
Reciprocal Approximation Theory with

Table Compensation

Albert A. Liddicoat and Michael J. Flynn

Technical Report No. CSL-TR-00-790

January 2000

Reciprocal Approximation Theory with Table Compensation

by

Albert A. Liddicoat and Michael J. Flynn

Technical Report No. CSL-TR-00-790

January 2000

Computer Systems Laboratory

Stanford University

Gates Building 3A, Room 332

Stanford, California 94305-9030

pubs@shasta.stanford.edu

Abstract

[Sch93] demonstrates the reuse of a multiplier partial product array (PPA) to approximate higher
order functions such as the reciprocal, division, and square root. Schwarz generalizes this technique
to any higher order function that can be expressed as A �B = C. Using this technique, the height
of the PPA increases exponentially to increase the result precision. Schwarz added compensation
terms within the PPA to reduce the worst case error.

This work investigates the approximation theory of higher order functions without the bounds of
multiplier reuse. Additional techniques are presented to increase the worst case precision for a �xed
height PPA.

A compensation table technique is presented in this work. This technique combines the approxima-
tion computation with a compensation table to produce a result with �xed precision. The area-time
tradeo� for three design points is studied. Increasing the computation decreases the area needed
to implement the function but also increases the latency.

Finally, the applicability of this technique to the bipartite ROM reciprocal table is discussed. We
expect that this technique can be applied to the bipartite ROM reciprocal table to signi�cantly
reduce the hardware area needed at a minimal increase in latency.

In addition, this work focuses on hardware recon�gurability and the ability of the hardware unit
to be used to perform multiple higher order functions eÆciently. The PPA structure can be used
to approximate several higher order functions that can be expressed as a multiply.

Key Words and Phrases: Approximation Theory, PPA, Divide, Reciprocal,

ii

Copyright c
 2000

by

Albert A. Liddicoat and Michael J. Flynn

Contents

1 Introduction 1

2 Compensation Table 3

2.1 Area and Latency Analysis . 5

3 Computation complexity versus table size study 6

3.1 Determining optimal design points . 6

3.2 Maximizing the precision from a �xed height PPA 8

3.3 Applying the precision enhancement techniques to the three design points 16

4 PPA Computation Technique applied to the Bipartite Reciprocal table 22

5 Conclusions 23

iv

List of Figures

1 Partial Product Array (PPA) in dot notation for the reciprocal function approxima-
tion as proposed by [Sch93] for a booth 2 multiplier with height 27. The worst case
accuracy computed is 9.17 bits . 2

2 The error distribution for the reciprocal approximation technique using a PPA height
of 27 and a 13-bit input producing a 12-bit result. 3

3 The PPA in dot notation for the reciprocal function after the constant adjustments
have been made to bias error. 4

4 A (3,2) Counter and CPA combine the PPA and the compensation table outputs to
produce the �nal result. 4

5 Wallace tree for reducing PPA column with nine partial products. 7

6 Delay and worst case precision as a function of PPA height. 7

7 Maximum height reduction technique. 9

8 Reciprocal PPA structure with Boolean elements [Sch93]. The dashed line represents
the desired PPA height while the circles indicate which terms maybe manipulated
by the proposed technique. 9

9 Reciprocal PPA structure with Boolean elements after height manipulation technique. 10

10 Reciprocal PPA structure with Boolean elements moved to less signi�cant columns
and duplicated. 11

11 Reciprocal PPA structure with Boolean elements after logical manipulations and the
column q8 excess term approximation. 12

12 The di�erence between the computed and the round to nearest result. The compen-
sation table must account for the di�erence between the maximum and minimum
points on each curve. 13

13 Distribution of the di�erence between the computed result and the round to nearest
result for all 213 inputs. 15

14 Final PPA con�guration for the reciprocal approximation. 15

15 Final hardware con�guration for reciprocal unit with PPA of height 9. 16

16 Final hardware con�guration for reciprocal unit with PPA of height 18. 18

v

17 Final hardware con�guration for reciprocal unit with PPA of height 36. 20

18 The Area-Time tradeo� for a reciprocal Unit with 12-bit output precision. An in-
crease in computation increases the reciprocal latency but decreases the compensa-
tion table size and therefore decreases the area needed implement the unit. 21

19 A j + 2 = 3k + 1 bits-in j = 3k � 1 bits-out Faithful Reciprocal table. [DM95] . . . 22

vi

1 Introduction

Renato Stefanelli [Ste72] expressed division and the reciprocal function as the inverse of multiplica-
tion (Q = A=B � > Q �B = A and Q = 1=B � > Q �B = 1). The unknown input Q is multiplied
with the input operand B and set equal to the input operand A or 1. Then by solving a set of
linear equations the quotient Q can be determined. Each quotient digit is dependent on all of the
more signi�cant quotient digits. The latency for this technique grows linearly with the number of
digits to compute.

David Mandelbaum [Man90] enhanced Stefanelli's technique by removing the recursion between
digits with back substitution. The latency for the enhanced technique grows logarithmically with
the number of digits to compute since all the digits are computed simultaneously. Mandelbaum
expressed his equations in the form of a partial product array (PPA). He also applied this technique
to other higher order functions such as the square root, natural log, and exponential functions.

Eric Schwarz [Sch93] further enhanced these techniques by developing a method to implement the
approximation theory on a standard direct multiplier or booth 2 multiplier PPA. Schwarz also
developed compensation terms to improve the average and worst case error.

