
Precision of Semi-Exact Redundant

Continued Fraction Arithmetic for VLSI

Oskar Mencer, Martin Morf, Michael J. Flynn

Technical Report : CSL-TR-00-791

February 2000

Precision of Semi-Exact Redundant

Continued Fraction Arithmetic for VLSI

by

Oskar Mencer, Martin Morf, Michael J. Flynn

Technical Report : CSL-TR-00-791

February 2000

Computer Systems Laboratory

Department of Electrical Engineering and Computer Science

Stanford University

William Gates Computer Science Building, 4A-408

Stanford, California 94305-9040

Email: pubs@shasta.stanford.edu

Abstract

Continued fractions (CFs) enable straightforward representation of elementary func-

tions and rational approximations. We improve the positional algebraic algorithm, which

computes homographic functions such as y = ax+b
cx+d

, given redundant continued fractions

x; y, and integers a; b; c; d. The improved algorithm for the linear fractional transformation

produces exact results, given regular continued fraction input. In case the input is in re-

dundant continued fraction form, our improved linear algorithm increases the percentage of

exact results with 12-bit state registers from 78% to 98%. The maximal error of non-exact

results is improved from � 1 to 2�8. Indeed, by detecting a small number of cases, we can

add a �nal correction step to improve the guaranteed accuracy of non-exact results. We

refer to the fact that a few results may not be exact as \Semi-Exact" arithmetic. We de-

tail the adjustments to the positional algebraic algorithm concerning register over
ow, the

virtual singularities that occur during the computation, and the errors due to non-regular,

redundant CF inputs.

Key Words and Phrases: regular continued fractions, computer arithmetic, rational

arithmetic

Copyright c
 2000

by

Oskar Mencer, Martin Morf, Michael J. Flynn

Contents

1 Motivation 1

2 Continued Fraction Theory 1

3 Continued Fraction Arithmetic Algorithms 4

3.1 Algebraic Algorithms . 4

3.2 Raney's Algorithm . 5

4 Implementation 6

4.1 Improved Positional Algebraic Algorithm 8

4.2 Experimental Results . 9

4.3 Simple Continued Fraction Inputs . 11

5 Final Optimization 13

6 Conclusions 13

7 Acknowledgments 14

iii

List of Figures

1 Linear fractional transformation . 5

2 Example 1 . 10

3 Example 2 . 11

4 Example 3 . 12

5 Histogram of Error . 12

iv

1 Motivation

We start by de�ning some continued fraction(CF) forms. Finite continued fractions are

rational numbers that are constructed as follows: for ai; bi 2 R

An

Bn

= a0 +
b1

a1 +
b2

a2+���

bn

an

= a0 +
b1j

ja1
+

b2j

ja2
+ � � �+

bn

an

Simple continued fractions form a special case with partial quotients bi = 1. We use the

series notation [a0; a1; : : : an] to denote simple continued fractions.

Regular continued fractions are simple continued fractions with all ai 2 N+, except

a0 2 N . Redundant continued fractions[18] use a �nite representation of partial quotients

and therefore include zero, i.e. �2N � ai � 2N � 1.

Redundant continued fractions connect uniformly distributed, binary numbers to con-

tinued fractions. CFs are at the basis of rational approximation theory. The representation

of rational numbers by CFs connects number representation to transcendental functions.

Although we are still missing a general theory explaining the connection between transcen-

dental functions and continued fractions([8], see Introduction by Peter Henrici), we can

already take advantage of the known, isolated \gems" of continued fraction expansions such

as:

tan(x) =

�
0;
1

x
;�

3

x
;
5

x
;�

7

x
;
9

x
;�

11

x
; : : :

�
(1)

In this paper we explore arithmetic within a continued fraction representation of rational

numbers. More speci�cally, we improve the precision of known algorithms to compute

T1 =
ax+b
cx+d

, and investigate higher degree polynomials and conversion of simple continued

fractions to redundant continued fractions.

Ultimatively, we envision continued fractions as a candidate for the computer engineers

\bag of tricks", such as the logarithmic number system, the Fast-Fourier Transform, run-

length encoding, etc.

