strategy, which propagates the

changes of L, then of O, and then of C, does not update Q3 in the least amount of time. The

view strategy that performs the best in this case propagates the changes of L, then of C and

then of O. The update window of theMinWorkSingle view strategy is however very close to

the optimal. Recall that in Section 3.4, we proved thatMinWorkSingle produces an optimal

view strategy under the linear work metric. In the experiment, we used a real system whose

behavior naturally deviates from the strictly linear work metric and hence MinWorkSingle

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 79

ends up with a view strategy that is slightly away from the optimum. Notice that the

margin of error is small, indicating that using the linear work metric, one can generate

near-optimal update windows.

Finally, the graph shows that various view strategies have signi�cantly di�erent update

windows. For instance, the update window of the dual-stage view strategy is about 2.3

times longer than that of the optimal view strategy.

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
)

\% Changes

Dual-stage
Best2Way

MinWorkSingle

Figure 3.16: Q3 View Strategies Under

Di�erent Changes

dual-stage

MinWork/Prune

T
im

e
(s

ec
)

VDAG Strategies

400

300

200

100

500

(107.9 sec) (119.6 sec)

(577.53 sec)

RNSCOL

Figure 3.17: VDAG Strategies

Experiment 2

In the next experiment, we focused on the derived view Q5 which is de�ned over the 6 base

views. Since Q5 is much more complex than Q3, it was too time consuming to examine all

of the view strategies of Q5. Instead, we examined only the MinWorkSingle view strategy

and the dual-stage view strategy. Recall that the dual-stage view strategy is the one with a

compute stage and an install stage, as proposed in [CGL+96]. The results of the experiment

are shown in Figure 3.15. Notice that the update window of the dual-stage view strategy

is over 6 times longer than that of the MinWorkSingle view strategy. On the other hand,

the update window of the dual-stage view strategy for Q3 was \only" 2.2 times longer than

that of the MinWorkSingle view strategy (see Figure 3.14). This shows that using the

MinWorkSingle view strategy instead of the dual-stage view strategy to update complex

views is likely to be very bene�cial.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 80

Experiment 3

In this experiment, we again focus on Q3. Each of C, O, and L is decreased in size by a

percentage p of its initial size, for various values of p. When comparing view strategies, we

only considered the MinWorkSingle view strategy, the best 2-way view strategy in Figure

3.14, and the dual-stage view strategy. Figure 3.16 shows the results of the experiment. The

results indicate that theMinWorkSingle view strategy improves on the other view strategies

over a wide range of amounts of changes to the underlying views.

Experiment 4

So far, we have considered updating a single view. In this experiment, we study the quality

of MinWork VDAG strategies. Note that, since the TPC-D VDAG is uniform, MinWork is

guaranteed to pick an optimal VDAG strategy under the linear work metric.

We check how good the MinWork VDAG strategy is by comparing it with two others: a

\dual-stage" VDAG strategy that only uses dual-stage view strategies, and a 1-way VDAG

strategy that propagates the changes in an order opposite that of the MinWork VDAG

strategy. MinWork uses the view ordering h L;O;C; S;N;R i, and so the third VDAG

strategy in our experiment uses the order h R;N; S; C;O; L i. We call this strategy RN-

SCOL. The results of the experiment are shown in Figure 3.17. As expected, the MinWork

strategy performed the best. In particular, it is 5 to 6 times better than the dual-stage

VDAG strategy, and is about 11% better than the RNSCOL VDAG strategy.

Discussion

Although the dual-stage VDAG strategy has a very long update window compared to the

two 1-way VDAG strategies, it does have the advantage of being able to perform all of the

Inst expressions in the second stage, which minimizes the time in which locking operations

are necessary. However, even though the sequence of Comp expressions in the �rst stage

do not need to lock the database, they still compete with OLAP queries for resources. On

the other hand, the sequence of expressions used by the 1-way VDAG strategies are more

e�cient and take less resources away from OLAP queries. Moreover, it is often acceptable

for OLAP queries to run at lower isolation levels, which allows the Inst expressions to run

without locking. This diminishes any advantage the dual-stage VDAG strategy has over

the 1-way VDAG strategies.

We also note that the results of Experiment 4 suggests that the linear work metric is

a good measure of the work incurred by a VDAG strategy. For instance, a variant of the

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 81

linear work metric may just sum the sizes of the operands. To illustrate, the work estimate

for Comp(V4; fV2; V3g) (Figure 3.11) under this variant is c � (j�V2j + jV2j + j�V3j + jV3j),

since the number of terms in which an operand V or �V appears in is not modeled. Under

this work metric, the dual-stage VDAG strategy would be best contrary to the results of

Experiment 4.

3.8 Related Work

There has been a signi�cant amount of work in minimizing warehouse maintenance time.

This is because there are many techniques, each solving a di�erent sub-problem.

One of the sub-problems is the e�cient maintenance of base views that are de�ned over

remote sources. Hence, there have been previous work ([QGMW96], [Huy97], [GJM96])

that determines when a base view can be maintained without accessing remote sources.

If these remote sources do need to be accessed, [AASY97] gives algorithms for base view

maintenance. In this chapter, we concentrate on derived view maintenance. Even though

maintaining derived views only requires accessing data local to the warehouse, it can be a

very expensive process. Furthermore, unlike base view maintenance, derived view mainte-

nance competes with OLAP queries for resources, and thus is one of the main problems

that today's warehouses face.

Another important sub-problem is choosing the views to materialize in the warehouse

so that some measure like query time, maintenance time, or a combination of the two,

is minimized while satisfying a given storage or maintenance time constraint. Warehouse

design has been discussed in [Gup97],[HRU96],[BPT97], [YKL97], [TS97]. The warehouse

design algorithms are complementary to the algorithms we present. Most of the warehouse

design algorithms, such as the greedy algorithm of [Gup97], do not specify how views are

actually updated. On the other hand, we give algorithms that update views in a very

speci�c manner. Hence, our algorithms can be combined with design algorithms in many

ways. One way is that a design algorithm picks the set of views V to materialize. The

algorithms we present are then used to update the views in V once they are materialized.

Alternatively, a design algorithm assumes that the algorithms we present are used to update

the warehouse, a�ecting which set of views V is materialized. As before, our algorithms are

then used to update the warehouse.

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 82

Another sub-problem that needs to be tackled is to develop a good storage represen-

tation for views so that incorporating bulk changes into the views can be done e�ciently.

Recently, [KR98] proposed a variant of R-trees called Cubetrees as the storage representa-

tion of the views. Reference [JNSS97] also discussed how to incorporate changes quickly

into a clustered storage organization using sorting and hashing techniques. The storage

representation presented in these papers can be used in conjunction with the algorithms we

present.

Another sub-problem that needs to be answered is deciding when to update the ware-

house. Reference [CKL+97] presents a framework for supporting di�erent maintenance

policies based on when changes are propagated to the views. On the other hand, the algo-

rithms we present are used when changes are actually propagated. Hence, the algorithms

we present are complementary.

The only work that we know of that is concerned with the actual algorithm for propa-

gating changes is [MQM97]. More speci�cally, [MQM97] proposed to represent the changes

of summary tables as a summary delta (i.e., result of applying the grouping operator and

aggregation functions over the changes). Since a summary delta can be incorporated into

a summary table very e�ciently, the main problem is computing the summary delta. The

algorithms we present here can be used to compute the summary deltas more e�ciently

Finally, the algorithms we present are di�erent from most of the previous algorithms

since our algorithms are concerned with a DAG of views, instead of just one view. In this

context, a careful treatment is required to maintain a DAG of views correctly and e�ciently.

3.9 Chapter Summary

We have solved the \total-work minimization" (TWM) problem that warehouse administra-

tors face today. To solve TWM, we presented MinWorkSingle that identi�es optimal view

strategies for updating single views. We then presented MinWork, an e�cient heuristic

algorithm that �nds an optimal solution for a large class of VDAGs. To �nd an optimal

1-way VDAG strategy for any VDAG, we presented Prune, which is a search technique

that avoids considering a large part of the solution space. Both MinWork and Prune signif-

icantly extend the 1-way view strategy ([GMS93]) to the more practical setting of a VDAG

of views. Experiments on a TPC-D VDAG showed that the strategies produced by Min-

WorkSingle and MinWork are very e�cient under commercial RDBMS work metrics. The

CHAPTER 3. MAINTENANCE OF THE DATA WAREHOUSE 83

experiments also showed that the MinWorkSingle and MinWork result in update windows

that are signi�cantly shorter than the update windows of conventional update strategies.

We also discussed how the algorithms can easily be implemented without modifying the

internals of a commercial RDBMS.

Chapter 4

Optimizing the View Hierarchy

4.1 Introduction

In Chapter 3, we discussed algorithms that propagate and install the changes e�ciently up

a given VDAG. In this chapter, we further improve the e�ciency of warehouse maintenance

by manipulating the structure of the VDAG itself. That is, at the time the warehouse and

the VDAG are designed, the algorithms we propose in this chapter can be used to \improve"

the VDAG.

We improve the VDAG by adding additional views and/or indices. This approach

may seem counter-intuitive at �rst, since the additional views and indices also need to be

maintained just like the views in the original VDAG. However, this approach is analogous

to building indices in traditional RDBMS's. For example, having an index on the key of a

relation can vastly decrease the total time spent locating particular tuples to be updated

or deleted, o�setting the fact that the index must be maintained as well. In this chapter

we will approximate maintenance time as the number of IO's required and then endeavor

to minimize the number of IO's performed. We start with the number of IO's required for

maintaining the materialized views in the VDAG (using a 1-way view strategy as discussed

in Chapter 3). We then add a set of additional views and indices that themselves must be

maintained, but whose bene�t (reduction in IO's) outweighs the cost (increase of IO's) of

maintaining them.

To illustrate why additional views and indices may be bene�cial, let us focus on a simple

VDAG shown in Figure 4.1. The example VDAG has three base views (R, S, and T), and

a single derived view V = R1S1T . The algorithms we propose in this chapter work on

84

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 85

R S T

V= R S T

Figure 4.1: Warehouse with Primary

View.

R S T

V= R S T

V’= S T

Figure 4.2: Warehouse with Supporting

View.

each derived view V and the views they are de�ned on. The derived view V in question is

called the primary view, and the views on which V is directly de�ned on are called lower

views. Note that a primary view must be a derived view, whereas a lower view can be a

derived or a base view.

Suppose that in addition to materializing the primary view V and its lower views,

another view, V 0 = S1T , is also materialized. This situation is shown in Figure 4.2. By

materializing view V 0, the total cost of maintaining both V and V 0 can be less than the cost

of maintaining V alone. For example, suppose that there are insertions to R but no changes

whatsoever to S and T . To propagate the insertions to R onto V , we must evaluate the

maintenance expression that calculates the tuples to insert into V due to insertions into R,

which is 4R1S1T . With V 0 materialized, it is almost certain that this expression can be

evaluated more e�ciently as 4R1V 0, joining the insertions to R with V 0, instead of with S

and T individually. Even if there are changes to S and T , the bene�t of materializing V 0 may

still outweigh the extra cost involved in maintaining it. Since the view V 0 is materialized to

support in the maintenance of the primary view V , we call the view V 0 a supporting view.

In addition to materializing supporting views, it may be bene�cial also to materialize

supporting indices. Indices may be built on the lower views, primary views, and on the

supporting views. The general problem, then, is to choose a set of supporting views and

a set of indices to materialize such that the total maintenance cost for the warehouse is

minimized. We call this problem the View-Index Selection (VIS) problem and it is the

focus of this chapter.

Below we list the primary contributions of this chapter.

� We propose and implement an optimal algorithm based on A* that prunes as much

as 99% of the possible supporting view and index sets to solve the VIS problem.

� Through both cost/bene�t analysis and experimentation, we develop a number of

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 86

rules of thumb that can help a warehouse administrator (WHA) �nd a reasonable set

of supporting views to materialize in order to reduce the total maintenance cost.

� We develop e�cient heuristic algorithms that choose view and index sets that are

close to optimal. We also show that our heuristic algorithms are much better than

algorithms proposed in previous work.

� We compare the bene�t of materializing supporting views as opposed to indices, and

discuss which should be chosen when the total storage space at the warehouse is

constrained.

� We perform experiments to determine how sensitive the choice of supporting view and

index sets are to the input parameters of the optimizer.

The rest of the chapter proceeds as follows. Section 4.2 describes the VIS problem in

detail. Section 4.3 presents the scope of our results and our approach to view maintenance.

We describe our A*-based algorithm in Section 4.4. Section 4.5 develops rules of thumb

for choosing a set of supporting views to materialize. We justify our rules both by a cost

model analysis as well as by extensive experimentation using our A*-based algorithm. In

Section 4.6, we develop heuristic algorithms that choose sets of supporting views and indices

that perform close to the optimal set. We also show that our heuristic algorithms signif-

icantly improve on previous heuristic algorithms. In Section 4.7, we report on additional

experiments such as comparing the relative importance of building indices versus material-

izing supporting views when space is constrained. Finally, in Section 4.8, we discuss related

work.

4.2 General Problem

Having introduced the VIS problem, in this section we describe it fully and present an

exhaustive search algorithm to solve it. We also show the worst case complexity of the VIS

problem. Lastly, we present an example schema to illustrate the concepts introduced.

4.2.1 The VIS Problem

The VIS problem focuses on a single derived view, called the primary view, and the views

that the primary view is de�ned on, called lower views. In the VIS problem, we are given

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 87

a primary view, denoted VP , and the lower views that VP is de�ned on, denoted B. The

primary view VP and the views in B are assumed to be materialized. We are also given a

set of potential supporting views V , called candidate supporting views (or candidate views

in short), that can be materialized in addition to view VP and the views in B. Henceforth,

when we refer to a view, it can be VP , a view in B or a view in V . We are also given a set

of potential attributes on which indices can be constructed. We call this set of attributes

the set of candidate supporting indices I (or candidate indices in short). The set I includes

the attributes of view VP , the attributes of the views in B and the attributes of the views

in V .

The VIS problem we address in this chapter is stated as follows.

De�nition 4.2.1 (VIS Problem) Given a primary view VP , the set of lower views B of

VP , a set of candidate views V , and a set of candidate indices I, select V 0 � V and select

I0 � I to materialize such that such that the maintenance cost of VP , B, V
0 and I is

minimized. 2

The maintenance cost referred to in the de�nition is the cost of computing and installing

the changes to VP and each of the views in B and V 0, plus the cost of updating the indices

in I.

The cost of maintaining one view di�ers depending upon what other views are available.

(Recall that a view may refer to VP , views in B, and/or views in V .) It is therefore incorrect

to calculate the cost of maintaining each view in isolation. Moreover, in order to optimize

the total cost it is necessary to consider view selection and index selection together. For

example, if view selection is performed separately from index selection, it is not hard to

concoct cases wherein a supporting view V is considered to be too expensive to maintain

without indices. However, with indices V becomes part of the optimal solution since it may

become feasible to maintain V once the proper indices are built.

Importance of the VIS Problem

Although the warehouse data is a VDAG of views in general, solving the VIS problem (for

a single primary view) is essential in improving the maintenance of the warehouse. For

instance, it may be the case that there are speci�c derived views that are problematic, i.e.,

these views are very expensive to maintain. In this case, it makes sense to solve the VIS

problem for each of these problematic views. Furthermore, the algorithms for solving the

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 88

Algorithm 4.2.1 VIS-Exhaustive

Input: VP , B, V
Output: V0, I0

1. For each possible subset V0 of the candidate views V
2. Compute I based on VP , B and V0

3. For each possible subset of indices I0 of the candidate indices I
4. Compute the maintenance cost of VP , B, V

0 and I0

keep track of the supporting views V0 and indices I0 that obtain the minimum cost
5. Return V0 and I0

3

Figure 4.3: VIS-Exhaustive Algorithm

VIS problem can be used as the building blocks of an algorithm that takes as input a VDAG,

and \redesigns" the VDAG so that it is more e�cient to update. One possible strategy is

to solve the VIS problem for each derived view and then combine the supporting views and

indices determined for each derived view. Hence, it is important to develop solutions to the

VIS problem.

An Exhaustive Algorithm

One possible approach to �nding the optimal solution to the VIS problem, proposed in Ross

et al. [RSS96] (although their work does not consider indices), is to exhaustively search the

solution space. Although exhaustive search is impractical for large problems, it illustrates

the complexity of the problem and provides a basis of comparison for other solutions. The

exhaustive algorithm is shown in Figure 4.3.

Choosing the views

In Line 1 of VIS-Exhaustive, we consider all possible subsets V 0 of the candidate views V .

As proposed in [RSS96], the candidate views are all the distinct nodes that appear in some

query plan for the de�nition of the primary view VP . Note that the primary view and the

views in B are not not included in the set of candidate views as they are assumed to be

materialized. For example, given a primary view VP = R1S1T , V = fRS;RT; STg. In

general, for a view joining n relations there are roughly O(2n) di�erent nodes that appear

in some query plan for the view, one joining each possible subset of the lower views. Thus,

to consider all possible subsets of V , we need to evaluate roughly O(22
n

) di�erent V 0 sets.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 89

Choosing the indices

In Line 2 of VIS-Exhaustive, the set of candidate indices I is determined. At one extreme,

all of the attributes of VP , all of the attributes of the views in B, and all of the attributes

of the views in V 0 can be in I. However, rather than considering all of the attributes of

all the views to be candidate indices, we restrict candidate indices to the following types of

attributes (as proposed in [FST88]):

� attributes that are referred to in a selection or a join condition in VP 's de�nition.
1

� key attributes for lower views where changes to the lower view include deletions or

updates. When a supporting view is materialized, attributes of the supporting view

corresponding to key attributes of the contributing lower views also qualify.

� attributes used for grouping (using SQL GROUPBY) or ordering (using SQL ORDERBY)

in VP 's de�nition.

Additional attributes can be candidates depending on the query optimizer being used. The

reader is referred to [FST88] for more detail.

The cardinality of I considered in Lines 2{3 of VIS-Exhaustive is roughly proportional

to the number of views in V 0, plus the number of views in B, plus one (for VP). Since there

can be as many as O(2n) views, and each possible subset of candidate indices is considered,

the number of subsets of candidate indices examined is O(22
n

). (See Section 4.2.2 for an

explanation of why standard approaches for index selection are not appropriate.)

Computing the total update cost

Once V 0 and I0 are chosen, determining the maintenance cost (i.e., Line 4 ofVIS-Exhaustive)

of all of the views and indices is a di�cult problem in and of itself. Obtaining the mainte-

nance cost is a query optimization problem since it involves �nding the most e�cient query

plan for each of the view-maintenance expressions. The VIS problem for a single primary

view joining n lower views thus contains roughly O(22
n

) query optimization problems in

the general case.

1In addition, the system must be able to use an index to process the predicate. This usually implies

that the predicate is a simple comparison (except for 6=) or range operator and that the other operand is a

constant or a column from a di�erent table.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 90

Query optimization is complicated by two issues: the presence of (materialized) views

and the opportunity to optimize multiple maintenance expressions together. The presence

of views requires the optimizer to determine if it can use some of the views in the query plan

evaluating a maintenance expression. For example, given a view RST = R1S1T , insertions

to R are propagated onto RST by the maintenance expression 4R1S1T . Suppose the

view ST = S1T is also materialized. The query optimization algorithm must consider the

possibility of evaluating 4R1S1T as4R1ST in �nding the best query plan. This problem

is known as \answering queries using views" [LMSS95].

Multiple maintenance expressions must be optimized due to di�erent types of changes

being propagated from di�erent lower views. There is an opportunity to optimize the

maintenance expressions for all changes and views as a group because of possible com-

mon subexpressions [RSS96]. This problem is known as the \multiple-query optimization"

problem [Sel88].

4.2.2 Example

Consider the following lower views and primary view de�nition.

Lower views:

R(R0,R1), S(S0,S1), T(T0,T1)

Primary view de�nition:

CREATE VIEW VP (R0,R1,SO,S1,T0,T1) AS

SELECT *

FROM R, S, T

WHERE R.R1 = S.S1 AND S.S0 = T.T0 AND T.T1 <= 10

Figure 4.4 shows an expression DAG [RSS96] that includes all the nodes that could appear

in a query plan for VP , assuming the selection on T:T1 is pushed down. The view T 0 is the

result of applying the selection condition to T . Under each view is the set of operations

(join or select) that could be used to derive the view. For example, the view RST could

be derived as the result of R1S joined with T 0, or the result of R1S joined with the

result of S1T 0, and so on. Each of the intermediate results could be materialized as a

supporting view. Following the de�nition in Section 4.2.1, the set of candidate views, V ,

is fRS; ST 0; RT 0; T 0g. Assuming VP is materialized at a data warehouse (as well as the

lower views), any possible subset of V might also be materialized as supporting views at

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 91

1 2

RST’

RS

R S

T

T’

RT’ST’

Figure 4.4: Example Schema.

the warehouse in order to minimize the total maintenance cost. In addition, indices on VP ,

the lower views, and the supporting views need to be considered.

It is useful to think of the expression DAG in Figure 4.4 when considering the di�erent

update paths [RSS96] changes to lower views can take as they are propagated to the view.

An update path corresponds to a speci�c query plan for evaluating a view maintenance

expression. For example, the maintenance expression for propagating insertions to R onto

VP is to insert the result of 4R1S1T 0 into VP . The DAG in Figure 4.4 depicts two update

paths for the expression4R1S1T 0: (1) (4R1S)1T 0, (2) (4R1S)1(S1T 0). One can easily

check that there are �ve other update paths for the expression. Notice that the choice of

update path can a�ect which indices are bene�cial to materialize. If update path (1) is

chosen, an index may be built on the join attribute of T 0 to help compute the maintenance

expression 4R1S1T 0. If however path (2) is chosen and view ST 0 is materialized, an index

may be built on the join attribute of ST 0. The use of di�erent indices depending upon

which update paths are chosen implies that it is not possible to choose an optimal set of

views and indices simply by choosing the best views followed by the best indices on those

views. Instead, views and indices must be chosen together to obtain an optimal set. This

issue is discussed further in Section 4.8.

Changes to lower views need to be propagated both to the primary view as well as to

the supporting views that have been materialized. When propagating changes to several

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 92

lower views onto several materialized views there are opportunities for multiple-query opti-

mization. Results of maintenance expressions for one view can be reused when evaluating

maintenance expressions for another view, and common subexpressions can be detected be-

tween several maintenance expressions. As an example of reusing maintenance expressions,

suppose view RS = R1S is materialized. The result of propagating insertions to R onto

RS, 4R1S, can be reused when propagating insertions to R onto VP , 4R1S1T
0, so that

only the join with T 0 need be performed.

4.3 Assumptions

The algorithms we develop in this chapter are quite general and can be used to solve the

general VIS problem discussed in the previous section. However, the algorithm developed in

Section 4.4, and the rules of thumb proposed in Section 4.5 require a speci�c database model

and change propagation model so that the maintenance cost for a set of views and indices

can be determined. We now discuss the database model and the change propagation model

that we assume. Our assumptions are similar to those made previously in the literature.

4.3.1 Database Model

The following are the assumptions we make about views and indices.

� Relations and views are stored as (unsorted) heaps.

� All indices are stored as B+-trees and are built on single attributes only.

Primary views are de�ned using select, project and join operations. The joins are foreign

key to primary key joins. We assume the keys of the lower views are preserved in the primary

view. Although this view de�nition seems restrictive, many warehouse views are de�ned

this way following a \star" or a \snow
ake" schema. The schema joins fact tables with

dimension tables, and the join conditions are typically equijoins between foreign keys (of

fact tables) to primary keys (of dimension tables). Furthermore, preserving the keys of the

lower views can improve the installation of deletions as we will show in Chapter 7. More

speci�cally, preserving keys allows the use of a single SQL DELETE statement, as opposed

to using cursors for installing deletions.

We assume that the primary view(s) and replicas of the lower views are materialized

in the warehouse. When considering what additional data structures to materialize, we

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 93

restrict ourselves to data structures that are themselves easily maintainable using SQL

data manipulation statements. To this end we consider materializing supporting views that

are subviews of the primary view. That is, they join a subset of the lower views in the

primary view. We also consider building indices on attributes in the lower views, primary

view, and supporting views that are involved in selection or join conditions.

In choosing which structures to materialize, we implemented a VIS optimizer that con-

siders the two most common physical join operators: nested-block joins and index joins. In

addition, the VIS optimizer always \pushes down" projections and local selection conditions

(involving attributes of a single lower view) as far as possible.

4.3.2 Change Propagation Model

As in most of the chapters of this thesis, we consider three types of deltas: insertions,

deletions, and updates. We distinguish between two types of updates: Updates that alter

the values of key attributes (if any) or attributes involved in selection or join conditions

are called exposed updates; all other updates are called protected updates. Exposed updates

can result in tuples being deleted from or inserted into the view. For this reason, we

propagate exposed updates as deletions followed by insertions. Henceforth, all references

to \updates" should be interpreted to mean \protected updates." Protected updates could

also be propagated as deletions followed by insertions, but they can be applied directly to

the view since they only change attribute values of tuples in the view, and never insert or

remove tuples from the view.

We assume for the purposes of determining the cost of maintaining a view that each type

of change to each lower view is considered separately. Therefore, the cost of maintaining

a view or supporting view V is the sum of the costs of propagating (onto V) each type of

change to each of the lower views involved in V . For example, assuming V = R1S1T :

� Insertions: The cost of propagating insertions to R onto V is the cost of evaluating

4R1S1T , inserting the result into V , and updating the indices of V . When propa-

gating insertions it is often possible to reuse the result of propagating insertions onto

one view in propagating insertions onto another. For example, if V is a supporting

view of V 0 = R1S1T1U , then we can reuse the result of propagating insertions to

R onto V (4R1S1T) when propagating insertions to R onto V 0 (4R1S1T1U). In

this respect we consider a limited but important form of multiple-query optimization.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 94

� Deletions: The cost of propagating deletions to R (5R) onto V is the cost of evalu-

ating V><5R (we use >< for semijoin), removing those tuples from V , and updating

the indices of V .

� Updates: The cost of propagating updates to R (�R) onto V is the cost of evaluating

V><�R and updating those tuples in V . Note that because we allow propagating only

protected updates in this manner, we do not have to update the indices of V since we

build indices only on attributes involved in selection conditions or join conditions or

keys, and these attributes cannot be modi�ed by a protected update.

4.4 Optimal Solution Using A* Algorithm

In this section we describe an optimal algorithm to solve the VIS problem and then show

through experimental results that it vastly reduces the number of candidate solutions that

must be considered.

4.4.1 Algorithm Description

In this section we describe howwe have used the A* algorithm to solve the VIS problem. (For

further details on the A* algorithm itself, the reader is referred to [Nil71].) An algorithm

based upon A* is guaranteed to derive an optimal solution to a problem but attempts to

prune the parts of the search space that cannot contain the optimal solution.

The algorithm takes as input the set of all possible views and indices to materialize,

M. M does not include the lower views (B) nor the primary view VP but includes indices

that can be de�ned on them. (Recall that VP and the lower views are constrained to be

materialized.) The goal of the algorithm is to choose a subsetM0 ofM to materialize such

that the total cost, C, is minimized. The total cost given a particular subset of views and

indices M0 can be expressed as

C(M0) =
X

m2(M0 [B [fVPg)

maint cost(m;M0):

Function maint cost(m;M0) returns the cost of propagating all changes to view or index m

assuming only the views and indices inM0 (along with B and VP) are materialized.

Instead of directly searching the power set ofM, we set up the A* search to build the

solution incrementally. It begins with an empty materialization set (M0 = �) and then

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 95

considers adding single views or indices. The algorithm terminates when a solution is found

that has considered every view and index and is guaranteed to have the minimum total cost.

We will call the intermediate steps reached in the algorithm as partial states. Each partial

state is described by the tuple hMC ;M
0i whereMC is the set of features (view or index)

fromM that have been considered andM0 is the set of features fromMC that have been

chosen to be materialized. For convenience, we will also refer to the set of unconsidered

features,MU , which isM�MC .

Presented with a set of partial states from which to incrementally search, A* attempts to

choose the most promising. It does so by estimating the cost of the best solutionM0[M0
U

that can be achieved from each partial state. M0
U is the unconsidered features that would

be chosen to be materialized in addition toM0.

The exact cost of the best solution given a partial state can be decomposed as

C = g + h;

where g is the maintenance cost for the features chosen so far (M0) and h is the maintenance

cost for the features in M0
U . In general, g also needs M0

U for its computation; that is, it

is necessary to know which unconsidered features will be chosen in order to compute the

maintenance cost of features inM0. Fortunately, we can compute g using onlyM0 so long

as we impose a partial ordering on the features in M so that we only consider a feature

when a decision has been made on every feature that a�ects its maintenance cost. Formally,

a partial order � is imposed upon M such that if a feature m2 is an index on a view m1,

then m1 � m2. Otherwise, if a feature m1 can be used in a query plan for propagating

insertions to view m2, then m1 � m2.

The exact formula for h is

min
M0

U�MU

(
X

m2M0
U

maint cost(m;M0[M0
U)):

Unfortunately, this formula requires an exhaustive search to �nd theM0
U that minimizes

the equation.

Instead of performing this exhaustive search, we calculate a lower bound on h denoted

ĥ. Using the lower bound, the A* algorithm can prune some of the partial states while

still guaranteeing an optimal solution. (The amount of pruning depends on how close ĥ

estimates h.) Using ĥ, for any partial state we can compute a lower bound on C as

Ĉ = g + ĥ:

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 96

Input: M, �

Output: OptimalM0

Let state set S = fsg, where s is a partial state having

MC(s) =M
0(s) = �, andMU(s) =M (lower views and VP are materialized)

Loop

Select the partial state s 2 S with the minimum value of Ĉ

IfMC(s) �M, returnM0(s)

Let S = S � fsg

For each view or index m 2 MU(s) such that for all m0 � m: m0 2 MC(s)

Construct partial state s0 such that

MC(s
0) =MC(s)[fmg, MU (s

0) =MU (s)� fmg, M
0(s0) =M0(s)[fmg

Construct partial state s00 such that

MC(s
00) =MC(s)[fmg, MU(s

00) =MU(s)� fmg, M
0(s00) =M0(s)

Let S = S[fs0g[fs00g

Endfor

Endloop

Figure 4.5: A* Algorithm.

Note that ifMC �M then Ĉ = C. We will develop an expression for ĥ below but �rst we

present the A* algorithm for the VIS problem.

The algorithm appears in Table 4.5. The state set S contains all active partial states.

It initially contains only the partial state where none of the views and indices have been

considered. Each time through the loop the algorithm selects the partial state with the

minimum lower bound on the cost. If the selected state has MC � M, it is guaranteed

to be the optimal choice. Other active states in S need not be expanded further. If the

selected state is not a complete state, it is removed from the set of active states and for

each view or index that can be added to the set of considered views and indices without

violating the partial order, two states are added to the set of active states: one with the

view or index added to the chosen set (M0), and one without.

The formula for ĥ computes the cost of maintaining views and indices inMU minus the

upper bound of their bene�t toward maintaining other views (including VP).

ĥ =
X

m2MU

(h maint cost(m;M0)�max bene�t(m;M0))

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 97

We guarantee that any overestimation of the actual maintenance cost of m is more than

compensated for by the overestimation of the bene�t. Note that our function ĥ, although it

achieves considerable pruning, can be improved. Deriving a tighter lower bound for h that

can be computed e�ciently is a subject for future research.

The function h maint cost(m;M0) di�ers depending on whetherm is a view or an index.

If m is an index, the function returns the cost of maintaining m for all insertions and

deletions that will be propagated to the view that m is on. (The details of our cost model

are found in Appendix B.)

If m is a view, the function returns the cost of propagating onto m insertions to each

of the lower views referenced in m, plus the cost of propagating onto m deletions and

updates to each of the lower views referenced in m assuming an index exists in m for the

key attribute of each lower view. Note that when m is a view, we might overestimate the

cost for propagating insertions since we are assuming that all other views in MU are not

materialized (this overestimation is compensated for in max bene�t).

The function max bene�t(m;M0) also di�ers depending on whether m is a view or an

index. First we consider the case where m is an index.

1. If m is an index on a view v for the key attribute of a lower view R that is referenced

in v, the function returns the cost of propagating deletions and updates from R to v

without m minus the cost of propagating deletions and updates from R to v with m.

2. If m is an index on a view v for a join attribute that joins v to some relation R not

referenced in v, the function sums for each view v0 2 MU that includes R as well as

all the relations in v and for every relation S in v0 but not in v, the cost of scanning

v (the maximum savings due to an index join using m when propagating insertions

from s onto v0).

3. If m is an index for both a key and a join attribute, the two bene�ts described are

added.

Next we consider the case where m is a view. Intuitively, the maximum bene�t of m is

the cost of materializing m when propagating insertions to views for which m is a subview.

The max bene�t function sums for each view v0 2 MU that includes all the relations in m

and for every relation S in v0 but not in m, the cost of materializing m given the views and

indices in MC . Any overestimation in the cost of propagating insertions in the function

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 98

of states visited

of relations # of selections exhaustive A* % pruned

2 0 32 11 67.7

2 1 192 21 89.1

2 2 960 28 97.1

2 4 960 29 97.0

3 1 2115072 17735 99.2

3 2 10575360 22809 99.8

Table 4.1: Comparison of A* and Exhaustive Algorithms.

h maint cost(m;M0) is o�set by including the cost of materializing the views in the function

max bene�t(m;M0).

4.4.2 Experimental Results

To test our A* algorithm, we implemented both the A* algorithm and the exhaustive

algorithm described in Section 4.2. We then ran simulations using both algorithms on a

variety of sample schemas. A summary of the results is presented in Table 4.1. Clearly, the

A* algorithm is performing very well, pruning the vast majority of the search space. As

the problems gets larger, due to more views or selection predicates, its relative performance

increases as well. While it may still be possible to derive a tighter lower bound on h, our

algorithm is a vast improvement over other algorithms previously proposed.

4.5 Rules of Thumb

The A* algorithm presented in the last section yields optimal solutions while achieving

impressive pruning. Still, because the solution space of the VIS problem grows doubly

exponentially with the number of lower views, primary views that are computed from many

lower views (i.e., 4 or more) may be still too large to handle. Fortunately, �nding an

optimal solution is not critical since there are often many solutions that are close to optimal.

The space of solutions is illustrated by Figure 4.6. Each point on the x-axis represents a

particular view set, and the y-axis measures the total maintenance cost for the given view

set. The range of values depicted by the bar on the y-axis shows the total maintenance costs

due to choosing the best and worst index sets for the given view set. This �gure emphasizes

two things: (1) there are several view sets that are close to optimal, and (2) index selection

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 99

10000

100000

1e+06

1e+07

1e+08

0 20 40 60 80 100 120

C

View Sets

Figure 4.6: A Sample Solution Space.

is very important even after picking a good view set. What is required then to come up

with a reasonable solution to the VIS problem is to avoid poor view sets and then to pick

a good index set.

In this section we propose rules of thumb that can help guide a warehouse administra-

tor (WHA) in choosing a reasonable set of supporting views without resorting to the A*

algorithm. Later, in Section 4.6, we show how some of these rules of thumb can be used

in an e�cient heuristic algorithm to address the VIS problem. The underlying theme of

these rules of thumb is to materialize a supporting view if its bene�t (reduction in IO cost)

is greater than its cost (increase in IO cost). The rules of thumb function similarly to the

rule \join small relations �rst" in query optimization. These are not hard and fast rules:

many factors come into play and some rules tend to work against others. But we have

found that the rules apply in general. Even when the rules do not apply, the cost-bene�t

analysis introduced in explaining each rule can help the WHA decide what to materialize

in a speci�c situation.

We justify each rule of thumb through analysis and also through experimentation. The

formulas we use in the analysis are rough approximations of the actual bene�ts and costs.

However, a signi�cantly more detailed and accurate cost model was included in the VIS

optimizer used in the experiments (see Appendix B). Since the rules of thumb are supported

by the results of the VIS optimizer, it seems that the approximations used in these simpler

formulas are reasonable.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 100

The supporting experiments are performed for views composed of only three lower views

to keep the problem tractable. We expect that for a view joining more than three relations,

the di�erences in the graphs would be more pronounced because there would be more

opportunities to apply the rule.

Notation Description

C Total maintenance cost for the primary view, supporting views, and indices

V Primary view, supporting view, or lower view

R(V) lower views involved in V

jR(V)j Number of lower views involved in V

R(V) lower views not involved in V but in primary view

E(V) Elements (materialized supporting views or lower views) joined in V

jE(V)j Number of elements joined in V

Pm Number of pages of memory for database bu�er

P (V) Number of pages in V

T (V) Number of tuples in V

I(V) Number of insertions to V

D(V) Number of deletions from V

U(V) Number of updates to V

P (R(V)) Sum of the pages in all of the lower views involved in V

I(R(V)) Sum of the number of insertions to all of the lower views involved in V

D(R(V)) Sum of the number of deletions from all of the lower views involved in V

U(R(V)) Sum of the number of updates to all of the lower views involved in V

P (E(V)) Sum of the pages in all of the elements of V

P (V;R:A) Number of pages in an index on V for attribute R:A

S(V; p) Number of tuples in V passing the selection condition p (if p is a join condi-

tion then it is the number of tuples in V that join with a single tuple in the

other relation)

Table 4.2: Notation Used in Rules of Thumb.

4.5.1 Schema and Notation

The statistics given in Table 4.2 are used in evaluating the rules of thumb. Since the

rules of thumb are very approximate, the WHA needs only rough approximations of the

statistics. The sensitivity of the results to estimation errors is studied in Section 4.7.3.

Two points about the table need to be made. First, we de�ne the functions P (R(V)),

I(R(V)), D(R(V)), and U(R(V)) to have their expected meaning. For instance, P (R(V))

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 101

Relations T (V) I(V) D(V) Select Join

R(R0; R1) 90M 1% 0.01% S(R; R1 = SO) = 3

S(S0; S1) 30M 1% 0.01% S(S; S0 = R1) = 1

S(S; S1 = T0) = 3

T (T0; T1) 10M 1% 0.01% S(T; T1 <= 10) =1M S(T; T0 = S1) = 1

R(R0; R1; R2) 20M 1% 0.01% S(R; R0 = S1) = 1

S(S0; S1; S2) 20M 1% 0.01% S(S; S2 <= 20) =2M S(S; S1 = R0) = 1

S(S; S2 = T0) = 1

T (T0; T1; T2) 20M 1% 0.01% S(T; T0 = S2) = 1

Table 4.3: View Schemas.

denotes the sum of the pages in all of the lower views that are in the primary view but

not in the view V . Second, if for the de�nition of E(V) there is more than one possible set

of materialized supporting views and lower views that can be joined to derive V , then we

assume that a set having the fewest number of elements (lower views or supporting views)

is chosen. For example, suppose that view V is de�ned as R1S1T , then E(V) = fR; S; Tg

and R(V) = fR; S; Tg. If another view V 0 = R1S is then materialized, E(V) = fV 0; Tg

because this set has only two elements (but R(V) = fR; S; Tg still holds).

As mentioned, the rules of thumb proposed in this section will be supported with ex-

perimental results. All of the tests were run with one of the two primary view schemas

depicted in Table 4.3. The �rst four rows of Table 4.3 depict Schema 1, while the last

four rows depict Schema 2. The \Relations" column of Figure 4.3 shows the attributes in

each relation with the key attribute underlined. The next column (T (V), using the no-

tation in Table 4.2), gives the cardinality of each relation. The I(V) and D(V) columns

give the number of insertions and deletions, respectively, as a percentage of T (V). The

updates were set to 0. The next two columns show the selection and join conditions us-

ing notation in Table 4.2. Schema 1 is a linear join, VP = R1S1�T1�10T , where both

joins are on foreign keys and S(T; T1 � 10) = 0:10 � T (T). The relative cardinalities are

T (R) = 3 �T (S) = 9 �T (T). Schema 2 is also a linear foreign key join, VP = R1�S2�20S1T ,

where S(S; S2� 20) = 0:10�T (S), but with all of the relations having the same cardinalities.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 102

4.5.2 When to Materialize Supporting Views

We now give several rules of thumb governing which supporting views to materialize. The

rules of thumb are based upon formulas estimating the bene�t and cost of materializing a

supporting view assuming that updates are done in batches, which is common in a data

warehousing environment. We list the rules of thumb �rst, then analyze them using the

formulas, and graph the results of our supporting experiments.

Rule 4.5.1 (Materialize Selective Views) Materialize a supporting view V when P (V)�

P (E(V)). 2

Rule 4.5.2 (Materialize Views Having No Deletions or Updates) Materialize a sup-

porting view V when D(E(V)) + U(R(V)) = 0. 2

Intuitively, Rules 4.5.1 and 4.5.2 guide the WHA to materialize a supporting view V

either when the view will be much smaller than the sum of the sizes of the contributing lower

views, or when no deletions or updates are expected to the contributing lower views. We

assume in these rules that a supporting view V does not overlap with any other materialized

supporting view V 0 (although it is acceptable if the relations of V are a subset of the relations

of V 0). That is, for every other materialized supporting view V 0, either R(V)\R(V 0) = �,

R(V) � R(V 0), or R(V 0) � R(V). The rule of thumb governing when to materialize

overlapping supporting views is presented later in this section.

Rule 4.5.1 can support materializing a view even when Rule 4.5.2 doesn't hold. An

example where Rule 4.5.1 is likely to hold is when V = S1�pT and the selectivity of the

selection condition p is low. These conditions imply that the sizes of S and T together

would exceed the size of V (i.e., P (V)� P (E(V))).

In order to justify our rules of thumb and give a more detailed analysis of when to

materialize a supporting view, we give approximate formulas for calculating the bene�t and

cost of materializing a supporting view (denoted as Bene�tv and Costv). In general, a

supporting view V should be materialized when Bene�tv(V) > Costv(V). The formula for

the bene�t of a supporting view is:

Bene�tv(V) �

8>>><
>>>:

(jE(V)j � 1) � I(R(V)) if V is indexed on the appropriate join attributes

and (jE(V)j � 1) � I(R(V)) < P (E(V))� P (V)

P (E(V))� P (V) otherwise

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 103

A materialized supporting view is bene�cial because it contains pre-joined relations.

Consider a materialized supporting view V . The bene�t of V to a view-maintenance ex-

pression E, where E propagates insertions from a lower view S that is outside of V (i.e.,

in R(V)) to the primary view V P is the di�erence between the cost of performing the joins

between the insertions to S, the other relations in R(V), and the elements of V P , and the

cost of performing just the joins between the insertions to S, the other relations in R(V),

V . That is, the bene�t lies in not having to recompute V .

The actual bene�t thus depends upon the type of join that would be used to join with

the elements that make up V . If index joins would be used, then the bene�t of materializing

V is proportional to (jE(V)j � 1) � I(R(V)), the approximate number of index joins that

would be saved (the di�erence between joining insertions to the relations that are not in V

to all of the relations in V , and the cost of joining the insertions just to V). Otherwise, if

the number of insertions to propagate is large enough that nested-block joins are used, then

we assume that the insertions are always the smaller relation and that they will always �t in

memory, so we can calculate the bene�t as the sum of the number of pages in the elements

of V (roughly the cost of joining with each of the elements of V) minus the number of pages

in V (roughly the cost of joining with V).

The cost of materializing a supporting view V is estimated as the cost of propagating

deletions and updates from the relations in V onto V itself, plus the cost of maintaining

the indices on V . The formula is:

Costv(V) �

8>>>>><
>>>>>:

D(R(V)) + U(R(V)) + Cost i(V; *) if V is indexed on the keys of relations

in R(V) and

D(R(V)) + U(R(V)) < P (V) � jR(V)j

P (V) � jR(V)j+ Cost i(V; *) otherwise

In the formula, Cost i(V; *) denotes the cost of maintaining all of the indices built on V . We

observe that the cost of maintaining an index on view V is proportional to the number of

insertions and deletions to V if the index is too large to �t into memory, or proportional

to the number of pages in the index if the index �ts entirely into memory. The cost of

maintaining an index on V is summarized below. (The index is on a V attribute derived

from R:A.)

Cost i(V;R:A)�

8<
: P (V;R:A) if P (V;R:A) < Pm

I(R(V)) +D(R(V)) otherwise

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 104

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.1 1

C
ST

CST

P (ST)
P (S)+P (T)

Figure 4.7: Support for Rule 4.5.1

Hence, Costi(V; *) is just the sum of the cost of maintaining each index built on V . The

cost of maintaining each index is obtained from Cost i(V;R:A).

If V is indexed on the keys of the lower views and the cost of index joins is less than

that of nested-block joins, then the cost of maintaining V is proportional to the number

of deletions and updates to R(V), since each deletion and update results in tuple lookups

through the index. Otherwise, if nested-block joins are used, the cost is proportional to

P (V) times the number of lower views in V , since we have to scan V to �nd the tuples

deleted or updated due to the changes to each lower view.

One might notice that we have not included the cost of propagating insertions onto V

in the cost formula above. To see why, consider a primary view RST = R1S1T and a

supporting view ST = S1T . The reason for ignoring the cost of propagating insertions

onto ST is that the expressions that propagate insertions onto ST are subexpressions of

the expressions that propagate insertions onto RST . For example, the expression propa-

gating insertions from T onto ST (S14T) is a subexpression of the expression propagating

insertions from T onto RST (R1S14T). Therefore we can reuse the result of propagating

insertions onto ST when maintaining RST , and thus ignore the cost of propagating inser-

tions onto ST . The only signi�cant e�ect insertions have is in Costi(ST; *), maintaining

the indices of ST .

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 105

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1e-06 1e-05 0.0001 0.001 0.01 0.1

C
ST

CST

D(S)+D(T)
T (S)+T (T)

Figure 4.8: Support for Rule 4.5.2

Rule 4.5.1 and Rule 4.5.2 are examples of rules that may work for or against each other.

For instance if D(E(V)) + U(R(V)) is very high, it may not be bene�cial to materialize V

even if P (V) � P (E(V)) holds. In the experiments we �x the parameters involved in one

rule while we vary the parameters in the other to show the e�ect.

Figure 4.7 shows the experimental support for Rule 4.5.1 using Schema 1. In this

experiment we consider two view sets, one with the supporting view ST = S1T and one

without. For both view sets the whole index space was searched to obtain the best index

set at each point in the graph. (As shown in Table 4.3, the deletion rate is set at 0:01%

and the update rate is set at 0% for Schema 1.) The graph shows how the ratio of the

total update cost without view ST over the total update cost with view ST materialized

(U
ST
=UST) varies with P (ST)/(P (S)+ P (T)). Therefore, it is bene�cial to materialize ST

when the line in the graph is above 1.0. As P (ST) gets larger, it is less and less bene�cial to

materialize ST as predicted by Rule 4.5.1. Note that in our scenarios with so few deletions

and updates, even when P (ST) = P (S)+P (T) it is still bene�cial to materialize ST for this

schema because evaluating the maintenance expression 4R1S1T is still more expensive

than evaluating 4R1ST (when ST is materialized). The reason is that there are more

tuples in 4R that match with S than with ST because of the selection condition on T .

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 106

Our next experiment (also on Schema 1) shows experimental support for Rule 4.5.2. In

this experiment the ratio P (ST)/(P (S) + P (T)) was set to 0.5. For simplicity the update

rate were set to 0 and only the deletion rates were varied. Figure 4.8 shows that as the

deletion rates to S and T (as a fraction of T (S) and T (T), the number of tuples in S and

T) increase, it is less and less bene�cial to materialize ST .

Rule 4.5.1 and Rule 4.5.2 assume that the view V does not overlap with any other sup-

porting view. That is, for each supporting view V 0 distinct from V , either R(V)\R(V 0) = �,

or R(V) � R(V 0), or R(V 0) � R(V). We now give the rule for materializing V when it

overlaps with other views.

Rule 4.5.3 (Materialize Non-Overlapping Views) In general, materialize supporting

views that do not overlap. Materialize overlapping supporting views V1 and V2 only when

I(R(V1)\R(V2)) = 0. 2

Intuitively, Rule 4.5.3 directs the WHA to materialize overlapping supporting views only

when there are no insertions to lower views in the intersection of the overlapping views.

Suppose that one supporting view V1 is contained in (but does not overlap) another

supporting view V2. That is, R(V1) � R(V2). We showed previously (with views RST and

ST) that the result of propagating insertions to V1 can be reused in propagating insertions

to V2, so in this case little additional cost is incurred and Rule 4.5.3 does not recommend

against materializing both views (assuming both views are deemed bene�cial by Rules 4.5.1

and 4.5.2).

Now, suppose that two supporting views overlap. For example, let the primary view be

RST = R1S1T , with supporting views RS = R1S and ST = S1T . The problem with

materializing both RS and ST is that insertions to S must be propagated to both RS and

ST . The result of propagating insertions to S onto RS cannot be reused in propagating

insertions to S onto ST , or vice-versa. Furthermore, since RS and ST are both subsets of the

primary view RST , only one of the two results can be reused when propagating insertions

to RST . Therefore, propagating insertions to overlapping views creates additional work

that cannot be masked by containing views.