Figure 1 depicts the reciprocal function approximation PPA structure proposed by Schwarz for
implementation on a booth 2 multiplier. The PPA includes the compensation terms used for
the reciprocal approximation. 9.17 bits of accuracy or better can be achieved using this booth 2
multiplier PPA with height of 27. Schwarz also shows that 12.0 bits of accuracy can be achieved
using a direct multiplier PPA of height 53.

In this work we propose several techniques, including a compensation table, to increase the worst
case accuracy of a result produced by a �xed PPA height. In section 2, the compensation table
technique is applied to the PPA shown in �gure 1. Using the compensation table technique the
worst case accuracy is improved from 9.17 bits to 12 bits. In section 3, the PPA computation
versus table size is studied. By increasing the PPA height the size of the compensation table
required to obtain a �xed precision result decreases. However increasing the PPA height increases
the latency of the approximation computation. Therefore, there is an area-time tradeo� to arrive
at a �xed precision result. Section 4, then looks at applying the technique discussed in this paper
to the primary table in the faithful bipartite ROM reciprocal tables proposed by Das Sarma and
Matula [DM95]. The �nal section of this paper provides some conclusions based on this work.

1

q
4

q
0

q q q q q q q q
0

q q q
1 2 3 5 6 7 8 10 11 12

q
13

Figure 1: Partial Product Array (PPA) in dot notation for the reciprocal function approximation
as proposed by [Sch93] for a booth 2 multiplier with height 27. The worst case accuracy computed
is 9.17 bits

2

2 Compensation Table

In this work we propose several techniques to increase the worst case accuracy of the reciprocal
approximation produced by a �xed height PPA. In this section, the compensation table technique
is proposed and applied to the booth 2 PPA of height 27 as shown in �gure 1. The compensation
table of size 213x5 bits is required to achieve a 12-bit accurate result rounded to the nearest digit.

Figure 2 shows the histogram of the di�erence between the reciprocal approximation technique
computed on a PPA of height 27 and the round to nearest 12-bit result. The error is normally
distributed with a minimum value of -10 and a maximum value of 9. By subtracting the maximum
error from the constants in the PPA, the error can be shifted to the range of -19 to 0. Therefore,
a positive compensation table value of 5-bits may be directly added to the computed result to
produce an output result with 12 bits of accuracy. The 5-bit compensation table stores an o�set
between 0 and (25 � 1 = 31) for each of the 213 possible input values.

Figure 3 shows the PPA for the reciprocal function in dot notation after the changes have been
made to the PPA constants to bias the error. The computed approximation from the PPA and
the compensation table word can be summed together by one (3,2) counter stage and one �nal
carry propagate add (CPA). The �nal result is the reciprocal of the input accurate to 12 bits of
precision. Figure 4 shows the proposed hardware structure to combine the PPA output with the
compensation table, and then reduce the result with one (3,2) counter stage and a 12-bit CPA.

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Reciprocal function error (Computed − Round to nearest)

F
re

qu
en

cy

Figure 2: The error distribution for the reciprocal approximation technique using a PPA height of
27 and a 13-bit input producing a 12-bit result.

3

q
4

q
0

q q q q q q q q
0

q q q
1 2 3 5 6 7 8 10 11 12

q
13

Figure 3: The PPA in dot notation for the reciprocal function after the constant adjustments have
been made to bias error.

q
0

q q
1 2

q
43

q
5

q
6

q
12

q
11

q
10

q
0

q
8

q
7

q

<- CPA (12-bit)

<- Result (12-bit)

27x13 PPA output

<- (3,2) Counter
Compensation Table output

Figure 4: A (3,2) Counter and CPA combine the PPA and the compensation table outputs to
produce the �nal result.

4

2.1 Area and Latency Analysis

Comparing the approximation theory with compensation table technique to a single lookup table
we �nd that the proposed method has two main bene�ts. First the area required to implement
the proposed technique is signi�cantly smaller than the area of a single ROM table. Additionally,
the PPA hardware required for the approximation can be recon�gurable and used to approximate
a variety of functions such as square root, division, and the transcendental functions. Therefore,
the compensation table is the only area exclusively dedicated to perform one speci�c arithmetic
function. The disadvantage however is performance. It requires more time to compute the ap-
proximation than to simply access a large table. This design point with a PPA of height 27 and a
213x5 bit compensation table of was chosen to demonstrate the compensation table technique. The
design point was not selected as an optimum design point based on area or performance. Table 2.1
summarizes the area required and latency for the reciprocal function approximation technique and
compares it to a single ROM lookup table.

In the approximation theory technique 1179 logic gates replace more than 57kbits of ROM. The
latency of the approximation theory technique with a compensation table is approximately 28 gate
delays. This is approximately 18 gate delays greater than the latency of a single lookup table.

Table 1: Reciprocal Function Area requirements and Latency

Technique Functional Block Area (gates) ROM (bits) Gate Delays

Approx Input Logic 200 2
PPA's 895 16

Compensation Table 40,960 9 (overlapped)
(3,2) Counter 60 2
CPA (12 bits) 24 8

Total 1179 40,960 28

Single Tbl Total 98,304 10

5

3 Computation complexity versus table size study

3.1 Determining optimal design points

In this section we evaluate the tradeo� between increasing the PPA height, and therefore the
precision of the computation, and decreasing the table width while producing a �xed precision
result. To understand the area latency tradeo� we identi�ed three design points that optimize the
area latency product.

We selected a Wallace tree PPA implementation. The delay of a Wallace tree is proportional to
log 3

2

h. Figure 5 shows a Wallace tree that can reduce nine partial products in four CSA delays.