2 Continued Fraction Theory

This section provides basic continued fraction theory for the reader not familiar with con-

tinued fractions.

A �nite continued fraction with i partial quotients can always be transformed into a

ratio Ai

Bi
with:

Ai = aiAi�1 + biAi�2 (2)

Bi = aiBi�1 + biBi�2 (3)

where
Ai�1

Bi�1
corresponds to the value of the same continued fraction without the ith partial

quotient. Initial conditions are A0 = a0, B0 = 1, A�1 = 1, and B�1 = 0.

1

Equations 2,3 can also be expressed as:
Ai

Bi

!
=

Ai�1 Ai�2

Bi�1 Bi�2

!
ai
bi

!
(4)

which relates the representation of CFs to the algorithms investigated in this paper.

The following equivalence shows how to convert general CFs to simple CFs. This algo-

rithm will be useful for applying known results of general CFs to simple CFs.

Equivalence 1 (Perron [6]) From general continued fractions to simple continued frac-

tions:

a0 +
b1j

ja1
+

b2j

ja2
+

b3j

ja3
+ � � � �

a0 +
1 j

ja1
b1

+
1 j

j b1
b2
a2

+
1 j

j b2
b1b3

a3
+

1 j

j b1b3
b2b4

a4
+ � � �

Converting simple continued fractions with positive and negative integer quotients to

regular continued fractions is achieved by applying the following equivalence.

Equivalence 2 (see [3][6][17]) For any fragment of a simple continued fraction with posi-
tive and negative partial quotients,

[: : : ; ai; 1; ai+2; : : :] � [ai + 1;�ai+2 � 1;�ai+3;�ai+4; : : :]

[: : : ; ai; 0; ai+2; : : :] � [ai + ai+2; : : :]

The theorem of Lochs gives information relating decimal numbers to regular CFs.

Theorem 3 (Lochs [15]) For almost all irrational numbers x and their approximation in

the form of a regular continued fraction, we have

lim
n!1

kn(x)

n
' 0:9702:

with kn(x), the number of partial quotients, and n, the number of approximated decimal

digits.

In other words, the precision of a regular continued fraction with n partial quotients

corresponds roughly to the precision of a decimal number with n decimal digits. We conclude

that the information content of one partial quotient is on average constant and comparable

to one decimal digit.

Khinchin[5] shows the distribution of the values of partial quotients x of regular contin-

ued fractions, found by Kuzmin in 1928 (see also Knuth[9]).

Pr(x = a) = log2

(x+ 1)2

(x+ 1)2 � 1

!
(5)

Approximation of functions with their CF expansion is based on the equivalence of series

and CFs.

2

Equivalence 4 Equivalence of series and continued fractions: for ci 6= 0,(Euler[2])

c0 + c1 + c2 + � � � � c0 +
c1j

j 1
�

c2

c1
j

j1+
c2

c1

�

c3

c2
j

j1+
c3

c2

� � � �

One partial quotient of the CF corresponds to one term of the series; thus the precision

of an n element CF is equivalent to the precision of a �nite series of length n. The connection

between rational approximations and simple CFs is expressed in the next equivalence.

Equivalence 5 Given the ratio of two polynomials
f0(x)

f1(x)
,(Wall[7])

f0

f1
=

a00x
n + a01x

n�1 + � � �+ a0n

a11xn�1 + a12xn�2 + � � �+ a1n
�

� [r1x+ s1; r2x+ s2; � � � ; rnx+ sn]

with all aij 6= 0, and ri 6= 0.

Software packages such as MapleV[21] compute minimax coeÆcients aij automatically.

Many elementary functions have straightforward simple continued fraction expansions { the

rational equivalent to Taylor series expansion around a point x0. For example: e
x;

log(1 + x); (1 + x)n; and tan�1(x) are shown in [17].

The following theorem on the convergence of regular continued fractions ensures the

convergence of the rational approximation algorithms with regular CF input.

Theorem 6 Every regular continued fraction converges to a real number.

For simple continued fractions it is much harder to guarantee convergence. Using Equiv-

alence 2 we transform simple continued fractions to positive simple continued fractions. For

positive simple continued fractions we then apply the following theorem.

