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ABSTRACT

The classical reliability model for N-modular redundancy

(NMR) assumes the network to be failed when a majority of modules

which drive the same voter fail. It has long been known that this

model is pessimistic since there are instances, termed compensating

module failures, where a majority of the modules fail but the network

is nonfailed. A different module reliability model based on lead

reliability is proposed which has the classical NMR reliability model

as a special case. It is shown that the standard procedure for altering

the classical model to take compensating module failures into account

may predict a network reliability which is too low in some cases

and too high in others. It is also demonstrated that the improved

model can increase the predicted mission time (the time the system

is to operate at or above a given reliability) by 50% over the clas-

sical model prediction for a simple network.
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INTRODUCTION

New system designs for reliable computers must be explored

to meet the increasing demand for reliable computing systems. In

order to select one design approach over another a method of compari-

son must exist. One important method of comparison is the modeling

of the system reliability.

Modeling requires a mathematical or physical representation

which incorporates the salient parameters of the modeled system [l].

A model is an incomplete representation of the subject under study.

To be of value, the modeling technique must be convenient to apply

and must successfully predict the behavior of the subject under various

parameter changes. If a reliability model is accurate, then insights

can be gained as to how the system reliability changes as a function

of the design parameters.

A modification to the classical reliability model for N-

modular redundancy (NMR) is presented and demonstrated to increase

the predicted mission time (the time the system is to operate at or

above a given reliability) by 50% for a simple network.
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THE PROBLEM- -

NMR [2] is implemented by dividing the nonredundant network

into modules, replicating the modules N times (where N = 2t + 1 and

t is an integer), and inserting a majority gate between each set of

replicated modules. Figure 1 depicts the implementation of a triple

modular redundancy (TMR) version of a multiple input, single output,
.

nonredundant module. TMR will be the major topic of discussion,

although the procedures presented have straightforward applications

to the general case of NMR.

Classically the reliability of the network in Fig. 1 is

modeled by assigning the modules a reliability function, call it Rm (t),

or R with time as an understood variable. The probability of module
m

failure is thus 1 - Rm. It is then assumed that the system fails

when two or more modules driving the same voter fail. For example,

under this assumption there are four cases of module failures for

which the network of Fig. 1 does not fail: 1) no module failures,

2) only module one fails, 3) only module two fails, and 4) only

module three fails. Summing over all four nonfailure situations

yields the following reliability model:

R3m + 391 - Rm)

However, even though a module fails, the function it realizes

at its output may be very different from the function realized by some

other failed module. Thus a majority of modules could fail but the

system not fail since at any given instant of time the majority of

(1)



Fig. 1. Classical triple-modular redundancy
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module outputs are in the correct state. And, in fact, there are a

substantial number of cases for any given module such that the network

could still realize its designed function even though two or more

modules in a trio, such as Fig, 1, are considered failed under the

assumptions of the classical reliability model. For example, consider

two failed modules for the network of Fig. 1. Assume module one has

a permanent logical one on its output while module three has a

permanent logical zero output. The network will still realize its

designed function since the nonfailed module, module two, (whose

output can take on one of two states, logical one or logical zero)

and one of the two failed modules will always be in agreement for a

given instant of time. The voter will thus always see a majority

of inputs with the correct value. Such multiple module failures

which do not lead to network failures will be termed compensating- - -

module failures.

Adding these double, and even triple, module failure cases

can often lead to a substantially higher predicted reliability for

the same network than for the classical reliability model. With a

better reliability model some systems previously designed may be

found to be overdesigned for their specific mission because an inade-

quate reliability model was used. Both in the realm of aerospace,

where weight and power consumption are critical quantities, and the

commercial world, where the dollar is king, such overdesigns are to

be avoided.

Module Failure Model

Research in the area of testing and diagnosing combinational

and sequential logic circuitry has relied heavily on the logical

stuck-at-fault model [3]. This model assumes that most or all
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failures of interest in a logic circuit manifest themselves as some

line in the circuit taking on a constant logical value, either one

or zero. Now that algebraic structure which applies to the behavior

of networks in the presence of stuck-at faults has been developed [3],

the tools are available to formulate and analyze a new module relia-

bility model.