The tree can be doubled by combining two 9 input trees with two CSA's to produce a tree that
can reduce 18 partial products in 6 CSA stage delays. The 18 input tree requires 16 CSA's per
column in the PPA. An 18 input partial product tree can be doubled in a similar fashion, again by
combining two 18 input trees with two additional CSA's. The 36 partial product tree requires 8
CSA delays and a total of 32 CSA's per column in the PPA. Figure 6 shows the Wallace tree delay
in terms of CSA stages for varying PPA heights. One can observe the discrete changes in delay
that increase logarithmically with an increase in the PPA height.

The reciprocal function PPA is determined by back-solving the PPA for the equation QxB = 1. The
equations for quotient bits q(0) to q(13) are then found using the technique described in [Sch93].
The worst case accuracy and PPA height is then determined for approximations using bits q(0) to
q(n). As n increases the worst case accuracy improves and the PPA height required to compute
the approximation increases. The worst case precision as a function of the required PPA height
is shown in Figure 6. Only the six Pareto points are plotted. The worst case precision also
grows logarithmically with the PPA height. Alternately stated, the required PPA height grows
exponentially with the worst case result precision. The �gure also shows the ratio of the CSA
delay to the worst case precision of the result. Here we notice that the delay per bit for PPA with
height greater than �ve is fairly constant at about 1.4 CSA delays per bit of precision. Since the
precision is increasing monotonically and the delay increases discretely, the optimal performance
points (CSA delays per bit of precision) are at the corners of the CSA delay curve. The corners are
where the largest precision can be obtained on the PPA delay plateau. In the following subsections
the approximation technique with table compensation is evaluated for the three corner points where
the PPA heights are 9, 18, and 36.

6

A B C

Carry Sum
(3,2) Counter

A B C

Carry Sum
(3,2) Counter

A B C

Carry Sum
(3,2) Counter

A B C

Carry Sum
(3,2) Counter

A B C

Carry Sum
(3,2) Counter

A B C

Carry Sum
(3,2) Counter

A B C

Carry Sum
(3,2) Counter

<- Inpu

<- Outputs

Figure 5: Wallace tree for reducing PPA column with nine partial products.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

PPA height

CSA Delay
Result Precision
CSA Delay per Bit

Figure 6: Delay and worst case precision as a function of PPA height.

7

3.2 Maximizing the precision from a �xed height PPA

We propose several techniques to reduce the worst case error of the approximation. Schwarz
proposes using boolean compensation terms within the PPA to reduce the error but recommends
that future work be done in the area of reducing the worst case error.

We have developed three additional techniques to reduce the worst case error. First logically equiv-
alent manipulations can be used to reduce the height of the largest columns. Reducing the height
of columns that exceed the desired PPA height reduces the PPA error as opposed to truncating the
boolean terms. Second, a technique is proposed that decreases the worst case error by approximat-
ing the boolean terms that would otherwise not �t into a PPA of a given height. Finally, selective
boolean term elimination can be used as a very �ne grain manipulation to accommodate the error
biasing constants and the boolean compensation terms. Each of these techniques is discussed below
and they are applied to the design point with PPA height of 9. Then the proposed techniques to
optimize the approximation precision and the table compensation are applied to the remaining two
design points. The area and latency results from the three design points are then presented.

3.2.1 Logically equivalent manipulations

Schwarz identi�es two boolean and two algebraic techniques to reduce the number of terms within
a column. Since the PPA algebraically adds the terms in a column, standard boolean reductions
do not work. Schwarz also proposed a technique to shift terms from a column to a less signi�cant
column by doubling the terms since the weight of the adjacent less signi�cant column is 1/2 that
of the current column. For example the boolean term b1&b2 can be moved from column 7 into
column 8 if the term is duplicated in column 8. This manipulation is equivalent since algebraically
b1&b2 = 1

2
(b1&b2) +

1

2
(b1&b2). All of the techniques proposed by Schwarz allow the array to be

reduce without a�ecting the computed result.

Here we propose a new technique that allows terms to be combined across columns so that terms
in the largest columns can be migrated to more signi�cant columns. This technique can be used
to reduce the height of the largest columns. For example the q7 column has ten terms as can be
seen in �gure 1 and we are attempting to �t the design into a PPA with a maximum height of
nine. Figure 7 a) uses a Karnaugh map to show that the min-terms from two of the boolean terms
in the q7 column overlap. With a straight boolean reduction one could eliminate the b3&b

0

4&b5
term. However, since the terms are summed together algebraically the weight of each term must
be considered. Figure 7 b) shows that the terms can be separated into two independent boolean
terms, b0

3
&b0

4
&b5 and b3&b

0

4
&b5. The �rst term has weight one and the second term has weight

two. Now the two terms can be represented by the �rst term with weight one in the q7 column
and the second term with weight two in the q6 column. This manipulation is possible since the q6
column implicitly has twice the weight of the q7 column. In this example the total number of terms
remains the same but one of the terms was moved to a more signi�cant column in a less populated
portion of the PPA.

