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One of the most rapidly expanding fields of npplicd mn t:kmcll.t,irc  OrId

engineering is automata theory, Althoi@l the term "8.~~t;0m~t0r~"  j.8 tlerivd

from "self-moving tIil.ng," the prime concprn of wltoma ka tlvwry 1 u t;he

study of informCation-processing devices, A Spcclifj.c eynmplm of in fc3rtna t;.Lon

processing is comprita~;ion,  and t1111s the mathematical  proj)ert.leIs  of devices

which perform complltntions  are of interest to automata tlleorists.  In

this thesis we investigate the complltation  h,y logic circllits  of a certain

class of functions having fintte domain. To a given fllnction f a nlIml,er

of so-called com~dexit-.y  criteria can be assigned relative to that class,

e.g., the minimum complltation  time of or the minimllm nllmt,er c,f elements

contained in any circuit of the class which is capable of complting f.

Our prime criterion of interest will be compiltation  time.

The type of circuits investigated in this thesis are called (d,r)

circuits. A (d,r) circuit is composed of logical ckmeuts ea?tl having

at most r inputs and one outpllt. Each input vale p and olitplt vallle is /

an element from tile set Zd = (O,l,,.,,d - 1) 7 8rlcl each element has unit

delay in computing its cultput. Th11s a giver1 elemerit cr~mpides a flinction

from Zi to zd ' so?- some k < r, in unit time. The olltpllt; of one

element can be connected to inpIlLs of any nllmber of elements (incliiding

itself) and can also comprise one of the ollt&bllts of the circllit and an

element receives a given one of its inpilts either from the outp\ct of

some element or from tlie inputs to the circliit, When indivitlllal elements

are interconnected to form a (d,r) circliit we can associate 8 computation

time with the entire circuit.

Specifically, let f : X1 X . . . x Xn -+ Y be any fiinction on finite
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SGiS x. ,...,xn..a_ Let C be a (d,r) circuit whose input lines are

partitioned into n sets. Let I
C,J

be the set of configurations of

values from 2d on the jth (J = l,Z,...,n), and let OC be the set of

output configurations of the circuit. Then C is said to compute f in
time 7 if there are maps :x -+I

gj j
c j (j = l,Z,...,n) and a 1 - 1

J
function h : Y -+ 0C such that, if the input from time 0 through time

T - 1 is klbl),~oo,~n(',)l, then the output of C at time 7 will

be h(f(xl,...,x >>.n
Winograd has done pioneering work on the time of computation of finite

functions by (d,r) circuits. He has derived lower bounds on computation

time and has constructed near optimal circuits for many classes of finite

functions.

A principal contribution of this thesis is a complete determination of

the time necessary to compute multiplication in a finite group with a (d,r)

circuit. A new group theoretic quantity 6(G) is defined whose reciprocal

is the proper generalization of Winograd's a(G) to nonabelian groups.

Then a novel method of circuit synthesis for group multiplication is given.

In contrast to previous procedures, it is valid for any finite group--abelian

or not. It is completely algebraic in character and is based upon our

result that any finite group has a family of subgroups having a trivial

intersection and minimum order a)* The computation time achieved is,

in all cases, at most one unit greater than our lower bound. In particular,

if G is abelian our computation time is never greater--and often considerably

less--than Winograd's,

We then generalize the group'multiplication procedure to a method to

compute any fini-ce function, For given sets Xl, X2 and Y and any family
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of subsets of Y having a certain property called completeness, a

corresponding heirarchy of functions having domain Xl x X 2 and range

Y is established-- the position of a function depending upon its compatation

time with our method, For reasons which we explain in the text this appears

to be a very natural classification criterion. At the bottom of the

heirarchy are invertible functions such as numerical addition and multi-

plication, and the position of a function in the heirarchy depends essentially

lIpon how far it is from being invertible, For large IX,1 and 1X2(

almost all functions are near the top, corresponding to the fact that

nearly all f : Xl x X2 -+Y require computation time equal to the

maximum required for any such function, The new method is then applied

to the case of finite semigroup multiplication.
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I. INTRODUCTION TO THE COMPUTATIONAL COMPLEXITY OF FINITE FUNCTIONS

1. INTRODUCTION

This thesis is concerned with the computational complexity of finite

functions. There are various ways to measure complexity. Two of the

most natural complexity measures of a circuit which computes a finite

function are its time of operation and the amount of hardware it contains.

We shall first review and make a few comments upon a number of important

papers adopting one or both of these definitions of complexity.

2. CONTACT CIRCUITS

The first measure of the complexity of a switching function f in

which we are interested is the minimum number of contacts in a relay

contact network which realizes f as one of its transmission (or hindrance)

functions.

Let

s n?m = (f : f : (o,$ --+ Co,l)m>

% = sn 1 = (f : f : to,qn -+ (O,l]}9

X(f) = the least number of elements in a circuit realizing f

x(n,m) = max(A(f) : f e 3n m)
7

x(n) = max(X(f) : f e is,]

The quantity A(n) is usually called Shannon's function. It was Shannon

[Ref. 11 who first introduced and studied it obtaining a lower and an

upper bound on it.

Let f e ;5 and let m < n. f can be factoredn - Then [Ref. 2, p.781

into conjunctive normal form as
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f( x1, . . ..xn) =
[
x1 + . . . + xn-m + v1 (x X>n-m-l'**' ;I I

. . .
[
Fl + . . . + x + vn-m n-m( X

Xl

2
n-m+l�  � � l t n 1

where each vi E 8 .In Shannon's approach in deriving a lower bound on

x(n) is to give a general synthesis procedure in which the terms of the

form XT + . . . + $ m, where each XT = x.1 or F1 i' are realized by one

type of network which is then cascaded in series with another network

which realizes every function in g m as one of its hindrance functions.

(Note that the set of all terms of this form in xl,...,x are calledn-m
the minterms in these variables.) This yields a circuit capable of

realizing any f E 8,. The number of relays in the entire circuit depends

upon m; thus Shannon minimizes it for 1 < m < n to obtain his lower

bound.

The network which Shannon uses to obtain the minterms

a complete tree, which requires 2 n-m+1 - 2 contacts.

shows by induction that a network realizing each function

can be realized with 2 zm+l contacts. Thus

is known as

Shannon then

of m variables

x(n) ,< ZnBm+' -2+2Zm+l < 2n-m+l + ,Zm+l
; l<m<n

for contact circuits. A study and minimization of this bound yields the

results:

p+3
a) x(n) < -n

2n+2
b) w < y- for almost all n

c) Given E> 0, there is an infinite sequence
ni+l

(ni) for which x(ni) < & 0 + 4
i
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As we shall see later an improved synthesis procedure derived by Lupanov

yields a considerably sharper bound.

Shannon uses a different approach to obtain his lower bound on x(n).

When the number of functions in sn is compared with the number of

different possible networks containing a given number of relay contacts

it is demonstrable that:

a) For any E > 0 there is a finite N such that

n> N*h(f)>$ (1 - E) for almost all f e 3,

b) There is a positive number A such that

A(n) > A f for all n

Lupanov [Ref. 3,4] is able to sharpen Shannon's results by a different

synthesis method. He finds a network to realize the minterms in n - m

variables requiring only

2 n-m+1 2n-mt2+n - m n - m - l o g  n - m2(

contacts-asymptotically half as many relay contacts as a complete tree.

Such a circuit is called a Lupanov tree. This enables him to prove that

x(n) = < (I++$))

for contact networks.

Lupanov's procedure has a certain weakness. Consider a network which

realizes each minterm in n variables as one of its transmission functions.

The network is said to have a sneak path if there is a nonzero transmission

function between two output nodes. This property makes it unsuitable for

certain application, and a Lllpanov tree has many sneak paths. Moore [Ref. 51
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shows that a network realizing all minterms in n variables and having

no sneak paths requires at least 2 n+l - 2 contacts. Thus the growth

rate of x(n) exceeds Zn/n for disjunctive (no sneak path) networks.

3. CIRCUITS OF FUNCTIONAL ELEMENTS

A class of switching elements is said to be functionally complete

for 3
PA

if, given any f E 3
P,¶'

there is a network containing only

elements in the class which has inputs x1' . . ..Xn and output ax1 . . . ..xn).

(Clearly such a set will also be complete for 3 for any p' and

any q'.) Let Sl
P',¶'

be such a class and let f E 3
P,¶.

