SU-SEL-72-034

Adaptive Design Methods

for Checking Sequences

by
Raymond T. Boute

July 1972

Technical Report No. 30

This work was supported by the
National Science Foundation under

Grant GJ-27527

DIGITAL SVSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY - STRANFORD, CALIFORNIR

SEL-T72-034

ADAF' TI VE DESI GN METHODS FOR CHECKI NG SEQUENCES

by

Raynmond T. Boute

July 1972

Techni cal Report No. 30

DI G TAL SYSTEMS LABORATORY
Department of Electrical Engineering Departnent of Conputer Science
Stanford University
Stanford, California

Research reported in this paper was supported by the National Science
Foundati on under grant GJ 27527, and while M. Boute was partially
supported by the Nationaal Fonds voor Wetenschappelijk Onderzoek of
Bel gi um

Adaptive design nmethods for checking sequences
by

Raynond T. Boute

Digital Systens Laboratory
Department of Electrical Engineering
Stanford University

ABSTRACT

The length of checking sequences for sequential machines can be
considerably reduced if, instead of preset distinguishing sequences, one

uses so-called "distinguishing sets" of sequences, which serve the sane

purpose but are generally shorter. The design of such a set turns out to
be equivalent to the design of an adaptive distinguishing experinent,*
t hough a checking sequence, using a distinguishing set, remains essentially
preset. This property also explains the title

Al machines having preset distinguishing sequences also have
di stinguishing sets. In case no preset distinguishing sequences exist,
most of the earlier methods call for the use of locating sequences, which
result in long checking experinents. However, in many of these cases, a
di stinguishing set can be found, thus resulting in even nore savings in
| engt h.

Finally, the characterizing sequences used in l|locating sequences can
al so be adaptively designed, and thus the basic idea presented below is

advant ageous even when no distinguishing sets exist

* By "experiment" we nean the application of sequence(s) to the machine

whil e observing the output. In some instances, the words "experinent

and "sequence" can be used interchangeably.

TABLE OF CONTENTS

Page
Abst ract i
Tabl e of Contents i
List of Figures P
List of Tables iv
I ntroduction 1
Preset Distinguishing Sequences and Distinguishing Sets 4
Preset Distinguishing Sequences for Checking Experinents 5
Di stinguishing Sets 10
Exanpl es 21
Concl usi on 30

Ref er ences 31

LI ST OF FI GURES

page
1 Design of preset distinguishing sequences for M ~ 8
2 Design of a distinguishing set for M 17
3 Optinal choice for a distinguishing set 19

4 Design of a distinguishing set for M, 27

LI ST OF TABLES

Page
a. Michine M 7
b. Tabul ar Equivalent of Fig. 1 7
a. A Distinguishing Set for M and corresponding responses 11
h. Deconpositions for the sequences of the distinguishing set
in (a) 12
a. State-output table 14
h. Distinguishing set D 14
Tabul ar Equivalent of Fig. 2 18
a. State identification for M 21
b. Situation before transition verification 22
c. Transition verifications 22
Transition check status table corresponding to Tables
5(b) and (c) 23
a. Mre efficient checking experiment for M 24
b. Transition check status table corresponding to Table 7(a) 25
c. Checking experiment for M wusing a distinguishing
sequence 25
a. State-output table for nachine M, 26
b. Distinguishing set for machine M, 26
Checki ng experinment for M, using a distinguishing set 28
Construction of locating sequences for M 29

2

INTRODUCTION

The concept of "experiments" on sequential machines [1] has led to
met hods for checking certain classes of machines against faults [2,4,5].
For strongly-connected (an essential requirement) and reduced (a simplifying
condi tion) machines, checking experinents consist, in principle, of three
parts:

(1) A synchronizing [2,3] sequence or, if none exists, a honing
sequence followed by an appropriate sequence to bring the machine
inagiven initial state. This latter sequence depends on the
state at the end of the homing sequence, and is thus always
adapti ve.