The new model will assign a reliability function to each

lead in the network rather than each module as in the classical

model. Lead reliability will be represented by R and the probability

of lead failure by 1 - R.

Much has been written in defense of the stuck-at failure

model [3] but a few words will now be devoted to justification of the

lead reliability model. In one study of IC failure mechanisms [4] it

was found that about 5@7$ of the IC failures were directly related to

lead failures, either input leads or metalization on the chip itself.

A more recent study also developed a 50% [5] figure while yet another

survey [6] indicated that 847O of the IC chip failures were directly

related to some form of lead failure. What remaining proportion of

the failures could be modeled as lead failures is an area for further

research.

Similar to the classical model assumption that module failures

are statistically independent events, it will also be assumed that

lead failures are statistically independent. If the major source

of IC failures after the production line testing and initial burn-in

period are associated with package leads or chip metalization, or can

be modeled as lead failures, then this model is very appropriate.

However, data on IC failure mechanisms and their logical effect is



6

difficult to find in the open literature and this is an area for

future research. Once the failure mechanisms are understood, failure

and reliability models can be developed. A further advantage of the

lead reliability model is that it takes into account the increased

number of interconnections required for the massive redundancy version

of a nonredundant system. Wiring errors and off-chip interconnections

then may be the major source of failures.

The reliability model will now be formally presented. Figure

2 shows circuit schematics for a DTL and TTL gate. The block diagram

divides a logic gate into a common part and branch input parts. The

portions of the DTL and TTL gates to the left of the dotted line

represents the branch parts of the gates, that to the right the common

part. This is similar to the gate model used by Jensen [7]. If

lead failure is the primary failure mechanism (through bounding or

solder failures), the branch and common parts could be assumed to be

perfectly reliable. If not, the branch part reliability (such as a

diode failure in the IYIL gate) would also be a factor in R. Further-

more, the common part reliability would be a factor in all the

reliabilities of the leads the gate feeds.

One further assumption will be made. It will be assumed

that the reliability of a lead can be represented as a sum of the

reliabilities that the lead is not failed in a logical stuck-at-one

(s-a-l) mode and that the lead is not failed in a logical stuck-at-

zero (s-a-O) mode; i.e.,

Rlead = Rs-a-l + Rs-a-O

This model is not totally without precedence in the literature.
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Klaschka 183 calculates gate reliabilities as a function of the gate
common parts open or short circuiting. The gate reliability used by

Jensen [7] is a function of gate common parts stuck-at zero or one,
depending on whether the output transistor shorts or opens and the

logical representation of these failures in the logic technology used,

as well as branch part failures.

So as not to unnecessarily complicate the following formulation,

it will be further assumed that s-a-l and s-a-0 faults are equally

likely. Thus:

R s-a-l = Rs-a-0 = R/2

In practice this may not be the case and the modifications necessary

to the following algorithm will be obvious. In essence, Rs a 1 and- -

Rs-a-0 need only retain their separate identities.

Ascertaining the Effect of Compensating Module Failures on Reliability

Modeling

Previous reliability models for TMR networks have assumed a

module reliability Rm and have written the reliability of a simple

serial cell such as Fig. 1 with perfect voters as:

R 3
cell = Rm + 3$(1 - Rm)

Frequently (2) is rewritten to take into account the cases

where two modules can fail so as to have compensating effects at the

voter:



Rcell = R; + 3R;(l - Rm) 3-K (3 Rm) (1 - Rm )” c3:

The K in (3) is a probability formed by the ratio of the number of

ways in which, for a given cell, compensating failures can occur

divided by the number of ways any failure can occur. In the literature

[g] K has often been taken as l/2. The value of K equal to l/2 is

commonly arrived at by assuming a failed module is just as likely to

give an incorrect zero output as an incorrect one output. Of the

four possible output combinations from two failed modules (00, 01, 11, 10)

two, namely 01 and 10, are compensating module failures. Hence K I-

2/4 = l/2. That K = l/2 doesn't hold for some typical module types

is shown by example in the next section, Thus if K - l/2 is used,

(3) is no longer known to be a lower bound for cell reliability in
the general case and simply becomes a "good guess". Without a careful

analysis the choice of any K (except K = 0) casts doubts as to whether

(3) is a lower or upper bound.