With each type

of element in Sl associate a fixed positive weight. Then let Xl(f)

be the minimal weighted sum of the number of different elements in a

minimal sum circuit which computes f and let

x1( p, q) = max Al(f)
1 : f E tTp gY 1

Muller [Ref. 61 shows that if there is another set S2 with corresponding

complexity measure X2? then there are constants Kl and K2 independent

of P and q such that

KIXl(p,¶) 5 x2(P,¶) ,< K2Al(P~9)

This is easily seen, e.g., K2 is the maximal complexity of an element

in S2 realized by elements in sl* Thus to investigate growth rate of

QP,¶) associated with any complete set S one need only do so for a

particular set. Muller also looks at the rate of increase of A(p,q)

with n 2P= p + log2q for the case in which 1 < q < 2 , which is clearly

general since 2zp is the cardinality of 3
P-

He concludes that there

exist constants 5 and c2 for, independent of p and 9, such that
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c& X(P,¶) _< C2 $

For the case q = 1, i.e., for functions in 3 =iTP,l n'
this parallels

the result for relay circuits. Unfortunately it

proof of the upper bound is incorrect, f although

is true at least for q = 1. His lower bound is

comparing the number of functions in 3 with
P?¶

appears that Muller's

Lupanov showed the result

proved by an argument

the number of networks

of a given complexity, analogous to Shannon's proof for contact networks.

Lupanov [Ref. 4,7] studies the same problem for the case q = 1

( n= P)* He chooses a complete set consisting of two input and gates,

two imput or gates, and inverters and shows that the associated complexity

measure with all weights unity, x(n), satisfies

~+o(y))

4. TIME AND NUMBER OF ELEMENTS

Another measure of the complexity of a finite function is the time

necessary to compute it with a circuit of a given class. In contrast to

the work described in preceding sections most results in this area are

for specific classes of functions more limited than, e.g., all f E sn.

Ofman [Ref. 81 introduces a certain class of logical circuits which

we now define in the more lucid terminology of Winograd [Ref. 11. Call a

circuit c a (d,r) circuit (or (d,r) automation)if it is composed of

functional elements each having at most r input lines, one splittable

------------------------------------
f In his proof Muller seems to assume that all functions of the first

k+ 1 03' k out of the p Boolean variables are available at no cost

in elements, which indeed they are not.



output line, and carrying on all lines elements from the set

'd = (O,l,...,d - 1). In addition each element will have unit deley

in computing its output. Thus we can associate a computation time with

the entire circuit.

Ofman [Ref. 83 is interested in specific classes of functions which

can be parameterized by a number ", e.g.7 addition of two n bit

numbers. He is primarily concerned with rate of growth with n of the

number of elements and rate of growth with n of the computation time for

(dY4 circuits computing these functions.

The classe of functions of the most interest which he considers is

addition of r binary n bit numbers. He notes that conventional bit-

by-bit addition of two n bit numbers requires X = O(n) elements and

7 = O(n) computation time. By a method similar to the look ahead carry

method used on some modern digital computers he achieves 't = O(log n).2
For addition of r numbers his growth rates are A = O(n) and

7 = O(log r4). His method of proof makes his results not applicable for

finite n, but only in the limit as n + my since it uses (3Y2) circuits

and the observation that this does not change the growth rate. By the

methods of Ch. II it can be shown that the growth rate of 7 in his

circuits is as small as possible.

A similarly slanted paper by Karatsuba and Ofman [Ref. 91 demonstrates

that for any s; 1 < s < n there is a w3 circuit to multiply two

n bit numbers with growth rates X = O(n'/s) and Z= O(s log2n). This

result is derived from the previous paper. To multiply the two numbers

first the product of one by each bit of the other is formed. Then the

addition of the first r/1n s products is performed by means of the circuit
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of [Ref. 81 where rxl in the smaIlest integer > x. Then that number

is added to the next r/ln s products, and the process is continued until

the final result is obtained. The interesting trade-off indicated above

is the result.

Multiplication of two n bit numbers is also the subject of a paper

by Toom [Ref. lo]. He shows that for sufficiently large c, e.g.; c = 32,

there is a network to perform this multiplication for any n having

X 5
JEp

Cpc and
JlW

7 ,< C2nc for constants Cl and C2. There

is a vast literature on computational complexity of Turing machines (for

the definition and basic concepts of Turing machines see [Ref. 111)

which we shall not attempt to cover. However, we mention in passing

that Cook [Ref. 121 has shown that there is a multitape Turing machine

to multiply any two n-digit numbers within n25&ii7 steps, for all

n? in the manner of Toom's algorithm.

5. WINOGRAD'S WORK ON TIME OF COMFUTATION

Winograd [Ref. 13,141 has done pioneering work on the time of

computation of finite functions by (d,r) circuits. Let

f : x1 x . . . x xn -+ Y be a function on finite sets. Let C be a (d,r)

circuit, and let the input lines of C be partitioned into n sets with

Ic,j
.ththe set of possible configurations from Zd on the J (j = l,Z,...,n)

and let Oc be the set of possible output configurations. Then C is

said to compute f in time z if there are maps g. : X. -+ I
J 3 C,j

(j = l,Z,...,n) and a 1 - 1 function h : Y + Oc such that, if the

input to C from time 0 to time T - 1 is [g,(x,),...,g,(x,>],  then

the output at time z will be h(f(xl,...,xn)). He derives lower bounds

for many classes of functions and aleo constructs circuits which operate



in near the lower bound times. We summarize these in a chart. The

details appear in [Ref. 13, 143 or in his thesis [Ref. 151.

We must first give some definitions

Definition 4.1. Let H be a group. =Y P(H) = 1 if there is an

a e H with a f e such that every nontrivial subgroup of H contains

a. Let G be a group. Then

a(G) = max{i HI : H < G and P(H) = l>

Definition 4.2. Let a(N) = a(ZN) where 2N is [O,l,...,N - l} under

addition modulo N.

Definition 4.3. Let AN be the group of positive integers

and relatively prime to N under multiplication modulo

B(N) = a&

less than

N. Let

Definition 4.4. Let Qm = lcm[1,2,...,m)  and let r(N) = min(m : Q > N)m-

Definition 4.5. Let rxl be the smallest integer 2 x and LxJ be

the greatest integer ,< X.

We can now give Winograd's lower bounds and the realization times of his

circuits. Note all lower bounds are valid for d > 2 and r > 2. All

realizations are valid for d >, 2 and r > 3 except that for b,,-

which is also valid for r = 2.
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0. CON'rRZR1U'TONS  OF THLS RESFARCH

A principal contribution of this thesis is a comp.lete determination elf

the time necessary to compute multiplication in a finite arollp with a (v-)

circuit. A new group theoretic quantity 6(G) is defined whose reclijrocal

is the proper gpneralization of Winograd's Q(G) ko nonabell.an P.rniJ['s.

Then a novel method of circ1li.t synthesis for grollp mu.LtA pl1c~t~iru-1 is given.

In contrast to previous procedures, it is va11d for any f.lni.te ar9llp--Rbelian

or not, It is compldely algebraic in character and is bsed llyjon cjllr

result that any finite group has a family of subgroups having a. t,rlvjAl

intersection and minimum order F(G). The computation time arhiPv4 is, in

all cases, at most one unit greater than our lower bollnd. In pnrticl11Ftr,

if G is abelian our computation time is never greater- -and of ten coris.i.doraI~ly

less--than Winograd's,

We then generalize the grollp multipkication procedllre to a method to

compute any finite fllnction. For given sets Xl, X2 and Y and Rny fami.Ly

of subsets of Y having a certain property called comp-lctness, it r>orrPsponrling

heirarchy of funot!.mnn hRv1ng domain Xl x X7 and range Y is ~sf~ak).lirihecf--_I
the position of a function dependl.ng upon its complltation  time with ollr

method. For reasc>nn which we exITlain in the? text this a.ppc?ars to 1)~ a very

natural olassificati~~n criterion. At ttie bottom of the hei rarchy 9r9

invert11Ile fllnctions such as numerical addition and ml~ltipLi.ratiou,  and th?

position nf a fllnction in the h4rarchy depends esspntiRlly upon hvw far i.t

is from being invertihlc. For large IX11 and XI I2 Ftlmost, all fllncttions 9rq

near the top, corrPspont1ing to the fact that nearily all f : X1- x X, -s Yc,

reqllire rsomp11t,ation  time equal to the mxirnllrn reqllired for any sl]Ch fllnction.

The new method Is then aF)plied to the case of finite semigrnll[l mllltiplication.
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II. THE TIME REQUIRED FOR GROUP MULTIPLICATIONf

1. THE MODEL

The model we will adopt is basically that of Winograd [Refs. 1,2).