A dual of this manipulation can be made with the boolean 'OR' terms. For example in the column
for q5 the terms (d

0

3+d5) and (d02+d03+d5) can be replaced by the term (d03+d5) in the q4 column,

8

0

1

d3

d d

0 0 0 1 1 1 1 0

0

1

d3

d d

0 0 0 1 1 1 1 0

2

1 1

2

a) d d and d d d terms from column q b) d d d term in column q and

d d d term in column q

4 5 4 5

7 7

6

4 5 3 4 5 3 4 5

3 4 5

Figure 7: Maximum height reduction technique.

d2’d3d4
(d2’+d4’+d5’)

d2’d3d6
d4d6
d2d7
d8’d7’

(d2’+d6)
d4d5

(d2’+d3’+d5)
(d3’+d5)
d2d3d4

d4

d2d3

(d2’+d4’)
d4’d5

d3d4’d5
(d2’+d3+d4’+d6’)

d5d6
d2’d3d7

d4d7

d2’d3

(d2’+d8)
d9’

d10’
d2d9

d2d3’d4d5’d7’d8

d2’d4d8

d2d3d5d7
d2’d5d7
d3d4’d7

d3d4’d6

d4’

(d2’+d4’+d7’)
(d2’+d3’+d4’+d5+d6’)

d2d3d5
d2d3d4d5

d4’d6

d2d5d6’
(d3’+d5’+d6’)

d2’d3d8

d2d3d4d8
d2d3’d4d5’d7’d8’
d2d3’d4d5’d7d8

d2d3’d4d5d6d7’

(d4’+d5’+d6’)

d3d6
d2’d6’

(d2’+d4+d5’)
(d3’+d5)

(d3’+d4’)

d2d7

d6d7

d3d4’d8

d2d3d4d7
(d3’+d5’+d7’)

d2d3d5d6
d2d3d4’d6

d5d8

d2’d3d9

d1d10
d11’

d4d9

d4’d3’
d2’

q q q q
3

q
4

q
5

q q
7

q q
90 1 2 6 8

(d2’+d4)
d5’

d3 d2’d3d4
d2d3’d5

d6’
1 1 1

Figure 8: Reciprocal PPA structure with Boolean elements [Sch93]. The dashed line represents
the desired PPA height while the circles indicate which terms maybe manipulated by the proposed
technique.

since if either d03 or d5 is true both terms will be true in the q5 column. Both of the terms in
the q5 column when true contribute a '1' to the PPA q5 column which is equivalent to one term
contributing a '1' in the q4 column. Additionally, the case when d03 and d5 are false but d

0

2 is true
needs to contribute a '1' to the q5 column in the PPA. Therefore, the term (d02&d3&d

0

5) must remain
in the q5 column. E�ectively column q5 was reduced by one term and column q4 was increased by
one term, similarly to the 'AND' boolean term manipulation described in the previous paragraph.

This technique does not change the error of the result since the manipulations are both logically
and algebraically equivalent. Figure 8 shows the boolean terms for the quotient bits zero through
nine. The terms in the q5 to q8 columns that can be rearranged with the proposed technique have
been circled. The dashed line indicates the desired PPA height. Figure 9 shows the array after
applying the PPA column height reduction technique. Now quotient bits q0 through q7 will �t
within the PPA of height 9 and the height of the q8 column has been reduced.

This technique can be generalized to manipulate several terms from various columns to both reshape

9

(d2’+d4)
d5’

d3 d2’d3d4
d2d3’d5

d6’

(d3’+d5)

d10’
d2d9

d2d3’d4d5’d7’d8

d2’d4d8

d2d3d5d7
d2’d5d7
d3d4’d7

(d2’+d4’+d7’)
(d2’+d3’+d4’+d5+d6’)

d2d5d6’
(d3’+d5’+d6’)

d2’d3d8

d2d3d4d8

d3’d4’d6
d2d3d4d5
d2d3d5

d4’

d2d3’d4d5’d7’d8’
d2d3’d4d5’d7d8

d2d3’d4d5d6d7’

(d4’+d5’+d6’)

d3d6
d2’d6’

(d2’+d4+d5’)
(d3’+d5)

(d3’+d4’)

d2d7

d6d7

d3d4’d8

d2d3d4d7
(d3’+d5’+d7’)

d2d3d5d6
d2d3d4’d6

d5d8

d2’d3d9

d1d10
d11’

d4d9

d4’d3’
d2’

q q q q
3

q
4

q
5

q q
7

q q
90 1 2 6 8

d7’
(d2’+d6)

d4d5
d2d3

d2’d3d4
(d2’+d4’+d5’)

d2’d3d6
d4d6
d2d7
d8’

(d2’+d3+d4’+d6’)
d5d6

d4d7
(d2’+d8)

d9’

d2’d3d5’
d2d3d4

d4
d2’d3d7

d2’d3d7’

d3d4’d5
d3’d4’d5

(d2’+d4’)
d3d4’d6

1 1

1

1

Figure 9: Reciprocal PPA structure with Boolean elements after height manipulation technique.

the PPA. In addition, this technique can be expanded to look for reductions across multiple columns
simultaneously. For example for or �ve terms from adjacent columns maybe able to be replaced
by fewer terms with more signi�cant weights. A CAD tool can be designed that uses the proposed
technique to methodically optimize the number of terms in the PPA as well as the shape of the
PPA.

10

3.2.2 Partial Product Array boolean term approximation

Since we are using a compensation table the di�erence from the maximum error and the minimum
error for the PPA computation from the round to nearest result must be less than 2n where n is
the bit width of the compensation word stored in the table. For example, a compensation table
with 6-bit entries requires that the di�erence between the maximum error and minimum error be
less than 26 = 64 units. The constant terms in the PPA later must be chosen so that the error is
biases from �2n � 1to0

If the PPA is truncated after q7 the di�erence from the maximum error to the minimum error is 138
units, thus requiring a compensation table of 8 bits. E�ectively the PPA would only be computing
4-bits of precision. If the table was truncated at the dashed line in �gure 9 then the di�erence
would be 103 units, requiring a compensation table with a 7-bit word size. Clearly, neither of these
approaches will result in the highest precision from a PPA with a �xed height.

