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Abstract

Traditional systems refer to a mobile person using the name or address of that person's communi-

cation device. As personal communications become more diverse and popular, this solution is no longer

adequate, since mobile people frequently move between di�erent devices and use di�erent communications

applications. This lack of identi�ers for mobile people causes problems ranging from the inconvenient to

the downright dangerous: to locate a person, callers must use potentially multiple email addresses, cell

phone numbers, land line phone numbers or instant messaging IDs; callers leave sensitive messages on

shared voicemail boxes; and they send communications intended for the previous owner of a telephone

number to the next owner. To solve this naming problem, we should be able to name people as the

ultimate endpoints of personal communications, regardless of the applications or devices they use.

In this paper, we develop a naming scheme for mobile people: we derive its requirements and describe

its design and implementation in the context of personal communications. IdentiScape, our prototype

personal naming scheme, includes a name service which provides globally available identi�ers that persist

over time and an online identity repository service which can be locally owned and managed.
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I. Introduction

While current systems traditionally target the communication device as the mobile endpoint,

they do little to support the mobile person as the ultimate endpoint of communications. For

instance, though current systems can consistently address a host as it moves across di�erent

networks [Per96], they o�er no consistent way to address a person who moves across di�erent

applications and communication devices.

This lack of naming support for mobile people is exacerbated by the increasing diversity,

popularity and availability of personal telecommunications. The multitude of methods we use

to identify and authenticate ourselves to di�erent communication applications and the multitude

of ways in which we can reach others have created an enormous management problem, which

inhibits personal mobility instead of promoting it.

First, it is increasingly diÆcult and time consuming to keep track of all of our names and

authentication mechanisms in the networks we use, especially since we often need to identify

ourselves di�erently according to the type of communication in which we wish to participate. For

instance, Jane Mobile may have a di�erent user name and password for her oÆce email system,

home email, oÆce voice mail, home voice mail, cell phone voice mail and instant messaging

system, all of which she uses regularly in di�erent situations.

Second, it is time consuming to ensure that those who wish to reach us online have our current,

most appropriate contact information. To be reachable easily, Jane Mobile needs to make sure

we have all of her phone numbers, email addresses and other online identi�ers. The task is even

harder if she wishes to disclose di�erent subsets of her contact information to di�erent people.

For example, she might not want her business contacts to reach her at a hotel room during

vacation, but she might want to be reachable there by her next of kin.

Third, contacting people reliably has become more inconvenient and error-prone than ever.

The use of application-speci�c identi�ers to identify people is often inconvenient when we need to

reach people through a variety of applications and devices, but it sometimes even causes serious

problems. Sensitive messages are left on shared voicemail boxes, communications intended

for the previous owners of a telephone number are delivered to the next owner, and restricted

information about a person's place of work is embedded in that person's communication address.

This management problem has traditionally been attacked with sophisticated personal track-

ing mechanisms [JBK98], [RMS+99], [uRe], [IMP], [eTu]. These mechanisms aim to maintain

an up-to-date list of connectivity addresses where a mobile person can be reached at all times.

The mobile person either updates this list manually, or is tracked automatically by arrays of

interconnected devices. For example, Jane Mobile might manually update a web form, or be

tracked automatically, every time she leaves her oÆce to go chat with a coworker, so that phone

calls directed at her are diverted from her oÆce phone to the coworker's phone. All Dan Sender

has to do, to be assured of reaching Jane directly, is to make use of Jane's tracking mechanisms,

which he can access at a well-known network address, or through an invisible proxy listening in

on Jane's communications.

The majority of such tracking solutions, though useful for minute-to-minute personal tracking,

lack long-term perspective. They invariably assume that Dan Sender, in the example above,

always has a way to name Jane, and that he can easily �nd her tracking mechanism.

Unfortunately, these assumptions are too optimistic. On one hand, people in the online world

do not have unambiguous names. Dan cannot just lookup \Jane Mobile" and be sure to �nd

the right person; even with a small fraction of the world population online, our �rst and last

names are not unique identi�ers.

On the other hand, application-, device-, or network-speci�c identi�ers commonly used to

identify people are transient and ambiguous. Email addresses change every time we change

service providers or jobs. Telephone numbers change every time we change cellular carriers or
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residences. The jane@example.com that used to be Jane Mobile when Dan Sender contacted

her in the past at her workplace, Example Inc., may not only be invalid, once Jane changes jobs,

but may also now correspond to a di�erent employee of Example Inc., who inherited Jane's

email address.

We have termed this longer-term aspect of the personal mobility management problem the

personal online identity crisis. Tackling this crisis is equivalent to naming the ultimate bene�-

ciary of the personal telecommunications revolution, the mobile person.

IdentiScape, the project described in this paper, seeks to provide a solution for the personal

online identity crisis. It complements the Mobile People Architecture [RMS+99], which encap-

sulates our short-term tracking mechanism. IdentiScape provides naming and directory services

that

� allow callers to use one identi�er to reach a person, regardless of the number of device and

application endpoints associated with the recipient,

� provide persistence of identi�ers over time to thwart identi�er reuse, which causes confusion,

and

� enable people to control the contents, �ne-grained access rights, and storage of their own online

identity information.

While the name service of IdentiScape is global, the identity information repositories it points

to are locally managed, and they may reside anywhere for reasons of scalability, deployability

and privacy.

The contributions presented in this paper include the identi�cation of requirements for a

personal online identity service; the design of IdentiScape, which ful�lls these requirements as

much as currently possible; a prototype implementation of the design; and a way to deploy the

service without retro�tting current personal communications protocols.

The rest of the paper proceeds as follows: In Section II we explain in further detail the prob-

lems that arise from the Personal Online Identity Crisis and how these problems motivate our

design requirements. In Section III we describe the design of our IdentiScape service prototype.

In Section IV we explain fundamental beliefs behind the design of such a service, including

the escapability of identities, and our beliefs that trust in a global name service is reasonable,

that identity information repositories (in contrast) should be decentralized, and that encryption

keys are unsuitable as identi�ers for people. IdentiScape's implementation status is covered in

Section V, and in Section VI we present related work. Finally, we conclude with future plans in

Section VII.

II. The Personal Online Identity Crisis: Problems and Solutions

In this section we further describe the personal online identity crisis and explain the required

features of an ideal solution. These features fall into two main categories: naming requirements

and identity object requirements. Naming deals with the names we use to refer to people online,

while identity objects are the collections of information about the people named by those names.

A. The Problems

Because people are not bit-based, they traditionally delegate online representative entities,

such as email accounts, telephones, instant messaging pro�les and customer pro�les to represent

them online. People interact with and direct their online representatives through peripheral de-

vices such as keyboards, microphones, speakers and telephone sets, which are interfaces between

the physical and online worlds.