Theorem 7 The value of the simple continued fraction [a0; a1; a2; a3; : : :] converges if all

the quotients ai are positive and the serie
P

ai diverges[6].

Rational approximations
P (x)

Q(x)
have been shown to be eÆcient for the approximation of

elementary functions. For certain functions, rational approximations can converge faster

than polynomial approximations[16], or for example CORDIC-like algorithms[22], and pos-

sibly provide a larger region of convergence. Muller[20] suggests that functions that are

"highly non-polynomial" are better approximated by rational approximations. Jones and

Thron ([8], p. 202) claim that eight decimal digits of arctan(1) are approximated by a

continued fraction six orders of magnitude faster than by a polynomial series.

Notes on the history and sources of continued fraction theory and the following continued

fraction arithmetic algorithms can be found in Appendix A.

3

3 Continued Fraction Arithmetic Algorithms

Before looking at implementation details, we summarize the state-of-the-art in continued

fraction arithmetic algorithms. We limit our summary to material that leads to the im-

provements in section 4.1.

Every number representation has its natural set of operations. Residue numbers favor

addition, while logarithmic numbers favor multiplication. Continued fractions favor f =

1=x, which is computed by [0; a0; a1; : : :] if a0 6= 0, and [a1; a2; : : :] if a0 = 0. Negation

is achieved by negating all partial quotients. A simple continued fraction multiplied by a

constant c becomes:

[0;
a0

c
; c � a1;

a2

c
; c � a3;

a4

c
; c � a5; : : :] (6)

We focus on eÆcient and regular computation of rational functions of redundant con-

tinued fractions with �nite registers and a small quotient representation.

In general, rational functions are of the form

f(~x) =
P (~x)

Q(~x)
(7)

where P (~x) and Q(~x) are speci�c j~xj-dimensional polynomials of the same degree. The

function f(~x) maps j~xj sets of partial quotients of simple continued fractions to partial

output quotients of a simple continued fraction. The coeÆcients of the polynomials P;Q

correspond to the state of the continued fraction arithmetic (CFA) unit. We start by

examining the most simple case y = y1
y2

= T1 =
ax+b
cx+d

, the linear fractional transformations

corresponding to the linear transformation:

y1
y2

!
=

a b

c d

!
x

1

!
(8)

Note the similarity between the computed function, and the CF number representation

in matrix form in equation 4. Hurwitz[4] already computed the homographic transformation

y = ax+b
cx+d

with continued fractions x; y, for variables a to d 2 R (see also Perron[6], Book I,

Ch.4).

3.1 Algebraic Algorithms

Gosper[11] proposes the general idea behind the algebraic algorithm. As in Raney's algo-

rithm jAj = constant for all iterations.

We compute [o0; o1; o2 : : :] = f ([x0; x1; x2; : : :])

where xis are the partial quotients of the simple input CF, and oi = f(xi; state) are the

partial quotients of the output.

The algorithm requires one state register for each coeÆcient.

4

IE

o
a

b

c

d

state registers

x

cx+d
ax+b

Figure 1: The �gure shows the design of an arithmetic unit implementing the linear fractional

transformation T1 =
ax+b
cx+d

for continued fractions. IE are the iteration equations shown below.

� to consume an input quotient xi
apply T 0(x) = T (xi +

1
x
).

� to produce an output quotient oi
apply T 00(x) = 1

T (x)�oi
.

Both transformations preserve the form of the homographic transformation. We can in-

dependently consume an input quotient, or produce an output quotient at each iteration.

However, ensuring that quotients are consumed and produced optimally increases the overall

computation time by an \order of magnitude"[17].

Vuillemin's positional algebraic algorithm consumes one input and produces one output

at each iteration, making the computation more regular. Iteration equations and the initially

proposed choice of output digits oi are shown after Raney's algorithm.

3.2 Raney's Algorithm

Although less known, Raney[12] also computes T1 =
ax+b
cx+d

, with A =
�
a b

c d

�
, for regular CF

input. Raney's algorithm di�ers from the algebraic algorithm in the way the output digits

are obtained.