(2) ldentification of the states by means of distinguishing or, if
none exist, locating sequences. This is essentially based on
the assunption that no fault can increase the nunber of states
of the nachine.*

(3) Checking the transitions out of each state, again including
identification of the next states

Most often (2) and (3) are not really separate parts, but are designed

together: state identifications and transition checks are perforned
together in the checking sequence whenever doing so mght shorten the
final result.

Usual Iy, the distinguishing or locating sequences used for state

identification in a checking experinent are designed as preset [3]

¥ therwi se the procedure is nore conplicated and requires nmuch | onger

checki ng experiments.

experiments. Although a checking experinent is essentially preset (i.e
apart fromthe initialization, in case no synchronizing sequence exists),
it is possible to replace the single distinguishing sequence, that is used
for the identification of every state, by a well-chosen set of sequences,
each of which is "adapted' to the state that is being identified. It

turns out that the design of such a distinguishing set is equivalent to the

design of an adaptive distinguishing experinment [3].

The sequences in a distinguishing set are nearly always shorter, and
never longer, than the shortest preset distinguishing sequences. Since
state identifications have to be done very frequently during a checking
experiment, this results in considerable savings in the nunber of input
synmbols in the checking sequence

Furthernore, there are many nachines that have no preset distinguishing
sequence but for which a distinguishing set can be found. For such machines,
the use of a distinguishing set elimnates the need for (usually very Iong)
| ocating sequences and thus results in even nore inportant reductions in
length. The possibility of constructing short checking experiments for
machi nes with adaptive distinguishing sequences has been anticipated by
|. and Z. Kohavi in [7], although they did not further explore the under-
lying principles and the practical design aspects.

In section Il, we recall the basic ideas regarding preset distinguishing
sequences for later conparison with the use of distinguishing sets. W then
define the concept of "distinguishing sets" in a rigorous fashion and prove
that they can be used instead of preset distinguishing sequences. A sinple
design procedure is presented and the simlarities and differences with the
design of adaptive distinguishing experiments are pointed out, as well as

the advantages over distinguishing sequences. Finally, in section IIl, we

show by means of exanmples how to inplement these ideas in designing checking

experinments. The use of a transition check status table allows additional

short cuts in an algorithmic fashion, While in the past short cuts were
found in a rather "ad hoc" fashion. The use of a distinguishing set turns

out to allow more "tel escoping" than distinguishing sequences.

I1. PRESET DI STI NGUI SHI NG SEQUENCES AND DI STI NGUI SHI NG SETS

In this section we explain the basic ideas leading to the replacenent
of preset distinguishing sequences by distinguishing sets. The reader will
soon realize that the design of distinguishing sets is equivalent to the
design of adaptive distinguishing experinents, which are discussed in
detail by Hennie [3].

First we introduce some notation and basic definitions.

Not ati on

VW denote a sequential machine Mas follows [6]: M=<I,0,Q,8,\> Where
I, 0, Qare respectively the input, output and state sets, 6: QxI—-Q the
next-state function and \: Qxi—~0 (or @0 for More nachines) the out put
function. Further, |*= I+U{A}, where 17 is the set of nonempty finite
sequences of synmbols from | and A is the enpty sequence. Finally, we
extend 8§ and X in a natural way to sequences:

8 : QXI*Q, where §(q,x) is the final state of the machine, started

in g and driven by input sequence x.
A 1 @xI*0%, where A (q,x) is the response of the machine to x when
started in state q. For More nachines: T:Q)<I*—*O+.
Convention: 8{q,A)=q. A'so X{q,A)=A for Mealy and X{q,A)=\{q) for Moore
machi nes.

A preset distinguishing sequence for a machine Mis a sequence x € | *

such that X(q,x)=X(q',x) inplies q=q'.

In other words, the machine responds differently to x for each initial
state.

Only reduced machines -- but not all of them -- have distinguishing

sequences. However, all reduced machi nes have characterizing sets [2,3].