Some of the terms in column q8 that exceed the PPA height limit may be moved to columns q9
and q10 by doubling and quadrupling the terms respectively. This technique is discussed in [Sch93].
Moving some of the terms to the less signi�cant columns is a logically equivalent operation. How-
ever, not all of the boolean terms in column q8 that exceed the height limit of 9 can be moved to
columns q9 and q10 since these columns are also limited to a height of 9. Therefore, some of the
boolean terms contribute the proper value to the result while other boolean terms are truncated,
thus increasing the worst case and average error. Figure 10 shows the PPA after several of the
terms from column q8 have been moved to column q9 and q10. The boxes indicate the terms that
have been doubled and quadrupled. The di�erence between the maximum error and the minimum
error for the PPA shown in �gure 10 is 100 units.

If all the terms in column q8 were included in the PPA the maximum di�erence would be 76 unit.
However, this would require a PPA with height greater than 9. But by including all the terms in
column q8 the di�erence between the maximum and minimum error is 25% less than that which
is obtained using the technique of doubling and quadrupling some of the terms as described in
[Sch93].

d2’d5d7
d3d4’d7

(d2’+d4’+d7’)
(d2’+d3’+d4’+d5+d6’)

(d3’+d5’+d6’)
d2d5d6’

d3’d4’d6
d2d3d4d5
d2d3d5

d4’

d5’
(d2’+d4)

d3 d2’d3d4
d2d3’d5

d6’

(d3’+d5)

q
9

d4’d3’
d2’

q q q q
3

q
4

q
5

q q
7

q
0 1 2 6 8

d7’
(d2’+d6)

d4d5
d2d3

d2’d3d4
(d2’+d4’+d5’)

d2’d3d6
d4d6
d2d7
d8’

(d2’+d3+d4’+d6’)
d5d6

d4d7
(d2’+d8)

d9’

d2’d3d5’
d2d3d4

d4
d2’d3d7

d2’d3d7’

d3d4’d5
d3’d4’d5

(d2’+d4’)
d3d4’d6

d2’d4d8

d2’d3d8

d2’d4d8
d2’d4d8

d2’d3d8

d2’d3d8
d2’d3d8

d2’d4d8
d10’

d2d3d4d8
d2d3d4d8

d2d3’d4d5’d7’d8
d2d3’d4d5’d7’d8

d2d9
d2d9
d10’

d2d3d5d7 d2d3d5d7

1

111

q
10

Figure 10: Reciprocal PPA structure with Boolean elements moved to less signi�cant columns and
duplicated.

11

(d2’+d4)
d5’

d3 d2’d3d4
d2d3’d5

d6’

(d3’+d5)

(d2’+d3’+d4’+d5+d6’)

d2d5d6’
(d3’+d5’+d6’)

d3’d4’d6
d2d3d4d5
d2d3d5

d4’ d3d4’d7

d10’
d2d9

d2d3’d4d5’d7’d8

d2’d4d8

d2d3d5d7
d2’d5d7

d2’d3d8

d2d3d4d8

d3d4’d7

d10’
d2d9

d2d3’d4d5’d7’d8

d2’d4d8

d2d3d5d7
d2’d5d7

d2’d3d8

d2d3d4d8

q
9

q
10

d4’d3’
d2’

q q q q
3

q
4

q
5

q q
7

q
0 1 2 6 8

d7’
(d2’+d6)

d4d5
d2d3

d2’d3d4
(d2’+d4’+d5’)

d2’d3d6
d4d6
d2d7
d8’

(d2’+d3+d4’+d6’)
d5d6

d4d7
(d2’+d8)

d9’

d2’d3d5’
d2d3d4

d4
d2’d3d7

d2’d3d7’

d3d4’d5
d3’d4’d5

(d2’+d4’)
d3d4’d6

1 1

1

1
(d2’+d4’+d7’)

Figure 11: Reciprocal PPA structure with Boolean elements after logical manipulations and the
column q8 excess term approximation.

We propose a new technique to reduce the di�erence between the maximum and minimum error.
This technique approximates the terms in the column that exceeds the PPA height. Rather than
replicating some of the terms to maintain logically equivalence and truncating other terms, this
technique approximates all of the terms that exceed the �xed PPA height. Let BTqi represent a
boolean term in the column qi and BTqi+1 represents the same boolean term in the column qi+1.
Equation 1 indicates that a term in the ith column can be replaced by an in�nite series of the same
term in columns i+1to1. Equation 2 shows that the in�nite series of terms can be approximated
by a �nite series of terms in the columns i+ 1ton.

BTqi = BTqi+1 +BTqi+2 +BTqi+3 + :::+BTq1 (1)

BTqi � BTqi+1 +BTqi+2 +BTqi+3 + :::+BTqn (2)

The above relation allows us to move the 9 boolean terms that exceed the desired PPA height in
column q8 to columns q9 through qn. Figure 11 shows the PPA after approximating the excess
terms in column q8 with n = 10. After applying this technique the worst case di�erence is now
75 units. We found that only two columns were needed to approximate the terms. The di�erence
between the maximum and minimum error did not decrease for PPA's with n < 10. Therefore the
boolean terms in column q8 were represented by 1

2
+ 1

4
= 3

4
of their weight. For larger PPA's more

columns are required to obtain the desired accuracy.

