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ABSTRACT

One of the most rapidly expanding fields of applied ma thematics and
engi neering isS automata theory, Althongh the term "automaton" is derived
from "sel f-noving thing," the prime concern of antoma ta theory i s the
study of information-processing devices, A specificexample of in Cormn tlon
processing is computation, and thus the mathematical properties of devices
whi ch performcompntations are of interest to automata theorists, In
this thesis we investigate t he compntation by | 0gi C circuits Oof a certain
class of functions having finite domain. To a given function f a number
of so-called complexity criteria can be assigned relative to that cl ass,
e.g., the mninumcomputation time of or the minimum number of el ements
contained in any circuit of the class which is capable of computing f.

Qur prime criterion of interest will be computation time.

The type of circuits investigated in this thesis are called (d,r)
circuits. A (d,r) circuit is composed of |o0gical elemeuts each having
at nmost r inputs and one output. Each input value and output value is
an el enent fromthe set Zd = {0,1,44.,d - 1), and each element has unit
delay in conputing its output, Thus a given elemerit computes a function
from zg to z,, for some k<r, inunit time. The ontput of one
el ement can be connected to inputs Of any number Of elements (including
itself) and can al so conprise one of the outpnuts of the circuit and an
el enent receives a given one of its inputs either fromthe output of
sone element or fromtlie inputs to the circuit, When individual el enents

are interconnected to forma (d,r) circuit we can associate 8 conputation

time with the entire circuit.

Specifically, let f : X x .o oo x X - Y be any function on finite



seis X yee0,X o Let C be a (d,r) circuit whose input lines are

partitioned into n sets. Let IC ; be the set of configurations of
)

.th
values from z, on the j*° (J = 1,2,...,n), and let OC be the set of
output configurations of the circuit. Then C ISsaid to conpute f in

time t if there are nmaps L oX L =TI, (]
p g; 3 C, (]

function h . Y - 0C such that, if the input fromtine 0 through time

T -1 is [gl(xl),...,gn(xn)], then the output of Cat time v wll

= l,z,cao,n) and a 1 - 1

be h(f(xl,...,xn)).

Wnograd has done pioneering work on the time of conputation of finite
functions by (d,r) circuits. He has derived | ower bounds on conputation
tinme and has constructed near optimal circuits for many classes of finite
functions.

A principal contribution of this thesis is a conplete determnation of
the tinme necessary to conpute nultiplication in a finite group with a (d,r)
circuit. A new group theoretic quantity 6(G is defined whose reciproca
is the proper generalization of Wnograd's a(G to nonabelian groups.

Then a novel nethod of circuit synthesis for group multiplication is given.
Incontrast to previous procedures, it is valid for any finite group--abelian
or not. It is conpletely algebraic in character and is based upon our

result that any finite group has a famly of subgroups having a trivia
intersection and mninumorder &(G). The conmputation time achieved is,

inall cases, at nmost one unit greater than our |ower bound. In particular,

if Gis abelian our conputation time is never greater--and often considerably
| ess--than Winograd's,

W then generalize the group'multiplication procedure to a nethod to

compute any finice function, For given sets X, X, and Y and any famly



of subsets of Y having a certain property called conpleteness, a
corresponding heirarchy of functions having domain X x X2 and range

Y is established-- the position of afunction depending upon its compatation
time with our nethod, For reasons which we explain in the text this appears
to be a very natural classification criterion. At the bottom of the
heirarchy are invertible functions such as nunerical addition and nulti-
plication, and the position of a function in the heirarchy depends essentially
upon how far it is frombeing invertible, For |arge IXlI and |X2|

almost all functions are near the top, corresponding to the fact that

nearly all f : X; x X5 » ¥ require conmputation tinme equal to the

maxi mum required for any such function, The new nethod is then applied

to the case of finite semgroup nultiplication.
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. I NTRODUCTI ON TO THE COVPUTATI ONAL COMPLEXITY OF FI NI TE FUNCTI ONS

1. I NTRODUCTI ON

This thesis is concerned with the conputational conplexity of finite
functions. There are various ways to neasure conmplexity. Two of the
most natural conplexity measures of a circuit which conputes a finite
function are its time of operation and the amunt of hardware it contains.
W shall first review and nake a few coments upon a nunber of inportant
papers adopting one or both of these definitions of conplexity.
2. CONTACT CIRCUI TS

The first neasure of the complexity of a switching function f in
which we are interested is the mnimum nunber of contacts in a relay

contact network which realizes f as one of its transm ssion (or hindrance)

functions.
Let
. . n m
gn’m =(f : f : (0,1} - (0,1})
_ _ ) ) n
gn = 5n,1 ={f . f : (0,1} - {0,1})

X(f) = the least number of elements in a circuit realizing f

Mn,m) = max{M(f): f eF ]

Mn) = max{2(f) : f € 5,

The quantity A(n) is usually called Shannon's function. It was Shannon
[Ref. 1] who first introduced and studied it obtaining a lower and an
upper bound on it.

Let f e g, and let m<n  Then [Ref. 2, p. 78] f can be factored

into conjunctive nornmal form as




)

f o o = o e 0 e
(%), %) [xl + * et v1("n-m+1’ %2/

"'[Xl o +Xn-m+V2n-m(xn-m+l’“-’xn)].

wher e each v, eq Shannon's approach in deriving a | ower bound on

Mn) is to give a general synthesis procedure in which the terns of the

* ol .
formx*l‘ + .00t xz o’ where each xI = Xy or x,, are realized by one
1

type of network which is then cascaded in series wth another network
which realizes every function in ¥, as one of its hindrance functions.

(Note that the set of all terms of this formin are called

Xl,coo,xn_m

the mnterms in these variables.) This yields a circuit capable of
realizingany f e T, The nunber of relays in the entire circuit depends
upon m  thus Shannon minimzes it for 1 <m < nto obtain his |ower
bound.

The network which Shannon uses to obtain the minterns is known as

2n-m—i-l

a conplete tree, which requires - 2 contacts. Shannon then

shows by induction that a network realizing each function of m variabl es
m
2 +1

can be realized with 2 contacts. Thus

m m
- - +
Mn) < 2" L gy B L oL 2l o o

for contact circuits. A study and mnimzation of this bound yields the

results:

a) A(n) <

b) A(n) < for alnmost all n

c) Gven >0, thereis an infinite sequence

n,+1
(ni) for which a(n,) < EZ—— (1 | ¢

2



As we shall see later an inproved synthesis procedure derived by Lupanov
yiel ds a considerably sharper bound.

Shannon uses a different approach to obtain his |lower bound on x(n).
When the number of functions in T, is conpared with the nunber of
different possible networks containing a given nunber of relay contacts

it is denonstrable that:

a) For any € > 0 thereis a finite N such that

n
n> N=})\(f)>%- (1 -€) for alnost all f €T,

b) There is a positive nunber A such that
n
A(n)>A%— for all n
Lupanov [Ref. 3,4] is able to sharpen Shannon's results by a different
synthesis method. He finds a network to realize the minterms inn-m

variables requiring only

2n-m+l 2r1—m+2

+
n-m n-m-IogZ(n-m

contacts-asynptotically half as many relay contacts as a conplete tree.

Such a circuit is called a Lupanov tree. This enables himto prove that
n
an) = & (1 + 0 (——l—))
n v,

Lupanov's procedure has a certain weakness. Consider a network which

for contact networks.

realizes each nmintermin n variables as one of its transm ssion functions.
The network is said to have a sneak path if there is a nonzero transm ssion
function between two output nodes. This property makes it unsuitable for

certain application, and a Lupanov tree has many sneak paths. More [Ref. 5]

3



shows that a network realizing all minterns in n variables and having

2n+l

no sneak paths requires at |east - 2 contacts. Thus the growh

rate of A(n) exceeds 2%/n for disjunctive (no sneak path) networks.
3. CIRCU TS OF FUNCTI ONAL ELEMENTS
A class of switching elements is said to be functionally conplete

for g if, given any f e §_ , there is a network containing only
b,q b,q

elements in the class which has inputs X5 ..xn and output f£(x

(Clearly such a set will also be conplete for g for any p' and

4 4

l""’xn)'

b ,q
any q’.) Let S, be such a class and let f ¢ 5;’(]. Wth each type

of element in 8, associate a fixed positive weight. Then |et xl(f)

be the mniml weighted sum of the nunber of different elenents in a

mniml sumcircuit which conputes f and |et

)‘l( p, q) = max{)\l(f) cfe {Sp,q}

Mul l er [Ref. 6]shows that if there is another set s, with corresponding

2

conpl exity measure Ao then there are constants K and X, i ndependent

of p and q such that
KA (p,0) < 25(p,0) < Kphy(p,q)

This is easily seen, e.g., K, is the maxi mal conplexity of an el ement

in S, realized by elements in S Thus to investigate growh rate of

2 1°
Mp,q) associated with any conplete set S one need only do so for a

particular set. Miller also |ooks at the rate of increase of A(p,q)
p
with n=p + logzqfor the case in which 1 < g« 22, which is clearly

p
general since 2% is the cardinality of Bp. He concludes that there

exist constants c, and C, for, i ndependent of p and g, such that



2" 2"
¢, =< Mp,9) £C

For the case q =1, i.e., for functions in g 1 =3 this parallels
D, n'

the result for relay circuits. Unfortunately it appears that Muller's

proof of the upper bound is incorrect,f

al though Lupanov showed the result

is true at least for g=1. Hs lower bound is proved by an argument

conmparing the nunmber of functions in gp’q with the nunber of networks

of a given conplexity, analogous to Shannon's proof for contact networks.
Lupanov [Ref. k4,7] studies the same problemfor the case q =1

(n = p). He chooses a conplete set consisting of two input and gates,

two inmput or gates, and inverters and shows that the associated conplexity

measure with all weights unity, \(n), satisfies

Mn) < —2; (1 + o(loizn»

L. TI ME AND NUMBER OF ELEMENTS

Anot her neasure of the conplexity of a finite function is the tine
necessary to conpute it with a circuit of a given class. In contrast to
the work described in preceding sections nost results in this area are
for specific classes of functions nore limted than, e.g., all f e T,

Ofman [Ref. 8]introduces a certain class of logical circuits which
we now define in the more lucid termnology of Wnograd [Ref. 1]. Call a
circuit ¢ a (d,r) circuit (or (d,r) sutomation) if it is conposed of
functional elenents each having at most r input lines, one splittable

"I'n his proof Muller seens to assume that all functions of the first
k+ 1 c1r k out of the p Boolean variables are available at no cost

in elenments, which indeed they are not.