9

All faults will be assumed to be statistically independent

permanent stuck-at-l (s-a-l) and stuck-at-0 (s-a-O) types I?].

Further, the modules are assumed to be irredundant so that any single

internal module fault will cause an improper output for at least one

set of inputs. Finally, it will be assumed that the cell has failed,

and thus the system has failed, as soon as it is possible for the

cell to give a wrong response to any possible input combination.

This excludes the situations where a cell fails but subsequent faults

within the cell restores the segment to proper behavior. For example,

consider a module consisting of a single NOR gate. If one module

had an output s-a-0 and another had an input s-a-l the voter would
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always see two or more zeroes and produce a constant zero output.

Now if the output of the second module became s-a-l (a second internal

fault to that module) the voter would follow the healthy signal since

the faulty modules cancel each other's effects. The system would now

be functional.

To model the faulty modules we will adopt the notation developed

in C31. We will now demonstrate the evaluation of the replacement for

the third term of (3); i.e., the case of two faulty modules in a TMR

cell.

1) Transform the logical circuit into the corresponding

logical model [3].

Consider Fig. 3 (a) where the module under study is a single

two input NAND gate. The logical model is a directed graph shown in

Fits. 3(b). It consists of a node for each network input and output in

addition to a labelled node for each gate.

2) Form the functional equivalence classes for

all single and multiple faults in the logical

model [3].

A fault is said to be functional equivalent to another fault

if and only if the output function realized by the network with only

the first fault present is equal to the function realized when only

the second fault is present. For example, the faults a/o (the

notation t/i means line %L stuck at logical value i) or c/l cause

the NAND gate to yield a constant one output. Thus a/o and c/l are

functionally equivalent. Table 1 shows the fault classes and their

members. Here ?, is the null fault and represents the fault free

network. The functional equivalence classes are assigned numbers

arbitrarily.
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(b)

Fig. 3. An example module (a) for the calculation of supplementary
classes and (b) its logical model.
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There exist certain combinations of fault functions which,

when processed by a majority gate, yield the same output function as

the fault free network. These combinations will be called supplementary

classes and their formulation will be illustrated under the next step

of the algorithm.

3) Enumerate the supplementary classes.

We will evaluate the replacement for the third term in (3);

i.e., the case of two faulty modules in a TMR cell.

Thus each supplementary class will contain three members,

one of which will be the fault free function. The majority gate can

be considered to be a threshold gate with input weights 1 and threshold

of 2 [lo].

In Table l(b) the Karnaugh maps represent the fault functions

for the faults A, a/l, and b/l respectively. The threshold map is

formed by summing the number of ones in each square of the Karnaugh

map (fundamental product) over all three maps. After applying the

threshold value of two we get the voter output function. We continue

to try all possible combinations of faulty function pairs until all

supplementary classes are formed. These are shown in Table 3(c) for

our example; the fault free function h (number 1) is implicitly a

member of each supplementary class when two out of three (4) modules

are faulty.

In the last step a matrix E is used to actually evaluate the

replacement for the third term in (3). Element Ei j of equivalence
9

class matrix E is the number of faults in equivalence class j (the- -

equivalence classes were assigned numbers under step 2) which are a

result of i leads in a module failing, where i is termed the fault

multiplicity.



Table 1. The (a) fault classes, (b) an example of the test for 13
supplementary fault classes, and (c) the supplementary
classes for the NAND gate example of Fig, 3.