3.2.3 Compensation Terms

After applying the logically equivalent manipulations and the term approximation technique to
excess terms in column q8, the maximum error di�erence is 75 units for the PPA shown in �gure 11.
This would require a table with 7-bit words since 27 = 128 > 75 > 26 = 64. We can now apply
individual compensation terms described in [Sch93]. By looking at the error as a function of
the input we identi�ed three compensation terms to add to column q8. After adding the three
compensation terms the di�erence between the maximum and minimum errors has been reduced
to 59 units. Since the maximum di�erence is less than 64 a compensation table with 6 bits can be

12

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

50

100

150

200

250

300

350

400

450

500

input (1<=X<2)

R
N

 −
 P

P
A

 (
bi

as
ed

 fo
r

re
ad

ab
ili

ty

PPA Truncated after q7 (Max Diff = 138)

PPA Truncated after q8 (Max Diff = 76)

PPA with q8 Approximated (Max Diff = 75)

PPA with q8 Approximated and Comp Terms (Max Diff = 59)

Figure 12: The di�erence between the computed and the round to nearest result. The compensation
table must account for the di�erence between the maximum and minimum points on each curve.

used. Figure 12 shows the relative di�erence between the round to nearest result and the computed
result. The top curve shows the result di�erence between the computed result and the round to
nearest result when the PPA is truncated at q7 with a height of 9. The second curve shows the
di�erence when the PPA is truncated at q8 including all 18 terms in column q8. The third curve
shows the di�erence when ppa column q8 is restricted to 9 terms and the remaining 9 terms are
approximated by columns q9 and q10 as shown in �gure 11. The bottom curve shows the di�erence
after the compensation terms have been added. The curves have been biased so they can be viewed
on one graph. The bias is removed by adjusting the constant terms in the PPA. The compensation
table must account for di�erence from between the maximum point and the minimum point on
each curve.

3.2.4 Boolean Element Elimination

After adding the three compensation terms to column q8 the PPA height exceed the desired height
of 9. In addition, we need to store positive constants in the compensation table so that the PPA
computation and compensation table lookup can be added using one (3,2) counter stage followed
by a CPA. A constant value must be subtracted from the constant terms in the PPA to properly

13

bias the error. The result calculated by the PPA must always be equal to or less than the round
to nearest result. Furthermore, the computed result should not be less than 2n � 1, where n is the
number of bits in the compensation table.

Figure 13 shows that the di�erence between the computed result and the round to nearest result
is normally distributed. Very few of the input values would require a compensation table entry
near the maximum value (tails of the distribution). Furthermore, several of the boolean terms in
the PPA do not a�ect the tails of the distribution and will not a�ect the di�erence between the
maximum and minimum error. These boolean terms will a�ect the average error but since the
compensation table eliminates the average error in the computation eliminating the terms will not
a�ect the accuracy of the �nal result.

The boolean terms with the most literal variables are the terms that are less likely to a�ect the
worst case di�erence. For the 'AND' terms, each literal variable in the expression reduces the
percent of results that will be a�ected by one half. For example an 'AND' term with 1,2,3, or 4
literal variables will a�ect 1/2, 1/4, 1/8, and 1/16 of the possible results respectively. For the 'OR'
terms each literal variable in the boolean term reduces the number of results not a�ected by one
half. For example an 'OR' term with 1,2,3, or 4 literal variables will a�ect 1/2, 3/4, 7/8, and 15/16
of the possible results. 'OR' terms that a�ect most of the possible result can be approximated
by a constant. These constants will be absorbed into the other constants in the PPA and do not
increase the height of the PPA.

Additionally, we noted that boolean terms with only one literal a�ect half of the results which also
may not a�ect the worst case di�erence. Either the term does not a�ect one of the tails of the
distribution or it may a�ect both of the tails by the same amount which does not increase the
di�erence in the maximum and minimum error. Eliminating the boolean terms with more literal
variables reduces the complexity of the input functions to the PPA.

Two terms were identi�ed in column q8 that did not a�ect the worst case di�erence and three
terms in column q9. After these terms were removed and the constant array readjusted the �nal
PPA shown in �gure 14 was obtained. The di�erence between the round to nearest result and the
computed results is less that 64 for all input values. Therefore, a compensation table with a 6-bit
word size is required for the PPA in �gure 14. The PPA shown in �gure 14 e�ectively calculates
6-bits of the result while the table contributes the other 6-bits of the 12-bit result.

14

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

Compensation Table Entry

F
re

qu
en

cy

Figure 13: Distribution of the di�erence between the computed result and the round to nearest
result for all 213 inputs.

(d2’+d4)
d5’

d3 d2’d3d4
d2d3’d5

d6’

(d3’+d5)

q
9

q
10

d4’d3’
d2’

q q q q
3

q
4

q
5

q q
7

q
0 1 2 6 8

d2d3

d2’d3d4
(d2’+d4’+d5’)

d2’d3d6
d4d6
d2d7
d8’

(d2’+d3+d4’+d6’)
d5d6

d4d7
(d2’+d8)

d9’

d2’d3d7

d2’d3d7’

d3d4’d5
d3’d4’d5

(d2’+d4’)
d3d4’d6

1 1

1

d7’
(d2’+d6)

d4d5
d2’d3d5’
d2d3d4

d4

1 (d2’+d3’+d4’+d5+d6’)

d2d5d6’
(d3’+d5’+d6’)

d3’d4’d6
d2d3d5

d4’
d1d2d3d4’d6
d1d2d3’d4d5’
d1d2’d3d4’ d3d4’d7

d2’d5d7

d2’d4d8
d2’d3d8

d2d9
d10’

1
1
1

d3d4’d7

d2d9
d2d3’d4d5’d7’d8

d2’d4d8

d2d3d5d7
d2’d5d7

d2’d3d8

d2d3d4d8

1

Figure 14: Final PPA con�guration for the reciprocal approximation.