First, Raney's algorithm converts A to a product of powers of matrices

L =
�
1 0

1 1

�
and R =

�
1 1

0 1

�
.

In a second pass the product of L;R matrices is converted to a regular CF. Although

due to the two-pass structure, Raney's algorithm is not eÆcient as a computer arithmetic

algorithm, we can infer that there is no natural 1-to-1 correspondence between input and

output digits. Raney's algorithm explains why the positional algebraic algorithm leads to

non-exact results in some cases.

5

As before, jAj = constant during the entire algorithm, leading to an upper limit on the

values of state registers.

4 Implementation

Linear Fractional Transformation

Figure 1 shows a block diagram for a one-dimensional, linear, positional algebraic arithmetic

unit. In the linear case we compute the transformation T1 =
ax+b
cx+d

. Given an input quotient

xi, we choose
1 the output at each iteration oi =

j
axi+b
cxi+d

m
. The iteration equations (IE) are:

a0 = cxi + d b0 = c

c0 = axi + b� oi(cxi + d) d0 = a� oic
(9)

Quadratic Transformations

In the quadratic case we compute the transformation T2 =
ax2+bx+c
dx2+ex+f

, with x as the current

input and o as the current output (indices i are omitted for simplicity). We �rst choose

o =
j
ax2+bx+c
dx2+ex+f

m
, and afterwards update the state registers as follows:

a0 = dx2 + ex+ f d0 = ax2 + bx+ c� oa0

b0 = 2dx+ e e0 = b+ 2ax� ob0

c0 = d f0 = a� oc0

(10)

We can look at T2 also as a special case of an aÆne transformation of the form:

0
B@ y1

y2
1

1
CA =

0
B@ a b c

d e f

0 0 1

1
CA
0
B@ x2

x

1

1
CA (11)

Note that the quadratic case can be split into T2 =
ax+b
cx+d

� ex+f
gx+h

, which is also possible

in the next case.

In the quadratic case with two input variables, we compute the transformation T3(x; y) =
axy+bx+cy+d
exy+fx+gy+h

where x,y are inputs to the following iteration equations for the state registers.

For input digits x,y, and corresponding output digit o =
j
axy+bx+cy+d
exy+fx+gy+h

m
we obtain:

a0 = exy+ fx+ gy+ h e0 = axy+ bx+ cy+ d� oa0

b0 = ex+ g f0 = ax+ c� ob0

c0 = ey+ f g0 = ay+ b� oc0

d0 = e h0 = a� od0

(12)

1
\Choose" refers to the fact that we can choose any output digit. The iteration equations adapt the state

according to the chosen output quotient.

6

VLSI Implementation

We are interested in a hardware implementation of rational arithmetic based on continued

fractions transformations such as T1; T2; T3.

Partial Quotients are the digits of a number representation based on simple CFs. Vuillemin[17]

investigates issues regarding computability and number representation for partial quotients

of continued fractions. Trivedi[13] and Kornerup[18] suggest the use of a small set of values

to represent partial quotients of continued fractions. Speci�cally, Kornerup suggests lim-

iting the values of partial quotients to f�2;�1
2
; 0; 1

2
; 2g. This reduces the computational

complexity of a hardware implementation to shift-and-add. The drawback is that we can

not easily guarantee convergence for redundant continued fractions (see Theorem 6). In

addition, such a representation might be very wasteful for large quotients, e.g.
1
15

= [0; 1; 0; 2; 0; 2; 0; 2; 0; 2; 0; 2; 0; 2; 0; 2]

Theorem 3 leads us to consider a 4+1-bit signed digit representation for partial quotients.

We know the distribution of the partial quotients of regular CFs from the previous section.

By choosing 4-bit for the magnitude of integers to represent one partial quotient we cover

over 90% of the partial quotients of regular CFs. Including zero in the quotient digit

set results in redundant CFs and allows us to handle quotient digit over
ow by using

Equivalence 2. Given a �nite 5-bit representation of quotient digits and �nite-size state

registers, we observe the following three main sources of error :

1. Over
ow of State Registers: Representing the state registers with a �nite number

of bits leads to frequent over
ow and limits the precision of the �nal result even

with the use of
oating-point-like arithmetic. Previous work[18] assumes in�nite size

registers2.