>



output line, and carrying on all lines elements fromthe set

Zd ={0,1,...,d-1). In addition each elenent will have unit deley
in conputing its output. Thus we can associate a conputation time with
the entire circuit.

Ofman [Ref. 8]is interested in specific classes of functions which
can be paraneterized by a number n, e.g., addition of two n bit
nunbers. He is primarily concerned with rate of growth with n of the
nunber of elements and rate of growth with n of the conputation tine for
(d,r) circuits conputing these functions.

The classe of functions of the nost interest which he considers is
addition of r binary n bit nunbers. He notes that conventional bit-
by-bit addition of two n bit nunbers requires x = Q(n) elenents and
t = Q(n) conputation time. By a method sinmlar to the | ook ahead carry
met hod used on some nodern digital conputers he achieves v = ((log 2n).
For addition of r nunbers his growth rates are A=Q(n) and
T = 0(log ren). His nethod of proof makes his results not applicable for
finite n, but only inthe limt as n > w, since it uses (3,2) circuits
and the observation that this does not change the growth rate. By the
nmethods of Ch. Il it can be shown that the growth rate of = in his
circuits is as small as possible.

A sinilarly slanted paper by Karatsuba and Ofmen [Ref. 9]denonstrates
that for any s; 1 <s <nthereis a (2,2) circuit to miltiply two
n bit nunbers with growth rates a = O(nz/s) and 1 = 0(s logzn). Thi s
result is derived fromthe previous paper. To nultiply the two nunbers
first the product of one by each bit of the other is formed. Then the

addition of the first [’n/s'] products is perforned by means of the circuit



of [Ref. 8]where [x] in the smallest integer > x, Then that nunber
s added to the next fﬁ/s] products, and the process is continued until
the final result is obtained. The interesting trade-off indicated above
is the result.

Ml tiplication of two n bit nunbers is also the subject of a paper
by Toom [Ref. 10]. He shows that for sufficiently large c, e.g.; ¢ = 32,
there is a network to performthis multiplication for any n having
A < Cpne g and 1 < Cznc\/log? for constants ¢, and C,. There
is a vast literature on conputational conplexity of Turing machines (for
the definition and basic concepts of Turing machines see [Ref. 11])
which we shall not attenpt to cover. However, we nention in passing
that Cook [Ref. 12] has shown that there is a multitape Turing machine
to nultiply any two n-digit nunbers within nz5m steps, for all
n, in the manner of Toom s algorithm
5. WNOGRAD S WORK ON TIME OF COMPUTATION

Wnograd [Ref. 13,14] has done pioneering work on the tinme of

conputation of finite functions by (d,r) circuits. Let
f: X XXX > Y be a function on finite sets. Let C be a (d,r)
circuit, and let the input lines of C be partitioned into n sets wth

I, . the set of possible configurations fromz. on the it (j =1,2,...,n)

C,J d
and | et 0g be the set of possible output configurations. Then C is

said to conpute f in time ¢t if there are maps g.J: X.J-, ICj

(] =1,2,...,n)and a 1 - 1 function h’Y"OC such that, if the

input to C fromtine O to tine 7 -1 is [gl(xl)""’gn(xn)]’ t hen

the output at time 7 will be h(f(x xn)). He derives |ower bounds

l,..t,
for many classes of functions and also constructs circuits which operate




in near the |ower bound tines. W summarize these in a chart. The

details appear in [Ref. 13, 14] or in his thesis [Ref. 15].

W nmust first give sone definitions

Definition 4.1. Let H be a group.

Say P(H) =1 if there is an

aeHwth a# e such that every nontrivial subgroup of H contains

a. Let G be a group. Then

a(G) = max{| H : H < Gand P(H = 1}

Definition 4.2. Let a(N) =a(ZN) where 2

addition nodul o N.

N is {0,1,...,N - 1} under

Definition 4.3. Let

AN be the group of positive integers |ess than
and relatively prine to N under nultiplication modulo N

B(N) = a(ay).

Let

Definition 4.4. Let Q = lem{1,2,...,m} and |et 7(N) = min{m : Q> M)

Definition 4.5.

Let [x7] be the smallest integer > x and |xj be
the greatest integer < x

W& can now give Wnograd's |ower bounds and the realization tines of his

circuits. Note all | ower bounds are valid for d >2 and r > 2. Al

realizations are valid for d > 2 and r > 3 except that for gﬂl,

which is also valid for r = 2.
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G« CONTRIRUTIONS OF THIS RESEARCH

A principral contribution of thigthesis is a complete determnation of
the tine necessary to compute multiplication in a finite group witha (d4,r)
circuit. A new gronp theoretic quantity 6(G is defined whose reciprocal
is the proper generalization Of Winograd's o(G) 4o nonabelian groups.
Then a novel method of circnit synthesis for group multi plication is given.
In contrast to previous procedures, it is valid for any finite gronp--shelian
or not, It is completely algebraic in character and i s based npon onr
result that any finite group has a famly of subgroups having a. trivial
intersection and mnimum order F(G. The computation time achieved is, in
all cases, at most one unit greater than our |ower bound. In particular,
if Gis abelian our conputation tine is never greater- -and of tenconsiderably
| ess--than Wnograd's,

W then generalize the group multiplication procedure t0 a method to
conpute any finite function, For given sets X X, and Y and any family
of subsets of Y having a certain property called completness, a corresponding

heirarchy of functions having domain X, X X? and range Y i S established--

1
the position of a function depending upon its computation time with onr

method. For reasons Which we explain in the text this appears to he a very
natural classificationcriterion. At the bottom of the hei rarchy are
invertible functions such as nunerical addition and miltiplication, and the
position of a function in the heirarchy depends essentially upon how far it

is from being invertihlc. For large lel and X4 almost all finctions are
near the top, corresponding to the fact that nearily all f : Xp x X, ¥

require computation time equal to the maximum required for any such function,

The new nethod I's then applied to the case of finite semigroup miltiplication,

11
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SSR, vol. 136, no. 5, 1961, pp. 1041-10kL2.
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In terns of asynptotic behavior of Shannon's function two input
and gates, two input or gates, and inverters in formulas of depth

three will achieve bounds but depth two is not sufficient.

[19] Lupanov, 0. B., "On Conparing the Conplexity of the Realization
of Monatonic Functions by Contact Networks Containing only O osing

Crcuits and by Arbitrary Contact Networks," Dokl. Akad. Nauk SSR

vol., 1k, no. 6, 1962, pp. 1245-1248.

Let L(f) = nunmber of contacts necessary to realize f
L"'(f) = nunber of closing contacts necessary to realize f.
(s
A(n) = max . Then A(n) - .
LT 4
feg
n
(20] Reznik, V. I., "The Realization of Mpnotonic Functions by Means of

Net wor ks of Functional Elenents," Dokl. Akad., Nauk SSR, vol. 139,

no. 3, 1961, pp. 566-569.

A function is nonotonic if d msuch that the function is 1

whenever at least m of the xl's are. The nunber of elements in

synthesis of such functions is here asynptotically upper bounded by

b( Zn/n3/2) logzn.
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[l.  THE TI ME REQUI RED FOR CGROUP MULTIPLICATIONf

1. THE MODEL

The nodel we will adopt is basically that of Wnograd [Refs. 1,2].
W consider logical circuits conposed of elenents each having at most r
inputs lines, one splittable output line, and unit delay in conputing their

outputs. Each line carries values fromthe set 2. = {0,1,...,d - 1).

d

The input lines are partitioned into n sets with |C . the set of
J
b
th

possi bl e configurations on the | (j =1,2,ees,n). o is the set of

possible configurations. Such a circuit is called a (d,r) circuit.