We consider logical circuits composed of elements each having at mo,st r

inputs lines, one splittable output line, and unit delay in computing their

outputs. Each line carries values from the set Zd = (O,l,...,d - 1).

The input lines are partitioned into n sets with I
W

the set of

possible configurations on the jth (j = 1,2,...,n). OC is the set of

possible configurations. Such a circuit is called a (d,r) circuit.

Definition 1.1. Let b : Xl x X2 x . . . xn + Y be a function on finite

sets. A circuit C is said to compute 6 in time T if there are

maps :x -1
"J j W

(j = l,Z,...,n) and a 1 - 1 function h : Y + 3
C

such that if C receives constant input kl(xI)'"+.$",>l from

time 0 through time T - 1, then the output at time T will be

2. TKE BASIC LEMMA

We now derive a general lower bound on the time for a (d,r)

circuit to compute a given finite function b. It makes explicit the method

underlying the results of Winograd. It is dependent upon the output code

h introduced in the last section, and makes use of a new concept we shall

'Some of this material was presented at the Eighth IEEE Annual Symposium

on Switching and Automata Theory, (See Spira, P, M. and M. A. Arbib,

"Computation Time for Finite Groups, Semigroups and Automata," IEEE

Conference Record of the Eighth Annual Symposium on Switching and Automata

Theory, October 1967.)
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introduce--that of separable sets. First, some preliminary definitions

are necessary.

Definition 2.1. Let rxi be the smallest integer 2 x; let LxJ be

the largest integer 5 x; ISI be the cardinality of the set S.

Definition 2.2. For a (d,r) circuit let
.th

hj(y) be the value on the

3 output line when the overall output configuration is h(Y).

Definition 2.3. Let b : Xl x bee x x  +Yn and let C compute 8.

Then SE. Xm is called an h
j
-separable set for C in the mth

argument of b if whenever s1 and s2 are distinct elements of

S we can find x~,x~,...,x~-~,x m+l .,  l **☺ Xn with xi E Xi such that

hj(~(X1~oo*,Xm-~~s~~Xm+l~"'~X  ))n f h”~~~x~~~~*~X,_l~s~‘X~+~~““X  ))3 n

Lemma 2.4. In a (d,r) circuit the output of an element at time T can

depend upon at most r' input lines.

Proof.

Just consider the fan-in with modules having r input lines to the

height of T. 1

This observation, first made by Winograd, plus the concept of se,parable

sets suffices to prove.

Lemma 2.5. ( Tile Basic Lemma . Let C be a (d,r) circuit which computes

b in time 't. Then

where S,(J) isan h
j
-separable set for C in the j th argument
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Proof.

The jth output line at time T must depend upon at least

p"gdj 'i( j )I] input lines from IC,i or else there would be two elements

Of SiO which were not hj-separable. Thus the jth output depends.

upon at least [logdISl(j)ll + . . . + ~ogdlSn(j)~l input lines and this

number is at most r*. 1

With lemma 2.5 we have exposed the methodology implicit in Winograd's

treatment of the times required for addition and multiplication. By

making it explicit we not only quickly obtain some of Winograd's results

in the rest of this section but also shall give a deeper analysis of other

concepts and shall treat a much wider class of functions in the sequel.

Corollary 2.6. Let # : ZN x ZN + (O,l} be

b(X,Y) = I lif x<y-0 if x>y

Then if C is a (d,r) circuit to compute b in time 7, we have

Proof.

Pick j such that h.(O) f h.(l). Then ZN is an h.-separable set
J J J

for C in both the first and the second arguments of fi since, if

x > Y, ?G,Y> f b(Y,Y) and bb,Y> 4 b(x,x>= 1

Corollary 2.7. Let 4 : ZN x ZN + ZN be



3

Then, if C computes b in time T

Proof.

Pick j such that hj(0) f hj(l). Let m = [N"2']. Then (l,Z,...,m]

is an hj-separable set for C in both arguments of 8, since for each

x f y with x,y e{1,2,...,m} we may chose wczN such that

x*w < N < yaw < ZN to yield #(x,w) = 0, b(y,w) = 1. By symmetry this

holds for the second argument as well and lemma 2.2 yields the result. 1

We close this section with an example which shows that the size of

separable sets can be strongly dependent upon the output code of the

circuit which computes a given b.

Example 2.8.

Let # : ZN x ZN -+Z
N2

be numerical multiplication with N = 2 .

Consider an output code in which, if the output value is M then the ith

line carries the ith bit in the binary expansion for M. Then there

are 16 output lines. Pick any x f y with x,y e ZN' Then their binary

expansions differ in at least one place, say the kth Choose z = 28-k. .

Then

and

h8(8(z,y))  f hf3(b(z,x)>

So there is an h8 -separable set of size 28 in both arguments of 6.

Now consider the same b but let the output code for z be the

18



binary representation of the exponents in its prime decomposition. Let

the first six output lines code the exponent of two in the result. Pick

x,Y ' 'N such that x and y do not have the same power of two in

their prime decomposition, the powers differing in, sa;;the kth place

of their binary expansion. Then, letting z = 23-k ,

h3($4(x,z)) f h3(8(y,z))

and

h3(8(z,x)) f h3(%Xz,y))

Thus, since an element of ZN can have eight different exponents of

two in its prime decomposition, there is an h3-separable  set of size

8 in both arguments of b. One easily sees that this is the maximal

size of any separable set, since two is the smallest prime. Note, how-

ever,that this output code requires thirty-nine output lines.

3. REVIEW OF PREVIOUS RESULTS

Several authors have investigated the computation time necessary

for a (d,r) circuit to add modulo N. Ofman [Ref. 31 gave a circuit

for the special case N = 2n. Significant results were obtained by

Winograd [Refs. 1,2]. He derived a lower bound which we will review,

and a (d,r) circuit with computation time near the lower bound. Since

any finite abelian group is the direct product of cyclic groups [Ref. 4,

p. 401 his results are applicable to abelian group multiplication as well.

Definition 3.1. Let H be a group. Say H has property P and write

P(H) = 1, in case there is an element a E H with de such

that every nontrivial subgrolqj of H contains a. This will be
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3

denoted by P(a,H) = 1. Let O(G) be the maximal order of H ,< G

such that P(H) = 1.

Lemma 3.2. (Winograd). If G is abelian a(G) is the maximal order of

a prime power cyclic subgroup contained in G.

Proof.

See [Ref. 1, p. 2801. :

We now give a complete characterization of a(G).

Definition 3.3. The generalized quaternion group &n is the group of

order 2n with two generators a and b satisfying

a2
n-l n-2

= e; b2 = a2 ; ba = a-5

Theorem 3.4. A p-group contains a unique subgroup of order p if it

is cyclic or a generalized quaternion group. (It must be cyclic if

p is odd.)

Proof.

See Ha11 [Ref. 4, p. 1891. 1

Corollary 3.5. Let G be any finite group. Then a(G) is either the

order of the largest cyclic p-subgroup of G or the order of the

largest generalized quaternion group contained in G, whichever is

larger.

Proof.

Let H be any subgroup of G. If P(H) = 1 then IHI = p" for

some prime p, for if not there would be another prime g dividing

I IH and consequently there would be elements u and v in H with

o(u) = p and o(v) = q. But then (u)n(v) would contain only the
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identity. Assume H = pn.1 I Then every nontrivial subgroup of H

contains a subgroup of order p. Thus P(H) = 1 iff H contains a

unique subgroup of order p, i.e., iff H is cyclic or a generalized

quaternion group. 1

The quantity O(G) is critical to Winograd's lower bound time for

group multiplication, which we now state. In the following section we

shall give a new lower bound which is in general higher but is the same

as his if the group of interest is abelian.

Theorem 3.6. (Winograd). Let G be any finite group. Let C be a (d,r)

circuit which computes b : G x G --, G where

#(a,b) = ab

Then C requires computation time 7 where

Proof.

See Winograd [Ref. l]. 1

Winograd also gives a procedure for constructing a circuit to multiply

in an abelian group G with computation time

which is valid for r>_3 and d>2. We will give a completely different

method for constructing circuits which will be valid for r>2 and d>2,

and will work whether or not the group is abelian. Furthermore, fJ,r

a given abelian group and a given d and r, our computation time will
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underbound Winograd's.

4. THE LOWER BOUND

In this section we shall give a new lower bound for the time required

for a (d,r) circuit to perform group multiplication and shall compare

it to Winograd's bound. Let G be any finite group and let b : G x G + G

be group multiplication. Let C be a (d,r) circuit which computes b.