15

3.3 Applying the precision enhancement techniques to the three design points

In section 3.1 three PPA structures were identi�ed that have the best precision per delay. These
were PPA's of height 9, 18, and 36. In this section we will apply the precision enhancement
techniques discussed in section 3.2 to the three design points that optimize result precision per
delay. First the hardware structure, area and latency are analyzed for each design. Then the area
versus time tradeo� is studied for the three design points.

3.3.1 Reciprocal computation with a PPA of height 9

The hardware structure to implement a 13-bit input round to nearest result with 12-bits of precision
is shown in �gure 15 The hardware components include the PPA shown in �gure 14, a 213x6 bit
compensation table, a (3,2) compressor, and a �nal 10-bit carry propagate adder (CPA). The com-
pensation table lookup and PPA computation can be overlapped in time. Using standard building
blocks the proposed technique takes approximately 10 more gate delays than a single table lookup
but reduces the table size by 50at the cost of 408 additional logic gates. Table 3.3.1 lists the area
and delay required for each of the components of the computation. The delay for the approxima-
tion with compensation can be further reduced by slightly increasing the area using sophisticated
design techniques. For example the six most signi�cant bits from the PPA computation can be
added using a compound adder to produce A + B and A + B + 1. Then the result of the (3,2)
compressor bits q7 through q10 can select the proper result from the compound adder while the
lower order four bits of the result propagate through the (3,2) compressors and CPA.

q
4

<- PPA (Height = 9)

<- (3,2) Compressor

<- CPA (9-bit)

q
0

q q q q q q q q
0

q q q
1 2 3 5 6 7 8 10 11 12

<- Compensation Table
13(2 x 6 bit)

<- Result (12-bits RN)

<- Boolean Input Terms

Figure 15: Final hardware con�guration for reciprocal unit with PPA of height 9.

16

Table 2: Reciprocal Unit Area and Latency for PPA with the maximum height of 9.

Technique Functional Block Area (gates) ROM (bits) Gate Delays

Approx Input Logic 56 1
PPA's 245 8

Compensation Table 49,152 9 (overlapped)
3:2 Compressor (10 bits) 50 2

CPA (9 bits) 62 8

Total 413 49,152 19

Single Tbl Total 98,304 9

3.3.2 Reciprocal computation with a PPA of height 18

The design technique to maximize the precision of a �xed height PPA structure discussed in sec-
tion 3.2 was applied to the reciprocal function for a PPA with maximum height of 18. The worst
case di�erence between the round to nearest result and the computed result is 28 units. Therefore,
a table with 5 bits that has a range of 25 = 32 units is adequate to use for the compensation table.

Figure 16 shows the structure of the reciprocal unit needed to compute the reciprocal function. As
compared to the PPA of height 9 the PPA hardware requirement increased by 1.9 times while the
compensation table size decreased by 17performance decreased by four gate delays from that of the
PPA with height 9.

Table 3: Reciprocal unit area and Latency for PPA with the maximum height of 18.

Technique Functional Block Area (gates) ROM (bits) Gate Delays

Approx Input Logic 207 1
PPA's 435 12

Compensation Table 40,960 9 (overlapped)
3:2 Compressor (10 bits) 55 2

CPA (9 bits) 80 8

Total 777 40,960 23

Single Tbl Total 98,304 9

17

q
4

<- Boolean Input Terms

<- (3,2) Compressor

0
q q q q q q q q

0
q q q

1 2 3 5 6 7 8 10 11 12

<- Compensation Table
13

<- Result (12-bits RN)

<- PPA (Height = 18)

(2 x 5 bit)

<- CPA (10-bit)

q

Figure 16: Final hardware con�guration for reciprocal unit with PPA of height 18.

18

3.3.3 Reciprocal computation with a PPA of height 36

The design technique to maximize the precision of a �xed height PPA structure discussed in sec-
tion 3.2 was also applied to the reciprocal function for a PPA with maximum height of 36. The
worst case di�erence between the round to nearest result and the computed result for this design
is 8 units. Therefore, a table with 3 bits with a range of 23 = 8 units is adequate to use for the
compensation table.

Figure 17 shows the structure of the unit needed to compute the reciprocal function. As compared to
the PPA of height 9 the PPA hardware requirement increased by 3.9 times while the compensation
table size decreased by 50latency increased by nine gate delays as compared to the unit with a PPA
of height 9.

Table 4: Reciprocal Unit Area and Latency for PPA with the maximum height of 36.

Technique Functional Block Area (gates) ROM (bits) Gate Delays

Approx Input Logic 250 2
PPA's 1190 16

Compensation Table 24,576 9 (overlapped)
3:2 Compressor (10 bits) 65 2

CPA (9 bits) 102 8

Total 1607 24,576 28

Single Tbl Total 98,304 9

19

q
4

<- PPA (Height = 36)

<- Boolean Input Terms

0
q q q q q q q q

0
q q q

1 2 3 5 6 7 8 10 11 12
q

<- Compensation Table
13(2 x 3 bit)

<- (3,2) Compressor

<- Result (12-bits RN)

<- CPA (12-bit)

Figure 17: Final hardware con�guration for reciprocal unit with PPA of height 36.