2. Virtual Singularities: Even if there is no real division by zero, an intermediate

input quotient may cause cx + d = 0 (in the linear case). Aborting the algorithm

in case of division by zero introduces error because the following part of the input is

ignored.

3. Over
ow of Quotient Digits:The over
ow of partial quotients creates Redundant

Continued Fractions3. For 5-bit quotient digits, any quotient digit x with jxj > 24

results in a zero digit according to Equivalence 2. Thus, the CFs are not regular any

more, and the algorithm may not converge to the right value. The following conditions

also cause the algorithm to produce an error:

� A CF ending with 1.

� strings of 1s, e.g. [: : : ; 1; 1; 1; 1; : : :].

� An end of the form [: : : ; x; 0; x; 0; x; 0]

or [: : : ; x; 0; x; 0; x].

2
The paper[18] mentions that the results are true \given suÆcient register lengths".

3
An explanation of the distribution of regular continued fractions can be found in an article by Hall[10].

Hall proves that any rational number can be expressed as the sum or the product of two regular continued

fractions with limited partial quotients, i.e. redundant continued fractions without zero quotients.

7

Given in�nite resources and a converging, regular input CF, the positional algebraic

algorithm converges to the exact result. However, the state registers either (1) quickly

converge to the simplest form
�
jAj 0

0 1

�
for T1, or (2) diverge very rapidly towards in�nity.

In case (1) we obtain an exact result. Case (2) causes an over
ow of the state registers and

results in an approximate result.

Although the positional algebraic algorithm produces almost always exact results if all

input quotients are regular CFs, the distribution of these numbers is di�erent from the

uniform distribution of binary numbers. The rational input values to our simulations are

binary numbers, converted to redundant continued fractions with quotients in [�24 : : : 24].

4.1 Improved Positional Algebraic Algorithm

We propose the following improvements for the linear case,T1, based on the three sources

of error, explained above:

1. Over
ow of State Registers: The simple solution is to shift the coeÆcients a to d

to the right, and continue computation to a possibly non-exact result. Raney's results

(section 3.2, [12]) suggest that we might not want to create exactly one output for

each input. Raney's observations lead to a better solution to state register over
ow:

produce an output without consuming an input. The output can be chosen to decrease

the values of the state registers without introducing error.

2. Virtual Singularities: We choose the best possible value: sign(ax+ b) � 24.

3. Over
ow of Quotient Digits Creating Redundant Continued Fractions: Re-

dundant continued fractions allow us to pick from a variety of di�erent continued

fractions for the input to the transformation to avoid the cases that lead to non-exact

results. We use equivalences such as 2.

4. Speedup of the convergence of the transformation matrix A to
�
jAj 0

0 1

�
:

In case
j
a�1
c

m
= a�1

c
, we choose o = a�1

c
, resulting in d = 1.

While the last feature does not address a particular source of error, it forces A faster to

its simplest form where c = 0; d = 1. Examining equations 9 in more detail, we see that by

choosing o � ax+b
cx+d

, c! 0. Intuitively, we also want to force d! 1, in order to simplify A.

For jAj = �1; A converges to the identity matrix
�
1 0

0 1

�
. As soon as the identity matrix

is reached, the tail of the input fraction is equal to the tail of the output fraction[6]; A does

not change anymore, and the calculation can be terminated.

Below we show the improved Semi-Exact Positional Algorithm (SEPA) based on the

positional algebraic algorithm for continued fraction arithmetic with �nite state registers

and redundant CFs.

8

SEPA Algorithm with Improvements:

1. S[0]:={a,b,c,d} //Init State Regs

2. loop i,o from 0 to MAXLEN

3. if ((c*x[i]+d)==0.0)

4. Output[o]=sign(a*x[i]+b)*2^MAXVAL

5. else

6. if (c<>0)

7. if(frac((a-1)/(c))==0.0) and

8. (frac((a*x[i]+b)/(c*x[i]+d))<>0.0)

9. Output[o]=round((a-1)/c)

10. else

11. Output[o]=round((a*x[i]+b)/(c*x[i]+d))

12. Compute Next State (S[o+1])

13. if {state regs overflow}

14. if (c<>0)

15. Output[o]=round(a/c)

16. else

17. Output[o]=sign(a)*2^MAXVAL

18. else

19. i++; // consume input

20. o++; // produce output

21. endloop

22. return(Output)

The algorithm is shown for transformation T1. S[o] stands for the state registers.