.thLet hj(g) be the value on the J output line of C when the output

is h(g).

Definition 4.1. Let x,y.~: G. Then we say that x any y are Rj-equivalent

if hj(gx) = hj(gy) for all g E G and that they are Lj-equivalent

if hj(xg) = hj(yg) for all g E G, Then clearly RJ and LJ are

equivalence relationships and we write Rj(g) for the Rj-equivalence

class of g and L:(g) for the L,-equivalence class of g.
J J

Lemma 4.2. R
j

= Rj(e) and L. = Lj(e)
3

of c. Furthermore, for any g E G, Rj(d = Rjg and Lj(g) = gLj.

Proof,

are groups for all output lines

Say a, beR.. Let CEG. Then
3

hj(ab%) = h.(bb%) = hj(c)
3

So ab-1 E R
J

and it is a group. Now pick any g E G. Then d E: Rj(g)

iff hj(dc) = hj(gc) for all c E G. But this is true iff hj(dg-'c)

= hj(c), i.e., iff dg-l E Rj. The other half of the lemma follows

dually. 1

Maximal separable sets are determined by
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Lemma 4.3. A maximal size hj-separable set in the first argument of

b consists, of exactly one representative from each left coset of

R. in G.
J

It thus has size lGl/lRJl b A dual result is true for

separable sets in the second argument.

Proof.

Direct from lemma 4.2 and the definition of separable sets. n

We now have all the pieces we need for a lower bound on group multi-

plication which is output code dependent.

Lemma 4.4. Let C be a (d,r) circuit to multiply in G in time T.

Then

Proof.

Direct from lemma 2.5 and lemma 4.3. 1

A bound over all output codes will be derived by maximizing the

minimal size of K. and L
J 3

for a given group.

Definition 4.5. If G = (e] let 6(G) = 1. Otherwise let S(c) be the

maximal order of any subgroup of G not containing c and let

6(G) = min (S(c)).
cCG-(e)

Since we are only dealing with finite groups 6(G) is always well-defined

and finite. Note that if P(a,G) = 1 then &(a) = 1 so that 8(G) = 1.

Note also that if G is nontrivial and P(G) f 1 then 6(G) > 1 always.

A simple lemma we will need in the sequel is:

Lemma 4.6. Let H and K be subgroups of a finite group G such that
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HnK = [e). Then ~HIIKI ZIG].

Proof.

Let hl,h2 E H and kl,k2 E K such that hlkl = hzk2. Then

hlh2
-1 = k2k;1 E HnK

Hence hl = h2 and kl = k . Thus2

It hk : h E H, k E K)/ > ~H~~K~

But it is also a subset of G. 1

The crucial property of 6(G) is

Lemma 4.7. For any finite group G, @G@(G) < I&

Proof.

If 6(G) = 1 the lemma is true, so assume not. Pick H < G and

e f a e H with P(a,H) = 1 and IH] = a(G). Choose K < G with a j! K

and KI I = G(a). Then, since HnK is a subgroup of H not containing

a, HnK = {e). Hence, by lemma 4.4 and the fact that 6(G) < s(a),

CX(G)E(G) < a(G)&(a) = IH~]K~ 5 1~1 I

The universal lower bound for any (d,r) circuit to compute multiplication

in a finite group G can now be stated.

Theorem 4. ?.J Let G be a finite group, b : G x G + G be group

multiplication, and C be a (d,r) circuit to compute b for

d>2 and r>2. Then, if C has computation time T,

7 >, [logr2 r"gd j&l]
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Proof.

Assume 6(G) > 1 and choose a E G such that 6(a) = 6(G). There

must be an output line of C, say the j th, such that hj(e) f hj(a).

But then both R
j and L

3
are subgroups of G which do not contain a.

They hence have order at most 6(G). Thus, the result follows from Theorem

4.8. If 6(G) = 1 then either G = (e) or 1G1 = a(G). In the

former case the theorem is true trivially. In the latter case choose

g e G such that P(g,G) = 1 and pick an output line, say the i.th ,

such that hi(e) f hi(g). Then Ri = Li = (e) and the result follows from

Theorem 4.8. I

Lemma 4.7 implies that this lower bound is no weaker than Winograd's

result given in Theorem 3.6; and, indeed, the following example shows that

it is stronger.

Example 4.9.

Let p be an odd prime. Then there is a group with three generators

a, b, and c and defining relations [Ref. 4, p. 521.

a' = bp =& cp = e; ab = bat; ca = ac; cb = bc

which has no element of order p'. It is easy to show that any subgroup

of order p2 must contain c. Thus

6(G) = 6(c) = p

But, clearly, (X(G) = p. Thus

a(G)e(G)  < bl
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In one important case, however, the two bounds are the same.

Lemma 4.10. Let G be a finite abelian group. Then

+)6(G) = 1Gl

Proof.

By the decomposition theorem for abelian groups [Ref. 4, p. 401

G = Zl ⌧ l ee ⌧ Zn

where each Z is a cyclic p-group, say lz,l ri
i = Pi ; and, with n3

loss of generality

If n= 1 the theorem is true since P(G) = 1 and e(G) = 1, Assume

n > 1 and let ai generate Zi (i = l,Z,...,n). Now if we choose

any Q f e

( kl kng = a1 ,...,an
>

where at least one exponent, say ki is nonzero, then

gP flzj

( )

x (ei)

jfi
j=l

where e i is the identity in Zi. It follows that

'(g) ~irP;j >_
n r.
rI P J bY (*)j

j=l

Thus
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6(G)  zfi p5j

j=2

But any subgroup of order greater than ! p2
j=2 3

must intersect Z1 non-

trivially and thus must contain

f! (e,) x Z2 x . . . x Zn

Thus

r1-1)

S(G) 5 6 ,e 2' en. . . .
3

n r.

I-l
J=

'j
j=z

I

For the sake of completeness we give some examples of nonabelian groups

Gi, each having a(Gi)G(Gi) = IGJ .

Example 4.11.

Let p be an odd prime. Let Gl be the group generated by a and

b having relations [Ref. 4, p. 521

2
a' = bp = e; b-lab = ,l+p

Then a(Gl) = p2 and any group of order p
2 must contain ap .

Example 4.12.

Let G2 be the direct product of two groups A and B such that

a(A)&(A) = IAl ; a(B)C(B) = IB]

Then it is easy to see that

a(G2) = max@(A),a(B)); F(G2) = mind BI F(A>,lAl b(B))



and thus

a(G2)6(G2) = iG,l

In particular, these properties hold if G2 is nonabelian but all of its

subgroups are normal [Ref. 4, p. 1901.

5. A CIRCUIT FOR GROUP MULTIPLICATION

In this section we give a method to construct a (d,r) circuit

to multiply in any finite group G which is valid for d > 2 and r > 2.-

The computation time of the circuit will be at most one unit greater

than the lower bound just derived. If G is abelian and r > 3 our

circuit can be compared to that of Winograd, It will be seen that our

computation time underbounds his; and that, in fact, we can give a group

for which the difference in computation time is arbitrarily large.

Lemma 5.1. Let K be any subgroup of G. Then there is a (d,r) circuit

to compute b : G x G + [O,l) in timef

7 = l+

where

b(a,b) = 0 if

b(a,b) = 1 if

Proof.

ab E K

ab # K

Let M = IG]/~K~. Pick a coset representative vi e K vi for each

------------------------------------
f The original statement of this lemma had T = ' + [lo+og&I GI /I KI >n '

The refinement was pointed out to the author by Winograd.
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right coset of K in G. -1Then {vi ) will be a set of left coset

representatives, for v:'K = v-1K -' E Kiff vivj . Pick a map zl from

G to the space of [loid!+arz vectors over Zd such that

and then define another map z2 with same domain and range by

zlw@qt3-1) = 0

where 5 is the all zero vector and @ is componentwise addition modulo d.

Note that z2 maps any two elements in the same left coset to the same

vector. The first level of the circuit consists of r(b$-/".)) rl'gdMl]

similar elements, If ab ia being computed these modulco each Gum

components of zl(a) and zZ(b) mod d (the last adder will sum less

than Lr/ZJ if Lr/ZJ does not divide pogdMj)' An element has output 0

if all pairs of input components are congruent to 0 mod d. If not,

its output is 1. Thus all outputs are 0 iff there is some j such

that aeKv
J

and b E v;'K. The rest of the circuit is a fan-in of r
I

input elements having output 0 iff all inputs are 0 and output 1 if

at least one input is nonzero. This fan-in has depth ☯lo g r  r (  l/ Lr / z☺ )r lo 8dM ll~ l

Thus the circuit computes b in time

Corollary 5.2. There is a (d,r) circuit to tell if ab e Kv for any

vcG with the same computation time.