20

3.3.4 Area Time trade o�

To compare the area required to implement the three design points and compare these results to
that of a single lookup table the relationship between the area of a standard gate and ROM memory
must be considered. We assume that 2 bits of memory is approximately equivalent to one logic
gate. One bit of ROM memory requires a transistor for the memory element, a word line transistor,
a bit line transistor, plus a percentage of the decode and output logic.

Figure 18 shows that the PPA computation can reduce the required area by 50-75gate delays. In
addition, the gates used to implement the computation portion of the result are recon�gurable so
that they may be used to calculate other higher order functions such as square root, division, ex,
and various trigonometric functions.

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

Area (1K Gates)

G
at

e
D

el
ay

PPA Computation
Single Table

Figure 18: The Area-Time tradeo� for a reciprocal Unit with 12-bit output precision. An increase
in computation increases the reciprocal latency but decreases the compensation table size and
therefore decreases the area needed implement the unit.

21

4 PPA Computation Technique applied to the Bipartite Recipro-

cal table

The approximation theory technique developed in the previous sections may be appropriately ap-
plied to faithful bipartite ROM reciprocal tables [DM95]. The bipartite ROM reciprocal hardware
structure in �gure 19 indicates that two ROM tables are required to produce a result in borrow
save format.

Assume that the input is ibits and the reciprocal result is i� 2 = jbits. The larger table stores the
j + 2 bit reciprocal for approximately 2

2

3
i inputs. The 'N' table stores an adjustment amount of

1

3
j bits for approximately 2

2

3
i of the inputs. The 'P' table is about three times the size of the 'N'

table. Furthermore, the 'P' table stores the reciprocal of the input the same value that we compute
using the approximation technique with table compensation. Therefore, we propose replacing the
'P' table with a PPA and compensation table to reduce the hardware needed in the bipartite ROM
tables. Here the PPA computation can be overlapped with the compensation table and the 'N'
table lookups. The bipartite ROM reciprocal table technique requires a carry propagate add if a
non-redundant answer is required. We expect that the proposed technique can reduce the area
needed for the 'P' table by 1

3
to 1

2
. The PPA, compensation table, and 'N' table results could then

be combined in a single (4,2) compressor stage followed by a carry propagate add. The latency to
obtain the �nal non-redundant result is increased by 2 to 4 gate delays over the standard bipartite
ROM reciprocal table technique.

x lxmhx
3k + 1 bits

k+1

k+1

2k+1

k+1 k

kk+1

2k+1

(3k-1)+2 bits-out
2k+1 bits-in

Table P

bits-out
(k-1)+2

2k+1 bits-in

Table N

3k+1

3k-1

CPA

Figure 19: A j + 2 = 3k + 1 bits-in j = 3k � 1 bits-out Faithful Reciprocal table. [DM95]

22

5 Conclusions

In this paper we developed a technique to produce a �xed precision result for multiplicative func-
tions. This technique uses a partial product array to compute an approximation of the function
and then applies a compensation table to produce a �xed precision result.

In addition, we proposed several techniques to optimize the worst case precision that is computed in
a �xed height PPA. These techniques include logical manipulations, boolean term approximations,
and boolean term elimination.

To understand the area-time tradeo� between the PPA computation and table lookup, we derived
three optimal design points and applied the approximation technique to these design points. The
three design points included computations with PPA heights of 9, 18, and 36 and compensation
tables with entries of 6, 5, and 3 bits respectively.

The proposed technique reduces the hardware area required by 50% to 75% over a single lookup
table. The hardware area required to compute the approximation is much less than that of a
lookup table. However the latency increases by about 2 to 3 times that of a single table access.
The increase in latency is primarily due to the �nal carry propagate add required to combine the
computed approximation with the compensation table result.

In the previous section, we discussed the application of the proposed technique to bipartite ROM
reciprocal tables. The bipartite ROM reciprocal table technique requires a table lookup of the
reciprocal function and a carry propagate add with an adjustment factor found by another table
lookup. The PPA computation of the reciprocal function and compensation table lookup can done
in parallel with the table lookup of the adjustment factor without an increase in latency. To produce
a non-redundant result the bipartite table output requires a carry propagate add. The �nal result
can be determine by one (4,2) compressor stage that combines the PPA, compensation table, and
the bipartite 'N' table followed by one CPA. The proposed technique would require only a few
additional gate delays as compared to the bipartite ROM reciprocal table technique.

Finally, the PPA hardware can be recon�gured to compute an approximation for other higher
order functions that can be expressed in the form of a multiply. Therefore, from a recon�gurability
perspective the proposed technique increases the hardware utility.

23

References

[DM95] D. DasSarama and D. W. Matula. Faithful Bipartite ROM Reciprocal Tables. In IEEE

Symposium on Computer Arithmetic '95, pages 17{28, July 1995.

[Man90] David Mandelbaum. A systematic method for division with high average bit skipping. In
IEEE Transactions on Computers, pages 127{130, January 1990.

[Sch93] Eric Mark Schwarz. High-Radix Algorithms for High-Order Arithmetic Operations. PhD
thesis, Stanford University, 1993.

[Ste72] Renato Stefanelli. A suggestion for a high-speed parallel binary divider. In IEEE Trans-

actions on Computers, pages 42{55, January 1972.

24

