
Pleiades Project

Collected Work
1998-1999

Multidisciplinary University Research Initiative

Semantic Consistency in Information Exchange

Office of Naval Research Grant N00014-97-1-0505

Edited by Iliano Cervesato and John C. Mitchell

Preface

This report collects the papers that were written by the participants of the
Pleiades Project and their collaborators from September 1998 to August
1999. Its intent is to give the reader an overview of our accomplishments
during this central phase of the project. Therefore, rather than including
complete publications, we chose to reproduce only the first four pages of
each paper. The papers can be integrally retrieved from the World-Wide
Web through the provided URLs. A list of the current publications of the
Pleiades Project is accessible at the URL

http://theory.stanford.edu/muri/papers.html.

Future articles will be posted there as they become available.
This report is divided into six parts that reflect the scope of the Pleiades

Project. These are: Security Protocol Analysis, Real-Time Systems, Re-
sult Checking, Complexity, Logic and Programming Languages, and Spatial
Control. It contains excerpts from a total of 31 articles.

The Pleiades Project, or Multidisciplinary University Research Initiative
(MURI) on Semantic Consistency in Information Exchange, is funded by
grant number N00014-97-0505 of the Office of Naval Research. Its purpose
is to investigate issues of semantic consistency in the transfer of active in-
formation, such as executable program components, in information systems
that are maintained over time, distributed over many locations, or composed
of separate subsystems.

The current participants of the Pleiades Project include Iliano Cervesato
(Stanford University), Cynthia Dwork (IBM Almaden Research Center),
Diana Gordon (Naval Research Laboratory), Sampath Kannan (University
of Pennsylvania), Insup Lee (University of Pennsylvania), Patrick Lincoln
(SRI International), John Mitchell (Stanford University, principal investi-
gator), Ronitt Rubinfeld (Cornell University), Andre Scedrov (University of
Pennsylvania), Oleg Sokolsky (University of Pennsylvania), and Ulrich Stern
(Stanford University), and graduate students from Cornell University, the
University of Pennsylvania, and Stanford University.

Stanford, August 25th 1999
Iliano Cervesato,

John C. Mitchell.

Contents

Part I Security Protocol Analysis

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre
Scedrov
Probabilistic polynomial-time equivalence and security proto-
cols

Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre
Scedrov
Undecidability of bounded security protocols

Iliano Cervesato, Nancy Durgin, Patrick Lincoln, John
Mitchell, and Andre Scedrov
A Meta-Notation for Protocol Analysis

Cynthia Dwork and Amit Sahai
Concurrent Zero Knowledge: Reducing the Need for Timing
Constraints

Cynthia Dwork, Moni Naor, and Amit Sahai
Concurrent Zero Knowledge

Part II Real-Time Systems

Han&e Ben-Abdallah, Insup Lee, and Oleg Sokolsky
Specification and Analysis of Real-Time Systems with
PARAGON

Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky,
and Mahesh Viswanathan
Runtime Assurance Based On Formal Specifications

Moonjoo Kim, Mahesh Viswanathan, Han&e Ben-Abdallah,
Sampath Kannan, Insup Lee, and Oleg Sokolsky
Formally Specified Monitoring of Temporal Properties

Moonjoo Kim, Mahesh Viswanathan, Han&e Ben-Abdallah,
Sampath Kannan, Insup Lee, and Oleg Sokolsky
Mac: A Framework for Run-time Correctness Assurance of
Real-Time System

Hanene Ben-Abdallah and Insup Lee
A Graphical Language with Formal Semantics for the Specifi-
cation and Analysis of Real-Time Systems

Hee-Hwan Kwak, Insup Lee, and Oleg Sokolsky
Parametric Approach to the Specification and Analysis of
Real-time System Designs based on ACSR-VP

Hee-Hwang Kwak, Jin-Young C h o i , Insup Lee, and Anna
Philippou
Symbolic Weak Bisimulation for Value-Passing Calculi

Part III Result Checking

Tugkan Batu, Ronitt Rubinfeld, and Patrick White
Fast Approximate PCPs for Multidimensional Bin-Packing
Problems

Tugkan Batu, Ronitt Rubinfeld, and Patrick White
Runtime Verification of Remotely Executed Code using Prob-
abilistically Checkable Proof Systems

Funda Ergtin, S. Ravi Kumar, and Ronitt Rubinfeld
Fast approximate PCPs

Funda Ergiin, Sampath Kannan, S. Ravi Kumar, Ronitt Ru-
binfeld, and Mahesh Viswanathan
Spot-Checkers

S. Ravi Kumar and Ronitt Rubinfeld
Property Testing of Abelian Group Operations

Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Ma-
hesh Viswanathan
Streaming Algorithms for Distributed, Massive Data Sets

Part IV Complexity

John Mitchell, Mark Mitchell, and Andre Scedrov
A Linguistic Characterization of Bounded Oracle Computation
and Probabilistic Polynomial Time

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre
Scedrov
A Probabilistic PolyTime Framework

Iliano Cervesato, Massimo Franceschet, and Angelo Monta-
na r i

The Complexity of Model Checking in Modal Event Calculi
with Quantifiers

Joan Feigenbaum, Sampath Kannan, Moshe Y. Vardi, and Ma-
hesh Viswanathan
Complexity of Problems on Graphs Represented as OBDDs

Patrick Lincoln, John Mitchell, and Andre Scedrov
Optimization Complexity of Linear Logic Proof Games

Part V Logic and Programming Languages

Stephen Freund and John Mitchell
A Type System for Object Initialization in the Java Bytecode
Language

Stephen Freund and John Mitchell
A Formal Framework for the Java Bytecode Language and
Verifier

Iliano Cervesato
Logical Framework Design: Why not just classical logic?

Stephen N. Freund and John Mitchell
Specification and Verification of Java Bytecode Subroutines
and Except ions (summary)

Iliano Cervesato, Valeria de Paiva and Eike Ritter
Explicit Substitutions for Linear Logical Frameworks: Prelim-
inary Results

Stephen N. Freund
The Costs and Benefits of Java Bytecode Subroutines

Part VI Spat ial Control

William Spears and Diana Gordon
Using Artificial Physics to Control Agents

Diana Gordon, William Spears, Oleg Sokolsky, and Insup Lee
Distributed Spatial Control and Global Monitoring of Mobile
Agents

Part I

Security Protocol Analysis

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre Scedrov: “Prob-
abilistic polynomial-time equivalence and security protocols”, in the pro-
ceedings of the World Congress On Formal Methods in the Development of
Computing Systems - FM’99, Toulouse, France, September 1999.

Full paper: http: //www.csl.sri.com/"lincoln/papers/fm99.ps

Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre Scedrov: “Unde-
cidability of bounded security protocols”, in the Proceedings of the Work-
shop on Formal Methods and Security Protocols ~ FMSP’99 (N. Heintze
and E. Clarke, editors), Trento, Italy, July 1999.

Full paper: ftp://www.cis.upenn.edu/pub/papers/scedrov/fmsp99.ps.gz

Iliano Cervesato, Nancy Durgin, Patrick Lincoln, John Mitchell, and Andre
Scedrov: “A Meta-Notation for Protocol Analysis”, in the Proceedings of
the Twelfth IEEE Computer Security Foundations Workshop ~ CSFW’99
(R. Gorrieri editor), pp. 55-69, IEEE Computer Society Press, Mordano,
Italy, 2830 June 1999.

Full paper: http: //www.stanford.edu/-iliano/papers/csfw99.ps.gz

Cynthia Dwork and Amit Sahai: ‘Concurrent Zero Knowledge: Reducing
the Need for Timing Constraints”, in the Proceedings of the 18th Annual
IACR Crypt0 Conference - CRYPT0’98, Santa Barbara, CA, August 1999.

Full paper: http://theory.stanford.edu/muri/reports/98-99/cynthia2.ps

Cynthia Dwork, Moni Naor, and Amit Sahai: “Concurrent Zero Knowl-
edge”, in the Proceedings of the 30th Annual ACM Symposium on the The-
ory of Computing - STOC’98, Dallas, TX, May 1998.

Full paper: http://theory.stanford.edu/muri/reports/98-99/cynthia2.ps

Probabilistic Polynomial-Time Equivalence and
Security Analysis

P. Lincoln * ’ ’ , J. Mitchell ** 3 2, M. Mitchell * * * 9 2, and A. Scedrov t ’ 3

’ Computer Science Laboratory, SRI International
’ Department of Computer Science, Stanford University

3 Department of Mathematics, University of Pennsylvania

Abstract. We use properties of observational equivalence for a proba-
bilistic process calculus to prove an authentication property of a cryp-
tographic protocol. The process calculus is a form of r-calculus, with
probabilistic scheduling instead of nondeterminism, over a term language
that captures probabilistic polynomial time. The operational semantics
of this calculus gives priority to communication over private channels, so
that the presence of private communication does not affect the observable
probability of visible actions. Our definition of observational equivalence
involves asymptotic comparison of uniform process families, only requir-
ing equivalence to within vanishing error probabilities. This definition
differs from previous notions of probabilistic process equivalence that re-
quire equal probabilities for corresponding actions; asymptotics fit our
intended application and make equivalence transitive, thereby justifying
the use of the term “equivalence.” Our security proof uses a series of lem-
mas about probabilistic observational equivalence that may well prove
useful for establishing correctness of other cryptographic protocols.

1 Introduction

Protocols based on cryptographic primitives are commonly used to protect access
to computer systems and to protect transactions over the internet. Two well-
known examples are the Kerberos authentication scheme [KNT94, KN93], used
to manage encrypted passwords, and the Secure Sockets Layer [FKK96], used
by internet browsers and servers to carry out secure internet transactions. Over
the past decade or two, a variety of methods have been developed for analyzing
and reasoning about such protocols. These approaches include specialized logics
such as BAN logic [BAN89], special-purpose tools designed for cryptographic
protocol analysis [KMM94], as well as theorem proving [Pau97a, Pau97b] and
model-checking methods using general purpose tools [Low96, Mea96, MMS97,
Ros95, Sch96].

* Partially supported by DOD MURI “Semantic Consistency in Information Ex-
change,” ONR Grant N00014-97-1-0505.

** Additional support from NSF CCR-9629754.
* * * Additional support from Stanford University Fellowship.

+ Additional support from NSF Grant CCR-9800785.

In two previous papers [LMMS98, MMS98], we outlined a framework for
protocol analysis employing assumptions different from those used in virtually
all other formal approaches. Specifically, most formal approaches use a basic
model of adversary capabilities which appears to have developed from positions
taken by Needham and Schroeder [NS78] and a model presented by Dolev and
Yao [DY83]. This set of modeling assumptions treats cryptographic operations
as “black-box” primitives, with plaintext and ciphertext treated as atomic data
that cannot be decomposed into sequences of bits. Furthermore, as explained
in [MMS97, Pau97a, Sch96], there are limited ways for an adversary to learn
new information. For example, if a decryption key is sent over the network “in
the clear,” it can be learned by the adversary. However, it is not possible for
the adversary to learn the plaintext of an encrypted message unless the entire
decryption key has already been learned. Generally, the adversary is treated as a
nondeterministic process that may attempt any possible attack, and a protocol is
considered secure if no possible interleaving of actions results in a security breach.
The two basic assumptions of this model, perfect cryptography coupled with
nondeterministic computation on the part of the adversary, provide an idealized
setting in which protocol analysis becomes relatively tractable. However, this
model reduces the power of the adversary relative to real-world conditions. As
a result, it is possible to prove a protocol correct in this standard model, even
when the protocol is vulnerable to simple deterministic attacks.

Our goal is to establish a framework that can be used to analyze proto-
cols (and, potentially, other computer security components) under the stan-
dard assumptions of complexity-based cryptography. In [LMMS98], we outlined
a refinement of spi-calculus [AG97] that requires a calculus of communicating
probabilistic polynomial-time processes and an asymptotic form of observational
equivalence. We proposed basic definitions of the key concepts and discussed the
potential of this framework by examining some extremely simple protocols. The
sequential fragment of our calculus is developed in more detail in [MMS98],
where a precise correspondence is proved between a modal-typed lambda cal-
culus and probabilistic polynomial-time computation. In the present paper, we
test our basic definitions by considering further applications and develop a more
refined probabilistic semantics. Using our improved semantics, we sketch a proof
of correctness for a less trivial protocol. Specifically, we prove correctness of a
mutual authentication protocol proposed by Bellare and Rogaway [BR94]. This
security proof involves some reasoning about a specific form of asymptotic prob-
abilistic observational equivalence for our process calculus. Since, to the best
of our knowledge, there has been no previous work on process equivalence up
to some error tolerance, this argument and the difficulties we have encountered
motivate further investigation into resource-bounded probabilistic semantics and
information hiding.

In addition to relying on the basic relation between observational equivalence
and security properties developed in the spi-calculus [AG97], we have drawn
inspiration from the cryptography-based protocol studies of Bellare and Rogaway
[BR94, BR95]. In these studies, a protocol is represented as a set of oracles, each

corresponding to one input-output step by one principal. These oracles are each
available to the adversary, which is represented by a probabilistic polynomial-
time oracle Turing machine. There are some similarities to our setting, since
an adversary has access to each input-output step by a principal by sending
and receiving data on the appropriate ports. However, there are some significant
technical and methodological differences. In our setting, the protocol and the
adversary are both expressed in a formal language. The use of a formal language
allows for proof techniques that are based on either the syntactic structure of
the protocol or on the semantic properties of all expressible adversaries. We
have found the specification method we have adopted from spi-calculus to be
relatively natural and more systematic than the specifications used by Bellare
and Rogaway. In particular, it appears that our specification of authentication
is stronger than the one used in [BR94], requiring us to prove more about the
observable properties of a protocol execution. Finally, by structuring our proof
around observational equivalence, we are led to develop general methods for
reasoning about probabilistic observational equivalence that should prove useful
in analyzing other protocols.

2 Process Calculus for Protocol Analysis

A protocol consists of a set of programs that communicate over some medium in
order to achieve a certain task. Typically, these programs are parameterized by
a security parameter k, with the idea that increasing the value of Ic makes the
protocol more secure. Often, Ic is just the length of the keys used in the protocol
since it is expected that longer encryption keys make decryption more difficult.

For simplicity, we will consider only those protocols that require some fixed
number of communications, independent of the security parameter. In other
words, the number of messages sent back and forth before the protocol completes
does not increase, even as the security parameter is “cranked up,” although the
length of the keys used throughout the protocol will increase. This simplifica-
tion is appropriate for most handshake protocols, key-exchange protocols and
authentication protocols. (Many widely-used protocols, including he authentica-
tion phase of SSL, serve as examples of “real-world” protocols where the number
of messages remains fixed, even as the security parameter is increased.) We are
in the process of extending our process calculus to allow looping, which will
allow us to deal with more complex protocols, such as those used to prove zero-
knowledge. In the present paper, however, we present methods for reasoning
about asymptotic observational equivalence that rely on having a fixed bound
on the depth of the concurrent process execution tree, and are therefore inap-
propriate for protocols where the number of messages depends on the security
parameter.

Following the work of Abadi and Gordon [AG97], we express security prop-
erties of a protocol P by writing an idealized protocol Q which is “patently
secure.” (Typically, Q requires magic machinery not available in real compu-
tational environments, such as perfect random number generators or perfectly

secure communication channels.) Then, we endeavor to show that, for any ad-
versary, the interactions between the adversary and P have the same observable
behavior as the interactions between the adversary and Q. If this condition
holds, we can replace the ideal protocol Q with the realizable protocol P, with-
out compromising security.

The adversary may then be thought of as a process context, at which point
the task of reasoning about security is reduced to the task of reasoning about
observational equivalence (also called observational congruence). Our framework
is a refinement of the spi-calculus approach in that we replace nondeterministic
computation with probabilistic polynomial-time computation while simultane-
ously shifting from a standard observational equivalence to an asymptotic form
of observational equivalence.

2.1 Syntax

The syntax of our probabilistic polynomial-time calculus consists of terms and
processes. The process portion of the language is a bounded subset of asyn-
chronous 7r-calculus. However, readers familiar with the traditional n-calculus
will note the absence of scope extrusion, or the ability to pass channel names.
These omissions are purposeful, and necessary, in order that the expressive power
of the calculus correspond to what is commonly believed reasonable in the cryp-
tographic community. It is best to think of the calculus presented here as a no-
tationally familiar means of expressing parallelism and communication, rather
than to compare it directly to more traditional forms of 7r-calculus.

The term portion of the language is used to express all data dependent com-
putation. ,411 terms have natural number type, so the only values communicated
from process to process are natural numbers (as is true in the real world). We
do not present a formal grammar or semantics for the term calculus (although
we did so in [MMS98]). For the purposes of this paper, the important consid-
eration is that the term language be able to express precisely the probabilistic
polynomial time functions from integers to integers. (Therefore, an alternative
formalism to that employed in [MMS98] would be Turing machine descriptions,
together with explicit polynomial time limits, and the understanding that a Tur-
ing machine computation that exceeds its time limit outputs zero.) Because the
syntax of the term language is unimportant, we use pseudo-code to express terms
throughout the paper.

In the grammar below P varies over processes, T over terms, z over term
variables, and c over a countably infinite set C of channel names. The set of
well-formed processes is given by the following grammar:

P::=O (termination)
(Yc).P (private channel)
c(x).P (input)
F(T) (output)
[T = T].P (match)
PIP (parallel composition)

Undecidability of bounded security protocols*

X.-4. Durgin P.D. Lincoln J .C. Mitchel l A. Scedrov

Computer Science Lab Computer Science Dept. Mathematics Dept.
SRI International Stanford University University of Pennsylvania
Menlo Park, CA Stanford, CA 94305-9045 Philadelphia, PA
lincoln@csl.sri.com {nad, jcm}@cs.stanford.edu andre@cis.upenn.edu

(650) 723-8634, Fax:725-4671

Abstract

Using a multiset rewriting formalism with existen-
tial quantification, it is shown that protocol security
remains undecidable even when rather severe restric-
tions are placed on protocols. In particular, even if
data constructors, message depth, message width, num-
ber of distinct roles, role length, and depth of encryp-
tion are bounded by constants, secrecy is an undecidable
property. If protocols are further restricted to have no
new data (nonces), then secrecy is DEXPTIME-complete.
Both lower bounds are obtained by encoding decision
problems from existential Horn theories without func-
tion symbols into our protocol framework. The way
that encryption and adversary behavior are used in the
reduction sheds some light on protocol analysis.

1 Introduction

Security protocols are difficult to design and analyze
for several reasons. In addition to subtleties involving
various cryptographic primitives, most protocols are in-
tended to operate correctly when many instances of the
protocol are executed in parallel. A basic client-server
protocol, for example, might allow a client to request
permission for a session, open that session, halt and
reopen, and then finally close the session. This might
seem fairly simple, except that several clients may si-
multaneously request several sessions with the same
server, and a malicious attacker may combine data
from separate sessions in order to confuse the server.

‘Partially supported by DOD MURI “Semantic Consistency
in Information Exchange” as ONR Grant X00014-97-1-0505, and
by NSF Grants CCR-9509931, CCR-9629754, and CCR-9800785
to various authors.

Therefore, verification of a simple protocol may involve
analyzing relatively complicated attacks that combine
data from any number of valid or aborted runs of the
protocol.

Since many published security protocols have subtle
flaws, past researchers have devised a variety of for-
mal methods for protocol analysis. Most formal ap-
proaches in current use adopt the so-called “Dolev-Yao
model” of protocol execution and attack. This model,
which involves idealized assumptions about crypto-
graphic primitives and a nondeterministic adversary,
appears to have developed from the perspective of [13]
and a simplified stateless model presented in [6].

A multiset rewriting framework for protocol analy-
sis, using the Dolev-Yao model, was introduced in [7, 21.
In the present paper, the multiset formalism is used to
prove upper and lower complexity bounds on proto-
col analysis in the Dolev-Yao model. A strong form of
undecidability for protocol analysis is presented, along
with DEXPTIME completeness for protocols and attacks
that do not generate new data once the protocol has
begun.

Since most properties of most classes of programs
are undecidable, there are many ways to find undecid-
able classes of protocols. Previous protocol undecid-
ability results [8, 101 have used general forms of proto-
cols that allow agents to take any number of steps and
communicate data of unbounded complexity.Since
most protocols in use are finite length, we use our
rewriting framework to identify a class of finite-length
protocols, where each of a finite set of possible roles
(such as sender, receiver, server) involves only a finite
number of steps. In addition, we bound the use of data
constructors, bound the number of symbols that may
occur in any message, and bound the depth of encryp-
tion by constants. Even in this restrictive case, secrecy

(as well as other properties) is undecidable. The in-
truder plays a central role by replaying data in a pos-
sibly unbounded set of protocol runs. In addition, en-
cryption is used in a crucial way, to limit the power of
the intruder to decompose and alter the message parts
that are replayed.

2 Protocol Formalism

The protocol formalism we use involves facts and
transitions. The facts are first-order atomic formulas,
and transitions are given by rewrite rules containing a
precondition and postcondition. One property of this
formalism is that in applying a rule to a collection of
facts, each fact that occurs in the precondition of the
rule is removed. This gives us a direct way of rep-
resenting state transitions, and provides the basis for
a connection with linear logic [9]. Another key prop-
erty is that the postconditions of a rule may contain
existentially quantified variables. Following the stan-
dard proof rules associated with existential quantifi-
cation (in natural deduction or sequent-style systems),
this provides a mechanism for choosing new values that
are distinct from any other in the system.

More formally, our syntax involves terms, facts and
rules. If we want to represent a system in this notation,
we begin by choosing a vocabulary, or first-order signa-
ture. As usual, the terms over a signature are the well-
formed expressions produced by applying functions to
arguments of the correct sort. A fact is a first-order
atomic formula over the chosen signature. This means
that a fact is the result of applying a predicate symbol
to terms of the correct sorts. A state is a multiset of
facts (all over the same signature).

A state transition is a rule written using two multi-
sets of facts, and existential quantification, in the fol-
lowing syntactic form:

Fl, . . . , F,+ + 3x1 . . 3x3.G1,. . ,G,

The meaning of this rule is that if some state S contains
facts Fl , . . . Fk, then one possible next state is the state
S’ that is similar to S, but with:

l facts Fl, . . . Fk removed,

l Gi, . . . G, added, where xi . . xj are replaced by
new symbols.

If there are free variables in the rule, these are treated
as universally quantified throughout the rule. In an
application of a rule, these variables may be replaced
by any terms. A Theory Y is a finite set of facts and
rewrite rules of form 1 -+ r.

The multiset-rewriting notation used in this paper
is a first-order Horn fragment of linear logic [9], with
existential quantification. Specifically, each transition
rule

A l , . . . , A , +3iT.B1 ,... ,B,

can be written as a linear logic formula

Al @...@AA,-03S.B1 @...@BB,

Under this correspondence, every derivation using mul-
tiset rewriting corresponds to a linear logic derivation,
and conversely.

3 Bounded Protocols

It is relatively straightforward to use the multiset
rewriting framework summarized in the preceding sec-
tion to describe finite-state and infinite-state systems.
Using function symbols, it is possible to describe com-
putation over unbounded data types. In particular,
it is easy to encode counter machines or Turing ma-
chines, implying that secrecy is undecidable. However,
the principal authentication and secrecy protocols of
interest are all of bounded length, and most use data
of bounded complexity (see [3] for a relevant survey).

In order to study finite-length protocols more care-
fully, we identify the syntactic form of a class of well-
founded protocol theories, here called simply well-
founded theor ies .

3.1 Creation, consumption, persistence

Some preliminary definitions from [2] involve the
ways that a fact may be created, preserved, or con-
sumed by a rule. While multiple copies of some facts
may be needed in some derivations, we are able to elim-
inate the need for multiple copies of certain facts.

Definition 1. A rule 1 -+ r in a theory 7 creates P
facts if some P(i) occurs more times in r than in 1. A
rule 1 + r in a theory 7 preserves P facts if every P(i)
occurs the same number of times in r and 1. A rule
1 -+ T in a theory 7 consumes P facts if some fact P(i)
occurs more times in 1 than in r. A predicate P in a
theory 7 is persistent if every rule in ‘J which contains
P either creates or preserves P facts.

As an example, a rule of form

PC,-) + pm

does not preserve P facts, since it can be used to create
a fact P(i) and consume a fact P(,3.

2

Since a persistent fact is never consumed by any rule,
there is no need to generate more than one copy of a
particular fact ~ as long as that fact is never needed
more than once by a single rule. However, by simple
transformation, it is possible to eliminate the need for
more than one copy of any persistent fact [2].

Definition 2. A rule 1 + r in a theory 7 is a single-
persistent rule if all predicates that are persistent in
theory 7 appear at most once in 1. A theory 7 is a
uniform theory if all rules in 7 are single-persistent
rules.

Since any theory can be rewritten as a uniform the-
ory, we will assume that all theories discussed from this
point forward are uniform theories.

Definition 3. Let P be a set of predicates, each per-
sistent in a’uniform theory ‘J. Two states 5’ and S’
are P-similar (denoted S up S’) if, after removing all
duplicate persistent P facts from each state, they are
equal multisets.

Lemma 1. If s “p S’ and S & T, then
3Tl.T zp T’ with S’ -+% T’.

3.2 Protocol theories

In many protocols, there is an implicit or explicit
initialization phase that distributes keys or establishes
other shared information. Following this initialization
phase, each agent may choose to carry out the protocol
any number of times, in any combination of roles. For
example a principal il may play the role of initiator
twice, and responder once, during the course of a sin-
gle attack. We incorporate these ideas into our formal
definitions by letting a protocol theory consist of an
initialization theory, a role generation theory, and the
disjoint union of bounded subtheories that each char-
acterize a possible role. In order to bound the entire
protocol, we must assume that the initialization theory
is bounded, and that initialization can be completed
prior to the execution of the protocol steps proper. An
example of a protocol theory is given in Section 4.

Definition 4. A rule R = 1 + r enables a rule 1’ + r’
if there exist o,o’ such that some fact P(fl E or, is
also in ~91’. A theory 7 precedes a theory 2 if no rule
in 2 enables a rule in 7.

In particular, if a theory 7 precedes a theory X, then
no predicates that appear in the left hand side of rules
in 7 are created by rules that are in CR.

Definition 5. A theory A is a bounded role theory if it
has an ordered set of predicates, called the role states

and numbered Se, Si, . . , Sk for some Ic, such that each
rule 1 + r contains exactly one state predicate Si E 1
and one state predicate Sj E T, with i < j. We call the
first role state, Se, an initial role state.

By defining roles in this way, we ensure that each
application of a rule in .A advances the state forward.
Each instance of a role can only result in a finite num-
ber of steps in the derivation.

If Jli , . . . , & is a set of bounded role theories, a role
generation theory is a set of rules of the form

P(s3, SC%. . . + si(T3, P(s3, QC& . . .

where P(,3, Q(i), . . . is a finite list of persistent facts
not involving any role states, and Si is the initial role
state for one of Ai,. . . ,&.

Definition 6. A theory S c 7 is a bounded sub-theory
of ‘J if all facts created by rules R in S either contain
existentials or are persistent in 7.

Definition 7. A theory 3 is a well-founded protocol
theory if Y = ZJMXMA~ M.. .M& where 3 is a bounded
sub-theory (called the initialization theory) not involv-
ing any role states, 2 is a role generation theory involv-
ing only facts created by 3 and the initial roles states of
.Ai, . . . ,&, and J1i,. . . , .A, are well-founded role the-
ories, with 3 preceding Y? and 9 preceding Jli, . , &.

This form allows derivations in a protocol theory to
be broken down into three stages - the initialization
stage, the role generation stage, and the protocol exe-
cution stage.

Lemma 2. Given a well-founded protocol theory ‘J’ =
J~JERuA, where 3 is an initialization theory, 32 is a role
generation theory, and A is the disjoint union of one or

more bounded role theories, if S & T is a derivation
over FP, then there exists a derivation S % 5” and
5” & T, where all rules from 3 and 32 are applied
before any rules from A.

3.3 Intruder theory

One of the original motivations for using multiset
rewriting for protocol analysis was that this framework
allows us to use essentially the same theory for all ad-
versaries for all protocols. In this subsection, we specify
the properties of intruder theories that are needed to
bound the number of intruder steps needed to produce
a given message. As explained in [4], the actions of the
standard intruder can be separated into two phases,
one in which messages are decomposed into smaller

3

parts, and one in which these parts are (re)assembled
into a message that will be sent to some protocol agent.

In determining the size of a fact, we count the pred-
icate name, each function name, and each variable or
constant symbol. For example, fact P(A, B) has size
3, and fact P(f(A, B), C) has size 5.

Definition 8. A rule R = 1 + T is a composition
rule if the size of the largest non-persistent fact in r
is greater than the largest non-persistent fact in 1. A
rule R = 1 -+ r is a decomposition rule if the size of the
largest non-persistent fact in r is less than the largest
non-persistent fact in 1.

For example,

C(A), C(B) + C((A, B))

is a composition rule, and

WC41 B)) -+ D(A), D(B)

is a decomposition rule.
For the intruder theories we will consider, we allow

persistent facts to appear in both the left and right
hand sides. So, in general a decomposition rule is of
form:

D((A,B)),p(...) -+D(il),D(B),?‘(...)

where P’ and p are sets of persistent predicates, with
P’ C p (and similarly for composition rules).

We also need to introduce more complicated decom-
position rules, which we call “Decomposition rules with
Auxiliary facts”. These are pairs of rules of form:

D(t),?(...) + ?j(...),A(t)

and

A(t), &(. . .) + @(. . .),D(t’)

where P’ c p, 0 C: @, and size(t’) < size(t). Here, A
represents an Auxiliary fact (which can appear only in
a pair of rules of this form) which is used to amortize
the decomposition of D(t) into D(t’) across the two
rules. Section 4.4 shows an example of this type of
decomposition rule, used to allow decrypting an old
fact with a newly learned encryption key.

Definition 9. A theory ‘J is a two-phase theory if its
rules can be divided into three disjoint theories, 7 =
3 M C2 H B, where 3 is a bounded sub-theory preceding e
and D, C! contains only composition rules, D contains
only decomposition rules, and no rules in e precede any
rules in I>.

Definition 10. A normalized derivation is a deriva-
tion where all rules from the decomposition theory are
applied before any rules from the composition theory.

As also shown in [4] in a slightly different context,
all derivations in a two-phase theory can be expressed
as normalized derivations.

Lemma 3. If a theory 7 is two-phase, and we limit the
size o f terms, and we limit the number of t imes each

existential is instantiated, t h e n t h e r e a r e o n l y f i n i t e l y

many normalized derivations in the theory.

In the Dolev-Yao model, the protocol adversary
has the capability to overhear, remember, and block
messages, to compose/decompose and decrypt/encrypt
message fields, and to generate new messages and send
them to any other protocol participant. The messages
generated by the intruder may be composed of any in-
formation supplied to the intruder initially (such as
public keys of protocol participants), fresh data gener-
ated by the intruder, and data obtained by overhearing
or intercepting messages.

The intruder is easily formalized as a set of rewrite
rules. While the basic intruder steps remain the same
from one protocol to the next, the exact formalization
depends on the form of messages used in the protocol.
A specific instance of the standard intruder is described
in some detail in Section 4.4.

3.4 Protocol and intruder

Definition 11. Given a well-founded protocol theory
‘P = 3 M 22 &J A and a two-phase intruder theory M, a
standard trace is a derivation that has all steps from
the 3 and 2 first, then interleaves steps from the prin-
cipal theories A with normalized derivations from the
intruder theory 5%.

Theorem 1. Let 3’ be any well-founded protocol theory
and 3M be any two-phase intruder theory. If we bound
the number of uses of each existential, and we bound
the number of roles generated, and we bound the size
of each term, then the set of standard traces of P U ?vl

i s f i n i t e .

Later, we show that secrecy is decidable under the
conditions of Theorem 1, even without a bound on the
number of roles.

4 Example: Needham-Schroeder Pub-
lic Key Protocol

As an example, we give the full theory of the three-
step core of the Needham-Schroeder public-key proto-
col.

4

A Meta-notation for Protocol Analysis*

I. Cervesato N.A. Durgin P.D. Lincoln J.C. Mitchell A. Scedrov

Computer Science Lab Computer Science Dept. Mathematics Dept.
SRI International Stanford University University of Pennsylvania
Menlo Park, CA Stanford, CA 94305-9045 Philadelphia, PA

lincoln @csl.sri .com { iliano, nad, jcm} @cs.stanford.edu andre@cis.upenn.edu

Abstract

Mostformal approaches to security protocol analysis are
based on a set of assumptions commonly referred to as the
“Dolev-Yao model.” In this paper; we use a multiset rewrit-
ing formalism, based on linear logic, to state the basic as-
sumptions of this model. A characteristic of our formalism
is the way that existential quantification provides a succinct
way of choosing new values, such as new keys or nonces.
We define a class of theories in this formalism that cor-
respond to finite-length protocols, with a bounded initial-
ization phase but allowing unboundedly many instances of
each protocol role (e.g., client, server; initiator, or respon-
der). Undecidability is proved for a restricted class of these
protocols, and PSPACE-conlpleteness is claimed for a class
further restricted to have no new data (nonces). Since it is
a fragment of linear logic, we can use our notation directly
as input to linear logic tools, allowing us to do proof search
for attacks with relatively little programming effort, and to
formally verify protocol transformations and optimizations.

1 Introduction

In the literature on security protocol design and analysis,
protocols are commonly described using an informal nota-
tion that leaves many properties of a protocol unspecified.
For example, a short challenge-response section of a proto-
col might be written like this:

A --+ B : {TL}K
B -+ A : {f(n))K

In this notation, a message of the form {x}~ consists of a
plaintext x encrypted with key y. In this example protocol,

*Partially supported by DOD MURK ‘Semantic Consistency in Infor-
mation Exchange” as ONR Grant NO00 14.97- l-0505. and by NSF Grants
CCR-950993 I. CCR-9629754, and CCR-9800785 to various authors.

Alice chooses a random number n and sends its encryption
to Bob. There is no specific indication of how Bob deter-
mines what to send in response, but we can see that Bob
returns a message that contains the encryption of f(n). By
analogy with familiar protocols, we might assume that he
decrypts the message he receives to determine n, then ap-
plies f to n and returns the result to Alice (encrypted with
the same key).

As written, the protocol description only gives an in-
tended trace or family of traces involving the honest prin-
cipals. There is no standard way of determining the ini-
tial conditions or assumptions about shared information, nor
can we see how the principals will respond to messages that
differ from those explicitly written. For example, in the case
at hand, we must explain in English that K is assumed to be
a shared key and that n is generated by Alice. Otherwise,
it is a perfectly reasonable interpretation of the two lines
above that Alice and Bob initially share a number n. In
this case, Alice might send {n}~ to Bob, with Bob return-
ing {f(n)}~ to Alice only if he receives precisely {n}K.
While the two readings of the protocol give the same se-
quence of messages when no one interferes with network
transmission, the effects are different if an intruder inter-
cepts the message from Alice to Bob and replaces it with
another message. For this reason, the notation commonly
found in the literature does not provide a precise basis for
security protocol analysis.

Most formal approaches to protocol analysis are based
on a relatively abstract set of modeling assumptions, com-
monly referred to as the “Dolev-Yao model,” which appear
to have developed from positions taken by Needham and
Schroeder [26] and a model presented by Dolev and Yao
[111. In this approach, messages are composed of indivisi-
ble abstract values, not sequences of bits, and encryption is
modeled in an idealized way. Although the same basic mod-
eling assumptions are used in theorem proving [27], model-
checking methods [18, 20, 25, 28, 291 and symbolic search

tools [171, there does not appear to be any standard presen-
tation of the Dolev-Yao model as it is currently used in a
variety of projects. One goal of this paper is to identify the
modeling assumptions using the simplest formalism possi-
ble, so that the strengths and weaknesses of the Dolev-Yao
model can be analyzed, apart from properties of logics or
automated tools in which the model is commonly used.

While we began with the idea of creating a new formal-
ism for this purpose, we naturally gravitated toward some
form of rewriting, so that protocol execution could be car-
ried out symbolically. In addition to rewriting to effect state
transitions, we also needed a way to choose new values,
such as nonces or keys. While this seems difficult to achieve
directly in standard rewriting formalisms, the proof rules
associated with existential quantification appears to be just
what is required. Therefore, we have adopted a notation,
first presented in [24], that may be regarded as either an ex-
tension of multiset rewriting (see, e.g., [3,4]), with existen-
tial quantification, or a Horn fragment of linear logic [141.
A similar fragment of linear logic is used in [161 to repre-
sent real-time finite-state systems. Two other efforts using
linear logic to model the state-transition aspect of protocols
(but not existential quantification for nonces) are [8, 91.

Using this formalism, it is relatively straightforward to
characterize the Dolev-Yao intruder and associated crypto-
graphic assumptions. The formalism also seems appropriate
for analyzing the complexity of protocol problems, and as a
potential intermediate language for systems or approaches
that might combine several different protocol analysis tools.
We develop a format for presenting finite-length protocols,
as the disjoint union of a set of initialization rules and sets
of independent transition rules for each protocol participant.
Using this form of protocol theory, we show that secrecy is
an undecidable property even if data constructors, message
depth, message width, number of distinct roles, role length,
and depth of encryption are bounded by constants. If any of
these restrictions are lifted, prior results, folklore, or a small
amount of thought can be used to show undecidability, but
we show even for the very small fragment with only nonces
secrecy is undecidable. Finally, we have used a linear logic
tool, LLF [5] in two ways. The first is to search executions
of a protocol and intruder for protocol flaws. While sym-
bolic search by a logic programming tool is not as efficient
as optimized search by tools such as Murcp[lo], this method
does have the advantage that the input is substantially eas-
ier to prepare. The second use of LLF is to formally ver-
ify proofs of protocol optimizations. This provides a basis
for simplifying search-based analysis and theorem-proving
analysis of protocols.

2 Multiset rewriting with existential quantifi-
cation

2.1 Protocol Notation

The notation we use involves facts and transitions. Our
facts are first-order atomic formulas, and transitions are
given by rewrite rules containing a precondition and post-
condition. One important property of this formalism is that
in applying a rule to a collection of facts, each fact that oc-
curs in the precondition of the rule is removed. This gives
us a direct way of representing state transitions, and pro-
vides the basis for the connection with linear logic. Another
key property is that the postconditions of a rule may con-
tain existentially quantified variables. Following the stan-
dard proof rules associated with existential quantification
(in natural deduction or sequent-style systems), this pro-
vides a mechanism for choosing new values that are distinct
from any other in the system.

More formally, our syntax involves terms, facts and
rules. If we want to represent a system in this notation,
we begin by choosing a vocabulary, or first-order signa-
ture. This is a standard notion from many-sorted algebra
or first-order logic (see, e.g., [13, section 4.31.) As usual,
the terms over a signature are the well-formed expressions
produced by applying functions to arguments of the correct
sort. A fact is a first-order atomic formula over the chosen
signature. This means that a fact is the result of applying a
predicate symbol to terms of the correct sorts. A state is a
multiset of facts (all over the same signature).

A state transition is a rule written using two multisets of
facts, and existential quantification, in the following syntac-
tic form:

Fl,... ,Fk +3x1...3xj.G1,... ,G,

The meaning of this rule is that if some state 5’ contains
facts Fl , . . . Fk, then one possible next state is the state S’
that is similar to S, but with:

l facts Fl , . . . Fk removed,

l Gr,. . . G, added, where x1 . . .xj are replaced by
new symbols.

While existential quantification does not semantically imply
there exist “new” values with certain properties, standard
proof rules for manipulating existential quantifiers require
introduction of fresh symbols (sometimes called Skolem
constants), as described below.

If there are free variables in the rule Fl, . . . , Fk -+
3x1 . .3xj.G1,. . , G,, these are treated as universally
quantified throughout the rule. In an application of a rule,

these variables may be replaced by any terms. To give a
quick example, consider the following state, S, and rule, R:

s = {Jv(~))TW)l
R = (W-c) --+ 32. &U(x), z) >

One possible next state is obtained by instantiating the rule
R to P(f(u)) + 32. Q(f(f(a)), z). Applying this rule,
we choose a new value, c, for z and replace P(f(u)) by
Q(f(f(u)), c). This gives us the state

s’ = {Q(f(f(u)), CL P(b))

The importance of existential quantification, for security
protocols, is that it provides a direct mechanism for choos-
ing a new value that is different from other values used in
the execution of a system. Since many protocols involve
choosing fresh nonces, fresh encryption keys, and so on,
existential quantification seems like a useful primitive for
describing security protocols.

The way that existential quantification is used in our for-
malism is based on the existential elimination rule from nat-
ural deduction. This proof rule is commonly written as fol-
lows.

[Y/44

(3 elim) 3x.4 $ y not free in any
G other hypothesis

If we have an existentially quantified axiom, 3x.4, then this
rule says that if we wish to prove some formula $, we can
choose a new symbol y for the “x that is presumed to exist”
and proceed to derive $ from [y/x14. The side condition “y
not free in any other hypothesis in the proof of r,!? means
that the only hypothesis in the proof of 1c, that can contain y
is the hypothesis [y/x]&

2.2 Simplified Needham-Schroeder

As a means of explaining the Dolev-Yao intruder and
encryption models using our notation, we begin with an
overly simplified form of the Needham-Schroeder public-
key protocol [26]. Without encryption, the core part of the
Needham-Schroeder protocol proceeds as follows:

-4 --+ B : N,
B -+ A : Na,Nb
A t B : Nb

where N, and Nb are fresh nonces, chosen by Alice (A) and
Bob (B), respectively.

We can describe this simplified protocol in our notation
using the predicates iii, Bi, N, for 0 < i 5 3, with the

following intuitive meaning:

Ai(. . .) Alice in local state i, with the indicated data
Bi(. . .) Bob in local state i, with indicated data
N, (_ . _) Network has message i, with indicated data

The data associated with the state of some principal, or
a network message, will depend on the particular state or
message. Each principal begins in local state 0, with no
data. Therefore, predicates A0 and Bo are predicates with
no arguments. When Alice chooses a nonce, she moves into
local state 1. Therefore, predicate Al is a predicate of one
argument, intended to be the nonce chosen by Alice. Sim-
ilarly, predicate B1 has two arguments, the data received
from Alice in message one of the protocol and the nonce
chosen by Bob for his response.

Using these predicates, we can state the protocol using
four transition rules:

Ao() + 3x.Al (x) , Nl (x)
BoO,Nl(x) + ~Y.BI(x,Y),N~(x,Y)

Al(x),Nz(x,~) + Az(x,Y),Ns(Y)
BI(x,Y),N~(Y) + Bz(x>Y)

Each rule corresponds to an action by a principal. In the
first rule, Alice chooses a nonce, sends it on the network,
and remembers the nonce by moving into a local state that
retains the nonce value. In the second step, Bob receives a
message on the network, chooses his own nonce, transmits
it and saves it in his local state. In the third step, Alice
receives Bob’s message and replies, while in the fourth step
Bob receives Alice’s final message and changes state.

In Table 1 is a sample trace generated from these rules,
beginning from state Ao, Bo. Spacing is used to separate
the facts that participate in each step from those that do not.

2.3 Formalizing the intruder

There are two main parts of the Dolev-Yao model as
commonly used in protocol analysis. The first is the set
of possible intruder actions, applied nondeterministically
throughout execution of the protocol. The second is a
“black-box” model of encryption and decryption. We ex-
plain the intruder actions here, with the encryption model
presented in Section 2.4.

The protocol adversary or “intruder” may nondetermin-
istically choose among the following actions at each step:
l Read any message and block further transmission,
l Decompose a message into parts and remember them,
l Generate fresh data as needed,
l Compose a new message from known data and send.
By combining a read with resend, we can easily obtain the
effect of passively reading a message without preventing an-
other party from also receiving it.

BOO, Ao() -+ Al(nA),Nl(nA), BOO
Al (nA), BOO, Nr(nA) ----+ Bl(nA, nB), N2(nA, nB), Al(nA)

Br(nA, nB), Al(d), N2(nA, nB) --+ A2(nA, W, %(nB), Bl(nA, nB)
&(nA,nB), Bl(nA,nB),&(nB) -+ &(nA, nB), &(nA, nB)

Table 1. Sample trace of simplified Needham-Schroeder

In general, the intruder processes data in three phases.
The first is to read and decompose data into parts. The
second is to remember parts of messages, and the third is
to compose a message from parts it remembers. We illus-
trate the basic form of the intruder actions using one unary
network-message predicate N1 and one binary network-
message predicate Nz. Using predicates D for decompos-
able messages and M for the intruder “memory”, the basic
rules for intercepting, decomposing and remembering mes-
s a g e s a r e

Nl (xl + D(x)
Nz(x,Y) + D(x,Y)
D(x>Y) + D(x),D(Y)
D(z) + M (z)

While the predicate D may appear to be an unnecessary
intermediary here, a protocol with more complicated mes-
sages will lead to more interesting ways of destructuring
messages. As noted in [7], it is important in proof search
to separate the decomposition phase from the composition
phase, which is accomplished here using separate D and C
predicates. The rules for composing messages from parts
are written using the C, for “composable”, predicate as fol-
lows:

M (x) + C(x), M(x)
C(x) + Nl(x)
C(X)> C(Y) + CC&Y)
C(xc, Y) -+ N~(z,Y)

The rule for generating new data is

+ 3x.M(x)

The reason we need the last transition rule (which can be
applied any time without any hypothesis) is that the intruder
may need to choose new data in order to trick an honest
participant in a protocol. This is illustrated in the following
attack on the simplified (and obviously insecure) form of
the Needham-Schroeder protocol.

For the simplified example at hand, we can compose

rules to eliminate the D and C predicates as follows:

Nl (x) -+ M(x)
M(x) -+ Nl(x), M(x)
N2(x, Y) + M(x), M(Y)
E3C.d; M(Y) = N$; Y), M(x), M(Y)

M(x) --+ h(x), M(x)

This reduces the number of steps in the trace, shown in Ta-
ble 2, which has actions of the honest participants in the left
column and actions of the intruder indented. For simplicity,
duplicate copies of M() facts are not shown, since these
have no effect on the execution of the protocol or intruder.