A problem with this representation of people in the online world is that people and their online

representatives do not usually have an explicit association to each other. Problems arise both

from the number of online representatives for a person and from changes in online representatives.
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TABLE I

Naming Requirements

Property Description

(II-B.1) Ubiquity I can transfer my names over di�erent media

I have the same name everywhere

My names don't give out private information

(II-B.2) Persistence My names are valid as long as I want them to be

I control what my old names point to

The person behind a name is always the same

(II-B.3) Human-centricity I can de�ne my name

I can change my name

(II-B.4) Robustness My name is not similar to anybody else's

It is easy to catch simple typos in a name

Jane Mobile may be hard to reach reliably if she has many phone numbers and email addresses,

and even worse problems occur when her phone numbers and email addresses change. For

example, the telephone number of a defunct pizza parlor could be reassigned to Jane Mobile

who subsequently receives many unwanted pizza orders. A more dangerous situation could arise

if sensitive communications intended for Jane Mobile from her lawyers are directed to a phone

number or email address she used to share with the party she is now suing.

B. Naming requirements

From the above problems we observe a need for people to be able to choose online identities

that more closely represent them than particular communication devices and applications. In

addition, these online identities should belong to their owners for as long as desired, despite

changes in residence, jobs, or aÆliation. Besides these requirements for human-centricity and

persistence of identi�ers, we believe identi�ers in an ideal name service should be ubiquitous

and robust, as described below and summarized in Table I.

Requirement II-B.1: Names are ubiquitous

The range of uses for a single personal identi�er is so broad and unpredictable that the

survivability of a personal naming scheme is directly proportional to its adaptability to new

uses. A name must be at least as versatile as current identi�ers, such as email addresses, and it

cannot closely depend on a particular medium. For instance, though highly unique, a palm print

would be a bad personal identi�er, since it is heavily biased towards an image-based medium;

transmitting it over a human-understandable audio channel would be, at best, time consuming.

Given current mobility trends, we believe names should be globally valid. It should not be

necessary to choose di�erent identi�ers when in di�erent countries or when performing a lookup

on the name from within di�erent organizations. While personal address books may build

a custom, private layer of indirection on top of a personal online identi�cation service, there

should be a simple, intuitive way for two strangers to refer to the same third person, regardless

of their own private aliases for that person.

Finally, name ubiquity also applies to content. Names should be usable even in insecure

environments; they should not contain sensitive information. Such information should be stored

separately within the identity object, not piggy-backed on the identity name. Thus, today's

email addresses and phone numbers may not be appropriate identity names, because they contain

information about the network organization or locality where a person can be reached, and this
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may be sensitive information.

Requirement II-B.2: Names are persistent

Current identi�ers used by people, both directory-based and unstructured, are in large part

transient. Most email addresses are only as permanent as their associated Internet Service

Provider account; telephone numbers in most of the world are dependent on the carrier and the

geographic area where the subscriber lives; and X.500 distinguished names [Uni97a] are depen-

dent on the named person's aÆliation and geographical location. The use of public encryption

keys as personal names [RL] su�ers from the same problem, since people need to change public

keys periodically to avoid brute-force or known plaintext attacks.

Name transience becomes even more daunting when it is combined with name reuse. Naming

schemes like email and telephony allow an identi�er to be reassigned after its association with

its previous owner has ended. This results in adverse surprises such as the previous example of

pizza orders being sent to Jane.

Transient, reusable names a�ect both senders and receivers of personal communications.

Senders can e�ectively never be certain of the actual recipient of a personal communication

they send. In practice, they assume that it is likely to reach a person at an address if they have

been recently successful at reaching the same person at that address. Though this assumption

may usually be true, it would be dangerous to rely on it, especially when security is important.

Even secure (encrypted) communications are not immune to the e�ects of transient naming,

since they, too, usually rely on mappings from a transient reusable service-speci�c name (e.g.,

a Versign ID), to a transient secret (e.g., a public key). Furthermore, when successive refer-

ences are far apart in time, transient naming means that a sender must establish an association

between the intended receiver and that receiver's name from scratch, using o�ine, or insecure

online means.

In the inverse communications direction, transient, reusable naming means that a person may

miss important communications from senders who have not been informed of a move, or worse

have important communications sent mistakenly to the wrong, potentially malicious recipient.

To protect against this contingency, diligent mobile people must inform all their important

correspondents | frequent or not | of their name changes, and they must trust them to

update all their local copies of this information. Job, service provider, and residence changes

must all be propagated to potential correspondents. When both the intended receiver and sender

of a communication have recently moved, tackling name mobility can be virtually impossible to

handle simply.

For these reasons we believe that historical persistence of names is important: a name once

created should live inde�nitely and should only point to a single identity throughout its history,

to the extent practically possible.

Requirement II-B.3: Person controls name

Any reasonable naming scheme for people should allow people to choose their own names.

Randomly or bureaucratically generated, otherwise meaningless names, though just as functional

for name resolution purposes as meaningful names, are inappropriate to name people: they are

hard to memorize and hard to identify with psychologically.

A naming scheme should also allow people to change their names as desired, since people

change, and their legal names change over time. For example, while Jane may have called herself

\Lazy Lady" in the 60's, she might no longer �nd that name representative of her identity, and

she should be able to change it.

Multiple names should be allowed to point to the same identity. As people choose new names

without wishing to abandon old names entirely, they point their multiple names to the same

online identity. Similarly, people must be allowed to control the obsolescence of names they

own, for example to \disappear" online.
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TABLE II

Identity Object Requirements

Property Description

(II-C.1) Contents controlled by user Users control the contents of their identities

A person can de�ne new types of identity data

A person can share data types with others

(II-C.2) Fine access control Access control can be tailored to every attribute

(II-C.3) Information store is trusted Users should be comfortable trusting their identity store

Requiring that names be both changeable and persistent, as per the previous requirement, is

not a contradiction. Persistence mandates that a name have an unambiguous referent through-

out its lifetime. Changeability mandates that an identity be allowed to have di�erent names

throughout its lifetime. The two are orthogonal.

Requirement II-B.4: Names are robust in the face of human error

Since names must be usable by people, we must anticipate human error in their use. A good

name space for people should be suÆciently sparse to avoid name confusion caused by typo-

graphic mistakes or an absent mind. For example, if the name \Jane01" exists, then \Jane10"

should probably be disallowed as a new name.

C. Identity Object Requirements

A personal online identity object is a publicly available collection of information about an

identity. We believe there are three main requirements for the structure of such a store: its

contents should be controlled by the person or people it represents, and should admit �ne-

grained access control. In addition, people need to exact as much assurance for the safety of

their identity information as they wish (See Table II for a summary).