Definition 5.3. A complete set of subgroups of a group G is a set {Ki)

of subgroups for which
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n Ki = {e)
i

Lemma 5.4. If Ki is a complete set of subgroups of G then, for any

ac G, knowledge of the right cosets containing a is sufficient

to determine a.

Proof.

n(Kia) = (fX>a = a 1

Note that a complete set of subgroups will always exist for any G,

e.g., the set consisting of {e) alone. Unless P(G) = 1, there,will

be other complete sets as well.

Lemma 5.5. Let [K;) be a complete set of subgroups of G. Then there

is a (d,r) circuit to multiply in G in time

T = 1 + max
i

Proof.

Theorem 5.6. Let G be any finite group. Then for any _d > 2 and any

circuit to multiply in a finite group Gr> 2 there is a (d,r>

in time

z = l+

Follows from lemma 5.1, corollary 5.2 and lemma 5.4. I

Now we are able to prove

$+-ogd $k-)j]j

computation time exceeding the lowerFurthermore, the circuit has

bound by at most one time unit.
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a

Proof.

Assume 8(G) > 1. For any g E: G with g f e there is a subgroup

K of order S(g) not containing g. Thus {K : g e G - [e)) is a
g Q

complete set of subgroups with

lKg] : g E G - {e) = 6(G)

If 6(G) = 1 then use the complete set consisting of {e). The second

statement of the theorem follows from the fact that

for rz2.1

Corollary 5.7. If G is abelian or if 6(G) = 1 there is a (d,r) circuit

to multiply in G in time

As we have noted, Winograd's circuit for an abelian group G

requires time

T = 2 '
I
""L(r+1)/2J

since

<r for r>3

it follows that, our computation time is at least one less than his.

Example 5.8.

Say r = 4 and pogda(G)l = 22k for some k 1 1. Then Winograd's
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E

t i nit i r, 2 + Zk and our time is 1 + k, i.e., his circllit rcq11 i rcs tw icr

as long. The reader can easily construct a myriad of similar examplcn.

W-lnograd [Ref. 21 has extended his group results to numerial addit,Lon

and rmll.tirJlication  hy noting that a circllit which can mllltiply in the

cyclic group of order 2N - 1 can also add two nllmbcrs between 0 anal

N and that numerical multiplication can be done by adding the exrunpnts

in the prime decompositions of the two factors. Since we are aIj.Le to

.)owcr the tirnc? necessary to mllltiply in cyclic grollps, we can a.cI~ir'vo ri.

corresponding decrease in the time for numerical addition and rnll.Ltir)l.i(~ati('r,

as well. We present this result in the framework of Winograd's definition::.

The reader interested in the details of the relationship betwserl F;~OIIIJ

mllltiplication and these other two operations is referred to Winograd':;

original paper.

Definition 5.3. For an integer m let Qm = l.c.m.[1,2,...,m)  and

let y(N) = min(m : Qm z N].

Then, paralleling Winograd's al@icat

we employ c~orollary T.'r and obt.3 iri

ion of his group millt ip

Theorem 5.10. Let h : ZN x ZN b ZF2N 1 be d;(a,I:) = a + 11.

li ca t,
I

i on t i tw ,



In closing we note for reference that Winograd has l.ower bounded

7
B

and
%

as follows

Theorem 5.12. (Winograd [Ref. 21). For any d 3 2 and any r'> 2 then

any (W circuit to compute b requires time 7
B

where

and any (d,r) circuit which computes JI requires time

The proximity of the results of theorem 5.10 and theorem 5.llt 0 these

lower bounds is indicated by the fact that

r(4x) 5 2 + Y(X)
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III. A GENERAL METHOD AND SOME: APPLICATIONS

1. INTRODUCTION

We shall present a method for computation of any finite function

f' : x1 x x2 + Y by means of a (d,r) circuit which generalizes results

of the last chapter in a natural way. The computation of a given function

is reduced to that of a set of functions of a very simple class. We

show that this class of functions is basic in the sense that to compute

a finite function as quickly as possible we must be able to compute some

functions of this class in the least possible time,

The method is applied to various classes of functions usually yielding

a near optimal circuit. Previous results are shown to be special cases

within our general framework.

2. THE GENERAL METHOD

Let f : Xl x X2 + Y. As stated, we shall give a method to compute

f which is a natural generalization of previous results.

Let W be any subset of Y. We define a function fW : Xl x X2 -+ (O,l)

as follows:

I 1 if f(xl,x2) e W
.

fwb1’X2)  =
0 if f(x19x2) # W

i.e., fW is the characteristic function of

f-l(w)c x1 x x2

We define four sets associated with W, Xl, and X2. For x1 E Xl

and x2 f x2 let
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%(x1) = 1 x2 c x2 : f(X1,X2)  E: w 1
q&) = (x1 E x1 : fbp2) fz w)
$(x1) = 1xi’, x1 : %(x1) = %I( ,)x;
%(x2) = 1x; E x2 : %(x2) = Bw( 1)x;

Lemma 2.1. For any x1 G X1, x2 E X2 either

f(qx,Lqp,>) c w

or

Proof.

Assume 3 xi E CW(xl) and xi E I&(x2) with f(x;,xi) E W. Let

xi' f Cw(xl) and xi' E Dw(x2). Then

f(xi,xi) E w +f(x;',x;)  E w =+f(xi', x5') c w

so that

f(q&++&x2))  cw ’

Now let

cw =
1

cw ,...,1 4m

and

3, = Dw ?"aJ
1 DWn I
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be the collection of distinct members of {CW(xl) : xl E Xl) and the

collection of distinct members of Iqq(x,) : x2 G X2] respectively.

In general, given x1 E Xl there will be more than one Yd E qq for
V

which

and a similar statement holds regarding a given member of x2' Thus

define

%
= max

II cw
: f(C x)cw

x2"X2 u E c, w,' 2 II

and

NW = max
II %XfXl v E Bw : f(x1,9J 1 G w

V II

Then we can construct a circuit to compute fw.

Lemma 2.2. Let f : Xl x X2 -+ Y and let W G Y. Let fw, qq' e,, SW'

57 f and J!$ be as given above. Then, for any d > 2 and any-

r > 2, there is a (d,r) circuit to compute fW in time TW7 where

(If, for each x1 c Xl, 3 xz E x2 for which f(xl,x2) e W then

19 IW + 1 becomes Ia IW in the above theorem statement. Similarly,

if, for each xg E X2, 3 xi E Xl for which f(x;,xB> e W, then

If IW + 1 becomes If I
w l

This will be clear in the proof.)
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The idea of the proof is simple: Given x1 E Xl

fw(5’X21  = 1 c!+ x2 fz A&y) \

wxl is in a % for which x2 is in the %I

Thus we shall code x2 as the list of
cw 's for which x2 is in the

Aw, code x1 by its CW, and check if x 's1 cw is in the List of cw ‘S

for x2 and thus shall then know whether or not fw(xl,x2) = 1. Explicitly,

Proof.

We shall give a (d,r) circuit to compute fW in time

where T = lCwl + 1 if 3 x2 e X2 with %(x2) = b, and T = ]cwj

if not. The lemma will follow from this by symmetry. If there is an

x2 c x2 for which BW(x2) = b then let L = pogdlCwI + 11 and Let

Z : x1 + zf; - @I, where 0 is the vector of all O's, be any map

satisfying

z(x,> = z(xi) iff C,Cx,) = CW(x;)L

If there is no x2 E X2 with BW(x2) = b then let L = kogdlcw]l and

let z : Xl -+ Z!d again be a map obeying the above condition.
%Let Z1 : Xl .+ Zd be given by

qxl> = 4 +b ,>. l .z(⌧☺

L------

MW times

where, if a = (a ,...,a,)1 and b = (bl,..., bt) then the notation

38



ab = (a ,...,a1 sJblJ ..*,bt)

is used here.

We now define z2 : X + Z%2 d' If BW(x2) = b then z2(x2) = 0.