The additional work required to propagate insertions requires that we modify the formu-

las for the cost and bene�t of overlapping views, Bene�tov and Costov respectively. Using

the new formulas we can state the requirement for materializing overlapping supporting

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 107

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1e-05 0.0001 0.001 0.01 0.1

CST
CRS;ST

I(S)+D(S)+M(S)
T (S)

Figure 4.9: Support for Rule 4.5.3.

views V1 and V2 as

(Bene�tov(V1)� Costov(V1)) + (Bene�tov(V2)� Costov(V2))

> max((Bene�tv(V1)� Costv(V1)); (Bene�tv(V2)� Costv(V2))):

In other words, materialize both V1 and V2 if the gain (i.e., bene�t minus cost) obtained by

materializing both is greater than the maximum gain obtained by materializing one or the

other.

The upper limit on Bene�tov(V) is Bene�tv(V), and the following example illustrates

why Bene�tov(V) is less than Bene�tv(V). Let RST = R1S1T , RS = R1S, and ST =

S1T as before. The bene�t of ST if it were non-overlapping is roughly the cost of evaluating

(4R1S1T) minus the cost of evaluating (4R1ST). However, due to the overlapping RS,

(4R1S) must be performed to maintain RS. Therefore, the bene�t of the overlapping ST

is just the cost of the single join between the result of (4R1S) and T , minus the cost of

evaluating (4R1ST).

The formula for Costov appears below. Insertions into the intersecting relations must

now be taken into account, so the additional cost of propagating insertions is added to the

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 108

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.1 1 10

C
ST

CST

scaling factor

Figure 4.10: Support for Rule 4.5.4.

cost of materializing a (non-overlapping) view.

Costov(V1) � I(R(V1)\R(V2)) + Costv(V1)

If, as in Rule 4.5.3, the number of insertions to intersecting relations is zero, then there

is no additional cost in maintaining the overlapping views (over that for maintaining the

two views as if each were non-overlapping). In that case, if each view on its own is bene�cial

to materialize, then it is likely to be worthwhile to materialize both of them even though

they overlap.

The experimental support for this rule is shown in Figure 4.9. In this experiment we

considered two sets of supporting views for Schema 2, one with overlapping supporting

views (RS = R1S and ST = S1T) and one with ST = S1T only. (As shown in Table

4.3, the deletion rate is set at 0:01% and the update rate is set at 0% for Schema 2.) For

each view set, the whole index space was searched to obtain the best index set at each

point in the graph. We graphed the ratio of the update costs of these view sets and varied

the insertion rate to S. Figure 4.9 shows that as the insertion rate is increased, it is less

bene�cial to materialize the overlapping views.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 109

The previous three rules were not concerned about the size of main memory. The fol-

lowing rule tells the WHA that when considering whether or not to materialize a supporting

view V , the size of V in relation to the size of main memory doesn't matter.

Rule 4.5.4 (Size Doesn't Matter) In considering whether to materialize a supporting

view V , the ratio of P (V) to Pm doesn't matter. 2

That is, the total number of pages of a supporting view relative to the number of pages of

memory does not signi�cantly impact the choice of whether to materialize the supporting

view (unless of course the WHA is also trying to conserve space|see Section 4.7.1). Note

that in the approximate formulas given for bene�t and cost, Pm does not come into play. In

our more detailed cost model (Appendix B), P (V) relative to Pm has an impact primarily

for index joins and index maintenance in which case small supporting views and indices

that �t entirely in memory have an advantage. But once a supporting view and its indices

grow beyond the size of memory then its size is not signi�cant.

Figure 4.10 graphs the cost of maintaining two sets of supporting views for a primary

view RST = R1S1T : one that includes a supporting view ST = S1T and another where

ST is not materialized. We vary the sizes of all lower views as well as the number of changes

to the lower views proportionately, while holding the number of pages of memory constant.

Note that the size of V has little e�ect on the decision of whether to materialize it.

4.6 Heuristic Approaches

The VIS problem involves selecting a set of supporting views to materialize along with

index selection on the chosen set of views. We have already shown that both components

of the problem are doubly exponential. Thus, heuristic algorithms are required when the

primary view involves a fair number of lower views. From our experience, when n � 4 lower

views are involved, the A* optimal algorithm becomes unwieldy. In this section, we outline

heuristic algorithms that pare down on both the view search space and the index search

space.

4.6.1 Algorithm Descriptions

The �rst two heuristic algorithms we present, called Rete and A-TREAT, come from pre-

vious research in production rules systems and active databases. In such systems, the user

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 110

speci�es an action that is to be performed when a condition becomes true. The condition is

normally expressed as a query over the database that is true when its result is non-empty.

Thus, the problem of checking when a condition is true is equivalent to maintaining a ma-

terialized view de�ned by the condition query and executing the action if the view becomes

non-empty. In addition to Rete and A-TREAT, we propose three new heuristic algorithms

for the VIS problem { NOGI, GVGI, and VSIS. We compare the performance of all the

algorithms in Section 4.6.2.

All of the 5 heuristic algorithms use a greedy index selection algorithm, called GI, which

we now describe. Given a set of supporting views V , GI �rst identi�es the set of indices I

that can be built over the views in V , the lower views B, and the primary view VP . GI then

greedily chooses to materialize the index that attains the largest reduction of the update

cost C. The chosen index is then removed from I. GI chooses indices to materialize until

no index in I reduces C.

Clearly, the complexity of GI is O(jIj2). We have already shown that given any set of

supporting views V , the number of indices in I is at most k � 2n, where k is the maximum

number of attributes in a view and n is the number of views involved in the primary view.

Hence, GI signi�cantly pares down the doubly exponential index search space (O(22
n

)).

Rete Algorithm

The Rete algorithm [For82] examines the various left-deep join trees of the primary view

de�nition query. For instance, given a primary view VP = �pR1S1T , one left-deep join

tree of the de�nition query is shown in Figure 4.11. Given that VP involves n lower views,

it is not hard to see that there are O(n!) left-deep join trees. Rete considers the various

sets of supporting views obtained from the various left-deep join trees. More speci�cally,

for each left-deep join tree, Rete considers the set of supporting views V that corresponds

to the interior nodes of the left-deep join tree (except for the node that represents the

primary view VP). Hence, in Figure 4.11, Rete considers materializing the set of supporting

views V = f�pR;�pR1Sg, and evaluates the update cost C. Rete then chooses the set of

supporting views that achieves the smallest update cost. Since Rete only considers one set

of supporting views for each left-deep join tree, only O(n!) sets of supporting views are

examined.

Strictly speaking, the Rete algorithm does not consider index selection. Since Rete was

used in active databases and changes are propagated immediately in such databases, [For82]

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 111

R S T
p

Figure 4.11: A Left-deep Join Tree Considered by Rete.

suggests that all indices that may be helpful must be chosen. However, we have already

seen that careful index selection is critical in order to obtain low update costs. Therefore,

we will enhance Rete with the GI algorithm explained previously. That is, for each set of

supporting views V considered by Rete, GI is used to choose the indices on V [B [fVPg

before the update cost C is evaluated.

A-TREAT Algorithm

The A-TREAT algorithm is di�erent from Rete in that it only considers materializing inte-

rior nodes of the primary view de�nition query tree that correspond to selection nodes. The

original A-TREAT algorithm presented in [Han92] materializes a selection node depending

on the selectivity. In this chapter, we will search through all possible choices which makes

the view search space for A-TREAT O(2n) if every relation has a selection condition. For

instance, given a primary view VP = �pR1S1�p0T , the various sets of supporting views

considered are: fg, f�pRg, f�p0Tg, f�pR;�p0Tg. Like Rete, A-TREAT does not specify

how indices are selected. Therefore, we will also enhance A-TREAT with the GI algorithm.

NOGI Algorithm

In Section 4.5.2, we developed rules of thumb to guide the WHA in view selection. One

of the rules of thumb stated that it is not usually bene�cial to materialize two overlapping

views (Rule 4.5.3). Hence, the NOGI algorithm does not consider a set of supporting views

that contains overlapping supporting views. Table 4.4 shows that by using Rule 4.5.3,NOGI

prunes a large number of view sets. For each view set considered, NOGI uses GI to select

the indices.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 112

of relations # of view sets # of view sets with % view

overlapping views sets pruned

3 8 4 50%

4 1024 998 97.46%

5 33554432 33554196 99.9993 %

Table 4.4: Views Sets Pruned by NOGI.

GVGI Algorithm

Algorithm GVGI greedily chooses both the view and index sets. It begins by materializing

only the lower views and the primary view. That is, the initial set of supporting views and

indicesM is empty. For each supporting view V 62 M, GVGI evaluates the reduction in the

update cost C if V and a set of indices I on V is added toM. The set of indices I is chosen

by GI. GVGI then adds to M the view V plus the indices I that attains the maximum

reduction in C. If no such view V (with indices I) reduces the update cost, GVGI stops.

This algorithm pares down the view search space to O(2n) view sets. In practice, it is one

of the fastest algorithms and our performance studies show that it is also one of the best.

VSIS Algorithm

Unlike the previous algorithms, the VSIS algorithm considers view and index selection

separately. That is, VSIS �rst greedily chooses the view set that attains the maximum

reduction in the update cost C. When VSIS examines a view set V , it assumes that there

are indices on every attribute of each view in V but ignores their update cost. After the

view set is chosen, VSIS uses GI to greedily select the indices. This algorithm pares down

the view search space to O(2n) view sets.

4.6.2 Performance Results

Since the various heuristic algorithms signi�cantly pare down both the view and index

search space, we are now able to perform experiments on more complex view schemas. In

particular, a new primary view schema, denoted Schema 3, is a linear join of four lower

views as depicted in the �rst 6 rows in Table 4.5. (Schema 3 extends Schema 1 which was

a linear join of three lower views.) We also use a primary view schema, denoted Schema

4, that is a star join of four lower views. Lower view R in Schema 4 is a fact table and

the other lower views are dimension tables. Details of Schema 4 are also shown in the last

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 113

Relations T (V) I(V) D(V) Select Join

R(R0; R1) 90M 1% 0.01% S(R; R1 = SO) = 3

S(S0; S1) 30M 1% 0.01% S(S; S0 = R1) = 1

S(S; S1 = T0) = 3

T (T0; T1; T2) 10M 1% 0.01% S(T; T2 <= 20) S(T; T0 = S1) = 1

= 2M S(T; T1 = U0) = 3

U(U0; U1) 3.3M 1% 0.01% S(U; U0 = T1) = 1

R(R0; R1; R2;R3) 90M 1% 0.01% S(R; R1 = S0) = 90

S(R; R2 = T0) = 90

S(R; R3 = U0) = 90

S(S0; S1) 10M 1% 0.01% S(S; S0 = R1) = 1

T (T0; T1; T2) 10M 1% 0.01% S(T; T2 <= 20) = S(T; T0 = R2) = 1

U(U0; U1) 10M 1% 0.01% = 2M S(S; U0 = R3) = 1

Table 4.5: Complex View Schemas.

6 rows of Table 4.5. We compared the heuristic algorithms using Schema 3 and Schema 4

under various insertion and deletion rates. We now discuss two representative experiments.

In the �rst experiment, we ran the �ve heuristic algorithms using Schema 4. The

insertion rates were varied from 0:1% to 1:0%. That is, for each lower view V involved in

the primary view, the number of insertions to V was varied from 0:001 �T (V) to 0:01 �T (V).

The deletion rates were set to be 1=100 of the insertion rates, and the update rates were

set at 0. Figure 4.12 plots the ratio C=CGVGI as the insertion rates are varied. In this

graph, C (CGVGI) is the update cost incurred by the view and index set chosen by an

algorithm (respectively, GVGI). As shown in Figure 4.12, GVGI, VSIS and NOGI perform

equally well. All of the three algorithms chose to materialize the supporting view set

f�T2�20T;R1�T2�20Tg in addition to the base relations and the primary view. All three

algorithms chose to build indices on the keys R0, SO, TO, and U0 and on the join attributes

of the fact table R (i.e., R1, R2, R3). On the other hand, RETE chose to materialize

f�T2�20T;R1�T2�20T;R1�T2�20T1Ug. As shown in Figure 4.12, this choice results in

an update cost that is 15% to 20% higher than the update cost incurred by the view and

index sets chosen by the GVGI algorithm. This is primarily because the update cost of

R1�T2�20T1U outweighs its bene�ts. Finally, A-TREAT chose to materialize f�T2�20Tg

which results in an update cost that is 42% to 53% higher than the update cost attained

by GVGI's choices. This result illustrates that materializing supporting views that join a

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 114

1

1.2

1.4

1.6

1.8

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
CGVGI

100�I(V)
T (V)

GVGI, VSIS, NOGI +

+ + + + + + + + + +

RETE 2

2 2 2 2 2 2 2 2 2 2

A-TREAT �

� � � � � � � � � �

Figure 4.12: Star Join with Low Update Rate.

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6 7 8 9 10

C
CGVGI

100�I(V)
T (V)

VSIS 3

3 3 3

3

3
3

3

3 3

3

GVGI +

+ + + + + + + + + +

RETE 2

2 2
2 2 2 2 2 2 2 2

A-TREAT �

�

�

�
�
� � �

� � �

NOGI 4

4 4 4 4 4 4 4 4 4 4

Figure 4.13: Linear Join with High Update Rate.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 115

number of lower views can be very bene�cial.

In the next experiment, we ran the �ve heuristic algorithms using Schema 3. The

insertion rates were varied from 1% to 10%. The deletion rates were again set to be 1=100

of the insertion rates, and the update rates were set at 0. Figure 4.13 plots the ratio

C=CGVGI as the insertion rates are varied. As shown in the �gure, the view and index sets

chosen by GVGI incur the least update cost. That is, the view and index sets chosen by A-

TREAT result in an update cost that is 15% to 27% higher than the update cost attained

by GVGI's choices. The sets chosen by RETE incur an update cost that is 2% to 22%

higher than the cost attained by GVGI's choices. NOGI and VSIS perform just slightly

worse than GVGI. Note that because the number of deletions is so small and the number

of updates is zero, it is slightly more bene�cial in our experiment to consider materialized

view sets that include overlapping views (GVGI) than to exclude them (NOGI). These two

experiments are representative of the other experiments performed wherein GVGI always

chose view and index sets that incur the least update cost.

Summary

In terms of running time, A-TREAT is the fastest while VSIS is the slowest. The other

three algorithms are only slightly slower than A-TREAT. In summary, we recommend the

algorithm GVGI since it chooses the best view and index sets in our experiments, and it

does so fairly e�ciently.

4.7 Additional Experiments

So far, we have assumed that there are no space constraints in the VIS problem. That is,

a set of views and indices is chosen without regard to how much space is occupied by the

views and indices in the chosen set. We have also assumed that it is better to propagate

(protected) updates separately from insertions and deletions. Finally, we have assumed that

the WHA's estimates of the system parameters (e.g., insertion rates) are exactly right. In

this section we attempt to answer the following questions related to our three assumptions:

� Are views or indices better to materialize when space is constrained?

� Is there really a bene�t in propagating updates separately?

� How sensitive is the VIS problem solution to the WHA's estimates of the system

parameters?

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 116

We present the results of only one or two representative experiments for each question,

although many more were performed. The experiments shown in this section were all run

on Schema 1 (described in Section 4.5.1) using our A* based optimal algorithm. Although

this schema is composed of only 3 relations, we believe our results to be more general

because we have explored a number of larger schema using our heuristic algorithms and the

results so far support those reported here.

4.7.1 Are Views or Indices Better When Space is Constrained?

Up to now we have shown how to �nd the optimal set of supporting views and indices to

materialize without regard to storage space. Sometimes, however, the amount of additional

storage required is prohibitive. In these cases one may ask how much additional storage

is necessary to attain the majority of the performance gains and which structures should

be materialized. We consider these questions for Schema 1 under two di�erent update

loads. In both experiments, we gradually increase the available storage from that required

to materialize the primary view (RST) to that required by the optimal solution for the

unconstrained problem. For generality, we measure the additional space as a fraction of the

space required to store the base relations. At each point we �nd the best solution that �ts

in the available storage. The cost of this solution relative to the non-constrained optimum

is plotted on the y-axis.

The results of the experiments are shown in Figures 4.14 and 4.15. As the graphs

indicate, the schemas evolve in discrete steps - only changing when enough storage becomes

available to add a new index or materialized view. The number of steps in the progression

is too large (52 in Figure 4.14 and 25 in Figure 4.15) to show every schema change but the

results are summarized in Figure 4.16. The numbers next to features indicate in what order

they are added as storage increases. Using Figure 4.16 (a) as an example, the experiment

starts with only the base relations and primary view materialized { they are numbered 0.

The next features to be added are indices on the keys of the base relations present in the

view RST , starting with T0 and then adding S0 and R0. Next, the selection node T 0 is

materialized and an index built on its attribute T 00. The reason that it takes 52 steps to

add all 10 numbered feature sets is that a new feature is often added at the expense of

an older one. For instance, when the view T 0 is materialized, the index on R0 in RST is

dropped until enough space is available to add it again. The graphs in Figures 4.14 and 4.15

are also annotated with the feature numbers to help indicate which features most impact

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 117

the update performance.

The �rst important point to note from this experiment is that under both update loads,

a large portion of the total update savings can be achieved with a reasonably small amount

of additional storage. Note the large drop in I/Os for the high-update experiment that

results from materializing view T 0 (feature 3) and then adding indices on T0 and S0 again

(they were dropped earlier to make space for T 0). The next large drop occurs after enough

space is found to materialize ST (feature 5). By the time point A (which corresponds to

features 1,2 and 5) is reached, the update cost is within 5% of the optimal cost. This

result is encouraging for warehouses that have space constraints. It should be noted that

even though the extra storage required for the views and indices does not seem that large

compared to the warehouse relation sizes (� 25%), there will typically be many views

de�ned over the same relations so the total storage required by views and indices can be

larger than that of warehouse relation when the warehouse is considered in its entirety.

It is interesting to see how the two images of Figure 4.16 are supported by our rules of

thumb. Because of the selection condition on T , the materialized view T 0 is much smaller

than T . Therefore, by Rule 4.5.1 view T 0 should be materialized. Finally, note that view

ST is not materialized until near the end. Even though the number of pages in ST is less

than the sum of the pages in S and T and should be materialized by Rule 4.5.1, ST is a

relatively large structure to materialize in comparison to the indices. Therefore, we �nd

that the maintenance cost is minimized overall in this case by materializing several small

bene�cial structures (i.e., indices) than by materializing one large one (i.e., view ST). It

isn't until the most useful indices have already been materialized that view ST is chosen

for materialization.

4.7.2 The Importance of Propagating Updates Separately

Previous work in physical database design has rarely considered updates separately,

opting instead to treat them as pairs of deletions and insertions. However, [GJM96, BCL89]

show that if updates do not change the values of attributes that are involved in selection or

join conditions, then they can be applied to the view directly so long as the view includes

a key of the updated base relation. We have called updates of this class protected updates

and have applied them to the view directly instead of splitting them into insertions and

deletions. The bene�t of supporting protected updates is illustrated in Figure 4.17. In

this experiment, protected updates were fed to the optimizer as insert/delete pairs. The

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 118

1

2

3

4

5

6

7

0.25 0.275 0.3 0.325 0.35 0.375

C
Coptimal

additional space
space for base relations

(a) Low Update Rate (
I(R)
kRk

= 0:33%)

3

7

9
10

�

�

���
?

Figure 4.14: E�ects of Space on Update Cost (Low Update Rate).

1

1.1

1.2

1.3

1.4

1.5

1.6

0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

C
Coptimal

additional space
space of base relations

(b) High Update Rate (
I(R)
kRk = 3:3%)

3

4

5

A

�

�
/

-

Figure 4.15: E�ects of Space on Update Cost (High Update Rate).

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 119

0

9 7

R R0 R1 0

8 6

S S0 S1 0

5

T T0 T1

4
4T’ T0 T1

(a) Low Update Rate

10 10
10ST S0 S1 T0 T1

0
123

RST R0 R1 S0 T0 T1S1

0R R0 R1 0S S0 S1 0T T0 T1

3
3T’ T0 T1

(b) High Update Rate

5 6
5ST S0 S1 T0 T1

0
124

RST R0 R1 S0 S1 T0 T1

Figure 4.16: Evolution of the Physical Design.

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0.01 0.1

C
Coptimal

U(R)+U(S)+U(T)
kRk+kSk+kTk

update cost
space

Figure 4.17: E�ects of Simulating Updates with Insert/Delete.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 120

0

0.5

1

1.5

2

2.5

3

3.5

4

0.001 0.01 0.1

C
Coptimal

I(R)+D(R)
kRk

opt0 3

3 3 3

3

opt1
opt2 +

+ + +

+

opt3 2

2

2

opt4 �

�

�

Figure 4.18: Sensitivity of Optimal Solutions to Insert/Delete Rates.

resulting view and index sets chosen were then compared to the optimal choices if the

updates are propagated directly. The results, shown in Figure 4.17, show that simulating

protected updates as deletion followed by insertion leads to solutions that require both more

space and more maintenance time than the optimum!

4.7.3 Sensitivity Analysis

So far, this chapter has focused on �nding a solution to the VIS problem. Just how well

this solution works on the actual warehouse depends on how closely the input parameters,

such as relation sizes and delta rates, match the real values of the system.2 An important

question for the WHA, then, is just how sensitive the optimizer is to the estimates of the

input parameters. Clearly, one would hope that the solution obtained given the WHA's

parameter estimates is at least a reasonably good solution for systems with only slightly

di�erent parameter values. In this section, we investigate just how badly optimal solutions

decay at neighboring points. To simplify the analysis, we consider only the estimate of

2It also depends on how closely the VIS optimizer's cost model follows that of the dbms. This concept is
discussed in [FST88].

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 121

insertion and deletion rates.

In this experiment, we varied the combined insertion and deletion rates to each base

relation such that the ratio
I(R)+D(R)

T (R)
=

I(S)+D(S)
T (S)

=
I(T)+D(T)

T (T)
increased from 0.001 to 0.1

in �ve steps. At each step, we found the optimal solution and then plotted its performance

over the entire range. The results, which are shown in Figure 4.18, suggest that except

for a small region in the middle of the graph, the choice of optimum in not sensitive to

the combined insertion-deletion rate. For instance, the optimal solution for an estimated

ratio of 0.001 is still optimal even when the ratio grows to 0.01. The only area where

the optimizer seems sensitive is in the range shown in the middle of the graph where an

order of magnitude error in estimation can lead to a three-fold performance hit or worse.

This sensitive region corresponds to the point when the insertion-deletion rate to the base

relations becomes large enough that it is no longer worthwhile to build indices on their

attributes.

This experiment is typical of many sensitivity analyses that we have performed. The

optimal solutions perform well across a wide range of parameter values except for a few

small regions that correspond to major schema changes. This result is reassuring. One

must be careful, however, in over-generalizing this result. It is likely that in schemas with

more relations there will be more frequent shifts in the optimal schema. Whether these

shifts will result in large di�erences in the maintenance cost is a subject for future research.

4.8 Related Work

Previous work related to this chapter falls into two categories, depending on the context in

which it was written: physical database design and rule condition maintenance.

4.8.1 Physical Database Design

Three costs must be balanced in physical database design for warehouses: (1) the cost

of answering queries using warehouse relations and additional structures, (2) the cost of

maintaining additional structures, and (3) the cost of secondary storage. We have assumed

that the primary view is materialized, which minimizes the cost of (1), and focused on

choosing supporting view and indices such that the cost of (2) is minimized. We have also

considered how constraining cost (3) a�ects our results.

This problem was �rst studied by Roussopoloulos [Rou82]. The additional structures

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 122

considered for materialization are view indices, rather than the views themselves, to save

on storage. A view index is similar to a materialized view except that instead of storing

the tuples in the view directly, each tuple in the view index consists of pointers to (or

equivalently, tuple id's of) the tuples in the lower views that derive the view tuple. No

other type of index are considered. (In this chapter we choose to maintain the actual views

since the cost of secondary storage is now much lower and no commercial database supports

view indices.)

The Roussopoloulos paper presents an elegant algorithm based on A* and the approx-

imate knapsack problem to �nd an optimal solution to the view selection problem. The

algorithm, however, works because of two simplifying assumptions. First, it uses a very

simple cost model for updating a view: the cost is proportional to the size of the view. But

when views are incrementally maintained, the cost of maintenance is proportional not only

to the size of the view but also to the sizes of the changes, the lower views, and subviews.

We have shown in Section 4.2 that the cost of maintenance is a complex query optimiza-

tion problem and cannot be estimated without knowing which subviews are materialized.

Second, the Roussopoloulos algorithm does not consider index selection (other than view

indices). We have shown in Section 4.7.1 that index selection has a signi�cant impact on

choosing which subviews to materialize, since the proper indices can make a materialized

subview less costly to maintain. Relaxing either of the above two assumptions invalidates

the use of the Roussopoloulos algorithm. Still, this approach is a good �rst treatment of

the subject and the author presents experimental results for the algorithm.

Ross et al. [RSS96] considers the same problem but focuses on the view selection part of

the VIS problem. They describe an exhaustive search algorithm to solve the view selection

problem. They also propose heuristics for pruning the space to search. We have extended

their work by considering indices, developing rules of thumb for choosing supporting views

using cost model analysis, and presenting an improved optimal algorithm. We have also

implemented our algorithm and used it generate experimental results that support the rules

of thumb as well as answer questions such as whether to materialize indices or views when

space is constrained. We have also developed new heuristic algorithms and compared them

against previously developed algorithms.

More recently, Gupta [Gup97] examines the problem of minimizing the combined costs of

(1) answering queries and (2) maintaining the warehouse views and indexes, while ensuring

that the cost of (3) secondary storage is not too high. Gupta investigates this speci�c

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 123

problem under a theoretical framework. He develops greedy heuristic algorithms and proves

that the solutions obtained by the algorithms perform no worse than k% compared to the

optimal solution (for some constant k). However, the proof only works when indices are not

considered and under some assumptions on the delta rates. Since [Gup97] is a theoretical

study, no experiments are performed.

Other recent work have focused on the same problem that Gupta investigated. All

of them focus on either the view selection exclusively or the index selection exclusively.

[YKL97] focuses on view selection; [BPT97] focuses on view selection in a multidimensional

database; and [CN97] focuses on index selection. Furthermore, apart from [CN97], none of

the recent work performed extensive experimental studies.

Other work has looked at the initial problem of choosing a set of primary views such

that the cost of (1) answering queries is minimized, while ensuring that the costs of (2)

maintaining warehouse views and indexes and (3) secondary storage are not too high. [SP89]

considers this problem in the case of distributed views. [HRU96] has investigated this

problem for the case of aggregate views. Tsatalos et al. [TSI94] consider materializing views

in place of the lower views in order to improve query response time. Rozen et al. [RS91]

look at this problem as adding a set of \features" to the database.

In particular, the index selection part of our VIS problem has been well-studied [FST88,

CBC93] in the context of physical database design. Choosing indices for materialized views

is a straightforward extension. What is troublesome, however, is that the previous al-

gorithms require the queries (and their frequencies) on each lower view as inputs. This

information is used in pruning the search space of indices to consider. In the VIS problem

there are no user generated queries on the base relations or supporting views since they are

all handled by the primary views: The only queries on lower views or supporting views are

generated by maintenance expressions. Unfortunately, the set of generated queries depends

on the update paths chosen for each type of delta. Recall from the example that if a view

ST exists, the maintenance expression 4R1S1T could be answered either from the lower

views or as4R1ST . The choice between the two update paths depends on whether there is

an index on ST, which has not yet been determined. Thus one cannot determine in advance

the query set on each lower view and supporting view without knowing which indices are

present, which makes the algorithms proposed in previous work unusable here.

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 124

4.8.2 Rule Condition Maintenance

Previous work on active database and production systems also relates to the VIS problem we

have described. Many authors have considered how to evaluate trigger conditions for rules.

This can be considered a view maintenance problem where a rule is triggered whenever the

view that satis�es its condition becomes non-empty. Wang and Hanson [WH92] study how

the production system algorithms Rete [For82] and TREAT [Mir87] perform in a database

environment. An extension to TREAT called A-TREAT is considered in [Han92]. Fabret

et al. [FRS93] took an approach similar to ours by considering how to choose supporting

views for the trigger condition view. Translated into our terminology, the rule of thumb

they developed is essentially to materialize a supporting view when it is self-maintainable;

i.e., when it can be maintained for the expected changes to the lower views by referencing

the changes and the view itself, but without referencing any lower views. For example, given

a primary view V P = RST with only deletions (no insertions) expected to lower views S

and T , then supporting view view V S = ST is a self-maintainable view. We have found

through the results of our experimentation that for our environment almost the opposite

is true. We have found (Rule 4.5.2) it to be worthwhile to materialize a view when no

deletions (insertions are �ne) are expected to the lower views involved in the view, since

the work of propagating insertions can be reused in maintaining the top-level view.

Segev et al. [SF91, SZ91] consider a similar problem in expert systems. They also assume

small deltas and ubiquitous indices. They do not, however, consider maintaining subviews of

the primary view, but instead describe join pattern indices, which are specialized structures

for maintaining materialized views. Join pattern indices are an interesting approach, but

require specialized algorithms to maintain. They cannot be maintained with SQL data

manipulation statements, which is necessary for our approach because we want the WHA

to be able to choose a set of supporting views and indices and maintain them without having

to write specialized code.

A major di�erence between all of these studies and this one is that they consider a

rule environment where changes in the underlying data are propagated immediately to the

view. Hence, the size of the deltas sets are relatively small, which means that index joins will

usually be much cheaper than nested-block joins. They therefore assume that indices exist

on all attributes involved in selection and join conditions. However, in the data warehousing

environment studied here, a large number of changes are propagated at once, and the cost

of maintaining the indices often outweighs any bene�t obtained by doing index joins, so it

CHAPTER 4. OPTIMIZING THE VIEW HIERARCHY 125

is not correct to assume that indices exist on all attributes involved in selection and join

conditions.

4.9 Chapter Summary

This chapter considered the VIS problem, which is one aspect of choosing good physical

designs for relational databases used as data warehouses. We described and implemented

an optimal algorithm based on A* that vastly prunes the search space compared to previ-

ously proposed algorithms [RSS96]. Since even the A* algorithm is impractical for many

real-world problems, we developed \rules of thumb" for view selection. These rules were

validated through both analysis and experimental results. We also developed heuristic al-

gorithms that are vastly more e�cient than the A* based optimal algorithm. Furthermore,

we showed that the quality of the solution obtained by some of the heuristic algorithms is

comparable to that of the optimal solution.

By running experiments with the optimal algorithm, we studied how space can be best

used when it is constrained: whether for materializing indices or supporting views. Our

results indicate that building indices on key attributes in the primary view leads to solid

maintenance cost savings with modest storage requirements. We also showed that treating

all updates as pairs of deletions and insertions, as has often been proposed in the literature,

can lead to solutions that have larger maintenance costs and storage costs than those chosen

when protected updates are handled explicitly.

Note that the cost An optimal algorithm must minimize the total cost of maintaining

the warehouse. The total cost that we attempt to minimize is the sum of the costs of:

(1) computing the changes to the primary view, (2) installing the changes of the primary

view, lower views and any supporting view, and (3) modifying a�ected indices. The cost of

maintaining one view di�ers depending upon what other views are available. It is therefore

incorrect to calculate the cost of maintaining the original view and each of the additional

views in isolation. Moreover, in order to optimize the total cost it is necessary to consider

view selection and index selection together. For example, if view selection is performed

separately from index selection, it is not hard to concoct cases wherein a supporting view

V is considered to be too expensive to maintain without indices. However, with indices V

becomes part of the optimal solution since it may become feasible to maintain V once the

proper indices are built.

Chapter 5

Expiring Warehouse Data

5.1 Introduction

The previous three chapters focused on the problem of maintaining the warehouse e�ciently.

In this chapter, we focus on a problem that is equally important { the problem of reducing

the storage cost of the materialized views in the data warehouse. The traditional way of

removing data from materialized views is deletion. When tuples are deleted from a view

or a source relation, the e�ect must be propagated to all \higher-level" views de�ned on

the view/relation undergoing the deletion. However, the desired semantics are di�erent

when the data is removed due to space constraints alone, where it is preferable not to a�ect

the higher-level views if possible. In this chapter, we propose a framework that gives us

the option to gracefully expire data, so that higher-level views remain una�ected by lower-

level expired data, and can be maintained consistently with respect to future changes. The

di�erence between deletion and expiration is illustrated further in the next example.

EXAMPLE 5.1.1 Suppose the following base views are copies of source relations external

to the warehouse. These base views will be used as a running example in this chapter.

� Customer(custID; info) contains information about each customer identi�ed by the

key custID. For conciseness, we shall refer to Customer as C.

� Order(ordID; custID; clerk), denoted O, contains for each order, the customer who

requested the order and the clerk who processed the order.

126

CHAPTER 5. EXPIRING WAREHOUSE DATA 127

O ordID custID clerk

1 456 Clerk1

3 789 Clerk2

L partID ordID qty cost

l1: a 1 1 19.99

l2: b 1 2 250.00

l3: c 3 1 500.00

V partID qty cost custID clerk

v1: b 2 250.00 456 Clerk1

v2: c 1 500.00 789 Clerk2

Figure 5.1: Current state of O, L, and V .

� Lineitem(partID; ordID; qty; cost), denoted L, details the quantity of the parts and

the unit cost of each part requested in each order.

Consider a simple derived view V storing order information for expensive parts. V is

de�ned as a natural join of O and L, with the selection condition L:cost > 99, followed

by a projection onto relevant attributes. The current state of O, L, and V is depicted in

Figure 5.1.

In reality, base views O and L (often called fact tables) can become quite large. Suppose

that the warehouse administrator decides to delete \old" L tuples with ordID < 2. Thus,

l1 and l2 are deleted, as if they never existed in L. As a result, v1 is deleted from V ,

which might not be desirable if users still expect V to re
ect information about old tuples

(especially if queries over the view ask for summary data).

The method we propose instead is to expire L tuples with ordID < 2. Tuple l1 can be

safely removed from L because l1:cost is less than 99. On the other hand, l2 must be retained

because it might be needed to correctly update V if another tuple with ordID = 1 is inserted

into O. Notice that V remains una�ected by the expiration of L tuples. Furthermore, after

the expiration, there is still enough information in L to maintain V with respect to future

updates.

If we know the types of modi�cations that may take place in the future, we may even

be able to remove tuples like l2. For example, suppose both O and L are \append-only."

That is, the source relations (that O and L are based on) never delete tuples. Moreover,

an insertion to O always has an ordID greater than the current maximum ordID in O;

insertions to L always refer to the most recent order, i.e., the O tuple with the maximum

ordID. In this case, we can expire both l1 and l2 since they will never be needed to maintain

V . In fact, it is possible to expire the entire L and O views except for the tuple recording

CHAPTER 5. EXPIRING WAREHOUSE DATA 128

the most recent order. In our framework, one can de�ne applications constraints, such as

\append-only," using a general constraint language, so that the system can remove as much

data as possible when the warehouse administrator so wishes it. 2

Although expired tuples are physically removed from the extension of a view, they still

exist logically from the perspective of the higher-level views. Our expiration scheme guar-

antees that expiration never results in incomplete or incorrect answers for the maintenance

expressions that are used to maintain the higher-level views, given any possible source up-

dates. Knowledge of constraints on these updates can further improve the e�ectiveness of

expiration. User queries may, however, request data that has been expired. In such cases

an incomplete answer must be provided, with an appropriate warning that describes which

of the requested data was actually available.

Unfortunately, current warehouse products provide very little support for gracefully

expiring data. Every time there is a need to expire data, it is up to the administrator to

manually examine view de�nitions and maintenance expressions and to check if underlying

data is needed for maintenance. This \solution" is clearly problematic since not only is it

ine�cient, but it is prone to human error which can easily lead to the expiration of needed

data. Furthermore, deciding what is needed and what can be expired is complicated by the

presence of constraints. If a conservative approach is used (e.g., constraints are not taken

into account), then the storage requirement of the warehouse may become prohibitively

large.

In this chapter we propose a framework wherein expiration of data is managed, not

manually, but by the system. In particular:

� The administrator or users can declaratively request to expire part of a view, and the

system automatically expires as much unneeded data as possible.

� The administrator can declare in a general way constraints that apply to the applica-

tion data as well as changes to the data (e.g., base view O is append-only), and the

system uses this knowledge to increase the amount of data that may be expired.

� The administrator or users can change framework parameters (e.g., by de�ning addi-

tional views or changing application constraints) dynamically, and the system deter-

mines the e�ects of these changes on what data is deemed needed and what data can

be expired.

CHAPTER 5. EXPIRING WAREHOUSE DATA 129

For this framework we develop e�cient algorithms that check what data can be expired,

handle insertions of new data, and manage changes to views and constraints. We also

illustrate, using the TPC-D benchmark [Com], the bene�ts of incorporating constraints

into the management of expired data.

The rest of the chapter proceeds as follows. In Section 5.2, we introduce our expiration

framework and identify problems that need to be solved. The central problem of identifying

the needed tuples is solved in Section 5.3, while Section 5.4 extends the mechanism to take

constraints into account. We illustrate in Section 5.5 that the \constraint-aware" solution

can lead to much more data being expired. In Section 5.6, we develop algorithms that

handle changes to the framework parameters. We discuss related work in Section 5.7 and

conclude the chapter in Section 5.8.

5.2 Framework

In this section, we present our framework for expiration. We then give an overview of the

problems that we address in the rest of the chapter to implement the framework.

Views and Queries

As usual, we consider two types of warehouse views: base views and derived views. Each

base view (e.g., Order) has an extension that stores persistently the answer to its view

de�nition,Def(V), which is of the form �A�P(�R2RR), (We assume that the �, �, � oper-

ators have bag semantics.) This form of a view de�nition can express base view de�nitions

based on SQL SELECT-FROM- WHERE clauses, which is consistent with the assumptions in

the previous chapters. Each derived view V has an extension that stores the answer to its

view de�nition, also denoted Def(V), which is of the form �A�P(�R2RR). However, the �

operator used in the view de�nition of a derived view is the generalized projection operator

(introduced in [GHQ95]) that can perform aggregations. This form of a view de�nition

can express view de�nitions based on SQL SELECT-FROM- WHERE-GROUP BY clauses (without

subqueries) as we illustrate next.

For instance, we can de�ne a view ClerkCust to obtain the sum of the purchases made

by a customer from some clerk. Furthermore, ClerkCust only considers old customers that

placed an order recently for an expensive item. The view de�nition of ClerkCust is as

follows.

CHAPTER 5. EXPIRING WAREHOUSE DATA 130

�O:clerk;C:custID;SUM(L:qty�L:cost) AS sum;COUNT() AS cnt

�L:cost>99 ^ C:custID<500 ^ O:ordID>1000 ^ L:ordID=O:ordID ^ O:custID=C:custID (C�O�L).

In general, the projection list A of a view de�nition is a set of attributes and aggregate

functions (e.g., SUM). If A contains aggregate functions, any element in A that is not an

aggregate function is a grouping attribute (e.g., C:custID). Condition P is a conjunction

of atomic conditions, like join condition O:custID = C:custID, and selection condition

O:ordID > 1000. Finally, R is a set of views (i.e., self-joins are not considered).

A view V needs to be maintained when there are insertions, deletions and updates to

the views that V is de�ned on. Although the algorithms we develop in this chapter can

handle updates, our example queries/expressions will not show updates to simplify the

queries/expressions. To illustrate how changes are computed, let us assume that Def(V)

is �S:b=T:c(S�T). To compute the insertions to V (i.e., 4V), the maintenance expression

given by Query (5.1) below is used. The deletions to V (i.e., 5V) are computed using

Query (5.2). These queries use the pre-state of S and T , i.e., before the insertions, and

then the deletions, are applied. (Dual-stage view strategies in Chapter 3 use the pre-state

of the views as well.) We use Maint(V) to denote the set of maintenance expressions for

computing the insertions to and deletions from V .

�4S:b=T:c(4S�T) [�S:b=4T:c(S�4T) [

�4S:b=4T:c(4S�4T) [�5S:b=5T:c(5S�5T) (5.1)

�5S:b=T:c(5S�T) [�S:b=5T:c(S�5T) [

�5S:b=4T:c(5S�4T) [�4S:b=5T:c(4S�5T) (5.2)

Expiration

A user may issue an expiration request of the form �P(T) on any view T . This request asks

that all the T tuples in �P(T) be removed from T 's extension. Once a tuple is expired, it can

no longer be accessed by any query. However, in our framework, we only expire �P(T) tuples

that are not \needed" (later de�ned formally) by maintenance expressions. Conceptually,

we partition the extension of each view T into T+, T�, and T exp, as shown in Figure 5.2. The

tuples in T+ are accessible to any query and are needed by maintenance expressions. The

CHAPTER 5. EXPIRING WAREHOUSE DATA 131

tuples in T� are accessible to any query but are not needed by maintenance expressions.

The tuples in T exp are expired, are not accessible, and are not needed by maintenance

expressions. The tuples in T+ and T� comprise T 's real extension, which is the extension

kept persistently. The tuples in T+, T�, and T exp comprise T 's full extension. (The full

extension of T is referred to in queries simply as \T".) The conceptual partitions T+ and

T� are realized in T 's real extension by keeping a boolean attribute needed for each tuple.

The needed attribute of a tuple t is set to true if t 2 T+ and false otherwise. Given an

expiration request �P(T), conceptually the request is satis�ed by removing �P(T
�) from

T� and \moving" them to T exp, as depicted in Figure 5.3. We assume that for any two

consecutive expiration requests on T , denoted �Pi(T) and �Pj(T), the subsequent request

asks for more tuples to be expired than the earlier one (i.e., Pi implies Pj). This requirement

is satis�ed by keeping the most recent expiration request on T in LastReq(T) = �P 0(T).

When a new expiration request �P(T) is issued, the request is modi�ed as �P_P 0(T) and

LastReq(T) is set to �P_P 0(T).1

needed &
accessible

accessible

full
extension

extension
partition

accessible
not

-

+T

T

expTT

Figure 5.2: Extension Parti-

tion of T

+T

-T

expTnotnot
accessible

before
expiration

after
expiration

accessible

needed &
accessible

expT

-

+

T

T
accessible
needed &
accessible

accessible

Figure 5.3: E�ect of Expira-

tion on T� and T exp

needed &
accessible

accessible
needed &

without
constraints

with
constraints

not
accessible

accessible

not
accessible

accessible

+

-

expT

T

T

expT

-T

+T

Figure 5.4: E�ect of Con-

straints on T+ and T�

E�ect of Expiration on Queries

Although all queries (user queries, maintenance expressions and view de�nitions) are for-

mulated in terms of full extensions, only the tuples in the real extensions can be used in

answering the query. Conceptually, the answer returned for Q is the answer for the \query"

Access(Q), which is the same as Q but with each T referred to in Q replaced by T+ [T�.

Similarly, the complete answer to Q is the answer returned for the \query" Complete(Q),

which is the same as Q but with each T referred to in Q replaced by T+ [T� [T exp (i.e.,

suppose that tuples in T exp are accessible to Complete(Q)). We say the answer to Q is

complete if the answer to Access(Q) is the same as the answer to Complete(Q). Otherwise,

the answer is incomplete. We say that a tuple t 2 T (i.e., t 2 (T+[T�[T exp)) is needed in

1Algorithms for removing redundant conditions in P _P 0 can certainly be employed.

CHAPTER 5. EXPIRING WAREHOUSE DATA 132

answering Q if the answer to Complete(Q) is di�erent depending on whether t is removed

from T 's extension or not.2

Since we guarantee that only tuples not needed by maintenance expressions can be

expired, the answer to any maintenance expression Q is always complete. On the other hand,

the answer to a user query or view de�nition Q may be incomplete. In case of a user query,

a query Q0, where Access(Q) = Complete(Q0), is returned in addition to Q's incomplete

answer. Q0 is used to help describe the incomplete answer returned. Incidentally, we

believe that many database systems return incomplete answers, because databases cannot

hold all possible data. However, in current systems, users are simply not told about missing

data. We think returning descriptive information like Q0 is an improvement. In case of a

view de�nition Q = Def (V), if the answer to Q is incomplete, V is not initialized and a

query Q0, where Access(Q) = Complete(Q0), is returned as an alternative view de�nition

for V . Note that for both user queries and view de�nitions, it may be possible to obtain

more answer tuples by accessing not only the views referred to in the query, but also the

underlying views these views are de�ned on. Such an extension is feasible in our framework,

but it is not considered in this chapter.

Constraints

To help decrease the number of tuples that are deemed needed (see Figure 5.4), we may

associate with each view T a set of constraints, Constraints(T), that describe in some

language (Section 5.4) the contents of the delta tables 4T and 5T . The constraints of base

views are provided by the administrator based on his knowledge of the application (e.g.,

\view O is append-only"). The constraints of a view V are computed from the constraints

of the views that V is de�ned on. We do not assume that the input constraints characterize

the application completely. We only assume that the administrator inputs constraints that

he knows are implied by the application. In the worst case, the administrator may not know

any guarantees on the delta tables and may set Constraints(T) to be empty.

Framework Summary

Table 5.1 gives a summary of the concepts used in the framework. Henceforth, we denote

the set of all views as T , the set of all constraints as C (i.e.,
S
T2T Constraints(T)), and the

set of all maintenance expressions as E (i.e.,
S
view V2T Maint(V)).

2This de�nition of needed works for aggregate views since we require the COUNT aggregate function to be

included. This requirement is reasonable because COUNT is helpful in maintaining views with AVG, SUM, MAX

or MIN ([Qua96]).

CHAPTER 5. EXPIRING WAREHOUSE DATA 133

base view T 1. real extension (T+ [T�); 2. full extension (T+ [T� [T exp);
3. Constraints(T); 4. Def(T) 5. LastReq(T)

derived view T 1. real extension (T+ [T�); 2. full extension (T+ [T� [T exp);
3. Constraints(T); 4. Def(T); 5. Maint(T); 6. LastReq(T)

delta table 4T extension (with no conceptual partitions) containing
insertions to T

delta table 5T extension (with no conceptual partitions) containing
deletions from T

expiration request �P(T) satis�ed by removing �P(T
�) from T 's real extension

query Q refers to full extensions (e.g., as \T") only and never partitions

user query Q 1. cannot refer to delta tables; 2. if answer is incomplete,
Q0 (Access(Q) =Complete(Q0)) is returned to describe
incomplete answer

view de�nition Q 1. cannot refer to delta tables; 2. if answer is incomplete,
Q0 (Access(Q) =Complete(Q0)) is returned as alternative de�nition

maintenance expression Q 1. can refer to delta tables; 2. answer is always complete

T set of all warehouse views

C
S
T2T Constraints(T)

E
S
view V 2T

Maint(V)

Table 5.1: Summary of Framework

Problems

There are several problems that need to be solved to implement our framework:

1. Initial Extension Marking: Given an initial con�guration of views T where none

of the views have any expired tuples yet, we must identify and mark which tuples

are needed by the maintenance expression E by setting the needed attribute of these

tuples to true.

2. Initial Extension Marking With Constraints: This problem is the same as (1)

but in addition, we are also given a set of constraints C, which can potentially decrease

the number of tuples whose needed attribute is set to true.

3. Constraints of Views: In solving the �rst two problems, we must compute the

constraints of each view V 2 T from the constraints of underlying views.

4. Incomplete Answers: For each possible user query Q, we must be able to determine

if the answer to Q is complete. If not, we must determine a modi�ed query Q0 whose

complete answer is the same as the incomplete answer returned for Q.

CHAPTER 5. EXPIRING WAREHOUSE DATA 134

5. Changes to T : When a new view V is being added to the initial con�guration of

views T , we must determine if the answer to Q = Def (V) is complete. Techniques for

(4) apply here. If the answer to Q is not complete, we must determine a modi�ed view

de�nition Q0 as a suggested alternative view de�nition. Once Def (V) has a complete

answer, for each view T that V is de�ned on, we must determine which tuples are

now needed because of the addition of V , and mark these tuples appropriately.

6. Changes To C: If the constraints are changed to expire more tuples, we must deter-

mine the e�ects of the change on the extension marking of each view T .

7. Insertions: If there are insertions 4T to a view T , we must determine the needed

attribute value of each tuple inserted. (Nothing needs to be done for deletions.)

Note that the �rst two problems need to be solved once, when the initial con�guration is

given. Hence, e�ciency is not at a premium. The third, �fth and sixth problems are also

solved infrequently. On the other hand, the fourth and seventh problems are solved fairly

frequently and require reasonably e�cient solutions. In the rest of the chapter, Section 5.3

is devoted to the �rst problem; Section 5.4 is devoted to the second problem; and Section

5.6 is devoted to the last three problems. Solutions to the third and fourth problems are

important future work. Since we do not solve the third problem, we assume that the

administrator provides not only the constraints of the base views but also the constraints

of the derived views.

5.3 Extension Marking

In this section, we assume we are given an initial con�guration T (base and derived views)

and none of the views have any expired tuples yet. For each view T 2 T , we identify which

T tuples are needed by maintenance expressions. We mark the needed tuples by setting the

needed attribute.

As mentioned earlier, this marking is done only when the initial con�guration is submit-

ted and not for each expiration request. Once the marking is done, any subsequent expi-

ration request �P(T) is satis�ed very e�ciently by removing the tuples �P^needed=false(T)

from T 's real extension.