In this attack, the intruder intercepts messages between
A and B, replacing data so that the two principals have a
different view of the messages that have been exchanged.
Specifically, the intruder replaces Alice’s nonce nA by a
value n chosen by the intruder. When Bob responds to the
altered message, the intruder intercepts the result and re-
places n by nA so that Alice receives the message she ex-
pects.

2.4 Modeling Perfect Encryption

The commonly used “black-box” model of encryption
may be written in our multiset notation using the follow-
ing vocabulary. For concreteness, we discuss public-key
encryption. Symmetric or private-key encryption can be
characterized similarly. We assume that plaintexts have sort
plain and ciphertexts have sort cipher.

l Additional sorts: e-key, d-key

l Predicate: Key-pair(e-key, d-key)

l Function: enc : e-key x plain + cipher

We could also include a decryption function dec : d-key x
cipher + plain. However, it seems simpler to write pro-
tocols using pattern-matching (encryption on the left-hand-
side of a rule) to express decryption.

Concurrent Zero-Knowledge:
Reducing the Need for Timing Constraints

Cynthia Dworkr and Amit Sahai2

i IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120.. E-Mail:
daorkQalmaden.ibm.com.

’ MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA
02139, USA..EMail: amitsQtheory.lcs.mit.edu***

Abstract. An interactive proof system (or argument) (P, V) is concur-
rent zero-knowledgeif whenever the prover engages in polynomially many
concurrent executions of (P, V), with (possibly distinct) colluding poly-
nomial time bounded verifiers VI, . . , VP+,(,), the entire undertaking is
zero-knowledge. Dwork, Naor, and Sahai recently showed the existence
of a large class of concurrent zero-knowledge arguments, including ar-
guments for all of NP, under a reasonable assumption on the behavior
of clocks of nonfaulty processors. In this paper, we continue the study
of concurrent zero-knowledge arguments. After observing that, without
recourse to timing, the existence of a trusted center considerably simpli-
fies the design and proof of many concurrent zero-knowledge arguments
(again including arguments for all of NP), we design a preprocessing pro-
tocol, making use of timing, to simulate the trusted center for the pur-
poses of achieving concurrent zero-knowledge. Once a particular prover
and verifier have executed the preprocessing protocol, any polynomial
number of subsequent executions of a rich class of protocols will be con-
current zero-knowledge.

1 I n t r o d u c t i o n

In order to be useful in the real world, cryptographic primitives and protocols
must remain secure even when executed concurrently with other arbitrarily cho-
sen protocols, run by arbitrarily chosen parties, whose identities, goals, or even
existence may not be known. Indeed, this setting, characterized in [13] as a
distributed computing aggregate, describes the Internet. Electronic interactions
over an aggregate, such as economic transactions, transmission of medical data,
data storage, and telecommuting, pose security risks inadequately addressed in
computer science research. In particular, the issue of the security of concurrent
executions is often’ ignored.

-* * Most of this work performed while at the IBM Almaden Research Center. Also
supported by a DOD NDSEG doctoral f 11e owship, and DARPA grant DABT-96-C-
0018.

i but not always, e.g. [l] in a different setting

A zero-knowledge protocol is supposed to ensure that no information is leaked
during its execution. However, when zero knowledge interactions are executed
concurrently both parties can be at risk. Consider the case of zero knowledge
proofs: the verifier faces the possibility that the prover with which it is interacting
is actually using some concurrently running second interaction as an “oracle” to
help answer the verifier’s queries - this is the classical chess master’s problem.
In the case of a proof of knowledge, the interaction may not actually yield a
proof. This is an issue of potential malleability of the interactive proof system,
and is addressed in [13]. In contrast, the prover faces the risk that concurrent
executions of a protocol with many verifiers may leak information and may not
be zero-knowledge in toto. In this case the interaction remains a proof but may
fail to remain zero knowledge. This issue was first addressed in [16]. To overcome
this difficulty, [16] introduce the notion of an (a,/?) constmint for some a < /3:

For any two (possibly the same) non-faulty processors Pi and Pz, if PI
measures a elapsed time on its local clock and Pz measures /3 elapsed
time on its local clock, and Pz begins its measurement in real time no
sooner than PI begins, then Pz will finish after PI does.

As [16] points out, an (a,/?) constraint is implicit in most reasonable assump-
tions on the behavior of clocks in a distributed system (e.g., the linear drift
assumption). According to the (standard) view that process clocks are under
the control of an adversarial scheduler, the (a, ,D) constraint limits the choices
of the adversary to schedules that satisfy the constraints.

Under an (a, p) constraint, [16] hs ows that there exist constant round con-
current zero-knowledge protocols of various kinds, for example, arguments for
any language in NP’. In the protocols of [16], p rocessors make explicit use of
their local clocks in order to achieve concurrent zero-knowledge. The protocols
require that certain timing constraints be met, which limit the kinds of protocol
interleavings that can occur.
Our Contribution. In this work, we reduce the need for timing in achieving
concurrent zero-knowledge. Specifically, for a rich class of interactive protocols,
we are able push all use of timing into a constant round preprocessing phase;
furthermore, the real time at which the preprocessing phase between a prover P
and verifier VI occurs need not have any relation to the real time when P and
a different verifier Vz execute the preprocessing. After this preprocessing phase,
the prover and the verifier can execute any polynomial number of a rich class of
protocols without any further timing constraints, and the whole interaction will
be concurrent zero-knowledge. We require the existence of a semantically secure
public-key encryption scheme.

By limiting the use of timing to a single initial phase for each (P, V) pair, our
methods can reduce the real execution time of protocols. This is because once
preprocessing completes the parties never deliberately introduce timing delays
in executing steps of future protocols. In contrast, in the protocols of [16] such
deliberate delays play a critical role. For many applications, where two parties

’ under verious standard computational assumptions

will be executing many zero-knowledge protocols, such as authentication with a
system, these repeated delays may be expensive. Moreover, as we will see, our
approach frequently yields simpler protocols that are easier to prove concurrent
zero-knowledge.

Colluding Verifiers interacting with the Prover
K v, . v,

Step 1
Step 2

Step 1
Step 2

Step 1
Step 2
Step 3
Step 4

Step 3
Step 4

Step 3
Step 4

Diagram 1. A troublesome interleaving for concurrent zero-knowledge.

Interleavings of Protocols. The difficulty in achieving concurrent zero-knowledge
is due to the existence of certain “bad” interleavings of concurrently executing
protocols. The bad interleavings revolve around the difficulty of simulating a
transcript of multiple concurrent interactions (recall that the ability to simulate
an interaction is the core of the definition of zero-knowledge). Consider the stan-
dard (computational) zero-knowledge protocol for 3-colorability3 [22], which can
be based on any information-theoretic commitment scheme.

Generic Zero-Knowledge Argument for 3-Colorability:
1) V --+ P : Information-theoretic commitment to queries.
2) P --+ V : Commitment to graphs and colorings.
3) V -+ P : Open queries.
4) P + V : Open queried graphs or colorings, which V then checks are valid.

The standard simulator, having access only to V, produces transcripts of this
protocol as follows. First, it receives V’s commitment in Step 1. Then, supplying
V initially with “garbage” in Step 2, the simulator discovers the queries V com-
mitted to through V’s Step 3 response. The simulator uses this knowledge to
construct graphs and colorings which would fool these particular queries. Then

3 This is the “‘parallelized” version that has negligible error while remaining zero-
knowledge.

the simulator “rewinds” the interaction to just after Step 1, and supplies V with
a commitment to these new graphs and colorings in Step 2. Since V is already
committed by Step 1, its Step 3 response cannot change. Thus, the simulator
can open the graphs and colorings according to the queries, and V will accept.

This simulator fails in the context of concurrent interactions because of the
rewinding. Consider the following interleaving of n colluding verifiers following
the generic four-round protocol described above.

An adversary controlling the verifiers can arrange that the Step 1 commit-
ments to queries made by verifiers Vi+l, . . , V, can depend on messages sent by
the prover in Step 2 of its interaction with vi. It is a well-known open problem
how to simulate transcripts with this interleaving in polynomial time; the diffi-
culty with the straightforward approach is that once the queries in the interaction
with Vi are opened (in Step 3), it becomes necessary to re-simulate Step 2 of the
interaction with Vi, and therefore the entire simulation of the interaction with
verifiers Vi+l, . . , V, must be re-simulated. The most deeply nested transaction,
with V,, is simulated roughly 2” times.

Remark on Commitment Schemes The literature discusses two types of bit
or string commitment: computational and znformatzon-theoretic. In computa-
tional string commitment there is only one possible way of opening the commit-
ment. Such a scheme is designed to be secure against a probabilistic polynomial
time receiver and an arbitrarily powerful sender. In information theoretic com-
mitment it is possible to open the commitment in two ways, but the assumed
computational boundedness of the sender prevents him from finding a second
way. Such a scheme is designed to be secure against an arbitrarily powerful re-
ceiver and a probabilistic polynomial time prover. See [13] for a formal definition
of computational commitment.

The commitments in Step 1 of the generic zero-knowledge argument must be
information-theoretic, meaning that information theoretically nothing is leaked
about the committed values. This is for soundness, rather than for zero-knowledge.
Our techniques require that the verifier only use computational commitments
(for example, as in the g-round zero-knowledgeargument for NP of Feige and
Shamir [19], which we modify for technical reasons).

The Trusted Center Model. Consider a model in which a trusted center gives
out signed public key, private key pairs (E, D) of some public key cryptosystem
to every user over a secure private channel. As we now explain, in this model
arguments such as the one given in [19] can be simulated without rewinding,
provided that the commitments by V are performed using the public key E given
to it by the trusted center. This is significant because, if there is no rewinding,
then interleavings such as the one described above are not problematic.

The simulator for V simulates its interaction with the trusted center as well
as with P. So, the simulator knows the private key D corresponding to the pub-
lic key E used in V’s commitments. Hence, the simulator never has to rewind
to learn a committed value. We call such simulations, in which rewinding is

Concurrent Zero-Knowledge

Cynthia Dwork* Moni Naort Amit Sahai:

Abstract

Concurrent executions of a zero-knowledge protocol by a
single prover (with one or more verifiers) may leak informa-
tion and may not be zero-knowledge in toto; for example, in
the case of zero-knowledge interactive proofs or arguments,
the interactions remain proofs but may fail to remain zero-
knowledge. This paper addresses the problem of achieving
concurrent zero-knowledge.

We introduce timing in order to obtain zero-knowledge
in concurrent executions. We assume that the adversary is
constrained in its control over processors’ clocks by what we
call an (a,@)-constraint for some a < p: for any two pro-
cessors Pi and Pz, if Pr measures a elapsed time on its local
clock and PZ measures ,B elapsed time on its local clock, and
Pz starts after Pr does, then Pz will finish after PI does. We
obtain four-round almost concurrent zero-knowledge inter-
active proofs and perfect concurrent zero-knowledge argu-
ments for every language in NP. We also address the more
specific problem of Deniable Aurhentication, for which we
propose efficient solutions.

1 Introduction

A distributed computing aggregate is a collection of phys-
ically separated processors that communicate via a hetero-
geneous network. To date, research applications of crypto-
graphic techniques to distributed systems have overwhelm-
ingly concentrated on the paradigm in which the system

*IBM Research Division, Almaden Research Center, 650 Harry
Road, San Jose, CA 95120. Research supported by BSF Grant
32-00032-l. E-mail: dworkBalmaden.ibm.com.

t Dept. of Applied Mathematics and Computer Science, Weiz-
mann Institute of Science, Rehovot 76100, Israel. Some of
this work performed while at the IBM Almaden Research Cen-
ter. Research supported by BSF Grant 32-00032-l. E-mail:
naorBwisdom.weiemann.ac.il.

:MIT Laboratory for Computer Science, 545 Technology
Square, Cambridge, MA. 02139. Most of this work performed
while at the IBM Almaden Research Center. Also supported
by a DOD NDSEG doctoral fellowship and partially by DARPA
grant DABT63-96-C-0018. E-mail: amitsOtheory.lcs.mit.edu

consists of n mutually aware processors trying to cooper-
atively compute a function of their respective inputs (see
e.g. [6, 281). In distinction with this traditional paradigm,
processors in an aggregate do not in general know of all the
other members, nor do they generally know the topology
of the network. The processors are typically not all trying
cooperatively to compute one function or perform a specific
set of tasks; in general no coordination is assumed. A prime
example of an aggregate is the Internet.

Electronic interactions over an aggregate, such as eco-
nomic transactions, transmission of medical data, data stor-
age, and telecommuting, pose security risks inadequately
addressed in computer science research. In particular, the
issue of the security of concurrent executions is often ignored
(but not always, e.g., [4] in a different setting). In this pa-
per we address this issue in the context of zero-knowledge
interactions (and thus continue research initiated in [16] on
zero-knowledge interactions in an aggregate.)

A zero-knowledge protocol is supposed to ensure that no
information is leaked during its execution. However, when
zero-knowledge interactions are executed concurrently both
parties can be at risk. Consider the case of zero-knowledge
proofs: the verifier faces the possibility that the prover with
which it is interacting is actually using some concurrently
running second interaction as an “oracle” to help answer the
verifier’s queries - this is the classic chess master’s problem.
Thus, for example in the case of a proof of knowledge, the
interaction may not actually yield a proof. This is an issue
of potential malleability of the interactive proof system, and
is addressed in [16].

The prover faces the risk that concurrent executions of
a protocol by a single prover (with one or more verifiers)
may leak information and may not be zero-knowledge in
toto. (The problem is slightly more general than this; we
elaborate in Section 2.) In this case the interaction re-
mains a proof but may fail to remain zero-knowledge. To
date, no zero-knowledge proof system has been proven zero-
knowledge under concurrent execution. Indeed, recent work
of Kilian and Petrank suggests that certain types of four-
round interactive proof systems and arguments’ cannot re-
main zero-knowledge under concurrent execution [34].

The situation is reminiscent of the case of parallelizing
the iterations of a zero-knowledge interactive proof (P, V).
Such a proof consists of a basic block that is iterated k times
in order to ensure that the verifier will accept the proof of a
false statement with a probability that shrinks exponentially
in k. For example, if the basic block consists of

‘In an argument the prover is polynomial time bounded.

P --+ V : Commit to MO, Mi
V --+ P : b ER (0, 1)
P -+ V : open Mb

then the parallel&&ion looks like

P+V:CommittoMi,M: ,..., M,k,Mf
V+P:bl...bkE~{O,l}~
P ---+ V : open Mbl,. . , Mb,

This natural parallelization is probably not zero-knowledge;
indeed Goldreich and Krawczyk have shown that if L is
any language having a three-round zero-knowledge (black-
box simulatable) proof with negligible probability of error,
then L E BPP (see [26] for this and analogous results
for zero-knowledge arguments and constant round Arthur-
Merlin games).

In many cases the parallelization can be modified to
achieve zero-knowledge by prepending a step in which the
verifier commits to bl,. . . , bk (see [lo, 22, 261):

1. V + P : Commit to bl, , bk
2. P -+ V : Commit to MA, M:, , M,k, M/
3. V + P : open bl , . , bk
4. P--+V:openMbl,...,Mbl.

Since the verifier is completely committed to its queries be-
fore the prover sends any message, the simulation is easy:
commit to random noise, wait until the verifier reveals its
queries, then re-wind and choose a new sequence of commit-
ments so that the - now known - queries bl, , bk can
be answered, and finish the simulation. To ensure that the
prover’s commitments at Step 2 are independent of the ver-
ifier’s commitments at Step 1, the Step 1 commitments are
information-theoretic.

In the concurrent scenario, since there are many verifiers,
and since they are not all known to the prover (or provers)
before interaction with the first verifier begins, there is no
algorithmic way to force all subsequent verifiers to commit
to their queries before the hrst interaction begins. (There
may be meta-methods, for example, involving certified pub-
lic keys for the verifiers, but we do not consider such ap-
proaches here, and in any case at best such methods move
the burden to some initial step.) Consider the following
nested interleaving, shown in Diagram 1 below, of n col-
luding verifiers VI, , I/, following the generic four-round
protocol described above with a single prover.

K v-2 K
Step 1
Step 2

Step 1
Step 2

Step 1
Step 2
Step 3
Step 4

Step 3
Step 4

Step 3
Step 4

Diagram 1. A troublesome interleaving.

An adversary controlling the verifiers can arrange that
the Step 1 commitments to queries made by verifiers V,+I , ,
V,, can depend on messages sent by the prover in Step 2 of
its interaction with V,. It is a well-known open problem how
to simulate transcripts with this interleaving in polynomial
time; the difficulty with the straightforward approach is that
once the queries in the interaction with V, are opened (in
Step 3), it becomes necessary to re-simulate Step 2 of the in-
teraction with V,, and therefore the entire simulation of the
interaction with verifiers V,+l , . , V, must be re-simulated.
The most deeply nested transaction, with V,, is simulated
roughly 2” times.

It is possible that the definition of zero-knowledge (i.e.,
simulateable) is too demanding: interactions that leak no
“useful” information may nonetheless not be simulateable.
This is the philosophy in [22], and the motivation for &tness
indistinguishability. In the same spirit, we suggest three
ideas for exploration:

introduce a notion of time to sufficiently restrict the
behavior of an adversarial scheduler that the result-
ing execution is always simulateable (an explicit use of
time);

use “moderately hard” functions to enforce timing con-
straints (an implicit use of time);

enhance the power of the simulator or relax the re-
quirements on the output distribution.

Our precise notion of an explicit use of time is an (cr,/3)-
constraint (for some Q < p): for any two (possibly the
same) non-faulty processors PI and Pz, if PI measures a
elapsed time on its local clock and Pz measures p elapsed
time on its local clock, and if in addition Pz begins its mea-
surement in real time no sooner than PI begins, then Pz
will finish no sooner than PI does. An (a, 0) constraint is
implied by most reasonable assumptions on the behavior of
clocks in a system (e.g. the linear drift assumption). The
(a, p)-constraint is important for correctness of the protocol
for both parties involved, i.e., zero-knowledge in concurrent
zero-knowledge proofs and arguments (Protocols II and II’)
and unforgeability (soundness) and deniability in the De-
niable Authentication protocols (Protocols III, IV and V).
However, if the time-frame a is too short (not allowing some
parties sufficient time to compute and send messages), then
the completeness of those protocols is endangered.

It is often possible to partially eliminate the explicit use
of time from concurrent zero-knowledge arguments by em-
ploying moderately hard functions, possibly with shortcut in-
formation [1712. Intuitively, these functions are used in order
to make sure that a certain party operating within in a time
limit a may not extract secret information, but an off-line
simulator having sufficient time may extract this informa-
tion; in this sense they supplement the (a,,B)-constraint.

In the same spirit, in some protocols we achieve a slightly
relaxed notion of zero-knowledge, which we call E-knowledge,
requiring that for any polynomial time bounded adversary
tZ and for any 0 < E = o(l), there exists a simulator “-‘;
ning in time polynomial in the running time of A and E

2A short-cut behaves similarly to a trapdoor function, except
that the gap between what can be computed having the short-
cut and not having the short-cut is polynomial rather than the
(conjectured) super-polynomial gap between what can be done
having the trapdoor information and not having the trapdoor
information.

that outputs simulated transcripts with a distribution E-
indistinguishable from the distribution on transcripts ob-
tained when the prover interacts with (verifiers controlled
by) A. (By &-indistinguishable we mean that no polynomial
time observer can distinguish the two distributions with ad-
vantage better than E.) For a discussion of related topics,
see [29].

To understand the significance of Arrowledge, suppose
we have a simulator that runs in time S(n, l/c, d(n)), where
d(n) is the running time of an adversary A interacting with
the prover on inputs of length n. Suppose further that there
is a task whose success can be recognized (e.g., solving an
NP search problem or breaking a particular cryptosystem).
Suppose that there is a procedure II that takes part in an
&-knowledge proof and then solves the given task. Let T(n)
be the total running time of fI (including the interaction
and the solving of the task) and let P(n) be the probability
that fI succeeds in solving the task. Under the normal def-
inition of zero-knowledge, where the simulator runs in time
S’(n,A(n)), we have that without the interaction one can
complete the task in time S’(n,T(n)), with success proba-
bility P(n) - p(n), where p(n) is negligible.

For our model, without the interaction, one can complete
the task in time S(n, 1/2P(n), T(n)), with success probabil-
ity P(n) - P(n)/2 = P(n)/2 (ignoring negligible terms).

Since we assume we can recognize when the task is com-
pleted successfully, the claim above follows by a contradic-
tion argument: if the probability were smaller, then this
task would be a distinguisher between simulated and real
interactions with better than P(n)/2 distinguishing power,
a contradiction.

This implies in particular that if the original breaking
task could be achieved in polynomial-time with an inverse
polymomial probability of success after interacting in the E-
knowledge proof, then it will still be achievable in this way
without the interaction (although possibly requiring much
more time).

Summary of Results: We introduce timing in order to
obtain zero-knowledge in concurrent executions. We ob-
tain four-round concurrent E-knowledge interactive proofs
and perfect concurrent zero-knowledge arguments for every
language in NP under an (a,P) constraint. (Without the
timing constraint we are limited by an impossibility result
of [34].) The protocol remains zero-knowledge independent
of how many different theorems the prover (or provers) is
proving in the concurrent interactions (Section 3). In Sec-
tion 4 we give several examples of protocols for the case
of Deniable Authentication (discussed next). In particular,
Protocols IV and V are concrete and efficient solutions to
the problem.

1.1 An Illustrative Example: Deniable Authentication
[16] presents an extremely simple protocol for what is there
termed public key authentication, a relaxation of digital sig-
natures that permits an authenticator AP to authenticate
messages m to a second party V, but in which the authen-
tication needn’t (and perhaps shouldn’t!) be verifiable by a
third party. To emphasize this last point we use the term
deniable authentication and strengthen the definition in [16]
by insisting on deniability.

Similar to a digital signature scheme, a deniable authen-
tication scheme can convince V that AP is willing to authen-
ticate m. However, unlike the case with digital signatures,
deniable authentication does not permit V to convince a

third party that A’P has authenticated m - there is no “pa-
per trail” of the conversation (other than what could be
produced by V alone). Thus, deniable authentication is in-
comparable with digital signatures. Deniable authentication
differs from the concepts of undeniable signature introduced
in 1989 by Chaum and Van Antwerpen [12] and chameleon
signature introduced by Krawczyk and Rabin [36], in that
deniable authentication is not intended for ultimate adjudi-
cation by a third party, but rather to assure V - and only
V - of the validity of the message (see [24] for an excellent
discussion of work on undeniable signatures). In addition to
addressing the privacy needs cited in the literature on unde-
niable signatures, zero-knowledge public key authentication
also provides a solution to a major commercial motivation
for undeniable signatures: to provide proof of authenticity
of software to authorized/paying customers only. In partic-
ular, proving authenticity of the software to a pirate does
not in any way help the pirate to prove authenticity of pirate
copies of the software to other customers.

Another nice application of deniable authentication is
in authenticating “off the record” remarks that are not for
attribution. The prover’s public key allows a reporter to be
certain of the identity of the source while providing plausible
deniability.

The notion of non-malleable security for a public key au-
thentication scheme, defined in [16], is analogous to that of
existential unforgeability under an adaptive chosen plaintext
attack for signature schemes [32], but we must make sure to
take care of PIM (“person-in-the-middle”) attacks.

In terms of the discussion above, the definition of non-
malleable security in this context is concerned with protect-
ing the verifier against an imposter trying to impersonate
the prover (authenticator) and falsely “authenticating” the
message m. A deniable authentication protocol satisfying
the definition of non-malleable security clearly also provides
some protection for the prover/authenticator; for example,
even though the protocol may not be zero-knowledge, it pro-
tects any private key used in the authentication to a great
extent - otherwise it would be possible to impersonate the
authenticator by learning the private authentication key.

The following public key authentication protocol appears
in [16] (see also [18]). P’s public key is E, chosen ac-
cording to a non-malleable public key cryptosystem gen-
erator. (Roughly speaking, a public key cryptosystem is
non-malleable if, for all polynomial time relations R (with
certain trivial exceptions), seeing an encryption E(o) “does
not help” an attacker to generate an encryption E(P) such
that R(a,,B).) In all our protocols we assume that the mes-
sage m to be authenticated is a common input, known to
both parties. Also, if any message received is of the wrong
format, then the protocol is terminated. In particular, if the
message received by P in Step 1 below is not an encryption
of a string with prefix m, then P terminates the protocol
The concatenation of x and y is denoted x o y.

Protocol 0: Public Key Authentication
1. v + p : -,’ ER E(” 0 T), T ER (o,l}”
2. P--+V:r

Although proved in [16] to be non-malleably secure, Pro-
tocol 0 is not zero-knowledge. However, the protocol is
easily modified to be zero-knowledge by the addition of a
proof of knowledge. (A zero-knowledge interactive proof
is a proof of knowledge if there is a polynomial time sim-
ulator to extract the information for which knowledge is
being proved [21].) Clearly, once it is zero-knowledge the
interaction yields no “paper trail” of involvement by the

prover/authenticator, under sequential executions by the
same prover/authenticator.

For the modification we use an information-theoretic com-
mitment scheme K91,9z,p(r) [13] to commit to a string r.
K 91,9s,p(x) is defined as follows: gi, gz generate the same q-
sized subgroup of iZG, where q is a large prime dividing p- 1.
Given 91, gz, and p, commit to I by sending gyg; mod p
where z En i&,. Note that this is distributed uniformly in
the subgroup generated by gi for all I. Decommitment is by
revealing x and z. Note that if the committer knows a such
that g2 E g: mod p, then the “commitment” can be opened
arbitrarily, so the security of the commitment relies on the
hardness of finding discrete logarithms modulo p.

Protocol I: SeqZK Deniable Authentication
1. I/-P: E(mor),gl,g2,p
2. p - V : K91,g1,P(r)

3. V + P : s, r, where s is the string of random
bits used for the encryption in Step 1

4. P + V : open commitment

Intuitively, this protocol “should be” zero-knowledge be-
cause Step 2 yields no information about r even information-
theoretically. However, standard simulation techniques fail
for concurrent executions; the difficult transcripts are those
in which the adversary nests many executions. We do not
know if Protocol I remains zero-knowledge under concurrent
executions by the same AP. Similarly, if there is a collection
of APs, all using the same secret key, concurrent executions
of the protocol may not be zero-knowledge.

Related work. For a discussion of attempts to construct
parallel zero-knowledge protocols, see [3] and Goldreich, Chap-
ter 6 [25]. The problem of concurrent zero-knowledge was
considered by several groups including K&an and Petrank
[34] and Bellare, Impagliazzo and Jakobsson [2]. The use of
timing considerations to ensure soundness and zero-knowledge
is new. The only work we aware of that uses timing in zero-
knowledge protocols is Brands and Chaum [ll], in which
very accurate timing is needed in order to prevent person-in-
the-middle attacks by distant processors. Note that timing
has been suggested as a cryptanalytic tool - the best exam-
ple is Kocher’s timing attack [35] - so it follows that any
implementation of a cryptographic protocol must be time
aware in some sense. The use of moderately hard functions
was introduced by Dwork and Naor [17]. The application as
time-capsule was considered by Bellare and Goldwasser [l].
The notion of “time-lock puzzles” is discussed by Ftivest,
Shamir, and Wagner [39].

2 Model and Definitions

Timing. In our protocols, processors (or machines) use lo-
cal clocks to measure elapsed time. In any execution the
adversary has control over the timing of events, subject to
an (a, p)-constraint (for some cr < p): for any two (possibly
the same) non-faulty processors PI and P2, if PI measures
a elapsed time on its local clock and P2 measures p elapsed
time on its local clock, and if in addition P2 begins its mea-
surement in real time no sooner than PI begins, then P2 will
finish no sooner than PI does. The particular constraint may
vary between protocols and must be stated explicitly as part
of the description of any protocol.

Zero-Knowledge and Concurrent Zero-Knowledge In the
original “black box” forumulation of. zero-knowledge proof
systems [31], an interactive proof system (P,V) for a lan-
guage L is computational (or perfect) zero-knowzedgeif there
exists a probabilistic, expected polynomial time oracle ma-
chine S, called the simulator, such that for every probabilis-
tic polynomial time verifier strategy V’, the distributions
(P, V*)(x) and S”’ (x) are computationally indistinguish-
able (or identical) whenever x E L. Here, formally, the
machine V’ is assumed to take as input a partial conversa-
tion transcript, along with a random tape, and output the
verifier’s next response. This defintion also holds in the case
of arguments or computationally-sound proofs, where the
prover and verifier are both probabilistic polynomial time
machines.

To investigate preservation of zero-knowledge in a dis-
tributed setting, we consider a probabilistic polynomial time
adversary that controls many verifiers simultaneously. Here,
the adversary A will take as input a partial conversation
transcript of a prover interacting with several verifiers con-
currently. Hence the transcript includes with each message
sent or received by the prover, the local time on the prover’s
clock at which the event occurred. The output of A will
either be a tuple (receive, V, a, t), indicating that P receives
message a from V at time t on P’s local clock, or (send, V, t),
indicating that P must send a message to V at time t on
P’s local clock. The adversary must output a local time for
P that is greater than all the times given in the transcript
that was input to A (the adversary cannot rewind P), and
standard well-formedness conditions must apply. If these
conditions are not met, this corresponds to a non-real situa-
tion, so such transcripts are simply discarded. Note that we
assume that if the adversary specifies a response time t for
the prover that violates a timing constraint of the protocol
with V, the prover should answer with a special null re-
sponse which invalidates the remainder of the conversation
with verifier V. The distribution of transcripts generated
by an adversary A interacting with a prover P on common
input x is denoted (P t+ d)(x).

An argument or proof system (P, V) for a language L
is computational (or perfect) concurrent tero-knowledge if
there exists a probabilistic, expected polynomial time ora-
cle machine S such that for every probabilistic polynomial
time adversary A, the distributions (P ti d)(x) and Sd(x)
are computationally indistinguishable (or identical) when-
ever x E L.

An argument or proof system (P, V) for a language L
is computational concurrent E-knowledge if for every E > 0,
there exists an oracle machine S, such that for every prob-
abilistic polynomial time adversary A, the running time of
Sd is polynomial in n and l/~, and any probabilistic polyno-
mial time machine B that attempts to distinguish between
the distributions (P ++ d)(x) and Sd(x) will have advan-
tage at most E whenever z E L.

When the prover acts honestly and follows the protocol,
it does not matter if there is a single entity that is acting as
the prover for all verifiers, or if there are many entities that
are acting as provers for subsets of the verifiers, since the
actions of the provers would be the same, and in our model,
the timing of events is controlled by the adversary.

NIZK. In anon-interactive zero-knowledge (NIZK) proof [5,
8, 9, 231 the prover P and verifier V have a common input x
and also share a random string (T, called the reference string,
of length polynomial in the length of x. To convince the ver-
ifier of the membership of x in some fixed NP language L,

Part II

Real-Time Systems

Han&e Ben-Abdallah, Insup Lee, and Oleg Solcolsky: “Specification and
Analysis of Real-Time Systems with PARAGON”, to appear in the Annals
of Software Engineering, Baltzer Science Publishers, 1999.

Full paper: http://www.cis.upenn.edu/lsokolsky/ase99.ps.gz

Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh
Viswanathan: “Runtime Assurance Based On Formal Specifications”, in the
proceedings of the 1999 International Conference on Parallel and Distributed
Processing Techniques and Applications - PDPTA’99 (H. Arabnia et al.,
editors), CSREA Press, Las Vegas, NV, 28 June ~ 1 July 1999.

Full paper: http://www.cis.upenn.edu/lrtg/mac/doc/99pdpta.ps

Moonjoo Kim, Mahesh Viswanathan, Han&e Ben-Abdallah, Sampath Kan-
nun, Insup Lee, and Oleg Sokolsky: “Formally Specified Monitoring of Tem-
poral Properties”, in the Proceedings of the European Conference on Real-
Time Systems - ECRTS’99, pp. 114-121, York, UK, 9911 June 1999.

Full paper: http: //www.cis.upenn.edu/"rtg/mac/doc/99ecrts.ps

Moonjoo Kim, Mahesh Viswanathan, Han&e Ben-Abdallah, Sampath Kan-
nun, Insup Lee, and Oleg Sokolsky: “Mac: A Framework for Run-time Cor-
rectness Assurance of Real-Time System”, Technical Report MS-CIS-98-37,
Department of Computer and Information Sciences, University of Pennsyl-
vania, December 1998

Full paper: http: //www.cis.upenn.edu/-rtg/mac/doc/mac.ps

Han&e Ben-Abdallah and Insup Lee: “A Graphical Language with Formal
Semantics for the Specification and Analysis of Real-Time Systems”, Special
Issue of Integrated Computer-Aided Engineering on Real-time Engineering
Systems, Vol. 5, No. 4, 10s Press, 1998.
Full paper:
ftp://ftp.cis.upenn.edu/pub/rtg/Paper/Full-Postscript/icae98.ps.gz

Hee-Hwan Kwak, Insup Lee, and Oleg Sokolsky: “Parametric Approach
to the Specification and Analysis of Real-time System Designs based on
ACSR-VP”, in the proceedings of the 1998 ARO/ONR/NSF/DARPA Mon-
terey Workshop on Engineering Automation for Computer Based Systems,
Carmel, CA, 27-29 October 1998.
Full paper:
ftp://ftp.cis.upenn.edu/pub/rtg/Paper/Full-Postscript/monterrey98.ps.gz

Hee-Hwang Kwak, Jin-Young Choi, Insup Lee, and Anna Philippou: “Sym-
bolic Weak Bisimulation for Value-Passing Calculi”, Technical report MS-
CIS-98-22, Department of Computer and Information Science, University of
Pennsylvania, May 1998.
Full paper:
http://www.cis.upenn.edu/“techreports/reports/MS-CIS-98-22.ps

Specification and Analysis of Real-Time Systems with PARAGON

Oleg Sokolsky, Insup Lee

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104, U.S.A.

sokolsky@saul.cis.upenn.edu

Han&e Ben-Abdallah

Dkpartement d’Informatique

FSEG

Universitk de Sfax

B.P. 1088

3018 Sfax, Tunisia

Abstract

This paper describes a methodology for the specification and analysis of distributed real-time systems

using the toolset called PARAGON. PARAGON is based on the Communicating Shared Resources paradigm,

which allows a real-time system to be modeled as a set of communicating processes t,hat compete for shared

resources. P.4RAGON supports both visual and textual languages for describing real-time systems. It offers

automatic analysis based on state space exploration as well as user-directed simulation. Our experience

with using PARAGON in several case studies resulted in a methodology that includes design patterns and

abstraction heuristics, as well as an overall process. This paper briefly overviews the communicating shared

resource paradigm and its toolset PARAGON, including the textual and visual specification languages. The

paper then describes our methodology with special emphasis on heuristics that can be used in PARAGON

to reduce the state space. To illustrate the methodology, we use examples from a real-life system case study.

1 INTRODUCTION

As software systems become more complex and safety-critical, it is vitally important to ensure relia-

bility properties of these systems. Most complex safety-critical systems are distributed and must function in

real-time. Formal methods have been proposed to aid in development of safety-critical systems. They allow

users to specify systems precisely and reason about them in mathematical terms. -4 variety of methods for

dealing with hardware and software systems aimed at distributed and real-time systems have been developed.

They include state machines, Petri nets, logics, temporal logics, process algebras and timed automata; the

summary of existing approaches and directions for future research can be found in [Clarke and Wing 1996;

Cleaveland and Smolka 19961. -4s formal methods become more mature and their benefits for development

of large systems can be clearly demonstrated, they are being increasingly accepted by the industry.

Most industrial designs yield specifications with very large state spaces. Therefore, tools for mechan-

ical analysis of large specifications are essential for successful application of formal methods in industry.

A number of tools based on formal methods have been put forward in the last several years in an effort

to increase the usability of formal methods especially within the industrial community. Among the tools

that are most widely available are the Concurrency Workbench [Cleaveland et al. 19931, Spin [Holzmann

19911, SMV [McMillan 19931. Analysis of real-time systems is supported by COSPAN [Hardin et al. 19961,

Kronos [Daws et al. 19951, and Uppaal [Bengtsson et al. 19951, to name just a few.

Even with tool support, most specifications of real-life systems are too large to be analyzed by brute

force. -4nalysis of large systems is impossible without abstractions and simplifications that serve to reduce

an infinite, or finite but unmanageable, state space of the system’s specification. Users of each formalism and

supporting tools employ a number of abstraction heuristics that help in creating manageable specifications

of large-scale systems. Some of the used heuristics are specific to the formalism or the tool, while others are

applicable to several related methods. Often when case studies are described, such heuristics are left out or

mentioned only briefly. We think it is worth while to make these heuristics explicit for the benefit of future

users of formal method tools.

This paper describes a methodology for the specification and analysis of distributed real-time systems

using a toolset PARAGON. We describe the process of constructing a formal specification from an informal

description of the system, and some of the specification patterns often observed in this process. In addition,

we summarize heuristics commonly employed by PARAGON that are aimed at reducing the state space of

specifications.

P.4RAGON is based on the process algebra ACSR [Lee et al. 19941 and related formalisms. Process

algebras, such as CCS [Milner 19891, CSP [Hoare 19851 and ACP [Bergstra and Klop 19851, have been devel-

2

oped to describe and analyze communicating, concurrently executing systems. A process algebra consists of

a concise language, a precisely defined operational semantics, and a notion of equivalence. The language is

based on a small set of operators and a few syntactic rules for constructing a complex process from simpler

components. The operational semantics describes the possible execution steps that a process can take, i.e.,

a process specification can be executed, and serves as the basis for various analysis algorithms.

The notion of equivalence captures when two processes behave identically, i.e., they have the same

execution steps. To verify a system using a process algebra, one writes a requirements specification as an

abstract process and a design specification as a detailed process. The correctness can then be established

by showing that the two processes are equivalent. The most salient aspect of process algebras is that they

support the modular specification and verification of a system. This is due to the algebraic laws that form a

compositional proof system, and thus it is possible to verify the whole system by reasoning about its parts.

Process algebras without the notion of time are now used widely in specifying and verifying concurrent

systems.

To expand the usefulness to real-time systems, several real-time process algebras have been developed

by adding the notion of time and including a set of timing operators to process algebras. In particular,

these real-time process algebras provide constructs to express delays and timeouts, which are two essential

concepts to specify temporal constraints in real-time systems.

Algebra of Communicating Shared Resource (ACSR) introduced by [Lee et al. 19941, is a timed

process algebra which can be regarded as an extension of CCS. It enriches the set of operators, introducing

constructs to capture common real-time design notions such as resource sharing, exception and interrupt

handling. ACSR supports the notions of resources, priorities, interrupt, timeout, and process structure. The

notion of real time in ACSR is quantitative and discrete, and is accommodated using the concept of timed

actions. The execution of a timed action takes one time unit and consumes a set of resources defined in the

timed action during that one time unit period. The execution of a timed action is subject to the availability

of resources it uses. The contention for resources is arbitrated according to the priorities of competing

actions. To ensure the uniform progression of time, processes execute timed actions synchronously.

ACSR is an extension of another real-time process algebra CCSR [Gerber and Lee 19941, which shares

many aspects of ACSR. In particular, CCSR was the first process algebra to support the notions of both

resources and priorities. CCSR, however, lacks instantaneous synchronization since all actions take exactly

one time unit. ACSR extends CCSR with the notion of instantaneous events and synchronization, and

includes a set of laws complete for finite state processes [Bremond-Gregoire et al. 19971. To promote the use

of ACSR in the specification and analysis of real-time systems, we have implemented a tool VERSA [Clarke

et al. 19951. PARAGON is a toolset that extends the capability of VERSA by a providing graphical user

Runtime Assurance Based On Formal Specifications*

I. Lee! S. Kannan, M. Kim, 0. Sokolsky, and M. Viswanathan
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

March 23, 1999

Abstract

We describe the Monitoring and Checking (Mac) framework which assures the correctness
of the current execution at run-time. Monitoring is performed based on a formal specification of
system requirements. MaC bridges the gap between formal specification and verification, which
ensures the correctness of a design rather than an implementation, and testing, which partially
validates an implementation. An important aspect of the framework is a clear separation be-
tween implementation-dependent description of monitored objects and high-level requirements
specification. Another salient feature is automatic instrumentation of executable code. The
paper presents an overview of the framework and two languages to specify monitoring scripts
and requirements, and briefly explain our on-going prototype implementation.

1 Introduction

Much research in the past two decades concentrated on methods for analysis and validation of
distributed and real-time systems. Important results have been achieved, in particular, in the area of
formal verification [4]. Formal methods of system analysis allow developers to specify their systems
using mathematical formalisms and prove properties of these specifications. These formal proofs
increase confidence in correctness of the system’s behavior. Complete formal verification,however,
has not yet become a prevalent method of analysis. The reasons for this are twofold. First,
the complete verification of real-life systems remains infeasible. The growth of software size and
complexity seems to exceed advances in verification technology. Second, verification results apply
not to system implementations, but to formal models of these systems. That is, even if a design has
been formally verified, it still does not ensure the correctness of a particular implementation of the
design. This is because an implementation often is much more detailed, and also may not strictly
follow the formal design. So, there are possibilities for introduction of errors into an implementation
of the design that has been verified. One way that people have traditionally tried to overcome this
gap between design and implementation has been to test an implementation on a pre-determined
set of input sequences. This approach, however, fails to provide guarantees about the correctness
of the implementation on all possible input sequences. Consequently, when a system is running, it

*This research was supported in part by NSF CCR-9619910, AR0 DAAG55-98-1-0393, AR0 DAAG55-98-1-0466,
and ONR N00014-97-1-0505 (MURI)

+Corresponding Author. Insup Lee, email: lee@cis.upenn.edu; fax: +1(215) 573-3573

1

is hard to guarantee whether or not the current execution of the system is correct using the two
traditional methods. Therefore, the approach of continuously monitoring a running system has can
be used to fill the gap between these two approaches.

In this paper, we describe a framework of monitoring and checking a running system with the
aim of ensuring that it is running correctly with respect to a formal requirements specification.
The use of formal methods is the salient aspect of our approach. We concentrate on the following
two issues: (1) how to map high-level abstract events that are used in requirement specification to
low-level activities of a running system, and (2) how to instrument the code to extract and detect
necessary low-level activities. We assume that both requirement specifications and the system
implementation are available to us.

The major phases of the framework are as follows: (1) system requirements are formalized; at the
same time, a monitoring script is constructed, which is used to instrument the code and establish

\pi a mapping from low-level information into high-level events; (2) at run-time, events generated
by the instrumented system are monitored for compliance with the requirements specification.
The run-time monitoring and checking (Mac) architecture consists of three components: filter,
event ‘recognizer, and run-time checker. The filter extracts low-level information (such as values of
program variables and time when variables change their values) from the instrumented code. The
filter sends this information to the event recognizer, which converts it into high-level events and
conditions and passes them to the run-time checker.

Each event delivered to the checker has a timestamp, which reflects the actual time of the
occurrence of the event. This enables us to monitor real-time properties of the system. Timestamps
are assigned to events by the event recognizer based on the clock readings provided by the filter. The
run-time checker checks the correctness of the system execution thus far according to a requirements
specification of the system, based on the information it receives from the event recognizer, and on
the past history. The checker can combine monitoring of behavioral correctness of the system
control flow with program checking [2] for numerical computations. This integrated approach is
a unique feature of the proposed framework. The current prototype implementation of the MaC
framework supports the monitoring of a system written in Java. Instrumentation is performed
automatically, directly in Java bytecode.

Related work. Computer systems are often monitored for performance measurement, evaluation
and enhancement as well as to help debugging and testing [17]. Lately, there has been increasing
attention from the research community to the problem of designing monitors that can be used to
assure the correctness of a system at runtime. The “behavioral abstraction” approach to monitoring
was pioneered by Bates and Wileden [l]. Although their approach lacked formal foundation, it
provided an impetus for future developments. Several other approaches pursue goals that are similar
to ours. The work of [5] addresses monitoring of a distributed bus-based system, based on a Petri
Net specification. Since only the bus activity is monitored, there is no need for instrumentation
of the system. The authors of [16] also consider only input/output behavior of the system. In
our opinion, instrumentation of key points in the system allows us to detect violations faster and
more reliably, without sacrificing too much performance. The test automation approach of [14]
is also targeted towards monitoring of black-box systems without resorting to instrumentation.
Additionally, we aim at using the MaC framework beyond testing, during real system executions.
Sankar and Mandel have developed a methodology to continuously monitor an executing Ada
program for specification consistency [15]. T he user manually annotates an Ada program with
constructs from ANNA, a formal specification language. Mok and Liu [12] proposed an approach

2

for monitoring the violation of timing constraints written in the specification language based on
Real-time Logic as early as possible with low-overhead. The framework proposed in this paper
does not limit itself to any particular kind of monitored properties. In [lo], an elaborate language
for specification of monitored events based on relational algebra is proposed. Similarly to our
approach, the authors try to minimize effects of instrumentation on run-time performance, and to
reduce the instrumentation cost through automated instrumentation. Their goal, however, goes
beyond run-time monitoring. For our purposes, a simpler and easier to interpret event description
language of MaC appears to be more appropriate.

The paper is organized as follows. Section 2 presents an overview of the framework. Section 3
informally presents the language for monitoring scripts and requirements specifications. Section 4
briefly overviews a prototype implementation of the MaC framework as well as the current future
plans. More complete and formal treatment of the MaC framework is given in [9].

2 Overview of the MaC Framework

The MaC framework aims at run-time assurance monitoring of real-time systems. The structure of
the framework is shown in Figure 1. The framework includes two main phases: (1) before the system
is run, its implementation and requirement specification are used to generate run-time monitoring
components; (2) during system execution, information about the running system is collected and
matched against the requirements.

implementation
(JAVA) MEDL. . \

V

> event run-time*
low-level recognizer checker
activities

Figure 1: Overview of the Mac framework

A major task during the first phase (indicated by clear boxes in Figure 1) is to provide a mapping
between high-level events used in the requirement specification and low-level state information
extracted during execution. They are related explicitly by means of a monitoring script. The
monitoring script describes how events at the requirements level are defined in terms of monitored
states of an implementation. For example, in a gate controller of a railroad crossing system, the
requirements may be expressed in terms of the event train-in-crossing. The implementation, on
the other hand, stores the train’s position with respect to the crossing in a variable train-position.
The monitoring script in this case can define the event as condition train-position < 800. The
language of monitoring script (described in Section 3) has limited expressive power in order to
ensure fast recognition of events.