Definition 1.1. Let ¢ : X, X X2 x ... Xn—>Y be a function on finite

sets. A circuit Cis said to conpute ¢ in time v if there are

mps g, : X, -I,.( =1,2,...,n)and a1 -1 function h: Y - 3
J J C,J
such that if C receives constant input [gl(xl),...,gn(xn)] from

C

tinme O through time v - 1, then the output at tine t will be
h(yﬁ(xl,...,xn)).
2. THE BASIC LEMVA
W now derive a general |ower bound on the time for a (d,r)
circuit to conpute a given finite function 4. It makes explicit the nethod
underlying the results of Wnograd. It is dependent upon the output code

h introduced in the last section, and nmakes use of a new concept we shall

"some of this material was presented at the Eighth | EEE Annual Synposium
on Switching and Automata Theory, (See Spira, P. M and M A Arbib,
"Conputation Tine for Finite Goups, Sem groups and Automata," |EEE

Conference Record of the Eighth Annual Symposi um on Switching and Autonata

Theory, QOctober 1967.)
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introduce--that of separable sets. First, sone prelimnary definitions

are necessary.

Definition 2.1. Let [x] be the smallest integer > x; let [x] be

the largest integer < x; |s| be the cardinality of the set S.

Definition 2.2.  For a (d,r) circuit let hJ,(y) be the value on the

,jth output line when the overall output configuration is n(y).

Definition 2.3. Let ¢ : X} X «eu xx, =Y and let C conpute Be

Then 8¢ X is called an hj-separable set for Cin the m®

argunent of g if whenever s, and s, are distinct elements of

e Wth x, € X, such that
n i i

S we can find Xy Koy eeey X 15X 1y e

hj(¢(xl}'°°)x l,ooo,xn)) # hj(ﬁé(xl,...,xm_l,sz,xm+l,...,xn))

Sq,X
m-1""1""m+

Lenma 2.4. In a (d,r) circuit the output of an elenment at tine T can

depend upon at nost r' i nput i nes.

Pr oof .

Just consider the fan-in with nodules having r input lines to the

hei ght of 7. |

Thi s observation, first made by Wnograd, plus the concept of separable

sets suffices to prove

Lemma 2.5. (Tile Basic Lenma . Let ¢ be a (d,r) circuit which conputes

g in time 1. Then

T > m§x 3 llogr (ﬁOngSl(J)I + oees + (logdlsn(j)ﬂﬂi

wher e Si(j) is an hj-separable set for Cin the jth ar gunment
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of §.

Proof .
. th . .
The | output line at time T must depend upon at | east
(iogd]si(j)ﬂ input lines from |Ci or else there would be two el enents

of si(j) whi ch were not hj-separable. Thus the jth out put depends
upon at | east rlogdlsl(j)ﬂ + . -k[iogdlsn(j)ﬂ input lines and this
nunber is at nost r', |

Wth lemma 2,5 we have exposed the methodology inplicit in Wnograd's
treatment of the tinmes required for addition and multiplication. By
meking it explicit we not only quickly obtain sone of Wnograd's results
in the rest of this section but also shall give a deeper analysis of other

concepts and shall treat a much wider class of functions in the sequel

Corollary 2.6, Let ¢ : Zo x Zy » (0,1} be

1 if x<y
é(xyy) =

0 if x>y

Then if C is a (d,r) circuit to conpute ¢ in time 7, we have

T 2> [_long [.longTI

Pr oof .

Pick j such that hJ(C» 4 q.(l). Then Z,

is an h.jseparable set
for Cin both the first and the second argunents of ¢ since, if

x >y, plx,y) # #y,y) and 8(x,y) # d(x,x). |

Corollary 2.7. Let ¢ : Zo X Ty = Zy be

f) - | lﬁJ
17




Then, if C conputes ¢ in tine 7

T 2> rlong [log 4 |_Nl/ 2_].”

Proof.
Pick j such that hj(O) # hJ.(l). Let m = LNl/zJ. Then (1,2,...,m}
is an hj-separable set for Cin both argunents of ¢, since for each
x # y with x,y €{1,2,...,m) we may chose w € Zy, such that
xew < N < yew < Zy to yield #(x,w) = 0, #(y,w) =1. By symetry this

hol ds for the second argunent as well and lemm 2.2 yields the result. |

W close this section with an exanple which shows that the size of
separabl e sets can be strongly dependent upon the output code of the

circuit which conputes a given §.

Exanpl e 2.8,

Let ¢ : Zy X Zy =7 , be nunerical multiplication with N = 28
Consi der an out put codelgn which, if the output value is Mthen the ith
line carries the ith bit in the binary expansion for M Then there

are 16 output lines. Pick any x £y with x,y € ZN‘ Then their binary

expansions differ in at |east one place, say the kth. Choose z = 28-k.
Then

ho(#(y,2)) # ng(h(x,2))
and

n(B(2,5)) £ hg(h(z,x))

So there is an h8-separable set of size 28 in both argunents of g,

Now consider the same ¢ but let the output code for z be the

18



bi nary representation of the exponents in its prime deconposition. Let

the first six output lines code the exponent of two in the result. Pick
X,y € ZN such that x and y do not have the sane power of two in
their prime deconposition, the powers differing in, say the kth pl ace

of their binary expansion. Then, letting z = 23'k,

n(f(x,2)) # hy(4(y,2))
and

n(#(2,%) 4 ny(8(2,1)

Thus, since an el enent of ZN can have eight different exponents of
two in its prine deconposition, there is an h3-separable set of size
8 in both argunents of #. One easily sees that this is the nmaximal
size of any separable set, since tw is the smallest prime. Note, how-

ever, that this output code requires thirty-nine output I|ines.

3. REVIEW OF PREVI QUS RESULTS

Several authors have investigated the conputation time necessary
for a (d,r) circuit to add nodulo N. Ofman [Ref. 3] gave a circuit
for the special case N = 2". Significant results were obtained by
Wnograd [Refs. 1,2]. He derived a |lower bound which we will review,
and a (d,r) circuit with conputation tinme near the |lower bound. Since
any finite abelian group is the direct product of cyclic groups [Ref. &k,

p. 4O] his results are applicable to abelian group multiplication as well.

Definition 3.1. Let H be a group. Say H has property P and wite

P(H =1, in case there is an element a € Hwith a £ e such

that every nontrivial subgroup of H contains a. This wll be

19




denoted by P(a,H = 1. Let a(Gg) be the maximal order of H < G

such that P(H) = 1.

Lemma 3.2. (Wnograd). If Gis abelian a(Q is the maximal order of

a prime power cyclic subgroup contained in G

Pr oof .

See [Ref. 1, p. 280].1

We now give a conplete characterization of a(Q.

Definition 3.3. The generalized quaternion group Qh is the group of

order 2" with two generators a and b satisfying
2 2 2 -
a = e; b = a . ba = a lb

Theorem 3.4, A p-group contains a unique subgroup of order p if it
is cyclic or a generalized quaternion group. (It nust be cyclic if

p is odd.)

Pr oof .

See Hall [Ref. 4, p. 189].1

Corollary 3.5. Let Gbe any finite group. Then a(G is either the

order of the largest cyclic p-subgroup of G or the order of the
| argest generalized quaternion group contained in G whichever is

| arger.

Proot.

Let H be any subgroup of G If P(H = 1 then |H = p" for
sone prine p, for if not there would be another prime g dividing
|H and consequently there would be elements u and v in H with

o(u) = p and o(v) = q. But then (u)N(v) would contain only the
20



identity. Assume H|= p'. Then every nontrivia

contains a subgroup of order p. Thus P(H) = 1 iff H

uni que subgroup of order p, i.e., iff H

quat erni on group. 1

is cyclic or

subgroup of H

contains a

a generalized

The quantity a(G) is critical to Winograd's |ower bound tine for

group multiplication, which we now state. In the followi ng section we

shall give a new | ower bound which is in ge

as his if the group of interest is abelisan,

neral higher but is the sane

Theorem 3.6. (Wnograd). Let G be any finite group.
circuit which conputes ¢ : Gx G- G where
#(a,b) = ab

Then C requires conputation tine 1 where

T2 [logTErlogdoc(

Pr oof .

See Wnograd [Ref. 1], 8

el

Let C be a (d,r)

W nograd al so gives a procedure for constructing a circuit to nultiply

in an abelian group G with conputation ti

me

.- 2+P%umnmﬁ§aP%§“ﬂ]

will give a conpletely different

which is valid for r>3 and 4> 2. W

met hod for constructing circuits which wll

and will work whether or not the group is abelian.

a given abelian group and a given d and

21

be valid for

r>2 and 4> 2,

Furthernore, for

r, our conputation time will



under bound W nograd' s.

4, THE LOWER BOUND

In this section we shall give a new | ower bound for the time required
for a (d,r) circuit to performgroup nultiplication and shall conpare
it to Wnograd's bound. Let G be any finite group and let §: Gx G- G
be group nultiplication. Let C be a (d,r) circuit which conputes ¢.

Let hj(g) be the value on the J'th output line of C when the out put

is h(g).

Definition 4.1. Let x,y.e G Then we say that x any y are Rj-equivalent

hj(gy) for all g e ¢ and that they are Lj-equivalent

if h,
i J(gX)
i f hj(xg) hj(yg) for all g € G. Then clearly Rj and Lj are

equi val ence rel ationships and we wite Rj(g) for the Rj-equivalence

class of g and L,(g) for the L,-equivalence class of g.
J J

J
of c¢c. Furthernore, for any g € G Rj(g) = Rjg and Lj(g) = ng.