Requirement II-C.1: Users determine what information to store

The information stored in an online identity should be exactly what its owner wishes to

portray. The identity object itself should mandate neither completeness nor correctness of the

information stored. For instance, Jane might wish to include only business-related information

in her identity, perhaps maintaining a di�erent identity for her personal interactions; she might

wish to claim a di�erent age than that indicated by her birth certi�cate; and she might want to

talk about aspects of herself unanticipated in the design of the service.

The information store should not limit the kinds of information that may be contained therein.

This implies the ability to de�ne and even share new types of data representing such information.

If Jane wishes to include information about her body piercings in her identity, and even share

the data schema she de�ned for this with others, she should be able to do so. Sharing at this

level promotes community building, since it allows groups with similar interests to standardize

a language for talking about those interests, without necessarily having to rely on external

administrative help, or lengthy standardization processes.

Finally, an identity need not necessarily portray a single, entire physical person. It could also

be a human role undertaken by a changing set of people. For example, a company may wish

to give its web master position an online identity independent of the actual people behind the

position.

Requirement II-C.2: People can exercise �ne-grain access control over their identity objects

People place varying amounts of importance on the privacy of di�erent pieces of their identities.

For example, cellular phone numbers might be more private than land line phone numbers in
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Name Service

Dan SenderJane Mobile

(1) Lookup
"Lazy Lady"

(3) Lookup instant messaging
for "Lazy Lady"

(4) Try 2615397

(5) Instant message to 2615397

Repository
(repository.stanford.edu)

(2) Repository at
repository.stanford.edu

Fig. 1. IdentiScape Design. We show the components participating in the identity service, and a typical,

abstract protocol exchange between the service and a requester (Dan Sender), seeking the email

address of Jane Mobile.

the US, since users pay for incoming cellular phone calls.

Identity objects should therefore o�er their owners the ability to export views of their identity

customized for speci�c people or groups of people. In Jane's case, she could export all of her

business-related data only to her business acquaintances.

Requirement II-C.3: People should be assured of their privacy

An identity repository can keep unauthorized people from browsing a user's identity, but is the

repository itself trustworthy? A person should be able to impose as strict security requirements

on the network entity holding his identity object as desired, or as technically possible.

III. IdentiScape Design

In this section we describe the design of IdentiScape, a prototype personal online identity

service. For a discussion of some of our design choices, please refer to Section IV.

To understand the fundamental functionality that IdentiScape provides, consider the following

example, as illustrated in Figure 1. Dan Sender wants to send an instant message to his old

friend Jane Mobile, whom he has not contacted in a while. With IdentiScape, all Dan has to

do is input Jane's identity name into an instant messaging client and compose his message. No

matter when or from where Dan performs this sequence of actions, the message will be sent

where Jane wants it to arrive.

Ideally, Dan's instant messaging client must be able to �nd Jane's current instant messaging

identi�er, which is speci�c to the instant messaging protocol Dan is using. This is done in two

phases in IdentiScape. First the client looks up Jane's identity name at a name service, perhaps

authenticating Dan with the service �rst. The name service then returns a network pointer to

an identity repository server that currently holds Jane's identity object if Dan is authorized to

receive this information. Next, the client looks up Jane's identity name with that repository

server, asking speci�cally for her instant messaging identi�er. When that is returned, the client

may go ahead with the transmission of Dan's message, using the regular instant messaging

protocol it supports.

In the next few sections, we describe the components that make the above scenario work. In
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Section III-A we present the infrastructure on which we rely for the design of IdentiScape, namely

existing directory services and security services. In Section III-B we talk about Jane's identity

name, what it looks like, and how it can be protected against human error. In Section III-C

we describe the name service, its API and some preliminary insights on its deployment. In

Section III-D we describe the repository, which actually holds the identity objects, and discuss

its practical issues. In Section III-E we describe the identity objects themselves.

A. IdentiScape's infrastructure dependencies

In the design of IdentiScape we attempt to leverage currently speci�ed designs as much as

possible, and only make changes where we need additional support.

To design our identity repository and the structure of identity objects, we use the Lightweight

Directory Access Protocol suite [WKH97], the de facto standard for directory services on the

Internet. We chose LDAP, although it does not yet cover some of our required functionality,

for three reasons. First, it is widely deployed and accepted. Second, solid implementations of

LDAP exist, which we can use with some modi�cations. Third, the speci�cation of the additional

features we need are already in process, so we expect our needs and the functionality LDAP

o�ers to converge soon.

For the security and privacy needs of IdentiScape, we choose to extend the mechanisms de-

�ned by the Simple Public Key Infrastructure [SPK], for their simplicity, broad applicability

and existing implementation availability. We do not use the certi�cate and key distribution

mechanisms of SPKI, because they rely on the concept of linked local name spaces, which are

inappropriate for the reasons we present in Section IV-A. Furthermore, SPKI assumes that

public keys are the primary principals in its mechanisms (see Section IV-D). We have extended

SPKI to accommodate IdentiScape names.

B. The IdentiScape Name Space

Here we describe our choice of names that strikes a balance between the competing require-

ments of user control and robustness. We suspect that our prototype scheme may be naive, and

certainly we expect further user feedback to cause us to evolve this design.

IdentiScape names (identinames for short) are based on free-form, case insensitive, Uni-

code [Con00] character strings, allowing numbers, letters in any supported script, and white

space. An example of such a string is \Santas little helper". We have disallowed the use of any

other punctuation for two reasons. First, to limit the similarity to commonly used application-

speci�c identi�ers such as email addresses, host names or telephone numbers, since this could

cause ambiguity to end users (\is this an identiname or an email address?"). Second, to make

sure that only linguistic means, which are more memorable to humans, are used to distinguish

an identiname from others. Space provides a delimiter between components of the name. The

components themselves can be picked arbitrarily; they do not have to belong to any human

language.

The identiname consists of the basic string described above and an eight-bit checksum, ap-

pended to the basic string, and delimited with white space. The checksum is calculated on the

UTF-8 [Yer98] encodings of the characters in the basic string, ignoring multiple instances of

white space and counting all letters as lower-case. As a convenience to users of this scheme, to

improve name memorability, we have de�ned a one-to-one mapping from an eight-bit number

to a color or fruit name in English, which can be used interchangeably with the checksum. For

example, the name derived from the basic string given above would be \Santas little helper

blue" or, equivalently, \Santas little helper 216", since \blue" is the mnemonic for the number

216. This is a low-cost technique to limit casual name entry mistakes, without burdening name

memorability unreasonably.
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We limit the similarity between any two names in the name space, by requiring that no two

names share more than half their words. Examples of basic strings we consider too similar to

the name \Santas little helper" (minus the checksum) are \Santas helper little", because it is

a permutation of the original name, and \Santas little dog" which shares two words with the

original name. Unfortunately, our heuristic can still be subverted by a determined adversary

through exploitation of human error. Robust constructs guarding against human error in names,

without limiting memorability, are an interesting and important topic for further investigation.