3

The monitoring script is used to generate a jilter and an event recognizer automatically. The
filter instruments the implementation to extract the necessary state information at run-time. The
event recognizer receives state information from the filter and determines the occurrences of event
according to the event definition in the script. Also, a run-time checker is generated from the
formal requirements. The requirement specification uses events defined in the monitoring script.

During the run-time phase (shaded boxes in Figure l), the instrumented implementation is
executed while being monitored and checked against the requirements specification. The filter
sends relevant state information to the event recognizer, which determines the occurrence of events.
These events are then relayed to the run-time checker to check adherence to the requirements.

Filter. A filter is a set of program fragments that are inserted into the implementation to instru-
ment the system. The essential functionality of a filter is to keep track of changes to monitored
objects and send pertinent state information to the event recognizer. Instrumentation is performed
directly on the executable code (bytecode, in the case of Java). Instrumentation is automatic,
which is made possible by the low-level description in the monitoring script.

Event Recognizer. The event recognizer is the part of the monitor that detects an event from
values of monitored variables received from the filter. Events are cognized according to a monitor-
ing script (written in PEDL) and recognized events are sent to the run-time checker. Each event is
supplied with a timestamp that can be used in checking real-time properties. Events may addition-
ally have associated numerical values to facilitate program checking by the monitor. Although it is
conceivable to combine the event recognizer with the filter, we chose to separate them to provide
flexibility in an implementation of the framework.

Run-time Checker. The run-time checker determines whether or not the current execution
history satisfies the given requirements (written MEDL). The execution history is captured from
a sequence of events sent by the event recognizer. The checker can handle behavioral as well as
numerical requirements. The latter can be analyzed using the technique of program checking. It
may seem that the detection of a requirement violation at run-time is too late for recovery. This,
however, is not necessarily true. A monitored property may represent a potentially dangerous
condition that needs an attention from a human operator, which is the function that the run-time
checker provides.

3 The MaC Language

In this section, we give a brief overview of the languages used to describe what to observe in the
program and the requirements the program must satisfy. The scripts written in these languages are
then used to automatically generate the event recognizer and the run-time checker, respectively.

The language for monitoring scripts is called PEDL (Primitive Event Definition Language,
Section 3.4). PEDL scripts are used to define what information is sent from the filter to the event
recognizer, and how they are transformed into requirements-level events by the event recognizer.
Requirement specifications are written in MEDL (Meta Event Definition Language, Section 3.5).
The primary reason for having two separate languages in the monitoring framework is to separate
implementation-specific details of monitoring from requirements specification. This separation
ensures that the framework is scalable to different implementation languages and specification

4

Formally Specified Monitoring of Temporal Properties*

Moonjoo Kim, Mahesh Viswanathan,
Hanene Ben-Abdallahi Sampath Kannan, Insup Lee, and Oleg Sokolskyt

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104

Abstract

We describe the Monitoring and Checking (Mac)
framework which provides assurance on the correct-
ness of an execution of a real-time system at run-
time. Monitoring is performed based on a formal
specification of system requirements. Mac bridges
the gap between formal specification, which analyzes
designs rather than implementations, and testing,
which validates implementations but lacks formal-
ity. An important aspect of the framework is a
clear separation between implementation-dependent
description of monitored objects and high-level re-
quirements specification. Another salient feature is
automatic instrumentation of executable code.

The paper presents an overview of the framework,
languages to express monitoring scripts and require-
ments, and a prototype implementation of MaC tar-
geted at systems implemented in Java.

1 Introduction

Real-time systems often arise in the area of em-
bedded and safety-critical applications. Depend-
ability of such systems is the utmost concern to their
developers. Much research in the past two decades
concentrated on methods for analysis and validation
of real-time systems. Important results have been
achieved, in particular, in the area of formal verifi-
cation [4]. Formal methods of system analysis allow
developers to specify their systems using mathemat-
ical formalisms and prove properties of these spec-
ifications. These formal proofs increase confidence
in correctness of the system’s behavior.

Still, complete formal verification has not yet be-
come a prevalent method of analysis. The reasons
for this are twofold. First, full verification of real-

life systems remains infeasible. The growth of soft-
ware size and complexity seems to exceed advances
in verification technology. Second, verification re-
sults apply not to system implementations, but to
formal specifications of these systems. Construction
of such specifications is usually a manual and error-
prone process. Separate methods are needed, then,
to verify compliance of the system implementation
to its formal specification. Testing, on the other
hand, allows one to validate the system implemen-
tation directly. However, testing results lack the
rigor of formal analysis and usually do not provide
guarantees of absence of errors in the implementa-
tion.

Consequently, whichever analysis approach has
been taken to validate a real-time system, there ex-
ists a possibility of incorrect behavior during the
execution of the system. Run-time monitoring and
checking strives to address this problem.

Computer systems are often monitored for per-
formance evaluation and enhancement [lo], debug-
ging and testing [14], and to control or check of sys-
tem correctness [18]. Recently, the problem of de-
signing monitors to check for the correctness of sys-
tem implementation has received increased atten-
tion from the research community [3, 15, 16, 13, 171.
Such monitors can be used to detect violations of
timing [13] or logical [3] properties of a program,
constraints on language constructs [15], and so on.

In this paper, we describe a framework of moni-
toring and checking a running system with the aim
of ensuring that it is running correctly with respect
to a formal requirements specification. The use
of formal methods is the salient aspect of our ap-
proach. We concentrate on the following two issues:
(1) how to map high-level abstract events that are
used in requirement specification to low-level activi-
ties of a running system, and (2) how to instrument
the code to extract and detect necessary low-level

1

activities. We assume that both requirement spec-
ifications and the system implementation are avail-
able to us.

The major phases of the framework are as fol-
lows: (1) system requirements are formalized; at
the same time, a monitoring script is constructed,
which is used to instrument the code and establish a
mapping from low-level information into high-level
events; (2) at run-time, events generated by the
instrumented system are monitored for compliance
with the requirements specification. The run-time
monitoring and checking (Mac) architecture con-
sists of three components: jilter, event recognizer,
and run-time checker. The filter extracts low-level
information (such as values of program variables
and time when variables change their values) from
the instrumented code. The filter sends this in-
formation to the event recognizer, which converts
it into high-level events and conditions and passes
them to the run-time checker.

Each event delivered to the checker has a times-
tamp, which reflects the actual time of the occur-
rence of the event. This enables us to monitor real-
time properties of the system. Timestamps are as-
signed to events by the event recognizer based on
the clock readings provided by the filter. The run-
time checker checks the correctness of the system
execution thus far according to a requirements spec-
ification of the system, based on the information it
receives from the event recognizer, and on the past
history. The checker can combine monitoring of be-
havioral correctness of the system control flow with
program checking [2] for numerical computations.
This integrated approach is a unique feature of the
proposed framework.

The current prototype implementation of the
MaC architecture, monitors systems written in
Java. Instrumentation is performed automatically,
directly in JAVA bytecode. A language called
MEDL, based on a linear temporal logic, is used to
describe the formal requirements. Other formal lan-
guages can be readily used to specify requirements.

Related work. The “behavioral abstraction” ap-
proach to monitoring was pioneered by Bates and
Wileden [l]. Although their approach lacked formal
foundation, it provided an impetus for future de-
velopments. Several other approaches pursue goals
that are similar to ours. The work of [5] addresses
monitoring of a distributed bus-based system, based
on a Petri Net specification. Since only the bus
activity is monitored, there is no need for instru-
mentation of the system. The authors of [16] also

consider only input/output behavior of the system.
In our opinion, instrumentation of key points in
the system allows us to detect violations faster and
more reliably, without sacrificing too much perfor-
mance. The test automation approach of [14] is also
targeted towards monitoring of black-box systems
without resorting to instrumentation. Additionally,
we aim at using the MaC framework beyond testing,
during real system executions. Sankar and Man-
de1 have developed a methodology to continuously
monitor an executing Ada program for specification
consistency [15]. The user manually annotates an
Ada program with constructs from ANNA, a for-
mal specification language. Mok and Liu [13] pro-
posed an approach for monitoring the violation of
timing constraints written in the specification lan-
guage based on Real-time Logic as early as possi-
ble with low-overhead. The framework proposed
in this paper does not limit itself to any particu-
lar kind of monitored properties. In [lo], an elabo-
rate language for specification of monitored events
based on relational algebra is proposed. Instrumen-
tation of high-level source code is provided auto-
matically. Collected data are stored in a database.
Since the instrumentation code performs database
queries, instrumentation can significantly alter the
performance of a program.

The paper is organized as follows. Section 2
presents an overview of the framework. Section 3
informally presents the language for monitoring
scripts and requirements specifications. Section 4
describes a prototype implementation of the MaC
framework. More complete and formal treatment of
MaC is given in [9].

2 Overview of the MaC Framework

The MaC framework aims at run-time assurance
monitoring of real-time systems. The structure of
the framework is shown in Figure 1. The framework
includes two main phases: (1) before the system is
run, its implementation and requirement specifica-
tion are used to generate run-time monitoring com-
ponents; (2) during system execution, information
about the running system is collected and matched
against the requirements.

A major task during the first phase (indicated
by clear boxes in Figure 1) is to provide a map-
ping between high-level events used in the require-
ment specification, and low-level state information
extracted during execution. They are related ex-
plicitly by means of a monitoring script. The

2

-Monitored Variable Declaration
- Monitored Method Declaration

- Event Definition

- Functional Specification

using JTREK library)

Legend

Input/Output 0 Process h Dependency A Run-time communication

Figure 1. Overview of the MaC framework

monitoring script describes how events at the re-
quirements level are defined in terms of monitored
states of an implementation. For example, in a
gate controller of a railroad crossing system, the re-
quirements may be expressed in terms of the event
train-in-crossing. The implementation, on the
other hand, stores the train’s position with respect
to the crossing in a variable train-position. The
monitoring script in this case can define the event
as condition train-position < 800. The language
of monitoring scripts event recognizer (described in
Section 3) has limited expressive power in order to
ensure fast recognition of events.

The monitoring script is used to generate a fil-
ter and an event recognizer automatically. The fil-
ter instruments the implementation to extract the
necessary state information at run-time. The event
recognizer receives state information from the filter
and determines the occurrences of events according
to their definition in the script. Also during the
first phase, the system requirements are formalized,
and a run-time checker is produced from the formal
requirements. The requirement specification uses
events defined in the monitoring script.

During the run-time phase (shaded boxes in Fig-
ure l), the instrumented implementation is executed
while being monitored and checked against the re-
quirements specification. The filter sends relevant
state information to the event recognizer, which de-
termines the occurrence of events. These events are
then relayed to the run-time checker to check ad-
herence to the requirements.

Filter. A filter is a set of program fragments
that are inserted into the implementation to instru-
ment the system. The essential functionality of a fil-
ter is to keep track of changes to monitored objects
and send pertinent state information to the event
recognizer. Instrumentation is performed statically
directly on the executable code (bytecode, in the
case of Java). Instrumentation is automatic, which
is made possible by the low-level description in the
monitoring script.

Event recognizer. The event recognizer is the
part of the monitor that detects an event from val-
ues of monitored variables received from the fil-
ter according to the monitoring script. Recognized
events are delivered to the run-time checker. Each
event is supplied with a timestamp that can be used
in checking real-time properties. Events may addi-
tionally have associated numerical values to facili-
tate program checking by the monitor.

While it is conceivable to merge the event recog-
nizer with the filter, we chose to separate the two
modules. The separation allows us to remove the
overhead of abstracting out events from the low-
level information. This reduces interference of the
monitor with the monitored system’s execution. On
the other hand, communication overhead incurred
by sending changes in the monitored data from the
filter to the event recognizer increases, but it applies
only to the off-line processing of the monitored in-
formation and is therefore more acceptable. An ad-
ditional advantage of the chosen design is a clear
separation of monitoring activity from the system

3

Mac: A Framework for Run-time Correctness Assurance of

Real-Time Systems *

Moonjoo Kim, Mahesh Viswanathan

‘Hanene Ben-Abdallahi Sampath Kannan, Insup Lee, and Oleg Sokolsky

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA

January 29, 1999

*This research was supported in part by NSF CCR-9619910, AFOSR F49620-95-l-0508, AR0 D.4AG55-

98-l-0393, AR0 DAAG55-98-1-0466, and ONR N00014-97-1-0505 (MURI)

+Visiting from DCpartement d’Informatique, FSEG, Universitk de Sfax, Tunisia

/ 1

Abstract

We describe the Monitoring and Checking (Mac) framework which provides assur-

ance on the correctness of program execution at run-time. Our approach complements

the two traditional approaches for ensuring that a system is correct, namely static analy-

sis and testing. Unlike these approaches, which try to ensure that all possible executions

of the system are correct, our approach concentrates on the correctness of the current

execution of the system.

The MaC architecture consists of three components: a filter, an event recognizer,

and a run-time checker. The filter extracts low-level information, e.g., values of program

variables and function calls, from the system code, and sends it to the event recognizer.

From this low-level information, the event recognizer detects the occurrence of “ab-

stract” requirements-level events, and informs the run-time checker about them. The

run-time checker uses these events to check that the current system execution conforms

to the formal requirements specification of the system.

This paper overviews our current prototype implementation, which uses JAVA as

the implementation language and our Monitoring Script language as the requirements

language.

2

1 Introduction

We develop a framework for run-time monitoring of correctness of real-time systems based

on a formal specification of system requirements. Computer systems are often monitored

for performance evaluation and enhancement, debugging and testing, control or check of

system correctness [Sch95]. Recently, the problem of designing monitors to check for the

correctness of system implementation has received increased attention from the research

community [CG92, SM93, ML97, Sch98]. Such monitors can be used to detect violations

of timing [ML97], a logical property of a program [CG92], a constraint on a language

construct [SM93], and so on.

The reason for increased interest in correctness monitors is that it is becoming more

difficult to test or verify software because software size is increasing and its functionality

is becoming more complicated. The most common way to validate a software system is

testing. However, testing cannot be used to guarantee that the system is error-free, since

it is infeasible to completely test the entire system due to the large number of possible

behaviors. Also, as the functionality and structure of software becomes complex in order to

satisfy a broad range of needs, testing itself needs to be sophisticated enough to check the

program according to diverse criteria. For example, for testing a numerical computation, it

is enough to check output with given input. However, when we test a real-time application

like traffic control system, we also have to check the timing behavior.

Formal verfication has been used to increase the confidence that a system will be correct

by making sure that a design specification is correct. However, even if a design has been

formally verified, it still does not ensure the correctness of an implementation of the design.

This is because the implementation often is much more detailed, and may not strictly follow

the formal design. So, there are possibilities for introduction of errors into an implementa-

tion of a design that has been verified. One way to overcome this gap between the design

and the implementation is to resort to testing the implementation’s behavior on a set of

5

input sequences derived from the specification. This approach, however, suffers from the

same drawback as testing in general and does not provide guarantees about the correctness

of the implementation on all possible input sequences. Consequently, we cannot guarantee,

using the two traditional methods prior to the execution of the system, that its run-time

behavior will be correct. Therefore, the approach of continuously monitoring a running

system has received much attention.

In this paper, we describe a framework of monitoring and checking a running system

with the aim of ensuring that it is running correctly. The salient aspect of our approach

is the use of formal requirements specification to decide what properties to assure. Since

our goal is to check an implementation against requirements specification at run-time, we

assume that we are given both requirement specifications and an implementation. To be

able to monitor satisfaction of requirements, we have to correlate low-level observations with

high-level notions used in the requirements specification. Therefore, the primary concern

of our presentation are the following two issues:

l how to map high-level abstract events that are used in a requirement specification to

low-level activities of a running system

l how to instrument code to extract necessary low-level activities.

The framework consists of the three phases: the design phase, the implementation and

instrumentation phase, and the run-time phase. During the design phase, the requirements

on the system are specified. Optionally, a formal system specification may also be writ-

ten down and in this case we assume that verification is done to ensure that the system

specification satisfies the requirements. During the implementation phase the system is

implemented. Based on the requirements specification and the implementation, the user

provides a monitoring script that contains instructions for instrumenting the code so that

low-level information about program state can be passed on to the monitor. In addition, it

6

Graphical Cornrnunicating Shared Resources:
a Language for Specifying and Analyzing Real-The

Sys tem

Han&ne Ben-Abdallah Insup Lee
Eleckical and Computer Engineering Computer and Information Science

Universit)y of Wat’erloo University of Pennsylvania
Wat8erloo, ON N2L 3Gl Philadelphia, PA 19104

hanene&wen.uwat8erloo.ca lee&entral.cis.upenn.edu

January 199i’

Abstract

We present Gra,phical Communicating Shared Resources, GCSR, a formal language
for the specification and analysis of real-time systems, including their functional, tem-
poral and resource requirements. GCSR supports the explicit representation of system
resources and priorities to arbitrate resource contentions. These features allow a de-
signer to examine resource inherent constraints and to experiment with various resource
allocations and scheduling disciplines in order to produce a more dependable specifica-
tion. In a.ddition, GCSR differs from other graphical languages through its well-defined
notions of modularity and hierarchy: dependencies between system components, ex-
pressed as communication events, can have a limited scope of visibility, and control
flow between components is clearly represented as either an interrupt. or exception!
i.e., voluntary release of control. Further, GCSR has a precise operational semantics
and notions of equivalence that allow the execution and formal analysis of a specifica-
tion. We present the GCSR language, its toolset, and how properties, e.g., safety can
be analyzed within GCSR.

Keywords- Design specification, executable specifications, graphical languages,
process algebra, real-time systems, requirements specification.

1

Contents
1 Introduction 3

2 An overview
2.1 GCSR Nodes and Edges .
2.2 Example .
2.3 Informal Semantics .

3 GCSR Semantics
13.1 GCSR Syntax .
3.2 The GCSR Semantics via ACSR .

3.2.1 ACSR .
i3.2.2 Translations between GCSR and ACSR

13.2.3 Soundness and Efficiency of the Translations

4 The Toolset PARAGON
4.1 The VERSA4 Interfaces .
3.2 The GCSR Interface .

5 The Production Cell Example
5.1 24 Design for the Product,ion Cell
5.2 Design Analysis .

. . . .

. . . .

. . . .

. . . .

. . . .

4
. . 5
. . 6
. . 7

8
. . 9
. . 10
. . 10
. . 11
. . 14

15
. . 15
. . 16

17
. . 18
. . 24

6 Related Work 29
6.1 Graphical Languages . 29
6.2 The Production Cell . 30

7 Summary and Future Outlook 31

A Operational Semantics Rules of ACSR 35

2

1 Introduction
The timed behavior of a real-time system is affected not only by the time its components take
to execute and synchronize, but also by delays introduced due to the scheduling of tasks that
compete for shared resources. Most current real-time formalisms adequately capture delays
due to component synchronization, e.g., Statecharts [lo], Modechart [181, Communicating
Real-time State Machine [32], and timed extensions of the classic untimed process algebras
CSP and CCS [S, 15, 25, 35, 271. Th ese formalisms, however, abstract out resource-specific
details. This motivated the Communicating Shared Resources (CSR) paradigm [19, 211 to
provide a formalism where the run-time resource requirements of a real-time system can be
specified together with its functional and temporal requirements. The integration of the three
types of requirements allows designers to consider resource-induced constraints early in the
development cycle, explore alternate resource allocations, and to eliminate unimplementable
design alterna.tives wit,hout expensive prototyping.

Within the CSR paradigm, the t\lgebra of Communicating Shared Resources (ACSR,) [19]
and the Graphical Communicating Shared Resources (GCSR) [4, l] have been developed.
ACSR is a t,imed process a,lgebra and GCSR is a graphical language. The novelty of these
formalisms rela.tive to existing real-time formalisms is their representation of resources and
priority. Without an explicit notion of resources, the specification of resource-bound systems
requires that some artificia,l means be used to model resource requirements. such as defining
processes to represent resources. Models that lack explicit priorities require that a proc.ess be
crea,ted for the sole purpose of arbitrating priorities and implementing preemption. Providing
explicit nobions of resources and priority within the CSR formalisms results in specifications
that are close analogues of the systems they model and tha,t are easier to modify to reflect
different. resource a.llocations and priority-based scheduling disciplines.

In this paper, we present’ the GCSR language and its toolset PARAGON. The develop-
ment of GCSR has several motivations. One, as mentioned earlier, is to provide a formalism
where the three types of requirements for real-time systems can be formally modeled and rig-
orously analyzed. Another motivation is to provide a pair of graphical and textual languages
with a common semantics. This gives the software engineer the flexibility to mix both types
of specifications. From our experience, the graphical notation better describes the high-level
view of a system along with the interactions and dependencies between its various compo-
nents. On the other hand, the textual notation concisely describes the details of components.
VVe t,herefore ensured that both GCSR and ACSR have common semantics, which in turn
made GCSR benefit from the process algebraic analysis techniques [al]: execution, testing,
state space exploration, and automated equivalence checking. These analysis techniques are
used to verify whether a GCSR design of a system satisfies its requirements. In addition,
t’he equivalence relations of ACSR allows a designer to restructure a GCSR specification,
e.g., minimize its size, without affecting its behavior. The congruence equivalence relations
of ACSR allows a designer to replace one specification with an equivalent one inside a larger
system. This in turn makes modular specification and verification possible within the GCSR
formalism.

3

A third motivation for GCSR is to support the modular, hierarchical and thus scalable
specifications of real-time systems. The graphical syntax of GCSR adopts the intuitive
notions of edges and nodes in control flow diagrams and provides various types of node and
edge for scalability. In part’icular, the visibility scope of communication events, which are
used to describe dependencies between components, can be limited inside node boundaries.
Further, GCSR disallows edges from crossing node boundaries and offers instead two types of
edges that graphically distinguish two t’ypes of control exits from inside a node: via interrupt
versus exception, i.e., voluntary release of control.

The PARAGON toolset has been vital in our experiments with the expressiveness of
GCSR a.nd ACSR, as well as in our evaluation of the benefits of integrating the resource
requirements with the functional and bemporal requirements. We used PARAGON to model
and analyze several case studies, e.g., the production cell [23, I], scheduling problems [3, 61,
a.vionic applications [4, 21, and various versions of the railroa,d crossing system benchmark [14,
1. 211. In t)his paper, we illustrate the GCSR language and analysis techniques a,pplied
to part,s of t,he product,ion cell case study. This example represents a. realistic, industrial
real-time applica.tion, where safety requirements are essential. Whether or not these safety
requirements are satisfied can be shown by the a,pplication of a formal method. For t.his
applicat,ion, t,he GCSR modularit,y allowed us to model distinctively the two main agent,s
in t,he system: the environment (i.e., the cell’s physical machines) and the software syst,em
(i.e., softwa.re controllers) [36]. The graphical syntax of GCSR facilita.ted the visualization
of t,he system components and their resource and communication dependencies. In addition,
t.he explicit specification of resources allowed us to express in a natural way the violations of
sa.fety requirements pertinent to system resources. Further, the analysis techniques provided
within the CSR paradigm were suita.ble for verifying that our solution sat’isfies all of the
requirement,s.

Paper organization. The next section overviews the GCSR language. Section 3 defines
the GCSR syntax and semantics. Section 4 describes the PARAGON toolset. Section 5
informally describes the production cell as reported in [23] and presents parts of our de-
sign solution and analysis in GCSR. Section 6 reviews relevant’ work. Finally, Section 7
summarizes the main features of GCSR. a,nd outlines future research.

2 An overview
The GCSR paradigm is based on the view that a real-time system consists of a set of
communicating components, called processes, that execute on a finite set of serial resources
and synchronize with one another through communication channels. The use of shared
resources is represented by timed actions, and synchronization is supported by instantaneous
events. The execution of an action takes nonzero time units with respect to a global clock,
a.nd consumes a set of resources during that time. The execution of an action is subject to
the availability of the resources it uses. Contention for resources is arbitrated according to

4

Parametric Approach to the Specification and Analysis of Real-time
System Designs based on ACSR-VP *

Hee-Hwan Kwak, Insup Lee, and Oleg Sokolsky
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA

lee@cis.upenn.edu, {heekwak,sokolsky}@saul.cis.upenn.edu

July 19, 1999

Abstract

To engineer reliable real-time systems, it is desirable to discover timing anomalies early in the development process. How-
ever, there is little work addressing the problem of accurately predicting timing properties of real-time systems before im-
plementations are developed. This paper describes an approach to the specification and analysis of scheduling problems of
real-time systems. The method is based on ACSR-VP, which is an extension of ACSR, a real-time process algebra, with
value-passing capabilities. Combined with the existing features of ACSR for representing time, synchronization and resource
requirements, ACSR-VP can be used to describe an instance of a scheduling problem as a process that has parameters of the
problem as free variables. The specification is analyzed by means of a symbolic algorithm. The outcome of the analysis is a set
of equations and a solution to which yields the values of the parameters that make the system schedulable. These equations can
be solved using integer programming or constraint logic programming. The paper presents the theory of ACSR-VP briefly and
an example of the period assignment problem for rate-monotonic scheduling. We also explain our current tool implementation
effort and plan for incorporating it into the existing toolset, PARAGON.

1 Introduction
The desire to automate or incorporate intelligent controllers into control systems has lead to rapid growth in the demand for
real-time software systems. Moreover, these systems are becoming increasingly complex and require careful design analysis
to ensure reliability before implementation. Recently, there has been much work on formal methods for the specification and
analysis of real-time systems [8, 121. Most of the work assumes that various real-time systems attributes, such as execution
time, release time, priorities, etc., are fixed a priori and the goal is to determine whether a system with all these known attributes
would meet required safety properties. One example of safety property is schedulability analysis; that is, to determine whether
or not a given set of real-time tasks under a particular scheduling discipline can meet all of its timing constraints.

The pioneering work by Liu and Layland [171 derives schedulability conditions for rate-monotonic scheduling and earliest-
deadline-first scheduling. Since then, much work on schedulability analysis has been done which includes various extensions
of these results [11, 28, 25, 4, 26, 22, 18, 31. Each of these extensions expands the applicability of schedulability analysis to
real-time task models with different assumptions. In particular, there has been much advance in scheduling theory to address
uncertain nature of timing attributes at the design phase of a real-time system. This problem is complicated because it is not
sufficient to consider the worst case timing values for schedulability analysis. For example, scheduling anomalies can occur
even when there is only one processor and jobs have variable execution times and are nonpreemptable. Also for preemptable
jobs with one processor, scheduling anomalies can occur when jobs have arbitrary release times and share resources. These
scheduling anomalies make the problem of validating a priority-driven system difficult. Clearly, exhaustive simulation or testing
is not practical in general except for small systems of practical interest. There have been many different heuristics developed
to solve some of these general schedulability analysis problems. However, each algorithm is problem specific and thus when a
problem is modified, one has to develop new heuristics.

*This research was supported in part by AR0 DAAG55-98- l-0393, AR0 DAAGSS-9% I-0466, AFOSR F49620-96. I-0204, NSF CCR-96 199 IO, and ONR
NOOO14-97-I-0505.

r ,
Symbolic

-) Weak
Bisimulation

J

Figure 1: Overview of the Framework

In this paper, we describe a framework that allows one to model scheduling analysis problems with variable release and
execution times, relative timing constraints, precedence relations, dynamic priorities, multiprocessors etc. Our approach is
based on ACSR-VP and symbolic bisimulation algorithm.

ACSR (Algebra of Communicating Shared Resources) [141, is a discrete real-time process algebra. ACSR has several
notions, such as resources, static priorities, exceptions, and interrupts, which are essential in modeling real-time systems.
ACSR-VP is an extension of ACSR with value-passing and parameterized processes to be able to model real-time systems
with variable timing attributes and dynamic priorities. In addition, symbolic bisimulation for ACSR-VP has been defined.
ACSR-VP without symbolic bisimulation has been applied to the simple schedulabihty analysis problem [5], by assuming that
all parameters are ground, i.e., constants. However, it is not possible to use the technique described in [5] to solve the general
schedulabihty analysis problem with unknown timing parameters.

Figure 1 shows the overall structure of our approach. We specify a real-time system with unknown timing or priority
parameters in ACSR-VP. For the schedulability analysis of the specified system, we check symbolically whether or not it is
bisimilar to a process idling forever. The result is a set of predicate equations, which can be solved using widely available
linear-programming or constraint-programming techniques. The solution to the set of equations identifies, if exists, under what
values of unknown parameters the system becomes schedulable. To support the effective use of the the symbolic ACSR-VP
analysis, we are developing a tool and planning to integrate into PARAGON [27], a toolset with graphical interface to support
the use of ACSR.

The rest of the paper is organized as follows. Sections 2 overviews the theory of the underlying formal method, ACSR-
VP, and introduce symbolic bisimulation for ACSR-VP expressions. Section 3 gives a specification of a scheduling problem,
namely the period assignnzerrr problem and illustrates how to analyze an instances of this problem. Section 4 briefly describes
the PARAGON toolset and its support for value-passing specifications, and outlines the incorporation of ACSR-VP into the
toolset. We conclude with a summary and an outline of future work in Section 5.

2 ACSR-VP
ACSR-VP extends the process algebra ACSR [141 by allowing values to be communicated along communication channels. In
this section we present ACSR-VP concentrating on its value-passing capabilities. We refer to the above papers for additional
information on ACSR.

We assume a set of variables X ranged over by 2, y, a set of values V ranged over by ‘u, and a set of labels L ranged over
by c, d. Moreover, we assume a set Ezpr of expressions (which includes arithmetic expressions) and we let BEzpr c Expr
be the subset containing boolean expressions. We let e and b range over Expr and BExpr respectively, and we write Z for a
tuple zt , . . z, of syntactic entities.

ACSR-VP has two types of actions: instantaneous communication and timed resource access. Access to resources and
communication channels is governed by priorities. A priority expression p is attached to every communication event and
resource access. A partial order on the set of events and actions, the preemption relation, allows one to model preemption of
lower-priority activities by higher-priority ones.

Instantaneous actions, called events, provide the basic synchronization and communication primitives in the process algebra.
An event is denoted as a pair (i, eP) representing execution of action i at priority ep, where i ranges over 7, the idle action,
c?x, the input action, and c!e, the output action. We use VE to denote the domain of events and let X range over events. We
use I(X) and X(X) to represent the label and priority, respectively, of the event /\; e.g., l((c!x,p)) = c! and l((c?x,p)) = c?.
To model resource access, we assume that a system contains a finite set of serially-reusable resources drawn from some set
R. An action that consumes one tick of time is drawn from the domain P(R x Expr) with the restriction that each resource
is represented at most once. For example the singleton action {(r, er)} denotes the use of some resource r E R at priority

level ep. The action 0 represents idling for one unit of time, since no resource is consumed. We let DR to denote the domain
of timed actions with A, B, to range over DR. We define p(A) to be the set of the resources used by action A, for example
P({(n,Pl), (7-2,P2))) = {rt, r-2). We also use rT(A) to denote the priority level of the use of the resource r in the action
A; e.g., ~p,({(~1,~1),(~21~2)}) = ~1, and write 7rT(A) = 0 if r # p(A). The entire domain of actions is denoted by
V = VR U DE, and we let (Y, ,0 range over D. We let P, Q range over ACSR-VP processes and we assume a set of process
constants ranged over by C. The following grammar describes the syntax of ACSR-VP processes:

P : : = NILIA:P(X.PIP+PIPjIPI
b -+ P I P\F I [P]I I W’).

In the input-prefixed process (c?x, e).P the occurrences of variable x is bound. We write fv(P) for the set of free variables of
P. Each agent constant C has an associated definition C(Z) dgf P where fv(P) C Z and Z are pairwise distinct. We note that
in an input prefix (c?x, e).P, e should not contain the bound variable x, although x may occur in P.

An informal explanation of ACSR-VP constructs follows: The process NIL represents the inactive process. There are two
prefix operators, corresponding to the two types of actions. The first, A : P, executes a resource-consuming action during the
first time unit and proceeds to process P. On the other hand X. P, executes the instantaneous event X and proceeds to P. The
process P + Q represents a nondeterministic choice between the two summands. The process PIIQ describes the concurrent
composition of P and Q: the component processes may proceed independently or interact with one another while executing
instantaneous events, and they synchronize on timed actions. Process b + P represents the conditional process: it performs as
P if boolean expression b evaluates to true and as NIL otherwise. In P\F, where F c L, the scope of labels in F is restricted
to process P: components of P may use these labels to interact with one another but not with P’s environment. The construct
[PII, I C R, produces a process that reserves the use of resources in I for itself, extending every action 4 in P with resources
in I - ~(~4) at priority 0.

The semantics of ACSR-VP processes may be provided as a labeled transition system, similarly to that of ACSR. It ad-
ditionally makes use of the following ideas: Process (c!ei, es).P transmits the value obtained by evaluating expression el
along channel c, with priority the value of expression e2, and then behaves like P. Process (c?x,p).P receives a value ‘u from
communication channel c and then behaves like P[u/x], that is P with v substituted for variable x. In the concurrent composi-
tion (c?x,pl).Pl jI(c!v,p2).Pz, the two components of the parallel composition may synchronize with each other on channel c
resulting in the transmission of value Y and producing an event (T, pl + ~2).

2.1 Unprioritized Symbolic Graphs with Assignment

Consider the simple ACSR-VP process P ‘gf (in?x, l).(out!x, l).IvIL that receives a value along channel in and then outputs
it on channel out, and where x ranges over integers. According to traditional methods for providing semantic models for
concurrent processes, using transition graphs, process P in infinite branching, as it can engage in the transition (in?n, 1) for
every integer n. As a result standard techniques for analysis and verification cannot be applied to such processes.

Several approaches have been proposed to deal with this problem for various subclasses of value-passing processes [9, 16,
20, 131. One of these advocates the use of symbafic semantics for providing finite representations of value-passing processes.
This is achieved by taking a more conceptual view of value-passing than the one employed above. More specifically consider
again process P. A description of its behavior can be sufficiently captured by exactly two actions: an input of an integer
followed by the ouput of this integer. Based on this idea the notion of symbolic transition graphs [9] and transition graphs with
assignment [161 were proposed and shown to capture a considerable class of processes.

In this section we present symbolic graphs with assignment for ACSR-VP processes. As it is not the intention of the paper
to present in detail the process-calculus theory of this work, we only give an overview of the model and we refer to [131 for a
complete discussion.

2.2 Symbolic Graph with Assignment

The notion of a substitution, which we also call assignment, is defined as follows. A substitution is any function 8 : X -+
Expr, such that 0(x) # x for a finite number of x E X. Given a substitution 0, the support (or domain) of 0 is the set of
variables D(0) = {x I a(x) # x}. A substitution whose support is empty is called the identity substitution, and is denoted by
Id. When ID(= 1, we use [0(x)/x] for the substitution 0. Given two substitutions 0 and o, the composition of 0 and ~7 is
the substitution denoted by 8; ~7 such that for every variable x, 0; cr(x) = g(d(x)). We often write Ba for 8; 0.

An SGA is a rooted directed graph where each node R has an associated finite set of free variables fv(n) and each edge is
labeled by a guarded action with assignment [16, 231. Note that a node in SGA is a ACSR-VP term.

Definition 2.1 (SGA) A Symbolic Graph with Assignment (SGA) for ACSR-VP is a rooted directed graph where each node n
has an associated ACSR-VP term and each edge is labeled by boolean, action, assignment, (b, cr, 0). 0

- -

(1) a,P true,uJd P 0 z (C?Y>P) (2)
(C?Y,P).P

tp”e.(c~~.{y:=z)
P

2 is a fresh variable

-
(3) a.C(l7)

f?“e,*:=iq c(~) 0 z (C?Y> P)

(5)
p b.-,,8 p!

b[J,l],a[t7,l 8;{i ‘J}
b---b P’

C(Z) d2f P
cm

(6)
p b.-.,B p’ p b.-.,8 p’

c b& p’
c d&f p (7)

b’ ~ p bAti. p’

(8)

p b,-.,B p’

(9)

p b.-,,8 p’

P+Qb&*Pt Q + P*C%@P’

(10)
p y&e p’

P\F =+’ P’\F kf,$ F (11)
p b&e p’

P\F “C%‘P’\F

(12)
p b.x.,8 p’

(1 3)
p -l&* p’

[PII *.X.p [P’][
AZ = {(T,O) (T E I - I}

[PII b.ap$yz,s [p’],

bl.A1.01 by+@2 I
(14) ‘:,,,‘;;‘,b/&$,“,, Q pC.41) n p(A) = 0

P’ II&’

(1 5)
p b.a.i;=< p,

b.a.i.&=8.C p,,,Q fv(Q) = {a} (16)
p b,q.z+=; p,

PIIQ QIIP
b.a,i~=Z.i

QIIP’
WQ) = IS3

b ,(c?l.el),81

(17) p 1 - p’ Q
h(c’~3L~2 ,

z @ fv(P) u fv(Q)

PllQ blAbz,(r,e*+e3).(Blu~z),{z =e21
H P’IIQ’

Figure 2: Rules for constructing Symbolic Graphs with Assignment

Given an ACSR-VP term, a SGA can be generated using the rules in Figure 2. Transition P be P’ denotes that given
the truth of boolean expression 6, P can evolve to P’ by performing actions cy and putting into effect the assignment 8. The
interpretation of these rules is straightforward and we explain them by an example: Consider the following process. Process
P(0) can output the sequence of events a!0 infinitely many times.

P (x) def (a!~, l).Q(x)

Q(Y) ‘2~~ (Y 5 0) -+ (a!~, ~).Q(Y + 1)
+ (y > 0) + (a!y - l,l).Q(y - 1)

Following SGA represents the process P(0).

Symbolic Weak Bisimulation for
Value-passing Calculi *

Hee-Hwan Kwak, Jin-Young Choit, Insup Lee, Anna Philippou
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104

{heekwak,annap}@saul.cis.upenn.edu, lee@cis.upenn.edu
1 Department of Computer Science and Engineering

Korea University, Seoul, Korea
choi@formal.korea.ac.kr

Abstract

Bisimulation equivalence has proved to be a useful notion for providing semantics to
process calculi, and it has been an object of rigorous study within the concurrency theory
community. Recently there have been significant efforts for extending bisimulation techniques
to encompass process calculi that allow the communication of data, that is value-passing cal-
culi. -4 main challenge in achieving this has been the fact that in value-passing processes,
where the values are from an infinite domain, checking for process equivalence involves com-
paring an infinite number of behaviors. Central among work in this area is the approach
in which a new notion of process semantics, namely symbolic semantics, is proposed as a
means of expressing a class of value-passing processes as finite graphs, although their tra-
ditional underlying graphs are infinite. This paper presents new algorithms for computing
symbolic weak bisimulation for value-passing processes. These algorithms are built on the
basis of a new formulation of late weak bisimulation which we propose. Unlike the traditional
definition, this formulation allows the use of a single symbolic weak transition relation for
expressing both early and late bisimulations. In addition to being easy to implement, our
algorithms highlight the distinction between early and late weak bisimulations. Furthermore,
we propose a simple variation of symbolic transition graphs with assignment proposed by
Lin, in which the order of assignments and actions in transitions is exchanged. We believe
that the resulting graphs are easier to construct and more intuitive to understand.

*This research was supported in part by NSF CCR-9415346, NSF CCR-9619910, AFOSR F49620-95-1-0508,
AR0 DAAH04-95-l-0092, and ONR N00014-97-1-0505.

1 Introduction

Bisimulation equivalence [4] has proved to be a useful notion for providing semantics to process
calculi, and it has been an object of rigorous study within the concurrency theory community.
As a result, today the theory of bisimulation is well understood within the context of traditional
process calculi such as CCS, and efficient bisimulation-checking algorithms exist that enable its
automatic checking.

Recently there have been significant efforts for extending bisimulation techniques to encom-
pass process calculi that allow the communication of data, that is value-passing calculi [4, 5, 31.
A main challenge in achieving this has been the fact that in value-passing processes, where
the values are from an infinite domain, checking for process equivalence involves comparing an
infinite number of behaviors. A substantial body of work has concentrated on addressing this
challenge and several approaches have been proposed for establishing bisimulation for classes
of value-passing processes. Central among them is the approach proposed by [l] where a new
notion of process semantics, namely symbolic semantics, is proposed as a means of expressing
a class of value-passing processes as finite graphs, although their traditional underlying graphs
are infinite. Strong bisimulation equivalence was redefined at this level and algorithms for de-
ciding it were presented. The class of processes that can be described by finite symbolic graphs
was extended in [3], which generalized the notion of symbolic transition graphs by allowing
assignments to take place in transitions, yielding symbolic transition graphs with assignment,
STGA’s in short, and the theory was appropriately extended. We refer to these papers for a
detailed exposition. In this setting, bisimulation for symbolic transition graphs is defined in
terms of relations parametrized on boolean expressions, of the form pb, where p =b q if and only
if, for each interpretation satisfying boolean b, p and q are bisimilar in the traditional notion.
Furthermore, algorithms were presented for computing these equivalences. In particular, given
two closed processes whose symbolic transition graphs are finite, the algorithm constructs a
predicate equation system that corresponds to the most general condition for the two processes
to be bisimilar.

An additional particularity of value-passing processes is the existence of more than one way
for providing their semantics: as noted and investigated in the context of the 7r-calculus [5], a
process-calculus where names, or channels are passed as objects of interaction among processes,
there are two ways of interpreting input actions. These are often referred to as early and late
semantics, which distinguish on the time when the receipt of a value takes place during an input
transition. Each of these semantics, gives rise to the corresponding bisimulation equivalence, and
it turns out that late bisimulation is strictly finer than early bisimulation. The work of [l, 3] deals
with both of these equivalences. We should also mention that a similar approach for deciding
strong early bisimulation was independently presented in [7] and we refer to these papers for
further discussion of research in this field.

This line of work has been the main motivation of this paper, our aim being to extend
reasoning about SGA’s to handle weak behavioral relations. Definitions of such relations were
provided in [6] in the context of the 7r-calculus and in [8] for value-passing CCS, the latter
including symbolic variants. To the best of our knowledge, work involving these equicalences
has mainly focused on their characterization [9].

The main contributions of this paper can be summarized as follows: First we develop and
present algorithms for computing weak bisimulation for value-passing processes, corresponding
to finite SGA’s. Secondly, we study in some detail the distinction between early weak and late
weak bisimulations. We observe that a close relationship can be established between the two

I

and we present a new formulation of the late weak bisimulation definition that brings forward
a new treatment of late bisimulation as a special case of early bisimulation. We use the new
formulations as a basis for constructing our algorithms. An advantage of this approach is
that the resulting algorithms follow easily from the definitions and the algorithm for late weak
bisimulation is a simple extension of the early weak bisimulation one. As in the case of strong
bisimulations, our algorithms produce logical formulas that capture the most general condition
for two processes to be weakly bisimilar. Finally, in this paper we propose a simple variation
of the SGA’s proposed in [3], in which the order of assignments and actions in transitions is
exchanged. We believe that the resulting graphs are easier to construct and more intuitive to
understand. This is discussed in detail in Section 2. Similar graphs are also employed in [7],
although no rules were defined for their construction in that paper.

In this paper we focus on value-passing CCS, which we refer to as CCS-VP, as a vehicle
of presenting our results. However, the approach is applicable to other value-passing process
calculi.

The rest of the paper is organized as follows: In the next section we present some background
material on value-passing CCS and we define rules for constructing SGA’s. In Section 3, we pro-
ceed to consider how operational semantics and ground bisimulations can be defined for SGA’s.
In Section 4, we define weak symbolic bisimulations and in Section 5 we present algorithms
for computing them. We conclude with a summary and some final remarks in Section 6. An
appendix contains the proof of a main result.

2 Symbolic Graph with Assignment for CCS-VP

The syntax of value-passing CCS is similar to that of CCS. The difference is that values may be
passed along communication channels, and assigned to variables. We assume a set of variables
X and let Z, y range over X. A process P with free variables 2 = ~1, . . . ,z, is denoted as P(Z).
Furthermore, we use ‘u for value constants ranging over some set V, e for value expressions
ranging over some set Expr (including for example arithmetic expressions), and b for boolean
expressions ranging over some set BExpr, with Expr > BExpr. We denote a vector of value
variables and value expressions as Z and e’, respectively. Also, we assume a set of labels L and
we use c to denote labels and F to represent subsets of L. Furthermore, we use C, X to stand
for process constants. The following grammar describes the syntax of CCS-VP processes:

P ::= NIL] a.P] P + P] P]]P] b + P 1 P\F 1 C
. . -a ..- 7 1 c?x 1 c!e

c ::= x 1 X(z)

For each process constant X, we assume a declaration of the form X(Z) dzf P where the free
variables of P all occur in Z. We use Act = {c?x, c!e] c E L} U {r} to denote the domain of
actions, and we let cy, /? range over Act. We use Z(o) to represent the label of action cu; e.g.,
I(c!e) = c! and 1(c?x) = c?. Lastly, given a process P, we write fw(P) for the free variables
occurring in P which are defined in the usual way, that is fv(c!e.P) = fu(e) U f,(P) and
fv(c?x.P) = f,(P) - {x}.

2.1 Symbolic Transition System

The Symbolic Graph with Assignment (SGA) we propose here has been used in [7]. However,
no rules to construct the SGA were presented in that paper. In this Section, we introduce rules
to construct the SGA from CCS-VP terms.

The notion of a substitution, which we also call assignment, is defined as follows. A sub-
stitution is any function 8: X --+ Expr, such that O(x) # x for a finite number of x E X. Given
a substitution 19, the support (or domain) of 8 is the set of variables D(O) = {x IO(x) # x}. A
substitution whose support is empty is called the identity substitution, and is denoted by Id.
When ID(O)/ = 1 , we use [0(x)/x] for the substitution 0. Given two substitutions 0 and u,
the composition of 0 and u is the substitution denoted by 0; 0 such that for every variable x,
13; a(x) = u(O(x)). 6b for 0; fl.

An SGA is a rooted directed graph where each node n has an associated finite set of free
variables fv(n) and each edge is labeled by a guarded action with assignment [3, 81. Note that a
node in SGA is a CCS-VP term. Furthermore, we use U to denote the empty action the purpose
of which is explained later.