Lemm 4.2. R, = Rj(e) and L. = Lj(e) are groups for all output |ines

Pr oof ,

Say a, beRJ,. Let c € G, Then

-1 -1y
hj(ab c) = hg(bb c) = hj(c)

So abte Rj and it is a group. Now pick any g € G Then d ¢ Rj(g)

1 5 (dc) = hy(ge) for all ¢ € G But this is true iff Iﬁ(dg-lc)
= hj(c), iLe., iff dg™t e Rj' The other half of the |emma fol |l ows

dually. 1§

Maxi mal separabl e sets are deternined by
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Lemma 4,3. A maxi mal size hj-separable set in the first argument of
¢ consists, of exactly one representative fromeach |eft coset of
R, in G It thus has size IGI/IRJI. A dual result is true for

J
separabl e sets in the second argunent.

Pr oof .

Direct fromlema 4,2 and the definition of separable sets. |

W now have all the pieces we need for a | ower bound on group nulti-

plication which is output code dependent.

Lenmma 4.4, Let C be a (d,r) circuit to multiply in G in tine 1,

Then

T > mgxl[logr (flogd %] + [1og, ij D”

Pr oof .

Direct fromlema 2,5 and lemma 4,3, 8

A bound over all output codes will be derived by naxinmzing the

m ni mal size of K.J and Lj for a given group.

Definition 4,5, If G = {e} let &(G) = 1. Oherwise let S(c) be the

maxi mal order of any subgroup of G not containing c¢ and |et

6(Q = mn (S(c)).
ceG-{e}

Since we are only dealing with finite groups &(G) is always wel | -defined

and finite. Note that if P(a,§ =1 then 8(a) = 1 so that 8(G) = 1.

Note also that if Gis nontrivial and P(G £ 1 then &(G) > 1 always.

A sinple lemma we will need in the sequel is:

Lenma 4,6, Let H and K be subgroups of a finite group G such that
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HNK = (e). Then |H||X <]g].

Pr oof .

Let hl’hz € H and k’l’kz € K such that hlkl = h2k2° Then

-1 -1
hlh2 = kzkl € HNK

Hence hl = h2 and kl = k2. Thus

|{hk : h e H, k € K} > |H|]|K|

But it is also a subset of G |
The crucial property of 6(Q is
Lenma k.7, For any finite group G oa(c)s(c) < |Gl.

Proof .
If 6(9 =1the lemma is true, so assune not. Pick H < G and

e £ aeHwWth Pla,H =1 and |H = a(G). Choose K < G with a ¢ K

and |K] =3(a). Then, since HNK is a subgroup of H not containing

a, HNK = {e). Hence, by lemma 4.4 and the fact that 6(G < &(a),
A6)s(6) < oc)s(a) = [H/|K < o]
The universal |ower bound for any (d,r) circuit to conpute nultiplication

inafinite group G can now be stated.

Theorem 4, & Let G be a finite group, ¢ : Gx G -» G be group
mul tiplication, and C be a (d,r) circuit to conpute ¢ for

d>2 and r > 2, Then, if C has conputation time t,

T2 [logrz l-logd Jé%jﬂ
2k



Pr oof .

Assune 6(G > 1 and choose a € G such that 6(a) = 6(G. There
nust be an output line of ¢, say the jth, such that hj(e) # hj(a).

But then both R‘j and L_ are subgroups of G which do not contain a.

3
They hence have order at nost 6(G. Thus, the result follows from Theorem

4,8, If 6(G =1 then either G= (e) or |G| = a(G). In the
former case the theoremis true trivially. In the latter case choose

g € G such that P(g,G =1 and pick an output line, say the i_th,

such that h;(e) ,éhi(g). Then R; = L, = (e) and the result follows from

Theorem 4,8, 1|

Lemma L4.7inplies that this |ower bound is no weaker than Wnograd's

result given in Theorem3.6;and, indeed, the follow ng exanple shows that

it is stronger.

Exanpl e 4.9.
Let p be an odd prine. Then there is a group with three generators

a, b, and c and defining relations [Ref. 4, p. 52].
a? - P - P - e; ab - bac; ca = ac; cb = bc

whi ch has no el ement of order pz. It is easy to show that any subgroup

of order p2 must contain c. Thus
5(c) = 8(c) = p
But, clearly, a(G) = p. Thus

a(c)s(c) < |a
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In one inportant case, however, the two bounds are the same.

Lemma 4.10. Let G be a finite abelian group. Then
a(e)e(c) = |gf

Pr oof .

By the deconposition theorem for abelian groups [Ref. 4, p. bo]

r.le.mzn

r
where each Z, is a cyclic p-group, say lzil - pit; and, with no

| oss of generality

C o 1y (%)
1<) =p 2P

If n=1 the theorem is true since PG) =1 and 8(G) = 1. Assume

n>1andlet a generate z, (i =1,2,00.,n). Now i f we choose

k k
g - l 3 oo 0y n

where at |east one exponent, say k. I S nonzero, then

anyg;ée

g ¢ ﬁzj X [ei]

S
J=1
where e, is the identity in Z;. It fol I ows that
nor, nor.
*
s(e) > [[p,° 2[[ Py by (%)
It j=2
J=1

Thus
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r,
6(G) > ij

J

1]
[

r

n
But any subgroup of order greater than ngpjj

nmust intersect Zl non-

trivially and thus must contain

(r)-1)
Py
8y €90 nes€ yf{el]szx. . 'XZn
Thus
(r,-1)
pl n I‘\].
8(c) < 8\\2; €08y = 1 Py

3 j=2

For the sake of conpleteness we give some exanples of nonabelian groups

G,, each having a(Gi)S(Gi) = IGi[ .

Exanple 4.11

Let p be an odd prine. Let Gy be the group generated by a and

b having relations [Ref. 4, p. 52]

ap = bp = €, b-lab = al+p
2 :
Then a(Gl) = pZ and any group of order p  must contain a’
Exanpl e 4.12.
Let 6. be the direct product of two groups A and B such that

2

a(a)s(a) = |l ; o(B)(B) = |B
Then it is easy to see that

G,) = mex{o(A),a(B)); 8(C,) = min{| Bl 8(a),]|A] 5(B)]

aT



and thus
(6,)8(a,) = 16

In particular, these properties hold if G, is nonabelian but all of its

subgroups are normal [Ref. 4, p. 190].

5. ACRCUT FOR GROUP MULTI PLI CATI ON

In this section we give a nethod to construct a (d,r) <circuit
to miltiply inany finite group G which is valid for d >2 and r > 2.
The conputation time of the circuit will be at nost one unit greater
than the [ower bound just derived. |If G is abelian and r > 3 our
circuit can be conpared to that of Wnograd, It will be seen that our
conputation tine underbounds his; and that, in fact, we can give a group
for which the difference in conputation tine is arbitrarily large.

Lemma 5.1, Let K be any subgroup of G Then there is a (d,r) circuit

to conpute 4 : Gx G- (0,1} in time'

T = 14 logr[LrlZJ [logd {-%Fﬂ

wher e

#(a,b) = 0 if abeKkK

#(a,b)

|
=Y

if ab¢K

Pr oof .

Let M= ]6]/lKl. Pick a coset representative v, € K v, for each

"The ori ginal statement of this lemma had 7 = 1 + [-logr[-logd” EDIR

The refinement was pointed out to the author by Wnograd.

28



right coset of Kin G Then (v;l] will be a set of left coset

representatives, for v;lK = vSJK i ff viv‘;l e K. Pick a map z, from
G to the space of flong]-ary vectors over Zd such that
zl(gl) = zl(gz) iff Kg, = Kg,

and then define another nap 2, with same domain and range by
2,(8) @z, (g) = 0
1 2

where 0 is the all zero vector and @ is conponentwise addition nodul o d.
Not e t hat z, MBPS any two elements in the sane left coset to the same
vector. The first level of the circuit consists of [(l/Lr/ZJ)[-long]]
simlar elements, Ifabis being conputed these modules each sum
conmponent s of zl(a) and zz(b) mod d (the last adder will sum|less
than |r/2) if |r/2) does not divide rlong']). An el enent has output 0
if all pairs of input conponents are congruent to O nod d. If not,

its output is 1. Thus all outputs are O iff there is some j such

that a € va and b e vglK. The rest of the circuit is a fan-in of r

i nput elenents having output O iff all inputs are O and output 1 if

at | east one input is nonzero, This fan-in has depth [logr[(l/Lr/ZJ)rlog.dMTﬂ,

Thus the circuit conputes g in time

o fenfd [en]]

Corollary 5.2. There is a (d,r) circuit to tell if ab e Kv for any

v e G Wth the sane conmputation tine.

Definitions.3. A conplete set of subgroups of a group Gis a set (Ki]

of subgroups for which
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fi\ Ki = (e}

Lemma 5.4, If Ki is aconplete set of subgroups of G then, for any

ae G, know edge of the right ecosets containing a is sufficient

to determ ne a.

Pr oof .

ﬁ(Kia) = (ﬁKi)a = a |

Note that a conplete set of subgroups will always exist for any G
e.g., the set consisting of {e} alone. Unless P(G = 1, there will

be other conplete sets as well.

Lenmma 5.5. Let (Ki] be a conplete set of subgroups of G Then there

isa(dr) circuit tomltiply in G in tine
T = 1+ max logr[—r%z— logd %‘ﬂ
i Lr/<] i

Fol lows fromlemma 5.1, corollary 5.2 and lemm 5.k4.1

Pr oof .