Class

C - (AlFl -

5-2 = (a/l)

% = (b/l)

'F4 = (c/o;

a/l,c/O;a/O,c/O;a/l,b/l;

b/l,c/O;b/O,c/O;

a/l,b/l,c/O;a/l,b/O,c/O;

a/O, b/O, c/W/O, b/l, c/O)

‘F5
= {a/O;b/O;c/l;

a/l,c/l;a/O,c/l;b/l,c/l;

b/O,c/l;a/l,b/O;

a/O, b/O;a/O,b/l;

a/l, b/l, c/l;a/l,b/O,  c/l;

a//O,b/O,c/l;a/O,b/l,c/lj

#1 #2 #3
h 4 b/l

Fault Function Maps

x +Y Y x0 1

‘a
0 1
1 1

u XY 0 1b0 1 1
1

0 Y xo 1

h
0
1

Y xo 1

b
0 1 1
1 1 1

Threshold
Map

Voter
output

Function

f @,3) (2,5) (3,5) (4,5) ‘)
(32) (59) (5,3) (5,4)

(4
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4) Form the term for two faulty modules by use of

the equivalence class matrix E and the equation:

R~~,b~f~~d = (:) ~2 ( 1'2k ~1 'E e, i l Ek-e ,j'R3P-k(1-R)k

v i,j such that (i,j) is a
supplementary class (4)

where p is the number of leads in the module and k is the number

of line failures in the two failed modules.

The development of step 4 is best given by an example. The

equivalence class matrix for the NAND gate of Fig. 3 is derived from

the entries in Table l(a) and is shown in Table 2.

There are 3 ways to pick 2 modules to be faulty from a trio

which accounts for the factor of
0

2 in (4). The inner sum is the

total number of ways a total of k line failures in the two modules

can still leave a cell working. Consider the supplementary class

1:4,5)  for which E
174

= 1 and El,5 = 3.. Hence there are 1'3 = 3

possible failures of the two faulty modules due to a total of two

faults between the modules yielding the constant 0 function in the

first module and the constant 1 function in the second which result

in the NAND function after passage through a majority gate when the

other module is working. If the lead reliability is R, the probability

of a s-a-0 or a s-a-l is R/2. Since we only have two lead failures

out of a total of 3.3 = 9 in the three modules, double faults from

the supplementary class (4,5)  adds a term of

3 .02 l/22 l 1 3 l

R9-2 2
0-R)
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Table 2. The equivalence class matrix for the NAND gate of Fig. 3.

Equivalence Class

1 2 3 4 5

u
Number of
Failed 1
Leads

2

3

1 0 0 0 0

0 1 1 1 3

0 0 0 5 7

0 0 0 4 4
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to the reliability. The parameter k is the total number of failed

leads currently under consideration. For our example of two failed

NAND modules (4) becomes:

3O[(20/4)R7(1-R)2 + (72/8)R6(1-R)3  +
2

+ (96/32)R4(l-R)5 + (32/6'+)R3(l-R)6 1
The analogous equation to (4) for a single module failure would

be:

ROne failed = $ l/2k ' Ek i l R3P-k(l-R)k (5)
module 4k= l/f

The procedure outlined above is easily modifiable to handle

the case of three module failures. The sum in (4) would have an upper

bound on k of 3p and the inner sum would be a product of three

equivalence class matrix entries:

RThree failed =
modules

E l E
m? h e

:F-m
7 l

V h,i,j such that (h,i,j) is a
supplementary class

(6)

Also, it is readily extendable to other multiple line redundancy

techniques (NMR). In some instances Rs a 1 may not equal Rs a o. If- - - -

such is the case, then the equivalence class matrix and equations

(4,5,6)  will become more complicated since the faults must retain

some of their separate identities. One way to achieve this is to make
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the entries, E
i,j'

to the equivalence class matrix the probability of

occurrence of fault multiplicity i in class j. E would be the
i,j

sum of the probabilities of the i multiplicity faults in equivalence

class j. Equations (4,5,6) would become simpler, without factors in

R, (l-R), and 2
-k . In some logic families one type of logical stuck-

at fault may be much more likely than the other. If so, R s-a-i could be

taken as approximately R and the fault equivalence classes formed

by considering s-a-i type faults only. The comparison of this relia-

bility model with the one of (2) and (3) will now be undertaken.