Before we present how the needed tuples are identi�ed, we introduce maintenance subex-

pressions, which are the subqueries of the maintenance expressions that we work with. For

CHAPTER 5. EXPIRING WAREHOUSE DATA 135

instance, suppose we have a view V whose view de�nition is of the form �A�P(�R2RR),

where A does not have any aggregate functions. The maintenance expressions (e.g., Queries

(5.1) and (5.2)) of V are of the form

[
i

�Ai�Pi(�R2Ri
R);

where Ri may include delta tables. We call each subquery �Ai�Pi(�R2Ri
R) a maintenance

subexpression. Notice that if a tuple is needed by some maintenance subexpression, it is

needed by some maintenance expression. Also, if a tuple is not needed by any maintenance

subexpression, it is not needed by any maintenance expression. Later in this section, we

show that the maintenance expressions of views that use aggregates can also be decomposed

into maintenance subexpressions. (Note that our example view ClerkCust has aggregates.)

Henceforth, we use E for the maintenance subexpressions of T .

We now present a lemma that de�nes a function Needed(T; E) and identi�es using this

function, all and only the T tuples that are needed by the maintenance subexpressions in

E . We refer to the following functions in the lemma: Closure, Ignore, and Map.

Function Closure(P) returns the closure of the input conjunctive condition ([Ull89a]).

For instance, if P is R:a > S:b^S:b > T:c, Closure(P) returns R:a > S:b^S:b > T:c^R:a >

T:c. (Closure is an O(n3) operation, where n is the number of distinct attributes in P .)

Function Ignore(P ; T) modi�es the conjunctive condition P by replacing any atomic

condition that uses an attribute of a view in T with true. For instance, if P is R:a > S:b^

S:b > T:c, Ignore(P ; fSg) is true^true or simply true. Notice that Ignore(Closure(P);-

fSg) is R:a > T:c.

Finally, function Map acts on a maintenance subexpression E = �A�P(�R2RR), where

there is a set D � R of delta tables (possibly empty) involved in E's cross product. Function

Map(E; T) is de�ned as follows, where E is �A�P(�R2RR).

Map(�A�P(�R2RR); T) =

(
fg if T =2 R

�Attrs(T)�Ignore(Closure(P);(D�fTg))(�R2(R�(D�fTg))R) otherwise

That is, if T is not referred to in E, Map returns fg. This is the common case since most

maintenance subexpressions do not refer to a speci�c view T . If T is referred to in E, Map

returns a new subexpression obtained by �rst removing the delta tables in D from the cross

product (except T if T is a delta table). Then, the closure of the condition P is computed.

CHAPTER 5. EXPIRING WAREHOUSE DATA 136

Then, P is modi�ed to ignore any atomic condition that refers to any delta table (except T if

T is a delta table). Finally, the projected attributes is changed to Attrs(T), the attributes

of the view T .

Lemma 5.3.1 Given a view T and a set of maintenance subexpression E, Needed(T, E) is

de�ned as

[
E2E

Map(E; T):

The query T><Attrs(T)Needed(T; E) returns all and only the tuples in T that are needed by

the maintenance subexpressions in E. 2

Note that Needed may list a needed tuple t 2 T more times than t appears in T . (This

situation is illustrated in the next example.) Hence, the semijoin (><) operation, which is

equivalent to an exists condition (e.g., SQL EXISTS condition), is used to obtain the T

tuples needed for E . The proof of Lemma 5.3.1 is in Appendix C. We give the intuition

behind the proof in the next example.

EXAMPLE 5.3.1 Let us consider one of the maintenance subexpressions of ClerkCust

as the maintenance subexpression E in question.

E = �4O:clerk;C:custID;L:qty;L:cost

�L:cost>99 ^ C:custID<500 ^ 4O:ordID>1000 ^ L:ordID=4O:ordID ^ 4O:custID=C:custID

(C�4O�L)

Let us consider what L tuples are needed by E. We claim that Map(E;L), shown below,

identi�es all these L tuples.

�Attrs(L)�L:cost>99 ^ C:custID<500 ^ L:ordID>1000(C�L)

Notice that Map(E;L) excludes 4O from the cross product and consequently ignores

all the atomic conditions in E that refer to 4O attributes. Intuitively, this means that

we cannot say that an L tuple tL is not needed even if there does not exist a 4O tuple

that tL can join with. This procedure is reasonable because although tL may not join with

any of the current insertions to O (i.e., current extension of 4O), it may join with future

CHAPTER 5. EXPIRING WAREHOUSE DATA 137

insertions (i.e., extension of 4O at some later point in time). We can only set tL:needed

to false if for any 4O, tL only joins with 4O tuples that are not needed themselves.

For instance, any 4O tuple that has an ordID less than or equal to 1000 is not needed

in answering E. Since there is an atomic condition L:ordID = 4O:ordID in E, any L

tuple that has an ordID less than or equal to 1000 is also not needed in answering E. This

illustrates the need for computing the closure of the atomic conditions before ignoring the

atomic conditions that use delta table attributes. Thus, in our example, Map(E;L) has the

atomic condition L:ordID > 1000.

While Map(E;L) identi�es all the needed L tuples, it may list an L tuple tL more

times than tL appears in L. For instance, Map(E;L) performs a cross product between

C and L without applying any conditions between them. Hence, Map(E;L) lists tL as

many times as there are C tuples. Thus, to obtain the correct bag of tuples, the query

L ><Attrs(L) Map(E;L) is used. 2

The example illustrated that Map(E; T) may perform cross products. Cross products

can be easily avoided by constructing a join graph for E, whose nodes represent the views in

E. An edge between views R and S is in the E's join graph if there is an atomic condition

in E that uses both R and S attributes. Given E's join graph, Map(E; T) can be modi�ed

as follows. If a view R is not reachable from T , remove R from the cross product and ignore

all the atomic conditions that refer to R attributes. This simple procedure can be used to

avoid all cross products.

5.3.1 Aggregates

We now show that the maintenance expressions of views that use aggregates can also be de-

composed into maintenance subexpressions. An aggregate view is one whose view de�nition

uses aggregate functions. More speci�cally, given that �A�P(�R2RR) is the de�nition of

a view V , V is an aggregate view if A has aggregate functions. In this chapter, we focus on

the SQL aggregate functions: SUM, COUNT, AVG, MAX, MIN. Note that AVG can be computed

using SUM and COUNT. Thus, we focus on the aggregate functions SUM, COUNT, MAX and MIN

here.

It is useful to de�ne the plain view of V whose de�nition is similar to V 's but without

aggregates. That is, the de�nition of V 's plain view is �A0�P(�R2RR), where A
0 includes

all the attributes referred to in A, including the attributes referred to in the aggregate

functions. We denote the plain view of V as V plain.

CHAPTER 5. EXPIRING WAREHOUSE DATA 138

In [Qua96], the maintenance expressions of aggregate views were determined assuming

the delta tables of V plain were computed beforehand. It was also shown in [Qua96] that ag-

gregate views that do not use MAX and MIN can be incrementally maintained, while aggregate

views that use MAX and MIN cannot be incrementally maintained in general.

We now discuss how the maintenance expressions of an aggregate view V that does not

use MAX and MIN can be decomposed into maintenance subexpressions. In summary, the

maintenance subexpressions of V are just the maintenance subexpression of V plain plus the

maintenance subexpression �Attrs(V)�true(V). We illustrate in the next example why this

is so.

EXAMPLE 5.3.2 We examine the maintenance expressions of view Vsum de�ned as

�a;SUM(b) AS sum;COUNT() AS cnt(V
plain
sum):

We assume that the insertions and deletions of V plain
sum have been computed. To compute

the deletions and insertions to Vsum, the following maintenance expressions are used. These

maintenance expressions are derived from [Qua96].

5Vsum Vsum><a(4V
plain
sum [5V plain

sum) (5.3)

4Vsum �cnt>0�a;SUM(sum) AS sum;SUM(cnt) AS cnt

(5Vsum [�a;SUM(b) AS sum;+1 AS cnt(4V
plain
sum)

[�a;�SUM(b) AS sum;�1 AS cnt(5V
plain
sum)) (5.4)

Notice that the maintenance expressions access 4V plain
sum and 5V plain

sum . The delta tables

4V plain
sum and5V plain

sum are computed using the maintenance expression of V plain
sum . Since V plain

sum

does not have aggregates, the maintenance subexpressions can be easily derived from the

maintenance expressions of V plain
sum as we showed earlier in this section.

The maintenance expressions also access Vsum. Hence, another maintenance subexpres-

sion of Vsum is �Attrs(V)�true(Vsum). 2

An aggregate view V that uses MAX and MIN in general cannot be incrementally main-

tained in the presence of deletions. Thus V needs to be recomputed from scratch. One

possible maintenance expression of V is to apply the aggregate functions in the de�nition

of V on the view de�nition of V plain.

�A(�A0�P(�R2RR))

The maintenance subexpression of V then is just the view de�nition of V plain.

CHAPTER 5. EXPIRING WAREHOUSE DATA 139

5.4 Extension Marking With Constraints

Given a set of views T , maintenance subexpressions E , and now a set of constraints C,

our goal is to mark the tuples that are needed by the maintenance subexpressions. The

constraints may lead to a decrease of the number of needed tuples.

Marking tuples entails solving two problems. First, the maintenance subexpressions in

E need to be modi�ed using C to produce a new set of subexpressions EC . Second, the

function Needed(T; E) needs to be modi�ed to NeededC(T; EC) that acts on the new set of

maintenance subexpressions. Needed is not adequate because it assumes a maintenance

subexpression of the form �A�P(�R2RR), which is devoid of exists and not exists

conditions (expressed using the >< and >< operators). Unfortunately, the subexpressions

in EC may contain such conditions.

Before we solve these two problems, we present a simple constraint language CL for

specifying the constraints in C. In Section 5.4.2, we give the algorithm that uses C for

producing EC from E . We present in Section 5.4.3 the function NeededC that acts on EC . We

illustrate in Section 5.5 that NeededC may return a much smaller bag of tuples compared

to Needed.

5.4.1 Constraint Language

A CL constraint is an equivalence conforming to one of the two forms shown below, where

each R and T is either a base view, a delta table or a derived view.

�PLHS(�R2RR) � �PRHS(�R2RR)><T or �PLHS(�R2RR) � �PRHS(�R2RR)><T

A CL constraint c states that the query on c's left hand side is guaranteed to return the

same bag of tuples as the query on c's right hand side. We denote the query on the right

hand side and the left hand side of a constraint c as RHS(c) and LHS(c), respectively.

In any constraint c, the conditions in RHS(c) logically imply the conditions in LHS(c)

(i.e., PRHS) PLHS). Also, exists or not exists (i.e., >< operator) conditions can be

introduced in RHS(c). Even though RHS(c) has more conditions than LHS(c), constraint

c states that the two queries are equivalent.

In the discussion, we often refer to a constraint c of the form R � �PRHS(R)><T (or

><T) as context-free, since R can be substituted by RHS(c) in any query that R is in. More

CHAPTER 5. EXPIRING WAREHOUSE DATA 140

general constraints that have selection or join conditions on the left hand side are called

context-sensitive.

CL can express many constraints that occur in warehousing applications. For instance,

it can express equality generating dependencies (e.g., functional dependencies, key con-

straints) and many tuple generating dependencies (e.g., inclusion dependencies, referential

integrity constraints). In addition to these conventional database constraints, CL can also

express \semantic" constraints [SO89] such as \transition" constraints [NY82] and impli-

cation constraints. Examples of these constraints are append-only constraints and ad hoc

constraints like \Clerk1 handles CustA". CL cannot however express join dependencies and

extending CL to handle these dependencies makes the algorithms we introduce later very

complex. Even with this de�ciency, we believe CL is expressive enough to capture many

constraints that occur in practice as illustrated next. Furthermore, we will see that CL's

syntax is particularly well suited for modifying maintenance subexpressions.

EXAMPLE 5.4.1 We give the CL constraints which an administrator may input because

they are implied by the scenario in Example 5.1.1. Note that most of the constraints are

context-free.

Append-only constraints

We alluded in Example 5.1.1 that O is append-only. That is, no tuple is ever deleted from

O and every inserted O tuple has an ordID value greater than the maximum ordID value

so far. The append-only behavior of O is captured by Constraint (5.5), which states that

5O is always empty, and by Constraint (5.6), which states that the ordID values of the

inserted O tuples are greater than the maximum ordID value so far.

5O � �false(5O) (5.5)

4O � 4O><4O:ordID�O:ordIDO (5.6)

L also has an append-only behavior which is captured in Constraints (5.7), (5.8) and (5.9).

Intuitively, insertions to L represent new line items of the most recent order (O tuple with

maximum ordID) or of new incoming orders (4O tuples). Constraints (5.8) and (5.9) are

used to describe the insertions to L. That is, inserted L tuples that join with 4O have

ordID values greater than the maximum ordID. Inserted L tuples that join with O have

ordID values equal to the maximum ordID.

CHAPTER 5. EXPIRING WAREHOUSE DATA 141

5L � �false(5L) (5.7)

�4O:ordID=4L:ordID(4O�4L) � �4O:ordID=4L:ordID

(4O�(4L><4L:ordID�O:ordIDO)) (5.8)

�O:ordID=4L:ordID(O�4L) � �O:ordID=4L:ordID

(O�(4L><4L:ordID<O:ordIDO)) (5.9)

Key constraints The schema in Example 5.1.1 assumes that custID is the key of C. The

constraints below are implied by this key constraint. Constraints (5.10) and (5.11), which

use the table renaming operator �, enforce the functional dependency implied by the key

constraint. Finally, Constraint (5.12) enforces that none of the keys of the inserted tuples

are in C. Similar constraints are implied by the assumptions that ordID is the key of O

and both ordID and partID make up the key of L.

C � C ><(C:custID=C0 :custID) ^ (C:info 6=C0:info) �C0(C) (5.10)

5C � 5C ><(5C:custID=5C0:custID) ^ (5C:info 6=5C0:info) �5C0(5C) (5.11)

4C � 4C ><4C:custID=C:custID C (5.12)

Referential integrity constraints

Given the schema introduced in Example 5.1.1, it is reasonable to assume that there is a

referential integrity constraint from attribute O:custID to key C:custID. The following

constraints express this assumption. Similar constraints are used to express a referential

integrity constraint from attribute L:ordID to key O:ordID.

O � O ><O:custID=C:custID C (5.13)

4O � 4O ><4O:custID=C:custID C (5.14)

5O � 5O ><5O:custID=C:custID C (5.15)

Weak minimality constraints

It is also reasonable to assume that deletions from C are weakly minimal [GL95]. That is,

all the deleted C tuples were previously in C.

CHAPTER 5. EXPIRING WAREHOUSE DATA 142

5C � 5C ><(5C:custID=C:partID) ^ (5C:info=C:info) C (5.16)

Ad hoc constraints

Finally, we illustrate that CL can be used to express fairly ad hoc constraints. For instance,

the constraint �custID<1000(O) � �(custID<1000) ^ (clerk=\Clerk1")(O), expresses that cus-

tomers with custID < 1000 are handled by Clerk1.

2

5.4.2 Modifying Maintenance Subexpressions

Given a maintenance subexpression E, we now modify E by applying a given set of CL

constraints to it. Intuitively, since LHS(c) and RHS(c) of a CL constraint c are equivalent,

whenever LHS(c) \matches" a subquery of E, we can substitute RHS(c) for LHS(c) in E.

We say a constraint c is applied to E when we successfully match LHS(c) to a subquery of E

and replace the matching subquery with RHS(c). The challenge is of course in determining

whether LHS(c) matches some subquery of E since a syntactic check does not su�ce. For

instance, if E is �a>10(4R) and LHS(c) is �a>5(4R), LHS(c) matches a subquery of

E since E can be rewritten as �a>10(�a>5(4R)). The next example provides additional

illustration of how a constraint is applied.

EXAMPLE 5.4.2 Most of the constraints in Example 5.4.1 are context-free and applying

them is trivial. For instance, applying Constraint (5.5) (i.e., 5O � �false(5O)) simply

requires �nding occurrences of 5O in a maintenance subexpression E and replacing it with

�false(5O). Since E has a conjunctive condition that includes false, E is guaranteed to

result in an empty answer.

To make the current example more interesting, let us consider applying the context-

sensitive constraint c (i.e., Constraint (5.9), Example 5.4.1)

�O:ordID=4L:ordID(O�4L) � �O:ordID=4L:ordID(O�(4L ><L:ordID<O:ordIDO));

to the following maintenance subexpression E of the ClerkCust view.

�O:clerk;C:custID;4L:qty;4L:cost

CHAPTER 5. EXPIRING WAREHOUSE DATA 143

�4L:cost>99 ^ C:custID<500 ^ O:ordID>1000 ^ O:ordID=4L:ordID ^ O:custID=C:custID

(C�O�4L)

The previous maintenance subexpression can be rewritten as

�O:clerk;C:custID;4L:qty;4L:cost

�4L:cost>99 ^ C:custID<500 ^ O:ordID>1000 ^ O:custID=C:custID

(C��O:ordID=4L:ordID(O�4L)):

Clearly LHS(c) matches a subquery of E. Hence, we can replace the matching subquery

with RHS(c), yielding the following maintenance subexpression.

�O:clerk;C:custID;4L:qty;4L:cost

�4L:cost>99 ^ C:custID<500 ^ O:ordID>1000 ^ O:ordID=4L:ordID ^ O:custID=C:custID

(C�O�(4L ><L:ordID<O:ordID O))

2

The previous example illustrated algorithm Apply (Algorithm 5.4.1, Figure 5.5) for

applying a constraint c on a maintenance subexpression E. Apply �rst checks if the views

in LHS(c) are also in E (Step 1).3 It then checks if the conditions in E imply the conditions

in LHS(c) (Step 2). This check can be done e�ciently because the conditions involved are

conjunctive [Ull89a].4 If both checks are passed, then LHS(c) matches a subquery of E.

For instance, suppose that E is

�A�P(�R2RR)><S : : :><T : : : ;

and LHS(c) is �PLHS(�U2UU). If U � R and P) PLHS , it is guaranteed that E is

equivalent to

�A�P((�R2(R�U)R) � �PLHS(�U2UU))><S : : :><T : : : :

3This check su�ces since we only handle view de�nitions with no self-joins. Otherwise, all possible

mappings from the views in c to those in E have to be checked.
4It can be done in O(n3) time, where n is the number of distinct attributes in the conditions. This

assumes that the cardinality of the domain of the attributes is greater than or equal to n to handle 6='s.

CHAPTER 5. EXPIRING WAREHOUSE DATA 144

The subquery of E that matches LHS(c) can then be replaced by RHS(c). Redundant

conditions are eliminated in Step 3 ofApply by solving another implication problem. Finally,

any conditions added are pulled out of the cross product to facilitate the application of other

constraints.

Algorithm 5.4.1 Apply

Input: maintenance subexpression E, CL constraint c

Output: true if c is applied, false otherwise Side e�ect: may modify E

Let E be of the form: �A(�P(�R2RR)><S : : :><T : : :)

Let c be of the form: �PLHS(�U2UU) � �PRHS(�U2UU)><V (or><V)

1. If U � R

2. If P) PLHS

3. Remove any conditions in P that are implied by PRHS

4. E �A(�P^PRHS(�R2RR))><S : : :><V : : :><T : : :

5. Return true

6. Return false

3

Algorithm 5.4.2 Modify

Input: maintenance subexpression E, a set of CL constraints C

Side e�ect: may modify subexpression E

1. change true

2. While (change = true)

3. change false

4. For (each constraint c in C)

5. If (Apply(E; c) = true)

6. Remove c from C, change true

3

Figure 5.5: Algorithm For Modifying a Maintenance Subexpression

Although Apply always modi�es E to an equivalent subexpression, it is not complete

since it may not apply a constraint even when equivalence is preserved. This is because Step

2 only takes into account the selection and join conditions in P , but not the exists and not

exists conditions given by the >< and >< operators. (Exists conditions can be handled

but it is not shown in Apply.) To obtain a complete algorithm, the implication problem

P 0) PLHS must be solved, where P 0 is the conjunction of all the selection, join, exists

and not exists conditions. Unfortunately, there are no known complete algorithms to

solve the general implication problem with a mixture of existential and universal quanti�ers

CHAPTER 5. EXPIRING WAREHOUSE DATA 145

([YL87]).

In Section 5.4.3, we develop an algorithm to compute the closure of a conjunctive con-

dition which may include exists conditions but only atomic not exists conditions. This

algorithm can be useful in solving a more general implication problem than the one in Step

2. However, we do not show it here since taking into account exists and not exists con-

ditions is not critical in Apply. This is because in practice, many constraints are context-free

and can be applied easily. Context-sensitive constraints, like the append-only and impli-

cation constraints in Example 5.4.1, usually only require examining the selection and join

conditions of E.

So far, we have discussed how a single constraint is applied to E. When there is a set

of constraints to be applied, the order of application does not matter. More speci�cally,

applying a constraint c1 to E before c2 does not jeopardize the \applicability" of c2 because

applying c1 only adds conditions to E. On the other hand, if initially c2 cannot be applied,

applying c1 may add enough conditions to E so that c2 can now be applied. Thus, after

a constraint is applied, we must check if any of the unapplied constraints can be applied.

Also note that any constraint can only be applied once and it can only match one subquery

of E since E has no self-joins.

Algorithm 5.4.2 (Figure 5.5) shows the algorithmModify for applying a set of constraints

C to E. Although e�ciency is not at a premium when marking extensions, Modify has a

tolerable overall complexity of O(jCj2 �n3), assuming the check in Step 1 of Apply is done in

constant time. jCj is the number of constraints and n is the number of distinct attributes

used in P of E.

5.4.3 Deriving NeededC

Given the maintenance subexpressions E , we can use Modify to alter each subexpression

in E based on C, and produce a new set of subexpressions EC . In this section, we �rst

discuss why using Needed on EC is not satisfactory. A function that identi�es all and only

the tuples needed by EC is complex since it needs to solve hard problems, e.g., closure of

a non-conjunctive condition. Thus, in this section, we develop a fairly e�cient NeededC

function which handles exists and some not exists conditions, namely, those composed

of one or a disjunction of atomic conditions. In the latter part of the section, we give a

lemma that formally describes the properties of NeededC .

CHAPTER 5. EXPIRING WAREHOUSE DATA 146

Problem with Needed

Strictly speaking, Needed was not de�ned to work with maintenance subexpressions with

exists and not exists conditions. Nevertheless, the Needed(T; EC) function can be adapted

to apply to EC by modifying Map(E; T) to return the following query for each E 2 EC.

�Attrs(T)�Ignore(Closure(P);(D�fTg))(�R2(R�(D�fTg))R)><S : : :><T : : :

Map must also ignore exists and not exists conditions involving views in D � fTg. The

above query still works but may deem more tuples as needed since Closure only takes into

account the selection and join conditions but not the exists and not exists conditions.

Later in this section, we develop a new function ClosureC, which takes into account

exists and atomic not exists conditions. We then de�ne MapC similar to Map but using

ClosureC , and NeededC similar to Needed but using MapC . Before we derive ClosureC , we

illustrate why taking into account the exists and not exists conditions is important in

computing the closure.

EXAMPLE 5.4.3 In this example, we compare the tuples returned by Map(EC; O) and

MapC(EC; O), where EC is obtained by applying a set of constraints to

E = �O:clerk;4C:custID;L:qty;L:cost

�L:cost>99 ^ 4C:custID<500 ^ O:ordID>1000 ^ O:ordID=L:ordID ^ O:custID=4C:custID

(4C�O�L).

Let us suppose that only the constraints expressing the following information are applied

to E: (1) custID is the key of C (Constraint (5.12)); and (2) a referential integrity holds

from O:custID to C:custID (Constraint (5.13)). The modi�ed maintenance subexpression

EC is as follows:

EC = �O:clerk;4C:custID;L:qty;L:cost

�L:cost>99 ^ 4C:custID<500 ^ O:ordID>1000 ^ O:ordID=L:ordID ^ O:custID=4C:custID

((4C ><4C:custID=C:custIDC)�(O ><O:custID=C:custIDC)�L).

Notice that Map(EC; O) returns

�Attrs(O)�L:cost>99 ^ O:custID<500 ^ O:ordID>1000 ^ O:ordID=L:ordID

((O ><O:custID=C:custIDC)�L),

CHAPTER 5. EXPIRING WAREHOUSE DATA 147

after computing the closure of the selection and join conditions, ignoring the conditions

referring to 4C, and removing 4C from the cross product.

On the other hand, let us suppose that MapC uses the function ClosureC to \handle"

exists and not exists conditions obtaining the following subexpression from EC.

�O:clerk;4C:custID;L:qty;L:cost

�L:cost>99 ^ 4C:custID<500 ^ O:ordID>1000 ^ O:ordID=L:ordID ^ O:custID=4C:custID

((4C ><4C:custID=C:custIDC ><4C:custID=C:custIDC)�

(O ><O:custID=C:custID^O:custID 6=C:custIDC ><O:custID=C:custIDC)�L)

Given the above subexpression, MapC returns the following query

�Attrs(O) �L:cost>99 ^ O:custID<500 ^ O:ordID>1000 ^ O:ordID=L:ordID

((O ><O:custID=C:custID^O:custID 6=C:custIDC ><O:custID=C:custIDC)�L).

This query has an empty answer because the exists condition on O is contradictory! Hence,

MapC(EC; O) correctly states that no O tuple is needed in answering E, which makes sense

because the new customers do not have any orders yet according to the constraints. On the

other hand, Map(EC; O) returns a possibly severe overestimate of the O tuples needed. 2

Alternative representation of ><'s and ><'s

For convenience, we develop ClosureC to work on maintenance subexpressions that rep-

resent exists and not exists conditions di�erently. Instead of representing them using

the >< and >< operators, we represent them as conditions that are combined with the

selection and join conditions. For instance, the query R ><R:a=S:a S is represented as

�9Si2S(R:a=Si:a)(R), where Si is a tuple variable ([Ull89a]). The query R ><R:a=S:a S is

represented as �
:9Sasj

i
2S(R:a=Sasj

i
:a)
(R), or alternatively �

8Sasj
i

2S(R:a6=Sasj
i

:a)
(R). We call

this new representation the quanti�er representation, and the previous one, the operator

representation.

In the quanti�er representation, we make implicit tuple variables, like \R" in the exists

condition 9Si 2 S(R:a = Si:a), explicit. Hence, given the maintenance subexpression

�O:clerk;4C:custID;L:qty;L:cost

�L:cost>99 ^ 4C:custID<500 ^ O:ordID>1000 ^ O:ordID=L:ordID ^ O:custID=4C:custID

((4C ><4C:custID=C:custIDC)�(O ><O:custID=C:custIDC)�L),

CHAPTER 5. EXPIRING WAREHOUSE DATA 148

its quanti�er representation is �O0:clerk;4C0:custID;L0:qty;L0:cost�P 0(4C�O�L), where P 0 is

L0:cost > 99 ^4C0:custID < 500^O0:ordID > 1000^

O0:ordID = L0:ordID ^O0:custID = 4C0:custID ^

8Casj
2 (4C0:custID 6= C

asj
2 :custID) ^ 9C1(O0:custID = C1:custID): (5.17)

We assign the tuple variables mechanically as follows. For a view T appearing in the cross

product (e.g., 4C, O, L), we assign the tuple variable T0 (e.g., 4C0, O0, L0). For a view T

appearing in an exists condition R >< T , we assign a unique tuple variable Ti (e.g., C1),

where i > 0. For a view T appearing in a not exists condition R>< T , we assign a unique

tuple variable T
asj
j (e.g., C

asj
2), where j > 0. Henceforth, we use \T" to denote either a

free variable T0, or an existentially quanti�ed variable Ti, or a universally quanti�ed tuple

variable T
asj
j .

Deriving ClosureC, MapC, and NeeededC

In general, given a maintenance subexpression E = �A�P(�R2RR) in quanti�er represen-

tation, we can always obtain the prenex normal form (PNF) of P , where all the quanti�ers

precede a quanti�er-free condition expression ([PMW90]). That is P in PNF is of the form

shown below where P 0 is a quanti�er-free condition.

9Ri::9Sj::8T
asj
k ::8U

asj
l (P 0)

Assuming P 0 is conjunctive for now, ClosureC simply derives new atomic conditions from

atomic conditions that use universally quanti�ed tuple variables (e.g., T
asj
i), and then uses

the old Closure function to obtain the closure. More speci�cally, Closure uses standard

axioms, such as the transitivity axiom, to derive atomic conditions ([Ull89a]). ClosureC

adds the following two axioms to derive additional atomic conditions from ones that use

universally quanti�ed variables.

1. S
asj
i :a � T:b) S:a � T:b, where � is either =,6=,�,<,�, or >.

2. S
asj
i :a = Tj :b) S

asj
i :a = S

asj
k :a.

The �rst (additional) axiom states that if S
asj
i :a � T:b holds, it means that the a attribute

of all the S tuples are related to T:b in the same way. Hence, an atomic condition S:a � T:b

CHAPTER 5. EXPIRING WAREHOUSE DATA 149

holds regardless of whether S is existentially or universally quanti�ed. The second axiom

states that if S
asj
i :a is equated to an attribute of an existentially quanti�ed tuple variable,

it must be the case that the a attributes of all the S tuples have the same value. Note that

S
asj
k must be distinct from S

asj
i . If no such tuple variable exist, we introduce a new one for

the purpose of applying the second axiom. We illustrate ClosureC in the next example.

EXAMPLE 5.4.4 Let us suppose we are given E = �A�P(�R2RR), where P is Expres-

sion (5.17). P in PNF is 9C18C
asj
2 (P 0), where P 0 is

L0:cost > 99 ^4C0:custID < 500^O0:ordID > 1000^O0:ordID = L0:ordID ^

O0:custID = 4C0:custID ^4C0:custID 6= C
asj
2 :custID ^O0:custID = C1:custID:

Since both C1 and C
asj
2 are tuple variables ranging over the domain of view C's tu-

ples, and C
asj
2 is a universally quanti�ed tuple variable, any atomic condition that ap-

plies to C
asj
2 must also apply to C1 (i.e., the �rst axiom). That is, a condition that ap-

plies to all tuples must apply to a particular tuple. For instance, the atomic condition

4C0:custID 6= C
asj
2 :custID implies the atomic condition 4C0:custID 6= C1:custID. No-

tice that when Closure is run on (P 0 ^ (4C0:custID 6= C1:custID)), the contradictory

atomic conditions O0:custID = C1:custID and O0:custID 6= C1:custID is derived from

4C0:custID 6= C1:custID, O0:custID = 4C0:custID and O0:custID = C1:custID. Con-

sequently, Map(O;E) is guaranteed to return an empty answer which is consistent with

Example 5.4.3. On the other hand, if Closure is run on P 0 alone, no contradictory atomic

conditions are derived. 2

Algorithm 5.4.3 ClosureC

Input: conjunctive condition P possibly with exists and

(atomic) not exists conditions in quanti�er representation

Output: closure of P

1. Derive PNF of P of the form 9::9::8::8::(P 0), where P 0 is quanti�er-free

2. Derive P 0 from P by applying the two axioms

concerning universally quanti�ed tuple variables.

3. Return 9::9::8::8::(Closure(P 0))

3

Figure 5.6: ClosureC

CHAPTER 5. EXPIRING WAREHOUSE DATA 150

The example illustrated ClosureC (Algorithm 5.4.3, Figure 5.6) which computes the

closure of a conjunctive condition P , possibly with exists and not exists conditions.

ClosureC �rst converts P to its PNF, obtaining a quanti�er-free condition P 0 (Step 1).

To ensure that P 0 is still conjunctive, we assume that not exists conditions only have a

single atomic condition. That is, they are of the form :9T
asj
i p (or 8T

asj
i :p), where p is a

single atomic condition.5 Any not exists conditions that do not conform to the previous

restriction are ignored (replaced with true) when computing the closure. (The not exists

condition added by Constraint (5.11) is an example of an ignored not exists condition.)

ClosureC then derives new atomic conditions (Step 2) based on the two additional axioms

introduced previously. Finally, the old Closure function is used to compute the closure of

the quanti�er-free conjunctive condition P 0 as if it was a conjunction of selection and join

conditions.

ClosureC is reasonably e�cient and can be done in O(n
3+m2 �a), where n is the number

of distinct attributes, m is the number of distinct tuple variables, and a is the number of

atomic conditions in P . (Step 2 is done in O(m2 �a) time and Step 5 is done in O(n3) time.)

Using ClosureC , we de�ne MapC to be the same as Map except that it uses ClosureC,

and NeededC to be the same as Needed except that it uses MapC.

Lemma 5.4.1 Given a view T and a set of maintenance subexpression EC obtained by

applying the constraints C on a set of maintenance subexpression E, the query

NeededC(T; EC) =
[

EC2EC

MapC(EC; T);

returns all the tuples in T that are needed by the maintenance subexpressions in EC. If all

constraints in C using not exists conditions are of the form

�PLHS(�R2RR) � �PRHS(�R2RR)><pT

where p is a disjunction of atomic predicates, the query T><Attrs(T)Needed(T; E) returns

only the tuples in T that are needed by the maintenance subexpressions in EC. Further-

more, for any set of constraints C, it is guaranteed that NeededC(T; EC) � Needed(T; EC) �

Needed(T; E). 2

5A not exists condition composed of a disjunction of atomic conditions is allowed but this can be

expressed as separate not exists conditions with a single atomic condition.

CHAPTER 5. EXPIRING WAREHOUSE DATA 151

The proof for Lemma 5.4.1, together with all the details of on the completeness of

ClosureC and its impact on NeededC , can be found in Appendix C.

5.5 Discussion

Although Lemma 5.4.1 itself does not guarantee that NeededC always returns strictly fewer

tuples than Needed, we now illustrate that in practice, NeededC often returns much fewer

tuples.

ClerkCust View

The ClerkCust view has 27 maintenance subexpressions, which we assume to comprise E .

(The maintenance subexpressions are listed in report [GMLY98].) C are the append-only,

key, referential integrity, weak minimality and ad hoc constraints in Example 5.4.1. Table

5.2 gives the queries returned by Needed(T; E) and NeededC(T; EC) for views L, O and C.

The second row of Table 5.2 shows that NeededC(L; EC) identi�es accurately that none

of the L tuples are needed by E , while Needed(L; E) deems a large number of L tuples as

needed. NeededC is much better because it eliminates any maintenance subexpression E

where Map(L;E) is guaranteed to return an empty answer given the constraints. Of the 27

subexpressions in E , 20 are eliminated. Of the 7 remaining subexpressions, none refer to L.

(4L and 5L are used but not L.)

The third row of Table 5.2 shows that NeededC(O; EC) identi�es accurately (using a not

exists condition) that only the one O tuple with the maximum ordID value is needed. On

the other hand, Needed(O; E) deems a large number of O tuples as needed.

The fourth row of Table 5.2 shows that NeededC(C; EC) and Needed(C; E) identify the

same bag of needed tuples. This illustrates that using NeededC does not always help in

reducing the number of tuples that are deemed needed.

TPC-D Benchmark

We now investigate what TPC-D ([Com]) base view tuples are needed assuming certain

TPC-D queries are used as views. In particular, we focus on 4 out of the 9 TPC-D base

views: LINEITEM (L), ORDER (O), CUSTOMER (C) and PART (P). Fact views L

and O contain 86% of the tuples in the benchmark. Hence, expiration requests will likely

be issued on these two views. We consider two views, V3 and V5, whose view de�nitions

are the TPC-D queries Q3 (\Shipping Priority Query") and Q5 (\Local Supplier Volume

CHAPTER 5. EXPIRING WAREHOUSE DATA 152

Query"), respectively. We assume that either the maintenance subexpressions of V3 or V5

comprise E . (Other queries that refer to the four views give similar results.) Finally, the

set of constraints C we consider is based on the TPC-D \update model" speci�cation (see

[Com]).

view T NeededC(T; EC) Needed(T; E)

L f g �Attrs(L)�L:cost>99^L:ordID>1000(L)

O �Attrs(O)�O:custID<500^O:ordID>1000 �Attrs(O)�O:custID<500^O:ordID>1000(O)

(O><O:ordID<O0 :ordID�O0O)

C �Attrs(C)�C:custID<500(C) �Attrs(C)�C:custID<500(C)

Table 5.2: Comparison of NeededC and Needed Using ClerkCust

view T NeededC(T; EC) Needed(T;E)

L 0% 100%

O 0% 100%

C 20% 20%

P 0% 0%

Table 5.3: Comparison of NeededC and

Needed Using TPC-D Query Q3

view T NeededC(T; EC) Needed(T;E)

L 0% 100%

O 0% 100%

C 100% 100%

P 100% 100%

Table 5.4: Comparison of NeededC and

Needed Using TPC-D Query Q5

To simplify the presentation, we do not give the queries returned by the functions but

instead give the percentage of the base view tuples that are needed. We obtained this

percentage for each view T (i.e., L, O, C, and P) by running the queries returned by

NeededC(T; EC) and Needed(T; E). We then counted the number of tuples in the result and

divided it by the number of T tuples.

Table 5.3 gives the tuples that are needed by the maintenance subexpressions of V3

assuming the constraints in C. NeededC identi�es that none of the L and O tuples are

needed, and 20% of the C tuples are needed. Since P is not referred to in V3's view

de�nition, none of its tuples are needed to maintain V3. None of the L and O tuples are

needed because of the append-only behavior of L and O speci�ed in the benchmark, i.e.,

4L tuples only join with 4O tuples and vice versa. Only 20% of the C tuples are needed

because NeededC applies a selection condition on C with 20% selectivity. On the other

hand, Needed deems all of the L and O tuples as needed.

Table 5.4 shows similar results assuming the maintenance subexpressions of view V5

comprise E . The only di�erence is that both NeededC and Needed identify that all the

CHAPTER 5. EXPIRING WAREHOUSE DATA 153

tuples of C and P are needed. This is because V5's view de�nition does not apply any

selection conditions on C nor P . Had there been constraints that state that \some of the

customers no longer place orders", or \some parts can no longer be ordered", then NeededC

would mark some C and P tuples as unneeded.

The previous study shows that using constraints allows greater
exibility for expiration

and can signi�cantly decrease storage requirements when data is no longer needed. Further-

more, it is likely that the e�ciency of view maintenance is improved because the expired

data is no longer processed by the maintenance subexpressions. Also, we illustrated that

constraints can be used to eliminate some of the maintenance subexpressions altogether

which de�nitely improves view maintenance.

5.6 Dynamic Setting

In the previous two sections, we focused on an initial static setting wherein we are given a

set of views T , a set of maintenance subexpressions E , and a set of constraints C. In this

section, we explore how to cope with a dynamic setting wherein some of these parameters

can be changed. Furthermore, we also drop the assumption that none of the tuples have

been expired.

Before discussing the algorithms, it is important to note that even when parameters

change, expiration requests are satis�ed the same way. That is, given an expiration request

�P(T) on T , it is satis�ed by removing the tuples in �P^needed=false(T).

Also, note that the queries returned by NeededC (and Needed) still have complete an-

swers even after some tuples have been expired. This is because any query returned by

NeededC takes the union of subexpressions derived from maintenance subexpressions using

MapC. Since we guaranteed that all the tuples that are needed by maintenance subexpres-

sions are not expired, the completeness of the queries returned by NeededC follows. We now

outline the algorithms for coping with various changes.

Changes to T

Suppose Def(V) has a complete answer and V is added to T . We must identify for each

view T that V is de�ned on, which of the T tuples previously deemed as unneeded is now

needed to maintain V . A reasonably e�cient solution to the problem is to use the query

�needed=false(T)><Attrs(T)Needed(T; EV), where EV are the maintenance subexpressions of

V . This query identi�es the unneeded T tuples that now need to be marked as needed.

CHAPTER 5. EXPIRING WAREHOUSE DATA 154

Changes To C

We only allow changes to C that expire more tuples. There are two types of changes that

satisfy this condition. First, a constraint may have been added to C. Second, a constraint

c previously in C may have been changed so that conditions are removed from LHS(c)

(i.e., more opportunities for applying c) or added to RHS(c) (i.e., more conditions added

whenever c is applied). To update the extension markings, for each view T , we use the

query

�needed=true(T)><Attrs(T)NeededC(T; E);

to identify the T tuples that were previously deemed needed (i.e., needed = true), but

must now be marked as unneeded since they are not in NeededC(T; E). Further, assuming

the change to C is due to a change in Constraint(S), for some view S, we only need to

modify the extension marking of a view T de�ned on S. This is valid under our assumption

that the constraint of a view is not computed from the constraints of the underlying views

(i.e., the administrator inputs all constraints). Even without this assumption, we can still

identify the views whose extension marking may be modi�ed by de�ning a view graph. The

nodes in a view graph represent base views or derived views. There is an edge U ! V if V

is de�ned on U . In general then, we only need to modify the extension marking of a view

T if T is a node in the sub-graph \rooted" at S.

Insertions

Periodically, insertions 4T and deletions 5T are computed for each view T . While deleting

the5T tuples from T does not pose any problem, inserting the4T tuples into T may. First,

the inserted tuples need to be marked as needed or unneeded. Second, some of the unneeded

tuples may need to be expired. The two problems are solved by performing the following

procedure.

1. Insert 4T and set needed attribute to false for all inserted tuples.

2. For the T tuples in �needed=false(T)><Attrs(T)Needed(T; E), set needed attribute to

true.

3. Expire T tuples in �P^needed=false(T), where LastReq(T) = �P(T).

CHAPTER 5. EXPIRING WAREHOUSE DATA 155

The �rst step assumes all 4T tuples are unneeded and do not need to be expired. The

second step marks the 4T tuples that are needed. The last step expires unneeded 4T

according to LastReq(T). The most expensive step is clearly the second one. However, only

the maintenance subexpressions of views V that are de�ned on T need to be considered.

Hence, the step is reasonably e�cient since it is (only) as expensive as computing the

insertions to the views in V based on 4T .

5.7 Related Work

One of the problems that our framework tackles is how to maintain a view when only

parts of the underlying views are accessible. Most work on view maintenance assumes that

the complete underlying views are accessible, for example, [BLT86, CW91, GL95, GMS93,

Han87, QW91]. However, there has also been work on view maintenance that assumes

otherwise. [BT88] and [GJM96] identi�ed self-maintainable views that can be maintained

without accessing underlying views. [QGMW96], [HZ96] and [Qua97] tried to make a view

self-maintainable by de�ning auxiliary views such that the view and the auxiliary views

together are self-maintainable. The function Needed(T; E) we introduce serves essentially

the same purpose as an auxiliary view, although it does not have to be maintained as

such. [HZ96] developed a framework wherein the attributes of the underlying views may

be inaccessible. In our framework, the tuples of a view can be made inaccessible. It will be

important in future work to combine both approaches.

Our framework also takes advantage of the available constraints in order to reduce the

size of Needed(T; E) and increase the e�ectiveness of expiration. This is di�erent from, but

related to, the use of constraints in the area of semantic query optimization [Min88, Kin81,

SO89]. It is important to point out their connection since semantic query optimization has

largely been ignored in view maintenance literature. Indeed, there has been some prior work

in improving view maintenance using constraints; however, they all use special-case algo-

rithms to take advantage of speci�c constraints. For instance, [QGMW96] used a specialized

algorithm that exploits key and referential integrity constraints to eliminate maintenance

subexpressions. [GJM96] used key constraints to rewrite maintenance subexpressions for

a view to use itself. [JMS95] introduced chronicles that are updated in a special manner,

and showed that views de�ned on chronicles can be maintained e�ciently. [Vis98] uses key

CHAPTER 5. EXPIRING WAREHOUSE DATA 156

and referential integrity constraints to optimize view maintenance expressions. In our ap-

proach, we can describe chronicles using constraints and automatically infer that the entire

chronicles can be safely expired. In summary, the techniques we introduce generalize many

special-case algorithms developed in the previous work. Furthermore, since we exploit a

broader class of constraints, we improve on many of the algorithms.

Our framework also introduces views whose real extensions are not complete when com-

pared to their full extensions. There has been numerous work on incomplete databases.

See [AHV95] for an overview. We are now investigating how previous work in the area can

be used to solve some of the problems borne out of the framework. For instance, [Lev96]'s

work on obtaining complete answers from an incomplete database is helpful in solving the

fourth problem stated in Section 5.2.

Finally, the algorithms in [BCL89] for detecting irrelevant updates can be modi�ed to

detect unneeded tuples. This can be done by treating the maintenance subexpressions as

views and treating a tuple t 2 T as if it were an insertion. However, the algorithms in

[BCL89] do not work with constraints. Also, they require a satis�ability test for each tuple

t. Our method is more \set-oriented" since it uses queries.

5.8 Chapter Summary

We have presented a framework for system-managed removal of warehouse data that avoids

a�ecting user-de�ned materialized views over the data. Within our framework, the user or

administrator can declaratively specify what he wants to expire and the system removes

as much data as possible. The administrator can also input constraints (implied by the

application) which the system uses to expire more data, as we illustrated using the TPC-D

benchmark. We identi�ed problems borne out of the framework and we solved the central

problems by developing e�cient algorithms. These problems included ones of a dynamic

nature where the parameters of the framework may change.

Chapter 6

Recovery of the Load Process

6.1 Introduction

In Chapters 2, 3 and 4, we discussed techniques for improving the e�ciency of the warehouse

update. These techniques are important because there is a limited amount of time and

resources that can be devoted to the warehouse update. A di�erent problem that may arise

is that the warehouse update may fail. Like database failures, warehouse update failures

are not unlikely, due to the complexity of the warehouse update. For instance, according to

the customers of a commercial data warehousing company ([Tec]), the data cleansing step

of the warehouse update fails about once every thirty tries. Because of the limited amount

of time and resources devoted to the warehouse update, restarting the warehouse update

from scratch is very undesirable. Thus, in this chapter we develop algorithms for resuming

a failed warehouse update.

As discussed in Chapter 1, the warehouse update conceptually has three steps.

1. Extraction of source data changes.

2. Cleansing of extracted changes.

3. Materialized view maintenance.

In this chapter, we focus on developing algorithms for resuming the second step. While

developing resumption algorithms for the �rst step is also important, it is not as critical as

developing resumption algorithms for the second and third steps. Typically, the warehouse

update spends most of its time in the last two steps, especially if remote sources provide

157

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 158

facilities for very e�ciently detecting changes (e.g., triggers). For instance, according to

[Car97], the last two steps can take up to 24 hours to execute. On the other hand, as we

saw in Chapter 2, even if snapshot di�erential algorithms are used, changes can be detected

in a matter of seconds. However, we do not need to develop resumption algorithms for the

third step because the recovery mechanism of the warehouse database can be used. For

instance, if the VDAG strategy (Chapter 3) used for the third step can be partitioned into

sub-transactions ([GR93]), then the warehouse database can easily resume failed VDAG

strategies.

The resumption algorithms we develop in this chapter can also be used to resume failed

cleansing processes for warehouse creation (as opposed to warehouse update). As discussed

in Chapter 1, the cleansing process used for warehouse creation performs data integration

and data cleansing to compute the initial contents of the base views. The cleansing process

for warehouse update on the other hand computes a consistent set of changes to the base

views. In this chapter, we develop the resumption algorithm for a warehouse load, which

denotes the cleansing process for warehouse creation or the cleansing process for warehouse

update.

Traditional recovery techniques as outlined below could be used to save partial load

states, so that not all work is lost when a failure of the warehouse load occurs. However,

these techniques are shunned in practice because they generate high overheads during nor-

mal processing and because they may require modi�cation of the warehouse load processing.

In this chapter we present a new, very low-overhead, technique for resuming failed loads.

Our technique exploits some generic \properties" of the cleaning process used to load the

warehouse, so that work is not repeated during a resumed load.

The cleaning process is typically implemented by a work
ow of processes. There are

three types of processes in the work
ow. One type is an extractor (process) which is re-

sponsible for extracting data from a remote source, and performing data cleansing that

can be done without accessing other remote sources. Another type is a transform which

manipulates its input data to perform data cleansing and data integration. Note that a

transform can perform data cleansing operations that involve multiple remote sources (e.g.,

making the address values of two remote sources consistent). The third type is an inserter

which puts its input data into the warehouse.

To illustrate the type of processing performed during a load, consider the load work
ow

of Figure 6.1. In this load work
ow, extractors obtain data from the stock Trades and the

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 159

totalvol

PTE
Extractor

date
AAA
ZZZ
AAA
BBB
INTC
HHH
MSN
AAA

company
AAA
BBB

HHH
MSN

pe

26
2
32
4

3 company

0.25
0.98
0.456

AAA

MSN
INTC

date
AAA
BBB

HHH
MSN
AAA

pe

2
3

4

percentvol

INTC

INTC

....................................

.....................

inserter
Warehouse

company volume
30000
5000
10000
63000
98000
20000
45600
15000

company volume
10000
63000
98000
20000
45600
15000

TRD
Extractor Trades

Volume
Total

Volume
Percent

10,000,000

warehouseSource
Trades

Source
PE

Dec98

Nov98
Nov98
Dec98
Dec98
Dec98
Dec98
Dec98
Dec98

Dec98
Dec98
Dec98
Dec98
Dec98
Dec98

Figure 6.1: Load Work
ow

price-to-earnings ratio (PE) sources. Figure 6.1 shows a pre�x of the tuples extracted from

each source. The stock trade data is �rst processed by the Dec98Trades transform, which

only outputs trades from December 1998. Thus, the �rst two trades are removed since they

happened in November 1998. The TotalVolume transform then computes the total volume

of the December 1998 trades. The PercentVolume transform then groups the trades by

company and �nds the percent of the total trade volume contributed by companies whose

pe is less than or equal to 4. For instance, companies BBB and HHH are discarded since

they have high pe's. An AAA tuple is output since its pe value is low: its percentvol

value is the sum of the AAA volumes (25,000, assuming all AAA tuples are shown in the

�gure) divided by the TotalVolume output. The output of PercentVolume is then sent to

the inserter, which stores the tuples in the warehouse.