Truncation of the output quotients to representable values is not shown for simplicity.

MAXLEN is the maximal length of the input CF. MAXVAL is the maximal value of a redundant

CF quotient { chosen in case of a virtual singularity. Virtual singularities occur due to the

truncation of CF quotients to integers.

In the simple case, lines 14-17 are replaced by a right-shift(division by a power of 2) of

all state-registers.

4.2 Experimental Results

We use MapleV[21] to improve continued fraction arithmetic algorithms, and simulate var-

ious implementations. Exact arithmetic enables us to study the behavior of continued

fraction arithmetic algorithms with arbitrary precision, limited only by computation time.

Running the simulations of the positional algebraic algorithm gives us more insight into

its behavior and accuracy over a large set of inputs. We compare the simple algorithm

to the improved SEPA algorithm described above. The simple version basically follows the

standard algorithm, with a
oating-point-like right-shift of all state registers on register

over
ow.

We classify individual results into exact and non-exact results. Exact results are

results that match the result computed with Maple's exact arithmetic. Non-exact results

di�er fromMaple's exact result by some error. We present the maximal error occuring within

the non-exact results, and the average error, also within the non-exact results. Section

9

Figure 2: Example 1:T1 =
ax+b
cx+d

; Exact results match the input CF evaluated with T1 using Maple's

exact arithmetic. The \simple" results are obtained with \shift on over
ow" of state registers.

5 deals with improving the maximal error with a correction term. The improvements

suggested above are primarily chosen to minimize the percentage of non-exact results.

Example 1 Linear fractional transformation T1:

A =
�
a b

c d

�
with initial a; b; c; d 2 [1 : : : 15]. Results are shown in �gure 2.

The accuracy of the improved results does not depend much on state register size. For

reasonably sized state registers 98.5% (1.5%) of results are (non-)exact. In addition, within

the 1.5% of inputs that yield non-exact results, the average error is about 2�21, andmaximal

error is 2�8. The histogram of the distribution of error within non-exact results is shown

in �gure 5.

Example 2 Quadratic fractional transformation T2:

Figure 3 shows cases:

� square function ; T2 =
x2

1
.

� chosen case ; T2 =
x2+x+1
3x2+2x+1

.

Quadratic transformations create quadratic growth of state register values, resulting in

a stronger dependence of precision on the size of the state registers.

As a consequence, over
ow of state registers occurs more often, and the improvements

that worked well in the linear case (T1) fail to improve the performance in the quadratic case

(results are shown without \improvements"). Still, with 28-bit registers, � 75% of inputs

yield exact results. Average error of the non-exact computations is about 2�10 � 2�20 for

the square function, and 2�20 � 2�25 for the chosen case (1; 1; 1; 3; 2; 1), depending on state

register size. In both cases maximal error is � 1 for state register sizes larger or equal to

12 bits.

10

Figure 3: Example 2:T2 =
x2

1
, T2 = x2+x+1

3x2+2x+1
; Exact results match the input CF evaluated with

T2 using Maple's exact arithmetic.

Example 3 Quadratic fractional transformation of two input variables, T3:

� Multiplication ; T3 =
xy
1
.

� Addition ; T3 =
x+y
1
.

Results are shown in �gure 4.

As in the quadratic case with one input variable, the \improvements" of the linear case

do not apply for the quadratic case T3. Even with 28 bit registers, only about 70-80% of

the results are exact. However, for the two cases shown in �gure 4 the average error of the

non-exact results is about 2�20 for register sizes larger or equal to 16 bits.

4.3 Simple Continued Fraction Inputs

Simple continued fractions consists of partial quotients 2 R. We use the identity transfor-

mation to convert simple continued fractions with rational partial quotients to redundant

continued fractions { implicitly evaluating a continued fraction expansion, in our case tan(x).