Definition 2.1 (SGA) A Symbolic Graph with Assignment (SGA) for CCS-VP is a rooted
directed graph where each node n has an associated CCS-VP term and each edge is labeled by
boolean, action, assignment, (b, Q, 0) or by boolean, the empty action and assignment, (b, LJ, 19).
III

-
(1) Cl.P truFs,‘d

C(eJ b* C
P (2)

cr.C(z) bA0 c

-
(3)

p bae p/

C(e3
true*:=8 C C(Z) err P (4) c b&O p, C(Z) d&f P

(6)
p b,a,,B p,

(7)
p b,a,,e p,

P + QbdP’ Q + Pb,“,gP’

(8)
p b&o p,

P\F b,a,,B P’\F lC(i,; F

(9)
p b,at=’ p,

PIIQ b>a@+=“,G’ p,,,Q b(Q) = Kl (10)

p b,a,.E=” p,

QIIP
b,a,S&=e?,<

QIIP’
b(Q) = {y’

(11)

p h&+/l p’ bz+-&% I

J’IIQ Wbz>c(@~z);l=:=e) p,,,Q, 2 @ f,(P) u b(Q)

Figure 1: Rules to construct Symbolic Graph with Assignment

Given an CCS-VP term, a SGA can be generated using the rules in Figure 1. Note that
the purpose of action LI is to decorate transitions that involve no action, but are nonetheless

3

Part III

Result Checking

Tug”kan Batu, Ronitt Rubinfeld, and Patrick White: “Fast Approximate
PCPs for Multidimensional Bin-Packing Problems”, in the Proceedings of
the Third International Workshop on Randomization and Approximation
Techniques in Computer Science ~ APPROX-RANDOM’99 (D. Hochbaum,
K. Jansen, J.P.D. Rolim, and A. Sinclair editors), pp. 2455256, Springer-
Verlag LNCS 1671, Berkeley, CA, August 1999.

Full paper: http://www.cs.cornell.edu/Info/People/batu/m.ps

Tug”kan Batu, Ronitt Rubinfeld, and Patrick White: “Runtime Verification
of Remotely Executed Code using Probabilistically Checkable Proof Sys-
terns”, in the Proceedings of the Workshop on Run-Time Result Verification
~ RTRV’99, Trento, Italy, July 1999.

Full paper: http: //www.cs.cornell.edu/Info/People/batu/r.ps

Funda Erg&, S. Ravi Kumar, and Ronitt Rubinfeld: “Fast approximate
PCPs”, in the Proceedings of the 31st ACM Symposium on Theory of Com-
puting - STOC’99, pp. 41-50, ACM Press, Atlanta, GA, l-4 May 1999

Full paper: http://simon.cs.cornell.edu/Info/People/ronitt/PAP/ap.ps

Funda Ergtin, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Ma-
hesh Viswanathan: “Spot-Checkers”, to appear in the Journal of Computer
and System Sciences, special issue on STOC’98.

Full paper: http : //theory. stanf ord. edu/muri/funda2. ps

S. Ravi Kumar and Ronitt Rubinfeld: “Property Testing of Abelian Group
Operations”, manuscript.

Full paper: http : //simon.cs.cornell.edu/Info/People/ronitt/PAP/co~.ps

Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan:
“Streaming Algorithms for Distributed, Massive Data Sets”, manuscript.

Full paper: ftp://ftp.cis.upeM.edu/pub/papers/kannan/SICOMP.ps.Z

Fast Approximate PCPs for Multidimensional
Bin-Packing Problems *

Tugkan Batu’, Ronitt Rubinfeld’**, and Patrick White’

Department of Computer Science, Cornell University, Ithaca, NY 14850
{ b a t u , r o n i t t , w h i t e } @ c s . c o r n e l l . e d u

Abstract. We consider approximate PCPs for multidimensional bin-packing prob-
lems. In particular, we show how a verifier can be quickly convinced that a set of
multidimensional blocks can be packed into a small number of bins. The running
time of the verifier is bounded by 0(2’(n)), where T(n) is the time required to
test for heaviness. We give heaviness testers that can test heaviness of an ele-
ment in the domain [l, , nld in time O((log n)d). We also also give approxi-
mate PCPs with efficient verifiers for recursive bin packing and multidimensional
routing.

1 Introduction

Consider a scenario in which the optimal solution to a very large combinatorial opti-
mization problem is desired by a powerful corporation. The corporation hires an in-
dependent contractor to actually find the solution. The corporation then would like to
trust that the value of the solution is feasible, but might not care about the structure
of the solution itself. In particular they would like to have a quick and simple test that
checks if the contractor has a good solution by only inspecting a very small portion of
the solution itself. Two hypothetical situations in which this might occur are:

- A major corporation wants to fund an international communications network. Data
exists for a long history of broadcasts made over currently used networks, including
bandwidth, duration, and integrity of all links attempted. The corporation wants to
ensure that the new network is powerful enough to handle one hundred times the
existing load.

- The services of a trucking company are needed by an (e-)mail-order company to
handle all shipping orders, which involves moving large numbers of of boxes be-
tween several locations. The mail-order company wants to ensure that the trucking
company has sufficient resources to handle the orders.

In both cases, large amounts of typical data are presented to the consulting company,
which determines whether or not the load can be handled. The probabilistically checkable-
proof (PCP) techniques (cf. [3,4,1]) offer ways of verifying such solutions quickly. In

* This work was partially supported by ONR N00014-97-l-0505, MURI, NSF Career grant
CCR-9624552, and an Alfred P. Sloan Research Award.The third author was supported in part
by an ASSERT grant.

** Part of this work was done while on sabbatical at IBM Almaden Research Center

these protocols a proof is written down which a verifier can trust by inspecting only
a constant number of bits of the proof. The PCP model offers efficient mechanisms
for verifying any computation performed in NEXP with an efficient verifier. We note
that the verifiers in the PCP results all require L’(n) time. Approximate PCPs were in-
troduced in [7] for the case when the input data is very large, and even linear time is
prohibitive for the verifier. Fast approximate PCPs allow a verifier to ensure that the an-
swer to the optimization problem is at least almost correct. Approximate PCPs running
in logarithmic or even constant time have been presented in [7] for several combina-
torial problems. For example, a proof can be written in such a way as to convince a
constant time verifier that there exists a bin-packing which packs a given set of objects
into a small number of bins. Other examples include proofs which show the existence of
a large flow, a large matching, or a large cut in a graph to a verifier that runs in sublinear
time.

Our Results. We consider approximate PCPs for multidimensional bin packing. In par-
ticular, we show how a verifier can be quickly convinced that a set of multidimensional
objects can be packed into a small number of bins. We also consider the related prob-
lems of recursive bin packing and multidimensional routing. Our results generalize the
1 -dimensional bin packing results of [7]. The PCPs are more intricate in higher dimen-
sions; for example, the placements and orientations of the blocks within the bin must
be considered more carefully. In the l-dimensional case, the approximate PCP of [7]
makes use of a property called heaviness of an element in a list, introduced by [6]. Es-
sentially, heaviness is defined so that testing if an element is heavy can be done very
efficiently (logarithmic) in the size of the list and such that all heavy elements in the
list are in monotone increasing order. We generalize this notion to the multidimensional
case and give heaviness tests which determine the heaviness of a point z E [l, . , n]”
in time 0((2 10gn)~). Then, given a heaviness tester which runs in time T(n), we show
how to construct an approximate PCP for binpacking in which the running time of the
verifier is O(T(n)).

In [9], multidimensional monotonicity testers are given which pass functions f that
are monotone and fail functions f if no way of changing the value off at at most e frac-
tion of the inputs will turn f into a monotone function. The query complexity of their
tester is d(&n2r) where f is a function from [r~]~ to [r]. Our multidimensional heavi-
ness tester can also be used to construct a multidimensional monotonicity tester which
runs in time O(T(n)). However, more recently Dodis et. al. [5] have given monotonic-
ity testers that greatly improve on our running times for dimension greater than 2, and
are as efficient as ours for dimension 2. This gives hope that more efficient heaviness
testers in higher dimensions can also be found.

2 Preliminaries

Notation. We use the notation x CR s to indicate x is chosen uniformly and at random
from the set S. The notation [n] indicates the interval [l, . . . , n].

We define a partial ordering relation 4 over integer lattices such that if x and y are
d-tuples then x 4 y if and only if zi 5 yi for all i E { 1, . . . , d}. Consider a function

f : Vd -+ 72, where Vd is a d-dimensional lattice. If x, y E Dd are such that x + y
then if f(x) I f(y) we say that x and y are in monotone order. We say f is monotone
if for all x, y E Vd such that x < y. x and y are in monotone order.

Approximate PCP The approximate PCP model is introduced in [7]. The verifier has
access to a written proof, 17, which it can query in order to determine whether the
theorem it is proving is close to correct. More specifically, if on input x, the prover
claims f(x) = y, then the verifier wants to know if y is close to f(x).

Definition 1. [7] Let a(.;) 6e a distance function. A function f is said to have a
t(e, n)-approximate probabilistically checkable proof system with distance function n
if there is a randomized verifier V with oracle access to the words of a proof 17 such
that for all inputs E, and x of size n, the following holds. Let y be the contents of the
output tape, then:

I. rfA(y,f(x)) = 0, there is a proo$ 17, such that V” outputs puss with probubilitl),
at least 3/4 (over the internal coin tosses of V);

2. If A(y, f(x)) > E, for all proofs II’, VU’ outputs fail with probubilig at least 3/4
(over the internal coin tosses of V); and

3. V runs in O(t(c, n)) time.

The probabilistically checkable proof protocol can be repeated O(lg l/6) times to get
confidence > 1 - 6. We occasionally describe the verifier’s protocol as an interaction
with a prover. In this interpretation, it is assumed that the prover is bound by a function
which is fixed before the protocol begins. It is known that this model is equivalent to
the PCP model [8]. The verifier is a RAM machine which can read a word in one step.

We refer to PCP using the distance function n(y, f(x)) = max{O, 1 - f(x)/y}as
an approximate lower bound PCP : if f(x) > y then 17 causes V” to pass; if f(x) <
(1 - e)y then no proof 17’ convinces V”’ with high probability. This distance function
applied to our bin-packing protocol will show that if a prover claims to be able to pack
all of the n input objects, the verifier can trust that at least (1 - e)n of the objects can
be packed.

It also follows from considerations in [7] that the protocols we give can be em-
ployed to prove the existence of suboptimal solutions. In particular, if the prover knows
a solution of value ‘u, it can prove the existence of a solution of value at least (1 - 6)~.
Since ‘u is not necessarily the optimal solution, these protocols can be used to trust the
computation of approximation algorithms to the NP-complete problems we treat. This
is a useful observation since the prover may not have computational powers outside
of deterministic polynomial time, but might employ very good heuristics. In addition,
since the prover is much more powerful than V it may use its computational abilities to
get surprisingly good, yet not necessarily optimal, solutions.

Heaviness Testing. Our methods all rely on the ability to define an appropriate heuvi-
ness property of a function f. In the multidimensional case, heaviness is defined so that
testing if a domain element is heavy can be done very efficiently in the size of the do-
main, and such that all heavy elements in the domain which are comparable according
to 4 are in monotone order.

We give a simple motivating example of a heaviness test for d = 1 from [6]. This
one-dimensional problem can be viewed as the problem of testing whether a list L =
(f(l), f(2)>. . . if(n))IS mostly sorted. Here we assume that the list contains distinct
elements (a similar test covers the nondistinct case). Consider the following for testing
whether such a list L is mostly sorted: pick a point x E L uniformly and at random.
Perform a binary search on L for the value x. If the search finds x then we call x heavy.
It is simple to see that if two points x and y are heavy according to this definition,
then they are in correct sorted order (since they are each comparable to their common
ancestor in the search tree). The definition of a heaviness property is generalized in this
paper. We can call a property a heaviness property if it implies that points with that
property are in monotone order.

Definition 2. Given a domain D = [l, . . . , nld, a function f : D -+ R and a proper-Q
H, we suy that H is a heaviness property if

1. Vx < y H(x) A H(y) implies f(x) < f(y)
2. In a monotone list all points have proper9 H

If a point has a heaviness property H then we say that point is heavy. There may be
many properties which can be tested of points of a domain which are valid heaviness
properties. A challenge of designing heaviness tests is to find properties which can
be tested efficiently. A heaviness test is a probabilistic procedure which decides the
heaviness property with high probability. If a point is not heavy, it should fail this test
with high probability, and if a function is perfectly monotone, then every point should
pass. Yet it is possible that a function is not monotone, but a tested point is actually
heavy. In this case the test may either pass or fail.

Definition 3. Let V, = [l, . . . , n]” b e a domain, and let f : 2) + ‘R be a function on
D. Let S(., .) be a randomized decision procedure on V. Given securit>’ parameter 6,
we will say S is a heaviness test for x if

I. Iffor all x 4 y, f(x) 5 f(y) then S(x, S) = Pass
2. ~fx is not heavy then Pr(S(x, 6) = Fail) > 1 - S

The heaviness tests we consider enforce, among other properties, local multidimen-
sional monotonicity of certain functions computed by the prover. It turns out that mul-
tidimensional heaviness testing is more involved that the one dimensional version con-
sidered in earlier works, and raises a number of interesting questions.

Our results on testing bin-packing solutions are valid for any heaviness property,
and require only a constant number of applications of a heaviness test. We give sample
heaviness properties and their corresponding tests in Section 4, yet it is an open question
whether heaviness properties with more efficient heaviness tests exist. Such tests would
immediately improve the efficiency of our approximate PCP verifier for bin-packing.

Permutation Enforcement. Suppose the values of a function f are given for inputs in [n]
in the form of a list ~1, . . . , yn. Suppose further that the prover would like to convince
the verifier that the yi’s are distinct, or at least that there are (1 - ~)n. distinct yi’s. In
[7], the following method is suggested: The prover writes array A of length n. A(j)

Runtime Verification of Remotely Executed Code using Probabilistically
Checkable Proof Systems *

Tugkan Batut Ronitt Rubinfeldt Patrick Whites

Abstract

In this paper we consider the verification and certification of computations that are done remotely. We in-
vestigate the use of probabilistically checkable proof (PCP) systems for efficiently certifying such computations.
This model can also be applied to verifying security proofs of software downloads. To make the use of PCPs
more’practical, a new version of Cook’s Theorem is given for the RAM model: that is, we show that a correct
computation of a RAM can be encoded as a satisfiable boolean formula.We use this result to show that the
implementations of PCPs no longer need to be based on a description of the desired computation in terms of a
Turing machine program.

1 Introduction

Remote execution of code is an attractive alternative to local execution, when powerful computing resources are
available on a network such as the Internet. Yet the recipient of the result of a remote calculation needs to be
able to trust that the answer computed is in fact correct. For example, one may be looking for the member in a
combinatorial structure which is minimal under some function, such as the optimal tour of a graph, or might like
to know that a certain boolean formula is unsatisfiable. Proving the correctness of a proposed answer to each can
be performed by a simple exhaustive search, of all feasible tours in the former case, and all valid truth assignments
in the second. Both lists are exponentially longer than the input to the problem, and hence than the length of the
answer which is being transferred from the powerful computer. Certainly this type of verification is much too costly
to be feasible. We consider the approach of applying probabilistically checkable proof systems (PCPs), which allow
interactions between a simple and efficient verifying machine and a computationally powerful prover. PCPs provide
a general mechanism by which verifier can, in approximately log T steps, trust the result of a computation requiring
T time steps. This takes care of the exponential blow up in our above examples, reducing the time complexity to
essentially that of reading the input. In fact, this model is advantageous in any situation in which the computation to
be performed takes longer than reading the input. Thus it is even beneficial to use networked computing resources
for solving quadratic time problems. Moreover, we can use this model to check the validity of a result without caring
about how it is obtained, for example, verifying a satisfying assignment regardless of the process which produced it.

In this paper we consider a model in which a powerful untrusted machine can convince the user that the result of
a computation is correct by applying PCP technology. Note that although conceptually the PCP protocols are quite
intricate and their correctness is difficult to prove, the actual algorithms employed are not terribly complex. Nonethe-
less, one unpleasant complication is that all known constructions of PCPs require a description of the computation

*This work was partially supported by ONR NOOO14-97-1-0505, MURI, NSF Career grant CCR-9624552, and an Alfred P. Sloan Research
Award.

+Department of Computer Science, Cornell University, Ithaca, NY 14850. email: batu@cs _ Cornell _ edu.
rDepartment of Computer Science, Cornell University, Ithaca, NY 14850. email: ronittecs . Cornell. edu. Part of this work was

done while on sabbatical at IBM Almaden Research Center.
§Department of Computer Science, Come11 University, Ithaca, NY 14850. email: whi te@cs . Cornell . edu.

1

2

to be performed in the form of a Turing machine computation. Cook’s Theorem is then applied to transform the
computation into a satisfiable CNF formula. We instead show how to generate a CNF formula directly from a RAM
(random access machine) description, thereby bypassing the need for a Turing Machine description. Even though it
is a well-known fact that the RAM and Turing Machine models are equivalent, using the RAM model in this setting
proves to be more practical because of the lack of a compiler from any random access model to Turing Machine
model. From this point, the PCP protocol can continue unaltered. As a result we redescribe the PCP theorems in
terms of a RAM model, which can quite easily be generated by a compiler from a modem high level language, such
as C or ML.

1.1 The Model

We assume a computationally bounded user (“Verifier” or “V”) is interacting with a very powerful, untrusted com-
puter (“Prover” or “P”) over a remote network. There are two specific models we consider. In the first, the Prover
is to execute some program A4 on input z such that both V and P have access to < M, x > . Assume that M’s
computation time is T and that T is prohibitively large for the verifier. The prover generates a PCP proof to con-
vince the verifier that &l was executed correctly. It is the surprising result of [ALM+98] based on a long series of
papers [LFKN90, BFL91, BFLS90, FGL+96, AS981 that the proof can be written in such a way that V can trust its
correctness after inspecting only a constant number of locations in this proof. We use this machinery directly in our
first model, which is depicted in Figure 1, in which the prover computes and writes down the proof. The verifier
then determines which bits of the proof it wants to see, and the prover transmits these bits to V over the network.
In previous PCP results it is assumed that fif is given as a Turing machine. In this paper we show that M may be
directly encoded as a RAM.

Figure 1: The Basic Model

The second model is an application to secure software download, which has been suggested previously by
[DKL+]. V would like to download code (e.g. Netscape) and be convinced that the program has a certain property
(e.g. this code will not crash). The first model can be specialized and extended to describe this type of interaction.
The Prover provides a Certificate of a desired property along with a program. We do not care how the certificate
is computed, but we expect that the certificate is so much larger than the code that downloading it is undesirable.
The certificate may be very difficult to generate, yet it should be reasonably easy to deterministically certify its
correctness. We now assume that both the Prover and Verifier have access to an agreed upon and relatively simple
Certifier, which takes the program code and the certificate as input and accepts or rejects the certificate in time T.

3

(The Certifier is here playing the role of M in the first model. The copy of the program is playing the role of z).
Without using PCPs, V would have to download the certificate and run the certifier on the certificate. Since the
certificate can be large V can instead apply PCP techniques. The verifier spends 0(1x1 + log T) steps, where T is
the number of steps required to run the certifier. To facilitate this, we again assume the certifier is compiled to RAM
code. Using the same techniques as above, P runs the certifier M to check the certificate, and then encodes the run
of M as a PCP proof. Now the Verifier acts exactly as in the first model, querying the proof in just a few locations
to determine that the certificate is valid. This model is depicted in Figure 2.

As an example of how this model could be used, we will integrate the Proof-Carrying Code (PCC) technique
([NL96]) into our framework. In a PCC system, the code producer, which would be the prover in our model,
provides a formal safety proof for a predefined safety policy. This safety proof will act as the certificate in our
model. The certifier from our model will be replaced by the proof validator of the PCC system. This proof validator
is a reasonably simple program which could be trusted by the code consumer (verifier). At this point, instead of
uploading the whole certificate (safety proof) as it would in the PCC system, the code producer will produce and
commit to the proof of the certificate being accepted by the certifier as described above. The proof validator is the
part of the system that will be encoded as a RAM. The bandwidth of the communication will be reduced drastically
as a result.

Proof Commitment One requirement of the PCP protocols is that the proof be written down by the prover and
remain unchanged throughout the interaction of the prover and verifier. There are many ways in which the verifier
can trust the proof remains unchanged (without downloading the proof). One possibility is to use a trusted third
party: P transmits the proof to this third party, and the verifier interacts with the third party assuming that it has no
reason to change the proof. Alternatively, one can force P to commit to the proof by using cryptographic techniques
of [Mer90], as suggested by [Kil92] (also employed in CS proofs [Mic94] and the work of [DKL+]). This latter
scheme introduces only a logarithmic overhead to the running time of the verifier. We assume one of these schemes
is employed in what follows.

Figure 2: The Verification Model

High level overview of the PCP protocols The various PCP protocols described in the literature share a similar
high level outline. To begin, a nondeterministic Turing Machine M is given, along with an input z of length n.
The Turing Machine decides z, running in T(n) steps. A prover turns the computation history of M into a 3CNF

4

formula which is satisfiable if and only if M really accepts x. This formula is then transformed into a multivariate
polynomial F whose zeros correspond in a one-one fashion to satisfying assignments of the 3CNF formula. The
prover finds a value 2 such that F(Z) = 0, and then encodes this value in a special form. The vector Z is so long
that the verifier does not have time to even look at all of it. However, the encoded version of the proof provided by
the prover enables the verifier to look at a small number of locations, verify some consistency properties, and if the
verifications pass trust that F(Z) = 0 in O(n + log(T)) time. From the existence of a zero, the verifier concludes
that the 3CNF is satisfiable, and thus that M accepted 5.

For our purposes, the version of PCP which is most applicable is a result of [BFLS90] which states the verifi-
cation process in a theorem-proof model. For us the theorem is “This program has property Q,” or “This program
returns result z”, and the proof is the certificate.

Theorem 1 (BFLSI) A theorem-proof pair < T, P > can be probabilistically verified in time 0(ITI + log 1 PI).

Note that the number of locations that the verifier looks at the in proof can be made constant ([PSI) but the total
communication overhead is still logarithmic, since the verifier needs to specify the addresses of the locations.

1.2 Our Results

The primary contribution of this paper is a direct reformulation of Cook’s Theorem and hence the PCP character-
izations of NEXPtime and NP in terms of RAMS instead of Turing Machines. Although it is known that RAMS
and Turing machines are equivalent in power (cf. [Papa]), we show that a direct application of Cook’s Theorem
for RAMS is cleanly expressible and easily implemented. This makes it plausible that PCP technology can be em-
ployed in an algorithmic setting for realizing computational speed-ups, since it is no longer required that a Turing
Machine be constructed to execute the program in question. The work of [BFLS90] shows that the machine M
can be characterized in terms of Kolmogorov-Uspenskii machines.But again this would require that the prover
implement A!f in terms of a Kolmogorov-Uspenskii machine, or have a compiler from a random access model to the
Kolmogorov-Uspenskii model.

Next, we show how this technology can be applied in the setting of runtime result verification. The model we
give is quite general and can be applied to the verification of any property which can be computed in nondeterministic
exponential time. This question has also been considered in [Mic94, DKL+, FN].

2 Encoding a RAM by a Boolean Formula

2.1 The RAM model

A RAM as described in Papadimitriou [Papa] is a computing device which has direct (i.e. one-step) access to an
unlimited number of registers (~1, . . . ri, . . .}, each of which can contain an arbitrarily long positive or negative
integer. For our purposes, we will assume instead that these registers are space bounded and the largest location
used is S(n) which is a parameter of the machine. The input to a RAM is a tape containing a list (~1, x2, x,} of
integers, also with random one-step access. The result of a RAM computation is the contents of register 0 after the
computation has completed. The RAM program itself is a sequence II = (7rr,7r2, n,) of any of the instructions
given in Figure 3. Note that other desirable primitive operations, such as mult, div, push, pop, etc. can be easily
simulated by the given operations, or added directly to the language in a way which will be clear from the exposition.

2.2 The Encoding

A correct computation of a RAM will be encoded as a satisfiable boolean formula. Each instruction of the RAM
program is translated into a boolean sentence which will be quantified over all time steps of the execution of the

‘This version depends on a linear time encoding of the theorem, due to [Spi96].

Fast approximate PCPs *

Funda Ergiint Ravi Kumar: Ronitt Rubinfelds

Abstract

We investigate the problem of when a prover can aid a veri-
fier to reliably compute a function fusrer than if the verifier
were to compute the function on its own. We focus on the
case when it is enough for the verifier to know that the an-
swer is close to correct. We use a model of proof systems
which is based on interactive proof systems, probabilistically
checkable proof systems, program checkers, and CS proofs.
We develop protocols for several optimization problems, in
which the running time of the verifier is significantly less
than the size of the input. For example, we give polylogarith-
mic time protocols for showing the existence of a large cut, a
large matching and a small bin packing. In contrast, the pro-
tocols used to show that IP = PSPACE, MIP = NEXP and
NP = PCP(lgn, 1) [Sha90, BFLBI, ALM+98, BITS901 re-
quire a verifier that runs in n(n) time. In the process, we
develop a set of tools for use in constructing these proof sys-
tems.

1 Introduction

Consider the following scenario: A client sends a compu-
tational request to a “consulting” company on the internet,
by specifying an input and a computational problem to be
solved. The company then computes the answer and sends
it back to the client. This scenario is of interest whenever a
prover can help a client reliably find the answer to a function

*This work was partially supported by ONR NOOO14-97-1-0505, MURI.
NSF Career grant CCR-9624552, and an Alfred P. Sloan Research Award.

f Bell Laboratories, 700 Mountain Avenue, Murray Hill, NJ 07974.
ema~:ergun~research.bell-labs.com

:IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95 120.
email: ravi@almaden.ibm.com

BDepartment of Computer Science, Cornell University, Ithaca. NY
14890. email: ronitt@cs . cornell edu. Currently on sabbatical
leave at IBM Almaden Research Center.

faster than the client could compute the function on its own,
or whenever the client does not possess the code required
to solve the computational problem. An obvious issue that
arises, especially in the case that the company does not have
a well established reputation, is: why should the client be-
lieve the answer to be correct? In this paper, we consider the
case when it is enough for the client to know that the answer
is close to correct. We show that for a number of interesting
functions, a very short dialogue between the client (the veri-
fier) and the company (the prover) can convince the client of
the approximate correctness of the answer. In particular, we
give examples in which the verifier can be convinced in time
sublinear in the input size.

This scenario motivates an investigation of highly effi-
cient proof systems for spec$c computational problems, even
when the problems are known to be solvable in polynomial
time. Our focus is on finding the best implementations of
such proof systems in terms of the running time of the ver-
ifier. It is known that IP = PSPACE, MIP = NEXP,
NP = PCP(lgn, 1) [LFKN90, Sha90, BFL91, ALM+98].
From the work of [BFLS90] and [Spi96], it is possible to
construct proof systems for any proof in a reasonable for-
mal system with an O(n + lg!)-time verifier, where n is the
length of the theorem and e is the length of the proof. Thus
we have a good understanding of the set of problems for
which it is feasible to find proof systems in which the verifier
is efficient and the communication between the prover and
verifier is limited. Note that the protocols in the aforemen-
tioned results all require that the verifier look at the whole
input, and thus do not give sublinear time protocols.

The model we consider, described in Section 2, is based
on the models of IP [GMR89], PCP [FRS94], and CS proofs
[Mic94], with modifications borrowed from the models of
program checking [BK95], approximate program checking
[GLR+91], property testing [RS96, GGR98] and spot-checking
[EKK+98].

OUR RESULTS. We begin by considering problems that
return approximations of optimal solutions for combinato-
rial optimization problems. We give efficient proof systems
for proving good lower bounds on the solution quality to

constraint satisfaction problems, including max cut and max
SAT, to a polylogarithmic time verifier. We show how to
prove the existence of a near optimal solution of a sparse
fractional packing problem to a polylogarithmic time veri-
fier. Our fractional packing protocol can be used for several
other problems. For example, we show that it is possible to
prove the existence of a large flow, a large matching, or a
small bin packing in such a way that the verifier need only
spend time nearly linear in the number of vertices (which
is sublinear for graphs that are not sparse) in the first case
and polylogarithmic time in the latter cases. The size of the
proof is nearly linear in the size of the solution to the corre-
sponding search problem and can be computed efficiently by
the prover. In all of the above protocols it is also possible to
prove the existence of suboptimal solutions, i.e., if the prover
knows of a solution of value V, it can prove the existence of
a solution of value at least (1 - E)V. We next investigate
methods of proving additive approximations of bounds on
the sizes of .unions and intersections of several sets such that
the verifier requires only logarithmic time. One application
of such protocols is to estimating the size of unions or in-
tersections of several database queries. Finally, we consider
spot-checking and property testing and show that more ef-
ficient results for testing bipartiteness and element distinct-
ness can be achieved with the aid of a prover.

We develop a new set of tools for use in constructing
these proof systems. For example, we give constant time
protocols for estimating lower bounds on the size of a set
and for estimating lower bounds on sums of n inputs. We
develop a constraint enforcement protocol which allows the
verifier to ensure that linear upper bound constraints are sat-
isfied without looking at all of the variables involved. Some
of our techniques rely on simplifications of the methods of
[GS86, For891 by which a prover can convince a verifier that
a set is of approximately a certain size.

2 The model

Interactive proof systems (IPS) [GMR89] and probabilisti-
tally checkable proof systems (PCPS) [FRS94] (equivalent
in power to multiple prover proof systems [BGKW88], see
also [FGL+96, AS98, BFLS901) can be used to convince
a polynomial time verifier of the correctness of a decision
problem computation. Definitions of IP which parametrize
the runtime of the verifier appear in [Con91, FL93]. CS
proofs [Mic94] extend the model in several ways: by ap-
plying more generally to function computations as well as
problems above NEXP; and by restricting the runtime of
the prover.

Program result checking [BK95] and self-testing/correcting
techniques [BLR93, Lip911 were introduced so that a client
could ensure the correctness of a solution to a computation.
Program result checkers can be viewed as a special type of
proof system for function computations, in which the prover
is restricted to answering other instances of the same com-

putational problem. It turns out that all result checkers as
well as result checkers in the library setting [BLR93] satisfy
the requirements of the model used here.

Proving that results are approximately correct is also re-
lated to approximate checking [GLR+91], property testing
[RS96, GGR98], and spot-checking [EKK+98], where the
goal is to determine whether an answer is close to correct
for various notions of closeness. All approximate checkers
satisfy the requirement of the model here. Conversely, all of
our results can be viewed as spot-checkers which use the aid
of a prover.

The model we use is based on the above models and in
particular: applies to function computations and decision,
optimization, approximation, and search problems; allows
the prover to prove the weaker assertion that a solution is
approximately correct; parametrizes the run time of the ver-
ifier, for example to distinguish linear time verifiers from
quadratic time verifiers; and analyzes the run time of the ver-
ifier implemented as a RAM machine in order to understand
the exact asymptotic complexity of the verifier. We will not
assume any bounds on the computation time of the prover.

Both the prover and verifier are interactive RAM ma-
chines that have read access to an input and an output tape,
read/write access to communication tapes, read access to a
public or private source of random bits, and read/write ac-
cess to private computation tapes. We assume that the veri-
fier can access any word in any tape in constant time.

We give definitions for both the approximate IP and PCP
models at the same time. The only distinction between the
two is that in the approximate PCP model, the prover is re-
stricted to a function determined before the start of the inter-
action.

Definition 1 Let A(,, .) be a distance function. A function
f is said to have an t(~, n)-approximate interactive proof
(probabilistically checkable proof) system with distuncefunc-
tion A if there is a randomized verifier V such that for all
inputs E and z of size n, the following holds. Let y be the
contents of the output tape, then:

1. IfA(Y, f(z)) = 0, th ere is a (function-restricted)prover
P, such that V outputs puss with probability at least
3/4 (over the internal coin tosses of V);

2. Lf A(y, f(z)) > E, for all (function-restricted)provers
PI, V outputsfail withprobabilityut least 3/4 (over the
internal coin tosses of V); and

3. V runs in O(t(e, n)) time.

The interactive (probabilistically checkable) proof protocol
can be repeated O(lg l/6) times to get confidence > 1 - 6.
We omit all dependence on 6 from our protocols throughout
this paper.

The choice of the distance function A is problem spe-
cific, and determines the ability to construct a proof system,
as well as determining how interesting the proof system is.

The usual definitions of interactive proof systems for deci-
sion problems require that when y = f(z), an honest prover
can convince the verifier of that fact, and when y # f(z),
no prover can convince the verifier of that. In our model,
this is achieved by choosing A(., .) such that A(y, y’) > e
whenever y # y’ and A(y, y) = 0. Note that the output of V
is not specified when 0 < A(y, f(z)) 2 E. To give a proof
system which passes only when y > (1 - e)f(z), one could
use the function A(y, y’) = ma.x{O, 1 - y/y’}. We refer to
an IPS/PCPS with this distance function as an approximate
lower bound IPSffCPS.

For notational convenience, we often mix notions of in-
teractive and probabilistically checkable proofs by using both
within the same protocol, referring to a prover sending in-
formation as well as permanently writing down information
before the start of the protocol (which corresponds to com-
mitting to a set of responses to queries that will be made later
in the protocol). These systems can clearly be simulated by
a function-restricted prover, since P can decide on all of its
responses before the start of the protocol. Unless otherwise
noted, all protocols are described for the PCP model.

INTERACTIVE SPOT-CHECKING MODEL. Wegiveamore
general definition of IPS/PCPS which applies to distance
functions that correspond to property testing and spot-checking.
We define an interactive-spot-checker, which is essentially a
spot-checker [EKK+98] that is allowed the assistance of a
prover.

Definition 2 Let A(., .) be u distance function. We say that
V is an t(~, n)-interactive-spot-checker (Z.SC)for f with dis-
tance function A if given any input x, claim y for the value
of f(x), and E,

1. IfA((x, y), (2, f(x))) = 0, then there is a function-
restrictedprover‘P, such thatV outputspuss withprob-
ubil@ at least 3/4 (over the internal coin tosses of V);

2. lfforullinputsz’, A((x, y),(x’,f(z’))) > E, thenfor
all function-restricted provers P’, V outputs fail with
probubili9 at least 3/4 (over the internal coin tosses of
V); and

3. V runs in O(t(e, n)) time.

The choice of the distance function A is problem specific,
and determines the ability to spot-check. The condition on
the runtime of the spot-checker enforces the “little-oh” prop-
erty of [BK95], i.e., as long as f depends on all bits of the
input, the condition on the runtime of the spot-checker forces
the spot-checker to run faster than any correct algorithm for
f, which in turn forces the spot-checker to be different than
any algorithm for f. Note also that A can be set to 0 for
many of the inputs and A need not be computable by the
verifier, so that this definition allows interactive proofs for
promise problems.

USING PCPS OVER THE INTERNET. When interact-
ing over the internet, the verifier may want some assurance

that P is function-restricted, without resorting to having the
prover transmit the whole proof in advance of the verifica-
tion process. One possibility is to use a trusted third party:
P transmits the proof to the third party, and the verifier in-
teracts with the third party assuming that it has no reason to
change pieces of the proof. Alternatively, one can bound the
running time of P, as is done in the model of CS proofs
[Mic94]. Then it is possible to force the prover to com-
mit to the proof in such a way that only provers that are
computationally more powerful than the allowed bound are
able to change the proof in a convincing way. One can use
commitment methods [Met901 in this setting [Ki192, Mic94,
Kil94]. Recently, a third method was proposed by [CMS99]
who show that techniques from private information retrieval
(PIR) [CGKS95] can be used to force a prover to commit to
a proof. In this latter work, the essential idea is that since
the prover does not know which bit of the proof is being re-
vealed to the verifier, the prover cannot change the proof in
a convincing manner. Note that PIR schemes with computa-
tionally bounded provers are more efficient (cf. [CGKS95,
KO97, CMS991).

RELATED MODELS. Several other works have looked at
IPS/PCPS with resource limited verifiers, especially veri-
fiers using logarithmic space. In [Con9 1, FL93, DS92, FS88],
the question of classifying the languages that have inter-
active proofs with various models of space-bounded veri-
fiers is studied. The work of [DS92, Kill consider the is-
sue of when zero-knowledge interactive proof systems exist
for systems with space bounded verifiers. Related work of
[CLSY90] considers the problem of designing untampera-
ble benchmarks for other computers to follow. Their model
considers the scenario of a resource-limited computer, which
would like to ensure that a (very fast) computer has cor-
rectly computed benchmarks without taking any shortcuts.
The main difference from this work is that in our model the
verifier does not care how the prover computed the answer,
only that the answer is correct.

NOTATION. We use x CR s to denote that z is chosen
uniformly at random from 5’. We assume the size of a word
is b bits and we assume all integer variables fit in a word.

3 Some basic building blocks

3.1 Permutation enforcement (multiset equality)

Given an input list X = (21, . , z,), many of our proto-
cols require that the prover rewrite the list in a different order
Y = (~1, . , yn) (for example, the sorted order). We would
like the verifier to be able to ensure that IX f? Y 1 > (1 - E)n.
In particular, the verifier should be able to access elements
from Y while ensuring that each accessed element corre-
sponds to a single location in X. The difficulty comes from
the possibility that neither list is necessarily distinct. One
would like to prevent the possibility that an xi from X was

duplicated more than once in Y, or that two equivalent el-
ements xi = xj in X are replaced by only one element in
Y. Without the aid of a prover, V requires e(fi) time to
ensure that IX II Y] 2 (1 - e)n [EKK+98]. Here we show
that it can be done in 0(l/e) time.

The permutation enforcer consists of two arrays Tl, T2
of length n, where the contents of location i in Tl contains a
pointer to the location of 2i in Y. Similarly, the contents of
location i in Tz contains a pointer to the location of yi in X.

Let i be good if Tl [Tz[i]] = i and zi = y~~[il. Then it is
easy to see that:

Lemma 3 IX n Y I > I{i I i is good}l.

Thus, to verify that IX II Y 1 2 (1 - E)n, the verifier should
choose 0(l/e) random i’s and output fail if it ever finds an
i that is not good. If X = Y, the permutation enforcer will
always cause V to pass, and if IX nY 1 < (1 - E)n, no matter
what P writes in place of the permutation enforcer, V will
fail with probability at least 3/4.

Let f(X, Y) = 1 if X = Y and 0 otherwise. Given two
multisets X, Y, let p(X, Y) be the minimum number of ele-
ments that need to be inserted to or deleted from X in order
to obtain Y. Then A(((X, Y), Z), ((X’, Y’), j(X’, Y’))) is
infinite if either X # X’ or Z # f(X’, Y’), and otherwise
is p(Y, Y’)/lYl. 0 ne can see that this definition of A en-
sures V passes only multisets X and Y that are at least close
to equal.

Theorem 4 Given two multisets of size n and constant E,
there is an (l/c)-ISCfor multiset equality with distuncefunc-
tion A.

3.2 Element distinctness

Given an input list X = (xi, , z,), it is often useful for
the verifier to ensure that the xi’s are distinct. Here we give
a 0(l/c) time protocol by which the verifier can ensure that
the number of distinct elements in X is at least (1 - e)n.
Without the aid of the prover, V requires fi(fi) time to de-
termine the same [EKK+98]. The protocol we use is a sim-
plification of a protocol given by [For891 in order to allow a
prover to convince a verifier of an upper bound on the size
of a set. Interestingly, we use the same technique to give a
lower bound on the size of a set.

If X is distinct, then P can answer so that V always passes.
If the number of distinct elements in X is less than (1 - e)n,
then for all provers ‘P’, V fails with probability at least 3/4.
More formally, let j(X) = 1 if X is distinct and 0 other-
wise. Define A((X, Y), (X’, f(X’))) to be infinite if Y #

f(X’)r and AX, X’)ll-J4 otherwise (p is as defined previ-
ously). Note that it is important for the correctness of the
protocol that P is restricted to a function determined before
the start of the interaction.

Theorem 5 Given a multiset of size n and constunt E, there
is an (l/e)-ISCfor element distinctness with distance func-
tion A.

Proof If the multiset X is distinct, P can always find
j = i. If the number of distinct elements in X is less than
(1 - e)n, the probability that V chooses an i corresponding
to a nondistinct element is at least E, and if xi is not distinct,
the probability that j = i is at most l/2. Thus, there is a con-
stant c such that after C/E trials, V will fail with probability
at least 3/4. 0

A SPACE EFFICIENT PROOF. If the function-restricted P
in the previous protocol is implemented by having P write
down the answers to all queries of P in advance of the con-
versation, P writes a table of size proportional to a bound on
the maximum value of xi. It is possible to save space, by us-
ing an algorithm in which V runs in 0((l/e) lg n) time: P
writes a list of ordered pairs containing each input element
and its location in the input list (zi, j) in order sorted by the
value of xi. V then performs binary search to find (xi, j)
and checks j = i.

3.3 Proving lower bounds on the size of a set

Given a set S represented by a list enumerating its elements,
it is nontrivial to deduce the size of S from the size of the
list, since it is not known whether the elements in the list
are distinct. Given a method by which V can determine
whether a b-bit element z is in S (for example, if S is in
fact represented by a list, V could be convinced in constant
time that x E S if P sends V a pointer to the location of
x in S), V could estimate IS1/2’ to within a multiplicative
error of E by sampling. This requires n(2”/(elSl)) sam-
ples [DKLR95, CEG95]. The two methods described here
are more efficient, where the running times are described in
terms of y, an upper bound on a IP (or a PCP) protocol by
which P can convince V that x E S. The first protocol is
faster, but the second protocol (due to [GS86]) can be per-
formed directly in an IP setting.

The following protocols allow P to convince V that the
size of S is at least (1 - E)IS for any 6 > 0. In particular,
let p be P’s claimed size of S, then if ISI > p the protocol
always passes and if ISI < (1 - e)p the protocol fails with
probability at least 3/4.

FASTLOWERBOUNDSONSETSIZES INTHE PCP MODEL.
The following protocol uses the protocols of the previous
sections such that each has probability of error at most l/8.
An auxiliary array A will be used to refer to both an array
used to represent the set and the multiset which is defined by
its contents.

Spot-Checkers*

Funda Ergtint Sampath Kannant S Ravi Kumart
Ronitt Rubinfelds Mahesh Viswanathant

Abstract

On Labor Day Weekend, the highway patrol sets up spot-
checks at random points on the freeways with the intention
of deterring a large fraction of motorists from driving in-
correctly. We explore a very similar idea in the context of
program checking to ascertain with minimal overhead that
a program output is reasonably correct. Our model of spot-
checking requires that the spot-checker must run asymptoti-
cally much faster than the combined length of the input and
output. We then show that the spot-checking model can be
applied to problems in a wide range of areas, including prob-
lems regarding graphs, sets, and algebra. In particular, we
present spot-checkers for sorting, element distinctness, set
containment, set equality, total orders, and correctness of
group operations. All of our spot-checkers are very simple
to state and rely on testing that the input and/or output have
certain simple properties that depend on very few bits.

Our sorting spot-checker runs in O(log n) time to check
the correctness of the output produced by a sorting algorithm
on an input consisting of n numbers. We also show that there
is an O(1) spot-checker to check a program that determines
whether a given relation is close to a total order. We present
a technique for testing in almost linear time whether a given
operation is close to an associative cancellative operation.

*This work was supported by ONR N00014-97-l-0505, MURI. The sec-
ond author is also supported by NSF Grant CCR96- I99 IO. The third author
is also supported by DARPAIAF F30602-95-I-0047. The fourth author is
also supported by the NSF Career grant CCR-9624552 and Alfred P. Sloan
Research Award. The fifth author is also supported by AR0 DAAH04-95
l-0092.

tErnail: {fergun@saul, kannan@central, maheshv@
gradient}. cis upenn. edu. Department of Computer and Informa-
tion Science, University of Pennsylvania, Philadelphia, PA 19104.

TErnail: ravi@almaden ibm corn. IBM Almaden Research Center,
San Jose, CA 95 120.

SEmail: ronittks. Cornell .edu. Department of Computer Sci-
ence, Cornell University, Ithaca, NY 14853.

In this extended abstract we show the checker under the as-
sumption that the input operation is cancellative and leave
the general case for the full version of the paper. In contrast,
[RaS96] show that quadratic time is necessary and sufficient
to test that a given cancellative operation is associative. This
method yields a very efficient tester (over small domains)
for all functions satisfying associative functional equations
[Acz66]. We also extend this result to test in almost linear
time whether the given operation is close to a group opera-
tion.

1 Introduction

Ensuring the correctness of computer programs is an impor-
tant yet difficult task. Program result checking [BK89] and
self-testing/correcting programs [BLR93, Lip9 l] make run-
time checks to certify that the program is giving the right
answer. Though efficient, these methods often add small
multiplicative factors to the runtime of the programs. Ef-
forts to minimize the overhead due to program checking
have been somewhat successful [BW94, Rub94, BGR96] for
linear functions. Can this overhead be minimized further by
settling for a weaker, yet nontrivial, guarantee on the correct-
ness of the program’s output? For example, it could be very
useful to know that the program’s output is reasonably cor-
rect (say, close in Hamming distance to the correct output).
Alternatively, for programs that verify whether an input has
a particular property, it may be useful to know whether the
input is at least close to some input which has the property.

In this paper, we introduce the model of spot-checking,
which performs only a small amount (sublinear) of addi-
tional work in order to check the program’s answer. In this
context, three prototypical scenarios arise, each of which is
captured by our model. In the following, let f be a func-
tion purportedly computed by program P that is being spot-
checked, and x be an input to f.

l Functions with small output. If the output size of the
program is smaller than the input size, say If(~)1 =
o(1x1) (as is the case for example for decision prob-
lems), the spot-checker may read the whole output and

only a small part of the input.

l Functions with large output. If the output size of
the program is much bigger than the input size, say
1x1 = o(]f(z)]) (for example, on input a domain D,
outputting the table of a binary operation over D x D),
the spot-checker may read the whole input but only a
small part of the output.

l Functions for which the input and output are compa-
rable. If the output size and the input size are about
the same order of magnitude, say 1x1 = @(If(x)]) (for
example, sorting), the spot-checker may only read part
of the input and part of the output.