A characterizing set for a machine Mis a finite subset € c1* such

that X(q,x)=r(q',x) for all x € Cinplies q=q'.
Usually, in case no distinguishing sequence exists, state identification

is acconplished by locating sequences, as explained in {2]. A locating

sequence (for a given state) is built from characterizing sequences and
includes repetitions to ensure that the circuit is in the same state each
time a new characterizing sequence is introduced for identifying that state.
VW will not discuss this subject in detail, since characterizing sets can
be redefined (and used)in essentially the same way as distinguishing sets

(to be defined later).

A Preset Distinguishing Sequences for Checking Experinents

Definition: For every x € |*, define a partition - on Q as foll ows:
a=q’ (ﬂ;) i ff X(q,E):{(q',;{_).

From the preceding definitions we inmediately deduce the follow ng
| enma:

Lemma: X is a (preset) distinguishing sequence iff = 0 (i.e. each

bl ock is a singleton).
This lemma leads directly to a design procedure [3] which we explain

here for later conparison with the design of distinguishing sets.

Desi gn of Preset Distinguishing Sequences

W construct a tree-like directed graph, starting with x, and proceedi ng

A
| evel by level. The vertices are partitions of the formn;. Each Lo gets
ei t her ‘I| successors, namely the partitions e as i ranges over |, or
none at all: we do not introduce successors for i in case a partition

equal to o has al ready been encountered before, during the construction of
the tree. In this fashion, repetitions are avoided and the procedure

termnates after a finite nunmber of steps.

Di stinguishing sequences -- if any exist -- are then represented by

paths leading fromg, to some zero-partition,

A

For inplenentation it is easier to represent blocks of partitions o
by their state transformations under x, i.e. if (dy, q2,...qk} is a block
of m—, it will be represented by the block {6(aysx),...,8(qy,x)} during
the procedure. This representation is adequate for deciding whether or not
we reached a partition T = 0, provided no nerges occur for the sequence X.
By a nerge we nean that, for some 2 states gl # qy, We have T(q1,§)éf(q2,§)
and 6(q1,§)=6(q2,§). But since such sequences can never be an initial part
of a distinguishing sequence, the corresponding paths in the graph are
termnated as soon as a merge is observed. This is very easy to do when
using the representation just described, since then two different states
e.g. 6(q,x) and 8(q',x) are in the same block iff X(q,x)=x(q',x). |f sone
next input (after x) leads to a merge, this is imediately detected, and
for such an input no edge will |eave that block

The advantages of this representation become apparent in the follow ng
exanpl e.

Exanpl e

For machine ML, whose state-output table is given by Table I(a), the
design graph for preset distinguishing sequences is shown in Fig. 1. The
tabul ar equivalent, which is nore practical for conputer inplenmentation is
given in Table [(b). The three shortest distinguishing sequences are
100, 101, 110.

Bl ocks containing only 1 state are not represented. In case al
bl ocks are singletons (i.e. T = 0 and x is a distinguishing sequence) an

asterisk is witten.

TABLE1

(a) Machine M

state g i nput x
0 1
A B/O D/1
B Cc/1 b/0
C B/O A/1
D A/0 B/0O
8 (a,x)/A (a,x)
(b) Tabul ar Equival ent of Fig.
i nput bl ocks to be i nput;
sequences split 0 1
A ABCD -— AD, BD
1 AD, BD AB BD
10 AB * *
11 BD * BD

ABCD
YN
(A,C merge) AD, BD
0/ \
/
AB BD
YN YN
K - XK BD

Figurc 1. Design of preset distinguishing sequences for M, .

Application to Checking Seguences

Since the design of checking sequences IS discussed by Hennie [2] we
wi |l enphasize here only the role of distinguishing sequences. Thi's
di scussion is necessary in order to justify later on their replacenment by
di stingui shing sets.