Comparison of Module Dependent and Module Independent Reliability Models- - - - - -

If there are p leads in a module, then the module reliability,

Rm'
according to the module-dependent reliability model or fault

equivalent model just presented is Rp . For the case of fewer than

half the modules failing in an NMR network, the classical module-

independent reliability model gives a cell reliability of:

Rcell =
RN-i
m (1 - Rm )i

It will now be shown that the first N 2l/J terms of the module

dependent reliability model are identical to (7), the classical NMR

reliability model.

Theorem: The module dependent reliability model proposed above has

the same form as (7) for p/zJ or fewer module failures.

Proof: The probability of no module failures is (R' N I= RN) which ism

the first term of (7). Now for any number of module failures less

than or equal to L/JN 2 , there is still a majority of working modules

and any failure configuration of a failed module's lines would not

(7)
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cause system failure. So to complete the proof of the theorem, all

we need show is that the module-independent failure probability

(1-R ) is equal to the module-dependent cell failure probability.m
From (5) factoring out the term R2P which is the reliability

of two nonfailed modules and the 3
01 term since the failed module has

already been selected, the module-dependent failure probability

becomes:

P,
1 l/2keEk i l RP-k(l-R)k

k=l tr;

kPThe Ek i term, considering the cases for all i, is 2 k since there

are P'

0

0

k ways to select k failed leads from p. Each failed lead

may be in one of two failure modes, s-a-l or s-a-0, which accounts

for the 2k. Hence (8) becomes:

P

s 0
L (~-R)~R~-~

k=l

Adding and subtracting Rp from (9) yields:

RP+k ;
0

(l-R)k RP-k =
/,k=l

-Rp + (l-R)k RP-k

The binomial expansion formula is:

m

z()
; ⌧r  l Cm-� = (⌧+-c )�

l-0

Using (11) in (10) gives:

(8)

(9)

(10)

01)

-Rp +
Y
z 0

; (1-R) kRP-k = -Rp + (R + 1 - R)'

k=O ZZ -Rp +l
IZ 1 - Rm
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which is the probability of module failure using the module independent

reliability model.

q.r,.LJ.

Equations (2) and (3) with K -7 l/2 were plotted in Fig. “

for a four level tree network consisting of 15 NANII gates. Perfect

voters will be assumed to be positioned between all the cells in the

network examples presented here. The effect of nonperfect voters

can easily be included. However, it is more enlightening to assume

perfect isolation between cells since our primary aim here is to

compare the different cell models without getting into the question

of effects due to voter reliability. The module dependent reliability

model developed here which considers O,l,'-?, and 'J module failures is

also shown. Figure 5 shows the difference between the reliability

model developed here and (2) and (3).

For convenience, the following conventions will be adopted

for all the graphs now to be presented. In graphs displaying system

reliability the fault equivalent model will be plotted as lines with

a dash followed by a dot. The modified serial cell model (r,' will

be a solid line wh'le the serial cell (2) is represented by a dashed

line. For graphs depicting the difference in system reliability for

the various models,, the difference between the fault equivalent model

and the modified serial cell will be plotted as a solid line while

the difference between the fault equivalent model and the serial cell

model will appear as a dotted line.

For this case (3) is a fairly good approximation, although a

bit pessimistic. Figure 6 illustrates the mission time improvement

for the fault equivalent model over the serial cell model I'or the 1';

NAND gate tree.
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The modified serial cell model with K = l/2 will be demon-

strated to be pessimistic for some networks and optimistic for other

networks whose gates realize more complex functions than the elementary

AND, OR, INVERT functions. Since a reliability model which is

known to be a lower bound is more preferable than one whose behavior

is unknown, the serial cell model was used for Figure 6. A 50%

increase in mission time is obtainable by using the fault equivalent

model.