One naive way to define a weaker checker is to ask that
whenever the program outputs an incorrect answer, the
checker should detect the error with some probability. This
definition is disconcerting because it does not preclude the
case when the output of the program is very wrong, yet is
passed by the checker most of the time. In contrast, our
spot-checkers satisfy a very strong condition: if the output
of the program is far from being correct, our spot-checkers
output FAIL with high probability. More formally:

Definition 1 Let A(., .) be a distance function. We say that
C is an e-spot-checkerfor f with distance function A if

1. Given any input x andprogram P (purporting to com-
pute f), and E, C outputs with probability at least
3/4 (over the internal coin tosses of C) PASS if
A((z, P(x)), (x, f(z))) = 0 and FAIL iffor all inputs
Y. A(& P(x))> (Y, f(y))) > E.

2. The runtime of C is o(1x1 + /f (x)1)

The spot-checker can be repeated O(lg l/6) times to get
confidence 1 - 6. The choice of the distance function A is
problem specific, and determines the ability to spot-check.
For example, for programs with small output, one might
choose a distance function for which the distance is infinite
whenever P(x) # f(y) , hw ereas for programs with large
output it may be natural to choose a distance function for
which the distance is infinite whenever x # y.

OUR RESULTS. We show that the spot-checking model
can be applied to problems in a wide range of areas, includ-
ing problems regarding graphs, sets, and algebra. We present
spot-checkers for sorting, element distinctness, set contain-
ment, set equality, total orders, and group operations. All of
our spot-checker algorithms are very simple to state and rely
on testing that the input and/or output have certain simple
properties that depend on very few bits; the non-triviality lies
in the choice of the distribution underlying the test. Some of
our spot-checkers run much faster than o(Ix]+ If(x) I) - for
example, our sorting spot-checker runs in O(lg 1x1) time. All
of our spot-checkers have the additional property that if the
output is incorrect even on one bit, the spot-checker will de-
tect this with a small probability. In order to construct these

spot-checkers, we develop several new tools, which we hope
will prove useful for constructing spot-checkers for a num-
ber of other problems.

One of the techniques that we developed for testing group
operations allows us to efficiently test that an operation is
associative. Recently in a surprising and elegant result,
[RaS96] show how to test that operation o is associative
in O(lD12) steps, rather than the straightforward O(lD13).
They also show that R(lD12) steps are necessary, even for
cancellative operations. In contrast, we show how to test that
0 is close (equal on most inputs) to some cancellative asso-
ciative operation 0’ over domain D in o(lDl) steps’. We
also show how to modify the test to accommodate opera-
tions that are not known to be cancellative, in which case the
running time increases to d(n3/“). Though our test yields a
weaker conclusion, we also give a self-corrector for the op-
eration o’, i.e., a method of computing 0’ correctly for all
inputs in constant time. This method yields a reasonably ef-
ficient tester (over small domains) for all functions satisfying
associative functional equations [Acz66].

RELATIONSHIP TO PROPERTY TESTING. A number of
interesting result checkers for various problems have been
developed (cf., [BK89, BLR93, EKS97, KS96, AHK95,
Kan90, BEG+9 I, ABC’931). Many of the checkers for nu-
merical problems have used forms ofproperty testing (albeit
under various names) to ensure that the program’s output
satisfies certain properties characterizing the function that
the program is supposed to compute. For example, efficient
property tests that ensure that the program is computing a
linear function have been used to construct checkers. In
[GGR96], the idea of using property testing directly on the
input is first proposed. This idea extended the scope of prop-
erty testing beyond numeric properties. In [GGR96, GR97],
property testing is applied to graph problems such as bipar-
titeness and clique number. The ideas in this paper are in-
spired by their work.

For the purposes of this exposition, we give a simplified
definition of property testing that captures the common fea-
tures of the definitions given by [RS96, Rub94, GGR96].
Given a domain H and a distribution D over H, a function f
is e-close to a function g 0verD if PrZED[f (x) # g(z)] 5 E.
A is a property tester for a class of functions 3 if for any
given E and function f, with high probability (over the coin
tosses of A) A outputs PASS if f E F and FAIL if there is
no g E F such that g and f are e-close.2

Our focus on the checking of program results motivates
a definition of spot-checkers that is natural for testing in-
put/output relations for a wide range of problems. All previ-
ous property testers used a “Hamming-like” distance func-

‘The notation o(n) suppresses polylogarithmic factors of 12.
21n fact, the definition of property testing given by [GGR96] is much

more general. For example, it allows one to separately consider two differ-
ent models of the tester’s access to f. The first case is when the tester may
make queries to f on any input. The second case is when the tester cannot
make queries to f but is given a random sequence of (z, f(z)) pairs where
I is chosen according to ‘D. In our setting, the former is the natural model.

tion. Our general definition of a distance function allows us
to construct spot-checkers for set and list problems such as
sorting and element distinctness, where the Hamming dis-
tance is not useful. In fact, with a proper distance function,
all property testers in [GGR96] can be transformed into spot-
checkers. One must, however, be careful in choosing the
distance function. For instance, consider a program which
decides whether an input graph is bipartite or not. Every
graph is close to a graph that is not bipartite (just add a
triangle), so property testing for nonbipartiteness is trivial.
Thus, unless the distance function satisfies a property such
as A((x, y), (x, y’)) is greater than E when y # y’, the spot-
checker will have an uninteresting behavior.

2 Set and List Problems

2.1 Sort ing

Given an input to and output from a sorting program, we
show how to determine whether the output of the pro-
gram is close in edit-distance to the correct sorting of
the input, where the edit-distance p(u,u) is the num-
ber of insertions and deletions required to change string
IL into V. The distance function that we use in defin-
ing our spot-checker is as follows: for all x, y lists
of elements, A((x, P(x)), (y, f (y))) is infinite if either
z # y or /P(x)] # If(y)] and otherwise is equal to
p(P(x), f (y))/]P(z)]. Since sorting has the property that
for all x, 1x1 = If (x)1, we assume that the program P sat-
isfies Vx, 1x1 =]P(x)]. I tt is s raightforward to extend our
techniques to obtain similar results when this is not the case.
We also assume that all the elements in our unsorted list are
distinct. (This assumption is not necessary for testing for the
existence of a long increasing subsequence.)

In Section 2.1.2, we show that the running time of our
sorting spot-checker is tight.

2.1.1 The Test

Our 2e-spot-checker first checks if there is a long increasing
subsequence in P(x) (Theorem 2). It then checks that the
sets P(x) and x have a large overlap (Lemma 8). If P(x) and
x have an overlap of size at least (1 - e)n, where n = 1~1,
and P(x) has an increasing subsequence of length at least
(1 - ch then A((x, P(x)), (Y, f (y))) 2 26.

For m = O((l/c) lg l/6) and n = O(lg l/6), the algo-
rithm presented in the figure checks if an input sequence A
has a long increasing subsequence by picking random pairs
of indices i < j and checking that A[i] < A[j]. An obvious
way of picking i and j is to pick i uniformly and then pick j
to be i + 1. Another way is to pick i and j uniformly, making
sure that i < j. One can find sequences, however, that pass
these tests even though they do not contain long increasing
subsequences. The choice of distribution on the pairs i, j is
crucial to the correctness of the checker.

Procedure Sort-Check(c,&)
repeat m times

choose i CR [l,n]
for k tO...lgi do

repeat n times
choose j ER [1,2”]
if (A[i - j] > A[i]) then return FAIL

for k t 0.. . lg(n - i) do
repeat n times

choose j ER [1,2”]
if (A[i] > A[i + j]) then return FAIL

return PASS

Theorem 2 Procedure Sort-Check(c,&) runs
0((l/c) lg n lg2 l/6) time, and satisfies:

l ff A issorted, Sort-Check(c,6) = PASS.

in

l If A does not have an increasing subsequence of length
at least (1 - c)n, then with probability at least 1 - 6,
Sort-Check(c, 6)= FAIL.

To prove this theorem we need some basic definitions and
lemmas.

Definition 3 The graph induced by an array A, of inte-
gers having n elements, is the directed graph GA, where
V(GA) = {VI,. . , z)~} a n d E(GA) = {(vi, vj)] i <
j and A[i] < A[j]}.

We now make some trivial observations about such graphs.

Observation 4 The graph GA induced by an array A =
{Q,V2,... , v,} is transitive, i.e., if (u,v) E E(GA) and
(~1, W) E E(GA) then (u, W) E E(GA).

We shall use the following notation to define neighborhoods
of a vertex in some interval.

NOTATION. $1, (i) denotes the set of vertices in the
open interval between t and t’ that have an incoming edge
from vi. Similarly, I?,,,,,()i denotes the set of vertices be-
tween t and t� that have an outgoing edge to Vi.

It is useful to define the notion of a heavy vertex in such a
graph to be one whose in-degree and out-degree, in every 2”
interval around it, is a significant fraction of the maximum
possible in-degree and out-degree, in that interval.

Definition 5 A vertex vi in the graph GA is said to be heavy
tfforall k, 0 5 k 5 lg i, I lY(i-2E,ij (i) I > 72’” andforall k,
0 < k 5 lg(n - i), I r(sl,i+2kj(i) I > 712', where7 = 3/4.

Theorem 6 A graph G,J induced by an array A, that has
(1 - c)n heavy vertices, has a path of length at least (1 - c)n.

The theorem follows as a trivial consequence of the follow-
ing:

Lemma 7 If Vi and u~j (i < j) are heavy vertices in the
graph GA, then (Q,v~) E E(GA).

Proof Since GA is transitive, in order to prove the above
lemma, all we need to show is that between any two heavy
vertices, there is a vertex Q such that (vi, uk) E E(GA) and
(vk,vj) E E(GA).

Let m be such that 2” 5 (J’ - i), but 2(“+‘) 2 (j - i).
Let 1 = (j - i) - 2m. Let I be the closed interval [j - 2”) i +
2m]with]1]=(i+2m)-(j-2m)+1=2m-Z+1.Since
Vi is a heavy vertex, the number of vertices in I that have an
edge from vi is at least ~2~ - ({(j - 2”) - i}) = ~2~ - 1.
Similarly, the number of vertices in 1, that are adjacent to v~j
is at least ~12~ - ({j - (i + 2m)}) = 772” - 1.

Now, we use the pigeonhole principle to show that there
is a vertex in I that has an incoming edge from i and an
outgoing edge to j. By transitivity that there must be an
edge from i to j. This is true if (~2~ - 1) + (~2~ - I) 2
(I] = 2”’ - 1 + 1. Since 7 = 3/4, this condition holds if
15 2m-1.

Now consider the case when 1 > 2”-‘. In this case we
can consider the intervals of size 2m+1 to the right of i and
to the left of j and apply the same argument based on the
pigeonhole principle to complete the proof. q

Proof [of Theorem 21 Clearly if the checker returns FAIL,
then the array is not sorted.

We will now show that if the induced graph GA does not
have at least (1 - c)n heavy vertices then the checker returns
FAIL with probability 1 - 6. Assume that GA has greater
that cn light vertices. The checker can fail to detect this if
either of the following two cases occurs: (i) the checker only
picks heavy vertices, or (ii) the checker fails to detect that
a picked vertex is light. A simple application of Chernoff
bound shows that the probability of(i) is at most s/2.

By the definition of a light vertex, say vi, there is a Ic such
that]I?&+aE)(i)] (or II’G,i+2c,(i)l) is less than (3/4)2k.
The checker looks at every neighborhood; the probability
that the checker fails to detect a missing edge when it looks
at the Ic neighborhood (~j such that i 5 j 5 i f 2”) can
be shown to be at most 6/2 by an application of Chernoff’s
bound. Thus the probability of (ii) is at most 6/2. 0

In order to complete the spot-checker for sorting, we give a
method of determining whether two lists A and B (of size n)
have a large intersection, where A is presumed to be sorted.

Lemma 8 Given lists .4, B of size n, where A is presumed
to be sorted. There is a procedure that runs in O(lg n) time
such that if A is sorted and I.4 n BI = n, it outputs PASS
with high probability, and if IA n BI < cn for a suitable
constant c, it outputs FAIL with high probability.

Remark: The algorithm may also fail if it detects that A is
not sorted or is not able to find an element of B in A.
Proof Suppose A is sorted. Then, one can randomly pick

b E B and check if b E A using binary search. If binary
search fails to find b (either because b +! A or A is wrongly
sorted), the test outputs FAIL. Each test takes O(lg n) time,
and constant number of tests are sufficient to make the con-
clusion. 0

2.1.2 A Lower Bound for Spot-Checking Sorting

We show that any comparison-based spot-checker for sorting
running in o(lgn) time will either fail a completely sorted
sequence or pass a sequence that contains no increasing sub-
sequence of length n(n). We do this by describing sets
of input sequences that presents a problem for such spot-
checkers. We will call these sequences 3-layer-saw-tooth
inputs.

We define k-layer-saw-tooth inputs (Ic-lst’s) inductively.
k-lsts take k integer arguments, (~1, x2, . , xk) and are de-
noted by Istk(xt, x2,. . . , Xk). I.stk(xi ,x2,. . . , xk) repre-
sents the set of sequences in Zx1x2.~~2k which are comprised
of xk blocks of sequences from &k-l (Xl, x2,. . , x&i).
Moreover, if k is odd, then the largest integer in the ith block
is less than the smallest integer in the (i + l)th block for
1 5 i < xk. If k is even, then the smallest integer in the
ith block is greater than the largest integer in the i(i + l)th
block for 1 5 i < xk. Finally to specify these sets of inputs
we need to specify the base case. We define lstl (xi) to be
the set of sequences in i%“* which are increasing.

An example Z&(3,3,2) is:

E lst2(3,3)

~ 1 6 1 7 1 8 1 3 1 4 1 1 5 1 0 1 1 1 2
E lstl(3)

Note that the longest increasing subsequence in lstg (i, j, k)
is of lentgth ilc and can be constructed by choosing one
l&l(i) from each lstz(i,j).

We now show that o(lgn) comparisons are not enough
to spot-check sorting using any comparison-based checker
(including that presented in the previous section). Sup-
pose, for contradiction, that there is a checker that runs in
f(n) = O(lgn/cu(n)) time where o(n) is an unbounded,
increasing function of n. Without loss of generality, the
checker generates O(f(n)) index pairs (al, bi), . (ok, bk),
where the al < bt for 1 < 1 < k and returns PASS if and
only if, for all 1, the value at position al is less than the value
at position bl.

Lemma 9 A checker of the kind described above must either
FAIL a completely sorted sequence or PASS a sequence that
contains no increasing sequence of length n(n).

Proof Maintain an array consisting of log n buckets. For
each (al, al) pair generated by the checker, put this pair in
the bucket whose index is]lg(bl - al)]. It follows that there
is a sequence of co(n) buckets (for some c < 1) such that
the probability (over all possible runs of the checker) that

Property Testing of Abelian Group Operations

S Ravi Kumar* Ronitt Rubinfeld?

July 7, 1998

Abstract

Given an n x 12 table of a cancellative operation o on a domain of size 12, we investigate the
complexity of determining whether o is close (equal on most pairs of inputs) to an associative,
commutative, and cancellative group operation 0’. We show that one can perform such a test in
O(n) time. In contrast, quadratic time is necessary and sufficient to test that a given operation
is cancellative, associative, and commutative. We give a sub-quadratic algorithm for the case
when o is not known to be cancellative. Our techniques for the case when o is not known to
be cancellative were later used by [EKKf97] to test that a function o is associative in the same
case. Furthermore, we show how to compute 0’ in constant time, given access to 0. We show
that our simple test can be used to quickly check the validity of tables of abelian groups and
fields. Another application of our results is to testing programs that compute functions which
are solutions to certain functional equations.

1 Introduction
Recently in a surprising result, Rajagopalan and Schulman [RaS96] give a randomized algorithm
running in O(n*) time that tests that a binary operation o over a domain of size y1 is associative;
previously the best known algorithm was the straightforward 0(n3) algorithm that tries all triples.
They also show that sZ(n*) steps are necessary, even for cancellative operations.’

It is easy to see that the complexity of testing whether an operation over a domain of size
n is commutative is O(n*). We show that this lower bound holds even when o is known to be
cancellative. We also show that C2(n2) steps are required to know if o is both associative and
commutative, even when o is known to be cancellative.

The main contribution of this paper is to show that the situation is quite different for determin-
ing whether a binary operation is close (equal on most pairs of inputs) to being both associative and

‘IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120. Email: raviealmaden. ibm. corn.
Most of this work was done while the author was at Cornell University, supported by ONR NOOO14-97- l-0505, MURI
and DARPA/AF F30602-95- l-0047.

‘Department of Computer Science, Cornell University, Ithaca, NY 14853. Supported by ONR N00014-
97-l-0505, MURI, the NSF Career grant CCR-9624552 and the Alfred P. Sloan Research Award. Email:
ronitt@cs.cornell.edu.

‘Let To be the n x n Cayley table corresponding to 0. o is said to be cancellative if Vu, b, c E G, (a o c = b o c) +
(a=b)andVa,b,cEG,(aob=aoc)+(b=c).

1

commutative. This gives a property tester as defined in [RS96, GGR96] for the property of being
simultaneously associative and commutative. In fact, given a table describing a cancellative binary
operation o on a domain G of size n, we give a randomized algorithm that tests in 0(n) time if o
is close to a cancellative o’ that is both commutative and associative. We also give a randomized
algorithm that computes o’ correctly for all inputs in constant time by making queries to the table
for 0. We extend these results to the case when o is not necessarily known to be cancellative. In
this case, we give a randomized algorithm that runs in O(n3i2) time for the same problem. An
interesting open question is whether one can test that o is close to a cancellative, commutative and
associative operation in sublinear time (see Section 7).

Previously, [EKK+97] show how to test that a cancellative operation o is close to some can-
cellative associative operation o’ in O(n lg2 n) time. They also give a randomized algorithm which
computes 0’ correctly for all inputs in constant time. Our techniques are similar to theirs at a
high level, but since different equations are used to perform the test, the low level manipulations
are necessarily different. In particular, the efficiency of our test is better. Our techniques for the
case where o is not known to be cancellative were later used by [EKKf97] in order to give a
subquadratic time algorithm for associativity testing in general case.

We then show how to use the associativity-commutativity test, in conjunction with previous
results on testing that an operation is a homomorphism [BLR93], to test that the domain G together
with cancellative operations o and o “resembles” a field. More precisely, if o (resp. o) is known to
be cancellative, we can test in 0(n) time if o (resp. o) is close to o’ (resp. 0’) such that (G, o’, 0’) is
a field. If o (resp. o) is not known to be cancellative, we can test in O(n’l”) time if o (resp. o) is
close to o’ (resp. 0’) such that (G, o’, 0’) is a field.

Another motivation for studying this problem is its application to program checking, self-
testing, and self-correcting [BK89, BLR93, Lip91]. Using techniques from [Rub94], our method
yields a reasonably efficient self-tester and self-corrector (over small domains) for all functions
that are solutions to the composite functional equation

m%Yl,4 = ~[-4Y,41~

Such functional equations are used to characterize algebraic structures more general than semi-
groups [Acz66]. For instance, if S, P are sets and F : S x P -+ S, the related functional equation

F [F[-v] ,v] = F [F [w] , u]
for all x, F [x, u] , F [x, v] E S and u, v E P characterizes an abelian group in the following manner:
suppose F [x, u] = y has for all x, y E S at least one solution u E P. Fix an arbitrary x0 E S and define
x o y A F [y, u] where u is a solution of the equation F [x0, u] = x. Then, it can be shown that (S, o)
is an abelian group.

O T H E R R E L A T E D W O R K. Variants of property testing (under various names) has been defined by
[RS96, GGR96]. Property testers have been given for algebraic properties such as linearity and low
degree testing (cf. [BLR93, RS96, FGL+91, AS92, ALMf92, BCH+95, Tre98]), graph properties
such as bipartiteness, clique number, transitive tournament [GGR96, GR97, GR98, EKKS97], and
comparison-based problems such as the monotonicity of a list and of boolean functions [EKK+97,
GGLR98].

2

ORGANIZATION . Section 3 contains the testing algorithm for the cancellative case. Section 4
combines this algorithm with some additional machinery to obtain a tester for fields. An Q(n2)
lower bound for commutativity is proved in Section 5. Finally, Section 6 gives a tester for the
non-cancellative case.

2 Definitions and Notation
We denote an element a chosen randomly with uniform distribution from G by a ER G. We will
also use the same notation to denote that cx is distributed uniformly in G. We use a ED G to denote
that a is distributed according to distribution D. For random variables a, p,‘y, we often reason
about the probability that a = y by using an intermediate variable p, using Pr[a = ~1 2 Pr[a = p =
y] 2 1 - Pr[a # PI - Pr[P # ~1. The notation Pra[.] is synonymous with PraERG[.].

The Lt -distance between two discrete distributions D, D’ on G is defined to be CxEG ID(x) -
D’(x)] where D(x) (resp. D’(x)) denotes the probability of generating x according to D (resp. 0’).
A distribution is ~-uniform if its Lt -distance to the uniform distribution is < E.

Let TO be the II x II cancellative Cayley table corresponding to 0. In this case, each row and
column of TO is a permutation of elements in G. Thus, a cancellative TO is isomorphic to an II x 12
latin square. Using these, we make can the following simple observation.

Observation 1 Z’o is cancellative, thenforany b E G, ifa ER G + sob ER G.

Note that if o is cancellative then for any a, if at ER G and al o a2 = a, then a2 ER G, though CX~
is not independent from al. We now define what it means for two operations to be close to each
other.

Definition 2 Let o and o’ be binary operations. o is E-close to o’ ifPr,,p[ao p = ao’ p] > 1 - E.

We extend this notion to define an almost abelian group.

Definition 3 Let o be a closed binary operation on G. (G, o) is an &-abelian group if there exists a
binary operation o’ that is E-close to o such that (G, 0’) is an abelian group.

This notion can be extended to fields as well.

Definition 4 Let oI o be a closed binary operations on G. (G, 0, o) is an (~1, &2)-field if there exist
binary operations o’ (resp. 0’) that is ~1 -close to o (resp. E2-close to 0) such that (G, o’, 0’) is a
jield.

REMARKON~ONFIDENCE. Our tests rely on random sampling to estimate various probabilities.
Roughly, it requires 0(k In j) trials to estimate a quantity of magnitude E with a confidence of p.
This is achievable by standard Chernoff-Hoeffding type analysis [Che52].

3 Associativity-Commutativity Test: The Cancellative Case
In this section we assume that o is cancellative. Later, in Section 6, we show how to extend these
techniques to the non-cancellative case.

We show that testing whether a cancellative o is E-close to a cancellative, associative, and
commutative 0’ can be done in randomized O(n) time (Section 3.1). We also show that there is an
Q(n2) lower bound to check if o is fully associative and commutative (Section 3.2). We then use
the testing algorithm to test if (G, o) is an E-abelian group (Section 3.3).

3.1 The Upper Bound
We use the following equation (which we call the AC-property) to test:

(a o b) o c = a o (c o b) .

We prove the following theorem which shows that if a cancellative o satisfies some conditions that
can be tested in O(n) time, then it is SE-close to a cancellative, associative, and commutative 0’.
Furthermore, this theorem also shows that 0’ can be computed (by making queries to 0) in constant
time with high probability of correctness, assuming there is an oracle that given a, al E G returns
an ~2 E G such that at o ~2 = a. Even if such an oracle is not available, one can precompute for
all b E G, 0(1) many random pt, 02 such that p 1 o p2 = b in O(n lg n) time by a coupon-collector
method.

Theorem 5 Let E < l/21. Ifo is cancellative and satisfies

(1) Pr,[Vb, sob= boa] > 1 -&,

(2) Prp,#a, (a 0 P) 0Y = a 0 (Yo P)] 2 1 - 8,

(3) Pr,,,[Vb, (a o b) o y = a o (yo b)] > 1 - E, and

(4) Pr,,p[vc, (a0 P> oc= ao(COp)] > 1-&,

then there is an o’ such that

(1) 0’ is cancellative,

(2) Va,b,c> ao’(bo’c) = (ao’b)o’c,

(3) Va,b, ao’b= bo’a,

(4) 0’ is SE-close to o, and

(5) o’ is computable in constant time, given access to o.

Proof Outline: Let maj denote the majority function which returns the element that occurs the most
number of times in a (multi)set. Define the following binary operation o’ as follows: for a, b E G,
define

ao’bA m a j ((aoP2)oPl).
P1432=b

4

An Approximate ,&l-Difference Algorithm for Massive Data Streams*

Joan Feigenbaum Sampath Kannant
,4T&T Labs - Research AT&T Labs - Research

180 Park Avenue 180 Park Avenue
Florham Park, NJ 07932 USA Florham Park, NJ 07932 USA

jf@research.att.com skannan@research.att.com

Martin Strauss Mahesh Viswanathanl
.4T&T Labs - Research Computer and Information Sciences

180 Park Avenue University of Pennsylvania
Florham Park, NJ 07932 USA Philadelphia, PA 19104 USA
mstrauss@research.att.com maheshv@saul.cis.upenn.edu

July 27, 1999

Abstract

Massive data sets are increasingly important in a wide range of applications, including obser-
vational sciences, product marketing, and monitoring and operations of large systems. In network
operations, raw data typically arrive in streams, and decisions must be made by algorithms that make
one pass over each stream, throw much of the raw data away, and produce “synopses” or “sketches”
for further processing. Moreover, network-generated massive data sets are often distributed: Several
different, physically separated network elements may receive or generate data streams that, together,
comprise one logical data set; to be of use in operations, the streams must be analyzed locally and
their synopses sent to a central operations facility. The enormous scale, distributed nature, and
one-pass processing requirement on the data sets of interest must be addressed with new algorithmic
techniques.

We present one fundamental new technique here: a space-efficient, one-pass algorithm for ap-
proximating the L1 difference xi lai - bil between two functions, when the function values ai and
bi are given as data streams, and their order is chosen by an adversary. Our main technical innova-
tion, which may be of interest outside the realm of massive data stream algorithmics, is a method
of constructing families {Vj} of limited-independence random variables that are range-summable, by
which we mean that Cizi Vj (s) is computable in time poZylog(c), for all seeds s. Our L’-difference
algorithm can be viewed as a “sketching” algorithm, in the sense of [Broder, Charikar, Frieze, and
Mitzenmacher, STOC ‘98, pp. 327-3361, and our technique performs better than that of Broder et
al. when used to approximate the symmetric difference of two sets with small symmetric difference.

*This paper is an expanded version of the authors’ 1999 IEEE Symp. on Foundations of Computer Science extended
abstract with the same title

+On leave from the Univ. of Pennsylvania. Part of this work was done at the Univ. of Pennsylvania, supported by
grants NSF CCR96-19910 and AR0 DAAH04-95-l-0092.

iSupported by grant ONR N00014-97-1-0505, MURI.

1

1 Introduction

Massive data sets are increasingly important in a wide range of applications, including observational
sciences, product marketing, and monitoring and operations of large systems. In network operations,
raw data typically arrive in streams, and decisions must be made by algorithms that make one pass
over each stream, throw much of the raw data away, and produce “synopses” or “sketches” for further
processing. Moreover, network-generated massive data sets are often distributed: Several different,
physically separated network elements may receive or generate data streams that, together, comprise
one logical data set; to be of use in operations, the streams must be analyzed locally and their synopses
sent to a central operations facility. The enormous scale, distributed nature, and one-pass processing
requirement on the data sets of interest must be addressed with new algorithmic techniques.

We present one fundamental new technique here: a space-efficient, one-pass algorithm for approxi-
mating the L1 difference xi lai -bit between two functions, when the function values ai and bi are given
as data streams, and their order is chosen by an adversary. This algorithm fits naturally into a toolkit
for Internet-traffic monitoring. For example, Cisco routers can now be instrumented with the NetFlow
feature [CN98]. As packets travel through the router, the NetFlow software produces summary statistics
on each flow.’ Three of the fields in the flow records are source IP-address, destination IP-address, and
total number of bytes of data in the flow. At the end of a day (or a week, or an hour, depending on what
the appropriate monitoring interval is and how much local storage is available), the router (or, more
accurately, a computer that has been “hooked up” to the router for monitoring purposes) can assemble
a set of values (~,ft(~)), where 2 is a source-destination pair, and ft(~) is the total number of bytes
sent from the source to the destination during a time interval t. The L’ difference between two such
functions assembled during different intervals or at different routers is a good indication of the extent
to which traffic patterns differ.

Our algorithm allows the routers and a central control and storage facility to compute L1 differences
efficiently under a variety of constraints. First, a router may want the L’ difference between ft and
fi+r. The router can store a small “sketch” of ft, throw out all other information about ft, and still be
able to approximate lift - ft+rllr from the sketch of ft and (a sketch of) ft+r.

The functions fi(‘) assembled at each of several remote routers Ri at time t may be sent to a central
tape-storage facility C. As the data are written to tape, C may want to compute the L1 difference
between fi”’ and ft(2), but this computation presents several challenges. First, each router Ri should
transmit its statistical data when &‘s load is low and the &-C paths have extra capacity; therefore,
the data may arrive at C from the Ri’s in an arbitrarily interleaved manner. Also, typically the Z’S for
which f(x) # 0 constitute a small fraction of all Z’S; thus, Ri should only transmit (~,ft’~‘(~)) when
jii’(x) # 0. The set of transmitted X’S is not predictable by C. Finally, because of the huge size of these
streams2 the central facility will not want to buffer them in the course of writing them to tape (and
cannot read from one part of the tape while writing to another), and telling Ri to pause is not always
possible. Nevertheless, our algorithm supports approximating the L1 difference between ft(‘) and fj2)
at C, because it requires little workspace, requires little time to process each incoming item, and can
process in one pass all the values of both functions {(x, ft”‘(~))} U {(x, fj’)(~))} in any permutation.

‘Roughly speaking, a “flow” is a semantically coherent sequence of packets sent by the source and reassembled and
interpreted at the destination. Any precise definition of “flow” would have to depend on the application(s) that the source
and destination processes were using to produce and interpret the packets. From the router’s point of view, a flow is just
a set of packets with the same source and destination IP-addresses whose arrival times at the routers are close enough, for
a tunable definition of “close.”

“A WorldNet gateway router now generates more that 1OGb of NetFlow data each day.

2

Our L’-difference algorithm achieves the following performance:

Consider two data streams of length at most n, each representing the non-zero points
on the graph of an integer-valued function on a domain of size n. Assume that the maxi-
mum value of either function on this domain is M. Then a one-pass streaming algorithm
can compute with probability 1 - E an approximation A to the L1-difference B of the two
functions, such that IA - B] 2 XB, using space O(log(lM) log(n) log(l/e)/X2) and time
O(log(n) log log(n) + log(M) log(l/e)/X2) to precess each item. The input streams may be
interleaved in an arbitrary (adversarial) order.

The main technical innovation used in this algorithm is a limited-independence random-variable
construction that may prove useful in other contexts:

A f a m i l y {y(s)} fo uniform &l-valued random variables is called range-summable if
x5-l VJ(s) can be computed in timepoZyZog(c), for all seeds s. We construct range-summable
families of random variables that are n2-bad d-wise independent.3

The property of n2-bad 4-wise independence suffices for the time- and space-bounds on our algorithm.
Construction of truly 4-wise independent, range-summable random-variable families for which the range
sums can be computed as efficiently as in our construction remains open.

The rest of this paper is organized as follows. In Section 2, we give precise statements of our
%treaming” model of computation and complexity measures for streaming and sketching algorithms.
In Section 3, we present our main technical results. Section 4 explains the relationship of our algorithm
to other recent work, including that of Broder et al. [BCFM98] on sketching and that of Alon et al.
[AMS96] on frequency moments.

2 Models of Computation

Our model is closely related to that of Henzinger, Raghavan, and Rajagopalan [HRR98]. We also
describe a related sketch model that has been used, e.g., in [BCFM98].

2.1 The Streaming Model

As in [HRR98], a data stream is a sequence of data items 01, (72, . . . , on such that, on each puss through
the stream, the items are read once in increasing order of their indices. We assume the items oi come
from a set of size M, so that each oi has size log M. In our computational model, we assume that the
input is one or more data streams. We focus on two resources-the worlcspace required in bits and the
time to process an item in the stream. An algorithm will typically also require pre- and post-processing
time, but usually applications can afford more time for these tasks.

Definition 1 The complexity class PASST(s(e, X, n, M), t(e, X, n, M)) (to be read as “probably ap-
proximately streaming space complexity S(E, X, n, M) and time complexity t(c, X, n, M)“) contains those
functions f for which one can output a random variable X such that 1X - f] < Xf with probability at
least 1 - e and computation of X can be done by making a single pass over the data, using workspace
at most ~(6, X, n, M) and taking time at most t(c, X, n, M) to process each of the n items, each of which
is in the range 0 to M - 1.

If s = t, we also write PASST(s) for PASST(s, t). I

3The property of n’-bad 4-wise independence is defined precisely in Section 3 below.

3

We will also abuse notation and write A E PASST(s, t) to indicate that an algorithm A for f witnesses
that f E PASST(s, t).

2.2 The Sketch Model

Sketches were used in [BCFM98] to check whether two documents are nearly duplicates. A sketch can
also be regarded as a synopsis data structure [GM98].

Definition 2 The complexity class PAS(s(e, X, n, M))) (to be read as “probably approximately sketch
complexity S(E, X, n, M)“) contains those functions f : X x X + 2 of two inputs for which there exists
a set S of size 2’, a randomized sketch function h : X -+ S, and a randomized reconstruction function
p : S x S + 2 such that, for all 1cr,x2 E X, with probability at least 1 -E,]p(h(xr), h(x2)) - f(xl, x2)1 <
A.f(Xl, x2). I

By “randomized function” of k inputs, we mean a function of k + 1 variables. The first input is
distinguished as the source of randomness. It is not necessary that, for all settings of the last k inputs,
for most settings of the first input, the function outputs the same value.

Note that we can also define the sketch complexity of a function f : X x Y -+ 2 for X # Y. There
may be two different sketch functions involved.

There are connections between the sketch model and the streaming model. Let XY denote the set
of concatenations of z E X with y E Y. It has been noted in [KN97] and elsewhere that a function
on XY with low streaming complexity also has low one-round communication complexity (regarded as
a function on X x Y), because it suffices to communicate the memory contents of the hypothesized
streaming algorithm after reading the X part of the input. Sometimes one can also produce a low
sketch-complexity algorithm from an algorithm with low streaming complexity.4 Our main result is an
example.

Also, in practice, it may be useful for the sketch function h to have low streaming complexity. If the
set X is large enough to warrant sketching, then it may also warrant processing by an efficient streaming
algorithm.

Formally, we have:

Theorem 3 Iff E PAS(s(e,X, n, M)) via sketch function h E PASST(s(c, X, n, M), t(c, X, n, M)), then
f E PASST(2s(e, X, n/2, M), t(c, X, n/2, M)).

2.3 Arithmetic and Bit Complexity

Often one will run a streaming algorithm on a stream of n items of size log M on a computer with word
size at least max(log M, log n). We assume that the following operations can be performed in constant
time on words:

0 Copy x into y

l Shift the bits of x one place to the left or one place to the right.

l Perform the bitwise AND, OR, or XOR of x and y.

l Add x and y or subtract x from y.

4This is not always possible, e.g., not if f(z, y) is the z’th bit of y.

4

Part IV

Complexity

John Mitchell, Mark Mitchell, and Andre Scedrov: “A Linguistic Charac-
terization of Bounded Oracle Computation and Probabilistic Polynomial
Time”, in the Proceedings of the 39th Annual IEEE Symposium on Foun-
dations of Computer Science ~ FOCS’98, pp. 725-733, IEEE Computer
Society Press, Palo Alto, CA, November 1998.

Full paper: ftp://www.cis.upeM.edu/pub/papers/scedrov/ppoly.ps.gz

Patrick Lincoln, John Mitchell, Mark Mitchell, and Andre Scedrov: “A
Probabilistic PolyTime Framework”, in the Proceedings of the 5th ACM
Conference on Computer and Communication Security ~ CCS-5, San Fran-
cisco, CA, November 1998

Full paper: http: // www.csl.sri.com/“lincoln/papers/acm-98.ps

Iliano Cervesato, Massimo Franceschet, and Angelo Montanari: “The Com-
plexity of Model Checking in Modal Event Calculi with Quantifiers”, Elec-
tronic Transactions in Artificial Intelligence, vol. 2(1-a), January-June
1998, pp. l-24.

Full paper: http: //www.stanford.edu/-iliano/papers/etai98.ps.gz

Joan Feigenbaum, Sampath Kannan, Moshe Y. Vardi, and Mahesh Viswanathan:
“Complexity of Problems on Graphs Represented as OBDDs”, in the Pro-
ceedings of the 15th Symposium on Theoretical Aspects of Computer Science
~ STACS’98, Paris, France, February 1998.

Full paper: file://ftp.cis.upenn.edu/pub/papers/kannan/mahesh.ps.Z

Patrick Lincoln, John Mitchell, and Andre Scedrov: “Optimization Com-
plexity of Linear Logic Proof Games”, accepted for publication in Theoret-
ical Computer Science.

Fullpaper: ftp://www.cis.upenn.edu/pub/papers/scedrov/approxTCS.ps.gz

A Linguistic Characterization of Bounded Oracle Computation and
Probabilistic Polynomial Time

J. Mitchell * M. Mitchell 1 A. Scedrov 3
Stanford University University of Pennsylvania

{mitchell,mmitchel} @cs.stanford.edu scedrov@saul.cis.upenn.edu

Abstract

We present a higher-order functional notation for
polynomial-time computation with an arbitrary 0, l-
valued oracle. This formulation provides a linguis-
tic characterization for classes such as NP and BPP,
as well as a notation for probabilistic polynomial-
time functions. The language is derived from Hof-
manns adaptation of Bellantoni-Cook safe recursion,
extended to oracle computation via work derivedfrom
that of Kapron and Cook. Like Hofmann’s language,
ours is an applied typed lambda calculus with com-
plexity bounds enforced by a type system. The type
system uses a modal operator to distinguish between
two sorts of numerical expressions. Recursion can
take place on only one of these sorts. The proof
that the language captures precisely oracle polyno-
mial time is model-theoretic, using adaptations of var-
ious techniques from category theory.

1 Introduction

In 1964, Cobham proposed a characterization of
feasible functions that is based on a binary-numeral
form of primitive recursion [7]. In Cobham’s defini-
tion, primitive recursion is restricted in an essentially
ad hoc way, by requiring that any function defined by
primitive recursion be bounded above by some other
function already shown to be computable in polyno-
mial time. Over the past 30+ years, Cobham’s re-

*Partially supported by DOD MURI “Semantic Consistency in
InformatIon Exchange,” ONR Grant NOOO14-97-l-0505, with ad-
ditional support from NSF CCR-9629754.

tAdditiona1 support from Stanford University Fellowship.
t Additional support from NSF Grant CCR-9800785.

cursion scheme has been repeatedly analyzed and re-
worked. One motivation for this line of research has
been to find a “logical” characterization of polynomial
time that does not contain any obvious use of clocks
or other mechanisms that count the number of compu-
tation steps. Another motivation has been to obtain a
characterization of higher-order polynomial time [8].

We present a higher-order typed programming lan-
guage characterizing polynomial-time computation
with a 0, l-valued oracle. Since probabilistic compu-
tation may be characterized as computation relative
to an oracle, where the oracle is chosen probabilis-
tically, we also view the language as characterizing
probabilistic polynomial time computation. The prin-
cipal complexity-theoretic property of the language is
that every function (of a certain syntactic type) that
is definable in the language can be computed in time
that is bounded by a polynomial function of the input,
independent of the oracle. The fact that the running
time is bounded by the same polynomial, for all ora-
cles, makes it possible to capture complexity classes
such as NP and BPP. For example, NP is the class of
languages L for which there exists a particular kind of
terms in the language. In particular, these terms must
be such that for every candidate word s, there is some
oracle r#~ whereby t, computing with the assistance of
the oracle 4, decides s E L. Because we know that
the language captures precisely the oracle polynomial
time functions, we do not need to mention polynomial
time explicitly in the definition.

For those not familiar with the area, it may be help-
ful to point out that there are several incomparable
but equally compelling definitions of the class of com-
putable functions of higher type (e.g., functions with
function inputs). Therefore, we may also expect to
find several apparently reasonable classes of higher-

order polynomial-time functions. (This general is-
sue is discussed in [S], for example.) One natural
approach to higher-order polynomial time is through
programming languages that respect resource bounds.
More specifically, suppose we can define a language
that contains function symbols and such that every
natural number function definable in the language can
be computed in polynomial time. Then we may obtain
a class of “higher-order polynomial time functions”
by treating expressions in the language as functions
of the higher-order variables they contain.

One complication that arises with time-bounded
computation, but not with computability independent
of resource bounds, is that computation time may de-
pend on the values of the input function. For example,
consider a function f(z, g) with natural number input
x and function input g. Suppose that on input x and
g, the function f applies some polynomial-time func-
tion h to g(x). If g is some arbitrary input function,
then we have no reason to expect the size of g(x) to
be bounded by some polynomial in 1x1. If g(x) is ex-
ponentially larger, for example, then the computation
of h(g(x)) may be exponential, even if we just count
the running time of h and assume that g(x) is obtained
in a single step. For this reason, we restrict the oracle
functions to taking only the value 0 and 1. (Of course,
ordinary functions definable in the language may take
arbitrary values.)

The starting point for the work presented here is a
higher-order typed lambda calculus, containing func-
tion symbols of arbitrary type and a form of recur-
sion operator called safe recursion. This calculus
and associated complexity analysis were developed by
Hofmann [111, building on work by Bellantoni and
Cook [3, 51. In brief, Bellantoni-Cook safe recursion
achieves the same goal as Cobham’s restricted form
of primitive recursion, but through different means.
Instead of an explicit bound, there is implicit control
over complexity through the use of two separate lists
of arguments. One list of arguments, called the nor-
nzal arguments, may be used in any way. Arguments
from the second list, referred to as safe, cannot be used
as the recursion argument in any nested safe recursion.
Through this mechanism, described in more detail in
Section 3, it is possible to define all polynomial-time
functions, but it is not possible to nest such compu-
tations a variable number of times. While Bellantoni
and Cook worked in a first-order framework similar to
ordinary primitive recursive notation, Hofmann cap-
tured the safe/normal distinction through a type sys-

tern that brings the system closer to a convenient pro-
gramming language. In particular, Hofmann’s frame-
work allows the use of higher-order functions.

Our extension of Hofmann’s system retains the
typed lambda calculus framework, but allows the use
of an oracle function not assumed definable within
the language. Since a nondeterministic or probabilis-
tic machine uses a different “choice” or random bit
at each branch point, we formulate our oracle primi-
tive as a basic operation that returns the next bit of the
oracle sequence each time it is called. This makes it
easy to show how a probabilistic or nondetetministic
algorithm can be written in our language.

Although it has little direct bearing on the results
described here, our motivation for this work is the
study of security properties. Specifically, as described
in [141, we have developed a language for defining
concurrent systems of probabilistic polynomial-time
processes, with the sequential parts of each process
written using the language described here. In this
framework, the inherent complexity bounds allow us
to quantify over all probabilistic polynomial-time ad-
versaries by quantifying over processes expressible in
the language. Related use of a language framework
to quantify over adversaries has been developed in
[l], but in a more abstract setting without complex-
ity bounds.

2 Polynomial-time functionals

Nondeterministic and probabilistic Turing ma-
chines are usually defined as machines that may have
more than one possible transition from a single con-
figuration [191. The difference between nondetermin-
ism and randomness is not in the structure of the ma-
chine itself, but in the definition of acceptance: a non-
deterministic machine accepts if there is any accept-
ing computation, while probabilistic machines accept
with probability determined by the number of coin
flips along a computation path. It is easy to see that
both forms of Turing machines are equivalent to deter-
ministic Turing machines that use an oracle to decide
which transition to take. Under the oracle-machine
formulation, we would say that a “nondeterministic
machine” accepts input x if there exists some oracle
(representing all nondeterministic choices) that allows
it to accept x. Similarly, we may regard a proba-
bilistic machine as an oracle Turing machine that con-
sults a randomly chosen oracle. Because of the corre-

spondence between branching computation and oracle
computation, common complexity classes such as NP,
PP and BPP are easily characterized using polynomial-
time oracle computation. To be precise, we adopt the
following definition:

Definition 1. A functional f(cp, Z), where cp may be
any function from N to (0, l}, runs in oracle polyno-
mial rime if there exists a polynomial p and an oracle
Turing Machine M whose output with oracle cp and
input Z is f(cp, Z), and such that the running time of
fil on inputs Z is bounded by p(/ZI), where 121 is the
vector 1x1 I , . . . , IX,] and jail = [log, ~1.

It is important to notice that the running time of M
must be bounded by a function of the length of the
integer inputs, independent of the oracle. For this rea-
son, the functions computable by oracle polynomial-
time machines (as defined above) are different from
the functions computable in polynomial time relative
to any fixed oracle.

3 A language for oracle polynomial time

Our language OSLR is an extension of Hofmann’s
SLR with an oracle primitive. A central idea in SLR
is that there are two types of natural number argu-
ments to functions. Arguments of the first type, N,
are bounded numeric values whose length (number
of bits) can only be an additive constant above any
of the input values. Since arguments of type N are
bounded, it is safe to pass them to nested recursive
functions. Arguments of the second type, ON, are
normal natural number arguments that may be poly-
nomially longer than input values of other functions.
To avoid exponential-time computations, there are
syntactic restrictions on primitive recursion that for-
bid use of normal arguments in the recursive position.

The types of SLR and OSLR are given by the gram-
mar

7
..-
..- N (natural numbers)

T-ST (function from safe input)
I I3 + r (functions from unsafe input)

It should be noted here that 0 N is not actually an
SLR type. There are two explanations for this situa-
tion, both equally valid. The simpler explanation is
that Hofmann has modeled in a type system precisely
what Bellantoni presented in a different framework.
In particular, as explained in Section 5.1, Bellantoni

makes use of input parameters of two sorts. There
is only one sort of output in his framework, although
there are syntactic restrictions on the places in which
the output can be used. Hence, in SLR there is never a
modality on the output type of a function. (The natural
numbers are a special case; one may think of them as
functions of no arguments.) The typing rules enforce
the syntactic restrictions on composition.

Alternatively, we may employ an explanation de-
rived from the theory of modal logics. In particular,
the distinction between Or and 7 is related to modal
operators. Originally inspired by type systems de-
rived from linear logic [lo], similar type distinctions
have been used in program analysis and compilation
to characterize the time at which a value becomes
known [9, 201. From the perspective of modal logic,
there do exist modal output types, and consequently,
there is a 0 N type.