Now we are able to prove

Theorem 56. Let G be any finite group. Then for anyd > 2 and any
r>2thereis a (d,r) circuit to nultiply in a finite group G

intine

r o= 14 {logr\'LrlBJ [mgd 5‘&5}“

Furthermore, the circuit has conputation time exceeding the |ower

bound by at nost one time unit.

30



Pr oof .

Assune 8(G) > 1. For any g e Gwith g £ e there is a subgroup
Kg of order &(g) not containing g. Thus [Kg . g€ G-{e})}is a

conpl ete set of subgroups with
min%lKg] . ge G- {e]‘ = 3(a)

If 6(GQ = 1 then use the conplete set consisting of {e}. The second

statement of the theoremfollows fromthe fact that

s oo

for r> 2.

Corollary 5.7. |If Gis abelian or if 6(G =1 there is a (d,r) circuit

to multiply in Gin tinme

T o= 1+ [1ogr[—l.—r—}—zj[logda(G5‘.H

As we have noted, Wnograd's circuit for an abelian group G

requires tine

since
LE%JJ< r for r>3

it follows that, our conputation tinme is at |least one less than his.

Exanpl e 5.8. .
Say r = L4 and flogda(g)] = 22 for some k > 1. Then Wnograd's
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timei 5 2+ 2k and our tine is 1 + k, i.e., hiscircuitrequi restwice

as long. The reader can easily construct a nyriad of simlar examples,

Winograd [Ref. 2] has extended his group results to numerial addition
and miltiplication by noting that a circuit which can multiply in the
cyclic group of order 28 - 1 can al so add two numbers between 0 and
N and that nunerical nultiplication can be done by adding the exponents
in the prime deconpositions of the two factors. Since we are able to
lower the time necessary to multiply in cyclic groups, We can achieve a
corresponding decrease in the time for nunmerical addition and miltiplication
as well, We present this result in the framework of Wnograd' s definition::.
The reader interested in the details of the relationship between group
multiplication and these other two operations is referred to Winograd's

original paper.

Definition 5.9, For an integer m |et Qm = l.com.{1,2,...,m} and

let y(N) = min{m : Q > N}.

Then, paralleling Winograd's applicatlon of his group mult iplicati on time,

we employ corollary 5.7 and obta in

Theorem 5.10. Let @4 : 2 x Z_ » be #(a,b) = a + h. Then there

N N Z?)N 1

is a (d,r) cirenit to compute g in time

1'% = 1 + |rl()g7’l'—|:3[-‘—-lj—;§- J_()ng(BN - l) r>a 8| >

and

“y
[

Theorem .11, Let ¢ : {1,2,...,N}) x {1,2,...,N}) ~ {1,2,.... N7} br

y(a,) - ab., Then for any r > 2 and any d > 2 there isa (d,r)

cirenit to compote in time
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1
T = 14+ [lOgr[m[long(ZLlngNJ - 1)
In closing we note for reference that Wnograd has lower bounded

% and TW asfoll ows

Theorem 5.12. (Wnograd [Ref. 2]). For any d > 2 and any r> 2 then

any (d,r) circuit to compute 4 requires tine Ty wher e

2 ()]

and any (d,r) circuit which conputes ¥ requires tine

o e e

The proximty of the results of theorem5.10 and theorem 5.11 to these

| ower bounds is indicated by the fact that

r(ix) < 2 + v(x)
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[1l. A GENERAL METHOD AND SOME: APPLI CATI ONS

1. | NTRODUCTI ON

W shall present a nethod for conmputation of any finite function
£ooX)x X2 - Y Dby nmeans of a (d,r) ~circuit which generalizes results
of the last chapter in a natural way. The conputation of a given function
Is reduced to that of a set of functions of a very sinple class. W
show that this class of functions is basic in the sense that to conpute
a finite function as quickly as possible we nust be able to conpute some
functions of this class in the | east possible tinme,

The method is applied to various classes of functions usually yielding

a near optimal circuit. Previous results are shown to be special cases
wi thin our general franmework.
2. THE CGENERAL METHCD

Let f : X, X X, - Y. As stated, we shall give a nethod to conpute

f which is a natural generalization of previous results.

Let Whbe any subset of Y. W define a function f, : X x X2-+[O,l)

W
as follows:
1 if f(xl,xz) e W
fw(xl,xz) = |
O if f(xl,xz) £ W
i.e., £ is the characteristic function of

-1
£ (W) C X, X X,

Ve define four sets associated with W X,, and X,. For x, e X,

and X, € X2 let

35



or

Aw(xl) = {xz € X, : f(x xz) € W}
Bw(xz) = {xl € X; f(x,,x,) € W}
Cu(x) = e Xy a0) = A
Blxy) = {xg By(x,) = By(xp)}
Lemma 2.1. For any X € X, %, €X, ei t her
£(C,(x),0,(x,)) S W

£(C(x ), D (x))Nw = 4

Pr oof

Assume 3 x Cw(x ) and X

x:’L' € CW(Xl) and x2 € DW(XZ)'
f(xl,x ) ew '=)f(xl

so that

HCHE
Now | et

@w =
and

wa =

DW(X ) with f(xl, ,7) e W Let
Then

“Yew

,Z)GW%f(xl, ;

), D, (x,)) ¥ |



be the collection of distinct nenbers of {Cw(xl) : xI e Xl') and the
collection of distinct menbers of [Dw(xz) : X, € X, ) respectively.

In general, given x

1 €X; there will be nore than one nwV e d, for
whi ch
flx, By )W
v
and a simlar statement holds regarding a given nenber of Xy Thus
define
M, = X |{C, €Cp f(Cw ,xz)gwu
x2€X2 u u
and
= MX €D, : £(x,, )gw“
W xlexlll DWv v 1 Dwv

Then we can construct a circuit to conpute e

Lemma 2.2. Let f : Xl X X2

M and N, be as given above. Then, for any d > 2 and any

- Y and let WC Y. Let T By (G 3>w,

r>2 there is a (d,r) circuit to conpute o intine Ty wher e

roe. [ fesalesl lm+ s
o ftafionin + ] + e

for which f(xl,xz) e Wthen

= 1 4+ min
w =

(1f, for each xleXI, 3 x,¢€X,

[fnv\} + 1 becones |fDVl/ in the above theorem statenent. Sinilarly,
if, for each x) e X,, 3 x] € X, for which f(xl’xz) e W then
IGV\} + 1 becomes |e | This will be clear in the proof.)
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The idea of the proof is sinple: Gven x, € X

fw(xl,xz) = 1 & x, ¢ A.w(xl)
Sx isina G, for which x, isinthe A,

Thus we shall code X, as the list of cw's for which X, is in the

Ay code x, by its ¢, and check if X;'s €, isin the List of G,'s

for x, and thus shall then know whether or not fw(xl,xz) =1 Explicitly,

Pr oof .

W shall give a (d,r) circuit to conpute £ intime

L+ [ feul] fos]

where T =le |+ 1 if 3 x,ex, with B(x,) = ¢, and T = |€ |

2 2
if not. The lemma will follow fromthis by symmetry. If there is an
X, € X, for which Bw(xz) =¢ then let L = [logd|€w| + f] and Let

z . Xlazé‘- {0), where 0 is the vector of all Os, be any map

satisfying
z(xl) = z(xi) i ff CW(XJ_) = Cw(xi)

If there is no X, € X, Wi th Bw(xz) = ¢ then let L = l’logdlew]‘l and

let z : X, » 2~ again be a map obeying the above condition.

1 a
Let D Zd be given by
Zl(xl) = i{i{l)z(xl)'-'z(xl)j
My times
where, if a = (al,...,a,) and b = (bl,...,bt) then the notation
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is used here.
. , LMW -
V¢ now define zz : X2 - Zd . | f Bw(xz) = 55 t hen Zz(xz) = 0.

If not, let Cl’cz”"’qn(xz) be the el enents of GW satisfying
£(CHx) EW i < <m(x,) < M
and note by lemma 2.1 that if Cis any other elenent of €, t hen
f(C,xz) nw=§g
Then define
ZZ(XZ): - Z(Xll)Z(Xlz). . 'Z(X‘lm(xz))dxlm(x )) . .Z(le(x ))
2 2
where the equality is conponentw se nodulo d,
%) 5 E?'. 1<§ < m(x,)

and z(xlm(xz)) appears M, - m(xz) + 1 times. To conpute fw(xl,xz)

suppose

zl(xl) = (al,az, .. "aLMw>

and

ZZ(XZ) ~ (bl,bz,...,bLMw>

Then fw(xl,xz) =1 iff there is an integer s, with 0 <s < Mw' such

t hat

a b. =0 (nmod d); sL+1<j <(s+1)L
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A separate circuit will deternmine if this is so for each possible such
value of s. The first stage of the circuit for a fixed s will contain
lTl/Lr/Z_]]L-] el enents each testing |r/2] of the ai's and |r/2] of
t he bi's to see if their pairwise suns nodulo d are all 0 (if

r/2) does not divide L the last element will test less than L /2
pairs). |If the sums are all 0 for a given element, its output will be

1. Oherwise its output is 0. A fan-in of elenents having output 1

iff all inputs are 1 and each having at most r inputs conprises the rest
of the circuit for the given s. This fan-in has depth [logrl'(l/[_r/z_])fl-l,
These circuits yield M, outputs at least one of which is 1 iff
f(xl,xz)e W. An additional fan-in of [longw] stages will deternine,

whet her any of the values are 1 or not. Thus the tine to conpute Ty

is as clainmed. {

Definition 2.3. Let W = {wl,wz,. . .,Wn] be a famly of subsets of Y.