The reliability models for the same network realized in five

modular redundancy are shown in Figure 7 and their difference in

Figure 8. For this case the factor K modifying the three module

failure case is 6/8 which was arrived at by assuming the only way

for the network to fail was if all three failed modules agreed. If

all trios of outputs from the three failed modules are equally likely

then only 6 out of 8 do not lead to network failure. From Figure 7

we see that the modified serial cell model is not quite so good as

before for this extremely simple example.

Figure 9(a) shows the logic diagram for a simple tree structure

network and Figure 9(b) hs ows its logical model. The reliability

models are compared in Figure 10 and 11 for a TMR network consisting

of 13 of these cells arranged in three levels. K was selected as

112 in the modified serial cell model. At Rm = 0.90 the reliability

difference is 2.5% for the modified serial cell model (3) and 21%

for the serial cell model (2). Figure 9 illustrates an I of about

1.5 for this network.

Finally, Figure 12(a) depicts a four input exclusive OR

and Figure 12(b) displays its logical model. Figure 13 and 14 plot

the reliability curves for a 64 bit parity tree utilizing the basic
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Fig. 12. The (a) gate realization and (b) the logical model for a
four input exclusive OR.
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cell of Figure 12. While the modified serial cell model was pessi-

mistic in the networks previously presented, it is very optimistic

for the parity tree and K = l/2 can no longer be assumed to yield a

lower bound as is done in the literature. For Rm = 0.90 the difference

is almost 20%. This points out the serious error the modified serial

cell model could introduce if modeling IC networks whose basic cell

is a complex function and whose major source of failure is the input

leads.

The fault equivalence matrix is the computational bottleneck

for the fault equivalent (module dependent) approach. The calcula-

tional complexity, once the fault equivalence matrix is developed,
.

is bounded by (pgnF)' where p is the number of leads in the module,

nF is the number of fault equivalence classes, and i is the number

of failed modules under consideration. This is an upper bound since

P'nF is the number of elements in the E matrix and in the worst case

every element in each E matrix representing a faulty module will

have to be multiplied by every other element in every other failed

module E matrix. A formula for nF is given in [ll]. This upper

bound will normally be very pessimistic, For example, if two

modules consisting of the two input NAND gate of Figure 3 were to

fail, the upper bound predicts (2#5)2 = 100 multiplications when

only 36 actual multiplications are needed.

In the module independent approaches, a reliability function,

Rm' for the module was assumed. Rm must in turn be calculated. The

fault equivalent model combines the computation of R with the computa-m

tion of the system reliability. In fact, the same lead failure

model might be used in developing Rm in the module independent approach.
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Currently, research is underway to calculate the number of

equivalence classes for an arbitrary network [ll], The task of developing

the E matrix could also be aided by research into the size of

equivalence classes. Also note that not all faults need be explicitly

listed since some faults dominate other faults [12]. Consider faults with c/O

as a component (such as a/l,b,/O,c/O) that will realize the same fault function

as c/O. The number of triple faults realizing the constant 0 output

function is rapidly calculated as 2.2 = 4 since line a can be stuck

at either 0 or 1 without affecting the output function and likewise

for line b. Another way to cut down the computation is to consider

only single line faults. This yields a slightly pessimistic relia-

bility prediction since it assumes the only way a module can fail is

via a single line stuck-at fault. Yet it may be entirely adequate

for the desired application, especially if the line reliability is very

high. This latter condition should hold for most cases.

CONCLUSIONS

We have seen that the classical model for modeling the

reliability of multiple line redundancy techniques may be inadequate.

The use of the fault equivalent model could produce a more accurate

prediction of system reliability over wide ranges of module relia-

bility for complex networks. The new module dependent reliability

model could be of increased importance to the network designer if

the majority of IC failure mechanisms become representable as line

failures.
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