We assune here that the good machine has a distinguishing sequence
Let N be the nunber of states. W also assunme that no faulty machine can
have nore than N states. (property 1)

A checki ng sequence is always designed in such a way that, after the
initialization part, the nmachine under test would be in a predeterni ned*
state Ay in case it were the good nachine. (property 2)

The checking part itself is constructed in such a way that it would
take the good machine, started in 4y at |east once through each of its N

states, and identify each of these states by neans of the sane

di stingui shing sequence x (yielding N different responses, by definition)
This allows to nmake the followi ng conclusions for the machine under
test, depending on its response to the checking sequence
(1) if the response is incorrect, the machine nust be faulty,
because of property 2.
(2) if the response is correct, we have obtained N different
responses to the same sequence. Together with property 1, this

inplies that there are exactly N (nonequivalent) states. This

further inplies that, in case the same response to the

* In this way, only one checking experinent has to be designed. Q her -
wi se, one would need several ones depending on the outcone of the

initialization

10

di stingui shing sequence x is obtained at different points of the
experiment, the circuit under test nust have been in the sane
state each tine.

The last statement in (2) forms the basis for the verification of
state transitions, since we can now identify each state unanmbiguously by

means of the distinguishing sequence x.

B. Di stinguishing Sets

Qur main purpose is here to replace the distinguishing sequence used
to identify the states by a set of sequences that are individually designed
for each state to be identified. The follow ng scheme is not the nost
general solution possible, but seens to be the easiest to design and
i npl enent

The initialization of the checking experinent is done in exactly the
sane fashion as explained before. Thus point (1) above is still valid
If we also want to obtain conclusions sinmlar to (2), based solely* on
observing the appearance of each sequence (possibly different for each
state) from the distinguishing set D, together with a correct response, we
can proceed as foll ows.

Definition: A distinguishing set 9 for a machine Mwith state set q

is a set of input sequences §i, one for each q; € Q such that for every

pair of (different) states a5 q.J € Qwe can wite:

x|
I
N

% This is one of the restrictions that nmake this schene not the nost

general one possible.

11

- - - . = = -
where the sequences Uijr Yigr 25 € 1* are such that x\qi,uij)ﬁ(qj,uij).

Remark: The double subscripts ij in the above definition enphasize

the fact that the decomposision of %, and §j into u's, y's, etc. may depend

on both a and Ay It is also easy to see that, for Mealy machines, the

definition inplies that the first input synbol be the sane for all ;iED'

This observation is the first step toward the design procedure described

bel ow.
Exanpl e
For the machine of Table 1, a distinguishing set is given in Table 2{a),

Further, in Table 2(b) we show the deconposition into u,y,z's.

TABLE 2

(a) A Distinguishing Set for M and corresponding responses:

state i nput response final state
q ;qG:D T(q,gq) é(q,gq)
A 11 10 B
B 10 00 A
C 11 11 D
D 10 01 C

12

(b) Decompositions for the sequences of the distinguishing set in (a):

93
A B C D
a4
A — 1,1,0 11, A, A 1,1,0
B 1,0,1 _— 1,0,1 10, A, A
C 11, A, A 1,1,0 _— 1,1,0
D 1,0,1 10, A, A 1,0,1 _—

ufJ:) yiJ’ %J
Theorem Let D be a distinguishing set.
If the machine under test responds to a given application of Ei €D
(at the input) by T(qi,Ei) and to Ej € D by X(qj,Ej), then the states
before these applications nust be different (assumng qi#qj).

Proof. W denote by X& the % function for the nmachine under test

Let the states of the machine under test be q resp. qg' before application

of Ei resp. XJ. Then XT(q,§i)£X(qi,§i) and X&(q',Ej)¥X(qj,§j). By

definition, there exists a common initial part Eij of ;i and Ej such that
'i(qi,‘ﬁij)ﬁgqj,‘aij). Theref ore XT(q,Eij);é‘xT(q',Eij) implying ofq’.
QED
Corollary
If an experinent is constructed using the same algorithm as for
desi gning checking experinents, except for the fact that each state qi is

identified by the corresponding Ei € D rather than by a fixed distinguishing

sequence, then the result is a checking experinment

13

Proof. In case the machine under test responds incorrectly to the
experinment, it is known to be faulty. In case it responds correctly, each
Ei € D has appeared at least once (with its correct response). Therefore
we know by the preceding theorem that there nust be at least N different
states. Since, by assunption, we have at nmost N states, the argunents
given for the checking experinents using a distinguishing sequence carry
t hrough.