We expect the need for identinames to be on the order of two trillion identinames in the

next 100 years, to avoid reuse. This �gure is derived assuming instant global deployment, from

estimated worldwide birth rates of about 150 million annually [Fun], and an expected use of at

most 100 identinames per person.

The name space we propose can well accommodate this need without jeopardizing name

memorability or robustness. To derive a rough sense of the size of the name space, consider a

small subset of it, that which consists of any four distinct English words. If we only use nouns and

verbs, which are roughly 20,000 and 14,000 respectively [SW89], we can construct approximately

1.4 trillion four-word names, observing the robustness limitations described above, as detailed

in the Appendix. This measures a fraction only of the available name space, given that names

of greater length, di�erent languages and di�erent formats are also allowed.

C. The IdentiScape Name Service

The IdentiScape name service is globally trusted and distributed. It maps an identiname

to an identity repository that currently holds the identiname's identity object. A mapping is

protected with an access control list, which describes which other named identities may retrieve

it. For example, if Jane only wants Dan to be able to �nd her identity object, she can insert

Dan's identiname in the ACL of her mapping at the name service. A mapping can be public,

in which case anyone can access it. To enforce proper authorization, the name service provides

commands to set up a secure, shared-key channel with an authenticated client.

With every identiname-to-repository mapping, the name service maintains a naming public

key for the owner of the identiname, which carries the naming authority for that owner [EFL+99].

A naming authority is something like a naming permission: a right to perform naming operations

on behalf of its owner. This authority is created by the owner of an identity and delegated to the

public/secret key pairs used to authenticate any operations at the name service. For example,

Jane owns the right to operate on her name, that is, she owns her naming authority. Through a

self-signed certi�cate, she delegates this authority to a public key pair that she generates. This

is her master naming key pair, which Jane keeps out of circulation, and only produces when a

certi�cate is challenged. She uses this key to sign the naming keys she uses regularly.

The name service is charged with the responsibility of maintaining the ownership of an identity

throughout its history. It assumes that the naming authority is the closest bit-based entity to

the owner of an identity. Therefore the name service keeps track of the public keys delegated

with this authority to maintain ownership continuity. As naming public keys are replaced over

time, because they expire or are compromised, the name service makes sure that the same

naming authority is delegated on replacement naming keys, which is equivalent to maintaining

the same ownership for a mapping. Unfortunately, if Jane gives her master naming key to Dan,

she e�ectively passes ownership of her identity to Dan, as well. There is no technical means to

prevent this from happening, as described in Section IV-C. In that respect, our design does not

ful�ll our persistent name requirement completely.

A new identiname for an identity object can be created by giving the name service a proposed

new name, the location of the associated identity repository and the current naming public key

of the owner's naming authority.
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Identity objects may move from repository to repository, when the owner changes identity

service providers, for example. During an identity object migration, the name service must

make sure that, at its new location, the identity object is controllable by the same naming

authority. The API command for migration, in addition to the new repository location, contains

a sequence number of migration requests. The sequence number is initialized when an identiname

is created, and then incremented with every migration. This sequence number is used to thwart

replay attacks.

The API provides lookup functionality in two 
avors. First, a client can check whether an

identiname or other identinames similar to it exist, without authentication. Existence requests

do not return repository location information, since that is access controlled. They return either

an aÆrmative or a negative answer, accompanied by any existing similar identinames. Second,

a client can look up the repository location for an identity object, given its identiname. This

lookup returns a transport address (IP address and port number), and the public naming key,

if the operation is allowed by the access controls.

Finally, the naming API includes commands that deal with access control to the mappings

(inspection or replacement). Only the owner of the mapping may use these commands.

Access to the name service through the Internet is straightforward through either a DNS

lookup for service.identiscape.com or a service location search.

We believe that the size of the naming database will be manageable by storage systems of the

near future. Assuming �ve kilobytes per name-to-repository mapping, and assuming 10 initial

names per person, the storage needs for the current world population would be in the order of

30 terabytes, which can even now be handled by high-performance database servers.

We expect the rate of change of mappings within the name service also to be manageable.

Assuming that world population remains under 20 billion for the next 100 years [Fun], and that

each person uses at most 100 names during his lifetime of roughly 100 years, then we expect

no more than 20 billion name changes or additions per year. Given that each name change will

require the circulation of about 5000 bytes, we project the workload on the replicas of the name

service to about three million bytes per second, which is well within the capabilities of current

well-networked server environments, and should be certainly trivial before every man, woman

and child on the planet uses IdentiScape.

D. The Identity Repository

The Identity Repository is a service responsible for maintaining identity objects and serving

the information held within to authorized requesters. Identity repositories may also answer

queries to unauthenticated requesters holding no special authority if the information in question

is deemed public by its owner.

As mentioned in Section III-A, we use the Lightweight Directory Access Protocol functionality

as the starting point for the identity repository. We describe below our modi�cations to the

basic LDAP functionality, to suit our repository design.

To enforce proper authorization of repository clients, we use LDAP's bind and unbind prim-

itives. They set up and tear down, respectively, a communication channel for a particular

identity object, between a requester and the repository server, potentially authenticated with

the requester's naming key. Note that a channel can only serve requests about a single identity

object held at the repository.

We support LDAP's search and compare functionalities, with one restriction: only queries

within a single identity object are allowed, even if the requester is authorized to look up in-

formation in other identity objects hosted in the same repository. The existence of an identity

object at a speci�c repository should be revealed only by the name service, not by random

wishful queries.
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The LDAP modi�cation primitive allows only the owner of an identity object to change its

contents. LDAP's distinguished name modi�cation primitive is replaced by a primitive to modify

the primary identiname of an identity object.

For every identity object hosted, the identity repository holds the corresponding hosting cer-

ti�cate. This is a certi�cate signed with the owner's current secret naming key, authorizing the

repository to hold the associated identity object. This is a delegation of the hosting authority.

The repository can supply this certi�cate as proof of its right to host the named identity object.

Identity objects can be created and associated with a naming authority as described in Sec-

tion III-C, or destroyed by the governing naming authority. Note that any naming authority

can create an identity object within a repository, provided that any necessary service agreement

with the repository maintainer is satis�ed.

Since access control management within LDAP is still under discussion, we are implementing

our own primitives, to view or change ACLs on attributes of an identity object. Only the owner

of the object may access ACLs.