Example 4 We evaluate tan(x) (from equation 1) with the identity transformation
�
1 0

0 1

�
,

T1 =
x
1
.

We observe a dependence of the accuracy of the �nal result on the accuracy of the

input quotient. In fact, simulations show that the average error of the result is close to

the precision of the state registers. Maximal error is roughly the square-root of the average

error (i.e. half the bits).

Note that for simple continued fraction input the algorithm does not produce any exact

results. Accuracy is now not limited by state register over
ow, as much as by the loss of

accuracy from truncation of fractional digits.

11

Figure 4: Example 3:T3 = xy
1
, and T3 = x+y

1
. Exact results match the input CF evaluated with

T3 using Maple's exact arithmetic.

ERROR

Figure 5: The �gure shows the histogram of error of non-exact results (logarithmic x-axis) for

T1 =
ax+b
cx+d

(example 1). Boxes contain equal amounts of data points.

12

It appears reasonable to expect that a converging simple continued fraction at the input

would improve the accuracy (convergence) of the output. However, the following convergent,

positive, simple continued fraction expansion of tan(x), obtained from equation 1, fails to

improve the precision of the �nal result.

tan(x) = [0;
1

x
� 1; 1;

3

x
� 2; 1;

5

x
� 2; 1;

7

x
� 2; 1; : : :] (13)

As in the case of continued fractions with integer quotients, we �nd no simple dependence

between the convergence of the input, and the exactness of the output.

5 Final Optimization

Within the non-exact results, the proposed algorithm has a very low average error, but a

relatively high maximal error. We discuss �nal optimization of example 1 from above.

Figure 5 shows the histogram of the distribution of the error within the 1.5% of non-

exact results in the case of T1 with 12-bit state registers, as shown in Example 1 above. We

see that the error is almost uniformly distributed. In order to guarantee 16 bits of precision,

we have to �nd a correction value for about 300 non-exact input values (out of 64K possible

16-bit inputs). A small programmable array such as a table, PLA, etc., indexed with a

subset of input bits holds the 300 correction values. In case of a non-exact result, the

corresponding correction value is added to the �nal result.

6 Conclusions

In general, �nite resources limit the achievable precision of continued fraction arithmetic.

The proposed improvements make it feasible to obtain exact results in 98.5% of cases for

the linear fractional transformation (T1), even with relatively small registers { making the

algorithm interesting for implementation in hardware. Quadratic transformations create

quadratic growth of state register values, resulting in a stronger dependence on the size of

the state registers. A large percentage of non-exact results make it unrealistic to guarantee

a speci�c precision with reasonable resouces.

The examples analyzed in this paper form the beginning of a bit-level understanding

of algebraic algorithms for rational arithmetic. The major remaining issues before the

proposed algorithms would become practical in the framework of binary arithmetic (in

order of signi�cance) are:

� Conversion of continued fractions to and from binary numbers limits the performance

and applicability of current continued fraction arithmetic.

� TheRedundant Continued Fraction representation limits the achievable precision

by limiting the maximal range of partial quotients. Extending the maximal value of

a quotient with \0" quotients leads to unacceptable growth of the number of partial

quotients.

13

� Quadratic growth of state register values for quadratic transformations limits the

predictability and precision of quadratic arithmetic units.

7 Acknowledgments

We thank D.W. Bump, J.T. Gill, M. Ercegovac, and K.W. Rudd for helpful comments and

suggestions. This research is supported by DARPA Grant No. DABT63-96-C-0106, and

Compaq Systems Research Center, Palo Alto.

Appendix A:Historical Notes

Cataldi[1] is �rst to mention continued fractions in 1613. The theory of continued

fractions has its roots in the works of Euler[2], Lagrange[3], Legendre, Lambert, etc.

Khinchin[5] studies regular continued fractions as a number representation, and gives

the distribution of values of partial quotients found by Kuzmin in 1928. Wall[7] summarizes

the analytic theory of continued fractions with an emphasis on convergence and function

theory. The theory of continued fractions is best organized by Perron[6].