If not, let Cl,C2,...,Cm(x2)  be the elements of cw satisfying

f(Cj'x2) c w i < j < m(x2) < MW

and note by lemma 2.1 that if C is any other element of e, then

f(C,x2) n w = b

Then define

“2(“2)  = - Z(X1~)Z(X12). . .z(x M
xMx2 1 > . . .z(x14x2 1 >

where the equality is componentwise modulo d,

E C 'xlj j' 15 j ,< ha>

and 4X14 x2 > > appears Mw - m(x,) + 1 times.

suppose

To compute fW(xl,x2)

+J = (al’az’*a*‘aL% )
and

z&x2) - (bl,b2,...,bLMw
Then fw(xl,x2) = 1 iff there is an integer s, with 0 < s <

Mw , such- -
that

a.
J + bJ = O

(mod d); sL + 15 j < (s + 1)L-
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A separate circuit will determine if this is so for each possible such

value of s. The first stage of the circuit for a fixed s will contain

elements each testing Lr/2J of the aifs and p/2J of

the hi's to see if their pairwise sums modulo d are all 0 (if

Lr/ZJ does not divide L the last element will test less than rL @.I
pairs). If the sums are all 0 for a given element, its output will be

1. Otherwise its output is 0. A fan-in of elements having output 1

iff all inputs are 1 and each having at most r inputs comprises the rest

of the circuit for the given s. This fan-in has depth ~ogr~1/Lr/2J)~~m
These circuits yield MW outputs at least one of which is 1 iff

f(X1’X2)  (2 w* An additional fan-in of Fogr%] stages will determine,

whether any of the values are 1 or not. Thus the time to compute fw

is as claimed. 1

Definition 2.3. Let @ = (W,,W,, . . ..W.) be a family of subsets of Y.

Then W is said to be complete if

{ 'i
: y1 c wi

I {
= wi : y2 c wi

1
,=>Y1 = y2

By repeated application of lemma 2.2 we obtain

Theorem 2.4. Let f : Xl x X2 -+ Y, u be a complete family of subsets

of Y, and ~~ be as in lemma 2.2 for each Wi E U. Then there is.
a (d,r) i'circuit to compute f in time

Proof.

The theorem follows from the completeness of w, since if we then
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compute
fwi

for each Wi e w in the manner of lemma 2.2 we have effectively

computed f in the time given above. 1

We now have a general method to compute any finite function

f: x1 x x2 + Y given a complete set of subsets of Y. One can always--

in principal at least-- find the complete set of subsets yielding minimum

computation time under our scheme. It is felt that the set of functions

rfW : W s Y) related to an f : Xl x X2 + Y is a basic class, since if

C is a (d,r) circuit having minimum computation time over the class of

(0) circuits computing f, then there is another (d,r) circuit C'

computing f in the same time each of whose output lines is the value of

fW for some WC Y. This is simply because if d = 2 each output line

already computes fW for some W & Y; whereas otherwise we can replace

the element whose output is the j th output line by _< d elements--the
ith having output 1 iff the original element had output i - 1 and

otherwise having output 0.

Thus we have ma,de explicit that to compute a finite function as quickly

as possible we must be able to compute some functions of this special class

in the least possible time. The problem, of course, is to determine which

functions of the special class to choose, reminding us [Ref. 1, Example

2.81 of the vital role played by coding in affecting the computation

time.

Example 2.5.

Let G be a group and let f : G x G -+ G be group multiplication.

Then a complete set of subsets of G is e.g., the right cosets of sub-

groups KyK2.’. ..) Kn where
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:K
i=l i

= (4

For a given coset W = Krg and a given h E G

%I( )h = XCG: hx E Krg = h-lK,g

Bw( )h =
1
xeG: xh c Krg = K,gh-'

C,(h) = 1
xeG: Aw( )x = Aw( '}h = h-lKr

DW(h) = XEG: Bw( )x = 4.h )}h = hg-lKrg

Note that NW=Q=l. Thus there is a (d,r) circuit to compute fw

in time

since cw = I GI /I Krl l The condition for decreasing the argument in the

inner brackets from /cwl + 1 to c, is satisfied.

3. SEMIGROUP MULTIPLICATION

In this section we specialize the general method to computation of

multiplication in any finite semigroup. Use will be made of the concept of one-

sided congruences- -the natural generalization of a subgroup K of a group G.

The reader not acquainted with basic semigroup notions is referred to the

excellent book of Clifford and Preston [Ref. 21, or to Arbib [Ref. 31.

Let p be an equivalence relation on a set S. If a E S and b E S

are equivalent we shall write a&, and shall write [a] for the block

{b : apb] of S containing a

Definition 3.1. Let S be a semigroup with p an equivalence relation on

s. Then p is a right (left) congruence on S if aspbs (sapsb) for
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all s E S whenever apb.

In what follows we comply with the notation introduced in the preceding

sections where we now replace f : x1 xx +Y2 by the semigroup multiplication

sxs-+s.

Lemma 3.2. Let p be a right congruence on a finite semigroup S. Then,

if upv,

cw 0 =
J

cw (4
j

for all blocks Wj
of p. In addition for any t E S s 6) is

3
a union of blocks of p.

Proof.

If upv then uspvs, so that for any block W.
J of PJ

AW (u> = 1sES:USEW. =I 1 sES:VSEW. =
j J J‘I AN (4,

J

and hence cw (u> = cw b>.
j j

For any t E S and any block Wk of p, either

or

Wktnw. = jb
J

Hence s (t) = is
j

: st E Ws) is union of blocks of p. 8

Corollary 3.3. Let p be a right congruence, and let W. be a congruence
3

block of p. Let fw : S x S -+ {O,l) be
j
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3

fw b,b) = 1 if abeW
3 3

= 0 if ab # W
3

Let

M. =
3 k : Wk is a block of p and WkseW.

J

and let pI I be the number of distinct blocks of p. Then

a (d,r) circuit to compute fW in time where
J

7j?

In case there is, for any s E S, an element t E S with

there is

ts e w
J

then the value in the inner brackets is I Ip instead of loI + 1.

Hence there is a (d,r) circuit to tell which block of p

the product of two elements of S in time
7 =
P

is a congruence class of p

Corollary 3.4. Let S be any finite semigroup. Let

{seS:st = y]

{s E S : ts = y)

Then there is a (d,r) circuit to multiply in S in time

7 = l+ log
1

r

Proof.

+ min

contains

Let p be the right (and left) congruence each class of which is a

single element of S. I

44



Of course this is not, in general, the congruence to choose to minimize

computation time in S, e.g., if S is a group [Ref. 1, Thm. 5.61.

Corollary 3.5. IJet P1’Pp’-‘Pn be a set of right and left congruences

on a finite semigroup S which have the property that

apib; 1 < i < n iff a = b

Then there is a (d,r) circuit to multiply in S in time 7 where

7 = max 7
1 1oi

and each T
oi

is as defined in corollary 3.3.

Proof.

The set of blocks of the congruences form a complete collection of

subsets of S. i

It is not, in general, obvious which congruences to choose to minimize

computation time. Corollary 3.4 gives an upper bound in computation time

necessary for a given semigroup S. One would usually expect to be able

to do better.

The rest of this section gives methods for some important special

classes of finite semigroups.

Definition 3.6. A semigroup S is cyclic if there is an element a such

that

s = ak :k>l; k an integer

If S is finite there are minimal integers m and n [Ref. 2, p. 191

such that
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k+na = ak k>m

We call m the index of S and n is called the period of S.

Definition 3.7. Let a(n) be the largest prime power factor of n;

let Qm = lcm(l,Z,...,m}; and let r(N) = min{m : QmL N). Then

we have

Lemma 3.8. Let S be a cyclic semigroup of index m and period n,

i.e., S = (a). Let

72 = kogrP [logdr( p+.a..)j

73 = [10gr2rogd(i(m ; "'J + l)j\

Then if C is a (d,r) circuit which computes b : S x S + S,

where b is multiplication in S, in time 7,

7 2 max{71,rg,73}

Proof.

That 7 > max(Tl,z2) follows from previous results of [Ref. 11 and-

the fact that C must be able to multiply in the cyclic group of order

n and to add two numbers between 0 and I(m + n - 3)/zj/z. This is SO

because both these operatioils constitute the function b restricted to

a subset of S. To show 7 17
-th

3’
pick an output line, say the j ,

for which

hj(amB1) f hj(am+n-l)
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Then the set (a,&n+l9**.t a LCm-‘)/nJn+‘) is h
J
-separable in 'both arguments

of 4 [see Defn. 2.3, Ref. l] and we can apply lemma 2.5 of [Ref. 11, 1

By proper choice of congruences on S a circuit to multiply in S which

is very often near the lower bound can be constructed.

Lemma 3.9. Let S = (a) be the cyclic semigroup generated by a which

has index m and period n. Then, for any d 12 and any r > 2,

there is a (d,r) circuit to multiply in S in time ?, where

Proof.