Then W is said to be conplete if

{Wi : yl € Wi} = {Wi : yz € Wi}:yl = yz
By repeated application of lema 2.2 we obtain

Theorem 2. 4. Let f : X, XX -> Y, W be a conplete famly of subsets

2

of Y, and = be as in lemm 2.2 for each Wi € W. Then there is

W,

1
a (d, r)circui't to conpute f in time

T = min{’r }
wiew wi

Pr oof .

The theorem follows from the conpleteness of W, since if we then
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conput e Y for each W.oew in the manner of lemma 2.2we have effectively
i

computed f in the time given above. 1§

W now have a general nethod to conmpute any finite function
f: X, X X, - Y given a conplete set of subsets of Y. One can al ways--

in principal at least--find the conplete set of subsets yielding mninmm

conputation time under our scheme. It is felt that the set of functions
(fw . WC Y}related to an f : X, X X2 > Y is a basic class, since if

Cis a (d,r) circuit having mninum conputation time over the class of
(d,r) circuits conputing f, then there is another (d,r) circuit C
conputing f in the same time each of whose output lines is the value of

fy for sone WC Y. This is sinply because if d = 2 each output line

already computes f . for some WC Y; whereas otherwise we can replace

W
the el ement whose output is the jth

.th
i

output line by < d elements--the
having output 1 iff the original element had output i - 1 and
ot herw se havi ng out put O.

Thus we have made explicit that to conpute a finite function as quickly
as possible we nust be able to conpute sone functions of this special class
in the least possible time. The problem of course, is to determ ne which
functions of the special class to choose, renmnding us [Ref. 1, Exanple
2.8]of the vital role played by coding in affecting the conputation
tinme.

Example 2.5

Let G be a group and let f : GXx G - G be group multiplication.

Then a conplete set of subsets of Gis e.g., the right cosets of sub-

groups Kl,KZ,...)Kn wher e
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For a given coset W= Keg and a given h € G

-1
h Krg

) = {rec:xexel
Krgh-l
Aw(h)}
B}

Note that N, = M, = 1. Thus there is a (d,r) circuit to conpute £

T o= 1+ [logr&r'}'ﬂ[logd %-m

since Gw =|al/| Krl . The condition for decreasing the argunent in the

Bw(h) = {xeG : xh eKrg}

Cw(h) = {x €G : Aw(x) h_lKr

-1
hg Krg

Dw(h) = {x € G : Bw(x)

intim

inner brackets from |e | + 1 to € is satisfied.

3. SEM GROUP MULTI PLI CATI ON
In this section we specialize the general nethod to conputation of
nul tiplication in any finite semgroup. Use will be nade of the concept of one-
sided congruences- -the natural generalization of a subgroup K of a group G
The reader not acquainted with basic sem group notions is referred to the
excel | ent book of Clifford and Preston [Ref. 2], or to Arhib [Ref. 3].
Let o be an equivalence relation on aset S. If ae Sand b ¢S

are equivalent we shall wite apb, and shall wite [a] for the block

{b : apb} of S containing a

Definition 3.1. Let Sbhe a semigroup with o an equivalence relation on

s. Then p is aright (left) congruence on S if aspbs (sapsb) for

L2



all s e S whenever aph.

In what follows we conply with the notation introduced in the preceding
sections where we now replace f : X, XX, » ¥ by the sem group multiplication

S x8 - S.

Lenma 3.2. Let p be a right congruence on a finite semgroup S. Then,
if upv,
¢, () = ¢ (v)
J J
for all blocks wj of p. In addition for any t € S B, (t) 1is
J

a union of blocks of p.

Pr oof .

If upv then uspvs, so that for any block WJ of p,

ij(u) = {seS:useWJ} = {sc—:S:vseWJ} = ij(v),

and hence ij(u) = ij(v).
For any t € S and any bl ock Wy of p, either

Wt SV

or

wktr\wJi = ¢

Hence B, (t) = (s : st ¢ wj] is union of blocks of p. 1}
J' A¥
Corollary 33. Let o be a right congruence, and |et W1 be a congruence

bl ock of p. Let fw . Sx S - (0,1} be

J
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fW3 (&,b) = 1 if abe W3

0if ab ¢ W

Let

M = max
seS

{Wk ; wk is a block of p and Wes € wj}l

and let |g be the nunber of distinct blocks of p. Then there is

a (d,r) circuit to conpute £ intine Ty wher e
J

Too= 1+ Fogr[[;%zr[iogdlol + i}]‘ + [iongJ

In case there is, for any s € S, an elenent t e S with tseWJ.
then the value in the inner brackets is |gq instead of |p| + 1.

Hence there is a (d,r) circuit to tell which block of p contains

the product of two elenents of Sin time
7p = max{'rj : wJ. s a congruence class of p}

Corollary 34. Let S be any finite sem group. Let

M = max%max{'[s €S : st = y}”$
yesStes

N = max max{ {s € S: ts = y)‘}%
yesS (tes

Then there is a (d,r) circuit to nultiply inS intime

T = 1+ lriogr L—r}ﬁ(logdlsl + l)]] + m'n[logr{M,Ni‘

Pr oof .

Let p be the right (and left) congruence each class of which is a

single element of S.
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O course this is not, in general, the congruence to choose to mnimze

computation time in S, e.g., if Sis agroup [Ref. 1, Thm 5.61.

Corollary 35 Let PysPpseeesP be a set of right and left congruences

on a finite semgroup S which have the property that
ap.b; 1 <i <niff a=>0
i 3

Then there is a (d,r) circuit to multiply in Sin time t where

o)

T = max {T
1

and each T, is as defined in corollary 3.3.

Pr oof

The set of blocks of the congruences forma conplete collection of

subsets of S.

It is not, in general, obvious which congruences to choose to mninze
conputation time. Corollary 3.4 gives an upper bound in conmputation time
necessary for a given semigroup S. One would usually expect to be able
to do better.

The rest of this section gives methods for some inportant specia

classes of finite sem groups.

Definition 3.6. A senmigroup Sis cyclicif there is an elenent a such

t hat
k .
S = {a : k>1; k an |nteger} = (a)

If Sis finite there are minimal integers mand n [Ref. 2, p. 19]

such that
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W call mthe index of S and nis called the period of S

Definition 3.7. Let a(n) be the largest prine power factor of n;

let Q = lem{1,2,...,m}; and let y(N) = min(m : Q> N). Then

we have

Lemma 3.8. Let S be a cyclic semigroup of index mand period n,

e S=(a). Let
oy = [ros,2[ros 0]

v, = [1os,2 [logdr( s - 3)/_24J>”

= frasfeefl 2]

Then if Cis a (d,r) circuit which conputes ¢ : Sx S » S,

where @4 is multiplication in'S, in time 7,

T2 max{rl,'rz,'r3}

Pr oof .

That T > max{'rl,"rz) follows from previous results of [Ref. 1] and
the fact that C nust be able to multiply in the cyclic group of order
n and to add two numbers between 0 and |_(m +n - 3)/2J/2. This is so

because both these operations constitute the function 4 restricted to

a subset of S.  To show 71> LEY pi ck an output line, say the jth,

n, (am-l> ) hj<am+n—l>

L6
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Then the set (a,a™?,...,a L(m"z)/n"m'l] is h,-separable in 'both argunents

of ¢ [see Defn. 2.3, Ref. 1] and we can apply lemma 2.5 of [Ref. 1].

By proper choice of congruences on S a circuit to multiply in S which

is very often near the | ower bound can be constructed.

Lemma _3.9.Let S = (a) be the cyclic semgroup generated by a which
has index m and period n. Then, for any d > 2 and any r > 2,

there is a (d,r) circuit to miltiply in S in time 7, where

a2
]

waxfe )
1 1+ l'logr [Lrlz ] I-log doc(n).l-n
el

Let pl,pz,,,,,pk be the distinct primes dividing n, so that

A
il

R
[S¢]
"
'_l
+
|
(@)
0

Pr oof .

Def i ne congruences Pyseess0p ON S such that

k

v (mod p,7)

u Vv

ap,a iff u

and a congruence x on S such that
u v

axa iff u=vor u>m-1 and v>m-1

Then the bl ocks of these congruences forma conplete set of subsets of S
The congruence class of the product of two factors being multiplied can

be conmputed in tine

bt




1
Ti = 1 4+ [logr[m

. ri
for congruences PpseeesPy and in tine

o= 1 + [logrl:lﬁ'gj[logdm‘!]‘\

for the congruence A. This and the lemm follow fromcorollary 3.3

and corollary 3.5.0

This circuit is close to the lower bound time if m s not too nmuch

greater than

max

a(n),Y[L(m + nz- 3)/2JJ, [m - 2J +

n

The reader can convince hinself that this conditionds satisfied quite
of ten.

W shall now treat another very inportant class of sem groups.