Homographic function evaluation with simple continued fractions, as discussed in this

paper, is �rst studied by Hurwitz ([4], 1896). Hall[10] follows up on Hurwitz's work, and

Raney[12] shows a simpli�ed algorithm based on linear algebra and �nite state machines.

Meanwhile Knuth[9] considers continued fractions for semi-numerical algorithms. Gosper[11]

notes how to evaluate homographic functions to CFs, given CF inputs. Vuillemin[17] for-

malizes and extends Gosper's work to the algebraic and positional algebraic algorithms.

Kornerup[18] investigates a hardware implementation of Gosper's algorithm, and Potts[19]

extends the notion of representing exact real numbers using expression trees with tensors

as vertices.

References

[1] P.A. Cataldi, Trattato del modo brevissimo di trovare la radice quadra delli numeri,

et regole di approssimarsi di continuo al vero nelle radici dei numeri non quadrati,

con le cause et inventioni loro, Bologna, (Italy), 1613, see [6].

[2] L. Euler, Introductio in analysin in�nitorum I, 1748, translated into English, Springer

Verlag, New York, 1980.

[3] J.L. Lagrange, Additions aux �el�ements d'algebre d'Euler, 1798.

[4] A. Hurwitz, �Uber die Kettenbr�uche, deren Teilnenner arithmetische Reihen bilden,

Vierteljahrsschrift d. naturforsch. Gesellschaft, Z�urich, Jahrgang 41, 1896.

[5] A. Khinchin, Continued Fractions, 1935, translated from Russian, The University of

Chicago Press, 1964.

[6] O. Perron, Die Lehre von den Kettenbr�uchen, Band I,II , Teubner Verlag, Stuttgart,

1957.

14

[7] H.S. Wall, Analytic Theory of Continued Fractions, Chelsea Publishing Company,

Bronx, N.Y., 1948.

[8] W.B. Jones, W.J. Thron, Continued Fractions: Analytic Theory and Applications,

Encyclopedia of Mathematics and its Applications, Vol. 11, Addison-Wesley, Reading,

Mass., 1980.

[9] D.E. Knuth, The Art of Computer Programming, Vol 2, Seminumerical Algorithms,

Addison-Wesley, Reading, Mass., 1969.

[10] M. Hall, On the sum and product of continued fractions, Ann. of Math. 48, 966-993,

1947.

[11] R.W. Gosper, R. Schroeppel, M. Beeler, HAKMEM, Continued Fraction Arithmetic,

MIT AI Memo 239, Feb. 1972.

[12] G.N. Raney, On Continued Fractions and Finite Automata, Math. Ann. 206, 265-283,

1973.

[13] J.E. Robertson, K.S. Trivedi, The Status of Investigations into Computer Hardware

Design Based on the Use of Continued Fractions, IEEE Trans. on Computers, Vol.

C-22, No. 6, June 1973.

[14] B.C. Berndt, Ramanujan's Notebooks, Springer-Verlag, 1998.

[15] C. Faivre, On decimal and continued fraction expansion of a real number, Acta

Arithmetica LXXXII.2(1997).

[16] C.T. Fike, Computer evaluation of mathematical functions, Englewood Cli�s, N.J.,

Prentice-Hall, 1968.

[17] J.E. Vuillemin, Exact Real Computer Arithmetic with Continued Fractions, IEEE

Trans. on Computers, Vol. 39, No. 8, Aug. 1990.

[18] P. Kornerup, D.W. Matula, An algorithm for redundant binary bit-pipelined rational

arithmetic, IEEE Trans. on Computers, Vol. 39, No. 8, Aug. 1990.

[19] P.J. Potts with A. Edalat, Exact real arithmetic using M�obius transformations, PhD

Thesis, Imperial College, London, March 1999.

[20] J.M. Muller, Elementary Functions, Algorithms and Implementation, Birkhaeuser,

Boston, 1997.

[21] Waterloo Maple Inc., Maple V,

http://www.maplesoft.com/.

[22] I. Koren, O. Zinaty, Evaluating Elementary Functions in a Numerical Coprocessor

Based on Rational Approximations, IEEE Trans. on Computers, Vol. 39, No. 8, Aug.

1990.

15