One contribution of [1 1] is the limited way that the
modality 0 may occur in types. This avoids the ex-
pression forms associated with ! in linear logic and,
more generally associated with any modal type opera-
tor associated with any monad [IS]. A second innova-
tion we adopt from [1 l] is a form of subtyping, with
A + B <: q A + B, further avoiding explicit con-
versions between types. Together, these innovations
allow a useful form of type inference [111: there is
a type-checking algorithm that can automatically de-
termine the type of any expression, without requiring
the distinction between N and q lN to be written into
expressions. (Since OSLR uses the same overall type
system as SLR, this algorithm carries over to OSLR.)
Thus, from the point of view of modal logic, the type
Cl N exists, but the type-checking algorithm removes
any need for its use.

The expressions of OSLR are given by the following
grammar, where 21 may be any variable and r any type:

e . . -..- 2,
I n
I so I Sl

I (el e2)

case, el zero e2
even e3 odd e4
saferec
rand

(variable)
(numeral)
(doubling functions)
(application)
(abstraction)

(case distinction)
(safe recursion))
(oracle bit)

Variables, lambda abstraction and application are
standard from typed lambda calculus (see, e.g., [17]),
with the modification that fun(w : r) e may have

types r -+ D or Or + ~7, according to the type in-
ference algorithm [111. In particular, a function gets
the former type if and only if the argument of type 7
is not passed to any function expecting a normal in-
put. Functions So and S1 double a number or double
and add 1, and case, has three branches, according
to whether the first argument is zero, odd, or even.
The restricted primitive recursion operator saferec is
described below. The function rand returns the next
bit from the oracle, with repeated calls potentially re-
turning different bits. (There is nothing about this lan-
guage that requires the oracle to be chosen randomly,
but we use rand for oracle access since our primary
interest is in probabilistic polynomial time.)

The type system is an extension of standard typed
lambda calculus, with subtyping as described above
and restrictions on computation achieved by careful
distinction between N and q lN in the typing of basic
operations. The types of constants are as follows:

n : N, when n is an integer constant
so : N-+N
Sl : N+N

case, : N+T+(N+T)+(N+T)+T
saferec : q N+N+(ON+N+N)+N

rand : N

Intuitively, we would expect n : ON for numeral n,
since an explicit numeral has a fixed value, and there-
fore cannot implicitly define a fast-growing function
of any input. However, ON itself is not a type. In-
stead, the typing rules of [111 are formulated so that
it is possible to apply a function of type ON + N
to a numeral, since a numeral does not have any non-
modal free variables.

The intending meaning of the case construct is that

case n zero el even e2 odd e3 =

i

el i f n = O
e2n if n is even
esn if n is odd

The intended meaning of saferec is that

saferec n a f =

i y n (saferec ln/2J a f)
ifn = 0
otherwise

The type of saferec captures the B’ requirements on
predicative recursion described in Section 5.1. In par-
ticular, the output of a sub-recursion is presented to

f in a safe position, i.e., as a N rather than a ON
argument.

Note that rand has side-effects. (In particular, suc-
cessive uses of rand return successive oracle bits, so
we may view a use of rand as incrementing a counter
that indicates which oracle bit should be used as the
value of the next use of rand.) The presence of side-
effects means that the order in which we perform re-
ductions on terms can influence the value of those
terms. For example, consider:

(fun(z : N)(plus 2 x)) rand

where plus : 0 N + 0 N + N is the usual addition
function. Under a “lazy” evaluation scheme, this term
would evaluate to 1, if one of the next two oracle bits
was 0 and the other was 1. We choose a LISP-like
call-by-value evaluation scheme, feeling that it is the
most “natural.” Under our semantics, the term above
can evaluate only to 0 or 2, but never to 1, because
the evaluation of rand happens before the function
application. A complete set-theoretic semantics for
OSLR is given below.

It is worth mentioning one alternate language de-
sign that we considered. Instead of accessing an ora-
cle bit-by-bit using rand : N, we could allow “ran-
dom access” to the entire oracle by including a func-
tion oracle : N -+ N instead. At first glance, it
might seem that the second is more general. How-
ever, it is easy to write a small loop that reads some
polynomial number of oracle bits using rand : N
and concatenates them into an integer value for later
use. In contrast, we were not able to find any direct
way translation in the opposite direction. Specifically,
many randomized algorithms can be written fairly di-
rectly in OSLR using a “next random bit” primitive
rand : N. When we attempted to find syntactic trans-
formations that produced an equivalent algorithm us-
ing an oracle function oracle : N + N, we found
that some artifacts of the type of saferec made it dif-
ficult to maintain a bit counter (indicating the next ora-
cle bit to access) and pass this into and out of primitive
recursive functions. We therefore decided to make a
“next random bit” primitive rand : N a basic func-
tion of OSLR and prove that every function definable
using rand is computable in polynomial time.

4 A Set-Theoretic Semantics for OSLR

We begin by defining a set-theoretic interpretation
Set. I[.] on types. First, we define a mapping Set 1.1 as

A probabilistic poly-time framework for protocol analysis

P. Lincoln*+ J . Mitchell*t M . Mitchell*S
Computer Science Laboratory Department of Computer Science

SRI International Stanford University

A. Scedrov* ~
Department of Mathematics
University of Pennsylvania

Abstract

We develop a framework for analyzing security protocols in
which protocol adversaries may be arbitrary probabilistic
polynomial-time processes. In this framework, protocols are
written in a form of process calculus where security may be
expressed in terms of observational equivalence, a standard
relation from programming language theory that involves
quantifying over possible environments that might interact
with the protocol. Using an asymptotic notion of proba-
bilistic equivalence, we relate observational equivalence to
polynomial-time statistical tests and discuss some example
protocols to illustrate the potential of this approach.

1 Introduction

Protocols based on cryptographic primitives are commonly
used to protect access to computer systems and to protect
transactions over the internet. Two well-known examples
are the Kerberos authentication scheme [15, 141, used to
manage encrypted passwords, and the Secure Sockets Layer
[12], used by internet browsers and servers to carry out se-
cure internet transactions. Over the past decade or two, a
variety of methods have been developed for analyzing and
reasoning about such protocols. These approaches include
specialized logics such as BAN logic [5], special-purpose
tools designed for cryptographic protocol analysis 1131, and
theorem proving [26, 271 and model-checking methods using
general purpose tools [16, 18, 23, 28, 291.

Although there are many differences among these ap-
proaches, most current approaches use the same basic model
of adversary capabilities. This model, apparently derived
from [lo], treats cryptographic operations as “black-box”
primitives. For example, encryption is generally considered
a primitive operation, with plaintext and ciphertext treated
as atomic data that cannot be decomposed into sequences of
bits. In most uses of this model, as explained in [23, 26, 291,

*Partially supported by DOD MURI “Semantic Consistency in In-
formation Exchange,” ONR Grant N00014-97-1-0505.

‘Additional support from NSF CCR-9509931.
*Additional support from NSF CCR-9629754.
§Additional support from Stanford University Fellowship.
BAdditional support from NSF Grant CCR-9800785.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. @ 1998 ACM
l-581 13-002-3/ 98/ 0008

there are specific rules for how an adversary can learn new
information. For example, if the decryption key is sent over
the network “in the clear”, it can be learned by the ad-
versary. However, it is not possible for the adversary to
learn the plaintext of an encrypted message unless the en-
tire decryption key has already been learned. Generally, the
adversary is treated as a nondeterministic process that may
attempt any possible attack, and a protocol is considered
secure if no possible interleaving of actions results in a se-
curity breach. The two basic assumptions of this model,
perfect cryptography and nondeterministic adversary, pro-
vide an idealized setting in which protocol analysis becomes
relatively tractable.

While there have been significant accomplishments using
this model, the assumptions inherent in the standard model
also make it possible to “verify” protocols that are in fact
susceptible to attack. For example, the adversary is not
allowed (by the model) to learn a decryption key by guessing
it, since then some nondeterministic execution would allow a
correct guess, and all protocols relying on encryption would
be broken. However, in some real cases, adversaries can
learn some bits of a key by statistical analysis, and can then
exhaustively search the remaining (smaller) portion of the
key space. Such an attack is simply not considered by the
model described above, since it requires both knowledge of
the particular encryption function involved and also the use
of probabilistic methods.

Another way of understanding the limitations of com-
mon formal methods for protocol analysis is to consider the
plight of someone implementing or installing a protocol. .4
protocol designer may design a protocol and prove that it
is correct using the “black-box” cryptographic approach de-
scribed above. However, an installed system must use a
particular encryption function, or choice of encryption func-
tions. Unfortunately, very few, if any, encryption functions
satisfy all of the black-box assumptions. As a result, an
implementation of a protocol may in fact be susceptible to
attack, even though both the abstract protocol and the en-
cryption function are individually correct.

Our goal is to establish an analysis framework that can
be used to explore interactions between protocols and cryp-
tographic primitives. In this paper, we set the stage for a
form of protocol analysis that allows the analysis of these
interactions as well as many other attacks not permitted in
the standard model. Our framework uses a language for
defining communicating probabilistic polynomial-time pro-
cesses [22]. We restrict processes to probabilistic polynomial
time so that we can say that a protocol is secure if there is

1

no definable program which, when run in parallel with the
protocol, causes a security breach. Establishing a bound on
the running time of an adversary allows us to lift other re-
strictions on the behavior of an adversary. Specifically, an
adversary may send randomly chosen messages, or perform
sophisticated (yet probabilistic polynomial-time) computa-
tion to derive an attack from statistical analysis of messages
overheard on the network. In addition, we treat messages
as sequences of bits and allow specific encryption functions
such as RSA or DES to be written in full as part of a pro-
tocol. An important feature of our framework is that we
can analyze probabilistic as well as deterministic encryption
functions and protocols. Without a probabilistic framework,
it would not be possible to analyze an encryption function
such as ElGamal [ll], for example, for which a single plain-
text may have more than one ciphertext.

In our framework, following the work of Abadi and Gor-
don [I], security properties of a protocol P may be formu-
lated by writing an idealized protocol Q so that, intuitively,
for any adversary M, the interactions between M and P
have the same observable behavior as the interactions be-
tween M and Q. Following [I], this intuitive description
may be formalized by using observational equivalence (also
called observational congruence), a standard notion from
the study of programming languages. Namely, two pro-
cesses (such as two protocols) P and Q are observationally
equivalent, written P = Q, if any program C[P] contain-
ing P has the same observable behavior as the program
C[Q] with Q replacing P. The reason observational equiv-
alence is applicable to security analysis is that it involves
quantifying over all possible adversaries, represented by the
environments, that might interact with the protocol partic-
ipants. Our framework is a refinement of this approach in
that in our asymptotic formulation, observational equiva-
lence between probabilistic polynomial-time processes coin-
cides with the traditional notion of indistinguishability by
polynomial-time statistical tests [17, 301, a standard way
of characterizing cryptographically strong pseudo-random
number generators.

2 A language for protocols and intruders

2.1 Protocol description

A protocol consists of a set of programs that communicate
over some medium in order to achieve a certain task. In this
paper, we are concerned with the security of cryptographic
protocols, which are protocols that use some set of cryp-
tographic operations. For simplicity, we will only consider
protocols that require some fixed number of communications
per instance of the protocol. For example, for each client-
server session, we assume that there is some fixed number of
client-server messages needed to execute the protocol. This
is the case for most handshake protocols, key-exchange pro-
tocols and authentication protocols, such as Kerberos, the
Secure Sockets Layer handshake protocol, and so on. While
we do not foresee any fundamental difficulty in extending
our basic methods to more general protocols that do not
have a fixed bound set in advance, there are some techni-
cal complications that we avoid by making this simplifying
assumption.

We will use a form of A-calculus (a general process cal-
culus) [21] for defining protocols. One reason for using a
precise language is to make it possible to define protocols
exactly. As will be illustrated by example, many protocols

have been described using an imprecise notation that de-
scribes possible traces of the protocol, but does not define
the way that protocol participants may respond to incor-
rect messages or other communication that may arise from
the intervention of a malicious intruder. In contrast, pro-
cess calculus descriptions specify the response to adversary
actions precisely.

The second reason for defining a precise process compu-
tation and communication language is to characterize the
possible behavior of a malicious intruder. Specifically, we
assume that the protocol adversary may be any process or
set of processes that are definable in the language. In the
future, we hope to follow the direction established by the spi-
calculus [l] and use proof methods for forms of observational
congruence. However, in order to proceed in this direction,
we need further understanding of probabilistic observational
congruence and approximations such as probabilistic bisimu-
lation. Since there has been little prior work on probabilistic
process formalisms, one of our near-term goals is to better
understand the forms of probabilistic reasoning that would
be needed to carry out more accurate protocol analysis.

2.2 Protocol language

The protocol language consists of a set of terms, or sequen-
tial expressions that do not perform any communication,
and processes, which can communicate with one another.
The process portion of the language is a restriction of stan-
dard r-calculus. All computation done by a process is ex-
pressed using terms. Since our goal is to model probabilistic
polynomial-time adversaries by quantifying over processes
definable in our language, it is essential that all functions
definable by terms lie in probabilistic polynomial time.

Although we use pseudo-code to write terms in this pa-
per, we have developed an applied, simply-typed lambda cal-
culus which exactly captures the probabilistic polynomial-
time terms. Our language is described in [22].

2 .3 Processes

For any set of terms, we can define a set of processes.
Since we are interested in protocols with a fixed number
of steps, we do not need arbitrary looping. We therefore use
a bounded subset of asynchronous 7r-calculus, given by the
following grammar:

P::=
0 empty process (does nothing)
E(M) transmit value of M on port n
n(x). P read value for z on port n and do P
PIQ do P in parallel with Q
vn. P do P with port n considered private

i$= NIP
execute up to k copies of process P
if M = N then do P (guarded command)

let x = M in P bind variable x to M and do P

2.4 Communication

Intuitively, the communication medium for this language is
a buffered network that allows messages sent by any process
to be received by any other process, in any order. Messages
are essentially pairs consisting of a “port name” and a data
value. The expression E(M) sends a message M on the
port n. In other words, it places a pair (n, M) onto the

2

network. The expression n(z). P matches any pair (n, m)
and continues process P with x bound to value m. When
n(x). P matches a pair (n, M) , the pair (n, M) is removed
from the network and is no longer available to be read by
another process. Evaluation of n(z). P does not proceed
unless or until a pair (n, m) is available.

Although we use port names to indicate the intended
source and destination of a communication, there are no
delivery guarantees in this model. Any process containing
a read expression for a given port can read any message
sent by any other process on that port. In particular, an
adversary can read any public network message sent by any
protocol participant.

Some readers may wonder why reading a message has
the side-effect of removing it from the network. One reason
is that we wish to allow an attacker to intercept messages
without forwarding them to other parties. This may occur
in practice when an attacker floods the subnet of a receiver.
In addition, we may express passive reads, which do not
remove messages from the network, as a combination of de-
structive read and resend. To make this precise, let us write
npasL,(x). P as an abbreviation for n(x). (n(z)) P). It is
not hard to, see that this definable combination of actions
is equivalent to the intuitive notion of a passive read. For
example, consider the process s(a) 1 npasu(z). P 1 Q con-
taining an output and a passive read. If the passive read is
scheduled first, one computation step of this process leads
to ??(a) 1 P[a/z] 1 Q which is what one would expect from
a passive read primitive. Further details on the operational
semantics of the process language appear in Appendix A.

2.5 Example using symbolic cryptosystem

For readers not familiar with 7r-calculus, we give a brief ex-
ample using a simple set of terms with “black-box” cryptog-
raphy. Specifically, for this section only, let us use algebraic
expressions over sorts plain, cipher and key, representing
plaintext, ciphertext and keys, and function symbols

encrypt: plain x key -+ cipher
decrypt: cipher x key + plain

We illustrate the calculus by restating a simple protocol
written in “the notation commonly found in the literature”
where A -+ B indicates a message from A to B.

In the following protocol, .4 sends an encrypted message
to B. After receiving a message back that contains the
original plaintext, A sends another message to B.

A --t B: encrypt (pl, ks) (1)
B + 4: encrypt(conc(pl,pz), kA) [‘2{
.4 --t B: encrypt(ps, kB)

We can imagine that pl is a simple message like “hello”
and p3 is something more critical, like a credit card number.
Intuitively, after A receives a message back containing pl ,
A may believe that it is communicating with B because
only B can decrypt a message encoded with B’s key kB

This protocol can be written in 7r-calculus using the
same cryptographic primitives. However, certain decisions
must be made in the translation. Specifically, the notation
above says what communication will occur when everything
goes right, but does not say how the messages depend on
each other or what might happen if other messages are re-
ceived. Here is one interpretation of the protocol above. In
this interpretation, B responds to A without examining the

contents of the message from A to B. However, in step 3,
A only responds to B if the message it receives is exactly
the encryption of the concatenation of pl and pz

AS(encrypt (PI, ks))
I as(z). sa(encnJpt(conc(decrypt(x, KB),PZ), ka)) [3j
I BA(Y). [decwQ, KA) = conc(pl,pz)l (3)-AB(encvpt(p3, ka))

In words, the protocol is expressed as the parallel composi-
tion of three processes. Port AB is used for messages from
A to B while port BA for messages from B to A.

A fundamental idea that we have adopted from spi-
calculus [l] is that an intruder may be modeled by a pro-
cess context, which is a process expression containing a hole
indicating a place that may be filled by another process.
Intuitively, we think of the context as the environment in
which the process in the hole is executed. To give a specific
example, consider the context

C[] = [] I AB(X).AB(encfYPt(Pl,kc))

where the empty square brackets [] indicate the hole
for an additional process. If we insert a process P
in this context, the resulting process C[P] will run-as(x).~~(encrypt(pl, ICC)) in parallel with P. It is easy
to see that if we insert the protocol above in this context,
then the context could intercept the first message from A
to B and replace it by another one using a different key.

2 . 6 E x a m p l e

Our first example (continued in Section 4.1) is a simple pro-
tocol based on ElGamal Encryption [ll] and Diffie-Hellman
Key Exchange [8], formulated in a way that gives us a series
of steps to look at. The protocol assumes that a prime p
and generator g of 2,* are given and publicly available. Us-
ing the notation commonly found in the security literature,
this protocol may be written

A + B : ga mod p
B -+ A : gb mod p
A + B : msg*gab modp

The main idea here is that by choosing a and receiving
gb mod p, Alice can compute gab mod p. Bob can sim-
ilarly compute gab mod p, allowing Alice and Bob to en-
crypt by multiplying by gab and decrypt by dividing by gab.
It,is generally believed that no eavesdropper can compute
9 mod p by overhearing ga and gb Since this protocol is
susceptible to attack by an adversary who intercepts a mes-
sage and replaces it, we will only consider adversaries who
listen passively and try to determine if the message msg has
been sent.

In 7r-calculus notation, the protocol may be written
as follows. We use the convention that port E, is used
for the ith message from A to B, and meta-notation for
terms that could be written out in detail in our probabilistic
polynomial-time language. To make explicit the assumption
that p and g are public, the protocol transmits them on a
public port.

let p be a random n-bit prime and
g a generator of 2,’

i n PUBLIC(P) 1 PUBLIC(g)
I let a be a random number in [l,p - l]

3

in ABI(~~ mod p)
1 BA(X). ABz(msg + d’ mod p)

] let b be a random number in [l, p - l]
in ABI (y). BA(g’ mod p)

An analysis appears in Section 4.1.

2.7 Parallelism, Nondeterminism and Complexity

For complexity reasons, we must give a nonstandard prob-
abilistic semantics for to parallel composition. Specifically,
our intention is to design a language of communicating pro-
cesses so that an adversary expressed by a set of processes
is restricted to probabilistic polynomial time. However, if
we interpret parallel composition in the standard nondeter-
ministic fashion, then a pair of processes may nondetermin-
istically “guess” any secret information.

This issue may be illustrated by example. Let us assume
that B has a private key Kb that is k bits long and consider
the one-step protocol where A encrypts a message using this
key and sends it to B.

4 -+ B : {msg}K,

We assume that an evil adversary wishes to discover the
message msg. If we allow the adversary to consist of 3
processes Eo , El and E, scheduled nondeterministically,
then this can be accomplished. Specifically, we let

A = ;iTi(encrypt(Kb, msg))
Eo = !kE(O)
El = !kE(l)
E = E(bo). E&-l). AB(X).

Publlc(decrypt(conc(b0,. , bk-l), msg))

Adversary processes EO and El each send k bits to E, all
on the same port. Process E reads the message from A
to B , concatenates the bits that arrive nondeterministically
in some order, and decrypts the message. One possible ex-
ecution of this set of processes allows the eavesdropper to
correctly decrypt the message. Under traditional nondeter-
ministic semantics of parallel composition, this means that
such an eavesdropper can break any encryption mechanism.

Intuitively, the attack described above should not suc-
ceed with much more than probability l/2”, the probability
of guessing key Kb using random coins. Specifically, sup-
pose that the key Kb is chosen at random from a space
of order 2” keys. If we run processes Eo, El, E on phys-
ical computers communicating over an ethernet, for exam-
ple, then the probability that communication from Eo and
El will accidentally arrive at E in an order producing ex-
actly Kb cannot be any higher than the probability of ran-
domly guessing Kb. Therefore, although nondeterminism
is a useful modeling assumption in studying correctness of
concurrent programs, it does not seem helpful for analyzing
cryptographic protocols.

Since nondeterminism does not realistically model the
probability of attack, we use a probabilistic form of par-
allel composition. This is described in more detail in Ap-
pendix A, which contains a full operational semantics.

3 Process Equivalence

Observational equivalence, also called observational congru-
ence, is a standard notion in the study of programming lan-
guages. We explain the general concept briefly, as it arises
in a variety of programming languages.

The main idea is that the important features of a part
of a program, such as a function declaration, processes or
abstract data type, are exactly those properties that can be
observed by embedding them in full programs that may pro-
duce observable output. To formalize this in a specific pro-
gramming language .C, we assume the language definitions
gives rise to some set of program contexts, each context C[]
consisting of a program with a “hole” (indicated by empty
square brackets [1) to insert a phrase of the language, and
some set Obs of concrete observable actions, such as integer
or string outputs. We also assume that there is some se-
mantic evaluation relation ‘z’, with M ‘3’ v meaning that
evaluation or execution of the program M produces the ob-
servable action 21. In a functional language, this would mean
that v is a possible value of M, while in a concurrent setting
this might mean that v is a possible output action. Under
these assumptions, we may associate an experiment on pro-
gram phrase with each context C[] and observable v: given
phrase P, run the program C[P] obtained by placing P in
the given context and see whether observable action v oc-
curs. The main idea underlying the concept of observational
equivalence is that the properties of a program phrase that
matter in program construction are precisely the properties
that can be observed by experiment. Phrases that give the
same experimental results can be considered equivalent.

Formally, we say program phrases P and Q are obser-
vationally equivalent, written P N Q, if, for all program
contexts C[] and observables v E 0, we have

C[P] ‘3’ v i f f C[Q] ‘3’ v

In other words, P E Q if, for any program C[P] contain-
ing P, we can make exactly the same concrete observations
about the behavior of C[P] as we can about the behavior
of the program C[Q] obtained by replacing some number of
occurrences of P by Q.

For the process language considered in this paper, we are
interested in contexts that distinguish between processes.
(We will not need to consider observational equivalence of
terms.) Therefore, the contexts of interest are process ex-
pressions with a “hole”, given by the following grammar

Cl1 :I= [I I n(~).C[l I WI I C[IIQ I
vn.C[]] [M=N]C[]] letx=MinC[]

A process observation will be a communication event on a
port whose name is not bound by v. More specifically, we
let Obs be the set of pairs (n, m) , where n is a port name
and m is an integer, and write P ‘Z’ (n, m) if evaluation
of process expression P leads to a state (represented by
a process expression) of the form In(m) in which the
process is prepared to communicate integer m on port n
and n is not within the scope of a binding vn. (This
can be made more precise using the structural equivalence
relation in the Appendix.) In more general terms, P ‘Z’ v
in our language if process P publicly outputs v.

The general definition of z above is essentially standard
for deterministic or nondeterministic functional, imperative
or concurrent languages. Some additional considerations en-
ter when we consider probabilistic languages. Drawing from
standard notions in cryptography, we propose the following
adaptation of observational equivalence to the probabilistic
polynomial-time process language at hand.

Intuitively, given program phrases P and Q , context C[]
and observable action v , it seems reasonable to compare the

4

Linkaping Electronic Articles in
Computer and Information Science

Vol. 2(1998): nr 1

The Complexity of Model
Checking in Modal Event
Calculi with Quantifiers

Iliano Cervesato
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

iliano@cs.stanford.edu

Massimo F’ranceschet Angelo Montanari
Dipartimento di Matematica e Informatica

Universit& di Udine
Via delle Scienze, 206 ~ 33100 Udine, Italy

{francescJmontana}@dimi.uniud.it

Linkiiping University Electronic Press
LinkGping, Sweden

http://www.ep.liu.se/ea/cis/1998/001/

Abstract

Kowalski and Sergot’s Event Calculus (EC) is a simple tempo-
ral formalism that, given a set of event occurrences, derives the
maximal validity intervals (MVIs) over which properties initi-
ated or terminated by these events hold. It does so in polyno-
mial time with respect to the number of events. Extensions of
its query language with Boolean connectives and operators from
modal logic have been shown to improve substantially its scarce
expressiveness, although at the cost of an increase in compu-
tational complexity. However, significant sublanguages are still
tractable. In this paper, we further extend EC queries by admit-
ting arbitrary event quantification. We demonstrate the added
expressive power by encoding a hardware diagnosis problem in
the resulting calculus. We conduct a detailed complexity analy-
sis of this formalism and several sublanguages that restrict the
way modalities, connectives, and quantifiers can be interleaved.
We also describe an implementation in the higher-order logic
programming language AProlog.

1 Introduction
The Event Calculus, abbreviated EC [9], is a simple temporal formalism
designed to model and reason about scenarios characterized by a set of
events, whose occurrences have the effect of starting or terminating the
validity of determined properties. Given a possibly incomplete description
of when these events take place and of the properties they affect, EC is
able to determine the maximal validity intervals, or MVIs, over which a
property holds uninterruptedly. In practice, since this formalism is usually
implemented as a logic program, EC can also be used to check the truth of
MVIs and process boolean combinations of MVI verification or computation
requests. The range of queries that can be expressed in this way is however
too limited for modeling realistic situations.

A systematic analysis of EC has recently been undertaken in order to
gain a better understanding of this calculus and determine ways of aug-
menting its expressive power. The keystone of this endeavor has been the
definition of an extendible formal specification of the functionalities of this
formalism [3]. This has had the effects of establishing a semantic reference
against which to verify the correctness of implementations [4], of casting EC
as a model checking problem [5], and of setting the ground for studying the
complexity of this problem, which was proved polynomial [2]. Extensions
of this model have been designed to accommodate constructs intended to
enhance the expressiveness of EC. In particular, modal versions of EC [l],
the interaction between modalities and connectives [5], and preconditions [6]
have all been investigated in this context.

In this paper, we continue this endeavor to enhance the expressive power
of EC by considering the possibility of quantifying over events in queries, in
conjunction with boolean connectives and modal operators. We also admit
requests to check the relative order of two events. We thoroughly analyze
the representational and computational features of the resulting formalism,
that we call QCMEC. We also consider two proper sublanguages of it,
EQCMEC, in which modalities are applied to atomic formulas only, and
CMEC, which is quantifier-free. We show that QCMEC and its restric-
tions can effectively be used to encode diagnosis problems. Moreover, we
provide an elegant implementation in the higher-order logic programming
language XProlog [lo] and prove its soundness and completeness. As far as
computational complexity is concerned, we prove that model checking in
CMEC, EQCMEC, and QCMEC is PSPACE-complete. However, while
solving an EQCMEC problem is exponential in the size of the query, it has
only polynomial cost in the number n of events, thus making EQCMEC a
viable formalism for MVI verification or computation. Since in most re-
alistic applications the size of databases (n) dominates by several orders
of magnitude the size of the query, n is asymptotically the parameter of
interest.

The main contributions of this work are: (1) the extension of a family
of modal event calculi with quantifiers; (2) permitting queries to mention
ordering information; (3) the use of the higher-order features of modern
logic programming languages in temporal reasoning; and (4) analyzing the
complexity of model checking in these extensions of EC.

This paper is organized as follows. In Section 2, we formalize QCMEC
and significant subcalculi. Section 3 exemplifies how this calculus can ade-
quately model certain hardware diagnosis problems. In Section 4, we briefly
introduce the logic programming language AProlog, give an implementation
of QCMEC in it and prove the soundness and completeness of the resulting

program. We study the complexity of QCMEC and its sublanguages in
Section 5. We outline directions of future work in Section 6.

2 Modal Event Calculi with Quantifiers
In this section, we first briefly recall the syntax and semantics of a number of
modal event calculi. We invite the interested reader to consult [l, 3, 5, 8, 91
for motivations, examples, properties, and technical details. We then extend
these basic definitions to give a semantic foundation to refinements of these
calculi with quantifiers.

2.1 Event Calculus

The Event Calculus (EC) [9] and the extensions we propose aim at modeling
scenarios that consist of a set of events, whose occurrences over time have the
effect of initiating or terminating the validity of properties, some of which
may be mutually exclusive. We formalize the time-independent aspects of
a situation by means of an EC-structure [l], defined as follows:

Definition 2.1 (EC-structure)
A structure for the Event Calculus (or EC-structure) is a quintuple

?t = (E, P, [.), (.I, I.;[) such that:

l E = {el,...,e,} and P = {pl,...,p,} arefinite sets ofevents and
properties, respectively.

l [.) : P + 2E and (.I : P -+ 2E are respectively the initiating and
terminating map of’R. For every property p E P, [p) and (p] represent
the set of events that initiate and terminate p, respectively.

l].;[C P x P is an irreflexive and symmetric relation, called the exclu-
sivity relation, that models exclusivity among properties. 0

As in the original EC paper [9], we define the initiating and terminating
maps in terms of event occurrences rather than event types. The latter
approach can however easily be accomodate in our setting.

The temporal aspect of EC is given by the order in which events hap-
pen. Unlike the original presentation [9], we focus our attention on situa-
tions where the occurrence time of events is unknown and only assume the
availability of incomplete information about the relative order in which they
have happened. We however require the temporal data to be consistent so
that an event cannot both precede and follow some other event. Therefore,
we formalize the time-dependent aspect of a scenario modeled by EC by
means of a (strict) partial order, i.e. an irreflexive and transitive relation,
over the involved set of event occurrences. We write IV, for the set of all
partial orders over the set of events E in an EC-structure ‘H, use the letter
w to denote individual orderings, or knowledge states, and write el cw e2
to indicate that ei precedes e2 in w. The set Wx of all knowledge states
naturally becomes a reflexive ordered set when considered together with the
usual subset relation C, which is indeed reflexive, transitive and antisym-
metric. An extension of a knowledge state w is any element of Wx that
contains w as a subset. We write Extx(w) for the set of all extensions of
the ordering w in Wx.

Given a structure ‘H = (E, P, [.), (.I, I.;[) and a knowledge state w,
EC permits inferring the maximal validity intervals, or MVIs, over which a
property p holds uninterruptedly. We represent an MVI for p as p(ei, et),

Complexity of Problems on Graphs Represented
as OBDDs*

J. Feigenbaum,’ S. Kannan,’ ** M. Y. Vardi,3 *** M. Viswanathan2 1

’ AT&T Labs - Research
Room C203, 180 Park Avenue
Florham Park, NJ 07932 USA

jfBresearch.att.com
’ Computer and Information Sciences

University of Pennsylvania
Philadelphia, PA 19104 USA

kannanQcentral.cis.upenn.edu
maheshv@gradient.cis.upenn.edu

3 Computer Science
Rice University

Houston, TX 77251 USA
vardi@cs.rice.edu

Abstract. To analyze the complexity of decision problems on graphs,
one normally assumes that the input size is polynomial in the number
of vertices. Galperin and Wigderson [GW83] and, later, Papadimitriou
and Yannakakis [PY86] investigated the complexity of these problems
when the input graph is represented by a polylogarithmically succinct
circuit. They showed that, under such a representation, certain trivial
problems become intractable and that, in general, there is an exponen-
tial blow up in problem complexity. Later, Balcazar, Lozan, and Torin
[Bal96,BL89,BLT92,Tor88] extended these results to problems whose in-
puts were structures other than graphs.
In this paper, we show that, when the input graph is represented by a
ordered binary decision diagram (OBDD), there is an exponential blow
up in the complexity of most graph problems. In particular, we show that
the GAP and AGAP problems become complete for PSPACE and EXP,
respectively, when the graphs are succinctly represented by OBDDs.

* An extended abstract of this paper appears in the Proceedings of the 1998 Sympo-
sium on Theoretical Aspects of Computer Science.

l * Work done in part as a consultant to AT&T and supported in part by NSF grant
CCR96-19910 and ONR Grant N00014-97-1-0505.

* + + Work done as a visitor to DIMACS and Bell Laboratories as part of the DIMACS
Special Year on Logic and Algorithms and supported in part by NSF grants CCR-
9628400 and CCR-9700061 and by a grant from the Intel Corporation.

+ Supported by grants NSF CCR-9415346, NSF CCR-9619910, AFOSR F49620-95-1-
0508, AR0 DAAH04-95-1-0092, and ONR Grant N00014-97-1-0505.

1 Introduction

The efficiency of algorithms is generally measured as a function of input size
[CLR89]. In analyses of graph-theoretic algorithms, graphs are usually assumed
to be represented either by adjacency matrices or by adjacency lists. However,
many problem domains, most notably computer-aided verification [Bry86,BCM+92,Kur94a],
involve extremely large graphs that have regular, repetitive structure. This reg-
ularity can yield very succinct encodings of the input graphs, and hence one
expects a change in the time- or space-complexity of the graph problems.

The effect of succinct input representations on the complexity of graph prob-
lems was first formalized and studied by Galperin and Wigderson [GW83]. They
discovered that, when adjacency matrices are represented by polylogarithmically-
sized circuits, many computationally tractable problems become intractable.
Papadimitriou and Yannakakis [PY86] later showed that such representations
generally have the effect of exponentiating the complexity (time or space) of
graph problems. Following this line of research, Balcazar, Lozano, and Toran
[Ba196,BL89,BLT92,TorSS] extended these results to problems whose inputs were
structures other than graphs and provided a general technique to compute the
complexity of problems with inputs represented by succinct circuits [BLT92].
They also provide sufficiency conditions for problems that become intractable
when inputs are represented in this way. Veith [Vei95,Vei96] showed that, even
when inputs are represented using Boolean formulae (instead of circuits), a prob-
lem’s computational complexity can experience an exponential blow-up. He also
provides sufficient conditions for when the problems become hard.

The possibility of representing extremely large graphs succinctly has at-
tracted a lot of attention in the area of computer-aided verification [Bry86,BCMf92,Kur94a].
In this domain, graphs are represented by ordered binary decision diagrams (OB-
DDs). OBDDs are special kinds of rooted, directed acyclic graphs that are used
to represent Boolean formulae. Because of their favorable algorithmic proper-
ties, they are widely used in the areas of digital design, verification, and testing
[Bry92,BCMf92,McM93]. Experience has shown that OBDD-based algorithmic
techniques scale up to industrial-sized designs [CGH+95], and tools based on such
techniques are gaining acceptance in industry [BBDG+94]. Although OBDDs
provide canonical succinct representations in many practical situations, they
are exponentially less powerful than Boolean circuits in the formal sense that
there are Boolean functions that have polynomial-sized circuit representations
but do not have subexponential-sized OBDD representations [Pon95a,Pon95b].
(On the other hand, the translation from OBDDs to Boolean circuits is linear
[Bry86].) Thus, the results of [BL89,BLT92,GW83,PY86,TorSS,Vei95,Vei96] do
not apply to OBDD-represented graphs. Furthermore, even though Boolean for-
mulae are, in terms of representation size, less powerful than circuits, they are
still more succinct than OBDDs. Translation from OBDDs to formulae leads to
at most a quasi-polynomial (n“‘gn) blow-up, whereas there are functions (e.g.,
multiplication of binary integers) that have polynomial-sized formulae but re-
quire exponential-sized OBDDs. Indeed, while the satisfiability problem is NP-

complete for Boolean formulae, it is in nondeterministic logspace for OBDDs
[Bry86]. Therefore, the results in [Vei95,Vei96] do not apply to our case.

In this paper, we show that, despite these theoretical limitations on the
power of OBDDs to encode inputs succinctly, using them to represent graphs
nonetheless causes an exponential blow-up in problem complexity. That is, the
well-studied phenomenon of exponential increase in computational complexity
for graph problems with inputs represented by Boolean circuits or formulae
[BL89,BLT92,GW83,PY86,TorSS,Vei95,Vei96] also occurs when the graphs are
represented by OBDDs. Graph properties that are ordinarily NP-complete be-
come NEXP-complete. The Graph Accessibility Problem (GAP) and the Al-
ternating Graph Accessibility Problem (AGAP) for OBDD-encoded graphs are
PSPACE-complete and EXP-complete, respectively. Both GAP and AGAP are
important problems in model checking, a domain in which OBDDs are widely
used [BCM+92,EL86,KV96,Kur94b].

In section 2, we formally define OBDDs and present some known results
about them. In section 3, we discuss the problem in greater detail and compare
Papadimitriou and Yannakakis’s result to ours. Finally, in sections 5-7, we give
our technical results.

2 Preliminaries

Definition 1. A Binary Decision Diagram (BDD) is a single-rooted, directed
acyclic graph in which

- Each internal node (i.e., a node with nonzero outdegree) is labeled by a
Boolean variable.

- Each internal node has outdegree 2. One of the outgoing edges is labeled 1
(the “then-edge”) and the other is labeled 0 (the “else-edge”).

- Each external node (i.e., a node with zero outdegree) is labeled 0 or 1.

Let X = {zi, x2,. . , z,} be the set of Boolean variables that occur as labels
of nodes in a given BDD B. Each assignment N = (ai, ~2,. . . , Q,) of Boolean
values to these variables naturally defines a computational path - the one that
leads from the root to an external node and has the property that, when it
reaches a node labeled xi, it follows the edge labeled oi, for any i.

Definition 2. A BDD B represents the Boolean function f(x1, x2,. . ,x,) if,
for each assignment cy = (ai, (~2, . . , a,) to the variables of f, the computation
path defined by o terminates in an external node that is labeled by the value
f(Ql,Q2,.‘.,%J.

Definition 3. Two nodes u and ~1 of a BDD are equivalent if the BDD rooted at
u and u represent the same boolean function. A BDD in which no two different
nodes are equivalent is called reduced.

Definition 4. Let < be a total ordering on a set X. An Ordered Binary Decision
Diagram (OBDD) over (X, <) is a reduced BDD with node-label set X such that,
along any path from the root to an external node, there is at most one occurrence
of each variable, and the order in which the variables occur along the path is
consistent with the order (X, <). The size of an OBDD is the number of internal
nodes in it.

Definition 5. An OBDD 0 represents the graph G = (V, E) if 0 represents the
Boolean function adj, where

.dj(v,vz) =
lifandonlyif<vr,u2>EE
0 otherwise

Theorem 6 (Bryant [Bry86]). For each Boolean function f and ordering (X, <
) of the set of variables X, there is a unique (up to isomorphism) OBDD over
(X, <) that represents f.

Theorem 7 (Bryant [Bry86]). Let F and G be OBDDs over (X, <) repre-
senting functions f and g, respectively. Let the size of F be m, the size of G be
n, and < op > be any Boolean operation. Then there is an OBDD over (X, <) of
size at most mn and constructable in time polynomial in m and n that represents
f <op>g.

Definition 8. Let L = (G, <) be a linear order on the gates of a circuit, where
the inputs and outputs are classified as special instances of gates. We say that
the forward cross section of the circuit at gate g is the set of wires connected
to the output of some gate gr and an input of some gate gs such that gr < g
and g < ~2. The reverse cross section of the circuit at gate g is the set of wires
connected to an output of some gate gr and an input of some gate g2 such that
~2 I g and g -C 91.

Definition 9. The forward width of a circuit under order L, denoted w~f, is
the maximum, over all gates g, of the forward cross section at g. Similarly, the
reverse width of the circuit under order L, denoted by w,, is the maximum, over
all gates g, of the reverse cross section at g.

Theorem 10 (Berman [Ber89]). For a circuit and gate-ordering with wr =
0, there exists a variable ordering such that the OBDD size is bounded by n2”f,
where n is the number of inputs to the circuit.

Notation: We will be interested in complexity classes C that have universal
Turing machines and complete problems. Let UC denote the Universal Turing
machine for the complexity class C. Let C(Uc) be the language accepted by the
machine UC i .e . , L(Vc) = {x ’ x encodes a C-bounded Turing machine M and
an input y such that M accepts y}.

For an n-bit number x, we will refer to the ith bit by ~(~1, where zcn) is the
most significant bit.

Optimization Complexity of Linear Logic Proof Games

Patrick D. Lincoln* John C. Mitchell+ Andre Scedrovl

Abstract
A class of linear logic proof games is developed, each with a numeric score that depends
on the number of preferred axioms used in a complete or partial proof tree. The com-
plexity of these games is analyzed for the NP-complete multiplicative fragment (MLL)
extended with additive constants and the PsPAcE-complete multiplicative, additive frag-
ment (MALL) of propositional linear logic. In each case, it is shown that it is as hard to
compute an approximation of the best possible score as it is to determine the optimal
strategy. Furthermore, it is shown that no efficient heuristics exist unless there is an
unexpected collapse in the complexity hierarchy.

‘lincolnQcs1. sri. corn SRI International Computer Science Laboratory, Menlo Park C.4 94025 USA. Work sup-
ported under NSF Grant CCR-9224858 and ONR Grant N00014-95-C-0168.

tmitchell@cs.stanford.edu WWW: http://theory.stanford.edu/people/jcm/home.html Department of
Computer Science, Stanford University, Stanford, CA 94305-9045 USA. Partially supported by NSF Grants CCR-
9303099 and CCR-9629754.

rscedrovQcis.upenn.eduWWW:http:// VYU. cis . upenn. edu/-scedrov Department of Mathematics, University
of Pennsylvania, Philadelphia, PA 19104-6395 USA. Partially supported by NSF Grant CCR-94-00907, by ONR Grant
X00014-92-J-1916, and by a Centennial Research Fellowship from the American Mathematical Society.

1 Introduction

Linear logic, introduced in [12], is a refinement of classical logic often described as being resource
sensitive because of its intrinsic ability to reflect computational states, events, and resources [13, 32,
33, 231. Several notions of game semantics for linear logic are investigated in [6, 1, 2, 15, 19, 17, 91.

Connections between linear logic and probabilistic games considered in complexity theory are
investigated in [24, 27, 251. In particular, linear logic proof search may also be seen as a game. This
game, the linear logic proof game, is played on linear logic formulas, and its moves are instances
of inference rules of linear logic. There are two players, called proponent and opponent, and a
separate verifier. Proponent’s goal is to play a sequence of moves that constitute a formal proof
of an input formula, consisting of axioms and matching inference rules. Opponent tries to force
the direction of proponent’s evidence in a way that makes it impossible for proponent to obtain a
formal proof. Several versions of this game are discussed in [25, 271, each with a numeric score that
reflects the number of certain preferred axioms used in a complete or partial formal proof. The
capabilities of the players may differ. While proponent is always omnipotent, in some versions of
the game opponent’s decisions are based only on a fair coin toss.

Two fragments of propositional linear logic are considered here: the multiplicative additive
fragment, MALL, and the multiplicative fragment extended with additive constants, MLLT. MALL

is PSPACE-COIIIpkte [2O]. It follows from the NP-completeness of the pure multiplicative fragment,
MLL [18, 221, that MLLT is NP-COIqhk. These are global hardness properties in that they provide
lower bounds on proponent’s optimal strategy.

Games from complexity-theoretic literature [5, 14, 28, 34, 11, 8, 7, 16, 301 may be represented in
the linear logic proof game, with the new complexity results obtained as corollaries of the complexity
properties of games from the literature just mentioned. A representative case is studied here in
detail in Section 7. The reader is referred to [25] for an outline of other cases and for a brief
overview of the relevant notions and results from complexity theory. The game representations
considered in Section 7 are defined in a move-by-move fashion; that is, they preserve proponent’s
moves, opponent’s moves, proponent’s strategies, as well as proponent’s optimal strategies (that is,
optimal with respect to the score).

In this way, one transfers to the linear logic proof game the complexity lower bounds for the
approximation of the expected score when proponent plays optimally. In the case of the PSPACE-
complete multiplicative-additive fragment of propositional linear logic [20], it is shown in Section 3
that it is as hard to compute an approximation of the optimal score as it is to determine proponent’s
optimal strategy.

One way to explain this intuitively and informally is that provability in linear logic is not only
globally hard, but also locally hard. Indeed, in chess and in many other intricate games choosing
the best next move often seems just as hard as developing a complete winning strategy. In other
words, these games are locally hard. This property is studied in Section 8 for the linear logic proof
game. Let us say that an c-heuristic, where 0 < E < 1, is a function from formulas to instances
of inference rules (that is, proponent’s strategy) such that the optimum score arising from the use
of this inference rule instance is close (within multiplicative ratio E) of the optimal score. It is
shown that unless P = NP, there is no polynomial-time e-heuristic for MLLT. It is also shown that
computing any c-heuristic H for MALL would allow us to decide membership in any language in
PSPACE, using time and space at most a polynomial greater than the time and space needed to
compute H.

2 Linear logic proof games

Let p be a propositional atom, let A,B be MALL formulas, let I’, f& 0, S be finite multisets of
MALL formulas, and let C be a finite multiset of literals or constants l,O. We write A kd 0 for the
(disjoint) multiset union of A and 0. As usual, we write P, A for the multiset obtained by adding
an instance of A to I?. An expression of the form t- P is called a sequent. An expression of the
form F C is called a primitive sequent.