Ownership continuity is not enforced by the repository at any stage. This task is left to the

name service. In this way it is possible to bypass the name service altogether, and use only the

repository, if for example a person �nds trusting the name service too burdensome. In that case,

however, none of the bene�ts of name persistence and ubiquity can be reaped.

We use LDAP's mechanisms for scalability of large identity repositories. However, users might

choose not to trust massively replicated identity repositories.

E. Personal Online Identity Objects

Our identity objects consist of an unordered set of named attribute/value pairs. The names

of these pairs are unique within an identity object, but are otherwise unconstrained. At-

tribute/value pairs may be aggregated within named groups, which can be nested within one

another to arbitrary depths.

Attribute types are selected from general or special-purpose attribute spaces, similar to name

spaces in XML [Con99]. For example, Jane may be interested in an attribute space about body

piercings containing attribute types for the diameter, material, color and location of jewelry.

We have de�ned some initial attribute spaces for personal communication addressing, such as

communications media available, communication addresses for every available medium, and

basic identi�cation information, such as �rst and last names, date of birth, etc. Anyone may

extend the attribute spaces we have de�ned, or de�ne new ones, and optionally publish them

to be used by others. Given a link to its de�nition, an attribute space can be \mounted" inside

an identity object, as a named group. Its speci�c attributes can then be populated with values

speci�c to the owner of the identity object.

We do not use LDAP's support for data schema extensibility, since the de�nition of new

arbitrary schemata is strongly discouraged in the speci�cations [WCHK97]. The speci�cation

favors packing encoded data extensions into textual �elds, much like what MIME does for email.

With this mechanism, entire sets of packed attributes and values have the access controls of the

raw bit-�eld within which they have been packed. We �nd this restrictive, since it limits the

amount of system-enforced access control a person has on the components of a non-standard

data extension. We are currently addressing data schema extensibility using the XML name

spaces mentioned above.

Values are non-empty, ordered lists of unstructured text. Binary data may be stored using

MIME encoding facilities [FB96]. The repository makes no e�ort to parse, type-check or vali-

date stored data, but values may be accompanied by validity certi�cates. A validity certi�cate

provides a record of the attribute/value pair in question, along with the identiname of the ob-

ject that contains it, cryptographically signed by an authority for that attribute. For example,
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Jane's identity object might contain an attribute/value pair for her social security number. To

prove its validity, Jane may accompany her SSN with a certi�cate signed by the Social Security

Authority, containing her identity name and her SSN.

Attribute/value pairs are associated with an access control list. The contents of an access

control list are identinames of those allowed to read the values or detect the existence of the

pair. Note that there is only one type of access right: read. Only the owner of an identity

object may modify its contents, through the API described in Section III-D. By default, all

attribute/value pairs are private. Pairs enclosed within a group inherit the access controls of

the group, unless they have their own. No access control algebra takes place; an item's access

is governed only by its own access control list, if one exists, or by the nearest enclosing group

that has its own ACL.

An identity object always has a singleton value for its own, primary identiname. Note however

that many identinames may point to the same identity object. This can be invaluable, for

example, in cases where an identity has a Kanji name as well as a Latin character name for

those unfamiliar with Kanji.

IV. Architectural Discussion

In this section we present the major decisions we had to make while deriving out requirements

and turning them into the design of our prototype identity service.

A. Trust of Local versus Global Services

An important design decision is whether we should build components as network-wide, trusted

services or whether we should instead limit the trusted service base to be near the end user. Our

requirements for ubiquitous names are much more easily satis�ed with a global service, but many

people are skeptical of globally trusted distributed name services. For example, Ellison [Ell99]

believes that in the area of secure certi�cate distribution protocols (which share many goals with

our work), globally trusted servers are at odds with the reality of services run by disinterested

third parties. The third party's employees may not be motivated enough to avoid clerical errors,

or may be bribed, feeling protected behind their corporate employer. Instead, suggests Ellison,

trust in local personal or business contacts is more justi�ed, since the people we know well are

likelier to promote our and their own security interests. It is through information provided by

these people, a web of trust, that we should attempt to resolve lookups.

We sympathize with this view but believe that it does not apply to the service we describe,

for three reasons. First, we believe that placing trust in a professional, contractually obligated

entity, which can a�ord the most reliable and secure technology and practices, is preferable in

most cases to relying on peers who may have a limited, lay-person's security expertise, whose

local name database may be mobile, and who do not necessarily stake their livelihoods on their

reputations for answering name lookups correctly and in a timely manner.

Second, despite theories similar to the \six degrees of separation" conjecture, it is highly

unlikely for a person to be able to satisfy all identi�cation needs through the locally trusted

name spaces of friends and coworkers. White pages are not yet on the endangered species list.

Third, for the near future, the entire Internet depends on an immense, distributed, globally

trusted yet insecure naming service: the Domain Name System. Until the standardized secure

extensions to DNS have been widely deployed, any argument against global distributed services

is moot.

For these reasons, we design our name resolution service as a global, hierarchical service that

could be provided by multiple competing entities.
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B. Location of Identity Objects

While we believe that naming information may satisfactorily be provided by a global service,

this is not the case with the identity objects pointed to by the global name service. Personal

online identities are intended to contain anything from a person's tax or medical records to

special purpose private encryption or signing keys or payment instruments. Allowing a global,

\impersonal" service to accumulate such a powerful dossier on a person would constitute an

intolerable privacy transgression. Instead, we believe people should be able to store their identity

information wherever they choose: perhaps on a home computer or at a trusted service provider.

In our design, the name service resolves a name to any online address at which the identity

information may be stored. This gives users the most control over their own information.

C. Escaping Identities

Although historically persistent names help avoid many potential identi�cation errors, they

do not provide absolute inescapability of identities [JM98]. It is always ultimately possible for a

person to give his identity to another person, although governments, legal systems and the use

of biometrics can make it diÆcult. For example, if Dan Sender decides he wants Jane's identity,

and if Jane agrees to this, then Dan and Jane may change the information in Jane's repository

to represent Dan instead.

A community might choose to reduce the chances of such exchanges by requiring all users

to include DNA samples in their identities, signed by appropriate authorities, and then use

these samples to derive users' authentication tokens, for instance. While our system does not

prevent a government from setting up such a scheme, any requirement to do so is the domain

of law enforcement, politics, and nightmarish science �ction, not of the underlying technical

infrastructure.

Thus we state that our design provides historical persistence of mappings of names to iden-

tities, unless the old and new owners of the identity agree to the change. This does not fully

satisfy our name persistence requirement. As with any identity directory service in current use,

it is ultimately a judgment call a user must make as to whether the information returned actually

satis�es the request.