In practice, load work
ows can be much more complex than what we have illustrated,

often having tens to hundreds of transforms [Tec]. Also, the transforms are not just con-

ventional database operations (e.g., join) but are often coded by application specialists to

perform arbitrary processing (e.g., data scrubbing, byte reordering). To load the data as

fast as possible, the output tuples of each component are sent to the next as soon as they

are generated to maximize pipelining.

There are many ways to recover a failed warehouse load. The fundamental features of

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 160

Batching

Staging

Savepoints
Persistent Queues

DR
Informatica

low high

hi
gh

no
ne

 o
r

lo
w

Redo

N
or

m
al

 O
pe

ra
tio

n
O

ve
rh

ea
d

Recovery Cost

Figure 6.2: Applicability of Algorithms

various techniques are informally contrasted with our technique, called DR, in Figure 6.2.

The vertical axis represents the normal-operation overhead of a technique while the hori-

zontal axis indicates the recovery cost of a technique. Typically, loading the warehouse will

take longer when a recovery technique is used than when no recovery technique is used.

The additional time it takes to load the warehouse when a recovery technique is used is the

normal-operation overhead. The reason the loading takes longer when a recovery technique

is used is because additional processing is involved to save some information during normal

operation to expedite the recovery.

In the lower right quadrant of Figure 6.2 are techniques that have very low normal-

operation overhead. One such technique is to simply redo the entire load over again. Clearly,

this technique can su�er from high recovery cost but it has no normal-operation overhead

since it does not modify the load work
ow. Informatica's solution [Inf] is similar: After a

failure, Informatica reprocesses the data in its entirety, only �ltering out the already stored

tuples when they reach the warehouse for the second time (i.e., just before the inserter).

Sagas [GMS87, GR93] also incur high recovery cost because the load must be restarted from

the beginning.

Other techniques, shown in the upper left quadrant of Figure 6.2, attempt to minimize

the recovery cost by aggressively modifying the load work
ow or load processing. One such

technique is to divide the work
ow into consecutive stages, and save intermediate results.

All input data enters the �rst stage. All of the �rst stage's output is saved. The saved

output then serves as input to the second stage, and so on. If a failure occurs while the

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 161

second stage is active, it can be restarted, without having to redo the work performed by

the �rst stage. Another technique in the same category is input batching wherein the input

to the load work
ow is divided into batches, and the batches are processed in sequence.

Another technique is to take periodic savepoints [GR93] of the work
ow state, or save

tuples in transit in persistent queues [BHM90, BN97]. When a failure occurs, the modi�ed

transforms cooperate to revert to the latest savepoint, and proceed from there.

In general, techniques that require modi�cation of the load work
ow su�er from two

disadvantages: (1) the normal-operation overhead is potentially high as con�rmed by our

experiments; and (2) the speci�c details of the load processing need to be known. These tech-

niques are not straightforward to implement because careful selection of stages or batches is

required to avoid high overhead. Furthermore, since the transforms are not just conventional

operations, it may be hard to know their speci�c details.

With the DR technique we propose in this chapter, there is no normal-operation over-

head, and the load work
ow does not need to be modi�ed. Yet, the recovery cost of DR

can be much lower than Informatica's technique or redoing the entire load. Unlike redoing

the entire load, DR avoids reprocessing input tuples and uses �lters to intercept tuples

much earlier than Informatica's technique. DR relies on simple and high-level transform

properties (e.g., are tuples processed in order?). These properties can either be declared by

the transform writer or can be inferred from the basic semantics of the transform, without

needing to know exactly how it is coded. After a failure, the load is restarted, except that

portions that are no longer needed are \skipped." To illustrate, suppose that after a failure

we discover that tuples AAA through MSN are found in the warehouse. If we know that

tuples are processed in alphabetical order by the PTE Extractor and by the AverageVolume

transform, the PTE Extractor can retrieve tuples starting with the one that follows MSN .

If tuples are not processed in order, it may still be possible to generate a list of company

names that are no longer needed, and that can be skipped. Our scheme is not always able

to eliminate tuples during reprocessing; however, it does o�er signi�cant improvements in

many cases, as in this example. During the reload, transforms operate as usual, except that

they only receive the input tuples needed to generate what is missing in the warehouse. In

summary, our strategy is to exploit some high-level semantics of the load work
ow, and to

be selective when resuming a failed load.

We note that there are previous techniques that are similar to DR in that they incur low

normal-operation overhead but still have a low recovery cost. However, these techniques

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 162

are applicable to very speci�c work
ows for disk-based sorting [MN92], object database

loading [WN95], and loading a
at �le into the warehouse [RZ89, WCK93]. Our technique

can handle more general work
ows.

We do not claim that DR always recovers a load faster than other techniques. For

instance, since some of the techniques modify the load processing to minimize recovery cost,

these techniques can recover a failed load faster than DR. As mentioned, the downside of

these techniques is the potential high normal-operation overhead and that the load work
ow

needs to be modi�ed. However, our experiments show that DR is competitive if not better

than these techniques for many work
ows. In particular, DR is better for work
ows that

make heavy use of pipelining. Even if a work
ow does not have a natural pipeline, our

experiments show that a hybrid algorithm that combines DR and staging (or batching) can

lower recovery cost.

We make the following contributions toward the e�cient resumption of failed warehouse

loads.

� We develop a framework for describing successful warehouse loads, and load failures.

Within this framework, we identify basic properties that are useful in resuming loads.

� We develop algorithmDR that minimizes the recovery cost while imposing no overhead

during normal operation. DR does not require knowing the speci�cs of a transform,

but only its basic, high-level properties. DR is presented here in the context of data

warehousing, but is really a generic solution for resuming any long-duration, process-

intensive task.

� We develop DR-Log that selectively logs transform outputs to further improve on

DR. DR-Log selects appropriate logging points, and uses the logs to avoid processing

additional input tuples.

� We show experimentally that DR can signi�cantly reduce recovery cost, as compared

to traditional techniques. In our experiments we use Sagent's warehouse load package

to load TPC-D tables and materialized views containing answers to TPC-D queries.

We de�ne a warehouse loads in Section 6.2, and discuss warehouse load failure in Sec-

tion 6.3. We develop the DR algorithm in Sections 6.4 and 6.5. We develop the DR-Log

algorithm in Section 6.6. Experiments are presented in Section 6.7. The chapter is con-

cluded in Section 6.8.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 163

6.2 Normal Operation

When data is loaded into the warehouse, tuples are transferred from one component (ex-

tractor, transform, or inserter) to another. The order of the tuples is important to the re-

sumption algorithm, so we de�ne sequences as ordered lists of tuples with the same schema.

De�nition 6.2.1 (Sequence) A sequence of tuples T is an ordered list of tuples [t1::tn],

and all the tuples in T have the attributes [a1::am]. 2

Before we describe a successful warehouse load, we discuss how a component directed

acyclic graph (DAG) represents a load work
ow, and how it is designed.

6.2.1 Component DAG Design

Figure 6.3 illustrates the same component DAG as Figure 6.1, with abbreviations for the

transform names. Constructing a component DAG involves several important design deci-

sions. First, the data obtained by the extractors is speci�ed. Second, the transforms that

process the extracted data are chosen. Moreover, if a desired transformation is not available,

a user may construct a new custom-made transform. Finally, the warehouse tables(s) into

which the inserter loads the data are speci�ed. The extractors, transforms, and inserter

comprise the nodes of the DAG.

Each transform and inserter expects certain input parameter sequences at load time.

The components that supply these input parameters are also speci�ed when the component

DAG is designed. Similarly, each transform and extractor generates an output sequence

to its output parameter. In commercial packages, the input and output parameters are

speci�ed by connecting the extractors, transforms, and the inserter together with edges in

the component DAG.

In some cases, di�erent components of a DAG may be assigned to di�erent machines.

Hence, during a load, data transfers between components may represent data transfers over

the network.

As a component DAG is designed, the \properties" that hold for the various transforms

and their input parameters are declared for use by our resumption algorithm. Commercial

load packages already declare basic properties like tuple sequence keys. The properties that

DR uses are explained in more detail in Section 6.4. We now illustrate a component DAG.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 164

house
ware-

PV
DT

PV
W

DT

PTE

TRD

source

Trades
source

PV W

PV
PTE

DT
TRD

map-to-one
suffix-safe

map-to-one
suffix-safe

map-to-one
set-to-seq

in-det-out

in-det-out

map-to-one

PE

suffix-safe

TV

PV
TV

suffix-safe
set-to-seq

DT
TV

map-to-one
suffix-safe
set-to-seq

Figure 6.3: Component DAG with Properties

EXAMPLE 6.2.1 In Figure 6.3, the extractors are denoted PTE for the price-to-earnings

(PE) source, and TRD for the Trades source. The transforms are denoted DT (for

Dec98Trades), TV (for TotalV olume), and PV (for PercentV olume). The inserter is

denoted W .

The input parameter(s) of each component are denoted by the component that produces

the input. For instance, PVDT is an input parameter of PV that is produced by DT . Each

extractor and transform also has an output parameter although they are not shown in

Figure 6.3. For instance, the output parameter of DT is denoted DTO. In Figure 6.3, DTO

is used as input by PV and TV . That is, PVDT = DTO and TVDT = DTO.

Figure 6.3 also shows the properties that hold for each input parameter and each trans-

form. For instance, the properties map-to-one, su�x-safe and set-to-seq hold for input

parameter TVDT , and the property in-det-out holds for transform TV . In Section 6.4, we

de�ne these properties and justify why they hold in this example. We then use them in DR

in Section 6.5. When the component DAG is designed, the attributes and keys of input pa-

rameters are also declared. For instance, the attributes of PVPTE tuples are [company; pe],

while the keys are [company]. 2

In summary, YX denotes the input parameter of component Y produced by component

X , and YO is the output parameter of Y . We use Attrs(YX) to denote the attributes of the

YX tuples. Similarly, KeyAttrs(YX) speci�es their keys. W denotes the warehouse inserter.

We note that the component DAGs designed for warehouse creation and maintenance

are di�erent. Component DAGs for creation perform the initial population of tables, while

component DAGs for maintenance typically populate \delta" tables with changes that are

later applied to the tables. (Creating separate delta tables allows standard view maintenance

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 165

algorithms to be applied to materialized views over these tables.) While a component DAG

for creation only handles new tuples, a maintenance component DAG handles tuple inserts,

deletes, and updates. Therefore, the components used are usually di�erent. However, our

resumption algorithm applies equally well to both creation and maintenance component

DAGs. Thus, in the rest of the chapter, when we refer to a \load," it could be for initial

warehouse creation or for warehouse maintenance.

6.2.2 Successful Warehouse Load

When a component DAG is used to load data, the extractors produce sequences that serve

as inputs to the transforms. That is, each input parameter is \instantiated" with a tuple

sequence. Each transform then produces an output sequence that is sent to subsequent

components. Finally, the inserter receives a tuple sequence, inserts the tuples in batches,

and periodically issues a commit command to ensure that the tuples are stored persistently.

Note that each component's output sequence can be received as the next component's

input as it is generated, to maximize pipelined parallelism. More speci�cally, at each point

in time, a component Y has produced a pre�x of its entire output sequence and shipped

the pre�x tuples to the next components. The next example illustrates a warehouse load

during normal operation, i.e., no failures occur.

EXAMPLE 6.2.2 Consider the component DAG in Figure 6.3. First, extractors �ll their

output parameters PTEO and TRDO with the sequences PT EO and T RDO, respectively.

(The calligraphy font denotes sequences.) Input parameter PVPTE is instantiated with the

sequence PVPTE = PT EO. Similarly, DTTRD is instantiated with DT TRD = T RDO, and

so on. Note that PTE does not need to produce PT EO in its entirety before it can ship

a pre�x of PT EO to PV . Finally, WPV of the inserter is instantiated with WPV = PVO.

W inserts the tuples in WPV in order and issues a commit periodically. In the absence of

failures, WPV is eventually stored in the warehouse. 2

To summarize our notation, YX and YO denote the sequences used for input parameter

YX and output parameter YO during a warehouse load. When Y produces YO by processing

YX (and possibly other input sequences), we say Y (:::YX :::) = YO. We also useW to denote

the sequence that is loaded into the warehouse in the absence of failures.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 166

6.3 Warehouse Load Failure

In general, there are two types of failures that can prevent a load from completing - logical

failures (e.g., invalid data) and system-level failures (e.g., RDBMS or software crashes,

hardware crashes, lack of disk space). If a load fails because of invalid data, the load

will again fail if it is restarted to process the same invalid data. On the other hand, if a

load fails because of system-level failures, it is not likely that the load will fail once it is

restarted. This low likelihood assumes of course that the necessary actions were taken to �x

the failure, e.g., software was restarted, or the hardware was �xed/replaced, or disk space

was allocated. In this chapter, we focus on system-level failures. Furthermore, we consider

system-level failures that do not a�ect information stored in stable storage.

6.3.1 Component Failures

Even though various components may fail, the e�ect of any failure on the warehouse is the

same. That is, only a pre�x of the normal operation input sequence W is loaded into the

warehouse.

Observation In the event of a failure, only a pre�x of W is stored in the warehouse. 2

We now show why this observation holds for each type of component failure. When

a source or its extractor E fails, only a pre�x of E's normal operation output has been

produced. Let transform Y take the output of E as its input. Y therefore receives and

processes only part of its normal input and produces only a pre�x of its output. Any

transform Z that receives Y 's output will then produce a pre�x of its output, etc. This

cascade of incomplete inputs eventually reaches the warehouse inserter W , causing it to

insert only a pre�x of W .

Similarly, when a transform Y fails, only a pre�x of Y 's output has been produced.

Again, a cascade of incomplete inputs leads to a pre�x ofW being stored in the warehouse.

Finally, when the warehouse or the inserter W fails, it is clear that only a pre�x of W is

inserted and committed by W into the warehouse. (Note that the pre�x may be empty.)

A network failure between components Y and Z results in only a pre�x of Y 's output

reaching Z. Therefore, the e�ect of a network failure is the same as if component Y had

failed. Henceforth, we ignore network failures since they can be modeled as failures of other

components.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 167

6.3.2 Data for Resumption

When a component Y fails, the warehouse load eventually halts due to lack of input. Once

Y recovers, the load can be resumed. However, only limited data is available to the re-

sumption algorithm. Limited data is available because the speci�c details (e.g., state) of

the transforms are not known. The resumption algorithm may use the pre�x of the ware-

house input W that is in the warehouse. In addition, the following procedures (and other

slight variants) may be provided by each extractor E. We use EO to denote the sequence

that would have been extracted by E had there been no failures. More details on all of the

re-extraction procedures are provided in Section 6.5.3.

� GetAll() extracts the same set of tuples as the set of tuples in EO. The order of the

tuples may be di�erent because many sources, such as commercial RDBMS, do not

guarantee the order of the tuples. We assume that all extractors provide GetAll(),

that is, that the original data is still available. If EO cannot be reproduced, then EO

must be logged.

� GetAllInorder() extracts the same sequence EO. This procedure may be supported

by an extractor of a commercial RDBMS that initially extracted tuples with an SQL

ORDER BY clause. Thus, the same tuple order can be obtained by using the same

clause during re-extraction.

� GetSubset(:::) provides the EO tuples that are not in the subset indicated by GetSub-

set's parameters. Sources that can selectively �lter tuples typically provide GetSubset.

� GetSu�x(:::) provides a su�x of EO that excludes the pre�x indicated by GetSu�x's

parameters. Sources that can �lter and order tuples typically provide GetSu�x.

In this chapter, we assume that the re-extraction procedures only produce tuples that were

in the original sequence EO. However, our algorithms also work when additional tuples

appear only in the su�x of EO that was not processed before the failure.

6.3.3 Redoing the Warehouse Load

When the warehouse load fails, only a pre�x C of W is in the warehouse. The goal of a

resumption algorithm is to load the remaining tuples ofW , in any order since the warehouse

is an RDBMS. The simplest resumption algorithm, called Redo, simply repeats the load.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 168

First C is deleted, and then for each extractor in the component DAG, the re-extraction

procedure GetAll() is invoked. Redo is shown in Figure 6.4.

Given component DAG, and C loaded in the warehouse

1. Delete C.

2. For each extractor E in the component DAG

3. Call E.GetAll()

Figure 6.4: Redo Algorithm

Although Redo is very simple, it still requires that the entire work
ow satis�es the

property that if the same set of tuples are obtained by the extractors, the same set of tuples

are inserted into the warehouse. Since this property pertains to an entire work
ow, it can

be hard to test. A singular property that pertains to a single transform is much easier to

test. The following singular property, set-to-set, is su�cient to enable Redo. That is, if all

extractors use GetAll or GetAllInorder, and all transforms are set-to-set, then Redo can be

used. This condition is tested in De�nition 6.3.1

Property 6.3.1 (set-to-set(Y)) If (given the same set of input tuples, Y produces the

same set of output tuples) then (set-to-set(Y) = true). Otherwise, set-to-set(Y) = false. 2

De�nition 6.3.1 (Same-set(Y)) If (Y is an extractor and Y uses GetAllInorder or GetAll

during resumption) then (Same-set(Y) = true). Otherwise, if (8YX : Same-set(X) and set-

to-set(Y)) then (Same-set(Y) = true). Otherwise, Same-set(Y) = false. 2

6.4 Properties for Resumption

Unlike Redo, DR does not need to reprocess all of the tuples originally extracted from the

sources. In this section, we identify singular properties of transforms or input parameters

thatDR combines into \transitive properties" to avoid reprocessing some of the input tuples.

To illustrate, suppose that the sequenceWY to be inserted into the warehouse is [y1y2y3]

(see Figure 6.5) and [x1x2x3x4] is the YX input sequence that yields the warehouse tuples.

An edge xi ! yj in Figure 6.5 indicates that xi \contributes" in the computation of yj .

(We de�ne contributes formally in De�nition 6.4.1.) Also suppose that after a failure, only

y1 is stored in the warehouse. Clearly, it is safe to �lter YX tuples that contribute only to

WY tuples already in the warehouse, in this case, y1. Thus in Figure 6.5, x1 and x2 can be

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 169

:

:

y y y

x

W 1 2 3

1 2 3 4xxx

Y

XY

Figure 6.5: Safe Filtering of x2

:

:

y y

Y

32y1Y

X 1 2 4xxx

W

x53x

Figure 6.6: Unsafe Filtering of x2

�ltered out. We need to be careful with y1 contributors that also contribute to other WY

tuples. For example, in Figure 6.6, fx1; x2g again contribute to y1, but we cannot �lter out

x2, since it is still needed to generate y2.

In general, we need to answer the following questions to avoid reprocessing input tuples:

� Question (1): For a given warehouse tuple, which tuples in YX contribute to it?

� Question (2): When is it safe to �lter those tuples from YX?

The challenge is that we must answer these questions using limited information. In particu-

lar, we can only use the tuples stored in the warehouse before the failure, and the properties,

attributes and key attributes declared when the component DAG was designed.

In Section 6.4.1, we identify four singular properties to answer Question (2). We then

de�ne three transitive properties that apply to sub-DAGs of the component DAG. DR will

derive the transitive properties based on the declared singular properties. In Section 6.4.2,

we de�ne two more singular properties. Using these properties, we de�ne identifying at-

tributes of the tuples to answer Question (1). DR will derive the identifying attributes

based on the declared singular properties and key attributes. In Section 6.7, we present a

study that shows that the singular properties hold for many commercial transforms. Since

singular properties pertain to a transform or an input parameter and not to a whole work-

ow, they are easy to grasp and can often be deduced easily from the transform manuals.

Henceforth, we refer to singular properties as \properties" for conciseness.

Before proceeding, we formalize the notion of contributing input tuples. An input tuple

xi in an input sequence YX of transform Y contributes to a tuple yj in a resulting output

sequence YO if yj is only produced when xi is in YX . The de�nition of \contributes" uses

the function IsSubsequence(S, T), which returns true if S is a subsequence of T , and false

otherwise.1

1Given T = [t1::tn] and S = [s1::sk], S is a subsequence of T if there exists a strictly increasing sequence

[i1::ik] of indices of T such that for all j = 1; 2; : : : ; k, tij = sj ([CLR92]).

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 170

De�nition 6.4.1 (Contributes, Contributors) Given transform Y , let Y (:::YX :::) = YO

and Y (:::Y 0X:::) = Y
0
O. Also let YX = [x1::xi�1xixi+1::xn] and Y

0
X = [x1::xi�1xi+1::xn].

Contributes(xi,yj) = true, if yj 2 YO and yj =2 Y 0O. Otherwise, Contributes(xi,yj) =

false.

Contributors(YX , yj) = T , where IsSubsequence(T , YX) and (8xi 2 T : Contributes(xi,

yj)) and (8xi 2 YX : Contributes(xi,yj)) xi 2 T). 2

We can extend De�nition 6.4.1 in a transitive fashion to de�ne when a tuple contributes

to a warehouse tuple. For instance, if a xi contributes to yj , which in turn contributes to a

warehouse tuple zk, then xi contributes to zk.

De�nition 6.4.1 does not consider transforms with non-monotonic input parameters.

Informally, YX is non-monotonic if the number of output tuples of Y grows when the number

of input tuples to YX is decreased. For instance, if Y is the di�erence transform YX1�YX2,

YX2 is non-monotonic. In this chapter, we do not �lter input tuples of a non-monotonic

input parameter.

Notice that there may be tuples that do not contribute to any output tuple. For instance,

if transform Y computes the sum of its input tuples and an input tuple t is h 0 i, then

according to De�nition 6.4.1, t does not contribute to the sum unless t is the only input

tuple. Tuples like t that do not a�ect the output are called inconsequential input tuples,

and are candidates for �ltering.

6.4.1 Safe Filtering

During resumption, a transform Y may not be required to produce all of its normal operation

output YO . Therefore, Y may not need to reprocess some of its input tuples, either. In this

section, we identify properties that ensure safe �ltering of input tuples.

The map-to-one property holds for YX whenever every input tuple xi contributes to

at most one YO output tuple yj (as in Figure 6.5). A study presented in Section 6.7

con�rms that input parameters of many transforms are map-to-one. For instance, the

input parameters of selection, projection, union, aggregation and some join transforms are

map-to-one.

Property 6.4.1 (map-to-one(YX)) Given transform Y with input parameter YX , YX

is map-to-one if 8YX ; 8YO; 8xi 2 YX : (Y (:::YX:::) = YO)) (:9yj ; yk 2 YO such that

Contributes(xi,yj) and Contributes(xi,yk) and j 6= k). 2

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 171

If YX is map-to-one, and some of the tuples in YO are not needed, then the corresponding

tuples in YX that contribute to them can be safely �ltered at resumption time. For example,

in Figure 6.5, if the YO output tuples are the tuples being loaded into the warehouse, and

tuples y1 and y2 are already committed in the warehouse, then the subset fx1; x2; x4g of

the input tuples does not need to be processed and can be �ltered from the YX input.

Subset-feasible(YX) is a transitive property that states that it is feasible to �lter some

subset of the YX input tuples. If there is a single path2 from YX to the warehouse, Subset-

feasible holds when all of the input parameters in the path are map-to-one. In this case, we

can safely �lter the YX tuples that contribute to some warehouse tuple for these YX tuples

contribute to no other. Similarly, if there are multiple paths from YX to the warehouse, each

input parameter along any path from YX to the warehouse must be map-to-one. If even

one of the input parameters in the path(s) is not map-to-one, then we cannot �lter any YX

tuples because each YX tuple may contribute to tuples that are not yet in the warehouse.

De�nition 6.4.2 (Subset-feasible(YX)) Given transform Y with input parameter YX ,

Subset-feasible(YX) = true if Y is the warehouse inserter. Otherwise, Subset-feasible(YX)

= true if YX is map-to-one and 8ZY : Subset-feasible(ZY). Otherwise, Subset-feasible(YX)

= false. 2

While the map-to-one and Subset-feasible properties allow a subset of the input sequence

to be �ltered, the su�x-safe property allows a pre�x of the input sequence to be �ltered.

The su�x-safe property holds when any pre�x of the output can be produced by some

pre�x of the input sequence. Moreover, any su�x of the output can be produced from some

su�x of the input sequence. For instance, the input parameters of transforms that perform

selection, projection, union, and aggregation over sorted input are likely to be su�x-safe

(see Section 6.7).

Property 6.4.2 (su�x-safe(YX)) Given T = [t1::tn], let First(T) = t1, Last(T) = tn,

and ti �T tj if ti is before tj in T or i = j. Given transform Y with input parameter YX ,

YX is su�x-safe if 8YX ; 8YO; 8yj ; yj+1 2 YO: (Y (:::YX:::) = YO)) (Last(Contributors(YX,

yj)) �YX First(Contributors(YX, yj+1))). 2

2Formally, a path P in a component DAG is a sequence of edges where each pair of consecutive edges

EiEj represents the input and output parameters YX and YO = ZY of a transform Y . If P is composed of

one edge, the edge must represent WX , where X is the extractor that feeds the inserter W .

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 172

Figure 6.6 illustrates conceptually how su�x-safe can be used. If only [y3] of YO in Fig-

ure 6.6 needs to be produced, processing the su�x [x5] of YX will produce [y3]. Conversely,

if [y1y2] does not need to be produced, the pre�x [x1x2x3x4] can be �ltered from YX at

resumption time. Notice that when the su�x-safe property is used, tuples like x3 that do

not contribute to any output tuple can be �ltered. Filtering such tuples is not possible

using the map-to-one property.

Pre�x-feasible(YX) is a transitive property that states that it is feasible to �lter some

pre�x of the YX input sequence. This property is true if all of the input parameters from YX

to the warehouse are su�x-safe. (The reasoning is similar to that for Subset-feasible(YX)

and map-to-one.)

De�nition 6.4.3 (Pre�x-feasible(YX)) Given transform Y with input parameter YX ,

Pre�x-feasible(YX) = true if Y is the warehouse inserter. Otherwise, Pre�x-feasible(YX)

= true if YX is su�x-safe and 8ZY : Pre�x-feasible(ZY). Otherwise, Pre�x-feasible(YX) =

false. 2

Filtering a pre�x of the YX input sequence is possible only if YX receives the same

sequence during load resumption as it did during normal operation. For instance, in Figure

6.6, even if Pre�x-feasible(YX) holds we cannot �lter out any pre�x of the YX input if the

input sequence is [x5x4x3x2x1] during resumption. We now de�ne some properties that

guarantee that an input parameter YX receives the same sequence at resumption time.

We say that a transform Y is in-det-out if Y produces the same output sequence YO

whenever it processes the same input sequences. We expect most transforms to satisfy this

property.

Property 6.4.3 (in-det-out(Y)) Transform Y is in-det-out if Y produces the same output

sequence whenever it processes the same input sequences. 2

The in-det-out property guarantees that if a transform X and all of the transforms pre-

ceding X are in-det-out, and the data extractors produce the same sequences at resumption

time, then X will produce the same sequence, too. Hence, YX receives the same sequence.

The requirement that all of the preceding transforms are in-det-out can be relaxed if

some of the input parameters are set-to-seq. That is, if the order of the tuples in YX does

not a�ect the order of the output tuples in YO, then YX is set-to-seq. For example, if the

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 173

sequence [z1z2z3z4] is produced by a sorting transform Z, then as long as Z processes the

same set of tuples, [z1z2z3z4] is produced as output.

Property 6.4.4 (set-to-seq(YX)) Given transform Y with input parameter YX , YX is

set-to-seq if (Y is in-det-out) and (8YX ;Y
0
X : ((YX and Y 0X have the same set of tuples) and

(all other input parameters of Y receive the same sequence))) Y (:::YX :::) = Y (:::Y 0X:::)).

2

Same-seq(YX) is a transitive property that holds if YX is guaranteed to receive the same

sequence at resumption time. Same-seq(YX) is true if the transforms and input parameters

that precede YX satisfy the in-det-out or set-to-seq property, respectively. Same-seq(YX)

guarantees that YX receives the same input sequence. A weaker guarantee that sometimes

allows for pre�x �ltering is that YX receives a su�x of the normal operation input YX . We

do not develop this weaker guarantee here.

De�nition 6.4.4 (Same-seq(YX)) If X is an extractor then Same-seq(YX) = true if X

uses the GetAllInorder re-extraction procedure. Otherwise, Same-seq(YX) = true if X is

in-det-out and 8XV : (Same-seq(XV) or (XV is set-to-seq and Same-set(V))). Otherwise,

Same-seq(YX) = false. 2

6.4.2 Identifying Contributors

To determine which YX tuples contribute to a warehouse tuple wk, we are only provided

with the value of wk after the failure. Since transforms are black boxes, the only way to

identify the contributors to wk is to match the attributes that the YX tuples and wk have

in common. (If a transform changes an attribute value, e.g., reorders the bytes of a key

attribute, we assume that it also changes the attribute name.)

We now de�ne properties that, when satis�ed, guarantee that we can identify exactly

the YX contributors to wk by matching certain identifying attributes, denoted IdAttrs(YX).

In practice, some inconsequential YX input tuples may also match wk on IdAttrs(YX).

However, these tuples can be safely �ltered since they do not contribute to the output. If

the contributors cannot be identi�ed by matching attributes, IdAttrs(YX) is set to [].

We de�ne the no-hidden-contributor property to hold for YX if all of the YX tuples that

contribute to some output tuple yj match yj on Attrs(YX) \ Attrs(YO). Selection, projec-

tion, aggregation, and union transforms have input parameters with no hidden contributors.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 174

YX YZ ZW
X Y Z W

[bcde][cd][abc]

Figure 6.7: Example Component

DAG

VX YZ ZW
V X Y Z W

Y2

Y2

XY

[abc]
X

ZY2
[bcde][abc] [abc] [cd]

[be]

Figure 6.8: Component DAG with Replicated

Outputs

The input parameters of many join transforms also do not have hidden contributors. We

show later in Section 6.7 that many commercial transforms have input parameters with no

hidden contributors.

Property 6.4.5 (no-hidden-contributor(YX)) Given transform Y with input parameter

YX , no-hidden-contributors(YX) if 8YX , 8YO , 8yj 2 YO, 8xi 2 Contributors(YX , yj), 8a 2

(Attrs(YX) \ Attrs(YO)): (Y (:::YX:::) = YO)) (xi:a = yj :a). 2

If YX has no hidden contributors, we can identify a set of input tuples that contains all

of the contributors to an output tuple yj . This set is called the potential contributors of yj .

Shortly, we will use keys and other properties to verify that the set of potential contributors

of yj contains only tuples that do contribute to yj . For now, we illustrate how the potential

contributors are found.

EXAMPLE 6.4.1 Consider the component DAG shown in Figure 6.7. The labels below

the edges, e.g., ZY , identify the input parameter, and the labels above the edges give the

attributes of the input tuples, e.g., Attrs(ZY) = [cd]. If ZY has no hidden contributors,

then all of the ZY contributors to a warehouse tuple wk, denoted Sk, match wk on [cd] (i.e.,

Attrs(ZY) \ Attrs(ZO)). If YX has no hidden contributors, then all of the YX contributors

to zi 2 Sk match zi on [c] (i.e., Attrs(YX) \ Attrs(YO)). Since all of the tuples in Sk have

the same c attribute (i.e., the c attribute of wk), all of the YX tuples that contribute to

wk match wk on [c]. Hence, all of the potential contributors of wk in YX are the ones that

match wk on [c]. 2

We call attributes that identify the YX potential contributors, the candidate identifying

attributes or candidate attributes (CandAttrs) of YX . The formal de�nition of CandAttrs

applies to an input parameter YX and a path P from YX to the warehouse.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 175

De�nition 6.4.5 (CandAttrs(YX,P)) Let P be a path from input parameter YX to the

warehouse. There are three possibilities for CandAttrs(YX ,P):

1. If Y is the warehouse inserter, then CandAttrs(YX ; P) = Attrs(YX).

2. If YX has hidden contributors then CandAttrs(YX; P) = [].

3. Else CandAttrs(YX ; P) = CandAttrs(ZY ; P
0) \ Attrs(YX), where P = [YXZY ::WI],

and P 0 is P excluding YX .

2

In summary, CandAttrs(YX ; P) is just the attributes that are present throughout the

path P starting from YX , unless one of the input parameters in P has hidden contributors. If

so, then CandAttrs(YX; P) is set to [] implying that all YX tuples are potential contributors.

Since the potential contributors identi�ed by CandAttrs(YX ; P) may include tuples that

do not contribute to wk, we would like to verify that all the potential contributors do

contribute to wk. To do so, we need to use key attributes. The no-spurious-output property

may also be used to verify contributors. We de�ne the no-spurious-output property to

hold for transform Y if each output tuple yj has at least one contributor from each input

parameter YX . While this property holds for many transforms (see Section 6.7), union

transforms do not satisfy it.

Property 6.4.6 (no-spurious-output(Y)) A transform Y produces no spurious output if

8 input parameters YX , 8YX , 8YO, 8yj 2 YO: (Y (:::YX :::) = YO)) (Contributors(YX ,yj)

6= []). 2

We now illustrate in the next example how key attributes, candidate attributes, and the

no-spurious-output property combine to determine the identifying attributes.

EXAMPLE 6.4.2 Consider the component DAG shown in Figure 6.7. Note that Cand-

Attrs(YX ; P) = [c] where P = [YXZYWZ], assuming that YX , ZY , and WZ have no hidden

contributors. Now consider which attributes can be used as IdAttrs(YX). There are three

possibilities.

1. IdAttrs(YX) = KeyAttrs(YX) if KeyAttrs(YX) � CandAttrs(YX ; P) and both Y and

Z satisfy the no-spurious-output property.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 176

2. IdAttrs(YX) = KeyAttrs(WZ) if KeyAttrs(WZ) � CandAttrs(YX ; P).

3. IdAttrs(YX) = IdAttrs(ZY) if IdAttrs(ZY) � CandAttrs(YX ; P).

To illustrate the �rst possibility, suppose KeyAttrs(YX) is [c]. If wk:c = 1, any YX tuple

that contributes to wk must have c = 1 since CandAttrs(YX; P) = [c]. Since neither Y nor

Z has spurious output tuples, there is at least one YX tuple that contributes to wk. Because

c is the key for YX , the YX tuple with c = 1 must be the contributor.

To illustrate the second possibility, suppose KeyAttrs(WZ) = [c]. If wk:c = 1, any YX

tuple that contributes to wk must have c = 1 since CandAttrs(YX ; P) = [c]. All YX tuples

with c = 1 must contribute to either wk or to no warehouse tuples since c is the key of WZ .

To illustrate the third possibility, suppose IdAttrs(ZY) = [c]. Then given a warehouse

tuple wk with wk:c = 1, we can identify the ZY contributors to wk, denoted Sk, by matching

their c attribute with 1. Since YX has no hidden contributors (because CandAttrs(YX ,P) 6=

[]), a YX tuple with c = 1 must contribute to a tuple zj 2 Sk or to no tuple in ZY . Hence,

we can identify exactly the YX contributors to wk by matching their c attribute values.

In summary, the key attributes of YX , ZY (or any other input parameter in the path

from YX to WZ), or WZ can serve as IdAttrs(YX). These key attributes must be a subset

of CandAttrs(YX ; P) to ensure that the matching can be performed between the warehouse

tuples and the YX tuples. 2

The previous example provides the intuition behind our de�nition of the identifying

attributes of YX . The following de�nition gives the identifying attributes of YX along path

P . If there is a single path P from YX to the warehouse, IdAttrs(YX) = IdAttrsPath(YX ,P).

De�nition 6.4.6 (IdAttrsPath(YX,P), IdAttrs(YX)) Let P be the only path from YX

to the warehouse. There are three possibilities for IdAttrsPath(YX ,P) (i.e., IdAttrs(YX)).

1. If (KeyAttrs(YX) � CandAttrs(YX ; P) and 8ZV 2 P : ZV has no spurious output

tuples),

then (IdAttrsPath(YX ; P) = KeyAttrs(YX)).

2. Otherwise, let ZV 2 P but ZV 6= YX . Let P
0 be the path from ZV to the warehouse.

If (IdAttrsPath(ZV ,P
0) 6= [] and IdAttrsPath(ZV ,P

0) � CandAttrs(YX ; P)),

then (IdAttrsPath(YX ,P) = IdAttrsPath(ZV ,P
0)).

3. Otherwise IdAttrsPath(YX,P) = [].

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 177

2

Case (1) in De�nition 6.4.6 uses the key attributes of YX as IdAttrs(YX). Case (2) in

De�nition 6.4.6 encompasses the second and third possibilities illustrated in Example 6.4.2.

That is, for each input parameter in P , it checks if the IdAttrs of that input parameter can

be used as IdAttrs(YX). Notice that there may be more than one input parameter in P

whose identifying attributes can be used for IdAttrs(YX). We revisit this issue shortly.

We now modify IdAttrs to handle the general case where there are multiple paths from

YX to the warehouse. The next example provides the intuition behind the generalization of

IdAttrs.

EXAMPLE 6.4.3 Consider the component DAG shown in Figure 6.8, where there are

two paths from XV to the warehouse: P1 = [XV YXZYWZ] and P2 = [XV Y 2XZY 2WZ]. We

want to determine IdAttrs(XV). Suppose IdAttrs(XV , P1) is [b], while IdAttrs(XV ,P2) is

[c]. Then, given a warehouse tuple wk, the XV contributors along P1 match wk on [b], while

the XV contributors along P2 match wk on [c]. Hence, the XV contributors match wk on [b]

or [c], denoted [b]_ [c]. 2

Example 6.4.3 shows that if there are multiple paths, IdAttrs(YX) is the disjunction of

the identifying attributes of the individual paths.

De�nition 6.4.7 (IdAttrs(YX)) Let fPg be the set of all paths from YX to the warehouse

input parameter.

If 9P 2 fPg such that IdAttrsPath(YX ; P) = [], then IdAttrs(YX) = [].

Otherwise, IdAttrs(YX) =
W
P2fPg IdAttrsPath(YX ; P).

2

Although we provide a general de�nition for IdAttrs(YX), in most cases there is a single

path from YX to the warehouse. Even when there are multiple paths from YX to the

warehouse, we can simplify IdAttrs(YX) as follows: Given IdAttrs(YX) = A1 _ : : :_An, we

eliminate Ai if 9Aj � Ai, because any contributor identi�ed by Ai is also identi�ed by Aj .

This method for simplifying IdAttrs(YX) is also a guide for choosing the identifying

attributes. When we developed IdAttrs(YX) for a single path P (De�nition 6.4.6), we did

not specify how to choose the input parameter along P whose IdAttrs will be used for

IdAttrs(YX). It is best to choose an input parameter that appears on many paths from

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 178

YX to the warehouse. The input parameter of the inserter W is a prime candidate since it

appears on all paths from YX .

Transform Properties Function computed by transform

DT in-det-out select �
no-spurious-output from DTTRD

where date � 12=1=98 and date � 12=31=98

TV in-det-out select sum(volume) as totalvol

no-spurious-output from TVDT

PV in-det-out select PVPTE :company; PVPTE :pe;

no-spurious-output sum(PVDT :volume) � 100=PVTV :totalvol as percentvol
from PVPTE ; PVDT ; PVTV
where PVPTE :company = PVDT :company and PVPTE :pe � 4
group by PVPTE :company; PVPTE :pe

Table 6.1: Properties and Functions of Transforms.

Input YX Attrs(YX) KeyAttrs(YX) YX Properties IdAttrs(YX) YX Transitive

Properties

DTTRD [date,company, [date,company] map-to-one [] -
volume] su�x-safe

TVDT [date,company, [date,company] map-to-one [] Pre�x-feasible
volume] su�x-safe

set-to-seq

PVPTE [company,pe] [company] map-to-one [company] Subset-feasible,
su�x-safe Pre�x-feasible

PVDT [date,company, [date,company] map-to-one [company] Subset-feasible
volume] set-to-seq

PVTV [totalvol] [totalvol] su�x-safe [] Pre�x-feasible
set-to-seq

WPV [company,pe, [company] map-to-one [company] Subset-feasible,
percentvol] su�x-safe Pre�x-feasible

Table 6.2: Declared and Inferred Properties of Input Parameters.

6.4.3 The Trades Example Revisited

We now return to our main example, shown in Figure 6.3, and illustrate the properties

satis�ed by the input parameters and transforms.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 179

Table 6.1 shows the functions computed by the transforms. Although these function def-

initions cannot be used by the resumption algorithms, we include them here to help explain

why the properties hold. We show SQL functions for simplicity even though transforms

often perform functions that cannot be written in SQL. Table 6.1 also shows that all three

transforms are declared to be in-det-out since they produce the same output sequence given

the same input sequences.

The �rst four columns of Table 6.2 show the attributes, keys, and properties declared

for each input parameter when the component DAG is designed. We now explain why the

properties hold. DT reads each tuple in DTTRD and only outputs the tuple if it has a date

in December 1998. Therefore, DTTRD is su�x-safe, since DT outputs tuples in the input

tuple order. It is map-to-one, since each input tuple contributes to zero or one output tuple.

It is not set-to-seq, since a di�erent order of input tuples will produce a di�erent order of

output tuples.

Transform TV reads all of its input before producing one output tuple. TVDT is trivially

map-to-one, su�x-safe, and set-to-seq.

Transform PV reads each tuple in PVPTE and if its pe attribute is � 4, it �nds all of the

trade tuples for the same company in PVDT , which are probably not in order by company.

It computes the percent of the total trade volume using the trade tuples and PVTV and

outputs a tuple. Then it processes the next tuple in PVPTE . PVPTE is map-to-one since

each tuple contributes to zero or one output tuple, depending on its value for the attribute

pe. It is not set-to-seq for the same reason it is su�x-safe: PV processes tuples from

PVPTE one at a time, in order. PVDT is map-to-one since each trade tuple contributes to

the percent volume tuple of only one company. However, PVDT is not su�x-safe, e.g., the

trade tuple needed to join with the �rst tuple in PVPTE may be the last tuple in PVDT .

Similarly, it is set-to-seq because the order of trades tuples is not relevant to PV . PVTV is

not map-to-one since the lone PVTV input tuple containing the total volume contributes to

all of the output tuples. PVTV is trivially su�x-safe and set-to-seq.

Finally, since the warehouse inserter simply stores its input tuples in order, WPV is

map-to-one and su�x-safe but not set-to-seq.

The last two columns of Table 6.2 show the identifying attributes and the transitive

properties. We assume that none of the input parameters have hidden contributors. The

identifying attribute of WPV , PVDT , and PVPTE is [company] because it is the key of

WPV . Since none of the attributes of PVTV are preserved in the warehouse, we cannot

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 180

possibly identify the contributing PVTV tuples, and IdAttrs(PVTV) is set to []. As a

result, IdAttrs(TVDT) = IdAttrs(DTTRD) = []. The transitive properties (e.g., Subset-

feasible) are computed using De�nitions 6.4.2 and 6.4.3. Note that Same-seq and Same-set

are not computed since the re-extraction procedures have not been determined.

6.4.4 Practical Issues

The properties that we have introduced hold in many cases. In Section 6.7, we present a

thorough study of a commercial load package to support this claim. The properties are

also fairly simple. In fact, some commercial load packages [Sag98] already declare whether

some of the properties (e.g., su�x-safe) hold for their transforms. Even if the properties

are not declared, they can often be deduced easily from the transform speci�cations or

manuals. Moreover, the properties focus on a single transform and not the whole component

DAG, which makes them easy to grasp. (The transitive properties are derived by the DR

algorithm.)

6.5 The DR Resumption Algorithm

We now present the DR resumption algorithm, which uses the properties developed in the

previous section. DR is actually composed of two algorithms, Design and Resume, hence

the name. After a component DAG G is designed, Design constructs a component DAG G0

that Resume will employ to resume any failed warehouse load that used G. The component

DAG G0 is the same as G except for the following di�erences.

1. Re-extraction procedures are assigned to the extractors in G0.

2. Filters are assigned to some of the input parameters in G0.

The component DAG G0 is constructed by Design based solely on the attributes, keys, and

properties declared for G. When a warehouse load that uses G fails, Resume initializes

the �lters and re-extraction procedures in G0 based on the tuples that were stored in the

warehouse. Resume then uses G0 to resume the warehouse load. Since neither Design nor

Resume runs during normal operation, DR does not incur any normal operation overhead!

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 181

DT

TV

PV W

PTE

TRD

IdAttrs = []

IdAttrs = []

IdAttrs = [company]
Prefix-feasible
Subset-feasible

IdAttrs = [company]
Prefix-feasible
Subset-feasible

Subset-feasible
IdAttrs = [company]

IdAttrs = []

Prefix-feasible

Prefix-feasible

Figure 6.9: Identifying Attributes and Transitive Properties

PVDT
f

PV
PTE

f

GetAllReordered

GetAll

DTTRD

PTE

TV

PV W

‘‘prefix filter’’

‘‘subset filter’’

Figure 6.10: Re-extraction Procedures and Filters Assigned

6.5.1 Example using DR

To illustrate the overall operation of DR, we return to our running example (Figure 6.3).

After this illustration, we cover DR in more detail. Algorithm Design of DR �rst computes

the Subset-feasible and Pre�x-feasible transitive properties, as well as the IdAttrs of each

input parameter. We computed these transitive properties and identifying attributes in

Section 6.4.3, and the results are shown in Figure 6.9.

Design then constructs G0 by �rst assigning re-extraction procedures to extractors based

on the computed properties and identifying attributes. Since IdAttrs(PVPTE) = [company],

it is possible to identify source PE tuples that contribute to tuples in the warehouse based

on the company attribute. Since Pre�x-feasible(PVPTE) holds, DR can assign GetSu�x to

PTE to avoid re-extracting all the PE tuples over again. Also, since Subset-feasible(PVPTE)

holds, DR can alternatively assign GetSubset to PTE to avoid re-extracting all the PE

tuples. However, suppose PTE supports neither GetSu�x nor GetSubset. GetAllInorder

is assigned to PTE instead.

IdAttrs(DTTRD) is empty, implying that it is not possible to identify the Trades tuples

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 182

that contribute to warehouse tuples. Hence, assuming TRD does not support GetAllI-

norder, only the re-extraction procedure GetAll can be assigned to TRD.

For each input parameter, Design then chooses whether to discard a pre�x of the input

(\pre�x �lter"), or to discard a subset of the input (\subset �lter"). Since discarding a pre�x

requires the Same-seq property, Design computes the Same-seq property as it assigns �lters

to input parameters. As a result, the input parameters are processed in topological order

because the Same-seq property of an input parameter depends on the Same-seq properties

of previous input parameters.

1. Same-seq(DTTRD) does not hold because TRD is assigned GetAll, so it is not possible

to �lter a pre�x of the DTTRD input sequence. Furthermore, since DTTRD is not

Subset-feasible, a subset �lter cannot be assigned.

2. Same-seq(PVPTE) holds because PTE is assigned GetAllInorder. Therefore, PVPTE

is both Pre�x-feasible and Same-seq, so it is possible to �lter a pre�x of the PVPTE

input sequence. Furthermore, we can identify the contributors to the warehouse tuples

based on IdAttrs(PVPTE) = [company]. Thus, a �lter, denoted PV
f
PTE, that removes

a pre�x of the PVPTE input sequence is assigned to PVPTE. When a failed load is

resumed, PV
f
PTE removes the pre�x of the PVPTE input sequence that ends with the

tuple whose company attribute matches the last warehouse tuple.

3. TVDT is Pre�x-feasible but we cannot identify the contributors of the warehouse

tuples since IdAttrs(TVDT) = []. Furthermore Same-seq(TVDT) does not hold since

Same-seq(DTTRD) does not hold. No �lter is assigned to TVDT .

4. PVDT is Subset-feasible and IdAttrs(PVDT) = [company], so a subset �lter PV
f
DT is

assigned to PVDT . Same-seq(PVDT) does not hold, but the subset �lter PV
f
DT does

not require it. When a failed load is resumed, PV
f
DT removes all tuples in the PVDT

sequence whose company attribute value matches some warehouse tuple.

5. IdAttrs(PVTV) is [], so no �lter is assigned to PVTV . Note that Same-seq(PVTV)

holds since TVDT is set-to-seq.

6. Finally, Same-seq(WPV) cannot hold since the �lters assigned to PVPTE and PVDT

make it impossible for WPV to receive the same sequence. A subset �lter can be

assigned to WPV since WPV is Subset-feasible. However, Design determines that this

�lter is redundant with the previous �lters. Therefore, no �lter is assigned to WPV .

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 183

The component DAG G0 constructed from G is shown in Figure 6.10. Note that G0 is

constructed using just two \passes" over G: a backward pass to compute IdAttrs, Pre�x-

feasible, Subset-feasible, and a forward pass to compute Same-seq. Hence, the time to

construct G0, which is in the order of seconds or minutes, is negligible compared to the time

to design and debug G, which is in the order of days or weeks ([Tec]). Algorithm Design is

now done. Until a failed load by G is resumed, G0 is not used.