The English names for MALL inference rules are: identity, cut, par, tensor, bottom, one, plus,
with, and top. 8 and 28 are multiplicative connectives; 1 and I are multiplicative propositional
constants. $ and & are additive connectives; 0 and T are additive propositional constants. There
is no rule for 0. Linear negation ‘, mentioned in the identity and cut rules, is defined by recursion
on the structure of formulas: (p’)’ is p, (A ~3 B)’ is A128B’, (A28B)’ is A’ @ Bl, II is I,
li is 1, (A&B)‘- is A’@B’, (AcDB)’ is Al&B’, T’ is 0, and O1 is T.

MALL proof rules are

I t- P>Pi
tA,r tA",A

t r,n c u t

38
tA,B,r tA,r tB,A

t- war t (AcM),I',A '

I
tr
t-,r t-1 1

CD1 tA,r tA,r
t (A@ B),I’

t-B,r &
t (A&B),I’

a32
tB,r

t(A@B),r t T,r T

MALL enjoys the cut-elimination property and the subformula property [12, 201. In particular, if
a MALL formula is provable, then it is provable without the use of the cut rule, and the required
proof rules involve only subformulas of the given formula. The fragment MLLT consists of MALL
formulas that do not involve & , ~3. The inference rules of MLLT are the rules of MALL except the
rules for & , $. The cut-elimination and subformula properties again hold for MLL T .

Let us describe several variations of the proof game discussed in [24, 27, 251, all involving the
same moves. There are two players, called proponent and opponent, and a separate, polynomial-
time verifier. Proponent’s goal is to play a number of moves demonstrating or giving evidence for
a sequent. In order to do this, proponent plays proof rule instances. Opponent tries to force the
direction of proponent’s evidence in a way that makes it impossible for proponent to win. Opponent
plays special markers that may block one side of proponent’s & moves. If proponent plays a @
move, then opponent does not block either of the premises. Note that opponent is absent in the
case of MLL T , that is, the game on MLL T sequents is a kind of solitaire game.

Polynomial-time verifier scores completed plays of the game. Various forms of the game differ
in the way they are scored. The main objective of proponent is to never allow opponent to succeed
in forcing an unprovable primitive sequent. However, in some forms of the game proponent will
be more ambitious, that is, in addition to the main requirement, proponent will try to achieve the
best score possible.

3

Let us first consider a simple version of the game against a randomized opponent, which can
be described as an avg/max game played on MALL sequents. The game may also be presented as a
board game with tiles, where each tile is marked by a linear logic inference rule [24, 261. Proponent
chooses the inference rule to be applied. In the case 8, proponent chooses a partition and requires
both associated expressions to be evaluated. In the case @, proponent chooses which of the two
expressions will be evaluated. In the case &, opponent chooses by a fair coin toss which of the
two expressions will be evaluated. In the case of a primitive sequent, verifier simply computes the
value. Each sequent containing the constant T , each identity axiom, and each primitive sequent
containing only the constant 1 is scored 1 by verifier. All other primitive sequents are scored 0.
Each completed play of the game is scored as the minimum of the scores of terminal sequents
obtained in the play. Note that the number of moves is finite; indeed, it is polynomial in the size
of a given MALL sequent. Proponent wins when each encountered primitive sequent is an identity
axiom or the constant 1.

Let us define the function p, which represents the expected score when proponent plays opti-
mally.,

p(r) = ma+(r’; A) 1 r = rf, A),

/@‘;A@ B) = maz{min{~(A, A), /L(@, B)} 1 A kd 0 = I’},

/C AW = cL(r, A, B),

p(I’; A $ B) = ~~4~(r,A), a, B)h

r4r; A&B) = ;[,l(r, 4 + 0, WI,
a; 1) = m,

P(C T) = 1,
P(C) =

1 if C is 1 or an axiom,
0 otherwise.

Let us emphasize that, for any MALL sequent t E, the value ~(2) is the maximum possible value
satisfying these recursive conditions. Specifically, if any encountered sequent contains composite
formulas, then several clauses regarding p(I’; A) might be applicable. The following proposition is
proved by induction on the number of symbols in E.

Proposition 2.1 A play of the simple linear logic proof game is won by proponent iff the score of
the play is equal to 1. Furthermore, a MALL sequent t Z is provable iff p(E) = 1. In addition, if
I-E is unprovuble and does not contain 63, then p(Z) = 0.

However, note that p(Z) may be arbitrarily close to 1 if t Z is unprovable and contains &
The more involved, weighted version of the linear logic proof game against a randomized oppo-

nent may also be presented as an avg/max game. The players’ moves and the winning condition
are the same as in the simple game just described. However, in this version of the game, propo-
nent also attempts to use as many certain preferred axioms as possible. Preferred axioms are, say,
instances of a distinguished axiom t- d, d’ , where the propositional atom d is fixed in advance. In
this version, proponent gets one point for each instance of the distinguished axiom t d, d’ encoun-
tered in a play, but no points are awarded if a primitive sequent t C is any other identity axiom

4

Part V

Logic and Programming Languages

Stephen Freund and John Mitchell: “A Type System for Object Initializa-
tion in the Java Bytecode Language”, to appear in the ACM Transations
on Programming Languages and Systems (TOPLAS), ACM Press

Full paper: http://cs.stanford.edu/"freunds/objinit-toplas.ps

Stephen Freund and John Mitchell: “A Formal Framework for the Java
Bytecode Language and Verifier”, to appear in the Proceedings of the 1999
ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications ~ OOPSLA’99, Denver, CO, November 1999.

Full paper: http: //cs.stanford.edu/-freunds/jvm-type-oopsla.ps

Iliuno Cervesuto: “Logical Framework Design: Why not just classical logic?“,
accepted for publication in Information in Formation: Proceedings of the
Seventh CSLI Workshop on Logic, Language and Computation (M. Faller,
S. Kaufmann, M. Pauly editors), CSLI Publications, 1999.
Full paper:
http://www.stanford.edu/"iliano/papers/Forthcoming/csli99.ps.gz

Stephen N. Freund and John Mitchell: “Specification and Verification of
Java Bytecode Subroutines and Exceptions (summary)“, Technical Note
CS-TN-99-91, Computer Science Department, Stanford University, August
1999

Full paper: http: / /cs .stanford.edu/"freunds/subexc-tn.ps

Iliano Cervesato, Vuleriu de Paivu and Eike Ritter: “Explicit Substitutions
for Linear Logical Frameworks: Preliminary Results”, in the Proceedings

of the Workshop on Logical Frameworks and Meta-languages - LFM’99,
(A. Felty, editor), Paris, France, 28 September 1999.

Full paper: http://www.stanford.edu/"iliano/papers/lfm99.ps.gz

Stephen N. Freund: “The Costs and Benefits of Java Bytecode Subrou-
tines”, in the Proceedings of the Formal Underpinnings of Java Workshop
at OOPSLA, 1998.

Full paper: http://theory.stanford.edu/-freunds/subcost.ps

A Type System for Object Initialization
In the Java*” Bytecode Language

St,ephen N. Freund* John C. Mitchell*
Department’ of Computer Science

Stanford University
St,anford, CA 94305-9045

{freunds, mitchell}(Pcs.stanford.edu
Phone: (650) 7’23-2048, Fax: (650) 725-4671

August) 25, 1999

Abstract

In the standard Java implementation, a Java language program is compiled to Java bytecode.
This byterode may be sent across the network to another site, where it is then executed by the
.Java Virtual Machine. Since bytecode may be written by hand, or corrupted during network
transmission. the Java Virtual Machine contains a bytecode verifier that performs a number of
consistency checks before code is run. These checks include type correctness and: as illustrated
by previous attacks on the Java Virtual Machine. they are critical for system security. In order to
analyze existing bytecode verifiers and to understand the properties that should be verified, we
develop a precise specification of statically-correct Java bytecode, in the form of a type system.
Our focus in this paper is a subset of the bytecode language dealing with object creation and
initialization. For this subset, we prove that for every Java bytecode program that satisfies
our typing constraints, every object is initialized before it is used. The type system is easily
combined with a previous system developed by Stata and Abadi for bytecode subroutines. Our
analysis of subroutines and object initialization reveals a previously unpublished bug in the Sun
JDK bytecode verifier.

1 Introduction
The Java programming language is a statically-typed general-purpose programming language with
an implementation architecture that is designed to facilitate transmission of compiled code across a
network. In the standard implementation, a Java language program is compiled to a Java bytecode
program and this program is then interpreted by the Java Virtual ILlachine. While many previous
programming languages have been implemented using a bytecode interpreter, the Java architecture
differs in that programs are commonly transmitted between users across a network in compiled form.

Since bytecode programs may be written by hand, or corrupted during network transmission,
the Java Virtual i\/Iachine contains a bytecode verifier that performs a number of consistency checks

*Supported in part by NSF grants CCR-9303099 and CCR-9629754. and ONR MURI Award N00014-97-1-0505.
Stephen Freund received additional support through an NSF Graduate Research Fellowship. A preliminary version
of this paper appeared at OOPSLA ‘98.

A,java Axlass

class A {
void f0 {

class file 1.
B.class

ne twor6 .
.

.

class file

Java Virtual Machine

Loader
.I. .. 1

Verifier

1
Linker

1
Bytecode

Interpreter

Figure 1: The Java Virtual Machine

before code is executed. Figure 1 shows the point at which the verifier checks a program during
the compilation, transmission, and execution process. After a class file containing Java bytecodes is
loaded by the Java Virtual Machine, it must pass through the bytecode verifier before being linked
into the execution environment and interpreted. This protects the receiver from certain security
risks and various forms of attack.

The verifier checks to make sure that every opcode is valid, all jumps lead to legal instructions,
methods have structurally correct signatures, and that type constraints are satisfied. Conservative
static analysis techniques are used to check these conditions. The need for conservative analysis
stems from the undecidability of the halting problem, as well as efficiency considerations. As a
result: many programs that would never execute an erroneous instruction are rejected. However,
any bytecode program generated by a conventional compiler is accepted. Since most bytecode
programs are the result of compilation. there is very little benefit in developing complex analysis
techniques to recognize patterns that could be considered legal but do not occur in compiler output.

The intermediate bytecode language, which we refer to as JVML, is a typed, machine-independent
form with some low-level instructions that reflect specific high-level Java source language constructs.
For example, classes are a basic notion in JVML, and there is a form of ‘Yocal subroutine” call and
return designed to allow efficient implementation of the source language try-f inally construct.
While some amount of type information is included in JVML to make type checking the possible,
there are some high-level properties of Java source code that are not easy to detect in the resulting
bytecode program. One example is the last-called first-returned property of the local subroutines.
While this property will hold for every JVML program generated by compiling Java source, some
effort is required to confirm this property in bytecode programs [SA99].

Another example is the initialization of objects before use. While it is clear from the Java source

2

language statement

A x = new A ((parameters)) ;

that the A class constructor will be called before any methods can be invoked through the object
reference x, this is not obvious from a simple scan of the resulting JVML program. One reason is that
many bytecode instructions may be needed to evaluate the parameters for the call to the constructor.
In a bytecode program, these instructions will be executed after space has been allocated for the
object and before the object is initialized. Another reason, discussed in more detail in Section 2,
is that the structure of the Java Virtual Machine requires copying pointers to uninitialized objects.
Therefore, some form of aliasing analysis is needed to make sure that an object is initialized before
it is used.

Several published attacks on various implementations of the Java Virtual Machine illustrate the
importance of the bytecode verifier for system security. To cite one specific example, a bug in an
early version of Sun’s bytecode verifier allowed applets to create certain system objects which they
should not have been able to create, such as class loaders [DFWB97]. The problem was caused
by ‘an error in how constructors were verified and resulted in the ability to potentially compromise
the security of the entire system. Clearly, problems like this give rise to the need for a correct and
formal specification of the bytecode verifier. However! for a variety of reasons, there is no established
formal specification; the primary specification is an informal English description that is occasionally
at odds with current verifier implementations.

Building on a prior study of the bytecodes for local subroutine call and return [SA99], this paper
develops a specification of statically-correct bytecode for a fragment of JVML that includes object
creation (allocation of memory) and initialization. This specification has the form of a type system,
although there are several technical ways in which a type system for low-level code with jumps and
type-varying use of stack locations (or registers) differs from conventional high-level type systems.
We prove soundness of the type system by a traditional method using operational semantics. It
follows from the soundness theorem that any bytecode program that passes the static checks will
initialize every object before it is used. We have examined a broad range of alternatives for specifying
type systems capable of identifying that kind of error. In some cases, we found it possible to simplify
our specification by being more or less conservative than current verifiers. However: we generally
resisted the temptation to do so since we hoped to gain some understanding of the strength and
limitations of existing verifier implementations. One of these tradeoffs is discussed in Section 6.

In addition to proving soundness for the simple language: we have structured the main lemmas
and proofs so that they apply to any additional bytecode instructions that satisfy certain general
conditions. This makes it relatively straightforward to combine our analysis with the prior work
of Abadi and Stata. showing type soundness for bytecode programs that combine object creation
with subroutines. In analyzing the interaction between object creation and subroutines, we have
identified a previously unpublished bug in the Sun implementation of the bytecode verifier. This
bug allows a program to use an object before it has been initialized; details appear in Section 7.
Our type-based framework also made it possible to evaluate various ways to fix this error and prove
correctness for a modified system.

Section 2 describes the problem of object initialization in more detail, and Section 3 presents
JVML,, the language which we formally study in this paper. The operational semantics and type
system for this language is presented in Section 4. Some sound extensions to our type system,
including subroutines, are discussed in Section 6, and Section 7 describes how this work relates to
Sun’s implementation. Section 8 discusses some other projects dealing with bytecode verification,
and Section 9 gives directions for future work and concludes.

3

2 Object Initialization
As in many other object-oriented languages, the Java implementation creates new objects in two
steps. The first step is to allocate space for the object. This usually requires some environment-
specific operation to obtain an appropriate region of memory. In the second step, user-defined code
is executed to initialize the object. In Java, the initialization code is provided by a constructor
defined in the class of the object. Only after both of these steps are completed can a method be
invoked on an object.

In the Java source language, allocation and initialization are combined into a single statement,
as illustrated in the following code fragment:

Point p = new Point (3) ;
p.Print 0 ;

The first line indicates that a new Point object should be created and calls the Point constructor to
initialize this object. The second line invokes a method on this object and, therefore, can be allowed
only if the object has been initialized. Since every Java object is created by a statement like the
one in the first line here, it does not seem difficult to prevent Java source language programs from
invoking methods on objects that have not been initialized. While there are a few subtle situations
to consider, such as when a constructor throws an exception, the issue is essentially clear cut.

It is much more difficult to recognize initialization-before-use in bytecode. This can be seen by
looking at the five lines of bytecode that are produced by compiling the preceding two lines of source
code:

1 : n e w #I <Class P o i n t >
2: dup
3: iconst-3
4: invokespecial #4 <Method Point(int)>
5: invokevirtual #5 <Method void Print (> >

The most striking difference is that memory allocation (line 1) is separated from the constructor
invocation (line 4) by two lines of code. The first intervening line, dup, duplicates the pointer to the
uninitialized object. The reason for this instruction is that a pointer to the object must be passed
to the constructor. As a convention of the stack-based virtual machine architecture, parameters to
a function are popped off the stack before the function returns. Therefore, if the address were not
duplicated, there would be no way for the code creating the object to access it after it is initialized.
The second line, iconst-3 pushes the constructor argument 3 onto the stack. If p were used again
after line 5 of the bytecode program, another dup would have been needed prior to line 5.

Depending on the number and type of constructor arguments, many different instruction se-
quences may appear between object allocation and initialization. For example, suppose that several
new objects are passed as arguments to a constructor. In this case, it is necessary to create each
of the argument objects and initialize them before passing them to the constructor. In general, the
code fragment between allocation and initialization may involve substantial computation, includ-
ing allocation of new objects, duplication of object pointers, and jumps to or branches from other
locations in the code.

Since pointers may be duplicated, some form of aliasing analysis must be used. More specifically,
when a constructor is called, there may be several pointers to the object that is initialized as a
result, as well as pointers to other uninitialized objects. In order to verify code that uses pointers
to initialized objects, it is therefore necessary to keep track of which pointers are aliases (name the
same object). Some hint for this is given by the following bytecode sequence:

4

A Formal Framework for the Java Bytecode Language and Verifier

Stephen N. Freund* John C. Mitchell*
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

{freunds, mitchell}Qcs.stanford.edu

Phone: (650) 723-8634, Fax: (650) 725-4671

Abstract

This paper presents a sound type system for a large
subset of the Java bytecode language including classes,
interfaces. constructors. methods, exceptions, and byte-
code subroutines. This work serves as the foundation
for developing a formal specification of the bytecode lan-
guage and the Java Virtual Machine’s bytecode verifier.
We also describe a prototype implementation of a type
checker for our system and discuss some of the other
applications of this work. For example, we show how to
extend our work to examine other program properties,
such as the correct use of object locks.

1 Introduction

The bytecode language, which we refer to as JVML:
is the platform independent representation of compiled
Java programs. In order to prevent devious applets
from causing security problems stemming from type er-
rors! the Java Virtual Machine bytecode verifier per-
forms a number of consistency checks on bytecode be-
fore it is executed [LYSG]. This paper presents a type
system that may serve as the foundation of a formal
specification of the bytecode verifier for large fragment
of JVML. Originally, the only specification was an in-
formal English description that was incomplete or in-
correct in some respects. Since then, a variety of more
formal specifications for various subsets of JVML have
been proposed. We discuss some of these in Section 9.

In our previous studies, we have examined several
of the complex features of JVhIL in isolation. One
study focused on object initialization and formalized

*Supported in part by NSF grants CCR-9303099 and CCR-
9629754. and ONR MURI Award N00014.97-1-0505. Stephen Fre-
und received additional support through a NSF Graduate Research
Fellowship.

To appear in OOPSLA ‘99

the way in which a type system may prevent Java byte-
code programs from using objects before they have been
initialized [FM98]. In other work, we extended the
work of Stata and Abadi on bytecode subroutines to
develop a semantics for subroutines that is closer to
the original Sun specification and includes exception
handlers [FM99]. Subroutines are a form of local call
and return that allow for space efficient compilation of
try-f inally structures in the Java language. Bytecode
programs that use subroutines are allowed to manipu-
late return addresses in certain ways, and the bytecode
verifier must ensure that these return addresses are used
appropriately. In addition, subroutines introduce a lim-
ited form of polymorphism into the type system.

This paper builds on these studies to construct a
formal model for a subset of JVML containing:

l classes, interfaces; and objects

l constructors and object initialization

l virtual and interface method invocation

0 arrays

l exceptions and subroutines

l integer and double primitive types

This subset captures the most difficult static analy-
sis problems in bytecode verification. There are some
features of JVML that we have not covered, includ-
ing additional primitive types and control structures,
final and static modifiers, access levels, concurrency,
and packages. In some sense, these omitted features
only contribute to the complexity of our system in the
sheer number of cases that they introduce, but they do
not appear to introduce any challenging or new prob-
lems. For example, the excluded primitive types and
operations on them are all very similar to cases in our
study, as are the missing control structures, such as the
tableswitch instruction. Static methods share much
in common with normal methods, and checks for proper

use of final and access modifiers are well understood and
straightforward to include.

We have applied our previous work on develop-
ing type checkers for the JVML type system to cover
the subset presented in this paper as well [FM991 and
have implemented a prototype verifier. This prototype
demonstrates that our type system does reject faulty
programs and also accepts virtually all programs gen-
erated by reasonable Java compilers.

Although the main contribution of this work is a
framework in which bytecode verification can be for-
mally specified, our type system is also useful for other
purposes. We have extended our system to check ad-
ditional safety properties, such as ensuring that ob-
ject locks are acquired and released properly by each
method. In addition, augmenting the verifier to track
more information through the type system has allowed
us to determine where run-time checks, such as null
pointer and array bounds tests: may be eliminated.

This work may also lead to methods for verifying
bytecode programs offline in situations where full byte-
code verification cannot be done in the virtual machine
due to resource constraints.

Section 2 introduces JVMLf: the fragment of JVML
studied in this paper. Sections 3, 4 and 5 describes the
formal dynamic and static semantics for JVMLf and
gives an overview of the soundness proof, and Section 6
highlights some of the technical details in handling ob-
ject construction and subroutines. Section 7 gives a
brief overview of our prototype verifier. Section 8 de-
scribes some applications of this work, Section 9 dis-
cusses some related work, and Section 10 concludes.

2 JVMLf

In this section, we informally introduce JVMLf, an ide-
alized subset of JVML encompassing the features listed
above. We shall use the Java program in Figure 1 as
an example throughout the section. Compilation of this
code produces a class file for each declared class or in-
terface. In addition to containing the bytecode instruc-
tions for each method, a class file also contains the sym-
bolic name and type information for any class, interface!
method, or field mentioned in the source program. This
information allows the Java Virtual Machine to verify
and dynamically link code safely. To avoid some unnec-
essary details inherent in the class file format, we shall
represent JVMLf programs as a series of declarations
somewhat similar to Java source code, as demonstrated
in Figure 2.

The collection of declarations in Figure 2 con-
tains the compiled Java language classes Object and
Throwable. These are included in the JVMLf program
so that all referenced classes are present. As a conve-

2

nience, we assume that these are the only two library
classes and that they are present in all JVMLf pro-
grams. The JVMLf declaration for each class contains
the set of instance fields for objects of that class, the
interfaces declared to be implemented by the class, and
all the methods declared in the class. Each method con-
sists of an array of instructions and a list of exception
handlers, and all methods in the superclass of a class are
copied into the subclass unless they are overridden. Al-
though real class files do not duplicate the code in this
manner, it simplifies several aspects of our system by
essentially flattening the class hierarchy when it comes
to method lookup. The special name <init> is given
to constructors.

The execution environment for JVMLf programs
consists of a stack of activation records and an ob-
ject store. Each activation record contains a program
counter, a local operand stack, and a set of local vari-
ables. These pieces of information are not shared be-
tween different activation records, although different
activation records may contain references to the same
objects in the heap. Most JVMLf bytecode instruc-
tions operate on the operand stack, and the store and
load instructions are used to store intermediate values
in the local variables. Constructing or deleting activa-
tion records upon method invocation or return is left to
the Java Virtual Machine.

Figure 3 contains the full JVMLf instruction set.
and the next few paragraphs briefly describe the inter-
esting aspects of these instructions. In Figure 3: v is an
integer, real number, or the special value null; z is a
local variable; L is an instruction address; and cr and
r are a class name and array component type, respec-
tively. We refer the reader to the Java Virtual Machine
specification for a detailed discussion of these bytecode
instructions [LY96].

The bytecode language uses descriptors to refer to
method and field names from Java language programs.
A descriptor contains three pieces of information about
the method or field that it describes:

l the class or interface in which it was declared

l the field or method name

l its type

For example, the bytecode instruction used to set
the num instance field in the constructor for A is
putf ield {]A, num, int]}r. Descriptors are used in
place of simple names to provide enough information
to:

1. check uses of methods and fields without loading
the class to which they belong.

2. dynamically link class files safely.

interface Foo C
int foo(int y);

I

class A extends Object implements Foo C
int num;
A(int x) c
mm = x;

1

int foo(int y) (
A a;
try (

a = new A(y);
) catch (Throwable e) <
num = 2;

)
return 6;

)
)

class Object i
super: None
fields:{}
interfaces: {}
methods:

)

class A i
super: Object
fields: {{IA. num, intl}F}
interfaces: {Foo}
methods:

class B extends A {
A array Cl;
B(int x) t

super(x);
nun = foe(2);

Figure 1: Declaration of several Java classes.

class Throwable (
super: Object
fields:{}
interfaces: {}
methods:

interface Foo C
interfaces: {}
methods:{{iFoo, foo,int - intl}I}

)

{IA. <init>. int + void/}" l

3:

1:

load 0
4:

load 0

push 1
5: putfield {A. nun. intl}F

2:

6:

invokespecial {Object, <init>, t + voidl}n

return
)
{IA. foe. int + intl}" (

1: new A
2: store 2
3: load 2
4: load 1
5: invokespecial {IA. <init>. int
6: goto 12
7: pop
8: load 0
9: push 2

10: putfield {A,num, intl}p
11: got0 12
12: push 6
13: returnval
Exception table:

from to target type
1 6 7 Throwable

)
)

-i/B, array, &ray A)I}F}
interfaces: {Foo}
methods:

class B C

{IS. <init>. int + voidl}M I
1: load 0

super: A

2:

fields: ({/A, rum, intl}F,

load 1
3: invokespecial {IA, <init>. int - void/}H
4: load 0
5: load 0

voidl}M 6: push 2
7: invokevirtual {IA, foe, int +intl}n
8: putfield {IA, nun, intl)F
9: return

1
{IB. foo. int - intl}" C

/* as in superclass */
1

1

Figure 2: Translation of the code from Figure 1 into JVMLf.

3

instruction ::= Pash v) pop I store I I load I
add I ifeq L I goto L
new c7
invokevirtual MDescriptor
invokeinterface IDescriptor
invokespecial MDescriptor
getfield FDescriptor
putf ield FDescriptor
newarray (Array 7) I arraylength 1 arrayload) arraystore
throw 0 I jsr L / ret z
return I returnvalue

Figure 3: The JVML, instruction set

3 . provide unique symbol ic names to over loaded
methods and f ie lds . Over loading is resolved at
compile time in Java.

Valid method, interface: and field descriptors are gen-
erated by the following grammar:

MDescrzptor :I= {/Class-Name. Label. Method-7’ypel)M
IDescrzptor : : = {IInterface-Name, Label, Method-Type/}1
FDescrzptor ::= {(Class-Name, Label. Field-Typel}F

A Field-Type may be ei ther int . f loat , any class or
interface name, or a.n array type. A Method-Type is a
type a + y were 0 is a possibly empty sequence of
Field- Type’s and y is the return type of the function (or
void). Figure 4 shows the exact representation of all of
these types. as well as several additional types and type
constructors used in the static semantics but not by any
.JVhILf program. For example. the type Top, the su-
pertype of all types. will be used in the typing rules. but
cannot be mentioned in a JVMLf program. Note that
we distinguish between methods declared in a class and
methods declared in an interface using different types
of descriptors.

Some JVMLf instructions generate exceptions when
the arguments are not val id . For example, i f nul l is
used as an argument to any instruction that performs
an operation on an object, a run-time exception is gen-
erated. The value of an exception is an object whose
class is Throwable or a subclass of it. To avoid in-
troducing additional classes, we assume that all failed
run-time checks generate Throwable objects. When an
exception is generated. the list of handlers associated
with the currently executing method is searched for an
appropriate handler. An appropriate handler is one de-
clared to protect the current instruction and to handle
exceptions of the class of the object that was thrown,
or some superclass of it. If an appropriate handler is
found, execution jumps to the first instruction of the
exception handler’s code. Otherwise, the top activation
record is popped, and this process is repeated on the
new topmost activation record.

3 Dynamic Semantics

This section gives an overview of the formal execu-
tion model for JVMLf programs. Section 3.1 describes
the representation of programs as an environment, Sec-
tion 3.2 introduces a few notational conventions, and
Section 3.3 describes the semantics of the bytecode in-
structions.

3.1 Environments

A JVMLf program is represented formally by an envi-
ronment I’ containing all the information about classes.
interfaces, and methods found in the class f i les of
t h e p rog r am . The env i r onmen t , a s d e f i ned i n F i g -
ure 5: is broken into three components storing each of
these i tems. Construct ion of I from the representa-
tion of class file information demonstrated in Figure 2
is straightforward.

We write I t 71 <: ~2 to indicate that ri is a sub-
type of 72, given I. The Java Virtual Machine model
uses this judgment as a way to perform run-time type
tes ts . The subtyping rules are presented in the Ap-
pendix, and they follow the form of the rules used to
model subtyping in the Java language [DE97, Sym97],
with extensions to cover the JVMLf specific types. This
judgment, and all others presented in this paper, are
summarized in Figure 6.

3.2 Notational Conventions

Before proceeding, we summarize a few notational con-
ventions used throughout this paper. To access informa-
tion about a method 111 declared in I, we write I[M].
Similar notation is used to access interface and class
declarations. If I[hl] = (P, H) for some method de-
scriptor M , then Dam(P) is the set of addresses from
the set ADDR used in P, and P[i] is the ith instruc-
tion in P. Dam(P) will always include address 1 and is
usually a range { 1,. . , n} for some n. Likewise, H is
a partial map from integer indexes to handlers, where

4

Logical Frameworks
Why not just classical logic?

Iliano Cervesato

I was recently invited to give a presentation about the logical frame-
work LLF. After a 40 minutes talk in which I revealed the intricacies
of the underlying type theory and illustrated by means of examples
the meta-representation wonders of this new language, somebody in
the audience said: “This looks very complicated. Why not using, say,
classical logic instead?“. In this chapter, I build upon my then im-
provised answer. I will recall what logical frameworks are and try to
motivate the simple but unfamiliar constructs they often rely upon.

1 Introduction

It is often taught in introductory classes in Philosophy, Mathe-
matics, and Computer Science that logic is the universal language
of reasoning and rigorous representation of knowledge. This is
not unfounded: for example, the entire body of mathematics can
be formalized in classical first-order predicate logic.

This however causes people with only a basic logical back-
ground to frown when they hear logical framework experts, those
scholars who specialize in formal reasoning and knowledge rep-
resentation, use scary-sounding words such as “higher-order ab-
stract syntax”, “dependent type theories”, and “linearity”. If
classical logic is so universal, why do these authors rebuff it for
those apparently cryptic and hopelessly complicated languages?

In this chapter, we show that many ideas in modern logi-
cal frameworks emerge as refinements of computationally or rep-
resentationally suboptimal aspects of classical logic. Our pro-
gression does not reflect the historical development of these sys-

Proceedings of the Seventh CSLI Workshop on Logic, Language and Computation.
Martina Failer, Stefan Kaufmann & Marc Pauly (eds.)
Copyright 01999, CSLI Publications

l-20

2 / ILIANO CERVESATO

terns, and is geared towards logical frameworks in the LF fam-
ily [Harper 1993, Pfenning 19911.

2 Deductive Systems

Exchanging information and reasoning about a formalism, may
it be a novel programming language or an arcane algebraic struc-
ture, presupposes that we have a language to express the concepts
we are interested in. These include basic linguistic facts such as
“3 + 5 is a well-formed expression” (syntax), descriptions of the
effect of operations, for example “3 + 5 evaluates to 8” (seman-
tics), and properties of the formalism such as “+ is commuta-
tive” (meta-theory). In these three examples, we used English to
express the concepts involved. Being fully rigorous when using
natural languages is difficult to achieve and impossible to enforce.
Jargon and abbreviations (e.g. writing “3 + 5 q 8” for “3 + 5
evaluates to 8”) only alleviate the problem.

Deductive systems [Martin-Liif 19851 approach rigor by fixing
precise conventions on how to express the concepts of the formal-
ism we are interested in (the object language). In those presenta-
tions, the predications we make about object entities are called
judgments. The quoted examples above are all judgments.

In their simplest instance, judgments are syntactic descrip-
tions of relations among lexical elements of the object language.
They can either hold (e.g. “3 + 5 -+ 8”) or fail to hold (e.g.
“3 + 5 c) 9”). Expressing the meaning of the constructs of the
object language amounts then to specifying which of the relevant
judgments hold, and which do not. An explicit and exhaustive
enumeration of the former (and of the latter) is generally ineffec-
tive since infinitely many judgments may be involved (-+ _ LS _
is an example). However, the constructs commonly found in
all formalisms of interest display forms of regularity that make
them amenable to a finite description. Schematic rules of infer-
ence achieve this effect by expressing the validity of classes of
judgments sharing a common syntactic pattern (rule conclusion)
in terms of the validity of zero or more other judgments (rule
premises). Instances of inference rules are chained to provide ev-

LOGICAL FRAMEWORKS/ 3

idence of the validity of specific judgments in the form of finite
derivations. A judgment is then derivable if it has a derivation.
A deductive system faithfully expresses an object formalism if
all and only the judgments that hold are derivable. We will now
illustrate these definitions on our running example.

Notations for grammars such as the Backus-Naur Form yield
deductive systems for the syntax of a formalism. If, for the sake
of succinctness, we express natural numbers in unary notation,
we can specify the syntax of our example as follows:

num :I= z 1 s num
exp ::= num + num

where we have chosen the symbols z, s, and + to denote zero, suc-
cessor, and addition, respectively. The implicit judgments here
are “the string - is a number” and similarly for expressions. The
inference rules are the grammatical productions: for example,
the first line states that “z is a number” (rule with no premises),
and that “s N is a number” if “N is a number” (rule schematic
in N with one premise). The derivations are all the parse trees.

Here, “s” can be viewed either as a character (or token) so
that %sz” is a list of characters (tokens), or as a function sym-
bol with one arguments so that “ssz” stands for the expression
“s (s (z))“. T he former approach is called concrete syntax, the
latter abstract syntax. Expressions in the abstract syntax are
isomorphic to parse-trees.

Given this representation of numbers, a simple recursive def-
inition specifies how to evaluate their sum: “adding zero to any
number N yields N”, and “for any numbers M, N, and V,
s M + N evaluates to s V if M + N evaluates to V”. Transliter-
ating each part into symbols yields the following two rules:

N num N, M, V num M+NvV
evaI- .S!VdS

z+NvN sM+N L) sV

The horizontal line separates the premises and the conclusion of
each rule, and the text on the right identifies the rule. The first
rule has one premise and is schematic in N, the second has four
(abbreviated) premises and is schematic in M, N, and V. It

4 / ILIANO CERVESATO

is easy to observe that the syntactic judgments in rule evals
are redundant, but omitting the premise of rule eval-z would
allow successfully evaluating garbled expressions (e.g. z+oops L)
oops). Observe that if we think of each rule as describing an
atomic step of the evaluation of the sum of two numbers, then
derivations are a notation for evaluation traces.

Meta-theoretic properties are predications over semantic de-
rivations. For example, “+ is commutative” can be restated as
“given numbers M, N, and V, for every derivation 23 of M+N -s
V, there exists a derivation D’ of N + M -+ V”. Therefore, a
convenient notation for derivations is an essential prerequisite
for reasoning about a formalism. For space reasons, we refrain
from further discussing meta-theoretic judgments (properties)
and their derivations (proofs). The techniques we will illustrate
are however applicable also in that setting (see [Michaylov 19911).

3 Logical Frameworks

Through the notions of judgment and derivation, deductive sys-
tems allow precise descriptions of formalisms in Mathematics,
Logic: and Computer Science. However, when exchanging ideas
with others or proving properties, we seldom adhere to their full
formality: their rigid patterns soon get in the way of effective
communication. A variously balanced mixture of natural lan-
guage, judgments, and derivation sketches is normally adopted
as a good compromise between rigor and bearability.

Formalizing even simple proofs often requires a fair amount of
work with little benefit: indeed, the formal argument is seldom
more convincing than the original proof since we, as humans,
have a limited ability of keeping alert when confronted with long
and convoluted chains of inference. Paradoxically, formal errors
are more likely to pass unnoticed than informal ones.

Since computers are free from the attention shortcomings of
the human brain, they are ideal candidates for the clerical work
of checking proofs and derivations, and, in simple cases, of val-
idating judgments. Parsers, interpreters, compilers, and various
related tools efficiently mechanizes aspects of the syntax, seman-

Specification and Verification of Java Bytecode Subroutines
and Exceptions

(summary)

St,ephen N. Freund” John C. Mitchell*
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

{f reunds , mitchell}Qcs.stanford.edu
Phone: (650) 723-8634, Fax: (650) 725-4671

August, 25, 1999

Abstract
This paper develops a formal description of verifying Java bytecode snbroutines and excep-

tions. We first present a type system for subroutines which extends the work of Stata and Abadi
to encompass multilevel returns [SA98]. Second, we describe a data flow analysis algorithm
proven to accept exactly the set of well-typed programs. Finally. we extend onr type system
and algorithm to include exception handlers and exceptions. We also give a brief overview of
an implementation of our type checker.

1 Introduction
Execution of mobile Java code can potentially lead to significant security problems if the code is
not carefully monitored to prevent it from accessing sensitive data, deleting files, or corrupting
the runtime system in other ways. The Java Virtual Machine has security mechanisms in place
to prevent these kinds of attacks [Gon98], but they can be circumvented by a devious applet if it
can cause certain run-time type errors, such as casting an integer to a pointer, as demonstrated
in [DFW96, Sar97].

The Java Virtual Machine bytecode verifier prevents these types of errors by performing a number
of consistency checks on compiled programs before they are executed. Compiled programs are
written in what we shall call JVML, a platform-independent bytecode language with some low-level
instructions to reflect high-level features and constructs of the Java language, such as exception
handlers, classes, etc. The verifier checks for these programs include determining that:

l every instruction opcode is valid.

l all jumps are to valid instruction addresses.

*Supported in part by NSF grants CCR-9303099 and CCR-9629754. ONR MURI Award N00014-97-1-0505.
Stephen Freund received additional support through a NSF Graduate Research Fellowship.

vo id f 0 c
t r y C

somethingo;
) catch(Exception e> c

oopso ;
} f i n a l l y (

done0 ;

Figure 1: A method using a try-f inally statement.

l operations are not performed on values of incorrect type.

This work studies the most complex parts of JVML and develops a foundation for formal speci-
fication of the verifier in terms of a type system and type checking algorithm.

We first present a new type system for JVMLs, a small fragment of JVML encompassing some
simple operations and subroutines [SA98]. Bytecode subroutines are a form of local call and return
that provide space efficient compilation of the try-f inally statements in Java programs, as demon-
strated in Figures 1 and 2. Without subroutines, the code for the finally block would have to be
duplicated at every exit from the try block. However, verification of programs using subroutines is
complicated by the need to check that

1. subroutine calls and returns occur in a stack-like manner, with the exception of multilevel
returns, which are discussed below.

2. a specific form of local variable polymorphism introduced by subroutines is used correctly. In
particular, local variables not touched by a subroutine may contain values of conflicting types
at different calls to the subroutine.

We use some of the ideas from the type system of Hagiya and Tozawa [HT98] to eliminate one
of the major simplifications to the subroutine mechanism made by Stata and Abadi and to develop
a type system based on their work that is closer to the original Sun specification. In comparison
to Stata and Abadi, our system is able to type check multilevel returns, which were not allowed
in [SA98].

A multilevel return occurs when a subroutine returns not to its caller, but to its caller’s caller,
or even further up the stack of subroutines which have been called but which have not exited. As
described in Section 9, our JVMLe type system differs technically from Hagiya and Tozawa and the
wide variety of other type systems for JVMLa (see, for example, [HT98, O’C99, Qia98]), and our
system offers some advantages over the others. Most importantly, we feel that ours is the closest to
the Sun specification and existing implementations.

We also present a verification algorithm proven to accept exactly the set of well-typed programs.
The algorithm uses standard data flow analysis techniques to synthesize type information for a
program. However, subroutines again complicate matters. Our verifier computes flow control and
variable usage information about subroutines before beginning data flow analysis. Precomputation of
this information simplifies both the implementation and correctness proofs for the data flow analysis
aspect of the type checker in contrast to some of the other suggested type checking algorithms [HT98,
Qia99] that compute all information at once.

2

Method void f 0
// code f o r t ry b l o ck
0 aload- // load t h i s
1 invokevirtual <Method void somethingO> // cal l something
4 j s r 23 // c a l l subroutine
7 return

// code for exception handler
8 POP
9 aload-

10 invokevirtual <Method void oops()>
13 j s r 23
16 return

// ignore exception value
// load this
// c a l l o o p s
// call subroutine

// compiler- inserted handler
17 astore- // store exception value to rethrow
18 j s r 23 // call subroutine
21 aload- // load exception
22 athrow // rethrow

// subroutine
23 astore-
24 aload-
25 invokevirtual <Method void done()>
28 ret 2

// store return address
// load this
// c a l l done0
// return from subroutine

Exception table:
from t o t a r g e t t y p e

0 4 8 <Class java.lang.Exception>
0 13 17 any

Figure 2: The translation of the program in Figure 1 into JVML. Control is transfered to the
subroutine beginning on line 23 at the end of the try block, at the end of the exception handler,
and when an uncaught exception (handled at line 17) causes an abrupt exit from the method.

The second half of this paper presents a type system and verifier for JVML,, an extension of
JVMLa containing exceptions and exception handlers. The machinery developed to check multilevel
returns may also be applied to type check exception handlers in the presence of subroutines. A
jump in execution caused by throwing and catching an exception may, in some cases, behave very
similar to a multilevel return. This is the first treatment of exception handlers and subroutines in a
framework derived from the work of Stata and Abadi and the first presentation of a provably correct
type checking algorithm similar to the original Sun specification.

We also summarize our experience with prototype implementations of the type checking algo-
rithms.

Our type system and verification algorithm for JVML, serves as the core of a specification and
implementation of a bytecode verifier for all of JVML. We have extended this work to include our
previous work on object initialization [FM98], and we have in fact been able to construct a sound type
system for a much larger fragment of JVML that includes classes, interfaces: methods, constructors,
subroutines, and exceptions based on these smaller systems.

Sections 2, 3, and 4 present JVMLa, its formal semantics, and a type checker for it. We extend
our type system and verifier to include exception handlers in Sections 5 and 6. Section 7 describes an
implementation of our algorithms, and Section 8 compares our verifier to the Sun implementation.
Section 9 relates our contributions to other work on the bytecode verifier, and Section 10 draws
some conclusions about this project.

2 JVMLo
A JVMLe program is an array P of instructions drawn from the following list? where the basic
execution model consists of a program counter, a set of local variables, and an operand stack:

ins&u&on ::= push 0 / inc] pop
1 i f L
j s t o r e 5 1 l oad z
1 j s r L 1 ret z
1 h a l t

where z is a local variable name and L E ADDR, the set of instruction addresses. Informally, push 0,
inc, pop, and if L perform the obvious operations on the stack; store x and load x move values
between the static and local variables; jsr L jumps to instruction L, pushing the return address
onto the stack; and ret z jumps to the instruction address stored in local variable x.

3 Semantics of JVMLo
This section describes the dynamic and static semantics for JVMLa

3.1 Dynamic Semant its
The bytecode interpreter for JVMLa is modeled usin,c the standard framework of operational se-
mantics. The rules characterize transitions between machine states of the form (PC, f, s) where

0 pc is a program counter

l f is a total map from VAR, the set of local variables, to values.

4

Explicit Substitutions for Linear Logical Frameworks:
Preliminary Results *

Iliano Cervesato Valeria de Paiva and Eike Ritter
Computer Science Department School of Computer Science

Stanford University University of Birmingham
Stanford, CA 94305-9045 - USA Birmingham, B15 2TT - UK

iliano@cs.stanford.edu { V.DePaiva 1 E.Ritter}@cs.bham.ac.uk

Abstract

We present the calculus xdLLF- and experiment with aspects of its meta-theory. xdLLF- integrates
linear explicit substitutions in de Bruijn notation into the simply-typed fragment of the linear logical
framework LLF. After observing that the expected g-rules invalidate subject reduction, we devise
a specification of a-normalization inspired by the big-step semantics of programming languages, and
prove it correct.

1 Introduction

Explicit substitutions [l] have been used to rationalize the implementation of many systems based on
various X-calculi, such as functional languages, logical frameworks, and higher-order logic programming
languages. As linear X-calculi have grown in popularity, so has the need for solid and efficient support
for their implementation. A linear adaptation of explicit substitution techniques is a prime candidate.
The authors of this paper have separately explored this possibility in two distinct settings:

l In [6], Ghani, de Paiva, and Ritter have designed the language xDILL, geared towards the imple-
mentation of functional languages. It is based on Barber and Plotkin’s DILL (Dual Intuitionistic
Linear Logic) [2], and is characterized, among other things, by variables of two different kinds:
linear variables are used exactly once, and intuitionistic variables can be accessed arbitrarily many
times. The extra information about usage of linear variables makes it possible to apply various op-
timizations like update-in-place of aggregate data structures such as arrays, or savings in memory
allocation. This significantly influenced the design decisions of the calculus in [6].

l On the other hand, Cervesato and Pfenning have based their implementation of the linear logical
framework LLF [4] on a form of linear explicit substitution, although they did not thoroughly
investigate its meta-theory. LLF is a close relative of DILL (for example, both distinguish linear
and intuitionistic variables). LLF is however designed as a logical framework, which forces a set
of operations on terms that are not found in DILL. An implementation of LLF must support

*The first author was partially supported by DOD MURI, “Semantic Consistency in Information Exchange” as ONR
Grant N00014-97-l-0505. The second and third authors were partially funded by ESPSRC grant GR/28296, “The explicit
Substitution Linear Abstract Machine”.

1

Iliano Cervesato, Vaieria de Paiva, and Eike Ritter

term reconstruction to make meta-representation practical, permit logic programming-style proof-
search, and accommodate the forthcoming addition of theorem proving capabilities. Each of these
functionalities relies on (higher-order) unification and therefore an explicit substitution calculus for
LLF must handle meta-variables and their manipulation.

In this paper, we bring our experiences together in trying to isolate some of the issues that arise when
combining linearity and explicit substitutions in our different settings. Although the results reported
here are very preliminary, this work had the effect of furthering our understanding of these problems.

We start from the linear X-calculus LLF- (Section 2), which includes operators from both LLF and
DILL while ignoring complex features such as dependent types and an unrestricted “!” operator. LLF-
enjoys properties such as subject reduction, normalization and confluence. Then, by using a standard
process [I], we construct the calculus xdLLF- (Section 3) which incorporates substitutions as a separate
syntactic category in LLF- (along the way, we also switch to a de Bruijn notation, motivated by our
interests in efficient implementations). This has the positive effect of turning the meta-level substitutions
produced by the P-reductions into explicit substitutions that can be manipulated within the calculus. At
this point, the standard approach [l] would require us to express the implicit procedure to carry out the
application of a meta-level substitution as a set of rewrite rules about explicit substitutions (g-rules):
the transcription is correct if we can prove that there is a reduction strategy which eliminates all explicit
substitutions and terminates with the X-term that would be produced by making all explicit substitutions
implicit.