Definition 3.10. Let S be a finite semgroup. An ideal Ais a sub-

set of S such that SASCA Aleft (right) ideal is a subset A
such that SA CA (AS c A). Asemigroup is called sinple if it contains
no proper ideals and is left (right) sinple if it contains no proper

i deal s.

Use will be made of Rees's elegant structure theorem [Ref. 2, p. 90] for

sinple sem groups.

Definition 3.11. Let G be a group and let | and A be arbitrary sets.

Let P be a matrix of elements of G with |A] rows and | I| col ums.

Then M (G;I,A;P) is the set of elenents of the form
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(a)n.aea ieI, AeAl

Wth nultiplication given by

(8) 3 ()

. ap. .b
JH ( PAd )iu

it is said to forma Rees matrix semgroup. P is called the sandwi ch

matrix.

Theorem3.12, Let S be a sinple senigroup. Then S is isonorphic

to the Rees matrix semigroup A (G;I,A;P) for sone group G sets

| and A, and sandwi ch matrix P.

Pr oof .

See [Ref. 2, pp. 91-99]. 1

Left and right ideals of AL(G; I,A;P) are easily characterized.

Lemma 3.13. Let s = M}{(G;I,A;P) be a Rees matrix semigroup. Then any

left ideal of Sis the form
L, = {(a)i)\: iel, aeG}
and any right ideal is of the form

R, = {(a)ix tANEAN, g€ G}

Pr oof .

Pick any s € Ly and any t ¢ S. Cearly ts ¢ L, . Conversely,
given any (a)i}\’(b);j)\e L}\ t hen (ba-l(pgi)-l)jo(a)i}\ = (b) i for any

oge A i.e.




so there are no smaller left ideals. Right ideals are dually

characterized. }

Definition 3.15. Let Kl""'Kn be subgroups of a group G Then they

are said to be a conplete set of subgroups if
n
ﬂKl = (e}
i=1

Definition 3.16. Let G be a finite group. Then, if G = {e) or G

is acyclic p-group let 6(G =1. Oherwise for a ¢ G - {e}.

Let
8(a) = mx(]X] : K< Gand a ¢ K
s5(@) = min {5(a))
a€eG-(e)

It is clear fromthese definitions that any finite group G possesses a

conpl ete set of subgroups whose minimal order is &(c).

Lenma 3.17. Let S =M{(G;I,A;P) be a finite sinple semgroup. Then,
for any r > 2 and any d > 2 there is a (d,r) circuit to conpute
g .S xS -8, were ¢ is senmigroup multiplication, in tine equal

or less than 1, where

T o= 14 [logrl—ﬁgj [logd(min{|1| BB %‘I)‘H

+ [rogy(min(l 11, a1)]]

Pr oof .

W shall show that there is a (d,r) circuit to multiply in S in

time
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o= L+ [logr[ﬁa[logdlA' Jb%}—;ﬂ + l_logrl/\]n

and the result will follow by symmetry. For an el enent (a)ix e S let

c((a)n) - & be the Gindex of (a),,
1((a)n) = i be the I-index of {(a)
A((a)n) - % be the Aindex of (),

Mul tiplication of left factor (a)i)\ and right factor (b)'Ju yields an
I-index i and a A-index u which can be obtained in time 0 by feeding
them strai ght through to the output. This anounts to considering trivial
congruences, say x and p, where two elenents are X-equivalent iff
they have the same A-index and are p-equivalent iff they have the same
[-index. Thus it only remains to show how to conpute the Gindex of the
product of two elenments in S

Let K be any subgroup of G and, for any g € G et
Kg = (s €8 :G(s) e Kg}

Fol lowing the term nology introduced in Section 2 we shall show that f
L Kg
can be conputed in time at nost

g = L liogr[-wlg[logdlAl %ﬂ-\dr [iogrlAﬂ

The result will then follow fromthe fact that the sanme can be done for
each coset of a conplete set of subgroups Kl""’Kn having order at

least 6(G. Sinple conputation yields the fact that

A_ﬁé((a)i}\) = {(b),ju €s:b ep;ja-lKg}
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Thus
-1 -1 -1 -1 .
C—((a)i)\) - {(c)sc €8 p)“ja K = pojc K VJel}
Hence there is at nost one element of e@__ for each distinct pair of

I{g .
el enents of

Ax{(Kg: ge G)

o] <l

Al'so, for any (b)ju ¢S and a fixed value of X ¢ A

{2y = e (@) (), )e ke = {(a)y, :ac Kev 5] |

This set is a subset (not necessarily proper) of sone elenent of <2Kg-
Thus

M = max gc_ €@ = gﬁ(C___,(b)ju) S’K_g‘ < | Al

Ke (b); es’l Ke  Ke Kg

. . . f
The inequalities plus lemma 2.2 yield the result. |

Corollary 3.18., |f S=M(G;I,A;P) is left-sinple, right-sinple or is

a group, there is a (d,r) circuit to multiply in Sin tine

This i's an instance where our method is not optinal. |t can be shown that
there is a (d,r) circuit to nultiply in Sin tine
T=2+ [logr[(l/Lr/2J)loglel /5(G)1] + [logrmin{ll'l N ]] . However, the

difference i s usually small
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for r>2 and a> 2,

Proof .
By lenma 3,13 Sis left-sinmple if |A] = 1, right-sinple if

1] =1 andagroupif |I] =]Al = 1.1

Note that by [Ref. 1, Thm 4.8]the |ower bound below is valid.

Lenma 3.19. Let S =M{G;I,A;P) and let C be a (d,r) circuit to

multiply in Sin tinme t. Then

T > |—108r2 [1°gd JS%}T“

G by a trivial recoding of

Pr oof .

C must be capable of multiplying in

i nputs. 3§

W close with nention of a special case of sinple semigroup nultiplication.

Exanpl e 3. 20.
Let S =4{(G;I,A;P) be sinple and |et

P have the property that

, = q.r, ieI, M€eA
Pryt qu v ’

Then one can nultiply in Gin tine

s | oy [logd gg)m

using the group multiplication circuit of [Thm. 3.6,Ref. 1] and recoding

' ' b as b.
(a) , as ad, and recoding a right factor ( )j“ T

cases of this exanple.

T = 1 +

a left factor

Note that the three cases of |lemma 3.17 are special

23



REFERENCES
(1] Spira, P. M, "The Tine Required for Goup Miltiplication," Ph.D.
Thesis, Chapter I, Departnent of Electrical Engineering, Stanford
University, Stanford, California, 1968.

[2] difford, A° H and G B Preston, The Al gebraic Theory of Senigroups,

vol. 1, American Mathematical Society, Providence, Phode Island, 1961.

[3]Arbib, M A, A gebraic Theory of Machines, Languages, and Semi-

groups, Academ c Press, New York, 1968.

54



V. PRELI M NARY RELATED RESULTS AND SUGGESTI ONS FOR FUTURE WCRK

1. I NTRODUCTI ON

In the preceding chapters we have given results concerned with
conputation tinme of finite functions. This is only one conplexity criterion
of interest. Another would be the necessary fan-out of a (d4,r) circuit
rapidly conputing a finite function. Though we claimno significant results
here, we do have several prelimnary results which we present in the next
section. The final section gives conclusions and some suggestions for
further work.

2. THE NUMBER OF QUTPUT LINES IN A CRCU T COWUTI NG GROUP MULTIPLICATION

Gven a finite group G having a conplete set of subgroups [Ki]’

the methods in Chapter Il can be applied to yield a circuit Cto

if

It is of sonme interest to ask which choices of a conplete set of subgroups

multiply in G having conputation tine

lc
K.
1

1
1+ [logr "Ll” 2] [logd ma}x

1

will mnimze the nunber of output lines of the corresponding circuit.
Note that, for any subgroup K < Git is only necessary to answer the
coset menmbership question for |c|/|k|] - 1 of the cosets--the menbership
question for the remaining coset then being automatically answered. Thus
for a conplete set X = {Ki} of subgroups of G a circuit with

W = 2 (Hr )

K.ek
1
output lines can be constructed which performs nultiplication in G

Definition 2.1. Let Gbe a finite group and let X be a conplete set
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of subgroups of G Then the quantity
G
EGKI - l)
K.€eX -
L
is called the index of Kin G

Definition 2.2. Let K be a subgroup of a group G Then K is called

intersection generable if there are subgroups A and B which properly

contain K for which

K = ANB

Not all subgroups are intersection generable, e.g., for a prine p, any

subgroup of Z of order pis not. Sinmlarly a nmaximl subgroup of

p3

any group is not intersection generable. A surprising fact is

Lemma 2.3. Let Gbe afinite group and let K be a conplete set of
subgroups of G Then, if K is a conplete set of mninal index in

G, thereisno K e K wich is intersection generable.

Pr oof .

Assume there is sone Ke K with A > K and B > K for which

ANB = K. Then, since A and B each contain at |east two cosets of K,
| Al > 2| kl; | Bl > 2K

so that

G G G
(-9~ (- ) <(h-
Cearly (K - {K})uU{a,B} is also a conplete set of subgroups of G

and, by the above inequality, it has index |less than the index of x.j

‘
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This I emma should provide a tool for the determnation of a mninal index
conplete set of subgroups of a given finite group G |t does, iu fact,

if G is abelian.

Lemma 2.4, Let G be abelian. Then a subgroup K < Gis intersection

generable if it has order less than 8(G.

Pr oof .