Let PlJP2, . . . . pk be the distinct primes dividing n, so that

'1 '2 'kn = P1 P2 l -Pk

Define congruences pl,...,ok on S such that

S.
+a

V iff u - v (mod pil)

and a congruence X on S such that

V
au?+ iff u = v or u>m- 1 and v>m-1

Then the blocks of these congruences form a complete set of subsets of S.

The congruence class of the product of two factors being multiplied can

be computed in time
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for congruences and in time

for the congruence X. This and

and corollary 3.5. I

. r.
lagdPil111

the lemma follow from corollary 3.3

This circuit is close to the lower bound time if m is not too much

greater than

mx 4n),r L(
1 1

M + ng- 3)/Y], p+j + q

The reader can convince himself that this condition;is  satisfied quite

often.

We shall now treat another very important class of semigroups.

Definition 3.10. Let S be a finite semigroup. An ideal A is a sub-

set of S such that SAS C A.- A left (right) ideal is a subset A

such that SA GA (AS GA). A semigroup is called simple if it contains

no proper ideals and is left (right) simple if it contains no proper

ideals.

Use will be made of Rees's elegant structure theorem [Ref. 2, p. 901 for

simple semigroups.

Definition 3.11. Let G be a group and let I and A be arbitrary sets.

Let P be a matrix of elements of G with IAl rows and 1 II columns.

Then q(G;I,R;P) is the set of elements of the form
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( 1a iX : a E G, ieI,Xeh

With multiplication given by

it is said to form a Rees matrix semigroup. P is called the sandwich

matrix.

Theorem 3.12. Let S

to the Rees matrix

be a simple semigroup. Then S is isomorphic

semigroup ,CC(G;I,A;P) for some group G sets

I and A, and sandwich matrix P.

Proof.

See [Ref. 2, pp. 91-991. I

Left and right ideals of a(G; 1,A;P) are easily characterized.

Lemma 3.13. Let s =~(G;I,A;P) be a Rees !natrix semigroup. Then any

left ideal of S is the form

Lx = (a)ix : i e I, a E G

and any right ideal is of the form

Proof.

Pick any s E LX and any t E S. Clearly ts E Lx. Conversely,

given any (a&(b). E Lx then (ba-l(p,i)-l)j,(a)ih  = (b)JX jh
for any

o E A, i.e.,

Sa = Lx
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so there are no smaller left ideals. Right ideals are dually

characterized. 1

Definition 3.15. Let K+ . . . . Kn be subgroups of a group G. Then they

are said to be a complete set of subgroups if

AKi = (4
i=l

Definition 3.16. Let G be a finite group. Then, if G L {e) or G

is a cyclic p-group let 6(G) = 1. Otherwise for a E G - (e).

Let

E(a) = max{lKl : K < G and a # K)

6(G) = min @(a))
acG-(e)

It is clear from these definitions that any finite group G possesses a

complete set of subgroups whose minimal order is 6(G).

Lemma 3.17. Let S =A(G;I,A;P) be a finite simple semigroup. Then,

for any r > 2 and any d > 2 there is a (W circuit to compute- -

b : sxs-4, where b is semigroup multiplication, in time equal

or less than where

Proof.

We shall show that there is a (d,r) circuit to multiply in S in

time

50



and the result will follow by symmetry. For an element (a)ix E S let

G((a)ih) = a be the G-index of (a)ih

i be the I-index of (a)ih

't(')iJ = X be the A-index of (a)ix

Multiplication of left factor (a)ix and right factor (b).
JCL

yields an

I-index i and a A-index ~1 which can be obtained in time 0 by feeding

them straight through to the output. This amounts to considering trivial

congruences, say X and p, where two elements are X-equivalent iff

they have the same A-index and are p-equivalent iff they have the same

I-index. Thus it only remains to show how to compute the G-index of the

product of two elements in S.

Let K be any subgroup of G and, for any g E G, let

Kg = {s E s: G(s) E Kg)

Following the terminology introduced in Section 2 we shall show that f
Kg

can be computed in time at most

The result will then follow from the fact that the same can be done for

each coset of a complete set of subgroups KKy*., n having order at

least 6(G). Simple computation yields the fact that
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Thus

Ceil) = {(C)sg E S : $aolK = pii~-~K ‘Jj E: I}

Hence there is at most one element of C for each distinct pair of
Kg*

elements of

i.e.,

Also, for any (b) jv E S and a fixed value of X E A

This set is a subset (not necessarily proper) of some element of e
Gi*

Thus

The inequalities plus lemma 2.2 yield the result. f I

Corollary 3.18. If S =,k((G;I,A;P) is left-simple, right-simple or is

a group, there is a (d,r) circuit to multiply in S in time

fThis is an instance where our method is not optimal. It can be shown that

there is a (d,r) circuit to multiply in S in time

T = 2 + ~ogr~(l/lr/2])logd~~l/~(G~~ + kogrmin(l~I  ,IAI il. However, the

difference is lisually small.
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for r>2 and d>2.

Proof.

By lemma 3.13 S is left-simple if IA] = 1, right-simple if

I II = 1 andagroupif 111 =IA~ =l.I

Note that by [Ref. 1, Thm. 4.81 the lower bound below is valid.

Lemma 3.19. Let s =M-(G;I,A;P) and let C be a (d,r) circuit to

multiply in S in time 7. Then

Proof.

C must be capable of multiplying in G by a trivial recoding of

inputs. I

We close with mention of a special case of simple semigroup multiplication.

Example 3.20.

Let S =A(G;I,A;P) be simple and let P have the property that

p, 2 = ¶,r,
AJ A J

Then one can multiply in G in time

T = 1+

Vi.eI,xeA

using the group multiplication circuit of [Thrn. 3.6, Ref. l] and recoding

a left factor (a) ih as aqx and recoding a right factor 0jp
as r.b.

J
Note that the three cases of lemma 3.17 are special cases of this example.
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IV. PRELIMINARY RELATED RESULTS AND SUGGESTIONS FOR FUTURE WORK

1. INTRODUCTION

In the preceding chapters we have given results concerned with

computation time of finite functions. This is only one complexity criterion

of interest. Another would be the necessary fan-out of a (d,r) circuit

rapidly computing a finite function. Though we claim no significant results

here, we do have several preliminary results which we present in the next

section. The final section gives conclusions and some suggestions for

further work.

2. THE NUMBER OF OUTPUT LINES IN A CIRCUIT COMPUTING GROUP MULTIPLICATIOfi

Given a finite group G having a complete set of subgroups IKilJ

the methods in Chapter II can be applied to yield a circuit C to

mlJltiply in G having computation time

11
It is of some interest to ask which choices of a complete set of subgroups

will minimize the number of output lines of the corresponding circuit.

Note that, for any subgroup K < G it is only necessary to answer the

coset membership question for I GI /I KI - 1 of the cosets--the membership

question for the remaining coset then being automatically answered. Thus,

for a complete set s( = {Ki) of subgroups of G a circuit with

output lines can be constructed which performs multiplication in G.

Definition 2.1. Let G be a finite group and let K be a complete set



of subgroups of G. Then the quantity

c.(t$+)
KiEK

is called the index of K in G.

Definition 2.2. Let K be a subgroup of a group G. Then K is called

intersection generable if there are subgroups A and B which properly

contain K for which

K = AfIB

Not all subgroups are intersection generable, e.g., for a prime p, any

subgroup of Z
P3

of order p is not. Similarly a maximal subgroup of

any group is not intersection generable. A surprising fact is

Lemma 2.3. Let G be a finite group and let K be a complete set of

subgroups of G. Then, if J( is a complete set of minimal index in

G, there is no K e K which is intersection generable.

Proof.

Assume there is some K E K with A > K and B > K for which

AnB=K. Then, since A and B each contain at least two cosets of K,

1 Al > 21 KI ; 1 BI z 4 KI

so that

Clearly (K - {K))U{A,B) is also a complete set of subgroups of G;

and, by the above inequality, it has index less than the index of X.1
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This lemma should provide a tool for the determination of a minimal index

complete set of subgroups of a given finite group G. It does, ill fact,

if G is abelian.

Lemma 2.4. Let G be abelian. Then a subgroup K < G is intersection

generable if it has order less than 8(G).

Proof.