We deviate from this path since the o-rules we would obtain for xdLLF- interfere with linearity and
allow rewriting well-typed terms into ill-typed objects. In [6], we solved this problem by splitting the
linear substitutions according to the usage of the linear variables. This approach may cause a significant
overhead when implemented, and does not scale up when extending xdLLF- with metavariables. We
instead explore a different path (Section 4): we give a syntactic characterization of the set of o-normal
terms (to which no c-rule would be applicable) as the language xdLLF, , outline a type-preserving proce-
dure that reduces a typable xdLLF- term to its g-normal form, and prove its correctness. Although this
approach deals correctly with linearity, it still has several drawbacks. First, it fixes the reduction strategy,
which is instead open when a-rules are used. Second, it does not allow interleaving cT-normalization steps
with other reductions. Third, it does not scale up to handle meta-variables. Nonetheless, we see it as a
valuable first step toward addressing these issues more satisfactorily (Section 5).

2 LLF-

The calculus LLF-, that we use as our starting point, enriches the simply-typed fragment of the language
of the linear logical framework LLF [4] with multiplicative pairs and unit. On the other hand, it extends
the language DILL [2, 61 with additives and with intuitionistic functions, but sacrifices its full-fledged
exponential “!“. LLF- is defined as follows:

Types: A ::= a Terms: M :I= x
I T I 0 (additive unit)
I -418L.42 1 (M l , M 2) I f s t M 1 s n d M (additive pairs)
I 1 I l I l e t M 1 b e o i n M 2 (multiplicative unit)
1 -41 Qi A2 I Mi@h12 I let Mi b e xr@xz i n Mz (multiplicative pairs)
1 A l 4 2 4 2 1 JG7ZlA.M 1 Ml-M2 (linear functions)
I A+& 1 Xz:A.M I M1M2 (intuitionistic functions)

2

EXPLICIT SUBSTITUTIONS FOR LINEAR LOGICAL FRAMEWORKS: PRELIMINARY RESULTS

Context splitting
9 = @kl w \Ez

~ IlfW-dot IlfW-int
.=.w. (q,z:A) = (*,,z:A) w (92,z:A)

Typing
Ilf-lvar llf ivar

~,z:A,Wtz:A 3, x : A, W t x : A

IIf- (No elimination rule for T)
*k():T

\ktM:A \EtN:B ‘PtM:A&B qtM:A&B
Ilf spair llf -fst Ilf 2nd

Ik t (M , N) : A & B Q t fst M : A 9 t snd M : B

\E = \kl w \k2 ‘PI t M : 1 ‘J’z t- N : B
~ IIf-* Ilf_let*
Tt-.:l \kl-letMbeoinN:B

rk=\klW\E2 qlt-M:A ‘P2tN:B Q = *‘1 w 9 2 qltM:A1@Az ‘P~,x~?A~,x~~A~~NNB

‘PtM@N:A@B
IIf-@

\El-letMbez1@~2inN:B
Ilf-I&@

9,zlA t M : B
Ilf Jlam

9 = qkl w *‘2 qIItM:A-oB \EztN:A
Ilf-lapp

9 t ix14.M: AaB 9 t M-N : B

\k,x:A+M:B ‘Pt-MMAAB FtN:A
llf ilam Ilf -iapp

QJ t Xx: A. M : 4 -i B 9kMN:B

Figure 1: Typing in LLF-

Here x and a range over variables and base types, respectively. In addition to the names displayed above,
we will often use N and B for terms and types, respectively. As usual, we rely on a context to assign
types to free variables.

C o n t e x t s : !I? ::=. I Q,x:A I @,xTA

where ziA and x : A stand for a linear and a reusable (intuitionistic) assumption of type il, respectively.
The notions of free and bound variables are adapted from the simply typed X-calculus. As usual, we

identify terms that differ only by the name of their bound variables. Contexts are treated as sequences,
we promote “,” to denote their concatenation and omit writing “.” when unnecessary. As usual, we
require variables to be declared at most once in a context. Finally, we write T for the intuitionistic
part of context Q. It is obtain by removing every linear declaration xf A from !I!. See [4] for a formal
definition.

The typing judgment for LLF- has the form Q k h4 : A (read “A4 has type A in ‘3”) and is defined
in Figure 1. It relies on the auxiliary context splitting judgment Q = Pi W !P2. Due to space reasons, we
shall refer the reader to [4] for a discussion of these rules.

The rewriting semantics of LLF- is given by the usual P-reductions, commuting conversions (generated
by the two forms of let), and, depending on one’s taste, q-rules. We will only marginally be concerned
with these various rules in the sequel. Definitions and properties of interest can be extrapolated from [4]

3

Iliano Cervesato, Valeria de Paiva, and Eike Ritter

and [6], or found in [3].
-4 nameless variant of LLF- is obtained by straightforwardly extending the standard de Bruijn trans-

formation [5]. As in the case of the X-calculus, this translation preserves typing and reductions. The
resulting calculus, dLLF-, is at the basis of our current experimentation with explicit substitutions. Space
reasons prevent us from discussing it further (see [3] for more). However, its language and typing rules
correspond exactly to the term fragment of the a-normal calculus xdLLF, discussed in Section 4.

3 xdLLF-

In [6], we devised a calculus of linear explicit substitutions based on named variables. Here, we instead
investigate a variant in the style of [l] that uses the de Bruijn notation (this is mainly motivated by im-
plementation considerations). Even in this restricted setting, there are many ways to incorporate explicit
substitution into LLF- (or dLLF-). In designing xdLLF-, we chose to model (normal) substitutions on
the structure of contexts. We mention other possibilities in Section 5.

The types of xdLLF- are the same as LLF-. Its term constructors are adapted from this language
as done in [l]. Substitutions may contain the linear extension operator“:I’ to account for terms to be
substituted for linear variables. Since de Bruijn numbers are positional indices in a substitution (and a
context), we use “-” to mark a term that has already been linearly substituted. Terms and substitutions
are defined by the following grammar:

Terms:

t ::= 1
I 0
I (t1,t2)

/ ;1t3t2
I Lt
I AA.t

I 64

(variable indices)
(additive unit)

fst t I snd t (additive pairs)
let0 tl in t2 (multiplicative unit)
let@ tl in t2 (multiplicative pairs)
t1-t2 (linear functions)
t1 t2 (intuitionistic functions)

(substitution application)

Substitutions:

u ::= Id (identity)
I t (shift)
I t-a (linear extension)
I -:a (used linear extension)

/ t.a
(intuitionistic extension)

ffl 002 (composition)

In addition to t and c, we will use s and r to denote xdLLF- terms and substitutions, respectively.
Contexts in xdLLF- are the nameless variant of LLF- contexts, with again the marker ‘<-” to account
for the positional nature of de Bruijn indices when dealing with used assumptions.

Contexts: r ::= 1 lTT.4 1 r;- I JJ,A

As in LLF-, we write r to indicate the intuitionistic portion of r. It is obtain by replacing every linear
assumption with “-“.

The typing judgments for terms and substitutions are denoted I? h,-~ t : A (read “t has type A in I?)
and I- hd c : r’ (read “a maps terms from r’ to r”), respectively. As for LLF-, their definition relies on
the auxiliary context splitting judgment I- = I?1 W r2. The rules for these three judgments are displayed
in Figure 2.

Rewrite rules in the p, commuting and possibly 7 families are adapted from LLF-. As we said, we
will not deal with them in this paper (see [3, 61 for more on this topic).

At this point, papers on explicit substitutions typically present a long list of a-reductions aimed at
confining substitution application and composition to specific positions in a term and a substitution,

4

The Costs and Benefits of Java Bytecode Subroutines

Stephen N. Freund*
Department of Computer Science

Stanford University
Stanford, CA 94305-9045

freunds@cs.stanford.edu

September 20, 1998

Abstract

Java bytecode subroutines are used to compile the Java source language try-finally con-
struct into a succinct combination of special-purpose instructions. However, the space saved
by using subroutines, in comparison to simpler compilation strategies, comes at a substantial
cost to the complexity of the bytecode verifier and other parts of the Java Virtual Machine.
This paper examines the trade-offs between keeping subroutines and eliminating them from the
Java bytecode language. We compare the cost of formally specifying the bytecode verifier and
implementing the Java Virtual Machine in the presence of subroutines to the space saved by
using them when compiling a set of representative Java programs.

1 Introduction
The Java programming language is a statically-typed general-purpose programming language with
an implementation architecture that is designed to facilitate transmission of compiled code across a
network. In the standard implementation, a Java language program is compiled to Java bytecode and
this bytecode is then interpreted by the Java Virtual Machine. We refer to this bytecode language
as JVML.

Since bytecode may be written by hand, or corrupted during network transmission, the Java
Virtual Machine contains a bytecode verifier that performs a number of consistency checks before
code is interpreted. As has been demonstrated elsewhere, the correctness of the bytecode verifier is
critical to guarantee the security of the Java Virtual Machine [DFW96]. As a step towards obtaining
a correct, formal specification for the verifier, we are currently developing a specification of statically
correct bytecode for a large fragment of JVML in the form of a type system. This system encompasses
classes, interfaces, methods, constructors, exceptions, subroutines, and arrays. While still not the
complete JVML, the type system for this subset contains all of the difficult static analysis problems
faced by the bytecode verifier.

The most difficult and time-consuming part of our work has been handling subroutines effectively.
Subroutines are mainly used to allow efficient implementation of the try-f inally construct from the
Java language. Our general approach for modeling and type checking subroutines is based on a type

*Supported in part by NSF grants CCR-9303099 and CCR-9629754, ONR MURI Award N00014-97-1-0505, and a
NSF Graduate Research Fellowship. To appear in the Workshop on Formal Underpinnings of Java, OOPSLA 98.

1

vo id f (> c
t r y C

something0 ;
1 f i n a l l y C

done0 ;
3

3

Figure 1: A method using a try-f inally statement.

system developed by Stata and Abadi [SA98a]. Even with the knowledge and techniques acquired
from their earlier work, extending this type system and proofs to include sound type checking for
exceptions, object initialization, and other elements of JVML was challenging.

Verifier implementations based on the current Java Virtual Machine Specification [LY96] have
fared no better in handling the complexities which seem to be inherent in the analysis of subroutines.
For example, several published inconsistencies and bugs, some of which lead to potential security
loopholes, may be attributed to earlier versions of the Sun verifier incorrectly checking subroutines
and their interactions with other parts of JVML [DFW96, FM98].

Given the important role of the verifier in the Java paradigm and the many difficulties in both
specifying and implementing correct verification methods for subroutines, a natural question to ask
is whether or not the benefits of subroutines justify the specification and implementation costs.
Eliminating subroutines would not affect the semantics of Java. The only difference would be the
compilation strategy for methods which use try-f inally or other statements currently compiled
using subroutines. The most straightforward way to translate a try-f inally block of Java code
into JVML without subroutines requires some amount of code duplication, with an exponential blow
up in code size in the worst case. Clearly, removing subroutines from JVML would greatly simplify
the verifier, as well as possible implementations of other parts of the Java Virtual Machine, such as
type-precise garbage collectors [ADM98]. However, we know of no other study to date quantifying
the benefits of subroutines and how much code size is actually saved by using subroutines in typical
programs.

In this paper, we examine the impact of subroutines on the formal specification and implementa-
tion of the bytecode verifier, on the implementation of other parts of the Java Virtual Machine, and
on code size for representative programs drawn from a variety of sources. Our analysis shows that
the space saved by using subroutines is negligible and that the theoretically possible exponential
increase in size does not occur in the programs studied. The added complexity to the verifier and
the Java Virtual Machine far outweighs any benefit of subroutines.

Section 2 describes Java bytecode subroutines, how they are used in the compilation of Java
programs, and the difficulties in verifying programs which use them. Section 3 presents measurements
on the costs and benefits of subroutines, and Section 4 contains a discussion of these results and
some concluding remarks.

2 Bytecode Subroutines
This section describes JVML subroutines and the Java language construct which they were designed
to implement, the try-f inally statement. We also discuss how subroutines may be used to compile

2

Method void f()
// t ry b l o ck

0 aload- //
1 invokevirtual #5 <Method void something()> //
4 j s r 14 //
7 return //

// exception handler for try block
8 astore-l //
9 j s r 14 //

12 aload-l //
13 athrow //

// subroutine for f inal ly block
14 astore- //
15 aload- //
16 invokevirtual #4 <Method v o i d done()> //
19 re t 2 //

load this
c a l l something0
execute f inally code
exit normally

store exception
execute f inally code
load exception
rethrow exception

store return address
load this
c a l l done0
return from subroutine

Exception table:
from t o t a r g e t t y p e

0 4 8 =Y

Figure 2: The translation of the program in Figure 1 into JVML.

synchronized statements and conclude this section by describing the major difficulties in verifying
bytecode subroutines.

2.1 t ry-f inally Statements
Subroutines were designed to allow space efficient compilation of the finally clauses of exception
handlers in the Java language. The details of Java exception handling facilities appear in [GJS96].
Subroutines share the same activation record as the method which uses them, and they can be
called from different locations in the same method, enabling all locations where finally code must
be executed to jump to a single subroutine containing that code. Without subroutines, the code
from the finally block of an exception handler must be duplicated at each point where execution
may escape from the handler, or some more complicated compilation technique must be used.

Figure 1 contains a sample program using a try-finally statement. There are two ways in
which execution may exit from the exception handler. Either the end of the try block is reached or
an exception is thrown. In both cases, the code in the finally block must be executed. Figure 2
shows the bytecode translation for this program. At the two points where execution may exit the
try block, the jsr instruction is used to jump to line 14, the beginning of the subroutine containing
the translation of the code from the finally block. As part of the jump, the return address is
pushed onto the operand stack. This return address is stored in a local variable, and, as in line 19,
the ret instruction causes a jump back to that address.

Without subroutines, the simplest way to compile this try-f inally statement is to duplicate
the body of the finally block at line 4 and at line 9. A translation of the program in Figure 1
that does not use subroutines is shown in Figure 3. In most cases, eliminating a subroutine and
duplicating the code in this fashion results in a blow up of code size proportional in the number
of calls to the subroutine. However, in the case that one subroutine calls another, the situation is

3

Method void f (>
// blockt r y

0 aload- // load this
1 invokevirtual #5 <Method void something()> // c a l l something0

// f irst copy of subroutine
4 aload- // load this
5 invokevirtual #4 <Method void done()> // c a l l done0
8 return // exit normally

// exception handler for try block
9 astore-l // store exception

// second copy of subroutine
10 aload- // load this
11 invokevirtual #4 <Method void done()> // c a l l done0
14 aload-l // load exception
15 athrow // rethrow exception

Exception table:
from t o t a r g e t t y p e

0 4 9 UY

Figure 3: The translation of the program in Figure 1 into JVML without using subroutines.

much worse, and not using subroutines results in a blow up in code size exponential in the depth
of the nesting of calls. Subroutines nested in this way occur when one try-finally statement is
placed in the finally block of another.

There are other implementation strategies which eliminate subroutines but which may fare better
in the case when they are nested. We briefly describe one of the these strategies in Appendix -4,
but the rest of this paper compares subroutines to only the simple code duplication strategy. As we
demonstrate below, the most straightforward translation strategy seems to be suitable for all cases
that appear in practice, and these more complex techniques are not required.

2.2 synchronized Statements
Subroutines have also proved useful in the compilation of synchronized statements. An example of
a synchronized statement is shown in Figure 4. In the body of the while loop, the function must
first acquire the lock on object o before executing the code guarded by the synchronized statement.
The lock on o must then be released at the end of the synchronized block of code and, also, at any
other point at which execution escapes from the synchronized statement. In Figure 4, this includes
releasing the lock at both the continue and the break statements, as well as in the event that an
exception is thrown while executing the body of the synchronized statement. A subroutine may
be used to avoid duplicating the code to release the lock on o at all escape points in much the same
way as they are used in the try-f inally statement.

2.3 Verifying Subroutines
The flexibility of the subroutine mechanism makes bytecode verification of subroutines difficult for
two main reasons:

Part VI

Spatial Control

William Spears and Diana Gordon: “Using Artificial Physics to Control
Agents”, to appear in the Proceedings of the IEEE International Conference
on Information, Intelligence, and Systems - ICIIS’99, Washington, DC, l-3
November 1999.

Full paper: http: //www.aic.nrl.navy.mil/"gordon/papers/ap.iciis99.ps

Diana Gordon, William Spears, Oleg Sokolsky, and Insup Lee: “Distributed
Spatial Control and Global Monitoring of Mobile Agents”, to appear in the
Proceedings of the IEEE International Conference on Information, Intelli-
gence, and Systems - ICIIS’99, Washington, DC, l-3 November 1999.
Full paper:
http://www.aic.nrl.navy.mil/"gordon/papers/apmac.iciis99.ps

Using Artificial Physics to Control Agents

William M. Spears and Diana F. Gordon*
Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory, Code 5514
Washington, D.C. 20375
spears@aic.nrl.navy.mil

To appear in the Proceedings of the IEEE Interna-
tional Conference on Information, Intelligence, and
Systems (ICIIS’99)

Abstract

We introduce a novel framework called “artificial
physics”, which is used to provide distributed control
of large collections of agents. The agents react to ar-
tificial forces that are motivated by natural physical
laws. This framework provides an effective mecha-
nism for achieving self-assembly, fault-tolerance, and
self-repair. Examples are shown for various regular ge-
ometric configurations of agents. A further example
demonstrates that self-assembly via distributed con-
trol can also perform distributed computation.

Introduction
The objective of this research is the distributed control
of agents that range in scale from neurons, nanobots,
or micro-electromechanical systems (MEMS) to micro-
air vehicles (MAVs) and satellites e.g., see (Carlson.
Gupta, & Hogg 1997). Agents can be physical or
virtual (e.g., softbots), mobile or immobile. Agents
generally have sensors and effecters. An agent’s sen-
sors perceive the world (including other agents) and
an agent’s effecters make changes to that agent or the
world (including other agents). Often, agents can only
sense and affect nearby agents; thus the problem is
usually one of “local” control. Sometimes control is
also guided by global constraints and interactions.

Of course, one of the biggest problems is that we of-
ten don’t know how to create the proper control rules.
Not only do we want the desired global behavior to
emerge from the local interaction between agents (i.e.,
self-assembly or self-organization), but we also would
like there to be some measure of fault-tolerance i.e.,
the global behavior degrades very gradually if individ-
ual agents are damaged. Self-repair is also desirable,
where the system repairs itself after being damaged.

The principles of self-assembly, fault-tolerance, and
self-repair are precisely those exhibited by natural sys-
t,ems. This leads us to the hypothesis that many an-

*Partially supported by ONR N00014-99-WR20010 in
association with the ONR Semantic Consistency MURI.

swers to distributed control may lie in the examination
of the natural laws of physics.

A recent research thrust that is based on natural
physics suggests even more strongly the close connec-
tion between physics and distributed control. This ex-
citing research thrust is the development of alterna-
tive distributed forms of computing based on nature,
such as quantum computing, molecular computing,
and computing with DNA e.g., see (Adleman 1998;
Gershenfeld & Chuang 1998). Such computing engines
are a direct result of the natural laws of physics. In the
natural world small entities (quantum bits, molecules,
etc.) exert forces on other entities and respond to
forces from other entities. Generally the only forces
that matter are those from nearby entities, thus the
computation is performed via so-called “local” interac-
tions. However, sometimes the computations are also
guided by global constraints and interactions.

Clearly the fields of natural distributed computa-
tion and distributed control are related. Both fields in-
volve the study of large numbers of entities (or agents)
undergoing changes (or performing changes) due to
global constraints and local interactions from nearby
entities. The main difference is in the forces that con-
trol the entities. The forces in natural distributed com-
puting are tied directly to physical laws. The forces in
distributed control are the result of man-made rules.

This paper proposes a general framework for dis-
tributed control in which “artificial physics” (AP)
forces control agents. We use the term “artificial” be-
cause although we will be motivated by natural phys-
ical forces, we are not restricted to only natural phys-
ical forces. Clearly, the agents aren’t really subject
to real forces, but they can act as if the forces are
real. Thus the agent’s sensors must see enough to al-
low it to compute the forces to which it is reacting.
The agent’s effecters must allow it to respond to this
perceived force.

We see several potential advantages to this ap-
proach. First, in the real physical world, collections of
small entities yield surprisingly complex behavior from
very simple interactions between the entities. Thus
there is a precedent for believing that complex con-
trol can be achieved through simple local interactions.
This is required for very small agents (such as neu-
rons or nanobots), since their sensors and effecters will

necessarily be primitive. Two, since the approach is
largely independent of the size and number of agents,
the results should scale well to larger agents and larger
sets of agents. Finally, we believe that this approach
will tighten the connection between control and com-
putation, potentially yielding new insights into com-
putation or yielding new computational algorithms.

Framework
The motivation for this work stems from a desire for
swarms of micro-air vehicles (MAVs) to form various
regular geometric configurations - thus we will focus
on mobile physical agents. Our approach treats agents
as physical particles, which could range in size from
nanobots to satellites. A simple but realistic physical
simulation of the particles’ behavior was built. Par-
ticles exist in two dimensions (we see little difficulty
in generalizing to three dimensions) and are consid-
ered to be point-masses. Each particle i has posi-
tion p = (2, y) and velocity 2, = (u,, vy). We use a
discrete-time approximation to the continuous behav-
ior of the particles, with time-step At. At each time
step, the position of each particle undergoes a per-
turbation Ap. The perturbation depends on the cur-
rent velocity Ap = r!At. The velocity of each particle
at each time step also changes by Au. The change
in velocity is controlled by the force on the particle
Au = FAt/m, where m is the mass of that particle
and F is the force on that particle. i\ frictional force
is included, for self-stabilization.

For MAVs, the initial conditions are similar to those
of a “big bang” ~ the MAVs are assumed to be released
from a canister dropped from a plane, then they spread
outwards until a desired geometric configuration is ob-
tained. This is simulated by using a two dimensional
Gaussian random variable to initialize the positions of
all particles (MAVs). Velocities of all particles are ini-
t,ialized to be 0.0, and masses are all 1.0 (although the
framework does not require this). An example initial
configuration for 200 particles is shown in Figure 1.

. . .
*. l

.
.

Figure 1: The initial creation of the universe at t = 0.

Given the initial conditions and some desired global
behavior, then. we must define what sensors, effecters,
and force F laws are required such that the desired
behavior emerges. We explore this in the next few
sections, for different geometric configurations.

Creating Hexagonal Lattices
The example considered here is that of a swarm of
MAVs whose mission is to form a hexagonal lattice,
which creates an effective sensing grid. Essentially,

such a lattice will create a virtual antenna or synthetic
aperture radar to improve the resolution of radar im-
ages. A virtual antenna is expected to be an important
future application of MAVs. Currently, the technology
for MAV swarms (and swarms of other micro-vehicles
such as micro-satellites) is in the early research stage.
Nevertheless we are developing the control software
now so that we will be prepared.

S ince MAVs (o r o the r sma l l agen t s such a s
nanobots) have simple sensors and primitive CPUs,
our goal was to provide the simplest possible con-
trol rules that require minimal sensors and effecters.
At first blush, creating hexagons would appear to be
somewhat complicated, requiring sensors that can cal-
culate range, the number of neighbors, their angles,
etc. However, it turns out that only range information
is required. To understand this, recall an old high-
school geometry lesson in which six circles of radius R
can be drawn on the perimeter of a central circle of
radius R (the fact that this can be done with only a
compass and straight-edge can be proven with Galois
theory). Figure 2 illustrates this construction. If the
particles (shown as small circular spots) are deposited
at the intersections of the circles, they form a hexagon.

Figure 2: How circles can create hexagons.

The construction indicates that hexagons can be cre-
ated via overlapping circles of radius R. To map this
into a force law, imagine that each particle repels other
particles that are closer than R, while attracting par-
ticles that are further than R in distance. Thus each
particle can be considered to have a circular “potential
well” around itself at radius R ~ neighboring particles
will want to be at distance R from each other. The
intersection of these potential wells is a form of con-
structive interference that creates “nodes” of very low
potential energy where the particles will be likely to
reside (again these are the small circular spots in the
previous figure). Thus the particles serve to create the
very potential energy surface they are responding to!’

With this in mind we defined a force law F =
Gmimjfr2, where F is the magnitude of the force be-
tween two particles i and j, and r is the range between
the two particles. The “gravitational constant” G is
set at initialization. The force is repulsive if r < R and

‘It is important to note that the entire potential energy
surface is never actually computed. Particles only compute
force vectors for their current location.

attractive if r > R. Each particle has one sensor that
can detect the range to nearby particles. The only ef-
fector is to be able to move with velocity U. To ensure
that the force laws are local in nature, particles have
a visual range of only 1.5R.2

The initial universe of 200 particles (as shown in
Figure 1) is now allowed to evolve for 1000 time steps,
using this very simple force law (see Figure 3). For
a radius R of 50 we have found that a gravitational
constant of G = 1200 provides good results (these val-
ues for R, G, and the number of particles remain fixed
throughout this paper unless stated otherwise).

Figure 3: A good hexagonal lattice results by t = 1000.

There are a number of important observations to
make about Figure 3. First, it is obvious that a rea-
sonably well-defined hexagonal lattice has been formed
from the interaction of simple local force laws that in-
volve only the detection of distance to nearby neigh-
bors. The hexagonal lattice is not perfect - there is a
flaw near the center of the structure. ,41so, the perime-
ter is not a hexagon, although this is not surprising,
given the lack of global constraints. However, many
hexagons are clearly embedded in the structure and
the overall structure is quite hexagonal. The second
observation is that each node in the structure can have
multiple particles (i.e., multiple particles can “cluster”
together). Clustering was an emergent, property that
we had not expected, and it provides increased robust
behavior, because the disappearance (failure) of indi-
vidual paiticles (agents) from a cluster will have min-
imal effect. This form of fault-tolerance is a result of
the setting of G, which we explore later in this section.

The pattern of particles shown in Figure 3 is quite
stable, and does not change to any significant degree
as t increases past 1000. The dynamics of the evolving
system (from 0 < t < 1000) is quite fascinating (when
watched on a computer screen), yet is hard to simply
convey in a paper. As opposed to displaying numerous
snapshots we have instead decided to focus on certain
well-defined characteristics of the system that can be
measured at any time step. Graphs of these character-
istics yield useful insights into the system dynamics.

Figure 4: The average angular error in the structure as
t increases. The log scale emphasizes early behavior.

Figure 5: The size of the clusters as f increases.

The first characteristic we examined is motivated by
our desire to have the global structure contain as few
errors as possible, in the sense that the orientation of
the hexagonal lattice should be the same everywhere
throughout the lattice. To see how we can achieve a
measure of this characteristic, consider choosing any
pair of particles separated by 2R. This forms a line
segment. Then choose any other pair of particles also
separated by 2R, forming another line segment. Mea-
sure the angle between the two line segments. For a
hexagonal lattice, this angle should be close to some
multiple of 60”. The error is the absolute value of the
difference between the angle and the closest multiple
of 60. The maximum error is 30” and the minimum is
0”. We averaged this over all distinct pairs of parti-
cle pairs, and displayed the average error for every ten
time steps. The results are shown in Figure 4.3

Since error ranges from 0” to 30”, we expect the
average error at the beginning to be around 15”. After
that the error should decrease - the rate at which the
decrease occurs is a reasonable measure of how quickly
the system is stabilizing. Figure 4 shows that error
decreases smoothly until about t = 200, resulting in a
final error of roughly 6” over the whole structure. This
is a typical result. Averaged over 40 independent runs
(different starting conditions) the final error was 5.6”.

‘The constant 1.5 is not chosen randomly. In a hexagon,
if a nearby neighbor is further than R away, it is 2 &R
away. We wanted the force laws to be as local as possible.

3We use 2R instead of R in an attempt to smooth out
local noise, since we care about global error. A particle is
considered to be separated by 2R if 1.98R < r < 2.02R.

Figure 6: Cluster size drops suddenly as G is decreased
linearly after t = 1000. G = 1200 - 0.5(t - 1000).

The second characteristic we examined is the size of
clusters. For each particle i we counted the number
of particles that were close to i (0 < T < 0.2R). We
always inclilde t,he particle i itself, so the minimum size
of a cluster is 1.0. This was averaged over all part,icles
and displayed for every time step. Results are shown
in Figure 5. At t = 0 all particles are very close to
one another, yielding a high clustering. Immediately,
t,he particles fly apart, due to the repulsive force, so
t,hat by t = 6 the particles are all effectively separated.
However. after f = 6 clusters re-emerge, with the final
cluster size being around 2.5. Clearly the re-emergence
of clusters serves to lower the t,otal potential energy of
the system, and the size of the re-emerged clust,ers
depends on factors such as G, R, and the geometry of
the syst,em. A full understanding of this phenomena
is beyond the scope of this paper, yet we summarize
here one int,eresting experiment with G. We continued
the previous experiment, evolving the system until t =
2500. However, after t = 1000 we lowered G by 0.5 for
every time step. The results are shown in Figure 6.

We expected the average cluster size to linearly de-
crease with G, but in fact the behavior was much
more interesting. The average cluster size remained
quite constant, until about t = 2000, which is where
G is 700. At this point t,he cluster size dramatically
dropped until roughly t = 2200 (where G = 600),
where the particles are separated again. This appears
very similar to a phase transition in natural physics,
demonst,rating that AP can yield behavior very similar
to that demonstrated in natural physics.

Creating Square Lattices
Given the success in creating hexagonal lattices, we
were inspired to investigate other regular structures.
Naturally the square lattice is an obvious choice, since
(as with hexagons) squares will tile a 2D plane. The
success of the hexagonal lattice hinged upon the fact
t,hat nearest neighbors are R in distance. Clearly this
is not true for squares, since if the distance between
particles along an edge is R, the distance along the
diagonal is &R. The problem is that the particles

l 0

Figure 8: The 200 particles form a square lattice by
t = 4000. There are large global flaws in the lattice.

have no way of knowing whether their relationship to
neighbors is along an edge or along a diagonal.

Once again it would appear as if we would need to
know angles or the number of neighbors to solve this
difficulty. In fact, a much simpler approach will do the
trick. Suppose that at creation each particle is given
another attribute, which we will call “spin”. Half of
the particles will be initialized to be spin “up”, while
the other half are initialized to be spin “down”. Spins
do not change during the evolution of the system.4

Now consider the square depicted in Figure 7. Par-
ticles that are spin up are open circles, while particles
that are spin down are filled circles. Note that parti-
cles of unlike spin are distance R from each other, while
particles of like spin are distance &fR from each other.
This “coloring” of the particles extends to square lat-
tices, with alternating spins along the edges of squares,
and same spins along the diagonals.

The construction in Figure 7 indicates that square
lattices can be created if particles can sense not only
range to neighbors, but also the spins of their neigh-
bors. Thus the sensors need to be able to detect one
more bit of information, spin. We use the same force
law as before: F = Grnimjlr”. In this case, however,
the range T is renormalized to be r/d if the two par-
ticles have the same spin. Then once again the force
is repulsive if T < R and attractive if T > R. The
only effector is to be able to move with velocity V. To
ensure that the force laws are local in nature, particles
can not even see or respond to other particles that are
greater than 1.7R in distance.5

The initial universe of 200 particles is allowed to

4Spin is merely a particle label and has no relation to the
rotational spin used in navigation templates (Slack 1990).

‘The constant is 1.7 if particles have like spin and 1.3

Distributed Spatial Control, Global Monitoring and Steering of
Mobile Physical Agents*

Diana Gordon and William Spears Oleg Sokolsky and Insup Lee
Navy Center for Applied Research in-AI
Naval Research Laboratory, Code 5514

Washington, D.C. 20375
gordon@aic.nrl.navy.mil

To appear in the Proceedings of the IEEE Interna-
tional Conference on Information, Intelligence, and
Systems (ICIIS ‘99)

Abstract

In this paper, we combine two frameworks in the con-
text of an important application. The first framework,
called “artificial physics,” is described in detail in a
companion paper by Spears and Gordon (1999). The
purpose of artificial physics is the distributed spatial
control of large collections of mobile physical agents.
The agents can be composed into geometric patterns
(e.g., to act as a sensing grid) by having them sense
and respond to local artificial forces that are moti-
vated by natural physics laws. The purpose of the
second framework is global monitoring of the agent
formations developed with artificial physics. Using
only limited global information, the monitor checks
that the desired geometric pattern emerges over time
as expected. If there is a problem, the global mon-
itor steers the agents to self-repair. Our combined
approach of local control through artificial physics,
global monitoring, and “steering” for self-repair is im-
plemented and tested on a problem where multiple
agents form a hexagonal lattice pattern.

Introduction
The objective of this research is the distributed con-
trol of large numbers of mobile physical agents to
form regular geometric configurations, e.g., to act as
sensing grids. During formation, the configurations
are monitored by a global observer to detect whether
there is a significant increase in the number of pat-
tern violations over time. Our combined approach
of distributed local control and global monitoring en-
ables spatio-temporal coordination of the agents. The
agents may range in scale from neurons, nanobots, or
micro-electromechanical systems (MEMS) to micro-air
vehicles (MAVs) and satellites. The example consid-
ered here is that of a swarm of MAVs whose mission

This research was supported in part by ONR N00014-
9i-1-0505 and ONR N00014-99-WR20010 as part of the
ONR Semantic Consistency MURI. as well as NSF CCR-
9619910, AR0 DAAG55-98-1-0393, AR0 DAAG55-98-1-
0466.

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104

is to form a hexagonal lattice, which creates an ef-
fective sensing grid. Essentially, such a lattice will
create a virtual antenna or synthetic aperture radar
to improve the resolution of radar images. A virtual
antenna is expected to be an important future appli-
cation of MAVs. Currently, the technology for MAV
swarms (and swarms of other micro-vehicles such as
micro-satellites) is in the early research stage. Never-
theless we are developing the control software now so
that we will be prepared.

We assume agents can only sense and affect nearby
agents; thus the problem is one of “local” control. The
method for local control should be based on principles
such as self-assembly, fault-tolerance, and self-repair.
These principles are precisely those exhibited by natu-
ral systems. This leads us to look at the laws of physics
for ideas on distributed control. To explore this, we
have developed a general framework for distributed
control in which “artificial physics” (AP) forces control
agents. We use the term “artificial” because although
we are motivated by natural physical forces, we are not
restricted to only natural physical forces. The agents
aren’t really subject to real forces, but they can act
as if the forces are real. Thus the agent’s sensors will
have to be able to see enough to allow it to compute
the forces to which it is reacting. The agent’s effecters
should allow it to respond to this perceived force. For
details on AP, see Spears and Gordon (1999).

We see at least two advantages to AP. First, in the
real physical world, collections of small entities yield
surprisingly complex behavior from very simple inter-
actions between the entities. Thus there is a prece-
dent for believing that complex control can be achieved
through simple local interactions. This is required for
very small agents (such as nanobots), since their sen-
sors and effecters will necessarily be primitive. Two,
since the approach is largely independent of the size
and number of agents, the results should scale well to
larger agents and larger sets of agents.

AP addresses the problem of distributed agent
control via local rules. This approach, which also
includes fault-tolerance and local self-repair mecha-
nisms (Spears & Gordon 1999), may be inadequate
for handling major unanticipated events. For exam-
ple, if a swarm of MAVs is flying in formation, fault-
tolerance and/or local self-repair capabilities could en-

able recovery from minor air turbulence. On the other
hand, intentional or unintentional corruption of the
MAVs’ control software, severe environmental condi-
tions, or widespread mechanical failures could conceiv-
ably result in an unrecoverable problem maintaining
the desired geometric formation. Therefore, we also
include a global observer that monitors the progress
of the formation, using the Monitoring and Checking
(Mac) framework, which is described in detail in Kim
et al. (1999). We do not make the strong assumption
that the global observer can see the pattern ~ because
this assumption may be infeasible for large numbers
of widely distributed agents. We only assume that the
observer can receive communication from the individ-
ual agents. Each agent sends an alert if it fails to sat-
isfy its local evaluation measure. The global observer
collects these alerts, and issues a general alarm if the
local alerts are too frequent for too long. The gen-
eral alarm might be sent to people nearby to persuade
them to intervene and manually solve the problem by
sending commands to the agents. Here, we assume
that the general alarm suggests the need for “steering”
(i.e., self-repair to recover from problems). In our ap-
proach to steering, the global observer broadcasts to
the agents a global parameter change for self-repair.
This restores progress toward the desired geometric
configuration.

The novelties of this paper are: (1) the combination
of AP with Mac, (2) the introduction of a steering
method for self-repair when MaC detects a failure, and
(3) experimental results that validate the usefulness of
this combined approach in the context of hexagonal
lattice formations. The paper begins by presenting
the artificial physics framework. This is followed by a
description of how AP can be used to generate hexag-
onal lattices. We then describe the MaC framework,
and apply it to monitor the progress of forming hexag-
onal lattices. Finally, we present a method for steer-
ing that adjusts global parameters for self-repair. The
paper concludes with some initial results, followed by
related work and ideas for future research.

Artificial Physics: A Framework for
Distributed Multiagent Control

Our artificial physics approach treats agents as physi-
cal particles, though their actual size may range from
nanobot,s to satellites. A simple but realistic physical
simulation of the particles’ behavior was built. Parti-
cles exist in two dimensions (we see little difficulty in
generalizing to three dimensions) and are considered to
be point-masses. Each particle i has position p = (.r, y)
and velocity v = (v,, v,). We use a discrete-time ap-
proximation to the continuous behavior of the parti-
cles, with time-step At. At each time step, the position
of each particle undergoes a perturbation Ap. The per-
turbation depends on the current velocity Ap = vat.
The velocity of each particle at each time step also

changes by Au. The change in velocity is controlled
by the force on the particle Au = Fat/m, where m
is the mass of that particle and F is the force on that
particle. An additional simple frictional force is also
always included, for self-stabilization.

Given the initial conditions and some desired global
behavior, we must define what sensors, effecters, and
force F laws are required such that the desired behav-
ior emerges. We explore this for hexagonal lattices.

Creating Hexagonal Lattices
This subsection explains the construction of hexagonal
lattices, e.g., for MAV sensor grids. For MAVs, the ini-
tial conditions are assumed to be similar to those of
a “big bang” ~ the MAVs are released from a canister
dropped from a plane, then they spread outwards un-
til a desired geometric configuration is obtained. This
is simulated by using a two-dimensional Gaussian ran-
dom variable to initialize the positions of all particles
(MAVs). Velocities of all particles are initialized to be
0.0, and masses are all 1.0 (although the framework
does not require this). .4n example initial configura-
tion for 150 particles is shown in Figure 1.

.

*
.

.

Figure 1: The initial creation of the universe at t = 0.

S ince MAVs (o r o the r sma l l agen t s such a s
nanobots) have simple sensors and primitive CPUs,
our goal is to provide the simplest possible control
rules that require minimal sensors and effecters. At
first blush, creating hexagons would appear to be
somewhat complicated, requiring sensors that can cal-
culate range, the number of neighbors, their angles,
etc. However, it turns out that only range information
is required. To understand this, recall an old high-
school geometry lesson in which six circles of radius R
can be drawn on the perimeter of a central circle of
radius R (the fact that this can be done with only a
compass and straight-edge can be proven with Galois
theory). Figure 2 illustrates this construction. Notice
that if the particles (shown as small circular spots) are
deposited at the intersections of the circles, they form
a hexagon.

Figure 2: How circles can create hexagons.

The construction indicates that hexagons can be cre-
ated via overlapping circles of radius R. To map this
into a force law, imagine that each particle repels other
particles that are closer than R, while attracting par-
ticles that are further than R in distance. Thus each
particle can be considered to have a circular “potential
well” around itself at radius R - neighboring particles
will want to be at distance R from each other. The
intersection of these potential wells is a form of con-
structive interference that creates “nodes” of very low
potential energy where the particles will be likely to
reside (again these are the small circular spots in the
previous figure). Thus the particles serve to create the
very potential energy surface they are responding to!’

With this in mind we defined a force law F =
Gmi/nj/r’, where F is the magnitude of the force be-
tween two particles i and j, and r is the range between
the two particles. The “gravitational constant” G is
set at initialization. The force is repulsive if r < R
and attractive if r > R. Each particle has one sen-
sor that can detect the range to nearby particles. The
only effector is to be able to move with velocity v. To
ensure that the force laws are local in nature, particles
can not even see or respond to other particles that are
greater than 1.5R in distance. 2

The initial universe of 150 particles (as shown in
Figure 1) is now allowed to evolve, using this very
simple force law. For a radius R of 50 we have found
that a gravitational constant of G = 1200 provides
good results (these values for R, G, and the number of
particles remain fixed throughout this paper). Figure 3
shows the system after 35 time steps.

Figure 3: The 150 particles form a good hexagonal
lattice by t = 35.

There are a couple of important observations to
make about Figure 3. First, a reasonably well-defined
hexagonal lattice has been formed from the interac-
t,ion of simple local force laws that involve only the
detection of distance to nearby neighbors. Also, the
perimeter is not a perfect hexagon, although this is
not surprising, given the lack of global constraints.

‘It is important to note that the entire potential energy
surface is never actually computed. Particles only compute
force vectors for their current location.

‘The constant 1.5 is not chosen randomly. In a hexagon,
if a nearby neighbor is further than R away, it is 2 &R
away. We wanted the force laws to be as local as possible.

However, many hexagons are clearly embedded in the
structure and the overall structure is quite hexagonal.
The second observation is that each node in the struc-
ture can have multiple particles (i.e., multiple parti-
cles can “cluster” together). Clustering is an emergent
property that provides increased robust (fault toler-
ant) behavior, because the disappearance of individual
agents from a cluster will have minimal effect.

Discussion
The artificial physics framework offers a number of ad-
vantages. For one, it enables large numbers of agents
to self-assemble into geometric lattices. Here, we have
shown the method for assembling hexagonal lattices.
With a minor extension (the introduction of a “spin”
attribute), agents can also self-assemble into square
lattices, “open” hexagonal lattices (i.e., without an
agent in the center of the hexagon), and an approxima-
tion to lattices of pentagons.3 Furthermore, as men-
tioned above, fault-tolerance is a result of the emer-
gent redundancy at nodes of the lattice. In Spears
and Gordon (1999), it is shown that there is an effec-
tive offline evaluation measure of lattice quality that
averages the angular error throughout the lattice. This
is useful during program development. Furthermore,
Spears and Gordon (1999) present effective local self-
repair methods that can fill gaps in the lattice (empty
nodes) and reduce the angular error.

Although AP has the desirable attributes of en-
abling self-assembly, fault-tolerance, and local self-
repair, it cannot address all problems that the agents
might encounter. In particular, although the offline
measure of lattice quality provides assistance during
program development, it relies on measuring angles
and making geometric comparisons between agents
that are far apart in the lattice. As stated earlier,
we do not want agents to have to measure angles, and
we cannot assume sensors that detect other agents be-
yond the visibility range. Therefore we require a sim-
pler online measure of lattice quality. Furthermore,
although the local self-repair methods are effective for
repairing empty nodes and global flaws in angles (such
as those detected by the angular error measure), they
are not capable of restoring the lattice after severe dis-
turbances that distort the shape of the perimeter. An
example of a potential hazard for an MAV is air tur-
bulence. MAVs are expected to be small (less than six
inches in length, width, and height), slow (traveling
22-45 miles per hour), and light (50-70 grams). This
translates into a low Reynolds number, which implies
that for practical purposes inertia can be ignored and
the MAVs will be especially vulnerable to air turbu-
lence. (McMichael 8~ Francis 1997). Our solution is to
add Monitoring and Checking.

31t is an approximation because it’s impossible to gen-
erate a tiling with regular pentagons.

Filter GeneratorCJava program

I
I I low kvel

’ I n s t r u m e n t e d Program(Bytecode)
inffmnrrtio E v e n t Recognizer wenr

(Java program)
I

Legend

/npuw0utpot 0 Process - Dependency ---+ Run-time communication

Figure 4: Overview of t,he MaC framework.

A Framework for Global Monitoring
The Monit,oring and Checking (Mac) framework (see
Figure 4) aims at run-time assurance monitoring of
real-time systems. The current implementation is in
Java, though the framework is generic and can apply
to any language. The framework includes two main
phases: (1) before the system is run, its implementa-
tion and requirement specification are used to gener-
ate run-time monitoring components; (2) during sys-
t,em execution, information about the running system
is collected and matched against the (user-generated)
requirements.

During the first phase, MaC provides a mapping be-
tween high-level events used in the requirement speci-
fication and low-level state information extracted dur-
ing execution. They are related explicitly by means
of a monitoring script, which describes how events at
the requirements level are defined in terms of moni-
tored states of an implementation. For example, in
the requirements we may want to express the event
that the agents are tooClose. The implementation,
on the other hand, stores the information about prox-
imit,y in a variable distance. In an execution state,
this variable has a particular value. The monitor-
ing script in this case can define the event tooClose
a s (d i s t a n c e > 0.25*R) && (d i s t a n c e < 0.75*R).
This definition of tooClose captures the notion that if
neighboring particles are < 0.25R apart then we per-
mit this because they are% the same cluster (node);
however, if they are not in the same cluster then we
want them to be approximately R apart,.

The monitoring script is used to automatically gen-
erate a filter and an event recognizer for run-time mon-
itoring. The filt,er is a set of program fragments that
are inserted into the implementation to instrument the
system. Instrumentation is performed statically di-

rectly on the code (bytecode in the case of Java). In-
strumentation is automatic, which is made possible by
the low-level description in the monitoring script. The
essential functionality of the filter is to keep track of
changes to monitored objects and send pertinent state
information to the event recognizer.

The monitoring script is also used to automatically
generate the event recognizer. The event recognizer
detects, according to the monitoring script, occur-
rences of high-level events from the data received from
the filter. The purpose of the event recognizer is to
deliver events to a run-time checker, described below.

Also, during the first phase the user formalizes the
system requirements in a requirements specification.
The requirements in this specification are defined in
terms of events (which are defined in the monitor-
ing script). A run-time checker is produced automati-
cally from the requirements specification. The purpose
of the run-time checker is to determine at run-time
whether the system is satisfying its requirements.

In summary, during the first phase the user defines
a requirements specification and a monitoring script.
The requirements specification defines what the user
expects of the system. The monitoring script provides
event definitions necessary for the requirements speci-
fication. From the monitoring script, a filter and event
recognizer are automatically generated, and from the
requirements specification, a run-time checker is auto-
matically generated.

During the second (run-time) phase, the instru-
mented implementation is executed while being mon-
itored. The filter sends relevant state information
to the event recognizer, which detects events. These
events are then relayed to the run-time checker, which
checks adherence to the user-desired requirements.