D. Names versus Public Keys

Another important issue in the design of a naming scheme for personal online identities is that

of encryption key distribution. Since public keys produced by popular public key cryptography

algorithms are mathematically guaranteed to be globally unique with near-absolute certainty, it

would seem intuitive to use such public keys as names for people. After all, knowledge of a secret

is as close as we can get to identifying (i.e., authenticating) a real person in the physical world.

Separating the name from the authenticator may appear to be a step in the wrong direction.

We believe this reasoning does not apply to a naming scheme designed primarily for people.

First, reasonably secure public keys tend to be in the range of a few thousand bits long. Even

if a cryptographically secure hash function is applied to a public key | which increases the

chances of name collisions | the result is still a long, meaningless string of digits to a human.

We believe that a name that is not memorable will not survive as an identi�er for people.

Second, public keys must change regularly, to deter brute-force, or known plaintext attacks.

This means that if a public key were used as a person's name, that name would have to change

regularly. Propagating regularly changed names to all those who need them is one of the

fundamental problems we set out to solve with this work.

Third, not everyone is interested in privacy; there do exist people who take pride in having

nothing to hide from anyone. Such people might not care even to generate a public/private

encryption key pair, let alone be identi�ed by it.
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Unfortunately, rejecting the use of public keys as names carries its own cost. Most notably, a

service that maintains the association between an identity name and its public encryption keys

must be deployed and trusted. Since we already incur this cost to maintain name-to-repository

mappings, this extra association is relatively inexpensive.

V. Implementation Status

For the IdentiScape prototype, we have implemented the components of the identity ser-

vice, a client-side library and an identity browser. We have also extended our mobile personal

communications platform to support identinames.

The prototype name server and the identity repository are currently monolithic, insecure

and non-replicated. We have extended SPKI to support identinames as a �rst step in the

implementation of the security features of IdentiScape. The programming environment is Java

1.2. We choose Java because it is convenient for rapid prototyping.

The client-side libraries for the name service and the repository are also Java-based, and

currently support communication over Java's Remote Method Invocation (RMI) platform only.

Using the libraries, we have built an identity browser, which can also be used by an identity

owner to modify information held at the repository. To explore the adaptivity of current personal

communication protocols to IdentiScape, we have built a simple email client that can handle

email messages addressed with identinames. Email messages exchanged over the Simple Mail

Transfer Protocol must have RFC 822-style addresses to be properly routed. The mailer extracts

such addresses from IdentiScape. We encapsulate the identiname source and destination of a

message in extended RFC 822 headers, so that IdentiScape-aware agents can use them.

To demonstrate identiname-based communication routing, we have extended the personal

proxy, the prototypical implementation of the Mobile People Architecture [RMS+99] to route

communications based on sender and recipient identinames. In a simple scenario, Jane Mobile's

personal proxy, when sending out a communication from her to Dan Sender, looks up his identi-

name and searches for an address of the applicable application type (e.g., email), to forward the

communication. In the opposite direction, when Dan wants to send a communication to Jane,

he can either use an IdentiScape-enabled client, such as the emailer described above, or �rst

look up her identiname, which resolves to an application address. Jane has set up her identity

object to contain the addresses of her personal proxy. The proxy itself knows where Jane is at a

�ner time grain, so it can �lter and optionally reformat and forward the communication to her

current network point of attachment.

VI. Related Work

The area of personal naming, identi�cation and privacy has long been active. The project

with the closest match in goals with ours is that undertaken by Specialist Task Force 157 of the

European Telecommunications Standards Institute (ETSI), charged with �nding \the Personal

Identi�er of the 21st Century" [PP00]. Though attacking the problem at a more abstract level,

the task force is largely following a path parallel to ours.

In the rest of this section, we present related work which shares some of our goals.

A. Directory Services

In the Internet, by far the most popular, widely deployed directory is the Domain Name

Service [Moc87]. Its original purpose was to serve mappings between human-readable machine

names and IP network addresses. However, the service is currently being used for application-

level routing (MX records), service location (SRV records), and public key distribution as

well [DNS].
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Although DNS is slowly moving to a more secure deployment, it is not the right service to o�er

personal identi�cation. The names used, though ubiquitous, contain aÆliation information, are

not persistent, are minimally controllable by the named entity, and are notorious for their lack

of robustness. Furthermore, DNS does not support user-initiated data schema extensibility or

access control.

Among general-purpose directory services, X.500 [Uni97a] and the Lightweight Directory Ac-

cess Protocol (LDAP) [WKH97] are the most representative examples. The X.500 standards

suite describes an extremely versatile directory speci�cation, covering issues from data schemata,

entry organization, access control and extensibility, to authentication, replication, fault toler-

ance and caching. Its name space consists of a hierarchical sequence of attributes of the named

person, including organizational aÆliation, country of registration, etc. In that respect, X.500

names do not meet our naming requirements, since they are relatively transient and minimally

controllable by their owner.

LDAP was proposed as a transitional, simpler protocol to access X.500 directories, than that

de�ned by the X.500 suite. Its overwhelming success resulted in the speci�cation of a stand-

alone LDAP directory service, largely paralleling X.500 functionality. Unfortunately, stand-

alone LDAP still does not include user-modi�able access controls, data schema extensibility, or

reasonable replication. Most of the missing functionality is in the process of being speci�ed and

standardized, so we expect to use a variety of LDAP for our identity repositories, eventually.

B. Online Presence Tracking and Routing

IdentiScape targets the Personal Online Identity Crisis, which is the large-scale, coarse-grain

aspect of the bigger, personal mobility management problem. At a �ner grain, this problem is

addressed by several presence tracking and person-level routing research or commercial projects.

We combine IdentiScape with one of these, the Mobile People Architecture [RMS+99], to provide

a more complete solution for personal mobility tracking.

The Iceberg [JBK98] and TOPS [AGK+99] projects di�er from our approach in that they rely

on deep infrastructure changes for their deployment. We limit ourselves to changes that can be

deployed as much as possible on top of current infrastructure, instead.

Several commercial ventures [uRe], [eTu] attack the presence tracking problem by creating

communities, within which contact information is centrally managed. Unlike IdentiScape, these

do not permit tight user control on identity repositories.

The Internet standards community is currently in the process of specifying a large-scale pres-

ence tracking mechanism [IMP]. Data formats for the transfer of transient contact information

have been de�ned in [Con]. Finally, the Sendmail mail server [Sen] already incorporates mech-

anisms for directory-based, email routing.

C. Security Infrastructure

The security �eld that shares the most goals with our work is that of Public Key Infrastructure.

PKI addresses the problems facing distribution and maintenance of public keys, which, along

with their private counterparts, are the main tools commonly used to ensure integrity and

authenticity of communications. One of the tasks of PKI is that of associating a real-world

actor, such as a person, a role, a group of people or a company, with a public/private key pair.