Suppose that a load using G fails, and the tuple sequence that made it into the warehouse

is

C = [hAAA; 3; 0:25i hINTC; 2; 0:98i hMSN; 4; 0:456i];

where the three attributes are company, pe, and percentvol, respectively. Based on C,

Resume instantiates the �lters and re-extraction procedures (i.e., GetSu�x, GetSubset)

that are sensitive to C. Since only GetAllInorder and GetAll are assigned in our example,

only the �lters are a�ected by C.

Subset �lter PV
f
DT is instantiated to remove any PVDT input tuple whose company is

either AAA, INTC orMSN . It is safe to �lter these tuples since it is guaranteed that they

contribute to at most one warehouse tuple (i.e., Subset-feasible(PVDT)), and that tuple

is in C. Similarly, pre�x �lter PV
f
PTE is instantiated to remove the pre�x of its PVPTE

input that ends with the tuple whose company attribute is MSN . It is safe to �lter these

tuples since it is guaranteed that PV has processed through the MSN tuple of PVPTE

(i.e., Pre�x-feasible(PVPTE)). Note that the tuples before the MSN tuple may include

ones that do not contribute to any warehouse tuple (i.e., because their pe attribute is too

high). Once the �lters and re-extraction procedures are instantiated, the warehouse load

is resumed by calling the re-extraction procedures of G0. Because of the �lters, the input

tuples that contribute to the tuples in C are �ltered and are not processed again by PV and

W . Had the load failed with a longer warehouse tuple sequence C, the �lters would have

been instantiated appropriately by DR to �lter more input tuples.

We conclude the example by contrasting the recovery performed by DR with other

methods.

� Unlike Redo, DR avoids re-processing many of the input tuples using �lters PV
f
DT and

PV
f
PV E . Also, had the extractors PTE and TRD supported GetSubset or GetSu�x,

DR could have even avoided re-extracting tuples from the sources.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 184

� DR avoids re-processing many input tuples without having to identify batches. Recall

that for our example component DAG (Figure 6.9), batches cannot be formed due

to the TotalVolume (TV) transform. Since batches cannot be formed, a recovery

algorithm based on batching input tuples would redo the entire warehouse load.

� During normal operation, the designed component DAG G (Figure 6.9) is used. No

normal operation overhead is incurred unlike recovery algorithms based on savepoints

or snapshots. Again, the time it takes to construct G0 from G is very small compared

to the time it takes to design and debug G. Furthermore, this overhead occurs when

G is designed, and does not occur during the normal operation of the load.

6.5.2 Filters

In the previous example, we mentioned subset �lters and pre�x �lters. More speci�cally,

there are two types of subset �lters and two types of pre�x �lters that may be assigned to

YX . In each case, the �lter receives X 's output sequence as input, and the �lter sends its

output to Y as the YX input sequence.

Clean-Pre�x Filter

The clean-pre�x �lter, CP [s; A], is instantiated with a tuple s and a set of attributes A.

CP discards tuples from its input sequence until it �nds a tuple t that matches s on A.

CP discards t, and continues discarding until an input tuple t0 does not match s on A. All

tuples starting with t0 are output by CP . We use CP on YX when YX is Subset-feasible,

Pre�x-feasible, and Same-seq, and IdAttrs(YX) is not empty. In this case, all input tuples

up to and including the contributors of the last C tuple, denoted Last(C), can be safely

�ltered. So CP is instantiated as CP [Last(C); IdAttrs(YX)], where C is the tuple sequence

in the warehouse after the crash. We call CP a clean �lter because no C contributors emerge

from it.

Dirty-Pre�x Filter

The dirty-pre�x �lter, DP [s; A], is a slight modi�cation to the clean-pre�x �lter. DP

discards tuples from its input sequence until it �nds a tuple t that matches s on A. All tuples

starting with t are output by DP . We use DP on YX when YX is Pre�x-feasible, and Same-

seq, and IdAttrs(YX) is not empty. In this case, all input tuples preceding the contributors

of Last(C) can be safely �ltered. So CP is instantiated as CP [Last(C); IdAttrs(YX)].

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 185

Clean-Subset Filter

The clean-subset �lter, CS[S; A], is instantiated with a tuple sequence S and a set of

attributes A. For each tuple t in its input sequence I, if t does not match any S tuple on

the A attributes, then t is output. Otherwise, t is discarded. In other words, CS performs

an anti-semijoin between I and S (I><AS). We use CS on YX when YX is Subset-feasible

and IdAttrs(YX) is not empty. CS is instantiated as CS[C; IdAttrs(YX)].

Dirty-Subset Filter

The dirty-subset �lter, DS[C; IdAttrs(YX)], is a slight modi�cation to the clean-subset �lter.

DP is assigned to YX when YX is Pre�x-feasible and IdAttrs(YX) is not empty. Unlike CS,

DS removes a su�x Cs of C before performing the anti-semijoin. Cs contains all the tuples

that share YX contributors with Last(C). This su�x can be obtained easily by matching

all the C tuples with the Last(C) tuple on IdAttrs(YX). After Cs is obtained, a pre�x of C,

denoted Cp, is obtained by removing Cs from C. Cs is removed since we cannot �lter the

contributors to Cs because YX is not required to be Subset-feasible. DP then acts like the

clean-subset �lter CS[Cp; IdAttrs(YX)].

Assigning the Filters

In summary, the properties that hold for an input parameter YX determine the types of

�lters that can be assigned to YX . When more than one �lter type can be assigned, we

assign the �lter that removes the most input tuples. When �lter type f removes more tuples

than g, we say f � g. The relationships among the �lter types we have introduced are as

follows.

CP � DP � DS; CP � CS � DS

Hence, we try to assign the clean-pre�x �lter �rst, and the dirty-subset �lter last. In DR,

we assign the dirty-pre�x �lter before the clean-subset �lter for two reasons. First, it is

much cheaper to match each input tuple to a single �lter tuple s than to a sequence of

tuple �lters S. Second, the pre�x �lters can remove tuples that do not contribute to any

warehouse tuple, simply because they precede a contributing tuple. The subset �lters can

only remove contributors. The second advantage is especially apparent in our experimental

results in Section 6.7.

The procedure AssignFilter is shown in Figure 6.11. Observe that AssignFilter assigns a

�lter to YX whenever possible. Since some of these �lters may be redundant with previous

�lters, Design uses a subsequent procedure to remove redundant �lters.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 186

Algorithm 6.5.1 AssignFilter

Input: Component DAG G0; input parameter YX
Output: Input parameter YX in G0 is assigned a �lter whenever possible

1. If Pre�x-feasible(YX) and Subset-feasible(YX) and Same-seq(YX) and IdAttrs(YX) 6= []

2. Insert Y f
X = CP [Last(C),IdAttrs(YX)] between Y and X in G0

3. Else If Pre�x-feasible(YX) and Same-seq(YX) and IdAttrs(YX) 6= []

4. Insert Y f
X = DP [Last(C), IdAttrs(YX)] between Y and X in G0

5. Else if Subset-feasible(YX) and IdAttrs(YX) 6= []

6. Insert Y f
X = CS[C, IdAttrs(YX)] between Y and X in G0

7. Else if Pre�x-feasible(YX) and IdAttrs(YX) 6= []

8. Insert Y f
X = DS[C, IdAttrs(YX)] between Y and X in G0

3

Figure 6.11: Assigning Input Parameter Filters

So far, we have implicitly assumed in our discussion that IdAttrs is a single attribute

set, when in general it could be a disjunction of attribute sets. While it is usually the case

that IdAttrs is a single attribute set (as in our working Trades example), there may be cases

where it is not.

We now illustrate how the �lters are implemented when IdAttrs is a disjunction of

attribute sets. Let us suppose that a clean-subset �lter Y
f
X is assigned to YX . Recall that in

the single attribute set case where IdAttrs(YX) = A, Y
f
X is simply CS[C, A], and the �lter

identi�es a subset S of the sequence that YX receives during resumption time, denoted Y 0X ,

that can be discarded.

If IdAttrs(YX) is a disjunction of attribute sets A1 _ : : : _ An, each attribute set Ai

identi�es a subset Si of the Y
0
X tuples that can be safely discarded considering one or more

paths from YX to the warehouse. The problem is that there may be tuples in Si that cannot

be safely �ltered when other paths are considered. The solution is to discard only the tuples

that can be safely �ltered along all paths. That is, only the tuples in S1\: : :\Sn are �ltered.

To implement this solution, each Ai in IdAttrs(YX) results in a \sub-�lter" denoted Y i
X

= CS[C, Ai]. The overall CS �lter Y
f
X then works as follows. For each tuple x 2 Y 0X , Y

f
X

passes x to each sub-�lter Y i
X . If all sub-�lters discard x, then x is discarded. Otherwise, x

passes through.

The implementation of other �lter types are altered in a similar fashion. For instance,

if YX is assigned a clean-pre�x �lter, then the sub-�lter Y i
X is CP [Last(C), Ai].

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 187

6.5.3 Re-extraction Procedures

We now de�ne the re-extraction procedures formally. From these de�nitions, it is clear that

the re-extraction procedures are very similar to the �lters. In particular, the re-extraction

procedures GetSu�x and GetSubset perform the same processing as the CP and CS �lters,

respectively. Furthermore, we introduce the re-extraction procedures GetDirtySu�x and

GetDirtySubset that correspond to the DP and DS �lters.

De�nition 6.5.1 (Re-extraction procedures for resumption) GetAllInorder() = EO,

where EO was the the output of E during normal operation.

GetAll() = T : T and EO have the same set of tuples.

GetSu�x(s,A) = T : CP [s,A] = T .

GetDirtySu�x(s,A) = T : DP [s, A] = T .

GetSubset(S,A) = T : CS[S, A] = T .

GetDirtySubset(S,A) = T : DS[S, A] = T .

2

The de�nition assumes thatA is a single set of attributes, and not a disjunction of attributes.

However, the extraction procedures can be easily altered just like the �lters (in Section 6.5.2)

to accommodate a disjunction of attributes. We do not show the extension here.

Since the re-extraction procedures and �lters perform similar processing, it is not sur-

prising that the procedure AssignReextraction is similar to AssignFilter. To illustrate, con-

sider an extractor E and a component Y that receives E's output. If Pre�x- feasible(YE),

Subset-feasible(YE) and IdAttrs(YE) 6= [], then we can assign a clean-pre�x �lter CP to YE .

However, this �lter can be \pushed" to E if E supports GetSu�x. Similarly, the other parts

of AssignReextraction tries to push the remaining �lter types from YE to E. In Section 6.7,

we show experimentally the bene�ts of pushing the �ltering to the extractors. If no �lter

can be pushed to an extractor E, either GetAllInorder or GetAll is assigned to it.

The full listing of the AssignReextraction algorithm is given in Figure 6.12. Lines 1{2

try to push a clean-pre�x �lter to the extractor using GetSu�x. Lines 3{4 try to push a

dirty-pre�x �lter to the extractor using GetDSu�x. Lines 5{6 try to push a clean-subset

�lter to the extractor using GetSubset. Lines 7{8 try to push a dirty-subset �lter to the

extractor using GetSubset. If no �lter can be pushed, AssignReextraction tries to assign

GetAllInorder. Otherwise, GetAll, which is assumed to be supported, is assigned.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 188

Algorithm 6.5.2 AssignReextraction

Input: Component DAG G0; extractor E
Side e�ect: Extractor E in G0 is assigned a re-extraction procedure
1. If Pre�x-feasible(YE) and Subset-feasible(YE) and IdAttrs(YE) 6= [] and E supports GetSu�x

2. Assign GetSu�x(Last(C),IdAttrs(YE)) to E in G0

3. Else If Pre�x-feasible(YE) and IdAttrs(YE) 6= [] and E supports GetDirtySu�x
4. Assign GetDirtySu�x(Last(C), IdAttrs(YE)) to E in G0

5. Else if Subset-feasible(YE) and IdAttrs(YE) 6= [] and E supports GetSubset
6. Assign GetSubset(C, IdAttrs(YE)) to E in G0

7. Else if Pre�x-feasible(YE) and IdAttrs(YE) 6= [] and E supports GetDirtySubset
8. Assign GetDirtySubset(C, IdAttrs(YE)) to E in G0

9. Else if E supports GetAllInorder
10. Assign GetAllInorder() to E in G0

11. Else Assign GetAll() to E in G0

3

Figure 6.12: Assigning Re-extraction Procedures

6.5.4 The Design and Resume Algorithms

Algorithm Design of DR (Algorithm 6.5.3, Figure 6.13) starts by computing the IdAttrs

and the Pre�x-feasible and Subset-feasible transitive properties of each input parameter YX

in the given component DAG G. The input parameters are processed in reverse topological

order because all of the above properties of YX depend on the properties of subsequent

input parameters (e.g., ZY).

Then Design calls AssignReextraction to assign re-extraction procedures to each extrac-

tor in G0. Next, Design computes the Same-seq property and calls AssignFilter (Figure 6.11)

to assign �lters to each input parameter in G0. Since the Same-seq property of YX depends

on the Same-seq properties of previous input parameters, the input parameters are pro-

cessed in topological order. Note that Same-seq(YX) is set to false if a �lter is assigned to

YX , because the �lter ensures that YX does not receive the same input sequence as it did

during normal operation. Redundant �lters are removed and then G0 is saved persistently.

In case of failure, Resume of DR (Algorithm 6.5.4, Figure 6.13) simply instantiates

the re-extraction procedures and �lters in G0 with the actual value of the warehouse tuple

sequence C. The warehouse load is then resumed by invoking the re-extraction procedures.

Note that Resume can be invoked multiple times on the same G0, while Design only needs

to be called once, at design time, regardless of the number of failures.

We now discuss how redundant �lters are detected by Design. We say a �lter Y
f
X is

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 189

Algorithm 6.5.3 Design

Input: Component DAG G

Output: Component DAG G0

1. G0 G // copy G

2. Compute IdAttrs(YX), Subset-feasible(YX),
Pre�x-feasible(YX) for each input
parameter YX in reverse topological order.

3. For each extractor E
4. AssignReextraction(G0,E)

5. For each input parameter YX in topological order
6. Compute Same-seq(YX)
7. AssignFilter(G0,YX)
8. If YX is assigned a �lter,

set Same-seq(YX) to false.
9. RemoveRedundantFilters(G, G0)
10. Save G0 persistently and return G0

3

Algorithm 6.5.4 Resume

Input: Component DAG G0

Side E�ect: Resumes failed warehouse load using G
Let C be the tuples in the warehouse
1. Instantiate each re-extraction procedure in G0,

and each �lter in G0 with actual value of C
2. For each extractor E in G0

3. Invoke re-extraction procedure assigned to E
3

Figure 6.13: DR Algorithm

redundant if Y
f
X is guaranteed not to discard any tuples. Given a path P in G, with VU

preceding YX in P , Y
f
X in G0 is redundant if there is a �lter V

f
U in G0 and the following two

conditions hold:

1. V
f
U is of �lter type f (e.g., CP) and Y

f
X is of �lter type g (e.g., CS) and f � g or

f = g.

2. IdAttrs(VU) � IdAttrs(YX).

Once Y
f
X is detected as redundant, it is removed from G0. A brute force way to detect

redundant �lters is to consider each path in G0 and check the above conditions.

We now discuss how redundant �lters can be e�ciently detected. Recall that any �lter

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 190

Y
f
X assigned to YX can be one of four �lter types: CP , DP , CS, and DS. Since the re-

extraction procedures perform the same processing as the input parameter �lters, we say

that GetSu�x is of �lter type CP , GetDirtySu�x is of �lter type DP , GetSubset is of

�lter type CS, and GetDirtySubset is of �lter type DS. The GetAllInorder and GetAll

re-extraction procedures do not �lter any tuples and have no �lter types.

The key in removing a redundant �lter for YX is deducing the �lters that are already

\in e�ect" for YX due to previous �lters or re-extraction procedures. For instance, if a CP

�lter is assigned to XV , then YX will only receive a su�x of its normal operation input.

Thus, even if there is no �lter assigned to YX , a CP �lter is \in e�ect". If a CP �lter

is already \in e�ect", any Y
f
X �lter would be redundant since CP �lters discard the most

tuples. Similarly, if X is an extractor that is assigned GetSu�x, a CP �lter is already in

e�ect for YX , and any Y
f
X �lter would be redundant.

To capture the �lters that are in e�ect, we introduce a �eld YX :inEffect that contains

a set of �lter types for each input parameter YX . (Actually, inEffect also records the

attribute sets used by re-extraction procedures and input parameter �lters so that redundant

�lters can be compared appropriately.) Initially, the inEffect �eld of each input parameter

is set to f g by RemoveRedundantFilters in Lines 1{2 (Figure 6.14). The algorithm then

computes the �lter types in e�ect due to the re-extraction procedures in Lines 3{5. The

algorithm then processes the input parameters in topological order to ensure that the �lter

types \in e�ect" are computed correctly. In Lines 9{10, it checks if the �lter Y
f
X is redundant

because of previous �lters or re-extraction procedures. The e�ect of previous �lters or re-

extraction procedures is conveniently recorded in YX :inEffect. If Y
f
X is redundant, it is

removed from G0. Otherwise, Y
f
X stays and the type of �ltering it provides is recorded in

YX :inEffect (Lines 11{14).

We now analyze the complexity of DR. Let n be the number of nodes in G. Steps 2{8

of Design produce a topological ordering of the nodes in G and then traverse it. They

take O(n2) time. Detecting redundant �lters in step 9 also takes O(n3) time (see Appendix

B). Resume instantiates at most O(n2) �lters. Usually many fewer than O(n2) �lters are

created. Furthermore, we show in our experiments (Section 6.7) that even adding a single

�lter can dramatically improve performance. Subset �lters can be instantiated in O(jCj)

time, where jCj is the number of warehouse tuples. Pre�x �lters are instantiated in O(1)

time (with appropriate indices on warehouse tables). Therefore, DR runs in O(n2 � jCj+n3)

time.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 191

Algorithm 6.5.5RemoveRedundantFilters

Input: Component DAGs G, G0

Side e�ect: G0 with any redundant �lters removed
1. For each YX in G0

2. YX :inEffect f g
3. For each extractor E in G0

4. For each YE in G0

Let g be the �lter type of E in G0

Let E use the attribute set A in its re-extraction procedure
5. YE :inEffect YE :inEffect[fhg;Aig

6. For each YX in G in topological order

7. If Y f
X is in G0 Then

8. Let g be the �lter type of Y f
X . Let Y

f
X use the attribute set A

9. If there is a �lter type hf;A0i 2 YX :inEffect and f � g and A0 � A Then

10. Remove Y f
X from G0 and connect X to Y in G0 // redundant �lter removed

11. Else
12. YX :inEffect YX :inEffect [fhg;Aig

13. For each ZY in G

14. ZY :inEffect ZY :inEffect [YX :inEffect
3

Figure 6.14: Removing Redundant Filters

6.5.5 Correctness of DR

A correct load resumption algorithm produces the same set of tuples in the warehouse

as the original load would have, had there been no failures. By this de�nition, DR is

correct. DR only �lters tuples that are not needed to produce subsequent warehouse tuples.

Furthermore, no warehouse tuple in C is reproduced.

DR only �lters unneeded tuples because it relies on the properties de�ned in Section 6.4.

For instance, if Subset-feasible(YX) holds, then DR can safely �lter some YX tuples, knowing

that those tuples only contribute to a warehouse tuple already in C. DR ensures that none

of the C tuples is reproduced by guaranteeing that a CP or CS �lter is assigned. Since a

clean �lter removes all of the contributors to C tuples, none of the C tuples are reproduced.

Since the input parameter of W is guaranteed to be Subset-feasible and have non-empty

IdAttrs, DR can always assign it a CS �lter (if no other �lter assignment is possible).

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 192

6.6 DR and Logging

The DR algorithm does not log any transform output. However, it may be bene�cial in

many cases to log the output of some transforms. In our example, logging the one-tuple

output of transform TV is most likely bene�cial because we can avoid reprocessing the

input tuples to produce the total volume. In this section, we develop DR-Log that builds on

DR but may log some transform outputs. DR-Log uses the contents of the logs to possibly

assign additional �lters and assign more e�cient re-extraction procedures (than what DR

would have assigned). DR-Log needs to solve the following problems at design time:

1. How to use the logs in the �lters and re-extraction procedures; and

2. Where to put the logs.

We present DR-Log by answering the above questions in Sections 6.6.1 and 6.6.2. The

DR-Log we present here only handles component DAGs that do not have any components

that replicate their outputs. These component DAGs have the special property that there

is a unique path from any component to the warehouse inserter. A DR-Log that handles

general component DAGs is important future work.

In addition to the extractor, transform and warehouse inserter components, a new com-

ponent called a log inserter is used by DR-Log. A log inserter L functions similarly to a

warehouse inserter. That is, a log inserter L takes as input the output of either an extractor

or a transform, and inserts the input tuples in batches into a log. In DR-Log, the log insert-

ers log all of the input tuples, and all of the attributes of each input tuple. That is, if log

inserter L is placed after the component X , then L will log all of the tuples in XO in order,

and all of the attributes Attrs(XO) of each tuple. Investigating the use of log inserters that

log only summary information about their input is important future work.

A log inserter can be placed anywhere. However, a log inserter that is placed after

the penultimate component (i.e., the component that feeds the warehouse inserter) will log

tuples that are also stored in the warehouse. Thus, we do not consider placing a log after

the penultimate component. As a result, a log inserter is always placed after a component

X whose output is fed to some transform Y , and never before the warehouse inserter. So

that the processing of the component DAG is not disturbed, the log inserter placed after X

needs to forward the tuples it is logging to Y .

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 193

6.6.1 Using The Logs

To illustrate how DR-Log uses the various log contents, let us suppose that a log inserter

L is placed in between transforms X and Y (i.e., LX = YX = XO). At resumption time,

DR-Log starts by reading the contents CL of L's log and sending all of the CL tuples along

input YX . Based on the tuples in CL, a �lter placed by DR-Log can �lter any tuples coming

into X that contributed (only) to the CL tuples. This is because the tuples in CL do not

need to be reproduced. This �ltering is analogous to how DR �ltered input tuples based

on the warehouse tuples, except that now the tuples in the log are used as the basis of the

�ltering.

Adding the log inserter L between X and Y is especially useful if for some input pa-

rameter XV of X , IdAttrs(XV) has been computed as [] and XV is either Pre�x-feasible

or Subset-feasible. In this case, DR would have been unable to place a �lter at XV based

on warehouse tuples, or at any edge before XV in the load work
ow! However, in this case,

DR-Log is able to add �lters to XV based on the contents CL of L's log. These �lters remove

tuples based on what is in CL, and not on what is in the warehouse.

We now present the DR-Log algorithm in detail. We �rst discuss how the de�nitions of

Pre�x-feasible and Subset-feasible are modi�ed. Next, we present the de�nitions of Cand-

LogAttrs and IdAttrs which are analogous to the de�nitions of CandAttrs (De�nition 6.4.5)

and IdAttrs (De�nition 6.4.6), respectively. We then present the modi�cations to the As-

signFilter (Figure 6.11) and the AssignReextraction (Figure 6.12) procedures. Finally, we

present the overall DR-Log algorithm.

Modi�cations to Pre�x-feasible and Subset-feasible

Recall that Subset-feasible(YX) states that the YX tuples contribute to at most one ware-

house tuple. If the contributors along YX can be identi�ed (i.e., IdAttrs(YX) 6= []), then

because YX is Subset-feasible, some of the YX tuples can be �ltered based on the tuples in

the warehouse. The de�nition of Subset-feasible needs to be altered because it is possible

to �lter YX tuples if they contribute to at most one warehouse tuple, or to at most one

tuple in the nearest log. Note that because we focus on component DAGs that do not have

transforms that replicate their outputs, there is a unique path from YX to the warehouse.

Because there is a unique path, there can only be one log that is nearest to YX .

Subset-feasible is modi�ed as shown in De�nition 6.6.1. The de�nition of Pre�x-feasible

is modi�ed in a similar fashion (De�nition 6.6.2).

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 194

De�nition 6.6.1 (Subset-feasible(YX)) Given transform Y with input parameter YX ,

Subset-feasible(YX) = true if Y is the warehouse inserter. Otherwise, Subset-feasible(YX)

= true if there is a log inserter L that records XO (i.e., YX). Otherwise, Subset-feasible(YX)

= true if YX is map-to-one and 8ZY : Subset-feasible(ZY). Otherwise, Subset-feasible(YX)

= false. 2

De�nition 6.6.2 (Pre�x-feasible(YX)) Given transform Y with input parameter YX ,

Pre�x-feasible(YX) = true if Y is the warehouse inserter. Otherwise, Pre�x-feasible(YX) =

true if there is a log inserter L that records XO (i.e., YX). Otherwise, Pre�x-feasible(YX)

= true if YX is su�x-safe and 8ZY : Pre�x-feasible(ZY). Otherwise, Pre�x-feasible(YX) =

false. 2

CandLogAttrs and IdLogAttrs

Recall that IdAttrs(YX) gives the attributes of YX that can be used to �nd the YX contrib-

utors to warehouse tuples. We now de�ne IdLogAttrs(YX) which gives the attributes of YX

that can be used to �nd the YX contributors to the log tuples of the nearest log inserter.

Again, it is important to note that either there are no log inserters in the path from YX

to the warehouse, or there is a unique log inserter that is nearest to YX . The de�nition of

CandLogAttrs (De�nition 6.6.3) is very similar to CandAttrs (De�nition 6.4.5), except that

the logs are taken into account. Similarly, the de�nition of IdLogAttrs (De�nition 6.6.4) is

very similar to IdAttrsPerPath (De�nition 6.4.6).

De�nition 6.6.3 (CandLogAttrs(YX)) There are four possibilities for CandLogAttrs(YX).

1. If Y is the warehouse inserter, then CandLogAttrs(YX) = [].

2. Else if there is a log inserter L that takes as input X 's output (XO = LX = YX), then

CandLogAttrs(YX) = Attrs(YX).

3. Else if YX has hidden contributors, then CandLogAttrs(YX) = [].

4. Else, CandLogAttrs(YX) = CandLogAttrs(ZY) \Attrs(YX).

2

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 195

De�nition 6.6.4 (IdLogAttrs(YX)) There are �ve possibilities for IdLogAttrs(YX).

1. If Y is the warehouse inserter, then IdLogAttrs(YX) = [].

2. Else if there is a log inserter L that takes as input X 's output (XO = LX = YX), then

IdLogAttrs(YX) = KeyAttrs(YX).

3. Otherwise, if there is a log inserter in the path from YX to the warehouse, let P be

the unique path from YX to the nearest log inserter L.

If (KeyAttrs(YX) � CandLogAttrs(YX) and 8ZV 2 P : ZV has no spurious output

tuples),

then (IdLogAttrs(YX) = KeyAttrs(YX)).

4. Otherwise, if there is a log inserter in the path from YX to the warehouse, let P be

the unique path from YX to the nearest log inserter L. Let ZV 2 P but ZV 6= YX .

If (IdLogAttrs(ZV) 6= [] and IdLogAttrs(ZV) � CandLogAttrs(YX)),

then (IdLogAttrs(YX) = IdLogAttrs(ZV)).

5. Otherwise IdLogAttrs(YX) = [].

2

AssignFilter and AssignReextraction

Recall that DR assigned a �lter to YX if the contributors to the warehouse tuples C can

be identi�ed using IdAttrs(YX) (i.e., IdAttrs(YX) 6= []). Furthermore, the contributors

are �ltered only if DR knew that they were safe to �lter out (i.e., Subset-feasible(YX) or

Pre�x-feasible(YX)).

In the case of DR-Log, not only can it �lter YX tuples based on C, but it may also

�lter tuples based on the log contents CL of the log inserter L nearest to YX . That is,

DR-Log assigns a �lter to YX if the contributors to the log tuples CL can be identi�ed using

IdLogAttrs(YX) (i.e., IdLogAttrs(YX) 6= []). Furthermore, the contributors are �ltered

only if DR-Log knows that they are safe to �lter out (i.e., Subset-feasible(YX) or Pre�x-

feasible(YX)).

A �lter can conceivably discard tuples based on a combination of log tuples and ware-

house tuples. Here, we present a simple �lter assignment algorithm that chooses to use log

tuples over warehouse tuples whenever possible. This is because the log is likely to contain

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 196

Algorithm 6.6.1 AssignFilter

Input: Component DAG G0; input parameter YX
Output: Input parameter YX in G0 is assigned a �lter whenever possible

Let CL be the contents of the log inserter nearest to YX
1. If Pre�x-feasible(YX) and Subset-feasible(YX) and Same-seq(YX) and IdLogAttrs(YX) 6= []

2. Insert Y f
X = CP [Last(CL),IdLogAttrs(YX)] between Y and X in G0

3. Else If Pre�x-feasible(YX) and Same-seq(YX) and IdLogAttrs(YX) 6= []

4. Insert Y f
X = DP [Last(CL), IdLogAttrs(YX)] between Y and X in G0

5. Else if Subset-feasible(YX) and IdLogAttrs(YX) 6= []

6. Insert Y f
X = CS[CL, IdLogAttrs(YX)] between Y and X in G0

7. Else if Pre�x-feasible(YX) and IdLogAttrs(YX) 6= []

8. Insert Y f
X = DS[C, IdLogAttrs(YX)] between Y and X in G0

9{16. Lines 1{8 in Figure 6.15
3

Figure 6.15: Assigning Input Parameter Filters

more tuples and attributes since the log is \closer" to the edge YX than the warehouse.

The modi�ed AssignFilter and AssignReextraction procedures are shown in Figures 6.15

and 6.16, respectively.

DR-Log Details

The algorithm DR-Log is shown in Figure 6.17. DR-Log returns two component DAGs. The

�rst one, denoted Glog, is the same as G except that it may have log inserters assigned to

record the output of some of the transforms. Glog is used during normal operation. DR-Log

also returns G0, which is the same as G except it has �lters and reextraction procedures

assigned. G0 is used during recovery.

DR-Log uses a procedure AssignLogs discussed in the next section to assign the logs.

Once the logs are assigned, DR-Log proceeds very much like DR proceeds. That is, it

�rst computes IdAttrs, Subset-feasible, Pre�x-feasible and IdLogAttrs it the backward pass

(Line 2). Extractors are assigned using the modi�ed AssignReextraction procedure (Lines

3{4). The forward pass (Lines 5{10) of DR-Log is the same as DR except that the modi�ed

AssignFilter procedure is used.

At resumption time, DR-Log uses the contents of the logs and the warehouse to instan-

tiate the �lters and the extraction procedures. The failed warehouse load is re-strated by

�ring the extraction procedures.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 197

Algorithm 6.6.2 AssignReextraction

Input: Component DAG G0; extractor E
Side e�ect: Extractor E in G0 is assigned a re-extraction procedure
Let CL be the contents of the log inserter nearest to YX
1. If Pre�x-feasible(YE) and Subset-feasible(YE) and IdLogAttrs(YE) 6= [] and E

supports GetSu�x
2. Assign GetSu�x(Last(CL),IdLogAttrs(YE)) to E in G0

3. Else If Pre�x-feasible(YE) and IdLogAttrs(YE) 6= [] and E supports GetDirtySu�x
4. Assign GetDirtySu�x(Last(CL), IdLogAttrs(YE)) to E in G0

5. Else if Subset-feasible(YE) and IdLogAttrs(YE) 6= [] and E supports GetSubset
6. Assign GetSubset(CL, IdLogAttrs(YE)) to E in G0

7. Else if Pre�x-feasible(YE) and IdLogAttrs(YE) 6= [] and E supports GetDirtySubset
8. Assign GetDirtySubset(CL, IdLogAttrs(YE)) to E in G0

9{19. Lines 1{11 of Figure 6.12
3

Figure 6.16: Assigning Re-extraction Procedures

6.6.2 Log Placement

While using logs bene�ts load resumption, it incurs overhead during normal operation. In

deciding where to put the logs, the following factors need to be taken into account: the

amount of space available for logging tuples, the amount of normal operation overhead

allowed, and the time to complete a resumed load using the logs. Where to add logs to

a component DAG depends on which of these factors is most important. We do not give

a detailed cost model here. Instead, we present a cost-model independent log placement

algorithm that puts the least number of logs while achieving the most �ltering possible.

However, even though the number of logs is minimized, the normal operation overhead as

well as the space for logs may still be excessive. Thus, a cost-based log placement algorithm

is an important future work. The algorithm we present here, called AssignLogs, is run by

DR-Log (Line 1a, Figure 6.17) during design time. We also present some heuristics to guide

log placement.

The log placement algorithm is shown in Figure 6.18. It �rst computes IdAttrs(YX),

Pre�x-feasible(YX) and Subset-feasible(YX) for each edge YX in the component DAG. The

IdLogAttrs of each edge is also computed, but they are all [] since there are no logs initially.

The algorithm puts a log whenever there is an opportunity for �ltering (i.e., either Subset-

feasible(YX) or Pre�x-feasible(YX)) and neither the warehouse contents nor the contents of

logs already present can be used for identifying contributors (i.e., both IdAttrs(YX) and

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 198

Algorithm 6.6.3 Design and Log

Input: Component DAG G

Output: Component DAG Glog , G
0

1a. Glog AssignLogs(G)
1b. G0 G // copy G

2. Compute IdAttrs(YX), IdLogAttrs(YX),
Subset-feasible(YX), Pre�x-feasible(YX) for each input
parameter YX in reverse topological order based on Glog .

3. For each extractor E
4. AssignReextraction(G0,E)

5. For each input parameter YX in topological order
6. Compute Same-seq(YX) based on Glog

7. AssignFilter(G0,YX)
8. If YX is assigned a �lter,

set Same-seq(YX) to false on Glog .
9. RemoveRedundantFilters(G, G0)
10. Save Glog and G0 persistently and return G0 and Glog

3

Algorithm 6.6.4 Resume

Input: Component DAGs Glog , G
0

Side E�ect: Resumes failed warehouse load using Glog

Let C be the tuples in the warehouse
1. Instantiate each re-extraction procedure in G0,

and each �lter in G0 with actual value of the log tuples
closest to that �lter or procedure. If there is no log
that can be used, instantiate based on C

2. For each extractor E in G0

3. Invoke re-extraction procedure assigned to E
3

Figure 6.17: DR-Log Algorithm

IdLogAttrs(YX) are []). This way, the amount of �ltering is maximized. By processing

the transforms in reverse topological order, the logs are placed as close to the warehouse

as possible. This way, the contents of a log can potentially be used for �ltering in as many

edges of the component DAG as possible, minimizing the logs added to the component

DAG.

Since this simple log placement algorithm is oblivious of the complexity of the transforms

and the extractors, the following heuristics can be used to decide where to place additional

logs.

� If a transform X performs a complex computation that takes a long time to complete,

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 199

Algorithm 6.6.5 AssignLogs

Input: Component DAG G

Output: Component DAG Glog

1. Compute IdAttrs(YX), IdLogAttrs(YX), Subset-feasible(YX), Pre�x-feasible(YX)
for each input parameter YX in the component DAG in reverse topological order.
Also compute IdLogAttrs(EO) and IdAttrs(EO) for each extractor E in the
component DAG.

2. For each transform Y in reverse topological order
3. For each YX such that ((Subset-feasible(YX) or Pre�x-feasible(YX))

and (IdAttrs(YX) = [] and IdLogAttrs(YX) = [])
and (YX has no hidden contributors))

4. Create log L to log XO

5. Recompute IdLogAttrs for all edges of the component DAG
3

Figure 6.18: Log Placement Algorithm

add a log LX = XO. If the log contains the results of X , XO, at resumption time,

then the load can resume based on the contents of L alone. This implies that X

does not need to produce any output, and also does not require any input from the

the transforms or extractors that feed into it. Even if the log contains only part of

XO, it may still be possible to �lter inputs to X based on LX and only compute the

remaining portion of XO.

� If it takes a lot of e�ort to extract EO from a source and data extractor E, add a

log inserter LE = EO. Remote sources, legacy sources, and transient (e.g., newsfeed)

sources are good candidates to have their output logged. If the load fails but all of EO

is in the log at resumption time, then no re-extraction procedure is necessary for E.

6.7 Experiments

In this section, we present our experiments that compares DR to other recovery algorithms

in terms of normal operation overhead and recovery cost. Although we did not measure

the overhead and recovery cost of DR-Log, the performance of DR-Log should be similar to

DR-Save, which we introduce shortly. We also show that the properties on which DR relies

are quite common.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 200

6.7.1 Study of Transform Properties

Sagent's Data Mart 3.0 is commercial software for constructing component DAGs for ware-

house creation and maintenance. It provides 5 types of warehouse inserters, 3 types of

extractors, and 19 transforms. The software also allows users to create their own trans-

forms.

All three extractors support GetAllInorder and GetAll, but only the \SQL" Extractor

supports GetSu�x, GetDirtySu�x, GetSubset and GetDirtySubset. Of the 19 transforms,

15 have one input parameter, and the other 4 have two input parameters, for a total of

23 input parameters. Figure 6.19 shows a summary of the properties that hold for the 19

transforms and the 23 input parameters. The 19 transforms include Sagent's implemen-

tations of conventional operations used in databases, such as selection, projection, union,

aggregation, and join.

� 100% (19 out of 19) of the transforms are in-det-out.

� 95% (18 out of 19) of the transforms have no spurious output.

� 91% (21 out of 23) of the input parameters are map-to-one.

� 78% (18 out of 23) of the input parameters are su�x-safe.

� 17% (4 out of 23) of the input parameters are set-to-seq (i.e., perform sorting).

� 100% (23 out of 23) of the input parameters have no hidden contributors.

Figure 6.19: Properties of Sagent Transforms and Input Parameters

Some of these properties, like su�x-safe, are actually declared by Sagent. Other prop-

erties were deduced easily from the Sagent manuals that specify the transforms. The statis-

tics in Figure 6.19 imply that the transitive properties Subset-feasible (due to map-to-one),

Pre�x-feasible (due to su�x-safe) and Same-seq (due to in-det-out and set-to-seq) hold for

many component DAG scenarios.

6.7.2 Resumption Time Comparison

We performed experiments using Sagent's Data Mart 3.0 to construct various component

DAGs. The software ran on a Dell XPS D300 with a Pentium II 300 MHz processor and

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 201

64 MB of RAM.

Lookup
Key

Lookup
Key

Lookup
Key

TPC-D
Lineitem

SQL
Extractor

warehouse
store

Lookup
Key Batch

Loader

Prefix-feasible
Subset-feasible

Figure 6.20: Fact Table Creation DAG

Extractor
SQL

Pivot

Rename
Loader
Batch

Extractor
SQL

Extractor
SQL

Join

Join

Expr
Calc

TPC-D
Customer

storeTPC-D

TPC-D
Order

warehouse

Lineitem Subset-feasible
Prefix-feasible

Figure 6.21: TPC-D View Creation DAG

We designed three types of component DAGs. One type of component DAG loads di-

mension tables, e.g., the Customer and Supplier TPC-D tables [Com]. Dimension tables

typically store data about entities like customers. Another type of component DAG loads

fact tables, e.g., the Order and Lineitem TPC-D tables. Fact tables typically store trans-

actional data. The last type of component DAG loads materialized views that contain the

answers to queries, e.g., TPC-D queries. Since the results of the dimension and fact table

scenarios were very similar, we only present results for the fact table and the TPC-D mate-

rialized view scenarios. The component DAGs for loading the TPC-D fact table Lineitem,

and the materialized view for the TPC-D query Q3 are shown in Figures 6.20 and 6.21 re-

spectively. Query Q3, the \shipping priority query," joins 3 tables and performs a GROUP

BY and a SUM of revenue estimates.

Experiment 1

In the �rst experiment, we compared the resumption times of DR, Redo, and the algorithm

used by Informatica ([Inf]), denoted Inf, for the Lineitem DAG (Figure 6.20). Recall that

Inf �lters the input to the inserter \BatchLoader" based on the warehouse tuples. No other

�lters are employed by Inf. The three algorithms compared impose no overhead during

normal operation but can handle complex work
ows. That is, all the algorithms are in the

lower right quadrant of Figure 6.2 (Section 6.1). Furthermore, we studied \variants" of DR

by assuming di�erent properties for the component DAG.

� Variant DRsrc: DRsrc pushes �ltering to the re-extraction procedure at the source.

In Figure 6.20, the transform properties show that KeyLookupSQLExtractor is both

Pre�x-feasible and Subset-feasible, and the extractor for Lineitem supports GetSu�x.

Therefore, DRsrc assigns GetSu�x to the Lineitem extractor.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 202

Inf
DRsub

DRpre

DRsrc

Redo

% Loaded Before Failure

R
es
u
m
p
ti
o
n
T
im
e
(s
ec
)

1009080706050403020100

110
100
90
80
70
60
50
40
30
20
10
0

Figure 6.22: Resumption Time (Lineitem)

Inf
DRsub

DRpre

DRsrc

Redo

% Loaded Before Failure

R
es
u
m
p
ti
o
n
T
im
e
(s
ec
)

1009080706050403020100

55
50
45
40
35
30
25
20
15
10
5

Figure 6.23: Resumption Time (Q3)

� Variant DRpre: DRpre assigns a pre�x �lter immediately after the Lineitem source.

In Figure 6.20, DRpre places a clean-pre�x �lter between the Lineitem extractor and

KeyLookup. This component DAG will be constructed when the Lineitem extractor

does not support GetSu�x.

� Variant DRsub: DRsub assigns a subset �lter immediately after the Lineitem source.

In Figure 6.20, DRsub assigns a clean-subset �lter to KeyLookupSQLExtractor.

We compared Redo, Inf and the variants of DR under various failure scenarios. More

speci�cally, we investigated scenarios where 0%, 20%, 40%, 60%, 80% and 95% of the

warehouse table is loaded when the failure occurs. For example, since Lineitem has 60,000

tuples (i.e., 0.01 TPC-D scaling), we investigated failures that occurred after loading 0

to 57,000 tuples. A low scaling factor was used so that the experiment can be repeated

numerous times.

The results are shown in Figure 6.22, which plots the resumption time of Inf, Redo,

DRsrc, DRpre and DRsub as more tuples are loaded into the warehouse before the failure.

As expected, DRsrc, DRpre and DRsub all perform better than Redo once 20% (or more)

of the Lineitem tuples reach the warehouse. For instance, when Lineitem is 95% loaded,

DRsrc resumes the load 10.4 times faster than Redo, DRpre resumes the load 3.68 times

faster, and DRsub resumes the load 2.35 times faster. The variants of DR also resume

the load signi�cantly faster than Inf. For instance, when Lineitem is 95% loaded, DRsrc

resumes the load 6.46 times faster than Inf, DRpre resumes the load 2.28 times faster, and

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 203

DRsub resumes the load 1.45 times faster. On the other hand, when none of the Lineitem

tuples reach the warehouse before the failure, Inf, DRsub, and DRpre perform worse than

Redo because of the overhead of the �lters they use. More speci�cally, when Lineitem is

0% loaded, Redo is 1.12 times faster than DRpre, 1.10 times faster than DRsub, and 1.12

times faster than Inf. The overhead of the �lters can be minimized by improving their

implementation. DRsrc which pushes the �ltering to the Lineitem source, is almost as fast

as Redo when the warehouse table is 0% loaded. Preliminary experiments using 1.0 TPC-D

scaling show very similar relative improvements by the DR variants over Redo when enough

Lineitem tuples are loaded.

Among the three DR variants, DRsrc performs the best since it �lters the tuples the

earliest. DRsub performs worse than DRpre because of the overhead of the anti-semijoin

operation employed by DRsub's subset �lters. Furthermore, the next experiment will show

that DRpre �lters more tuples than DRsub.

Experiment 2

The second experiment is similar to the �rst but considers the Q3 DAG (Figure 6.21). The

results are shown in Figure 6.23. As in the �rst experiment, DRpre and DRsrc perform

better than Redo once 20% (or more) of the warehouse table tuples is loaded. For instance,

when the warehouse table is 95% loaded, DRsrc is 5:03 times faster than Redo, and DRpre

is 1:55 times faster than Redo. However, DRsub and Inf perform worse than Redo regardless

of how many tuples are loaded. For instance, Redo is 1.22 times faster than DRsub when

the warehouse table is 60% loaded. The reason why DRsub and Inf do not perform well is

that query Q3 is very selective, and many of the source tuples extracted do not contribute

to any warehouse tuple. Since subset �lters can only remove tuples that contribute to a

warehouse tuple, the �lters used by DRsub do not remove enough tuples to compensate for

the cost of the �lter. Similarly, the �lter used by Inf removes tuples based only on the

warehouse tuples. Just like DRsub, Inf does not �lter many tuples.

Experiment 3

In the third experiment, we examined the normal operation overhead of a recovery algorithm

that is based on savepoints. Such an algorithm is a representative of the algorithms in the

upper right quadrant of Figure 6.2 (Section 6.1). We again considered the Lineitem and

Q3 component DAGs. For the former component DAG, we introduced 1 to 3 savepoints.

For instance, the �rst savepoint records the result of the �rst \KeyLookup" transform. The

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 204

results are shown in Figure 6.24. Without savepoints, the Lineitem table is loaded in 94.7

seconds. As the table shows, one savepoint makes the normal operation load 1:76 times

slower, two savepoints make the normal load 2:6 times slower, and three savepoints make

the normal load 3:3 times slower. On the other hand, the algorithms compared in the �rst

two experiments (e.g., DR) have no normal operation overhead, and do not increase the

load time.

For the Q3 DAG, we also introduced 1 to 3 savepoints. The �rst savepoint records

the result of the �rst \Join" transform, the second records the result of the second \Join"

transform, and the third records the result of the \Pivot" and \Rename" transform. The

normal operation overhead of the savepoints is tolerable for this component DAG. Even

with three savepoints, the normal operation load is only about 1:08 times slower. The

reason why the savepoints do not incur much overhead is that the \Join" transforms are

very selective. Hence, only few tuples are recorded in the savepoints. More speci�cally, the

�rst savepoint records 1344 tuples, the second records 285 tuples, and the third records 103

tuples.

Savepoints Load Time (s) % Increase
Load Time

0 94.7 0%

1 166.4 75:7%

2 245.9 159:7%

3 314.0 231:6%

Figure 6.24: Savepoint Overhead

(Lineitem)

Savepoints Load Time (s) % Increase
Load Time

0 43.8 0%

1 46.1 5:3%

2 46.9 7:1%

3 47.2 7:8%

Figure 6.25: Savepoint Overhead (Q3)

Experiment 4

In the fourth experiment, we compared the resumption time of DR against an algorithm

based on savepoints, denoted Save. We compared the two algorithms under various failure

scenarios. For instance, for DR we would load the warehouse using the Lineitem DAG, and

stop the load after tfail seconds. To simulate various failure scenarios, we would vary tfail.

We then resumed the load using DR and recorded the resumption time. For Save, we would

load the warehouse using the same Lineitem DAG, but with savepoints. We also stop the

load after tfail seconds. We then resumed the load using any completed savepoints. We

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 205

again considered the Lineitem and Q3 DAGs. In the case of Save, we used two savepoints

for each component DAG.

The result for the Lineitem DAG is shown in Figure 6.26 which plots the resumption

time of DR and Save as tfail is increased. The graph shows that Save's resumption time

improves in discrete steps. For instance, when tfail < 79 seconds, the �rst savepoint has

not completed and cannot be used. Once tfail > 79 seconds, the �rst savepoint can be used

to make resumption more e�cient. For the Lineitem DAG, DR is more e�cient than Save

in resuming the load. This is because the warehouse table is populated early in the load,

and DR can use the warehouse table tuples to make resumption e�cient.

The result for the Q3 DAG is shown in Figure 6.27. Again, Save's resumption time

improves in discrete steps based on the completion of the savepoints. For this DAG, DR's

resumption time does not improve until tfail is near 43 seconds (when the load completes).

This is because the second \Join" transform takes in excess of 30 seconds to produce its

�rst output tuples. As a result, the warehouse table is not populated until the load time

is near 43 seconds. For this DAG, Save is slightly more e�cient than DR in resuming the

load for many values of tfail. Unfortunately, both Save and DR do not perform well.

To improve the resumption performance, a hybrid algorithm that combines the features

of Save and DR can be employed. The two savepoints employed by Save essentially parti-

tion the Q3 DAG into three \sub-DAGs." However, Save does not make use of incomplete

savepoints to improve resumption. On the other hand, DR can be used to treat an incom-

plete savepoint and the \sub-DAG" that produced it as if it was a warehouse table being

loaded by a component DAG. The performance of the hybrid algorithm, denoted DR-Save,

is plotted in Figure 6.27. For most values of tfail, DR-Save is better than either Save or

DR.

Experiment 5

In the �fth experiment, we examined the normal operation overhead of a recovery algorithm

that is based on batching. Such an algorithm is a representative of the algorithms in the

lower left quadrant of Figure 6.2 (Section 6.1). We again considered the Lineitem and Q3

component DAGs. For the former component DAG, we loaded Lineitem in three input

batches. The results are shown in Table 6.3. The table shows that batching results in a

signi�cant overhead especially when 4 or more batches are used.