Let ]K/ < 6(G). Since K is abelian it can be written as a direct

product of prime power cyclic groups

K = Wlx... XWt

NOW (see lemma 4.10, Chapter II) since 1~1 < 6(G) there must be at

least two of these groups contained in larger cyclic p-subgroups of

G, say Wr < Zr and W < Z . Then
S S

K = (Wp... XZ x... xWt)n(Wlxr . . . x zs x . . . x wt>

so K is intersection generable.1

Lemma 2.5. Let G be abelian and express it as a product of cyclic

p-groups

G = Zlx... XZn

Let (Ki] be a complete set of subgroups of G. Then, if 1 < i < r,- -

there is some K; E J( such that

KiO((el] x {e,] x . . . x Zi x 00~ x [en]) = (e]

where e is the identity in G and "j is the identity in Zj (15 J 5 n).
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Proof.

Let Vi = {el) x (e,) x . . . x Zi x . . . x (en). Then, since Vi is
r.

a cyclic group, say V.I I
m

1 = Pi', it has only one group of order p i
for 1 < m < ri [Ref. 1, p. 551.- - Thus, if the lemma is false, the sub-

group of Ki having order pi is contained in every K N, contradicting

the completeness of K.[

Noting the fact that 3( is complete if, for all 1 4 i < n, it contains one

subgroup Ki such that Kif7Vi = (e}, and using lemmas 2.4 and 2.5 we have

Theorem 2.6. Let G be abelian with

G = Z1x...xZn

where each Zi is a cyclic p-group. Then a complete set of sub-

groups having minimal index in G is

x = {(e,} x Z2 x . . . x Zr,Zl x (e,) x . . . x Z n,..., Zl x . . . x Znml x {en))

Hence, for any abelian group G, a (d,d circuit constructed

according to lemma 5.5 of Chapter II with the minimum number of out-

put lines also has minimum computation time for this class of network.

We thus have the, perhaps not very surprising, fact that the best such

circuit--both i'rom the standpoint of computation time and from the stand-

point of number of output lines --is one which multiplies in parallel&n each

maximal cyclic p-group Zi.

It is unfortunate that, to date, we have been unable to determine a

method to construct minimum index complete sets of subgroups for arbitrary

finite groups. Given a complete set, however, one can always look for

intersection generable subgroups within it.
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We close with a special case in which a method of circuit construction

different from that of Chapter II can decrease the number of output lines.

Lemma 2.7. Let G be a finite group having a cyclic subgroup H of

order d. Then there are maps z1 and z2 from G into ZNd'
where N = rl'gdG], such that if a E G is fixed and x E Ha then

z&g-lx) = Z,(X) - z,(g) for all g e G

where equality is componentwise modulo d.

Proof.

Let {c,,...,c,) be a set of right coset representatives of H in

G, M = I Gl /I HI ' Choose elements vl, . . . . vM of Zi such that no two

differ by z for any k e Zd, where k is the vector of all k's. Let

b be any generator of H. Then any g E G is uniquely representable as

Q = bkcja

Define

zl(bkcja) = k + V.
J

To complete the proof, it is only necessary to show that z 2 can be

consistently defined as required in the lemma statement; i.e., that if

-1 -1
gl x1 = g2x2 xl,x2eHa

then

qx1> - zlkl) = “l(Xal - zl(gz)
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But

-1 -1
glg2 = xlx2 = bS; some sczd

Hence

zl(gl) - z1(g2) = zl(xl) - “l(x2> = s 1
It is this lemma which implies the existence of a (d + 1,r) circuit

to multiply in G with computation time possibly somewhat higher than

the least attainable, but sometimes having less output lines.

Theorem 2.8. Let G be a finite group having a cyclic group H = (b)

of order d. Then there is a (d + 1,r) circuit which computes

multiplication in G in time

having

Proof.

/! 1H output lines.

Define 9, : GxG-+Zd+l by

k ;
Yfa(gl'g2) =

glg2 = bka, k E Zd

d ; glg2 # Ha

It suffices to show computability of Jr, in time 2, since a similar

function can be computed for each left coset of H. Define z1 and z2

as in the above lemma where, with no loss of generality, we take z,(a) = 0.

Thence zl(bka) = k. To compute qa(gl,g2) the first stage of the circuit

inspects q&g and z2(g2) comparing them componentwise with

b/Lr/zJ [logdl GUI elements. An element has output k iff all pairwise
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sums are k modulo d. Otherwise the element has output d. All out-

puts are k .iff kglg2 = b a. This can be determined in time

p"gr ~/Lr/i_l p"gd! G!ll] by a fan-in of elements with at most r inputs.

That the number of output lines of the circuit is as claimed is true since

this is the number of cosets of H in G.1

Example 2.9.

Let G = Z
Pn'

Then there is a bk + Q-1 circuit to compute multipli-

cation in G, where k isany l<k<n, in time

with pn-k output lines. From previous methods we would obtain a (pk + 1,r)

circuit with computation time the same but having pn - 1 output lines.

3. CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

The main contributions of this thesis have been lower and upper

bounds on the computation time of finite functions. The method of deriving

lower bounds has been to find the largest possible separable sets for a

specific function or class of functions and then to apply the basic lemma

of Chapter II. Upper bounds have been derived by constructing (d,r)

circuits to realize the computations of interest. An immediate consequence

of a remark of Winograd's in [Ref. 21 is that, given finite sets X1 and

X2' any function f with domain Xl x X2 is computable by a (d,r)

circuit in time k"gdl '11 ! ‘211 T;'grd] + [lo+ogd/ '11 1 '2,,1 and that

furthermore given any B > 0, there is an N such that, if I Xl! 1x21 > N,
then the percentage of functions on Xl x X

2 computable in less time is

less than e. As he further remarks his (and our) method of deriving lower

bounds never yields a bound greater than
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much less than [logdIXl! Ix~!] [log,dl in general. Thus it follows that

techniques used here cannot yield tight lower bounds except for a few

functions.

One class of functions for which the lower bound given here is tight

is group multiplication f : G x G + G for a finite group G. One might

ask what special property group multiplication posseses which most functions

do not which causes it to be computable so much more quickly. A charac-

teristic of such an f : G x G + G shared by very few finite functions

is that, given a,y t: G there is one and only one x E G such that

f&x> = y and one and only one x' e G for which f(x',a) = y. Let

us recall Chapter III and choose g : X x X -+ Y1 2 to be any finite function.

If we now select {{y) : y e Y)) as a complete family of subsets of Y

we note that the computation time for g of the circuit of lemma 2.2

is the sum of 1 + [logr[l/Lr/2Jrlogd!  ~Jll (i = 1 or 2) and a term

dependent logarithmically upon the maximum number of solutions for any

y E Y either of g(x,,*) = y or of g(*,x,) = y. Hence the two terms

which determine the computation time have dependencies analogous to those

at the two terms giving the maximum computation time for any finite function

with domain Xl x X2. The singly logarithmic dependent term vanishes for

group multiplication but is dominant for almost all functions.

The above remarks indicate a way in which the general method of Chapter III

gives a heirarchical classification of all functions with a given domain

and range. At the bottom of the heirarchy are functions such as group

multiplication, which are invertible. Nearer the top of the heirarchy

of functions from x1 x x2 + Y would be, e.g., an f : Xl x X2 + Y in

which for some x1 EX1' x2 CX2 and yl,y2 E Y both f(xl,*) = yl and
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1 �( l ,x2) = Y2 have many solutions. Furthermore, a similar heirarchy is

established by any choice of a complete family of subsets of Y, A little

thought reveals that invertible functions would be at the bottom of this

heirarchy also. There is clearly much more research to be done pursuing

these questions further, since we do not as yet even know, e.g., what

complete family of subsets of the range of a function allows its computation

in minimal time except in special cases.

Some remarks regarding parallel computation in general are in order.

It appears that our methods allow rapid computation of the expense of

much breadth, i.e., many elements and output lines. Indeed this is often

true. On the other hand it is sometimes possible to attain the lowest

possible computation time while concidentally minimizing elements and

output lines, e.g., there is a (2,2)
ncircuit to multiply in Z2 with

n output lines and computation time T = 1. In any event it should be

investigated for what functions it is absolutely necessary to increase

breadth in order to decrease computation time and similarly it would be

of interest to know for what functions one must tolerate large computation

time to achieve minimal breadth.

Finally, we note that no restrictions have been made as to the input

codes we have used and that the only restriction upon the output code

has been that it be 1 - 1. It would be useful to further investigate

properties of (d,r) circuits with specific input and output codes, e.g.,

we might want to multiply in a finite group G and have both input and

output codes be the same or to add two n bit numbers using binary

arithmetic. Much information relevant here is implicit in the basic

lemma of Chapter II, but many questions remain unanswered.
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