Having a secure association of this sort, one can answer questions like \with which public key

should I encrypt my message to ensure that only X can read it?" or \who has cryptographically

signed this message?".

The oldest scheme available is based on the X.509 standard [Uni97b], which belongs to the

X.500 suite. In its latest version (version 3 rati�ed in 1997), it allows both X.500 names and

non-X.500 names to be used within certi�cates. Therefore, X.509v3 certi�cates can be used with



17

any naming scheme, including identinames. Furthermore, X.509v3 inherits from X.500 its data

schema extensibility and sharing. The IETF has worked on an Internet PKI based on X.509v3

certi�cates (PKIX) [PKI].

The Simple Public Key Infrastructure (SPKI) initiative [SPK] has taken a di�erent approach.

It considers a public key to be the closest online entity to a physical person. SPKI names are,

in fact, public keys. The naming scheme used is borrowed from the Simple Distributed Secure

Infrastructure (SDSI) project [RL] at MIT, and is based on the concept of linked local name

spaces. According to this idea, people are likely to assign local names to the public keys of those

with whom they communicate frequently. For example, Dan Sender contacts \jane", his local

name for Jane Mobile, when he needs to reach her. If, however, he is interested in reaching

Jane's dentist, whom Jane locally identi�es as \dentist", Dan can use the construct \Jane's

dentist". As long as he can securely access Jane's information online, Dan can resolve a local

name chain to Jane's dentist's public key. For the reasons described in Section IV-A, we do not

�nd this naming scheme appropriate for a personal online identity service.

Finally, the Pretty Good Privacy (PGP) project [Zim95] was speci�cally intended to secure

email communications. The names within PGP certi�cates refer to email addresses, along with

an alias, which might or might not be unique. Email addresses are under minimal user control,

expose potentially sensitive information and may be short-lived. Consequently, we do not believe

they constitute a suÆcient global personal naming solution.

VII. Conclusion

This work addresses the growing identity management problem facing mobile people online.

We describe a set of requirements we consider essential for a practical personal online identity

system, including ubiquity and persistence for identity names, and user-controlled privacy and

extensibility for identity objects. We further explain the design decisions we make regarding

global trust, the separation of authentication from naming, and the escapability of currently

practical online identi�cation technologies. We then describe how we apply these requirements

to the design of a prototype identity service, called IdentiScape.

We plan to evaluate our prototype over this next year by deploying the integrated system of

the personal proxy and the identity service in our department for day-to-day communications.

Through this deployment we hope to gain further insight into issues such as users' acceptance

of our naming scheme, scalability of the name service, manageability of the repositories, and the

practicality of our security infrastructure extensions. We also hope to derive quantitative utility

metrics beyond our qualitative ones for evaluating personal identi�cation systems.
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Appendix

I. Derivation of the size of the name space

The objective of this appendix is to prove the lower bound for the size of the name space

described in Section III-B. To do that, we have to derive a lower bound for the name space

structure described, namely, the set of all four-word combinations, where no word can be used

more than once in the same combination, and no two combinations can share more than two

words. Words can be chosen from the set of 34,000 English nouns and verbs.
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Fig. 2. An algorithm for the four-generator

Four(E)

1. If E has fewer than 4 elements, return the empty set

2. Partition E into two halves, Eleft and Eright

3. Do Four(Eleft)

4. Do Four(Eright)

5. Do Two(Eleft; Eright)

6. Return the union of all three sets

Fig. 3. An algorithm for the two-generator

Two(E;D)

1. If E and D have in total fewer than 4 elements, return the empty set

2. Partition E into two halves, Eleft and Eright

3. Partition D into two halves, Dleft and Dright

4. Do Two(Eleft;Dleft)

5. Do Two(Eleft;Dright)

6. Do Two(Eright;Dleft)

7. Do Two(Eright;Dright)

8. Do One(Eleft; Eright;Dleft;Dright)

9. Return the union of all five sets

The appendix is organized as follows: First we describe an algorithm that generates combi-

nations of the type described above; then we prove that the algorithm is sound, i.e., that it

only generates correct combinations; then we derive the mathematical expression that yields the

number of combinations generated by our algorithm, given the number of available words, and

use this expression to obtain the number of combinations, i.e., a lower bound on the size of the

name space we described above.

A. The algorithmic generator

In this section we describe a simple algorithm that can produce combinations of four distinct

elements from a set E, such that no two combinations produced share more than two elements.

We call combinations that share more than two elements incompatible.

The algorithm is built using three di�erent combination generators:

� The four-generator, given a set of elements E, constructs a set Four(E) of combinations of

four distinct elements from E, such that no two combinations in Four(E) are incompatible.

� The two-generator, given two disjoint sets E and D, constructs a set Two(E;D) of combi-

nations of four distinct elements, such that exactly two elements from each combination come

from E, and exactly two elements come from D. As with Four(E) above, no two combinations

in Two(E;D) are incompatible.

� The one-generator, given four disjoint sets E, D, C, B, constructs a set One(E;D;C;B) of

combinations of four distinct elements, such that exactly one element from each combination

comes from each one of the sets E, D, C and B. Again, no two combinations in One(E;D;C;B)

are incompatible.

The three generators are described in pseudocode in Figures 2, 3 and 4 respectively.

The problem we need to solve is actually an instance of the four-generator, given the set of all

available English nouns and verbs. For now, since there is no special handling in the pseudocode

for element sets that cannot be split in two equally-sized halves, we assume that all sets have a

cardinality that is a power of 2.
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Fig. 4. An algorithm for the one-generator

One(E;D;C;B)

1. If E, D, C, and B have in total 4 elements, return their elements into a

single combination.

2. Partition E into two halves, Eleft and Eright

3. Partition D into two halves, Dleft and Dright

4. Partition C into two halves, Cleft and Cright

5. Partition B into two halves, Bleft and Bright

6. Do One(Eleft;Dleft; Cleft; Bleft)

7. Do One(Eleft;Dleft; Cright; Bright)

8. Do One(Eleft;Dright; Cleft; Bright)

9. Do One(Eleft;Dright; Cright; Bleft)

10. Do One(Eright;Dleft; Cleft; Bright)

11. Do One(Eright;Dleft; Cright; Bleft)

12. Do One(Eright;Dright; Cleft; Bleft)

13. Do One(Eright;Dright; Cright; Bright)

14. Return the union of all eight sets

B. Soundness of the algorithmic generator

In this section we prove that the algorithm described above is sound, i.e., that the set of

combinations it produces has no incompatible combinations. We will use induction to prove

soundness.