For the Q3 DAG, we also loaded the target table using three input batches. The results

are shown in Table 6.4. Again, the table shows that batching results in a signi�cant overhead

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 206

DR
Save

tfail(sec)

R
es
u
m
p
ti
o
n
T
im
e
(s
ec
)

250200150100500

250

200

150

100

50

0

Figure 6.26: Save vs. DR (Lineitem)

DR-Save
DR
Save

tfail (sec)

R
es
u
m
p
ti
o
n
T
im
e
(s
ec
)

50454035302520151050

50

40

30

20

10

0

Figure 6.27: Save vs. DR (Q3)

especially when 4 or more batches are used. Hence, when it is possible to divide the input

into batches, one must be careful as to how many batches should be formed. A high

number of batches results in signi�cant normal operation overhead. On the other hand, a

low number of batches results in a longer (average) resumption time

Batches Load Time (s) % Increase
Load Time

1 94.7 0%

2 97.6 3:1%

3 104.8 7:4%

4 107.0 13:0%

5 113.0 19:3%

10 150.6 59:0%

Table 6.3: Batching Overhead (Lineitem)

Batches Load Time (s) % Increase
Load Time

1 43.8 0%

2 44.6 1:8%

3 44.9 2:5%

4 49.1 12:1%

5 54.2 23:7%

10 76.2 74:0%

Table 6.4: Batching Overhead (Q3)

Experiment 6

In the sixth experiment, we compared the resumption time of DR against an algorithm

based on batching, denoted Batch. The setup of this experiment is similar to the setup

in Experiment 4. That is, for DR we would load the warehouse using the designed DAG

and stop the load after tfail seconds. We then measure the resumption time of DR. For

Batch, we would load the warehouse by processing the input batches in sequence. For Batch,

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 207

DR
Batch

tfail(sec)

R
es
u
m
p
ti
o
n
T
im
e
(s
ec
)

100806040200

100

80

60

40

20

0

Figure 6.28: Batch vs. DR (Lineitem)

DR
Batch

tfail (sec)

R
es
u
m
p
ti
o
n
T
im
e
(s
ec
)

50454035302520151050

50

40

30

20

10

0

Figure 6.29: Batch vs. DR (Q3)

we used three input batches so that the normal operation overhead is tolerable. We then

measure the resumption time of Batch based on the input batches that have been processed

completely.

The result for the Lineitem DAG is shown in Figure 6.28 which plots the resumption

time of DR and Batch as tfail is increased. The graph shows that Batch's resumption time

improves in discrete steps. For instance, when tfail < 36 seconds, the �rst input batch has

not been processed completely. During resumption, the output based on the �rst input

batch is discarded, and the �rst input batched is reprocessed. Once tfail > 36 seconds,

the �rst input batch has been processed completely and does not need to be reprocessed

during resumption. For the Lineitem DAG, DR is surprisingly more e�cient than Batch in

resuming the load given that DR does not impose any normal operation overhead.

The result for the Q3 DAG is shown in Figure 6.29. Again, Batch's resumption time

improves in discrete steps based on the input batches that have been processed completely.

The performance of DR was already explained in Experiment 4 for this DAG. As Figure 6.29

shows, Batch performs better than DR for this DAG. The resumption time can also be

improved by combining DR and Batch together (as in DR-Save). However, for the Q3

DAG, the improvement is negligible.

Summary

We can draw a number of conclusions from the previous experiments.

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 208

� DR resumes a failed load much more e�ciently than Redo and Inf. DR is also
exible

in that the more properties exist, the more choices DR has and the better DR performs.

� There is a need for a \cost-based" analysis of when to use DR. For instance, if the

warehouse table is empty, Redo is better than both DR and Inf. However, as more

tuples are loaded, using DR becomes more and more bene�cial. Another reason why

a \cost-based" analysis is needed is that in some cases, subset �lters may not remove

enough tuples to justify the cost that the subset �lters impose when a load is resumed

(e.g., cost of performing an anti-semijoin).

� In many cases, savepoints (or snapshots) result in a signi�cant normal operation

overhead. When a batching algorithm is used, a careful selection of the number of

input batches is required because a batching algorithm can result in a signi�cant

normal operation overhead. However, if certain transforms of a component DAG are

very selective (i.e., few output tuples compared to input tuples), the overhead of

savepoints may be tolerable.

� For component DAGs that load dimension and fact tables, DR, despite having no

normal operation overhead, resumes the load more e�ciently than algorithms that

employ savepoints or batching. On the other hand, for component DAGs that do not

produce warehouse tuples immediately, using savepoints after very selective trans-

forms may be bene�cial. In this case, a hybrid algorithm that combines DR and

the savepoint-based algorithm can be used. For component DAGs that are simple

enough (so that input batches can be formed) but do not produce warehouse tuples

immediately, a batching algorithm may be best.

6.8 Chapter Summary

We developed a warehouse load resumption algorithm DR that performs most of its actions

during \design time," and imposes no overhead during normal operation. The Design

portion of DR only needs to be invoked once, when the warehouse load component DAG is

designed, no matter how many times the Resume portion is called to resume from a failure.

DR is novel because it uses only properties that describe how complex transforms process

their input at a high level (e.g., Are the tuples processed in order?). These properties

usually can be deduced easily from the transform speci�cations, and some of them (e.g.,

CHAPTER 6. RECOVERY OF THE LOAD PROCESS 209

keys, ordering) are already declared in current warehouse load packages. By performing

experiments under various TPC-D scenarios using Sagent's load facility, we showed that

DR leads to very e�cient resumption.

DR can also be used to identify \problem spots" in a component DAG, and suggest

modi�cations to make resumption more e�cient. For instance, in our example component

DAG, transform TV needs to reprocess all of its input because DR �nds that there are no

identifying attributes. Further, TV 's output is a single tuple, suggesting that saving the

result of TV is useful.

Although we have developed DR to resume warehouse loads, DR is useful for many

applications. In particular, if an application performs complex and distributed processing,

DR is a prime recovery algorithm candidate when minimal overhead is required. Since

previous algorithms either require heavy overhead during normal operation, or incur high

recovery cost, DR �lls the need for an e�cient lightweight recovery algorithm.

Chapter 7

WHIPS: A Data Warehouse

System Prototype

7.1 Introduction

In this chapter, we discuss the WHIPS (WareHouse Information Processing System) pro-

totype we have developed at Stanford. The goal of WHIPS is to serve as a framework

for prototyping and experimenting with our techniques for e�ciently updating the data

warehouse. WHIPS is not a new database management system. It is a distributed ap-

plication that runs on top of the database, and that manages view maintenance. WHIPS

uses a commercial RDBMS as its back-end database. Because of the
exibility of the back-

end RDBMS, there are many possible alternatives for representing and maintaining the

warehouse views.

In this chapter, we identify speci�c areas in which the back-end RDBMS provides

WHIPS
exibility in terms of view maintenance. These decision areas are often encountered

by developers of view maintenance software. Furthermore, any developer that is writing

software that needs to do bulk-updates on RDBMS tables will encounter the same decision

areas.

An example of such a decision area is how to install the changes to a view once the

changes are computed. Recall that in Chapter 3, we introduced the notion of a VDAG

\strategy," which is a sequence of Comp expressions (for computing changes) and Inst

expressions (for installing changes). In building WHIPS, we realized that there are many

ways of implementing the Inst expression. In Chapter 3, we focused on developing the

210

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 211

V1 V2 V3

V4

V5

Figure 7.1: Conceptual

Representation

S3:S2:S1:

1V V2 3 4 5V V V

W:

Warehouse
Data

Source
Data

Metadata

WHIPS

Lineitem Order Customer

Figure 7.2: Physical Representation

higher-level algorithms for choosing e�cient VDAG strategies, but we did not focus on the

details of executing the Inst expression. As we will see, there are many implementation

possibilities.

In this chapter, we discuss the decisions that were made when developing WHIPS, and

show experimentally why all of the decisions were reasonable ones. We present experiments

that show that by making the right decisions, WHIPS updates the warehouse much faster

than if we had made the wrong decisions. We begin the chapter with an overview of the

WHIPS architecture.

7.2 WHIPS Architecture

WHIPS is a data warehousing system that incrementally maintains the warehouse data.

Before we describe the components of WHIPS, we �rst discuss how the warehouse data is

conceptually modeled and physically stored by WHIPS.

7.2.1 Data Representation

The warehouse data in WHIPS is conceptually modeled using a VDAG. Figure 7.1 shows

a simple example of a VDAG with three base views (i.e., V1,V2,V3) and two derived views

(i.e., V4, V5). The source data from which the base views V1, V2, and V3 are derived from

are not in the VDAG. Figure 7.2 shows how WHIPS physically stores the data represented

by the VDAG in Figure 7.1. WHIPS stores the views V1 through V5 as tables in its back-end

RDBMS. WHIPS also keeps metadata in the RDBMS that records each view's de�nition.

All the information in the VDAG is captured in the metadata.

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 212

The metadata also stores information about the source data from which the base views

are derived. In WHIPS, each base view is de�ned over source data using a single SELECT-

FROM-WHERE (SFW) SQL statement. This simple base view de�nition language allows the

warehouse designer to �lter and combine source data by using appropriate selection and

join conditions in the WHERE clause. Aggregations are not permitted in base view de�nitions.

Each derived view is de�ned over other warehouse views using one or more SELECT-

FROM-WHERE-GROUPBY (SFWG) SQL statements. Multiple SFWG statements may be combined

using a UNION ALL SQL operator. Aggregations can be used in derived view de�nitions.

EXAMPLE 7.2.1 Let us suppose that there are three remote information sources S1, S2

and S3 as shown in Figure 7.2. Let the TPC-D tables Lineitem, Order, and Customer

reside in S1, S2 and S3 respectively. Base views V1, V2, and V3 at the warehouse can be

de�ned as projections over S1:Lineitem, S2:Order and S3:Customer as follows.

CREATE VIEW V1 AS

SELECT orderID, partID, qty, cost FROM S1:Lineitem

CREATE VIEW V2 AS

SELECT orderID, custID, date FROM S2:Order

CREATE VIEW V3 AS

SELECT custID, name, address FROM S3:Customer

Of course, selection and join operations can be speci�ed as well in the de�nitions of V1, V2

and V3. The derived view V4 may be de�ned to count the number of orders each customer

has made in 1998.

CREATE VIEW V4 AS

SELECT custID, COUNT(�)

FROM V2, V3

WHERE V2:custID = V3:custID AND V2:date >= 1=1=98 AND V2:date < 1=1=99

GROUPBY custID

2

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 213

RDBMS

S1 S2 S3

Integrator

Warehouse
Maintainer

W

WHIPS

Lineitem Order Customer

Extractor Extractor Extractor

Figure 7.3: WHIPS Components

7.2.2 Overview of WHIPS Components

Three types of components comprise the WHIPS system | the Extractor, the Integrator

and the Warehouse Maintainer. As mentioned previously, the WHIPS system also relies on

a back-end RDBMS to store the warehouse data. The WHIPS components, along with the

RDBMS, are shown in Figure 7.3. We now discuss the WHIPS components by giving an

overview of how the warehouse data is maintained when source data changes.

The Extractor component periodically detects the changes to the various source data. In

WHIPS, a Extractor component is constructed for each remote information source. Each

table or each �le that is referred to in the FROM clauses of the base view de�nitions is

monitored. Hence, in Figure 7.3, there are three Extractor components, and each one is

assigned to one of the remote information sources (S1, S2 or S3) in the working example.

For instance, the Extractor assigned to S1 detects the changes to the Lineitem table that

resides in S1.

One option for the Extractor component is to use the sort-merge outerjoin or window

algorithms developed in Chapter 2. In this case, WHIPS takes as input a source speci�cation

that includes the schema, which algorithm to use, and the period of change detection.

Periodically, the Integrator receives the deltas detected by the Extractor components,

and computes deltas to the base views stored in the warehouse. WHIPS assumes that the

sources are autonomous. Hence, unlike view maintenance in a centralized environment,

update anomalies may take place. The Integrator component uses the algorithms developed

in [ZGMHW95] to ensure that the deltas computed for the base views are consistent with

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 214

each other. The notion of consistency guaranteed by the WHIPS Integrator is de�ned in

[ZGMHW95]. The WHIPS Integrator does not perform any data cleansing that can often

be done by commercial cleansing tools. The WHIPS Integrator may need to send queries

back to the Extractor components to compute the base view deltas. Hence, in Figure

7.3, the bidirectional edges between the Integrator and Extractor components indicate that

messages and data are exchanged between the two components.

The Warehouse Maintainer component receives the base view deltas from the Inte-

grator, and computes the deltas to the derived views. The Warehouse Maintainer then

updates the materialized views based on the computed deltas. The Warehouse Maintainer

component uses the dual-stage VDAG strategies discussed in Chapter 3 for updating the

warehouse VDAG. To compute the derived view deltas and update the materialized views,

the Warehouse Maintainer sends a sequence of queries and other DML (Data Manipulation

Language) commands to the RDBMS. The queries are used for computing the deltas while

the DML commands (SQL INSERT and DELETE commands, cursor updates) are used for

updating the materialized views.

The interaction among the WHIPS components is similar when the warehouse data is

�rst initialized. First, the Extractor component identi�es the source data that is needed

in populating the warehouse based on the SFW view de�nitions of the base views. The

Integrator then computes a consistent set of initial base view data based on the source

data extracted by the Extractor components. The Warehouse Maintainer will then send

a sequence of DDL (Data De�nition Language) and DML commands to the RDBMS to

create the materialized views and populate them. The DDL commands (e.g., the CREATE

TABLE SQL command) are used for creating the materialized views. The DML commands

are used to populate the materialized views.

In the next section, we discuss the Warehouse Maintainer component in more detail.

We discussed the change detection algorithms employed by the Extractor component in

Chapter 2, as well as other methods of change detection. We refer the reader to [ZGMHW95]

for further discussion of the Integrator component.

7.3 Warehouse Maintainer

The Warehouse Maintainer is the software component that is responsible for initializing and

maintaining the warehouse data. Recall that in WHIPS, a back-end RDBMS is used for

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 215

orderID partID qty cost

1 a 1 20

1 b 2 250

1 a 1 20

Figure 7.4: DUP Representation (V
dup
1)

orderID partID qty cost dupcnt

1 a 1 20 2

1 b 2 250 1

Figure 7.5: COUNT Representation (V count
1)

storing the warehouse data. Because of the
exibility of the back-end RDBMS, there are

many possible ways for representing and maintaining the views. In Sections 7.3.1 through

7.3.3, we identify speci�c areas in which the back-end RDBMS provides the Warehouse

Maintainer
exibility in terms of view creation and maintenance. For each area, we discuss

the approach taken by the WHIPS Warehouse Maintainer. We summarize in Section 7.3.4.

7.3.1 View Representation

Since the views in WHIPS are de�ned using SQL SFWG statements and SQL supports bag

semantics, each view can contain a bag of tuples. There are two ways to represent a

bag of tuples. One representation, which we call the DUP representation, simply keeps

the duplicate tuples as shown in Figure 7.4. Another representation, which we call the

COUNT representation, keeps one copy of each unique tuple but keeps track of the number

of duplicates in a special dupcnt �eld as in Figure 7.5. Let us denote a view V 's COUNT

representation as V count and its DUP representation as V dup.

Clearly, the COUNT representation has lower storage costs if there are a lot of duplicates

and if the rows in V are large enough so that the storage overhead of having a dupcnt �eld is

not signi�cant. The reduction in storage achieved by using V count instead of V dup may speed

up selection, join and aggregation operations on V . Thus, any maintenance expression that

uses these operations is potentially faster when the underlying views are in the COUNT

representation. However, projections may be slowed down when the COUNT representation

is used. To see this, let us consider the following operation that lists the orderID's in V count
1 .

SELECT orderID FROM V count
1

Clearly, the answer to the above query is not in COUNT representation. For the answer to

be in COUNT representation, we need to group the tuples with matching orderID attribute

values and sum up their dupcnt values as follows:

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 216

SELECT orderID, SUM(dupcnt) AS dupcnt FROM V count
1 GROUPBY orderID

Thus, whenever a projection operation is used, an aggregation operation is necessary to

produce an answer in COUNT representation.

Using the COUNT representation can also signi�cantly slow down the installation of the

insertions to a view V . Under the DUP representation, the tuples in 4V dup are inserted

into V dup using a single SQL INSERT DML command. Under the COUNT representation,

each inserted tuple tins in 4V
count results in either an update or an insertion to V count. If

there is a tuple in V count that matches tins, we increment the matching V
count tuple's dupcnt

by tins:dupcnt. Otherwise, we insert tins into V
count. The entire 4V count can be processed

using one UPDATE statement and one INSERT statement, both with expensive correlated

subqueries. There are other ways to install 4V count, but installing 4V dup is always much

simpler.

On the other hand, installing the deletions of a view V , denoted 5V , basically requires

performing a join between V and 5V under both the COUNT and DUP representations.

(There are other complications in installing deletions under the DUP representation, which

we return to in Section 7.3.2.) If the COUNT representations of V and5V are much smaller

than their DUP representations, then installing deletions under the COUNT representation

may be faster because less data is processed.

WHIPS Approach: Although it seems that the COUNT representation has many bene-

�ts, we use the DUP representation in WHIPS for the following reasons.

� It is often the case that the views have keys and do not have duplicates. For instance,

dimension tables and fact tables, which are modeled as base views, often have keys.

Summary tables (or derived views) often perform group-by operations and the group-

by attributes are the keys of the summary tables. Thus in many cases, the views will

not have duplicates. In these cases, the DUP representation will incur lower storage

costs than the COUNT representation because the DUP representation does not use

dupcnt �elds.

� As we will show experimentally in Section 7.4, installing insertions under the COUNT

representation is signi�cantly more expensive than installing insertions under the DUP

representation. Since insertions are the most common changes in data warehousing

applications, it is important in WHIPS to install insertions e�ciently.

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 217

� As we will show experimentally in Section 7.4, even when there are duplicates, com-

puting the deltas of the views under the COUNT representation does not signi�cantly

outperform delta-computation under the DUP representation. In fact, if the average

number of duplicates is low (i.e., 2 or 3), using the DUP representation may be better.

Henceforth, V refers to the DUP representation V dup unless speci�ed otherwise.

7.3.2 Deletion Installation Under DUP Representation

If V does not have duplicates, the deletions to V , denoted 5V , can be installed using

a single SQL DELETE DML command. We illustrate the command required by installing

deletions to V1 in our working example.

DELETE FROM V1

WHERE (V1:orderID, V1:partID) IN (SELECT orderID, partID FROM 5V1)

The above statement assumes horderID; partIDi comprise V1's key. Clearly, the WHERE

clause can be changed appropriately to handle keys with arbitrary number of attributes.

For conciseness, we denote the method of installing deletions using a single SQL DELETE

statement as SQL-delete.

Unfortunately, SQL-delete is incorrect when V1 has duplicates. Even assuming V1 has

only the two attributes orderID and partID, the above example DELETE statement may

delete more tuples than necessary. That is, for each tuple tdel in 5V1, all (instead of just

one) of the V1 tuples that match tdel on orderID and partID are deleted. This is the

semantics of the DELETE statement under the SQL standard.

Hence in general, to install 5V , a cursor on5V is required. For each tuple tdel examined

by the cursor, a cursor on V is instantiated to �nd the �rst V tuple t that matches tdel.
1

Only tuple t is deleted from V . For conciseness, we call this method cursor-delete.

WHIPS Approach: While cursor-delete is necessary when V has duplicates, it seems like

overkill when V has no duplicates. Thus, in WHIPS, we use SQL-delete in cases where

V is guaranteed to have no duplicates. For instance, if V is de�ned by performing group-

by operations, then the group-by attributes are guaranteed to be V 's key. If V can have

duplicates, a cursor-delete is used to install V 's deletions. We will compare the performance

of cursor-delete and SQL-delete in Section 7.4.

1The cursor on V can be avoided if the back-end RDBMS supports queries on row ID's, or provides some

mechanism of restricting the number of rows processed by queries.

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 218

orderID partID qty cost

1 a 1 20

1 b 2 250

2 a 1 20

3 c 1 500

Table 7.1: V1

partID revenue cnt

a 40 2

b 500 1

c 500 1

Table 7.2: ByParts

7.3.3 Maintenance Expressions

The maintenance expression of any view de�ned using an SQL SFW statement (without

sub-queries) is well known ([GL95]) and we do not discuss it here. For views de�ned using

SQL SFWG statements (i.e., views with group-by operations and aggregations), they can be

maintained using the summary-delta algorithm [MQM97]. We now illustrate how summary-

deltas are computed and installed.

EXAMPLE 7.3.1 In this example, let us suppose that view V1 contains the tuples shown

in Table 7.1. View ByParts is de�ned over V1 to group the V1 tuples by partID. (View

ByParts was not in the previous examples.) The revenue of each part is reported in

ByParts by summing up the product of qty and cost for each order for that particular

part. Also, ByParts counts the number of V1 tuples that are used to derive each ByParts

tuple. This cnt �eld is useful in determining when a ByParts tuple t needs to be deleted

because all of the V1 tuples that derive t were deleted from V1. If the cnt �eld is not included

in ByParts's de�nition, WHIPS automatically modi�es the view de�nition to include the

cnt �eld to ensure that ByParts can be incrementally maintained. The view de�nition of

ByParts is as follows.

CREATE VIEW ByParts AS

SELECT partID, SUM(qty � price) AS revenue, COUNT(�) AS cnt

FROM V1

GROUPBY partID

The tuples in ByParts are shown in Table 7.2.

Let us suppose that the tuples shown in Table 7.3 are to be inserted into V1, and the

ones shown in Table 7.4 are to be deleted. Note that tuple h1; a; 1; 20i in 5V1 and the tuple

h1; a; 2; 20i in 4V1 together represent an update wherein the qty of a parts purchased in

the �rst order (orderID = 1) is increased from 1 to 2.

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 219

In the summary-delta algorithm, a compute phase is used to determine the \e�ect" of

4V1 and 5V1 on ByParts. The e�ect is captured in a summary-delta denoted ByPartsSD

and computed as follows.

SELECT partID, SUM(revenue) AS revenue, SUM(cnt) AS cnt

FROM (

(SELECT partID, SUM(qty � price) AS revenue, COUNT(�) AS cnt

FROM 4V1

GROUPBY partID)

UNION ALL

(SELECT partID, -SUM(qty � price) AS revenue, -COUNT(�) AS cnt

FROM 5V1

GROUPBY partID))

The summary-delta basically applies the group-by and aggregation operations speci�ed in

the de�nition of ByParts on 4V1 and 5V1. Note that the aggregate values computed from

5V1 are negated to re
ect the e�ect of deletions on the SUM, COUNT and AVG functions.

(Functions MAX and MIN cannot be incrementally maintained in general.)

Given the 4V1 and 5V1 shown in Tables 7.3 and 7.4, the summary-delta is shown in

Table 7.5. Tuple ha; 20; 0i a�ects ByParts by changing the ByParts tuple for part a, and

increasing the tuple's revenue by 20 and the tuple's cnt by 0. This procedure makes sense

because as mentioned earlier, the number of a parts in the �rst order was increased from 1

to 2. Hence, the revenue for a parts must increase by 20. The cnt is unchanged because

there is still the same number of V1 tuples that derive the ByParts tuple for part a.

Tuple hb;�500;�1i of the summary-delta states that for the tuple with a partID of b,

its revenue must be decreased by 500, and its cnt is decreased by 1. Intuitively, this is due

to the deletion of tuple h1; b; 2; 250i from V1 (see 5V1). Also, the ByParts tuple for part b

needs to be deleted if its cnt attribute becomes zero after it is decreased by 1. This makes

sense because all of the V1 tuples that the ByParts tuple for part b was derived from were

deleted.

Tuple hc; 500; 1i of the summary-delta states that for the tuple with a partID of c, its

revenue must be increased by 500, and its cnt is increased by 1. Intuitively, this is due to

the insertion of tuple h4; c; 1; 500i into V1 (see 4V1).

Finally, tuple hd; 30; 1i of the summary-delta needs to be inserted into ByParts since

there is no ByParts tuple with a partID of d so far. The install phase of the summary-delta

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 220

orderID partID qty cost

1 a 2 20

4 c 1 500

4 d 1 30

Table 7.3: 4V1

orderID partID qty cost

1 a 1 20

1 b 2 250

Table 7.4: 5V1

partID revenue cnt

a 20 0

b -500 -1

c 500 1

d 30 1

Table 7.5: ByPartsSD

algorithm changes ByParts by instantiating a cursor on the summary-delta, and applying

the appropriate changes to ByParts based on the current tuple examined by the cursor. 2

There are two problems in using the summary-delta algorithm. First, as illustrated in the

previous example, the install phase of the summary-delta algorithm is tuple-oriented. Since

the compute phase processes delta tables (e.g., 4V1 and 5V1) which are relatively small,

computing the summary-delta is potentially fast, and the install can become the bottleneck.

Reference [Qua97] developed a method for alleviating this �rst problem. (The method

developed is discussed in Section 7.5.) The second problem is that when the algorithm (as

presented in [MQM97]) is used to maintain a view V , the algorithm does not explicitly

compute the insertions and deletions to V . In the example, delta tables 4ByParts and

5ByParts are not explicitly computed by the summary-delta algorithm. Delta tables

4ByParts and 5ByParts would be useful if there are views de�ned on ByParts that

need to be maintained due to the changes to ByParts.

WHIPS Approach: For a view V de�ned using a SFW statement, WHIPS uses standard

maintenance expressions ([GL95]) to incrementally maintain V . For SFWG views, WHIPS

does not use the summary-delta algorithm. Instead, WHIPS uses an algorithm that has

a more e�cient install phase than the summary-delta algorithm. However, the algorithm

we use may process more tuples during the compute phase. Another advantage of our

algorithm is that for each SFWG view V , it computes a 4V and a 5V that can easily be

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 221

used to compute changes of the views de�ned on V . The next example illustrates the

algorithm employed by WHIPS.

EXAMPLE 7.3.2 In this example, we show how ByParts is maintained in WHIPS. First,

the summary-delta is computed as before (see Table 7.5). Using the summary-delta (i.e.,

ByPartsSD), 5ByParts is computed as follows.

INSERT INTO 5ByParts

SELECT *

FROM ByParts

WHERE partID IN (SELECT partID FROM ByPartsSD)

That is, anyByParts tuple that is a�ected by the summary-delta is inserted into5ByParts,

and deleted later from ByParts in the install phase. Given the summary-delta shown in

Table 7.5, the resulting 5ByParts is shown in Table 7.6. Since any SFWG aggregate view

like ByParts has no duplicates, 5ByParts can be installed e�ciently using SQL-delete

(Section 7.3.2).

Note that the SQL INSERT statement above used a join operation to compute5ByParts.

The delta table 5ByParts is then installed using an SQL-delete that also uses a join op-

eration. The join operations employed by the WHIPS method are speci�ed declaratively

and can be processed in a set-oriented fashion. On the other hand, recall that the join

operation used by the summary-delta algorithm is speci�ed using a cursor over one of the

join operands. This results in a tuple-oriented processing of the join operation.

The insertions 4ByParts are computed by applying ByPartsSD to 5ByParts. First,

we take the union of ByPartsSD and 5ByParts. The result of this union is shown in

Table 7.7. Then, we group the tuples by partID, sum up their revenue values and cnt

values, and �lter out those groups with cnt less than one. The 4ByParts computed is

shown in Table 7.8. For instance, the tuple ha; 40; 1i in 4ByParts is obtained by combining

the two tuples for part a in Table 7.7. On the other hand, there is no tuple for part b in

4ByParts since the sum of the cnt values in Table 7.7 for part b is zero. Again, a cnt of

zero implies that the ByParts tuple for part b is to be deleted. The SQL statement below

can be used to compute 4ByParts.

SELECT partID, SUM(revenue) AS revenue, SUM(cnt) AS cnt

FROM (

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 222

partID revenue cnt

a 20 1

b 500 1

c 500 1

Table 7.6: 5ByParts

partID revenue cnt

a 20 0

b -500 -1

c 500 1

d 30 1

a 20 1

b 500 1

c 500 1

Table 7.7:

ByPartsSD [5ByParts

partID revenue cnt

a 40 1

c 1000 2

d 30 1

Table 7.8: 4ByParts

(SELECT *

FROM ByPartsSD)

UNION ALL

(SELECT *

FROM 5ByParts))

GROUPBY partID

HAVING SUM(cnt) > 0

The tuples in 4ByParts can then be inserted using a single SQL INSERT statement; no

cursors are needed. 2

Although the example illustrated how WHIPS maintains a speci�c aggregate view V , it

is not hard to show that the WHIPS strategy can handle views with arbitrary combinations

of SUM, COUNT and AVG aggregate functions. Just like the summary-delta algorithm, WHIPS

will in general need to recompute aggregate views with MAX or MIN.

To summarize, given an aggregate view V , WHIPS computes 4V and 5V explicitly,

which enable WHIPS to perform the install phase using SQL-delete and a single SQL

INSERT statement. In comparison, the summary-delta algorithm uses a cursor to apply

custom changes to V depending on whether the tuple in the summary-delta of V is an

insertion, an update, or a deletion.

In Section 7.4, we compare the performance of the summary-delta algorithm against

that of the algorithm used by WHIPS. We also compare these incremental maintenance

algorithms against fully and partially recomputing the SFWG view from scratch.

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 223

7.3.4 Summary

In the previous sections, we have identi�ed three areas in which for WHIPS we needed to

make critical decisions on view maintenance.

1. Choice of view and delta table representation (Section 7.3.1)

2. Choice of installation algorithm (Sections 7.3.1 and 7.3.2)

3. Choice of maintenance algorithm and expressions (Section 7.3.3)

We believe that in WHIPS we have made sound choices in the areas listed above. Our

maintenance algorithm (i.e., the third area) could be improved further by considering key

and referential integrity constraints. Constraints were not taken into account in WHIPS

because the rewriting of the maintenance expressions in the presence of constraints can be

done by the underlying query optimizer, as demonstrated in [Vis98].

7.4 Experiments

In Section 7.3, we discussed the three areas in which we needed to make critical decisions for

the WHIPS prototype. We now evaluate the various decisions that were made in WHIPS

through experiments.

Experiments outline: The outline of the experiments is as follows.

1. View representation. In Section 7.4.1, we evaluate the performance of computing and

installing deltas under the COUNT and DUP representations.

2. Deletion installation. In Section 7.4.2, we compare the performance of SQL-delete

and cursor-delete.

3. Aggregate maintenance expressions. In Section 7.4.3, we compare the performance of

the summary-delta and the WHIPS aggregate-view maintenance algorithm. We also

compare these algorithms against fully and partially recomputing aggregate views

from scratch.

Performance measurement strategy: Recall that WHIPS sends a sequence of queries,

DML statements, and cursor-fetches to the back-end RDBMS to maintain the data ware-

house. In the experiments, we measured the time it took the back-end RDBMS to run

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 224

the commands sent by WHIPS. It is reasonable to focus on this time because it represents

the bulk of the time spent in updating the data warehouse. For instance, WHIPS needs

to traverse the data structure representing the VDAG to determine the order in which the

views should be maintained. However, the time it takes for WHIPS to traverse the VDAG

is negligible and is ignored in the experiments. Methods that are not used by WHIPS (e.g.,

installation of deltas under COUNT representation) were simulated. That is, we created

a script containing the sequence of commands that would have been sent to the back-end

RDBMS had those methods been used by WHIPS. The back-end RDBMS used was Oracle

8.0 running on a Windows NT machine with a Pentium II processor. The size of the bu�er

cache assigned to Oracle was 234 MB.

Base views used: The base views used in the experiments are copies of the TPC-D

tables Order and Lineitem. For conciseness, we call the base views O for Order and L for

Lineitem. The derived views vary from one experiment to the next. A TPC-D scaling of

0.1 was used. Hence, L is about 75 MB, and O is about 17 MB. More speci�cally, there are

600,000 L tuples, and each tuple is 124 bytes large on average. There are 150,000 O tuples,

and each tuple is 113 bytes large on average.

7.4.1 View Representation

In the �rst experiment, we compared the installation time of the deltas of base view L

under both the COUNT and DUP representations. Recall that in WHIPS, we use the

DUP representation. In the experiment, we varied the update percentage of L from 1%

to 10%. An update percentage of k% implies that (k=100) � jLj tuples are inserted and

(k=100) � jLj tuples are deleted, where jLj is the number of tuples in L. The inserted tuples

were produced using a program that is supplied with the TPC-D benchmark. The deleted

tuples are chosen randomly.

Figure 7.6 shows that installing 4Lcount (insertions of L under the COUNT representa-

tion) is signi�cantly more expensive than installing 4Ldup (insertions of L under the DUP

representation). For instance, when the update rate is 10%, installing 4Lcount takes almost

10000 sec, which is two orders of magnitude times longer than the time to install 4Ldup.

This is because the tuples in 4Ldup are simply inserted into Ldup. On the other hand, an

anti-semijoin (i.e., an SQL NOT EXISTS condition) is needed to check if a tuple in 4Lcount

is in Lcount or not, before that tuple can be inserted into Lcount.

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 225

DUP (WHIPS)
COUNT

% Changes

T
im
e
(s
ec
)

10987654321

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 7.6: Installing 4L Without Dupli-

cates

DUP (WHIPS)
COUNT

% Changes

T
im
e
(s
ec
)

10987654321

300

250

200

150

100

50

0

Figure 7.7: Installing 5L Without Dupli-

cates

Figure 7.7 shows that installing 5Lcount (deletions of L under the COUNT representa-

tion) is also more expensive than installing 5Ldup. However, under both representations,

a join between 5L and L is required so that the disparity is not that signi�cant. That

is, deletion installation under the DUP representation is \only" about 3 times slower on

average.

Although installing deletions requires performing a join just like when 4Lcount is in-

stalled, the deletions can be installed more swiftly. This is because the join required in

installing deletions can be done faster than the anti-semijoin required in installing 4Lcount.

The reason is that the anti-semijoin needs to be done on a per-tuple basis { each tuple in

4Lcount is checked to see if there is a matching tuple in Lcount. On the other hand, the join

between 5L and L (under both representations) can be done in a set-oriented fashion.

In the next experiment, we arti�cially introduced duplicates in L. Note that normally in

TPC-D, L has a key and has no duplicates. In this experiment, each L tuple has 3 copies,

i.e., L has a multiplicity of 3. It is easy to see that as the multiplicity is increased, the

COUNT representation is more storage-e�cient than the DUP representation in represent-

ing duplicates. Thus, one may expect the COUNT representation to outperform the DUP

representation in installing 4L and 5L.

However, installing 4Lcount is signi�cantly slower than installing 4Ldup even when

the multiplicity is increased (Figure 7.8). This is because the bene�t of the more concise

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 226

DUP (WHIPS)
COUNT

% Changes

T
im
e
(s
ec
)

10987654321

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Figure 7.8: Installing 4L With Duplicates

DUP (WHIPS)
COUNT

% Changes

T
im
e
(s
ec
)

10987654321

500

450

400

350

300

250

200

150

100

50

0

Figure 7.9: Installing 5L With Duplicates

representation a�orded by 4Lcount cannot overcome the overhead of having to perform an

anti-semijoin between 4Lcount and Lcount.

Figure 7.9 shows that installing 5Lcount is faster than installing 5Ldup when the update

percentage is over 4%. This is because increasing the multiplicity increases the size of5Ldup

proportionately, but the size of 5Lcount is una�ected. Hence, the time to install 5Ldup

increases proportionately with multiplicity. On the other hand, the time to install 5Lcount

is not a�ected by increases in multiplicity. (Note that the lines for COUNT are very similar

in Figures 7.7 and 7.9.)

The previous experiments focused on the installation of L's deltas. In the next exper-

iment, we compared the performance of computing deltas under the COUNT and DUP

representations. In the experiment, we de�ned a derived view LO that performs a join

between L and O. We then measured the time it took to compute 4LO and 5LO given

4L and 5L under the two representations.

In the normal case where L and O have no duplicates (i.e., multiplicity is equal to 1),

computing the deltas of LO under the DUP representation is comparable to computing

the deltas of LO under the COUNT representation as shown in Figure 7.10. (The update

percentage is 5% for this experiment.) As we arti�cially increase the multiplicity of L and

O, computing the deltas under the COUNT representation becomes faster relative to delta-

computation under the DUP representation. This is because the COUNT representations

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 227

DUP (WHIPS)
COUNT

Multiplicity

T
im
e
(s
ec
)

54321

60

55

50

45

40

35

30

25

20

Figure 7.10: Computing 4LO and 5LO

DUP (WHIPS)
COUNT

Multiplicity

T
im
e
(s
ec
)

54321

2500

2000

1500

1000

500

0

Figure 7.11: Delta-computation and instal-

lation

of L and O are about m times smaller than their DUP representations, where m is the

average multiplicity of L and O.

Figure 7.11 shows the total time for computing the deltas of LO, and installing the

deltas of L and LO. In this graph, an update percentage of 5% was chosen. As the graph

shows, computing and installing deltas can be done faster under the DUP representation,

especially under the common case where there are no duplicates.

7.4.2 Deletion Installation

Assuming a view V uses the DUP representation and assuming V has no duplicates, the

deletions of V can be installed using SQL-delete or cursor-delete. (See Section 7.3.2 for

relevant discussion.) We compare the performance of these two deletion-installation meth-

ods by installing the deletions 5O to O. In this experiment, we varied the update rate of

O from 1% to 10%. Figure 7.12 shows that SQL-delete is much faster than cursor-delete,

on average 69 times faster. One possible reason for this disparity is that SQL-delete is

a declarative way of installing the deletions. Thus, the query optimizer of the back-end

database can easily choose the most e�ective way of performing the SQL-delete. On the

other hand, using a cursor-delete restricts the query optimizer to perform a join between

each tuple examined in the cursor and O. As Figure 7.12 shows, the leeway given to the

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 228

SQL-delete (WHIPS)
cursor-delete

% Changes

T
im
e
(s
ec
)

10987654321

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 7.12: Cursor-delete vs. SQL-delete

SQL-delete (WHIPS)
cursor-delete

% Changes

T
im
e
(s
ec
)

10987654321

35

30

25

20

15

10

5

0

Figure 7.13: Cursor-delete vs. SQL Delete

(with index)

query optimizer translates into signi�cant bene�ts.

An index on the key of O (i.e., orderID) can help speed up the join between O and 5O

performed by the two deletion-installation methods. When this index is built, the disparity

between cursor-delete and SQL-delete is reduced signi�cantly as shown in Figure 7.13, where

SQL-delete is only 1.10 times faster than cursor-delete.

7.4.3 Aggregate Maintenance Expressions

In Section 7.3.3, we discussed the summary-delta and the WHIPS algorithms for incre-

mentally maintaining aggregate views. We compare both incremental maintenance algo-

rithms against full recomputation and partial recomputation of the aggregate view. Full-

recomputation simply recomputes the contents of the aggregate views based on the new

state of the underlying view(s). On the other hand, partial-recomputation �rst determines

which of the tuples in the aggregate view are \a�ected" by the deltas and removes them.

Then partial-recomputation will recompute the new values for the a�ected aggregate view

tuples and insert new tuples into the aggregate view.

We compare these four techniques experimentally by considering two aggregate views

de�ned on L. The �rst view, Vmany , groups tuples based on the orderkey attribute of

L. This results in 150,000 groups that are contained in Vmany. View Vmany also contains

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 229

WHIPS
partial-recompute

recompute
summary-delta

% Changes

T
im
e
(s
ec
)

10987654321

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

0

Figure 7.14: Maintaining Aggregate View

Vmany

WHIPS
partial-recompute

recompute

% Changes

T
im
e
(s
ec
)

10987654321

110

100

90

80

70

60

50

40

Figure 7.15: Maintaining Vmany

aggregate values resulting from SQL AVG, SUM, and COUNT functions. The second view,

Vfew, has very few groups (7 groups) because it groups by the linenumber attribute of L.

Like Vmany, Vfew also contains aggregate values resulting from SQL AVG, SUM, and COUNT

functions.

In the �rst experiment, we focused on Vmany and did not build any indices on Vmany.

Figure 7.14 shows that using the summary-delta algorithm can be disastrous. This is

because the summary-delta algorithm must process the tuples one at a time, and for each

tuple, a scan of Vmany is required. The performance of the other three algorithms is shown

more clearly in Figure 7.15. The �gure shows that full-recomputation performs the worst

among the three algorithms. Surprisingly, as the update percentage is increased, partial-

recomputation performs better relative to the WHIPS maintenance algorithm.

In the next experiment, indices were built on the group-by attributes of Vmany. Fig-

ure 7.16 shows that the performance of the summary-delta algorithm greatly improves. For

each tuple in the summary-delta, the algorithm no longer needs to scan Vmany because of

the presence of the index. By comparing the lines for the WHIPS algorithm in Figures 7.15

and 7.16, we see that the performance of the WHIPS algorithms improves slightly when

the index on the group-by attributes is built, as was to be expected. Although the indices

help in the installation of Vmany 's deletions, an additional cost is incurred in having to

update the index for each insert and delete. This overhead degrades the performance of the

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 230

WHIPS
partial-recompute

recompute
summary-delta

% Changes

T
im
e
(s
ec
)

10987654321

250

200

150

100

50

0

Figure 7.16: Maintaining Vmany with In-

dices

WHIPS
partial-recompute

recompute
summary-delta

% Changes

T
im
e
(s
ec
)

10987654321

25

20

15

10

5

0

Figure 7.17: Maintaining Vfew

partial-recomputation and the full-recomputation algorithms. Overall, the summary-delta

algorithm is competitive with the WHIPS algorithm when an index is built on the aggregate

view's group-by attributes.

In the next experiment, we used the various algorithms to update Vfew (i.e., aggregate

view with 7 groups). Because Vfew is so small, there is very little di�erence among the

WHIPS, summary-delta and partial-recompute algorithms. For instance, the cost of scan-

ning Vfew for each summary-delta tuple is small because Vfew only has 7 tuples. Thus,

it is to be expected that the summary-delta algorithm performs as well as WHIPS. Note

however that even if Vfew is small, full-recompute is still signi�cantly more expensive than

the other three algorithms. This is because full-recomputation still needs to process all of

the tuples in L in order to recompute Vfew.

7.5 Related Work

We have reviewed in previous chapters a signi�cant amount of research devoted to view

maintenance. See [GM95] for a recent survey. However, to our knowledge, there has not

been a paper that discusses the very important low-level details of view maintenance that

are the focus of this chapter. For instance, [LYGM99] assumes that there is an Inst operation

for installing the changes into a view, but does not cover the important details of how to

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 231

implement Inst.

Reference [MQM97] proposes the summary-delta algorithm but does not discuss whether

to compute the delta tables explicitly or not. We discussed in detail the bene�ts of com-

puting the delta tables explicitly even when summary-deltas are computed.

One of the problems of using the summary-delta algorithm is that the installation phase

can become the bottleneck. Reference [Qua97] developed a modify operator that can be

used to e�ciently install the changes of an aggregate view given its summary delta.

The modify operator can also be used to improve the e�ciency of the installation of

deletions. While the modify operator can be used for e�cient installation, the modify

operator has not been adopted or implemented in commercial RDBMSs. In this Chap-

ter, we compared two methods (i.e., SQL-delete and cursor-delete) that are supported by

commercial RDBMSs and investigated when is it better to use one method over the other.

Reference [GMS93] assumes that the materialized views use the COUNT representation.

On the other hand, [GL95] assumes that DUP representation is used. To our knowledge,

this chapter is the �rst to investigate the pros and cons of both representations for view

maintenance, and present supporting experiments.

We also brie
y presented the WHIPS prototype in this chapter. Although there has

been a signi�cant amount of research devoted to view maintenance, there has only been a

small number of system prototypes created for view maintenance. Reference [HZ96] presents

the Squirrel integration mediator, which acts as a data warehouse. The data in Squirrel is

stored in materialized views, just like in WHIPS. The main focus of Squirrel (as discussed

in [HZ96]) was its support for virtual attributes. Reference [HZ96] does not discuss the very

important low-level details of view maintenance that we discussed in this chapter.

Reference [CKL+97] likewise does not focus on the low-level details of view maintenance.

Instead, it discusses how the Sword warehouse prototype supports di�erent \maintenance

policies." The policies refer to when a view needs to be updated with respect to the time the

underlying data (of the view) changes. For instance, one policy, is to immediately update a

view when the underlying data changes. Another policy is to update the view in a deferred

fashion, e.g., when the view is needed in answering a query.

Reference [Rou91] describes the ADMS prototype, which investigates the advantages of

materializing a view using view-caches (i.e., join indices) as opposed to view tuples. Al-

though this study is important, commercial RDBMSs do not allow materialized views (i.e.,

tables) to be represented using join indices. Hence, in practice, data warehouses are stuck

CHAPTER 7. WHIPS: A DATA WAREHOUSE SYSTEM PROTOTYPE 232

materializing a view using view tuples. Still, both the DUP and the COUNT representation

are possible when views are materialized using view tuples. Again, we investigated the pros

and cons of both representations.

7.6 Chapter Summary

In this chapter, we discussed the critical design decisions that were made in developing

the WHIPS prototype for e�cient data warehousing. We showed through experiments why

the design decisions made were appropriate. These decisions provide guidelines for anyone

developing data warehouse management software that runs on top of a back-end RDBMS.

Chapter 8

Conclusions and Future Work

In this thesis we developed algorithms for improving the e�ciency of data warehousing sys-

tems, including streamlining the warehouse update, lowering the warehouse storage cost,

and recovering failed warehouse loads. In Chapter 2, we developed snapshot di�erential

algorithms for e�ciently detecting source changes. We reduced the snapshot di�erential

problem to performing an outerjoin between the old and the new snapshots. We then aug-

mented the outerjoin algorithms with compression. We also developed the Window algo-

rithm that only performs a single-pass over the snapshots, yielding signi�cant performance

improvements.

In Chapter 3, we investigated how to most e�ciently compute and install the changes

of the warehouse views. We developed the MinWork algorithm that �nds e�cient VDAG

strategies (for updating the views) under a linear cost model. We then showed experimen-

tally that the VDAG strategies picked perform well on a commercial RDBMS.

We presented algorithms in Chapter 4 for choosing additional views and indices to ma-

terialize so that the warehouse can be more e�ciently updated. We developed an algorithm

based on A* search that picks the optimal combination of indices and views. Even though

the A*-based algorithm prunes many of the choices, because of the enormity of the search

space, heuristic algorithms are necessary. Heuristic algorithms as well as rules of thumb for

picking views and indices were also developed in Chapter 4.

In Chapter 5, we presented techniques for reducing the storage cost of the warehouse.

First, we developed a constraint language that can be used to describe the base views (as

well as derived views). We showed that the language can describe many types of constraints.

Using the constraints, we developed an algorithm that identi�es base view tuples that will

233

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 234

never be used in computing the changes of the derived views. Under the assumption that

most analytical queries can be answered using derived views, these base view tuples can be

archived resulting in a signi�cant reduction of storage cost.

In Chapter 6, we developed the algorithm DR that can be used to resume failed load

work
ows (i.e., cleaning processes). DR does not have any normal operation overhead and

yet we showed experimentally that it can signi�cantly reduce the recovery cost. Further-

more, DR does not require that the low-level details of the load work
ow be known.

In Chapter 7, we presented the WHIPS prototype, and the decisions that were made

regarding its implementation. We presented experiments that supported our design deci-

sions.

We now describe several areas of future work. The �rst �ve areas, discussed in Sec-

tions 8.1 to 8.5, are signi�cant extensions to the techniques discussed in the earlier chapters

of the thesis. The last two areas, discussed in Sections 8.6 to 8.7, are research problems

that were not touched upon in the thesis.

8.1 Parallel VDAG Maintenance

In Chapter 3, we discussed VDAG strategies for updating all of the views in the VDAG. We

modeled a VDAG strategy, denoted
�!
E , as a sequence of expressions. Each expression was

either a compute or an install expression, and the expressions are sent one at a time to the

underlying database. An alternative model of a VDAG strategy is a sequence of expression

sets denoted
�!
S , wherein each set can be handled by the database in parallel.

One of the techniques for solving a problem involving parallel processing is to \par-

allelize" a solution of the sequential problem. Hence, one approach is to parallelize the

MinWork VDAG strategy
�!
E to produce

�!
S . However, parallelizing the MinWork VDAG

strategy may not be the best approach since the MinWork VDAG strategy only uses 1-way

view strategies which require certain compute and install expressions to be performed before

other expressions (see Chapter 3). Because of these numerous dependencies, many of the

expressions in the MinWork VDAG strategy cannot be processed in parallel.

We have identi�ed two techniques that allow more expressions to be processed in parallel.

1. The �rst technique is to use dual-stage view strategies (i.e., view strategies that prop-

agate the underlying changes simultaneously) instead of 1-way view strategies. At one

extreme, if all the derived views use dual-stage view strategies, the only dependency

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 235

left between the expressions is that the expressions of Vj's view strategy must succeed

the expressions of Vi's view strategy if Vj is de�ned over Vi.

2. If we only use dual-stage view strategies, we can remove any remaining dependencies

among the expressions by \
attening" the VDAG. For instance, let us consider the

VDAG in Figure 3.11. When updating V5, it may be possible to treat V5 as if it were

de�ned on V1, V2 and V3. If so, then the compute expressions of V5 and V4 can run in

parallel. The expressions of V5's dual-stage view strategy must succeed those of V4's

dual-stage view strategy. However, for the purpose of updating V5, it is possible to

treat V5 as if it was de�ned on V1, V2 and V3. Thus, the expressions of V5's dual-stage

view strategy do not access V4 or �V4 (i.e., the changes to V4) anymore. As a result,

there are no dependencies between the expressions of V5's view strategy and V4's view

strategy.