QE.D.

Remar k

A distinguishing set should not be confused with a conpound

di sti ngui shing sequence [5] which is defined as a set of input sequences

G’:{El,;g,.. . ,;r} having a common prefix y but otherwi se unrestricted, with
the follow ng properties:

(1) For each block B of v there is an ':Zi € € that distinguishes the
states in B (i.e. given q,q' € B then X{q,x,) = X{q',x;) inplies
a=q').

(2) The deletion of any sequence from¢C will |eave some states in
some block B in g not distinguished by any ;i € C.

Al'though the definitions are conpletely different, we have observed

that for machines with only a few (up to L) states a distinguishing set D
satisfies at least property (1) in the above definition. This phenomenon
is purely coincidental, due to the small size of the partition blocks (this
can be verified by trying a couple of exanples). However, consider now a

machine with nore states, such as in Table 3(a). A distinguishing set is

shown in Table 3(b).

14

sequence to distinguish all states of ACDE is 1111 (or 1100). Thus no

* L —_— —
The longest common prefix is 1 and n; = BF, ACDE and the shortest

sequence §i € D can split up this block and D is therefore not a conpound

di stingui shing sequence

Construction of a distinguishing set

To illustrate the difference between a distinguishing set and

a conpound distinguishing sequence

(a) State-output table

(b) Distinguishing setd

state Oi”p”t L
A /0 | B/1
B B/1 | A/C
c B/1 | D/1
D c/o | F
E B/l | ¢/1
F A/0 E/C

state q Eq response
A 110 100
B 10 00
C 111 110
D 110 101
E 111 111
F 10 01

to the design of an adaptive distinguishing experinment [3].

*

Now we show t hat

It is easily seen that, the longer y, the smaller the bl ocks of e

the nore possibility to satisfy property (1)

the construction of a distinguishing set

of a G set

is simlar

and

15

(a) For Mealy Machines

As expl ained before, the first input x is the same for every sequence
in D, thus independent of the state to be identified. In choosing this
input, the only condition, apart from optimzation criteria explained later
on, is that there be no merge under x, i.e. there should be no 2 states
ql#q2 such that X(ql,x)=K(q2,x) and 6(ql,x)=6(q2,x).

This first input splits q in equivalence classes under the relation
o=q' iff A(q,x)=A(q',x). Since states in different classes respond
differently to the sane first input, they are distinguished from each other
and the second symbol of the corresponding sequences may be different (in
fact, for singleton classes no second synbol is needed). Thus we can now
treat each class separately, in exactly the same fashion as we originally
started out with Q

Di stinguishing sets can thus be constructed in the same way, using a
tree-like graph, as adaptive distinguishing experinents (see Hennie [3]or
the exanple below). However, there are two differences:

(1) In an A D.E., the tree is used during the experinment itself in

order to decide on the next input at each nonent. I'n our case,

however, the checking experiment is essentially preset, and the tree
is used only during the design

(2) During an A.D.E. we may choose arbitrarily the next input anmong

equal |y acceptable (qua optimality) candidates. Wile designing a

di stingui shing set, we have to choose the sanme next-input for each

state of a given block (at that stage). It is indeed not allowed to

apply different inputs for different states before a different output
has been observed. This follows directly from the definition. This

procedure allows us to decide, by looking only at the corresponding

16

sequences from D and their responses, whether the states are, in
fact, different.

(b) For Moore Machines

The procedure is conpletely anal ogous. The only difference is that
before the application of the first input (i.e. we apply A we can already
split Qinto equival ence classes, since A is a map Q0.