Let |K] < 6(Q. Since Kis abelian it can be witten as a direct

product of prine power cyclic groups

K = Wlx... xwt

Now (see | emma 4.10, Chapter II) since |K| < &(g) there nust be at
| east two of these groups contained in larger cyclic p-subgroups of

G, say wr < Zr and mg< Zs‘ Then

K = (Wlx... XL X oa XWt)ﬂ(Wlx... X Z X ... th)

[)]

so Kis intersection generable. |
Lemma 2.5. Let G be abelian and express it as a product of cyclic

p- groups

G = le... xZn

Let {Ki} be a conplete set of subgroups of G Then, if 1 <i <r,

there is sone K, e kK such that
Kiﬂ({el]x[ez}x. Lo XD X e X {en})={e]

where e is the identity in G and e, is the identity in Zj(l <Jj<n),
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Pr oof .

Let A :[el}x {ez]x. = xZix. . . X (en). Then, since Vi is
a cyclic group, say ]VII = pii, it has only one group of order pim
for 1<m<r, [Ref. 1, p. 55]. Thus, if the lemm is false, the sub-
group of K, havi ng order P, is contained in every K ek, contradicting

the conpl eteness of x. |

Noting the fact that x is conplete if, for all 1 <i <n, it contains one

subgroup K, such that KNV, = {e}, and using lemmas 2.4 and 2.5 we have

Theorem2.6. Let G be abelian wWith

G = le...xZn

where each Z, is a cyclic p-group. Then a conplete set of sub-

groups having minimal index in Gis

K= {{el}xzzx...xzn,z x{ez}x...xZn,...,le...xZn_lx{en}}

Hence, for any abelian group G, a (d,r) circuit constructed
according to lemma 5.50f Chapter Il with the mnimum nunber of out-

put lines also has mninmmconputation time for this class of network.

Ve thus have the, perhaps not very surprising, fact that the best such
circuit--both rrom the standpoint of conputation tine and fromthe stand-
poi nt of number of output lines--is one which multiplies in parallel dn each
maxi mal cyclic p-group Zge

It is unfortunate that, to date, we have been unable to deternmine a
method to construct mnimm index conplete sets of subgroups for arbitrary
finite groups. Gven a conplete set, however, one can always | ook for

i ntersection generable subgroups withinit.
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W close with a special case in which a method of circuit construction

different fromthat of Chapter Il can decrease the number of output |ines.

Lenma 2.7. Let G be a finite group having a cyclic subgroup H of

N
1l d'

where N = l—logd(}], such that if a € Gis fixed and x ¢ Ha then

order d. Then there are maps z, and zzfrom G ino 7

-1\ —
z(g"x) = z,(x) - z,(g) for all g e G
where equality is conmponentw se nodul o d.

Pr oof .

Let {cl,...,cM) be a set of right coset representatives of Hin

10 Vy of Zg such that no two

differ by k for any k € 24 where k is the vector of all k's. Let

. Choose el enents v

G,M=|Gl/l H

b be any generator of H  Then any g € G is uniquely representable as

Define
zl(bkcja) = k + v,

To conplete the proof, it is only necessary to show that z, can be

consistently defined as required in the lemm statement; i.e., that if
= B8y Xy Xp,X, € Ha
t hen

2 (x)) - 2)(8)) = 2,(x;) - z(s,)
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But

-1 s

g8, - XX, = b"; sonme sc—:Zd

Hence

2]

2.(g) - z(g,) = z(x)) - z(x) =

It is this lemma which inplies the existence of a (d + 1,r) circuit
to mltiply in G wth conputation tinme possibly somewhat higher than

the least attainable, but sonmetines having |ess output |ines.

Theorem2.8, Let G be a finite group having a cyclic group H = (b)
of order d. Then there is a (d + 1,r) circuit which conputes

multiplication in Gin tine

T = I—logr [mla—[logd| Gl-l‘ﬂ + 1
having |c|]/|H output Iines.

Pr oof .

Def i ne Yy G xG 244 by

k
k ; glgzzba,keZd

Wa(gl) gz) = {
d; ge, ¢ Ha

It suffices to show conputability of v, intime 1, since a simlar
function can be conputed for each left coset of H  Define z) and z,

as in the above |emma where, with no loss of generality, we take zl(a) = 0.
Thence zl(bka) = k. To conpute wa(gl,gz) the first stage of the circuit
i nspects zl(gl) and zz(gz) conparing them conponentwi se with

fl/Lr/EJI-logd]Gﬂ-\ elements. An el enent has output k iff all pairwise
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sums are k nmodulo d. CQherwise the element has output d. Al out-
puts are k iff 8,8, = b“a. This can be deternined in time
liogrfi/Lr/aJ[iOgleﬂ]] by a fan-in of elements with at nost r inputs.
That the number of output lines of the circuit is as claimed is true since

this is the nunber of cosets of Hin G.]

Exanple 2.9.

Let G=2 . Then thereis a (pk + 1,r) circuit to conpute multipli-

. . p . .
cation in g, where Kk isany 1 <k<mn, intime

1+ [logr[Lrng [-n logpk+lp~|.n
k

with p"* output Iines. From previ ous methods we woul d obtain a (pk +1,r)

circuit with conputation tinme the same but having p" . 1 output |ines.

3. CONCLUSI ONS AND SUGGESTIONS FOR FUTURE RESEARCH

The main contributions of this thesis have been |ower and upper
bounds on the conputation time of finite functions. The method of deriving
| ower bounds has been to find the |argest possible separable sets for a
specific function or class of functions and then to apply the basic | emm
of Chapter II. Upper bounds have been derived by constructing (d,r)
circuits to realize the conputations of interest. An imediate consequence
of a remark of Wnograd's in [Ref. 2]is that, given finite sets x1 and
Xy any function f with domain X, X X2 is conputable by a (d,r)
circuit in time liogdlxllligJ][iogrd] + [iogr[loglejJI X2ﬂ1 and that
furthernmore given any e >0, there is an N such that, if | X x>,
then the percentage of functions on X x X2 conputable in less time is

1
less than €, As he further remarks his (and our) method of deriving |ower

bounds never yields a bound greater than llogrfiogdlxl||x2]1, which is
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mich | ess than [-longXl] IXZH [logrd'] in general. Thus it follows that
techni ques used here cannot yield tight |ower bounds except for a few
functions.

One class of functions for which the |ower bound given here is tight
is group multiplicationf : Gx G- G for afinite group G One night
ask what special property group multiplication posseses which most functions
do not which causes it to be conputable so nuch nmore quickly. A charac-
teristic of suchanf : Gx G - G shared by very few finite functions
is that, given a,y e Gthere is one and only one x € G such that
f(a,x) =y and one and only one x' e Gfor which f(x",a) = y. Let
us recall Chapter Il and choose g : X1 X )&-» Y to be any finite function.
If we now select {{y}: y e€Y)) as aconplete famly of subsets of Y
we note that the conputation time for g of the circuit of lemm 2.2
is the sumof 1 + rlogrrl/Lr/Z_jrlogdl Xilﬂ'] (i =1 or 2)and a term
dependent |ogarithmcally upon the maxi mum nunber of solutions for any
y € Y either of g(xl,-) =y or of g(-,xZ) = Yy. Hence the two terns
whi ch determ ne the conputation tine have dependenci es anal ogous to those
at the two terns giving the maxi mum conputation tine for any finite function
Wi th domain X X X,. The singly logarithm c dependent term vanishes for
group multiplication but is domnant for almst all functions.

The above renmarks indicate a way in which the general method of Chapter |11
gives a heirarchical classification of all functions with a given domain
and range. At the bottom of the heirarchy are functions such as group
mul tiplication, which are invertible. Nearer the top of the heirarchy
of functions from x. x X, - Y would be, e.g., an f : X, X X2 - Y in

1 2

whi ch for sone x, € Xpu X, € X, and y1sY, € Y both f(xl,-) =y and
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f(_,xz) =Y, have many solutions. Furthermore, a simlar heirarchy is
established by any choice of a complete famly of subsets of v. A little
t hought reveals that invertible functions would be at the bottom of this
heirarchy also. There is clearly much nore research to be done pursuing
these questions further, since we do not as yet even know, e.g., what
conplete famly of subsets of the range of a function allows its conputation
in mniml tine except in special cases.

Sonme remarks regarding parallel conputation in general are in order
It appears that our nethods allow rapid conmputation of the expense of
nmuch breadth, i.e., many elements and output lines. Indeed this is often
true. On the other hand it is sometinmes possible to attain the |owest
possi bl e conputation time while concidentally mnimzing elenents and
output lines, e.g., there is a (2,2) circuit to multiply in Zg with
n output lines and conputation time Tt =1 In any event it should be
investigated for what functions it is absolutely necessary to increase
breadth in order to decrease conputation tine and simlarly it would be
of interest to know for what functions one nust tolerate |arge conputation
time to achieve mninal breadth.

Finally, we note that no restrictions have been made as to the input
codes we have used and that the only restriction upon the output code
has been that it be 1 - 1. It would be useful to further investigate
properties of (d,r) circuits with specific input and output codes, e.g.,
we night want to nultiply in a finite group G and have both input and
out put codes be the sane or to add two n bit numbers using binary

arithmetic. Mich information relevant here is inplicit in the basic

lemma of Chapter 11, but many questions remain unanswer ed.
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