Unfortunately, using these techniques increases the total work incurred by the VDAG

strategy. As a result, any bene�t that arises from allowing more expressions to run in

parallel may be o�set by an increase in total work. An interesting direction of future work

is to devise an algorithm that intelligently decides the extent to which these techniques

should be applied.

8.2 VDAG Design

In Chapter 4, we developed algorithms to solve the view-index selection (VIS) problem.

Recall that for the VIS problem, we are given a single derived view V from the VDAG,

and we are tasked to �nd a set of supporting views and indices so that the maintenance

cost of V and its supporting views and indices is minimized. Clearly, it is important to

solve the general problem wherein we are given a VDAG, and we are tasked to �nd a set

of supporting views and indices so that either the maintenance cost is minimized, or the

response time to queries is minimized under certain constraints.

In [GM98], algorithms were proposed for selecting supporting views so that the response

time to queries is minimized. Furthermore, after materializing the selected supporting views,

the maintenance cost of the warehouse does not exceed a given threshold. However, [GM98]

did not consider materializing indices. That is, they solved the view-selection problem and

not the view-index-selection problem. It is well known that indices can be very useful in

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 236

answering queries. Hence, another direction of future work to solve the VIS problem for a

whole VDAG.

8.3 Cost-based Load Work
ow Recovery

In Chapter 6, we developed the resumption algorithm DR for recovering failed load work-

ows. By deriving properties of the load work
ow, DR was able to determine where it can

discard input tuples to the various transforms of the work
ows. Recall that we called the

transforms for discarding input tuples �lters. Since not all of the �lters were bene�cial,

DR only assigned some of them. For instance, DR removed \redundant" �lters that do

not discard any tuples because of �lters assigned earlier in the load work
ow. Also, DR

attempted to push the �lters as close to the remote sources as possible. This way, the

number of transforms that do not need to process the discarded tuples is maximized.

Although we showed that DR can reduce the recovery cost, we believe that a version of

DR that decides in a cost-based fashion where to assign �lters would reduce recovery cost

even more. The �rst step in developing a cost-based DR is to develop a cost model for the

processing performed by the various transforms. Ideally, the cost model should express the

cost of processing n input tuples for each transform. Also, a cost model for the overhead

of using the �lters is required as well. Ideally, this cost model should express the cost of

processing n input tuples for each �lter. Given these cost models, we can then decide where

it is bene�cial to assign a �lter in the load work
ow, possibly using a greedy algorithm that

assigns the �lter with the most bene�t �rst.

We also developed DR-Log in Chapter 6 which augments DR with logging. However, we

did not develop a cost-based log placement algorithm. Developing a log placement algorithm

that takes into account the amount of space available for logging tuples and the amount of

normal operation overhead allowed, while minimizing the time to complete a resumed load,

is another direction of future work.

8.4 Recovery of View Maintenance

In Chapter 6, we focused on developing recovery algorithms for the load work
ow. We did

not develop algorithms for recovering VDAG strategies (for view maintenance) because the

recovery algorithm of the warehouse database can be used. However, we now show that

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 237

a specialized recovery algorithm for VDAG strategies is useful. This specialized recovery

algorithm can lower the storage cost of the data warehouse since it does not require using

traditional \redo" or \undo" logging. In the example, we also illustrate the alternative

where the recovery algorithm of the warehouse database is used.

EXAMPLE 8.4.1 Let us suppose we have a base view V1, and two derived views V2 and

V3 de�ned as follows.

� Def(V2) : �P2(V1)

� Def(V3) : �P3(V2)

Let us assume that the insertions to V1 are reported and, thus, the derived views need to

be updated. The following 5-step VDAG strategy can be used to update the warehouse.

1. Comp(V2; fV1g) : �V2 �P2(�V1)

2. Comp(V3; fV2g) : �V3 �P3(�V2)

3. Inst(V1) (see Chapter 3 for details of the Inst expression)

4. Inst(V2)

5. Inst(V3)

Let us suppose that the VDAG strategy fails while in Step 2. If the entire VDAG

strategy is one transaction, then the actions of the �rst two steps are undone, and the

VDAG strategy transaction can be restarted. On the other hand, if nested transactions

([GR93]) are used, and each step is a sub-transaction, then Step 1 will not be redone and

the VDAG strategy resumes at Step 2. More speci�cally, the database recovery algorithm

\undoes" Step 2 (i.e., the second sub-transaction) using undo logs, and then restarts the

VDAG strategy at Step 2. However, because delta tables are used in the VDAG strategy,

using undo and redo logs are not necessary. That is, assuming that we detect that the

VDAG strategy failed at Step 2, we can issue an SQL delete statement to discard the

contents of �V3. Assuming the contents of �V2 are in stable storage, Step 2 can then be

redone. Intuitively, there is no need to use undo and redo logs because the same data saved

in the logs is also saved in the delta tables. 2

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 238

Although the specialized technique illustrated seems simple, there are many important

details that need to be resolved.

� Techniques for detecting where the VDAG strategy failed are required. These tech-

niques must not incur too many IOs for writing recovery information. Otherwise, the

normal-operation overhead may become excessive.

� E�cient techniques for \undoing" a step are required. We showed that a simple

SQL delete may su�ce in some cases. However, undoing a step may not be as

simple if there are multiple Comp expressions used for populating a delta table (as in

Chapter 3). Also, the SQL delete only works for undoing Comp expressions. Inst

expressions also need to be undone.

� The disadvantage of not using a log is that the overhead during normal operation may

actually increase! In the example, it was required that �V2 be in stable storage so that

Step 2 can be redone. Unfortunately, this requires that �V2 be
ushed to disk to �nish

Step 1. Flushing too often can increase the normal operation overhead excessively.

Techniques that are similar to \lazy checkpointing" [GR93] are required. Also, it may

be possible to declare delta tables as append-only SQL tables to minimize random

IOs.

In summary, there are some important details that need to be worked out to develop a

specialized recovery algorithm for VDAG strategies. After developing such an algorithm,

it would then be important to investigate the advantages of using the specialized recovery

algorithm as opposed to using the recovery mechanism of the warehouse database (e.g., in

terms of storage cost, and normal-operation overhead).

8.5 Reducing the Deployment Time

As discussed in Chapter 6, the load work
ow for warehouse creation is di�erent from the

one for warehouse update. Each load work
ow takes weeks to design. On the other hand,

once the VDAG of a warehouse is designed, the VDAG strategy necessary to propagate

the changes up the VDAG can be derived from the de�nitions of the views mechanically.

Hence, much of the time in deploying a data warehouse is spent in the design of the load

work
ow

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 239

One way to reduce the deployment time of a data warehouse is to avoid redesigning a

new load work
ow for the warehouse update. That is, given the load work
ow for ware-

house creation, it may be possible to construct a load work
ow for the warehouse update

automatically. We now illustrate how one may use DR for this purpose.

EXAMPLE 8.5.1 Let us suppose that view V is a warehouse (base) view, and it is derived

from source relation R and possibly from other source relations as well. Let us suppose that

the insertions to source relation R are detected. Let us denote the insertions as 4R. V can

be updated as follows.

1. Given4R, we can use DR to derive which of the V tuples are\a�ected" by4R. Recall

that DR derives the identifying attributes A of R. (More precisely, DR derives the

identifying attributes of the edge in the load work
ow emanating from R's extractor.)

Given a V tuple tV , the R tuples that match tV on A are contributors to tV . Similarly,

an R tuple tR contributes to all of the V tuples that match tR on A. These are the V

tuples that are a�ected by tR. The new R tuples in4Rmay a�ect some tuples already

in V . They can be found by matching tuples based on the identifying attribute as

well. That is, the a�ected V tuples can be found using V><A4R.

2. The a�ected V tuples are removed from the warehouse.

3. Recall that DR takes as input a load work
ow and outputs a similar load work
ow

but with �lters. Let us call this load work
ow with �lters the \�lter load work
ow."

We then use the remaining V tuples to instantiate the �lter load work
ow derived.

4. R is updated by inserting the 4R tuples if they have not been inserted already. The

extractors of the �lter load work
ow are restarted. The tuples produced by the load

work
ow (with �lters) are appended to V .

2

The technique described above works when there are deletions and updates to R as well.

(The technique is similar to the DRed algorithm proposed in [GMS93], where they delete

a�ected tuples, and then rederive new attribute values for the a�ected tuples.) However, the

technique may not work well for large load work
ows, since it may often be the case that the

identifying attributes of R are empty. If so, the technique would remove every tuple from

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 240

the view, and essentially recompute the view from scratch. Hence, an interesting future

work is to develop techniques that are complementary to the one described above, and to

compare the performance of the various techniques.

8.6 Approximate Query Answering

This thesis did not discuss techniques for improving the processing of analytical queries.

One way to more swiftly answer analytical queries is to give approximate answers rather

than exact answers. Some important techniques for providing approximate answers have

been proposed in [AGPR99, HHW97]. However, there is still much work that needs to be

done.

In [AGPR99], the Aqua system precomputes statistical summaries, called synopses,

on the warehouse views. The synopses take the form of various types of samples and

histograms. Using the synopses, many analytical queries can be answered very swiftly but

approximately. The Aqua system returns the error bounds of the approximate answer.

Clearly, an analyst may be unsatis�ed with the approximate answer returned because

he is not comfortable with the error bounds. An improved system may allow the user to

specify error bounds requirements, and return an approximate answer that is within the

speci�ed bounds. To support such a system, the following features are required.

� Di�erent sets of synopses may need to be maintained. Using more accurate synopses

may yield tighter error bounds, but may take longer to produce an approximate

answer. Hence, the appropriate synopses must be chosen so that the queries can be

answered as fast as possible while respecting the requested error bounds.

� For each synopses, error bounds estimates should derived before the query is answered.

This way, the system can e�ciently select the synopses to use.

8.7 Forecasting Warehouse Data

We mentioned in Chapter 1 that the warehouse may keep a historical record of the source

data. An interesting direction of future work is to develop algorithms that perform analysis

on the warehouse data and \forecast" the contents of the warehouse views in the future.

CHAPTER 8. CONCLUSIONS AND FUTURE WORK 241

Forecasting the warehouse data is helpful in many applications. For instance, if the ware-

house stores data from a large retail store, the forecasts can be used to, say, �nd branches

of the retail store that may run out of supply for certain products in the future.

We believe that techniques in data mining can be useful in forecasting warehouse data.

For instance, using classi�cation algorithms, we might be able to categorize the tuples in the

various warehouse views. After the tuples are classi�ed, we may be able to derive patterns

that are useful for forecasting. For example, we might be able to derive that tuples of

category X are inserted 100 times a day on average. Using these patterns, the contents of

the warehouse views can be forecasted. Clearly, the appropriate data mining techniques

need to be identi�ed and integrated.

Appendix A

Chapter 3 Proofs

Theorem A.0.1 For any given view, the best 1-way view strategy is optimal over the space

of all view strategies (Theorem 3.4.1). 2

Proof: Let view W be de�ned over the set of views V . We show that given any non-1-way

view strategy for W we can �nd a 1-way view strategy that is at least as e�cient as the

non-1-way view strategy.

Consider a non-1-way view strategy for W :

�!
E = h

��!
Eprec; Comp(W;Y);

��!
Einst;

��!
Esucc i:

In
�!
E , Y is a subset of V and jYj > 1;

��!
Eprec is a possibly empty sequence of expressions

preceding Comp(W;Y);
��!
Einst is the sequence of Inst expressions immediately following

Comp(W;Y) that installs the changes of Y ;
��!
Esucc is the sequence of expressions that com-

pletes the view strategy.

We de�ne a mapping called \separator" that transforms
�!
E (based on some Y1 2 Y)

into:

�!
E 0 = h

��!
Eprec; Comp(W; fY1g); Inst(Y1); Comp(W;Y � fY1g);

��!
E 0inst;

��!
Esucci:

In
�!
E 0 ,
��!
Eprec and

��!
Esucc are the same as in

�!
E , while

��!
E 0inst is almost identical to

��!
Einst except that

it does not have Inst(Y1) in it. Intuitively, the transformation \separates" the propagation

of the changes of Y1 from Comp(W;Y), as well as the installation of the changes of Y1 from

the sequence
��!
Einst.

242

APPENDIX A. CHAPTER 3 PROOFS 243

It can be veri�ed easily that conditions C1 through C6 hold for
�!
E 0 if they hold for

�!
E .

This implies that
�!
E 0 is correct if

�!
E is correct. So, \separator" preserves the correctness of

the view strategy.

We now show that each application of \separator" results in a view strategy that is

at least as e�cient as the original view strategy. All the expressions in
��!
Eprec and

��!
Esucc

incur the same amount of work in both
�!
E and

�!
E 0 , since the same expressions are used

and the expressions are evaluated on the same database state. Also, the install expressions

in
��!
Einst incur the same amount of work as Inst(Y1) and the install expressions in

��!
E 0inst

since the same changes are installed. Hence, we must show that the compute expressions

Comp(W; fY1g) and Comp(W;Y � fY1g) in
�!
E 0 do not incur more work than the compute

expression Comp(W;Y) in
�!
E .

Without loss of generality, let Y = fY1; : : : ; Ymg and V = X [Y [Z , where X =

fX1; : : : ; Xlg and Z = fZ1; : : : ; Zng. Furthermore, suppose the changes of the views in X

are propagated and installed in
��!
Eprec, while the changes of the views in Z are propagated

and installed in
��!
Esucc . Finally, let us denote the extension of a view V after its changes have

been installed as V 0.

Note that Comp(W;Y) of
�!
E has 2m � 1 terms, since jYj = m (see Section 3.3.3). We

denote each of these terms as Av, where v is a bit vector composed of m bits, whose values

depend on the views and delta relations accessed by the term. The ith bit in v is set if term

Av accesses �Yi instead of Yi, and vice versa. For instance, if Y = fY1; Y2g, there will be

three terms: term A10 combines �Y1 and Y2, term A01 combines Y1 and �Y2, and term A11

combines �Y1 and �Y2. Each of these three terms accesses fX 0
1; : : : ; X

0
lg and fZ1; : : : ; Zng

as well.

In
�!
E 0 , Comp(W;Y�fY1g) has (2

m�1�1) terms. We denote each term of Comp(W;Y�

fY1g) as Cv, where v is an (m � 1) bit vector. The ith bit of v is set if term Cv accesses

�Yi+1 instead of Yi+1 and vice versa. We map each term of Comp(W;Y �fY1g) to a pair of

terms of Comp(W;Y). In particular, term Cv is mapped to the pair of terms A0v and A1v.

The work incurred by term Cv is

c � (jX 0
1j+ : : :+ jX 0

lj+ jY
0
1j+K + jZ1j+ : : :+ jZnj);

where K is the sum of the sizes of the views and delta relations of Y � fY1g considered by

Cv.

APPENDIX A. CHAPTER 3 PROOFS 244

On the other hand, the work incurred by the pair of terms A1v and A0v is

c � (2 � jX 0
1j+ : : :+ 2 � jX 0

lj+ (jY1j+ j�Y1j) + 2 �K + 2 � jZ1j+ : : :+ 2 � jZnj):

Since jY1j+ j�Y1j is at least as large as jY
0
1 j, we infer that the term Cv does not incur more

work than the pair of terms A0v and A1v that it is mapped to.

Comp(W; fY1g) has exactly one term, which accesses fX 0
1; : : : ; X

0
lg, f�Y1; Y2; : : : ; Ymg,

and fZ1; : : : ; Zng. We map it to term A10::0 of Comp(W;Y), which incurs the same amount

of work (because it uses the same combination of views and delta relations).

So far, we have shown that each term of Comp(W;Y � fY1g) and Comp(W; fY1g) can

be mapped to Comp(W;Y) terms that incur the same or a larger amount of work. One

can see that no Comp(W;Y) term participates in the mapping of two di�erent terms of

Comp(W;Y � fY1g) and Comp(W; fY1g). Firstly, any two Comp(W;Y � fY1g) terms, Cv

and Cv0 , are mapped to two disjoint sets of Comp(W;Y) terms. That is, Cv maps to A0v

and A1v, while Cv0 maps to A0v0 and A1v0 . Since v 6= v0, it follows that A0v is not A0v0 , and

A1v is not A1v0 . Secondly, no term Cv of Comp(W;Y � fY1g) has a bit vector v with all

zeroes. So, Cv is never mapped to the term A10:::0, which is the term used in mapping the

only term of Comp(W; fY1g).

From the above argument, we deduce that Comp(W;Y � fY1g) and Comp(W; fY1g) in
�!
E 0 do not incur more work than Comp(W;Y) in

�!
E . Hence, each application of \separator"

leads to a view strategy that is at least as e�cient as the one that is transformed. Starting

from a non-1-way view strategy for W , successive applications of \separator" lead to a

1-way view strategy for W that is at least as e�cient as the original view strategy. Thus,

the best 1-way view strategy for W is optimal over all the view strategies for W . 2

Theorem A.0.2 Given a view V de�ned over the views V, let the view ordering
�!
V arrange

the views in increasing jV 0
i j � jVij values, for each Vi 2 V. Then, a 1-way view strategy for

V that is consistent with V will incur the least amount of work among all the 1-way view

strategies for V (Theorem 3.4.2). 2

Proof: Consider a view W de�ned over views V = fV1; : : : ; Vng. Let
�!
E be a view strategy

forW that incurs the least amount of work. We show that
�!
E must be consistent with some

view ordering that orders the views based on increasing jV 0
j j � jVj j values. The proof is by

contradiction. That is, we assume that
�!
E is not consistent with any such view ordering

and show that this contradicts the fact that
�!
E incurs the least amount of work.

APPENDIX A. CHAPTER 3 PROOFS 245

If
�!
E is a 1-way view strategy that is not consistent with a view ordering based on

increasing jV 0
j j � jVjj values, it must be of the form:

h
��!
Eprec; Comp(W; fYjg); Inst(Yj); Comp(W; fYig); Inst(Yi);

��!
Esucci;

where jY 0
i j � jYij < jY

0
j j � jYj j, for some Yi and Yj in V .

We show that a di�erent 1-way view strategy
�!
E 0 :

h
��!
Eprec; Comp(W; fYig); Inst(Yi); Comp(W; fYjg); Inst(Yj);

��!
Esucci

incurs less work than
�!
E , thus contradicting the assumption that

�!
E incurs the least amount

of work.

All the expressions in
��!
Eprec and

��!
Esucc incur the same amount of work in both view

strategies
�!
E and

�!
E 0 , since the same expressions are used and the expressions are evaluated

on the same database state. Also, the install expressions Inst(Yi) and Inst(Yj) incur the

same amount of work in both strategies since the same changes are installed. Hence, we

must show that the two compute expressions Comp(W; fYig) and Comp(W; fYjg) incur less

work in
�!
E 0 than in

�!
E .

Without loss of generality, let V = fX1; : : : ; Xlg[fYi; Yjg[fZ1; : : :Zmg = X [fYi; Yjg[

Z , such that the changes of the views in X are propagated and installed in
��!
Eprec, while the

changes of the views in Z are propagated and installed in
��!
Esucc.

The work incurred by Comp(W; fYjg) and Comp(W; fYig) in view strategy
�!
E is

c � (
X
k=1::l

jX 0
kj+ j�Yj j+ jYij+

X
k=1::m

jZkj) + c � (
X
k=1::l

jX 0
kj+ jY

0
j j+ j�Yij+

X
k=1::m

jZkj):

The work incurred by Comp(W; fYig) and Comp(W; fYjg) in view strategy
�!
E 0 is

c � (
X
k=1::l

jX 0
kj+ j�Yij+ jYj j+

X
k=1::m

jZkj) + c � (
X
k=1::l

jX 0
kj+ jY

0
i j+ j�Yj j+

X
k=1::m

jZkj):

Note that the only di�erence between the above two work estimates is that the former

uses jYij and jY
0
j j while the latter uses jYj j and jY

0
i j. Since jY

0
i j�jYij < jY

0
j j�jYj j, we deduce

that the two Comp expressions incur less work in
�!
E 0 . Hence, the total work incurred by

�!
E 0

is less than that of
�!
E . This contradicts our supposition that

�!
E is a view strategy for W

with the least amount of work.

Thus, the best 1-way view strategy is the one that is consistent with a view ordering

that arranges views in increasing order of size changes. 2

APPENDIX A. CHAPTER 3 PROOFS 246

Theorem A.0.3 Given a view de�ned over n other views in the warehouse, MinWorkSingle

�nds an optimal view strategy for the view in O(n log n) time (Theorem 3.4.3). 2

Proof: MinWorkSingle produces a 1-way view strategy because it only uses Comp(W;V)

expressions, where jVj = 1. This view strategy is correct because it satis�es C1, C2, C3,

C4, C5, and C6 (see Section 3.4 for correctness discussion). Since the Inst expressions of

this view strategy are ordered based on increasing jV 0j � jV j values, it is consistent with

a view ordering that orders the views based on increasing jV 0j � jV j values. By Theorem

3.4.1 and Theorem 3.4.2, it follows that the view strategy produced by MinWorkSingle is

optimal.

In producing the optimal view strategy,MinWorkSingle uses a step that sorts the views

in O(n log n) time, where n is the number of views. All other steps require O(n) time or

less. Hence, MinWorkSingle runs in O(n log n) time. 2

Theorem A.0.4 Given a VDAG G, a VDAG strategy for G that uses optimal view strate-

gies for all the views of G is optimal over all VDAG strategies for G (Theorem 3.5.1).

2

Proof: We start by observing that all VDAG strategies for G incur the same amount of

work for their Inst expressions as they have the same set of changes to install. Two di�erent

VDAG strategies may di�er in their amounts of total work by incurring di�ering amounts

of work for their Comp expressions.

Let
�!
E be a VDAG strategy for G. Consider the partitioning of the set of Comp

expressions in
�!
E based on the derived views whose updates the Comp expressions are

computing. We have as many partitions (of
�!
E) as there are derived views in G. In fact,

each partition of Comp expressions of
�!
E corresponds to the set of Comp expressions in the

view strategy used by
�!
E for the derived view under consideration. Moreover, the amount of

work incurred by each partition of the Comp expressions of
�!
E is the same as the amount of

work incurred by these Comp expressions in the view strategy. This is because these Comp

expressions are executed in the VDAG strategy and in the view strategy with the same

database state due to the fact that the view strategy is a subsequence of the VDAG strategy.

Thus, the amount of work incurred by the Comp expressions of the VDAG strategy
�!
E is

the sum of the amounts of work incurred by the Comp expressions of the view strategies

of the derived views of G. Note that the view strategies for the base views have no Comp

expressions.

APPENDIX A. CHAPTER 3 PROOFS 247

Let
�!
Eo be a VDAG strategy for G that uses optimal view strategies for all the views of

G, and let
�!
Ex be another VDAG strategy for G. That is, the amount of work incurred by

the set of Comp expressions in a view strategy used by
�!
Eo is at most equal to the amount

of work incurred by the set of Comp expressions in the corresponding view strategy used

by
�!
Ex . Now, it follows from the earlier argument that the amount of work incurred by the

Comp expressions in
�!
Eo is at most equal to that incurred by the Comp expressions of

�!
Ex .

Since
�!
Eo and

�!
Ex incur the same amount of work for their Inst expressions, we conclude

that the total work incurred by
�!
Eo is at most as much as that incurred by

�!
Ex .

Thus, we see that a VDAG strategy for G that uses optimal view strategies incurs the

least amount of total work. 2

Theorem A.0.5 For any VDAG G, a 1-way VDAG strategy for G that is consistent with

a desired view ordering is an optimal VDAG strategy for G. (Theorem 3.5.2). 2

Proof: We now prove that a 1-way VDAG strategy for G that is consistent with a de-

sired view ordering uses optimal view strategies to update all the views of G. Based on

Theorem A.0.4, this VDAG strategy is optimal for G.

Let us consider a derived view Vi de�ned over views Vi. Based on Theorem A.0.2, an

optimal view strategy
�!
Ei for Vi is the 1-way view strategy consistent with the view ordering

�!
Vi that orders all the views in Vi in increasing jV 0j � jV j values.

On the other hand, a 1-way VDAG strategy consistent with the desired view ordering

updates Vi using a 1-way view strategy
�!
E 0i consistent with the desired view ordering

�!
V the

orders all of the VDAG views in increasing jV 0j � jV j values.

Since both
�!
Ei and

�!
E 0i are 1-way view strategies for Vi, they use the same Comp and Inst

expressions. Furthermore, we now show that the order of the Comp and Inst expressions are

the same. Let us suppose Comp(Vi; fVjg) < Comp(Vi; fVkg) in
�!
Ei , but Comp(Vi; fVkg) <

Comp(Vi; fVjg) in
�!
E 0i . This implies that Vj < Vk in

�!
Vi but Vk < Vj in

�!
V . This is not

possible since both view orderings are based on increasing jV 0j�jV j values. Since the Comp

expressions are in the same order in both view strategies, all the expressions including the

Inst expressions, must be in the same order based on C3 and C4. Hence,
�!
E 0i incurs the

same amount of work as
�!
Ei which is an optimal view strategy.

Since this argument holds for any derived view Vi, we have proven that a 1-way VDAG

strategy for G that is consistent with a desired view ordering uses optimal view strategies

to update all the views of G. 2

APPENDIX A. CHAPTER 3 PROOFS 248

Theorem A.0.6 Given a VDAG G, if EG(G;
�!
V) is acyclic where

�!
V is a desired view

ordering, a topological sort of EG(G;
�!
V) yields an optimal VDAG strategy for G (Theorem

3.5.3). 2

Proof: We prove the theorem by �rst presenting and proving the following lemma.

Lemma A.0.1 Given an acyclic EG(G;
�!
V) for a given VDAG G and a view ordering

�!
V ,

a 1-way VDAG strategy consistent with
�!
V is obtained by topologically sorting the expression

graph. 2

To prove the lemma, we �rst show that the 1-way VDAG strategy satis�es all correctness

conditions. C1 and C2 are satis�ed because the expression graph includes a node for each

expression used in a VDAG strategy. Furthermore, a topological sort of the expression

graph includes all of the nodes in the graph. C6 is also satis�ed since there is only one

node for each expression, and, hence, the topological sort does not duplicate any expression.

Condition C3, 8Vi 2 G(V) : Comp(V; f:::Vi:::g < Inst(Vi), holds because an edge

Inst(Vi)! Comp(V;

f:::Vi:::g) is in the expression graph for each derived view Vi. Hence, a topological sort of the

expression graph puts Inst(Vi) after Comp(V; f:::Vi:::g). Similarly, for C4, C5 and C8, the

expression graph has edges that ensure that the topological sort will order the expressions

appropriately.

Since we just argued that the view strategy employed for each view satis�es conditions

C1 to C6, it follows that C7 holds.

We now prove that the 1-way VDAG strategy
�!
E produced is consistent with

�!
V . Let

us suppose
�!
E is not consistent with

�!
V . If so, there must be a view Vk such that

�!
E

employs view strategy
�!
Ek to update Vk. Furthermore, Comp(Vk; fVjg) < Comp(Vk; fVig)

in
�!
Ek , while Vi < Vj in

�!
V . However, the expression graph has an edge Comp(Vk; fVjg)!

Comp(Vk; fVig) that ensures that the topological sort puts Comp(Vk; fVig) ahead of Comp(-

Vk; fVjg). Since
�!
Ek is a subsequence of

�!
E , it must be that Comp(Vk; fVig) is ahead of

Comp(Vk; fVjg) in
�!
Ek . This proves that

�!
E is consistent with

�!
V .

Finally, since the expression graph only includes Comp expressions of the form Comp(V;-

V), where jVj = 1, it must be that the VDAG strategy produced is a 1-way VDAG strategy

that is consistent with
�!
V .

With Lemma A.0.1, we can now easily prove the theorem. Given a
�!
V -acyclic VDAG, a

topological sort of the expression graph produces a 1-way VDAG strategy consistent with
�!
V

APPENDIX A. CHAPTER 3 PROOFS 249

according to Lemma A.0.1. It follows from Theorem A.0.5 that the 1-way VDAG strategy

produced is optimal. 2

Lemma A.0.2 For a tree VDAG, every view ordering results in an acyclic expression graph

(Lemma 3.5.1). 2

Proof: We begin the proof by providing some notation that will also be used in subse-

quent proofs (for Lemma A.0.3 and Theorem A.0.8). We label the edges of an expression

graph based on the \constraint" that requires the edge. For instance, an edge of the form

Comp(Vk; fVjg)! Comp(Vj; fVig) is labeled C8 since condition C8 requires it. Similarly,

an edge of the form Inst(Vi)! Comp(V; fVig) is labeled C3; an edge of the form Inst(V)!

Comp(V; fVig) is labeled C5; and an edge of the form Comp(V; fVjg)! Comp(V; fVig) is

labeled
�!
V . Assuming there is an edge of the form Comp(V; fVjg)! Comp(V; fVig), there

must be an edge Comp(V; fVjg) ! Inst(Vi) as required by C4. Edges of this form are

labeled C4.

We denote paths based on these edge labels. For instance, path Comp(Vk; fVjg) !

Comp(Vj; fVig)! Comp(Vi; fVhg) is a C8C8 path. C8
+ denote paths composed of at least

one C8 edge followed by zero or more C8 edges. C8� denotes either an empty path or a

C8+ path. Path Comp(V; fVjg) ! Inst(Vi) ! Comp(V; fVig) is a C4C3 path. (C4C3)+

denote paths composed of at least a C4 edge followed by a C3 edge, and possibly followed

by a series of C4 and C3 edges alternating. (C4C3)� denotes either an empty path or a

(C4C3)+ path.

We distinguish between two types of C4C3 paths. A path of the form Comp(V; fVjg)!

Inst(Vi)! Comp(V; fVig) is a local C4C3 path. This is because both Comp(V; fVjg) and

Comp(V; fVig) belong to the same view strategy. On the other hand, a path of the form

Comp(V; fVjg)! Inst(Vi)! Comp(V 0; fVig) is a non-local C4C3 path assuming V 6= V 0.

We simplify the expression graph by omitting edges labeled C5 and
�!
V because for any

cycle that uses these edges, some other cycle can be constructed using only C3, C4 and C8

edges. More speci�cally, for any cycle that uses a
�!
V edge Comp(V; fVjg)! Comp(V; fVig),

a cycle can be constructed by replacing the
�!
V edge with the C4C3 path Comp(V; fVjg)!

Inst(Vi) ! Comp(V; fVig). This path exists because the edge Inst(Vi) ! Comp(V; fVig)

is required by C3, and the edge Comp(V; fVjg) ! Inst(Vi) is required by C4 due to the

presence of the
�!
V edge Comp(V; fVjg)! Comp(V; fVig).

APPENDIX A. CHAPTER 3 PROOFS 250

For any cycle that uses the C5 edge Inst(Vj) ! Comp(Vj; fVig), a cycle can be

constructed by replacing the edge with the C3C8 path Inst(Vj) ! Comp(V; fVjg) !

Comp(Vj; fVig). The existence of this path is guaranteed because there will never be a cy-

cle that uses the edge Inst(Vj)! Comp(Vj; fVig) where there is no view V de�ned on Vj.

This is because there must be an edge Comp(V; f:::g)! Inst(Vj) that completes the cycle

since there are no edges between Inst expressions in the expression graph. Since the edge

Comp(V; f:::g)! Inst(Vj) must be a C4 edge, V must be de�ned on Vj . Since V is de�ned

on Vj , there must be a C3 edge Inst(Vj)! Comp(V; fVjg). Finally, because of the existence

of the C5 edge Inst(Vj) ! Comp(Vj; fVig) in the �rst place, we can deduce that there is

an expression Comp(Vj; fVig), and therefore a C8 edge Comp(V; fVjg)! Comp(Vj; fVig).

Comp(V4, {V2}) Inst(V3)Comp(V4, {V3})Inst(V2)

Inst(V4)Comp(V5, {V4}) Comp(V5, {V2}) Comp(V5, {V1})

Inst(V1)

Figure A.1: Simpli�ed Expression Graph

As an example, the simpli�ed version of the expression graph for the VDAG shown in

Figure 3.11 and the view ordering
�!
V = hV4; V2; V1; V3; V5i is shown in Figure A.1. Note

that we have removed any expressions (i.e., Inst(V5)) that have no outgoing edges. Note

also that there is only one cycle in the simpli�ed expression graph which uses the path

C8C4C3C4C3 (starting with the C8 edge Comp(V5; fV4g)! Comp(V4; fV3g)).

Using this simpli�ed expression graph, we now derive a general form of cycles in the

expression graph. First we make the following observations.

� There are no cycles using C8 edges only. This is because a C8 edge Comp(Vk; fVjg)!

Comp(Vj; fVig) corresponds to the VDAG edges Vk ! Vj, and Vj ! Vi. Hence, any

cycle using only C8 edges implies a cycle in the VDAG { a contradiction.

� Clearly there are no cycles using C3 edges only, nor any cycles using C4 edges only.

This is because each C3 edge starts with an Inst expression and ends with a Comp

APPENDIX A. CHAPTER 3 PROOFS 251

expression. Therefore, a C3C3 path is not even possible. Similarly, a C4C4 path is

not possible. By the same argument, there can be no cycles using C8 and C3 edges

only, nor can there be any cycles using C8 and C4 edges only.

� There are no cycles using C3 and C4 edges only as explained below.

To explain the last observation, we introduce the function Pos(E) applied to an expres-

sion in the graph. Pos(Inst(Vi)) returns the position of Vi in the view ordering
�!
V that

was used to construct the expression graph. Pos(Comp(V; fVig)) also returns the position

of Vi in the view ordering
�!
V . Given any edge A = Ej ! Ei, the starting position of the

edge is Pos(Ej), and the ending position of the edge is Pos(Ei).

Given any cycle A1A2 : : :An, the starting and ending positions of the �rst edge A1 and

the last edge An must be the same, since edge A1 must emanate from the expression that

edge An is going.

If a cycle is composed of only C4 and C3 edges, it must be of the form (C4C3)+. (Alter-

natively, the cycle could be denoted (C3C4)+.) For a C4 edge, the starting position must

be greater than the ending position. This is because a C4 edge Comp(V; fVjg)! Inst(Vi)

is required since Vi < Vj in the view ordering which implies that Pos(Comp(V; fVjg)) >

Pos(Inst(Vi)). On the other hand, for a C3 edge Inst(Vi) ! Comp(V; fVig), the starting

and ending position is the same. Hence, for any path of the form (C4C3)+, the starting

position of the �rst edge must be greater than the ending position of the last edge. Hence,

it is impossible to construct a cycle of the form (C4C3)+.

Thus, cycles must be composed of C3, C4 and C8 edges. An example of such a cycle

is the C8C4C3C4C3 cycle in Figure A.1 starting with the C8 edge Comp(V5; fV4g) !

Comp(V4; fV3g). In general, cycles are of the form

C8+(C4C3)+(C8+(C4C3)+)�:

Since cycles must have C8 edges, we can assume without loss of generality that they start

at some C8 edge. Since cycles must have some C4 and C3 edges, a C4 edge must follow the

initial path of C8 edges. A C3 edge cannot follow since a C3 edge emanates from an Inst

expression. Since a C4 edge ends in an Inst expression, a C3 edge must follow a C4 edge

since a C3 edge is the only type of edge that emanates from an Inst expression. The initial

path C8+(C4C3)+ can be followed by zero or more paths of the same form. (Note that a

cycle C8+(C4C3)+C8+ can be denoted as a C8+(C4C3)+ cycle by changing the starting

edge of the cycle.)

APPENDIX A. CHAPTER 3 PROOFS 252

Crux of the proof: With this notation in hand, and with this general description of

a cycle, we can now prove that for tree VDAGs, there are no cycles.

Given a cycle C8+(C4C3)+(C8+(C4C3)+)�, there must be at least one non-local C4C3

path. Let us assume otherwise. This implies that all C4C3 paths in the cycle

C8+(C4C3)+(C8+(C4C3)+)�

are local. However, given any path of the form C8+(C4C3)+, where all the C4C3 paths are

local, the path can be shortened into a path of the form C8+! For instance, a C8C4C3C4C3

path

Comp(V; fVkg)! Comp(Vk; fVjg)! Inst(Vi)!

Comp(Vk; fVig)! Inst(Vh)! Comp(Vk; fVhg);

can be shortened to Comp(V; fVkg) ! Comp(Vk; fVhg), since the existence of this edge is

guaranteed to ensure that the condition C8 is met. Thus, if there is a cycle

C8+(C4C3)+(C8+(C4C3)+)�

that only uses local C4C3 paths, then there must be a cycle using C8 edges only which we

have observed to be impossible.

The existence of a non-local C4C3 path implies that the VDAG is not a tree. To see

this, a non-local C4C3 path is of the form Comp(V; fVig) ! Inst(Vi) ! Comp(V 0; fVig)

where V 6= V 0. This implies that there are at least two views de�ned on Vi. This further

implies that there are at least two paths that end in Vi in the VDAG, which is not possible

in a tree VDAG. 2

Lemma A.0.3 For a uniform VDAG, every view ordering results in an acyclic expression

graph (Lemma 3.5.2). 2

Proof: In the proof of Lemma A.0.2, we showed that cycles are of the form

C8+(C4C3)+(C8+(C4C3)+)�;

in general.

Similar to the Pos function de�ned in the proof of Lemma A.0.2, we �rst de�ne the

Level(E) function applied to an expression E. Level(Inst(Vi)) returns Level(Vi) of the view

APPENDIX A. CHAPTER 3 PROOFS 253

Vi in the VDAG that was used to construct the expression graph. Similarly, Level(Comp(V;-

fVig)) returns Level(Vi). Given an edge A = Ej ! Ei, we say that starting level of A is

Level(Ej) and the ending level of A is Level(Ei).

In any cycle A1A2 : : :An, it is clear that the starting level of A1 is the same as the

ending level of An. This is because the expression from which A1 emanates is the same as

the expression that An is going to.

We now make the following observations. For any path of the form C8+, the starting

level of the �rst edge is greater than the ending level of the last edge. This is because for any

C8 edge Comp(Vk; fVjg)! Comp(Vj; fVig), the starting level of the edge must be greater

than the ending level because Vj is de�ned on Vi.

The next two observations only hold for expressions constructed from uniform VDAGs.

For any (C4C3)+ path composed of only local C4C3 paths, the starting level of the �rst

edge is the same as the ending level of the last edge. This is because for a C4C3 path

Comp(V; fVjg)! Inst(Vi)! Comp(V; fVig) implies that V is de�ned on both Vj and Vi.

Since for a uniform VDAG, V is de�ned only on views with the same Level value, it must

be that Level(Comp(V; fVjg)) = Level(Comp(V; fVig)) because Level(Vj) = Level(Vi).

For any (C4C3)+ path composed of only non-local C4C3 paths, the starting level of the

�rst edge is the same as the ending level of the last edge. This is because for a C4C3 path

Comp(V 0; fVjg) ! Inst(Vi) ! Comp(V; fVig) implies that V 0 is de�ned on both Vi and

Vj . To see this, edge Comp(V 0; fVjg) ! Inst(Vi) implies the existence of the expression

Comp(V 0; fVig), which in turn implies that V 0 is de�ned on Vi. Clearly, Comp(V 0; fVjg)

implies that V 0 is de�ned on Vj . For a uniform VDAG, it must be that Level(Vi) = Level(Vj)

because V 0 is de�ned on views with the same Level value. Hence, Level(Comp(V 0; fVjg)) =

Level(Comp(V; fVig)).

Let us assume that there is a cycle of the form C8+(C4C3)+(C8+(C4C3)+)�. However,

for an expression graph constructed from a uniform VDAG, the �rst edge in the cycle

C8+(C4C3)+(C8+(C4C3)+)�

must have a starting level that is greater than the ending level of the last edge of the cycle.

Since for any cycle these two levels must be the same, we have arrived at a contradiction,

proving the theorem. 2

Theorem A.0.7 Given a VDAG G, and a desired view ordering
�!
V , MinWork produces

APPENDIX A. CHAPTER 3 PROOFS 254

optimal VDAG strategies if EG(G;
�!
V) is acyclic. In particular, MinWork always produces

optimal VDAG strategies for tree VDAGs and uniform VDAGs (Theorem 3.5.4). 2

Proof: Given a VDAG G and a desired view ordering
�!
V , such that EG(G;

�!
V), MinWork

constructs the output VDAG strategy by constructing the expression graph and topologi-

cally sorting it. By Theorem A.0.6, the MinWork VDAG strategy is optimal. 2

Theorem A.0.8 Given a VDAG G and a view ordering
�!
V , we can come up with a view

ordering
�!
V 0 = ModifyOrdering(G,

�!
V) such that EG(G,

�!
V 0) is acyclic. That is, MinWork

will always succeed in producing a VDAG strategy (Theorem 3.5.5). 2

Proof: Let us assume that there is a cycle of the form C8+(C4C3)+(C8+(C4C3)+)�. For

any cycle, the starting level of the �rst edge is the same as the ending level of the last edge

as shown in the proof of Lemma A.0.3.

We also observed in that proof that for any path of the form C8+, the starting level of

the �rst edge is greater than the ending level of the last edge.

We now make the following observations that hold for an expression graph constructed

using
�!
V 0 = ModifyOrdering(G;

�!
V). For any (C4C3)+ path composed of only local C4C3

paths, the starting level of the �rst edge is greater than or equal to the ending level of the

last edge. This is because for a C4C3 path Comp(V; fVjg) ! Inst(Vi) ! Comp(V; fVig)

implies that Vi < Vj in
�!
V 0 . Hence, it must that Level(Vi) � Level(Vj), and therefore

Level(Comp(V; fVjg)) � Level(Comp(V; fVig)).

Similarly, for any (C4C3)+ path composed of only non-local C4C3 paths, the starting

level of the �rst edge is greater than or equal to the ending level of the last edge. This

is because for a C4C3 path Comp(V 0; fVjg) ! Inst(Vi) ! Comp(V; fVig) implies that

Vi < Vj in
�!
V 0 . To see this, edge Comp(V 0; fVjg) ! Inst(Vi) implies the existence of the

expression Comp(V 0; fVig), and the edge Inst(Vi) ! Comp(V 0; fVig). This implies that

Vi < Vj in the view ordering. Hence, Level(Vj) � Level(Vi), and Level(Comp(V
0; fVjg)) �

Level(Comp(V; fVig)).

From these observations, the starting level the �rst edge of any cycle

C8+(C4C3)+(C8+(C4C3)+)�

must be greater than the ending level of the last edge of the cycle. We have arrived at a

contradiction, proving the theorem. 2

APPENDIX A. CHAPTER 3 PROOFS 255

Theorem A.0.9 Given a view ordering
�!
V , all the correct 1-way VDAG strategies that are

consistent with
�!
V incur the same amount of work (Theorem 3.6.1). 2

Proof: Let the set of VDAG views be fV1; : : : ; Vng. Consider the view ordering hV1; : : : ; Vni.

Let
�!
E and

�!
E 0 be two di�erent 1-way VDAG strategies that are consistent with this view

ordering. We show that
�!
E and

�!
E 0 incur the same amount of work.

Note that
�!
E and

�!
E 0 must have the same set of Comp and Inst expressions since they

are 1-way VDAG strategies for the same VDAG. They di�er in the sequencing of these

expressions. Each Inst expression incurs the same amount of work in
�!
E and

�!
E 0 , because

the work involved is independent of the position at which the Inst expression occurs in the

VDAG strategy. We show below that each Comp expression also incurs the same amount

of work in both the VDAG strategies. From this, we conclude that
�!
E and

�!
E 0 have the

same amount of total work.

Since
�!
E and

�!
E 0 are 1-way VDAG strategies that are consistent with the view ordering

hV1; : : : ; Vni, they must be of the form:

�!
E = h

�!
E1 ; Inst(V1);

�!
E2 ; Inst(V2); : : : ;

�!
En ; Inst(Vn)i

�!
E 0 = h

�!
E 01 ; Inst(V1);

�!
E 02 ; Inst(V2); : : : ;

�!
E 0n ; Inst(Vn)i

where
�!
Ei and

�!
E 0i are sequences of Comp expressions. Note that each of these sequences

can contain multiple Comp expressions because a view can participate in the de�nition of

multiple derived views.

Consider any Comp expression, say Comp(W; fY g), that occurs in the two VDAG strate-

gies. There are two cases to examine:

� Case 1: Comp(W; fY g) is in
�!
Ej and in

�!
E 0j .

� Case 2: Comp(W; fY g) is in
�!
Ej and in

�!
E 0k , where k 6= j.

Case 1: The same set of views have been installed when Comp(W; fY g) is evaluated in

both the VDAG strategies. This means that Comp(W; fY g) will be evaluated with the same

database state in both the VDAG strategies, and hence the work incurred by Comp(W; fY g)

will be the same in
�!
E and

�!
E 0 .

Case 2: Without loss of generality, we assume that k > j. Consider the set of views,

I = fVj; : : : ; Vk�1g, whose install expressions are after Comp(W; fY g) in
�!
E and before

APPENDIX A. CHAPTER 3 PROOFS 256

Comp(W; fY g) in
�!
E 0 . We show that I contains no view that participates in the de�nition

of W .

First, we note that Y cannot be in I. Otherwise, the view strategy for W used by
�!
E 0 would be incorrect (because Inst(Y) would precede Comp(W; fY g), violating condition

C3). In fact, Y must be in fVk; : : : ; Vng in order for
�!
E 0 to be correct. Now, if W were to

be de�ned over a view V that is in I, Inst(V) would appear between Comp(W; fY g) and

Inst(Y) in
�!
E (a violation of condition C4 with respect to the view strategy for W). This

is not possible since
�!
E is a correct VDAG strategy.

In general, the work incurred in evaluating a Comp expression is dependent on the

database state in which the expression is evaluated. Comp(W; fY g) is evaluated in
�!
E after

installing the set of views fV1; : : : ; Vj�1g while it is evaluated in
�!
E 0 after installing the set

of views fV1; : : : ; Vk�1g. However, W is not de�ned over any view from fVj; : : : ; Vk�1g and

so the work incurred in evaluating Comp(W; fY g) will not be a�ected by the state of these

views. Hence, Comp(W; fY g) will incur the same amount of work in
�!
E and

�!
E 0 . 2

Theorem A.0.10 Prune is guaranteed to produce the best 1-way DAG strategy for a given

VDAG (Theorem 3.6.2). 2

Proof: Let us assume otherwise. Let
�!
E be the VDAG strategy produced by Prune, and let

�!
E 0 be a VDAG strategy such that Work(

�!
E 0) < Work(

�!
E). By Lemma 3.6.1,

�!
E 0 must be in

some partition. However it cannot be in the partition
�!
E is in because by Theorem 3.6.1,

�!
E

will incur the same amount of work as
�!
E 0 . Hence it must be in some partition where Prune

picks
�!
E 00. Since Prune picks

�!
E �nally, it must be thatWork(

�!
E) <= Work(

�!
E 00). According

to Theorem 3.6.1, Work(
�!
E) <= Work(

�!
E 00) = Work(

�!
E 0) { a contradiction. This proves

that Prune �nds the best 1-way VDAG strategy. 2

Appendix B

Chapter 4 Cost Model

In this section we give our formulas for deriving the overall cost of maintaining a set of views

due to changes to the warehouse relations. The formulas are based upon cost models for

queries and updates [ST85] appearing elsewhere. The formulas represent a fairly accurate

and detailed cost model, upon which we based our implementation of an algorithm that

used exhaustive search to �nd the optimal set of supporting views and indices for a given

primary view. The results of experiments using this algorithm were used to justify our rules

of thumb in Section 4.5 and our results in Section 4.7.

The main formula given in this section is Costv(V), which is the cost of maintaining a set

of views V . The other formulas are used to support Costv(V). We rede�ne the approximate

formulas given in Section 4.5 for the cost of maintaining a view or an index in this section

to use our more detailed cost model. Note that we do not give formulas for bene�t, but one

can derive Bene�tv(V) = Costv(V)� Costv(V[fV g).

Table 4.2 lists additional statistical functions that are used in the cost formulas in this

section, In addition to the notation of Table 4.2, we need to de�ne H(V;R:A) as the height

of an index on V for attribute R:A. Note that much of the statistical information for views

can be derived from statistical information for the warehouse relations and the selectivities

of selection and join conditions.

Table B.1 gives our formula for Costv(V) and its supporting formulas. Note that

Eval(expr) is the traditional query optimization cost function. In the formulas we use 4R,

5R, and �R to represent the set of insertions, deletions, and updates to R respectively.

We have implemented an exhaustive-search query optimizer that calculates Eval(expr) by

considering all possible query plans. It uses as the cost estimates for each operator in the

257

APPENDIX B. CHAPTER 4 COST MODEL 258

tree the formulas appearing in Table B.2. The optimizer evaluates the cost of each possible

query plan and selects the plan with the minimum cost. In addition, the optimizer considers

possibly using materialized views in the evaluation of the expression, and considers reusing

results of other expressions (which have been saved in 4V save
R relations).

Two more formulas need to be explained:

yao(n; p; k) =

8>>><
>>>:

k k < p=2

(k + p)=3 p=2 < k <= 2p

p 2p < k

The yao function returns an estimate of the number of page read operations given that k out

of n tuples are read from a relation spanning p pages. The yao function assumes that either

the memory bu�er is large enough to hold the entire relation, or that the tuple accesses

have been sorted beforehand so that tuples from the same page will be requested one after

the other. Since the assumption that a relation �ts entirely in memory is unrealistic for a

data warehouse and we assume that tuple accesses are not usually sorted beforehand, our

formulas often make use of a function YWAP presented in [ML89] for estimating the number

of page read operations given k tuple fetches and a memory bu�er of m pages.