The four-generator in Figure 2 constructs its result from the union of three sets: two recursive

invocations of itself on smaller input and one invocation of the two-generator:

Four(E) = Four(Eleft) [ Four(Eright) [ Two(Eleft; Eright) (1)

Theorem 1: The four-generator described in Figure 2 and Expression 1 is sound.

The base case for the four-generator occurs when E has exactly 4 elements; then both

Four(Eleft) and Four(Eright) yield the empty set, from line 1 in Figure 2. Therefore, in the

base case, the four-generator degenerates into a single application of the two-generator. We will

assume that the two-generator is sound for now | we will prove its soundness in Theorem 2.

This means that the base case of the four-generator has no incompatible combinations.

Since the base-case application of the four-generator has no incompatibilities, we can form

the inductive hypothesis: assume that neither of the sets Four(Eleft) and Four(Eright) in

expression 1 have incompatibilities; prove that Four(E) has no incompatibilities.

Uniting Four(Eleft) and Four(Eright) does not yield any incompatibilities: they draw their

elements from disjoint sets, therefore no combinations in one will share any elements with any

combinations in the other. Furthermore, no combination in Two(Eleft; Eright) is incompat-

ible with any combination in either Four(Eleft) or Four(Eright), since any combination in

Two(Eleft; Eright) has exactly two elements from each partition of E, and to be incompatible

with combinations from either of the four-generators, it would have to contain at least three ele-

ments from the same half. From this we conclude that, given the soundness of the two-generator,

the inductive hypothesis holds, i.e., the four-generator is sound.

2

We proceed to prove the soundness of the two-generator. From Figure 3, the two generator

constructs its result from the union of �ve sets: four recursive invocations of itself on smaller
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input and one invocation of the one-generator.

Two(E;D) = Two(Eleft;Dleft) [ Two(Eleft;Dright)[
Two(Eright;Dleft) [ Two(Eright;Dright)[
One(Eleft; Eright;Dleft;Dright)

(2)

We temporarily assume that the one-generator is sound; we will prove its soundness in Theorem 3

below.

Theorem 2: The two-generator described in Figure 3 and Expression 2 is sound.

The base case for the two-generator occurs when E and D have exactly two elements each;

then all four of the two-generator invocations on the right side of expression 2 yield the empty

set, from line 1 in Figure 3. Therefore, in the base case, the two-generator degenerates into a

single application of the one-generator which has no incompatibilities.

We can form now the inductive hypothesis for the two-generator: assume that none of the

sets Two(Eleft;Dleft), Two(Eleft;Dright), Two(Eright;Dleft) and Two(Eright;Dright) contains

incompatible combinations; prove that Two(E;D) contains no incompatible combinations.

None of the recursive invocations of the two-generator contains any combination that is in-

compatible with any combination in any of the other two-generator invocations. This is so,

because no two-generator on the right side of expression 2 draws elements for its combinations

from the same two sets. Since each two-generator draws exactly two elements from each of

its input sets, there can be at most two elements in common between any combination of any

two-generator in expression 2 with any combination of any other two-generator. Furthermore,

no combination in One(Eleft; Eright;Dleft;Dright) has a combination that is incompatible with

any of those produced by the two-generators. This is so, because the one-generator has exactly

one element from each partition of sets E and D. Since no two-generator invocation utilizes

more than two partitions of sets E and D, it is guaranteed that any combination from the

one-generator can have at most two elements in common with any of the combinations of the

two-generators. Therefore, the inductive hypothesis holds, which means that the two-generator

is sound, given that the one-generator is sound.

2

We prove now the �nal assumption that the one-generator is sound. The recursive step in

Figure 4 can be rewritten as

One(E;D;C;B) = One(Eleft;Dleft; Cleft; Bleft)[
One(Eleft;Dleft; Cright; Bright)[
One(Eleft;Dright; Cleft; Bright)[
One(Eleft;Dright; Cright; Bleft)[
One(Eright;Dleft; Cleft; Bright)[
One(Eright;Dleft; Cright; Bleft)[
One(Eright;Dright; Cleft; Bleft)[
One(Eright;Dright; Cright; Bright)

(3)

Theorem 3: The one-generator described in Figure 4 and Expression 3 is sound.

The base case occurs when E, D, C and B have a single element each. From line 1 in

Figure 4, this one-generator results in a single combination, one consisting of each one of the

singular elements of all four input sets. Since there is only one combination in the set, the base

case of the one-generator has no incompatibilities.

In the inductive hypothesis, we aim to prove that a one-generator produces no incompatibil-

ities, if none of its recursive invocations produces any incompatibilities. None of the recursive

invocations share more than two sets with any other recursive invocation; this means that no

combination in any of the one-generators shares more than two elements with any combination
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of any of the other one-generators. Therefore, the union of all smaller one-generators has no

incompatibilities, which means that the inductive hypothesis holds, and the one-generator is

sound.

2

Although completeness of our generating algorithm is straightforward to prove, we omit the

proof since it does not contribute to the measurement of our sample name space, in Section III-B.

C. The size of the generated space

Since we are interested in the actual number of elements in Four(E), we will translate the

set recurrences from Expressions 1, 2 and 3 into set-size recurrences. We de�ne FOUR(n) =
jFour(E)j, when jEj = n, T WO(n) = jTwo(E;D)j, when jEj + jDj = n and ONE(n) =

jOne(E;D;C;B)j, when jEj+ jDj+ jCj+ jBj = n.

FOUR(n) = 2�FOUR(n=2) + T WO(n) (4)

T WO(n) = 4� TWO(n=2) +ONE(n) (5)

ONE(n) = 8�ONE(n=2) (6)

Recall that n is restricted to powers of 2 only.

The recurrence relations 4, 5 and 6 can be easily solved, from the bottom up, by using

substitution. For example, in relation 6, we replace ONE on the right side with its de�nition

successively, until we obtain the base case, i.e., ONE(4) = 1. The resulting closed forms, in

order of derivation are as follows.

ONE(n) = n3=64 (7)

T WO(n) = n2(n� 2)=32 (8)

FOUR(n) = n3=24 � n2=8 + n=12 (9)

for n = 2k, where k is a positive integer greater than or equal to 2.

The name space size we must measure in Section III-B would be FOUR(34000), if only we

could apply the FOUR() function on numbers that are not powers of 2. To overcome this

limitation, we can instead use the closest smaller power of 2 (215 = 32; 768) to derive a slightly

smaller number of combinations for the name space. This number, FOUR(32768), describes
the number of combinations we get if we ignore 34; 000 � 32; 768 = 1; 232 elements of the

34; 000 available. Since we are seeking a lower bound, this waste of valid combinations does

not a�ect the validity of our estimate. The number we seek, then, is at least FOUR(32768) =
1; 465; 881; 288; 703, or roughly 1.4 trillion.