YWAP (n; p; k;m)

8>>><
>>>:

min(k; p) p <= m

k p > m and k <= m

m+ (k �m)(p�m)=p p > m and k > m

APPENDIX B. CHAPTER 4 COST MODEL 259

Name Formula Description

Costv(V)
P

V2V Costv(V) Derive cost to maintain a set

of views by summing cost to

maintain each view.

Costv(V)
P

R2R(V)(Propins(R; V) Sum the cost of propagate V

+ Propdel(R; V) changes to each relation into

+ Propupd(R; V)) V

Propins(R; V) Eval(4R1R21 : : :1Rk ! 4VR), Evaluate e�ect on V of 4R,

which we call 4VR, where

fR;R2; : : : ; Rkg = R(V)

+Applyins(4VR; V) Insert 4VR into V

+Applyins(4VR;4V
save
R) Save it for possible reuse as

4V save
R (small cost anyway)

+ApplyIx(4VR; V) Update indices on V

Propdel(R; V) Eval(V1key of R5R! 5VR) Evaluate e�ect on V of 5R,

which we call 5VR
+Applydelupd(5VR; V) Delete 5VR from V

+ApplyIx(5VR; V) Update indices on V

Propupd(R; V) Eval(V1key of R�R! �VR) Evaluate e�ect on V of 5R,

which we call �VR
+Applydelupd(�VR; V) Update �VR in V

Applyins(R; V) P (R) Append tuples in R to V

Applydelupd(R; V) yao(T (V); P (V); T (R)) Delete or update tuples of R in

V (R � V). Exact locations of

tuples of R in V are derived

when R is derived. If index

join is used to derive R instead

of nested-block join, then use

YWAP (T (V); P (V); T (R); Pm)

instead of

yao(T (V); P (V); T (R)).

ApplyIx(R; V)
P

R:A2indices on V For each index on V, sum

(YWAP (T (V); approximate number of index

P (V;R:A); pages to read assuming root

cached,

T (R) � (H(V;R:A)� 1)) plus

+ YWAP (T (V); P (V;R:A); T (R))) approximate number of index

pages to write (leaves only).

Table B.1: Cost Formulas

APPENDIX B. CHAPTER 4 COST MODEL 260

Operator Formula Description

Eval(Nested-block JoinE11E2) Eval(E1)+ Assume try to �t as

dP (E1)=Pme �Eval(E2) much

of left-hand expression

result in memory as

possible, then evaluate

right-hand expression.

Eval(Index Join EjoinV) Eval(E) Cost of evaluating the

left hand expression

+ YWAP (T (V); Let X = H(V; S:B)�

P (V; S:B); 2 + dP (V; S:B)�

T (E) �X;Pm=2) S(V; JC)=T(V)e. Let

the join condition

JC be on indexed at-

tribute S:B in V , then

YWAP is the number

of index pages to read,

assuming bu�er mem-

ory is split between in-

dex and relation

+ YWAP (T (V); Number of relation

P (V); pages to read

T (E) � S(V; JC); Pm=2)

Eval(Relation Scan V) P (V)

Eval(Index Scan V) H(V; S:B)� 1 Let the selection con

+ dP (V; S:B) �
S(V;SC)
T (V) e dition SC be on in-

dexed attribute S:B of

V , then this line com-

putes the number of in-

dex pages to read.

+ YWAP (T (V); P (V); Number of relation

S(V; SC); Pm) page to read

Table B.2: Query-Optimizer Cost Formulas

Appendix C

Chapter 5 Proofs

Before we prove the lemmas, we de�ne some notation. Given a maintenance subexpression

E = �A�P(�R2RR), we use Res(E) to denote �P(�R2RR). That is, Res(E) projects

all the attributes of all the views involved in the cross product. We use tres to denote a

tuple in Res(E). Note that every tres \manifests" itself in the result of E because we use

bag semantics. Furthermore, since we require aggregate views to have the COUNT aggregate

function, this observation holds for aggregate views. Similarly, we use tmapres to denote

a tuple in Res(Map(E; T)). Assuming R0 � R, tres[R
0] denotes the tuple resulting from

tres that includes only the attributes of the views in R0. We also use tres[A] to denote

the tuple resulting from tres that includes only the attributes in A. Given a maintenance

subexpression E = �A�P(�R2RR), we use P [tmapres] to be the condition resulting from

replacing each attribute with its value in tmapres.

We now formalize the de�nition of when a tuple t is \needed" by E.

De�nition C.0.1 (needed) Let E = �A�P(�R2RR), and T 2 R. Let D be the delta

relations in R. Tuple t 2 T is needed by E if and only if for some extension of the delta

relations, 9tres 2 Res(E) such that tres [fTg] = t and for all R 2 R that is not a delta

relation, tres[fRg] 2 R. 2

Intuitively, the de�nition states that t 2 T is needed by E = �A�P(�R2RR) if there is

a tuple tres in Res(E) that t can \contribute" to. If t is removed from T , then tres[A] is

also removed from the result of E. (Note that this also holds even when t has duplicates

because removing t would decrease the number of duplicates of tres[A].)

Proof of Lemma 5.3.1 For the proof, we denote Map(E; T) as �Attrs(T)�P 0(�R2(R�D)R),

261

APPENDIX C. CHAPTER 5 PROOFS 262

where P 0 is obtained from P using Closure and Ignore. D are the delta relations in R.

Proof: (Lemma 5.3.1)

(Necessity) Assume t 2 T is needed. By De�nition C.0.1, there exist a tuple tres 2 Res(E)

so that tres[fTg] = t. We can obtain tmapres 2 Res(Map(E; T)) as tres[R�D]. This follows

from the soundness of the Closure procedure ([Ull89a]) and the de�nition of the Ignore

procedure which guarantee that P) P 0. It follows that t = tmapres[fTg](= tres[fTg]) since

the attribute values were not changed in obtaining tmapres from tres. Hence t 2 Map(E; T)

and t 2 Needed(T; E) (since E 2 E).

(Su�ciency) Assume t 2 Needed(T; E). Hence, for some E 2 E , t 2 Map(E; T). This implies

that tmapres 2 Res(Map(E; T)) with tmapres[fTg] = t. Since Map(E; T) is not empty (because

of the presence of t), P 0 does not have the atomic condition false ,i.e., P 0 is satis�able.

Since Ignore does not remove false, it must be that P is also satis�able. Furthermore,

since the Closure procedure is complete ([Ull89a]), we are guaranteed that P [tmapres] is

satis�able.

To see this, there are �ve types of atomic conditions in P . (Ri and Rj denote non-delta

relations. Dk and Dl denote delta relations. K denotes a constant. � is =, > �, �, <, or

6=) They are: (1) Ri:a � Rj :b; (2) Ri:a � K; (3) Ri:a � Dk:b; (4) Dk:a � Dl:b; (5) Dk:a � K.

Recall that P is satis�able. Since tmapres 2 Res(Map(E; T)) it follows that P 0[tmapres] =

true. Since P 0 is obtained using Closure on P (then Ignore), P 0) Ignore(P ;D) and

Ignore(P ;D)[tmapres] = true. Hence, P [tmapres] is a conjunction of true and atomic

conditions of type (3), (4) and (5). Type (3) atomic conditions become type (5) since the

attribute references are replaced by the values in tmapres. Since Closure is complete, any

type (5) condition that implies a type (2) condition through type (3) and type (4) conditions

were inferred. Since tmapres satis�es these inferred type (2) conditions, it must be that the

conjunction of type (4) and type (5) conditions in P [tmapres] is satis�able.

Since P [tmapres] is satis�able, we can construct tres as follows. For all attributes in

R� D, copy the values from tmapres. For attributes in D, assign values so that P [tres] is

true. The existence of these values is guaranteed by the fact that P [tmapres] is satis�able.

Since P [tres] is true, tres 2 Res(E). By De�nition C.0.1, t is needed. 2

Proof of Lemma 5.4.1 Since we now prove Lemma 5.4.1 which deals with constraints,

we assume a maintenance subexpression E = �A�P(�R2RR) in quanti�er representation.

We also denote MapC(E; T) as �Attrs(T)�P 0(�R2(R�D)R), where P
0 is obtained from P

APPENDIX C. CHAPTER 5 PROOFS 263

using ClosureC and Ignore. Before we prove Lemma 5.4.1, recall that the lemma makes

three statements: (1) All the needed T tuples are in NeededC(T; EC). (2) NeededC(T; EC) �

Needed(T; EC) � Needed(T; E). (3) Under certain restrictions on the not exists constraints

in C, only the needed T tuples are in NeededC(T; EC). We prove these statements in turn.

Proof: (Statement (1), Lemma 5.4.1)

Assume t 2 T is needed. By De�nition C.0.1, there exist a tuple tres 2 Res(E) so that

tres[fTg] = t. We can obtain tmapres 2 Res(MapC(E; T)) as tres[R� D]. This follows from

the soundness of the ClosureC procedure and the de�nition of the Ignore procedure which

guarantee that P) P 0. (ClosureC is sound in that it only derives conditions that are

implied by P .) It follows that t = tmapres[fTg](= tres[fTg]) since the attribute values were

not changed in obtaining tmapres from tres. Hence t 2 MapC(E; T) and t 2 NeededC(T; EC)

assuming E 2 EC . 2

Proof: (Statement (2), Lemma 5.4.1)

For each E 2 E , NeededC(T; EC) uses Map(EC; T); Needed(T; EC) uses Map(EC; T); and

Needed(T; E) uses Map(E; T). Let E = �A�P(�R2RR). Let EC = �A�Pq(�R2RR). Since

Pq) P due to additional exists and not exists conditions, Map(EC; T) � Map(E; T). It

follows that Needed(T; EC) � Needed(T; E).

Let Map(EC; T) = �Attrs(T)�P 0
q
(�R2RR), and MapC(EC; T) = �Attrs(T)�P 00

q
(�R2RR).

More conditions (implied by exists and not exists conditions) are added in P 00q , and

they are not in P 0q. Therefore, P
00
q) P

0
q. It follows that MapC(EC; T) � Map(EC; T). Hence,

NeededC(T; EC) � Needed(T; EC). 2

Proof: (Statement (3), Lemma 5.4.1)

Assume t 2 NeededC(T; EC). For some E 2 EC , it must be that t 2 MapC(E; T). This implies

that tmapres 2 Res(MapC(E; T)) with tmapres[fTg] = t. Since MapC(E; T) is not empty, the

selection condition expression of MapC(E; T) denoted P
0 does not have the atomic condition

false ,i.e., P 0 is satis�able. Since Ignore does not remove false, it must be that the

selection condition expression of E, denoted P , is also satis�able. Furthermore, assuming

ClosureC is complete, we are guaranteed that P [tmapres] is satis�able.

Since P [tmapres] is satis�able, we can construct tres as follows. For all attributes in

R� D, copy the values from tmapres. For attributes in D, assign values so that P [tres] is

true. The existence of these values is guaranteed by the fact that P [tmapres] is satis�able.

Since P [tres] is true, tres 2 Res(E). By De�nition C.0.1, t is needed. 2

APPENDIX C. CHAPTER 5 PROOFS 264

The proof of Statement (3) of Lemma 5.4.1 relies on having a complete ClosureC al-

gorithm. Before we present the algorithm and prove its completeness, we introduce some

notation. As before, we use Si to denote an existentially quanti�ed tuple variable over S,

and S
asj
j to denote a universally quanti�ed tuple variable over S. We use \S" and \S0" to

denote either Si or S
asj
j . We use X to denote a reference to some attribute T:a. Finally, we

use � to denote either <, �, 6=, =, � or >. Since an atomic condition T:b > S:a (T:b � S:a)

can always be expressed as S:a < T:b (S:a � T:b, respectively), we focus on the �rst four

comparison operators.

We now present in detail the ClosureC algorithm and prove that it is complete. The

algorithm uses the following axioms to obtain all atomic conditions implied by P .

The following 8 axioms are for inferring equalities from a conjunction of atomic condi-

tions.

E1: S:a = S:a

E2: S:a = T:b) T:b = S:a

E3: S:a = T:b^ T:b = U:c) S:a = U:c

E4: S:a = T:b) S:a � T:b

E5: S:a � T:b^ T:b � U:c) S:a � U:c

E6: S:a � T:b^ T:b � S:a) S:a = T:b

E7*: S
asj
i :a � T:b) S:a � T:b

E8*: S
asj
i :a = Tj :b) S

asj
i :a = S

asj
k :a

Axioms E1{E6 are fairly standard and are clearly sound. Axioms E7 and E8 are the two

additional axioms introduced in Section 5.4 and are also sound.

The following 9 axioms derive inequalities. The �rst 8 axioms are called Armstrong's

axioms, and were proven in [Ull89a] to be sound and complete when none of the tuple

variables is universally quanti�ed. Axiom I9 is identical to Axiom E7 and is also sound.

I1: S:a � S:a

I2: S:a < T:b) S:a � T:b

I3: S:a < T:b) S:a 6= T:b

I4: S:a � T:b^ S:a 6= T:b) S:a < T:b

I5: S:a 6= T:b) T:b 6= S:a

I6: S:a < T:b ^ T:b < U:c) S:a < U:c

I7: S:a � T:b^ T:b � U:c) S:a � U:c

APPENDIX C. CHAPTER 5 PROOFS 265

I8: S:a � U:c ^ U:c � T:b^ S:a � V:d^ V:d � T:b^ U:c 6= V:d) S:a 6= T:b

I9*: S
asj
j :a � X) Si:a � X .

We assume we have a procedure CloseEqual that �res Axioms E1{E8 and a proce-

dure CloseInequal that �res Axioms I1{I9 when given a conjunction of atomic conditions.

ClosureC uses the two procedures in the following steps.

1. Use CloseEqual to obtain all equality atomic conditions. Using these equality atomic

conditions, we place two attributes S:a and T:b in the same equivalence class C if

S:a = T:b results from CloseEqual.

2. For each equivalence class C, pick an attribute Si:a where Si is an existentially quanti-

�ed tuple variable. For each attribute Tj :b (that is not Si:a) in C, replace each atomic

condition Tj :b � X with Si:a � X .

3. Use CloseInequal to obtain all the inequality atomic conditions.

4. Add additional atomic conditions by examining each equivalence class. For an equiv-

alence class C, assume Si:a was the attribute picked in Step 2. For each attribute Tj :b

(that is not Si:a) in C, introduce the atomic condition Tj :b � X if Si:a � X is in the

closure.

ClosureC is clearly sound since it does not derive any atomic condition that is not implied

by P .

Assuming both CloseEqual and CloseInequal are complete, it is not hard to show that

ClosureC is complete. Suppose there is an atomic condition T:b � X that is implied by the

given conjunction of atomic conditions, but it is not derived by ClosureC. It must be the

case that � is not = because otherwise CloseEqual would have produced it (in Step 1). It

must also be the case that T is existentially quanti�ed and T:b is not an attribute that was

picked in Step 2 of ClosureC. Otherwise, CloseInequal would have produced T:b � X in

Step 3. However, it is guaranteed that Step 4 produces T:b � X . Otherwise, CloseInequal

must have failed to produce Si:a � X , where Si:a is the attribute that belongs to the same

equivalence class as T:b that was picked in Step 2. This is implies that CloseInequal is

incomplete, contradicting our assumption. We now prove the completeness of CloseEqual

and CloseInequal.

APPENDIX C. CHAPTER 5 PROOFS 266

We prove the completeness of CloseEqual by proving the following lemma which states

that given a conjunction of atomic conditions P input to ClosureC, there is no S:a = T:b

that is implied by P but is not in P+ (the output of CloseEqual).

Lemma C.0.4 Let P be a conjunction of atomic conditions input to ClosureC, such that

false is not implied by P. Then every equality S:a = T:b not in P+ has some assignment

of a set of integers to each attribute used in P that makes all the atomic conditions in P+

true but S:a � T:b false. 2

Proof: (Lemma C.0.4 (Completeness of CloseEqual))

After applying the set of axioms, we derive a set of equivalent classes where each equivalent

class contains a set of attributes that are inferred to be equal (from Axioms E1{E3, E6{E8).

We construct a graph as follows: Each node N in the graph corresponds to an equivalent

class of attributes N:attrs. There is a directed edge from node N to node M i� U:c < V:d

or U:c � V:d for some U:c in M:attrs and V:d in N:attrs.

We now show that the graph is acyclic. Suppose that there is a directed cycle. This

means that we have a chain of inequalities. Since we assume P is satis�able, this chain

must consist of only �. However, Axioms E5 and E6, we should have easily derived the

fact that all attributes in these nodes are equal, i.e., all attributes belong to one equivalent

class. This is a contradiction. Therefore, the graph is a DAG.

We assign values to attributes as follows: First �nd a topological sort of the graph such

that M comes before N in the order if there is an edge from N to M. Assign a strictly

increasing sequence of integers to nodes in the topological order. Attributes corresponding

to the same node are assigned the same integer. (Note that the attribute of a universally

quanti�ed tuple will have only one integer value.)

We show that this assignment satis�es P . If U:c = V:d is in P+, then U:c and V:d belong

to the same node in the graph, and hence are assigned to the same integer. If U:c! = V:d is

in P+, then U:c and V:d belong to di�erent nodes (otherwise P is unsatis�able), and hence

are assigned to di�erent integers. If U:c � V:d is in P+ and U:c and V:d correspond to the

same node, then U:c � V:d is satis�ed because they are assigned to the same integer. If

U:c � V:d is in P+ but U:c and V:d correspond to di�erent nodes, there should be an edge

from the node for V:d to the node for U:d, so the assignment guarantees that U:c < V:d. If

U:c < V:d is in P+, then U:c and V:d must correspond to di�erent nodes (otherwise P is

unsatis�able), and there should be an edge from the node for V:d to the node for U:c, so

APPENDIX C. CHAPTER 5 PROOFS 267

the assignment guarantees that U:c < V:d. In conclusion, P is satis�ed by this attribute

assignment.

Now, suppose that S:a = T:b cannot be derived from P using the set of axioms. S:a and

T:b must correspond to di�erent nodes in the graph, or else S:a = T:b is already inferred.

However, di�erent nodes are assigned to di�erent integers. Therefore S:a = T:b does not

hold under this assignment. 2

We prove the completeness of CloseInequal by proving the following lemma which

states that given a conjunction of atomic conditions P produced by Steps 1{2 of ClosureC,

there is no inequality S:a � T:b that is implied by P but is not in P+ (the output of

CloseInequal). The proof extends the one presented in [Ull89a] which only handled selec-

tion, join and semi-join conditions.

Lemma C.0.5 Let P be a conjunction of atomic conditions produced by Steps 1{2 of

ClosureC, such that false is not implied by P. Then every inequality S:a � T:b not in

P+ has some assignment of a set of integers to each attribute used in P that makes all the

atomic conditions in P+ true but S:a � T:b false. 2

Proof: (Lemma C.0.5 (Completeness of CloseInequal))

The inequality S:a � T:b can be of three types. For now we assume that neither S nor T

are universally quanti�ed tuple variables.

Case 1: � is �. We now construct an assignment that satis�es P+ but makes S:a > T:b.

Let A be those attributes U:c for which S:a � U:c is in P+, and let B be those attributes

V:d for which V:d � T:b is in P+. Let C = V � A � B, where V is the set of attributes

used by P . Note that for any attribute U:c 2 A, V:d 2 B, and W:e 2 C, it is possible that

V:d � W:e and/orW:e � U:c, but notW:e � V:d (else by Axiom I7, W:e would be in B), nor

U:c � W:e (then, W:e would be in A). Also, A and B are disjoint since otherwise S:a � T:b

would be in P+ (by Axiom I7) contrary to our assumption. Since C is disjoint from A and

B, we conclude that all three attribute sets are disjoint.

We can now topologically sort the elements of each attribute set with respect to the

order �. That is, U:c 2 A comes before U 0:c0 2 A if U:c � U 0:c0 is in P+ (and likewise for

the elements of B and C). There may be cycles in the order, i.e., we derive both U:c � U 0:c0

and U 0:c0 � U:c. In this case, it is guaranteed that one of U and U 0 is universally quanti�ed.

U and U 0 cannot be both existentially quanti�ed since Step 2 of ClosureC picks only one

attribute of one existentially quanti�ed variable from each equivalence class. Given that

APPENDIX C. CHAPTER 5 PROOFS 268

one of U and U 0 is universally quanti�ed, we break the cycle arbitrarily by assuming U:c

comes before U 0:c0.

We can then order the attributes in V as follows: (1) the elements in B, in order; (2)

the elements in C, in order; and (3) the elements in A, in order. We can then initially

assign distinct integers 1,2,: : : to the attributes in order. If some attribute R:a 2 V maps

to integer n, we denote this as IntMap(R:a) = fng. For an attribute Ri:a 2 V (i.e.,

Ri is an existentially quanti�ed tuple variable), this is the �nal IntMap assignment of

Ri:a. For an attribute R
asj
j :a, its �nal IntMap assignment depends on the equivalence

classes determined in Step 1 of ClosureC. If there is some attribute Si:b (attribute of some

existentially quanti�ed variable Si) that is in the same equivalence class as R
asj
j :a, we set

IntMap(R
asj
j :a) to IntMap(Si:b). If there is no such attribute Si:b but there is an attribute

S
asj
i :b (attribute of some universally quanti�ed variable S

asj
i), we set IntMap(R

asj
j :a) to

IntMap(S
asj
i :b). If R

asj
j :a's equivalence class has no other elements other than R

asj
j :a, we

assign a set of integers to R
asj
j :a as follows: IntMap(R

asj
j :a) =

S
8R:a2V IntMap(R:a), where

R is either existentially quanti�ed or universally quanti�ed.

For this IntMap assignment, S:a is given a larger value than T:b, so S:a � T:b does not

hold. Now we must show that all the atomic conditions in P+ hold.

Consider U:c 6= V:d in P+. This clearly holds if U:c and V:d are in di�erent attribute sets

(i.e., A, B or C), because IntMap assigns a disjoint set of integers to attributes belonging

to di�erent attribute sets. If U:c and V:d are in the same attribute set, they must be in

di�erent equivalence classes as determined in Step 1 of ClosureC. Otherwise, U:c = V:d

would have been derived by CloseEqual implying that P is contradictory. Furthermore, it

cannot be the case that U:c is actually Ri:c, and V:d is actually Ri:c as well. Otherwise,

Axiom E1 would have derived U:c = V:d. Finally, it cannot be the case that U:c is actually

Ri:c, and V:d is actually R
asj
j :c. This is because Axiom I9 would derive U:c 6= U:c, which

indicates that P is contradictory. IntMap(U:c) = IntMap(V:d) only holds if the attributes

belong to the same equivalence class. IntMap(U:c) � IntMap(V:d) only holds if U:c is

actually Ri:c, and V:d is actually R
asj
j :c. Similarly, IntMap(V:d) � IntMap(U:c) only holds

if U:c is actually R
asj
j :c, and V:d is actually Ri:c. These three cases are avoided by using

CloseEqual and Axiom I9. Hence, any U:c 6= V:d in P+ always holds.

Now consider U:c � V:d in P+. Let us suppose that U:c and V:d are in the same set

of attributes (A, B, or C). If both U and V are existentially quanti�ed variables, then

U:c � V:d since the topological order within each attribute set respects �. If U is a

APPENDIX C. CHAPTER 5 PROOFS 269

universally quanti�ed variable and V is not, U:c � V:d holds. To see this, Axiom I9 ensures

that U:c � V 0:d is derived for each tuple variable V 0 that goes over the same view as V .

Hence, IntMap assigns a set of values to V:d, where each value in the set is greater or equal

to than IntMap(U:c). On the other hand, if U is a universally quanti�ed variable and V is

not, U:c � V:d holds. To see this, Axiom I9 ensures that U 0:c � V:d is derived for each tuple

variable U 0 that goes over the same view as U . Hence, IntMap assigns a set of values to

U:c, where each value in the set is less than or equal to IntMap(V:d). Finally, if both U and

V are universally quanti�ed, Axiom I9 ensures that U 0:c � V 0:d is derived for each pair of

tuple variables U 0 and V 0. Hence, IntMap assigns a set of values to U:c and a set of values

to V:d, such that each value in IntMap(V:d) is greater than each value in IntMap(U:c).

Note that if U:c is actually T
asj
i :c and V:d is actually T

asj
j :c, then IntMap assigns the same

singleton set of integers to U:c and V:d. Hence, U:c � V:d still holds.

So far, we have shown that U:c � V:d holds if both U:c and V:d are in the same attribute

set. We now show that it holds even if U:c and V:d are in di�erent attribute sets. Surely,

if V:d is in C, or U:c is in A and V:d is in B or C, U:c � V:d holds. We are left with the

possibility that U:c is in A and V:d is in C or B, or U:c is in C and V:d is in B. However, if

U:c is in A and U:c � V:d is in P+, then V:d would be in A by Axiom I7, and not in B nor

C. Similarly, if V:d is in B then it is not possible that U:c � V:d and U:c is in C, because

U:c would have to be in B, by Axiom I7.

Finally, we must consider U:c < V:d in P+. We can rule out the possibility that U:c is

actually R:c and V:d is actually R0:c, and one of R or R0 is universally quanti�ed. Otherwise,

we can derive either R:c < R:c or R0:c < R0:c which implies that P is contradictory. With

these possibilities ruled out, the argument that U:c � V:d is true holds for U:c < V:d as

well.

Case 2: � is 6=. We now construct an assignment that satis�es P+ but makes S:a = T:b.

Once the construction is done, many of the arguments for Case 1 hold for the present case

as well. Since the present case considers that S:a and T:b are not equal, let us suppose that

S:a is less than T:b. Let D be those attributesW:e such that S:a � W:e andW:e � T:b are in

P+, which includes S:a and T:b themselves. Let A be those attributes U:c for which X � U:c

is in P+, for some X 2 D, but U:c itself is not in D. Let B be those attributes V:d for which

V:d � X is in P+, for some X 2 D, but V:d itself is not in D. Let C = V � A � B � D,

where V is the set of attributes used in P . As in Case 1, it can be easily shown that A, B,

C, and D are disjoint based on the axioms.

APPENDIX C. CHAPTER 5 PROOFS 270

We then topologically sort the elements in each attribute set w.r.t. �. We then combine

the attributes into one sequence with the attributes in B �rst, C second, D third and A last.

We initially assign increasing distinct integers to each attribute except for the attributes in

D, where the same integer is assigned. The IntMap function introduced in Case 1 is used

to give the �nal assignments to each attribute.

Clearly, S:a = T:b since both S:a and T:b are in D. We now show that all the atomic

conditions in P+ hold.

Consider U:c 6= V:d in P+. As in Case 1, if U:c and V:d are in di�erent attribute sets

(i.e., A, B, C, and D), then U:c 6= V:d holds. If U:c and V:d belong to the same attribute set,

the argument given in Case 1 that U:c 6= V:d holds for attribute sets A, B, and C. Although

the argument does not hold for D, U:c and V:d cannot be in D. If they were, Axiom I8

derives that S:a 6= T:b contradicting our assumption that S:a 6= T:b is not in P+.

Consider U:c � V:d. If U:c and V:d are in the same attribute set, the argument given

in Case 1 holds if U:c and V:d are either in A, B or C. Since all the attributes in D are

assigned the same integer, U:c � V:d holds if U:c; V:d2 D.

So far, we have shown that U:c � V:d holds if both U:c and V:d are in the same attribute

set. We now show that it holds even if U:c and V:d are in di�erent attribute sets. Clearly,

there are many cases where U:c and V:d reside in di�erent attributes sets, and U:c � V:d

still holds by virtue of the ordering imposed on the sets (i.e., B, C, D, A). For instance, if

U:c is in D and V:c is in A, then surely U:c � V:d holds. We now consider the following

possibility { U:c is in A and V:d is in some other attribute set. Hence, X � U:c, where

X 2 D, must be in P+. However, X � V:d is derived by Axiom I7 and V:d must also be

in A. We now consider the following possibility { V:d is in B and U:c is either in C or D.

In this case, Axiom I7 enforces that U:c must also be in B. We are left with the possibility

that U:c is in D, and V:d is in B. Since U:c � V:d is in P+ and U:c 2 D, by de�nition V:d

must be in A. Because the sets are ordered as B, C, D, then A, U:c � V:d must hold.

Finally, we must consider U:c < V:d in P+. As in Case 1, we can rule out the possibility

that U:c is actually R:c and V:d is actually R0:c, and one of R or R0 is universally quan-

ti�ed. Otherwise, we can derive either R:c < R:c or R0:c < R0:c which implies that P is

contradictory. With these possibilities ruled out, the argument that U:c � V:d is true holds

for U:c < V:d as well.

Case 3: � is <. If S:a � T:b is not in P+, then use the construction of Case 1 where IntMap

makes all the atomic conditions in P+ true but makes S:a < T:b false (i.e., S:a > T:b is

APPENDIX C. CHAPTER 5 PROOFS 271

true). If S:a 6= T:b is not in P+, then use the construction of Case 2 where IntMap makes

all atomic conditions in P+ true but makes S:a 6= T:b false (i.e., S:a = T:b is true). If both

S:a � T:b and S:a 6= T:b is in P+, then by Axiom I4, S:a < T:b is in P+ as well contrary to

our assumption.

So far, we have assumed that neither S nor T in S:a � T:b is universally quanti�ed.

Given this assumption, we have proved that if S:a � T:b is not in P+, then there is an

assignment that makes all the atomic conditions in P+ true but not S:a � T:b. We note

that the IntMap assignment that makes S:a � T:b false can be used if S (or T) is universally

quanti�ed. Suppose S
asj
i is a universally quanti�ed tuple variable going over the same view

as S. Since S
asj
i :a � T:b implies S:a � T:b, the IntMap assignment that makes S:a � T:b

false also makes S
asj
i :a � T:b false. 2

Bibliography

[AASY97] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek. E�cient view maintenance

in data warehouses. In Peckham [Pec97], pages 417{425.

[ABB93] Rakesh Agrawal, Sean Baker, and David Bell, editors. Proceedings of the

Nineteenth International Conference on Very Large Databases, Dublin, Ire-

land, August 24-27 1993.

[AGPR99] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. The AQUA ap-

proximate query answering system. In A. Delis, C. Faloutsos, and S. Ghan-

deharizadeh, editors, Proceedings of ACM SIGMOD 1999 International Con-

ference on Management of Data, pages 574{576, Philadelphia, Pennsylvania,

June 1999.

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-

Wesley Publishing Company, 1995.

[AL80] M. E. Adiba and B. Lindsay. Database snapshots. In Proceedings of the Sixth

International Conference on Very Large Databases, pages 86{91, Montreal,

Canada, October 1980.

[Ass92] Association for Computing Machinery. Proceedings of ACM SIGMOD 1992

International Conference on Management of Data, San Diego, California,

June 2{5 1992.

[Ass95] Association for Computing Machinery. Proceedings of the Fourteenth Sympo-

sium on Principles of Database Systems (PODS), San Jose, CA, May 22-24

1995.

272

BIBLIOGRAPHY 273

[BCL89] J. Blakeley, N. Coburn, and P. Larson. Updating derived relations: Detecting

irrelevant and autonomously computable updates. ACM Transactions on

Database Systems, 14(3):369{400, September 1989.

[BDGM95] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for

digital documents. In Carey and Schneider [CS95], pages 328{339.

[BGMF88] D. Barbara, H. Garcia-Molina, and B. Feijoo. Exploiting symmetries for low-

cost comparison of �le copies. In Proceedings of the International Conference

on Distributed Computing Systems, San Jose, California, June 1988.

[BHM90] P. A. Bernstein, M. Hsu, and B. Mann. Implementing recoverable requests

using queues. In Proceedings of the 1990 ACM SIGMOD International Con-

ference on Management of Data, pages 112{122. Association for Computing

Machinery, May 23{25 1990.

[BLT86] J. Blakeley, P. Larson, and F. Tompa. E�ciently Updating Materialized

Views. In Zaniolo [Zan86], pages 61{71.

[BN97] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing.

Morgan Kaufmann, San Mateo, CA, 1997.

[BPT97] E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in a

multi-dimensional datacube. In VLDB, pages 156{165, 1997.

[BT88] J. A. Blakeley and F. W. Tompa. Maintaining materialized views without

accessing base data. Information Systems, 13(4):393{406, 1988.

[Car97] Felipe Carino. High-performance, parallel warehouse servers and large-scale

applications, October 1997. Talk about Teradata given in Stanford Database

Seminar.

[CBC93] S. Choenni, H. Blanken, and T. Chang. On the selection of secondary indices

in relational databases. Data and Knowledge Engineering, 11:207{33, 1993.

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing and olap

technology. Sigmod Record, 26(1):65{74, March 1997.

BIBLIOGRAPHY 274

[CGL+96] L. Colby, T. Gri�n, L. Libkin, I. Mumick, and H. Trickey. Algorithms for

deferred view maintenance. In Proceedings of ACM SIGMOD 1996 Interna-

tional Conference on Management of Data, pages 469{480, 1996.

[CKL+97] L. Colby, A. Kawaguchi, D. Lieuwen, I. Mumick, and K. Ross. Supporting

multiple view maintenance policies. In Peckham [Pec97], pages 405{416.

[CLR92] T. H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.

MIT Press, Cambridge, MA, 1992.

[CN97] S. Chaudhuri and V. Narasaya. An e�cient, cost-driven index selection tool

for microsoft sql server. In Jarke et al. [JCD+97], pages 146{155.

[Com] TPC Committee. Transaction Processing Council. Available at:

http://www.tpc.org/.

[CRGMW96] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change

detection in hierarchically structured information. In Jagadish and Mumick

[JM96].

[CS95] M. Carey and D. Schneider, editors. Proceedings of ACM SIGMOD 1995

International Conference on Management of Data, San Jose, CA, May 23-25

1995.

[CW91] Stefano Ceri and Jennifer Widom. Deriving production rules for incremental

view maintenance. In Lohman et al. [LSC91], pages 108{119.

[DGN95] Umeshwar Dayal, Peter M.D. Gray, and Shojiro Nishio, editors. Proceed-

ings of the 21st International Conference on Very Large Databases, Zurich,

Switzerland, September 11-15 1995.

[DT87] Umeshwar Dayal and Irv Traiger, editors. Proceedings of ACM SIGMOD

1987 International Conference on Management of Data, San Francisco, CA,

May 27-29 1987.

[For82] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Arti�cial Intelligence, 19:17{37, 1982.

BIBLIOGRAPHY 275

[FRS93] F. Fabret, M. Regnier, and E. Simon. An adaptive algorithm for incremental

evaluation of production rules in database. In Agrawal et al. [ABB93], pages

455{66.

[FST88] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for

relational databases. ACM Transactions on Database Systems, 13(1):91{128,

1988.

[FWA86] W. K. Fuchs, K. Wu, and J. Abraham. Low-cost comparison and diagnosis

of large remotely located �les. In Proceedings of the Fifth Symposium on

Reliability in Distributed Software and Database Systems, January 1986.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: A pow-

erful approach to aggregation. In Dayal et al. [DGN95].

[GJM96] A. Gupta, H. Jagadish, and I. Mumick. Data integration using self-

maintainable views. In Proceedings of the Fifth International Conference

on Extending Database Technology, Avignon, France, March 1996. Industrial

Session.

[GL95] T. Gri�n and L. Libkin. Incremental maintenance of views with duplicates.

In Carey and Schneider [CS95], pages 328{339.

[GM95] A. Gupta and I. Mumick. Maintenance of Materialized Views: Problems,

Techniques, and Applications. [LW95], pages 3{19.

[GM98] H. Gupta and I. Mumick. Selection of views to materialize under a

maintenance-time constraint. In Proceedings of the International Conference

on Database Theory (ICDT), pages 453{470, 1998.

[GMLY98] H. Garcia-Molina, W. Labio, and J. Yang. Expiring data in a warehouse. In

Gupta et al. [GSW98], pages 500{511.

[GMS87] H. Garcia-Molina and K. Salem. Sagas. In Dayal and Traiger [DT87], pages

249{259.

[GMS93] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views incremen-

tally. In Proceedings of ACM SIGMOD 1993 International Conference on

Management of Data, Washington, DC, May 26-28 1993.

BIBLIOGRAPHY 276

[Gol95] Rob Goldring. IBM Datapropagator relational application guide. IBM White

Paper, 1(1), 1995.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, San Mateo, CA, 1993.

[Gra93] G. Graefe. Query evaluation techniques for large databases. ACM Computing

Surveys, 25(2):73{170, 1993.

[GSW98] A. Gupta, O. Shmueli, and J. Widom, editors. Proceedings of the 24th Inter-

national Conference on Very Large Databases, New York, New York, August

24-27 1998.

[Gup97] H. Gupta. Selection of views to materialize in a data warehouse. In Proceed-

ings of the International Conference on Database Theory (ICDT), 1997.

[Han87] E. Hanson. A performance analysis of view materialization strategies. In

Dayal and Traiger [DT87], pages 440{453.

[Han92] E. Hanson. Rule condition testing and action execution in Ariel. In Pro-

ceedings of ACM SIGMOD 1992 International Conference on Management

of Data [Ass92], pages 49{58.

[HC94] L. Haas and M. Carey. SEEKing the truth about ad hoc join costs. Technical

report, IBM Almaden Rsearch Center, 1994.

[HGMW+95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The

Stanford Data Warehousing Project. [LW95], pages 41{48.

[HHW97] J. M. Hellerstein, P. J. Haas, and H.J. Wang. Online aggregation. In Peckham

[Pec97], pages 171{182.

[HRU96] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implementing data cubes

e�ciently. In Jagadish and Mumick [JM96], pages 205{216.

[HT77] J.W. Hunt and Szymanski T.G. A fast algorithm for computing longest

common subsequences. Communications of the ACM, 20(5), 1977.

[Huy97] P. Huyn. Multiple-view self-maintenance in data warehousing environment.

In Jarke et al. [JCD+97], pages 26{35.

BIBLIOGRAPHY 277

[HZ96] Richard Hull and Gang Zhou. A framework for supporting data integration

using the materialized and virtual approaches. In Jagadish and Mumick

[JM96].

[IC94] W.H. Inmon and E. Conklin. Loading data into the warehouse. Tech Topic,

1(11), 1994.

[Inf] Informatica. Powermart 4.0 overview. Available at:

http://www.informatica.com/pm tech over.html.

[Inm92] W. H. Inmon. Building the Data Warehouse. Johm Wiley, 1992.

[Inm96] W. H. Inmon. The Data Warehouse Toolkit. Johm Wiley, 1996.

[JCD+97] Matthias Jarke, Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky,

Pericles Loucopoulos, and Manfred A. Jeusfeld, editors. Proceedings of the

23rd International Conference on Very Large Databases, Athens, Greece, Au-

gust 25-29 1997.

[JM96] H. V. Jagadish and Inderpal Singh Mumick, editors. Proceedings of ACM

SIGMOD 1996 International Conference on Management of Data, Montreal,

Canada, June 1996.

[JMS95] H. Jagadish, I. Mumick, and A. Silberschatz. View maintenance issues in

the chronicle data model. In Proceedings of the Fourteenth Symposium on

Principles of Database Systems (PODS) [Ass95], pages 113{124.

[JNSS97] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, and S. Sudarshan. Incremental

organization for data recording and warehousing. In Jarke et al. [JCD+97],

pages 16{25.

[Kin81] J. J. King. QUIST : A system for semantic query optimization in relatio nal

data bases. In Proceedings of the Seventh International Conference on Very

Large Databases, pages 510{517, Cannes, France, September 1981.

[KR87] B. K�ahler and O. Risnes. Extended logging for database snapshots. In Stocker

and Kent [SK87], pages 389{398.

BIBLIOGRAPHY 278

[KR98] Y. Kotidis and N. Roussopoulos. An alternative storage organization for rolap

aggregate views based on cubetrees. In VLDB, pages 249{258, 1998.

[Lev96] A. Y. Levy. Obtaining complete answers from incomplete databases. In

Vijayaraman et al. [VBMS96], pages 402{412.

[LGM95] W.J. Labio and H. Garcia-Molina. Comparing very large database snapshots.

Technical Report STAN-CS-TN-95-27, Computer Science Department, Stan-

ford University, June 1995.

[LGM96] W. Labio and H. Garcia-Molina. E�cient snapshot di�erential algorithms for

data warehousing. In Vijayaraman et al. [VBMS96], pages 63{74.

[LHM+86] B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms. A snapshot

di�erential refresh algorithm. In Zaniolo [Zan86], pages 53{60.

[LMSS95] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using

views. In Proceedings of the Fourteenth Symposium on Principles of Database

Systems (PODS) [Ass95], pages 95{104.

[Loh85] G. Lohman. Query processing in R*. In Query Processing in Database Sys-

tems, Berlin, West Germany, March 1985.

[LSC91] G. M. Lohman, A. Sernadas, and R. Camps, editors. Proceedings of the

Seventeenth International Conference on Very Large Databases, Barcelona,

Spain, September 3-6 1991.

[LW95] D. Lomet and J. Widom, editors. Special Issue on Materialized Views and

Data Warehousing, IEEE Data Engineering Bulletin 18(2), June 1995.

[LYGM99] W. J. Labio, R. Yerneni, and H. Garcia-Molina. Shrinking the warehouse

update window. Technical report, Stanford University, 1999. Available at

http://www-db.stanford.edu/pub/papers/setvm.ps.

[ME92] P. Mishra and M. Eich. Join processing in relational databases. ACM Com-

puting Surveys, 24(1), 1992.

[Min88] J. Minker, editor. Foundations of Semantic Query Optimization for Deductive

Databases. Morgan Kaufmann, Washington D.C., 1988.

BIBLIOGRAPHY 279

[Mir87] D. P. Miranker. Treat: A better match algorithm for ai production systems.

In Proceedings of AAII 87 Conference on Arti�cial Intelligence, pages 42{47,

August 1987.

[ML89] L.F. Mackert and G.M. Lohman. Index scans using a �nite lru bu�er: A

validated i/o model. ACM Transactions on Database Systems, 14(3):401{24,

1989.

[MN92] C. Mohan and I. Narang. Algorithms for creating indexes for very large

tables without quiescing updates. In Proceedings of ACM SIGMOD 1992

International Conference on Management of Data [Ass92], pages 361{370.

[MQM97] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of data cubes and

summary tables in a warehouse. In Peckham [Pec97], pages 100{111.

[MW94] U. Manber and S. Wu. Glimpse: A tool to search through entire �le systems.

In Proceedings of the winter USENIX Conference, January 1994.

[Nil71] N. Nilsson. Problem Solving Methods in Arti�cial Intelligence. McGraw-Hill,

1971.

[NY82] M. Nicholas and K. Yazdanian. Integrity checking in deductive databases.

In H. Galliere and J. Minker, editors, Logic and Databases, pages 325{346.

Plenum Press, 1982.

[Pec97] J. Peckham, editor. Proceedings of ACM SIGMOD 1997 International Con-

ference on Management of Data, Tucson, Arizona, May 1997.

[PMW90] B. Partee, A. Meulen, and R. Wall. Mathematical Methods in Linguistics.

Kluwer Academic Publishers, 1990.

[QGMW96] D. Quass, A. Gupta, I. Mumick, and J. Widom. Making views self-

maintainable for data warehousing. In Proceedings of the Fifth International

Conference on Parallel and Distributed Information Systems (PDIS), pages

158{169, December 1996.

[Qua96] D. Quass. Maintenance expressions for views with aggregation. In Proceedings

of the ACM Workshop on Materialized Views: Techniques and Applications,

pages 110{118, 1996.

BIBLIOGRAPHY 280

[Qua97] Dallan Quass. Materialized Views in Data Warehouses. PhD thesis, Stanford

University, Stanford, CA 94305, 1997.

[QW91] Xiaolei Qian and Gio Wiederhold. Incremental recomputation of active rela-

tional expressions. IEEE Transactions on Knowledge and Data Engineering,

pages 337{341, 1991.

[Rou82] N. Roussopoulos. View indexing in relational databases. ACM Transactions

on Database Systems, 7(2):258{90, 1982.

[Rou91] Nick Roussopoulos. The incremental access method of view cache: Con-

cept, algorithms, and cost analysis. ACM Transactions on Database Systems,

16(3):535{563, September 1991.

[RS91] S. Rozen and D. Shasha. A framework for automating physical database

design. In Lohman et al. [LSC91], pages 401{11.

[RSS96] K. Ross, D. Srivastava, and S. Sudarshan. Materialized view maintenance

and integrity constraint checking: Trading space for time. In Jagadish and

Mumick [JM96], pages 447{458.

[RZ89] R. Reinsch and M. Zimowski. Method for restarting a long-running, fault-

tolerant operation in a transaction-oriented data base system without bur-

dening the system log. U.S. Patent 4,868,744, IBM, September 1989.

[Sag98] Sagent Technology, Inc., Palo Alto, CA. Sagent Data Mart Population Guide,

1998.

[SDJL96] D. Srivastava, S. Dar, H. V. Jagadish, and A. Levy. Answering queries with

aggregation using views. In Vijayaraman et al. [VBMS96], pages 318{329.

[SDN98] A. Shukla, P. Deshpande, and J. F. Naughton. Materialized view selection

for multidimensional datasets. In Gupta et al. [GSW98], pages 488{499.

[Sel88] T. Sellis. Multiple-query optimization. ACM Transactions on Database Sys-

tems, 13(1):23{52, 1988.

[SF91] A. Segev and W. Fang. Optimal update policies for distribtued materialized

views. Management Science, 17(7):851{70, 1991.

BIBLIOGRAPHY 281

[SGM95] N. Shivakumar and H. Garcia-Molina. Scam: A copy detection mechanism

for digital documents. In Proceedings of the 2nd International Conference in

Theory and Practice of Digital Libraries, Austin, Texas, June 1995.

[Sha86] L. Shapiro. Join processing in database systems with large main memories.

ACM Transactions on Database Systems, 11(3), 1986.

[SK87] P. Stocker and W. Kent, editors. Proceedings of the Thirteenth International

Conference on Very Large Databases, Brighton, England, September 1-4 1987.

[SO89] S. Shenoy and Z. Ozsoyoglu. Design and implementation of a semantic query

optimizer. IEEE Transactions on Knowledge and Data Engineering, 1(3):344{

361, 1989.

[SP89] A. Segev and J. Park. Updating distributed materialized views. IEEE Trans-

actions on Knowledge and Data Engineering, 1(2):173{184, June 1989.

[ST85] M. Schkolnick and P. Tiberio. Estimating the cost of updates in a relational

database. ACM Transactions on Database Systems, 10(2):163{79, 1985.

[SZ91] A. Segev and J.L. Zhao. Data management for large rule systems. In Lohman

et al. [LSC91], pages 297{307.

[Tec] Sagent Technologies. Personal correspondence with customers.

[TS97] D. Theodoratos and T. Sellis. Data warehouse con�guration. In Jarke et al.

[JCD+97], pages 126{135.

[TSI94] Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. The

GMAP: A versatile tool for physical data independence. In Jorge Bocca,

Matthias Jarke, and Carlo Zaniolo, editors, Proceedings of the 20th Interna-

tional Conference on Very Large Databases, pages 367{378, Santiago, Chile,

September 12-15 1994.

[Ull88] Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volume 1. Computer Science Press, 1988.

[Ull89a] Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volume 2. Computer Science Press, 1989.

BIBLIOGRAPHY 282

[Ull89b] Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems,

Volumes 1 and 2. Computer Science Press, 1989.

[UW97] Je�rey D. Ullman and Jennifer Widom. A First Course in Database Systems.

Prentice Hall, 1997.

[VBMS96] T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and Nandlal L. Sarda,

editors. Proceedings of the 22nd International Conference on Very Large

Databases, Bombay, India, September 3-6 1996.

[Vis98] D. Vista. Incremental view maintenance as an optimization problem. In Pro-

ceedings of the Sixth International Conference on Extending Database Tech-

nology, pages 374{388, Valencia, Spain, March 1998.

[WCK93] A. Witkowski, F. Cari~no, and P. Kostamaa. NCR 3700 | The Next-

Generation Industrial Database Computer. In Agrawal et al. [ABB93], pages

230{243.

[WH92] Y. Wang and E. Hanson. A performance comparison of the rete and treat

algorithms for testing database rule conditions. In Li-Yan Yuan, editor, Pro-

ceedings of the Eighteenth International Conference on Very Large Databases,

pages 88{97, Vancouver, Canada, August 23-27 1992.

[Wid95] Jennifer Widom. Research problems in data warehousing. In Proceedings of

the Fourth International Conference on Information and Knowledge Manage-

ment (CIKM), 1995.

[WN95] J. L. Wiener and J. F. Naughton. Oodb bulk loading revisited: The

partitioned-list approach. In Dayal et al. [DGN95], pages 30{41.

[YKL97] J. Yang, K. Karlapalem, and Q. Li. Algorithms for materialized view design

in a data warehousing environment. In Jarke et al. [JCD+97], pages 136{145.

[YL87] H. Yang and P.-A. Larson. Query transformation for PSJ-queries. In Stocker

and Kent [SK87], pages 245{254.

[Zan86] Carlo Zaniolo, editor. Proceedings of ACM SIGMOD 1986 International Con-

ference on Management of Data, Washington, D.C., May 28-30 1986.

BIBLIOGRAPHY 283

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in

a warehousing environment. In Carey and Schneider [CS95], pages 316{327.