Exanpl e

Fig. 2 represents the design graph for machine M (see Table 1), and
Table 4 its tabular equivalent

As before, we represent the blocks by the successors of the initia
states as we trace our path along the graph. Singletons are not
represented. The synbols between parentheses represent the output
corresponding to each block, except for single blocks. Table 2(a)
represents the distinguishing set having the shortest sequences

Optimal Choice of a Distinguishing Set

This can be done in exactly the same way as choosing the optinal
next-input during an adaptive distinguishing experinment {3].To recal
briefly: assign a nunber to each block in the graph, starting with zero's

for singletons. Assign the predecessor nunbers according to the follow ng

formul ae:
n = min(ml, m2,...mk)
m = P s I + 1
J max(njl’ ? Jl.)

J
The synbols are explained in Fig. 3. Cearly those nunbers give, for each

bl ock, the length of the shortest sequence for distinguishing a given state
in that block, assumng the worst choise regarding that state. For nore

details we refer to Hennie [3].

17

AD BD
AWA
AB X XK BD

Y N\
2K i

Figurce 2 Design of a distinguishing set for NI1

TABLE 4

Tabul ar Equivalent of Fig. 2

i nput bl ocks to be i nput
sequences split 0]
A ABCD - AD, BD
1 AD AB *
1 BD * BD
10 AB * %

19

1
1 k

© .
[]

m—1 T [T
Al i, M nkik

Figure 3 Optimal choice fcr a distinguishing set,

20

Comparison with (Preset) Distinguishing Sequences

I'n designing distinguishing sequences, we have to refine partitions,
while the design of distinguishing sets consists of splitting up the bl ocks
of these partitions separately. The significance of this observation can
be appreciated by comparing the construction of the corresponding graphs
The main consequences are:

the |ongest sequence in an optinal distinguishing set is at mst as

long as the shortest preset distinguishing sequence

since it may be the case that certain blocks cannot be split up

simul taneously by any single sequence while allowing refinenent by

separate sequences, distinguishing sets may exist where no

di sti ngui shing sequences can be found

21

[11. EXAMPLES

(a) Checking Experinent for M

Initialization: the shortest synchronizing sequence for My is 0101

and brings the machine in state D.

Checking part. We first illustrate the design of the checking part

with separate state identification and transition checking. State

identification is done as follows (use Table 2(a)).

Identify starting state D by ':ED = 10

This brings us in state C

Identify C by 11. New state: D.

Go fromD to A by input 0.

Identify A by 11. New state: B.

Identify B by 10. New state: A

The resulting sequence, together with its response, is given in Table 5(a).
If the machine under test responds correctly, we know the states ql’qe’q3’qh

are different (see central theorem section Il).

TABLE :(a): State identification for M .

1

1 01101110 i nput
a; ds q3 ql‘_ state
11 1 ¢ 1 0 0 O out put

We denote these states by the corresponding names borrowed from the good
machine (resp. D, C, A B). Since we assune that the machine under test
has at nost L4 states, it must now be in one of the states already

encount er ed. If it were the good machine it would be state A By neans of

22

X, = 11 we verify for the machine under test that it is indeed in the state

we decided to call A The new situation is shown in Table 5(b).

JAB)E Situation before transition verification.

10110111011 (i nput)

D C A B A (state)

01110100010 (out put)
(2)

Now we are ready for the transition verification. FromTable 5(b) it
is clear that the machine under test is in state B since §(A,11) = B has
been verified.

We check now the transition out of this state under input 1 (on the left

side of Table 5(c)) by neans of = 10 (we know we shoul d use x_ by

)
referring to the good machine).

TABLE 5(c¢): Transition verifications.

11011101101 1001001011 10
B D C A B C A D CB A B A D B

00111011101 0100000010 00
(1) (3) (%) (5) (6) (7) (8)

Note here that §(B, 10)= A and §(B,1) = D (just verified) now automatically
verifies 8(D,0) = A (see (2), Table 5(b)).

We proceed in this manner until all transitions have been verified.
Table 5(c) conpletes the sequence. The numbers correspond to the order in

which the transitions are verified, while Table 6 allows us to keep track

23

of these verifications (and see which check to do next). In practice one
does not put nunbers in such a "transition check status table" but only

check marks, as the design goes al ong

TABLE 6

Transition check status table corresponding

to Tables 5(b) and (c).

0 1
A T 5
B L 1
C 6 3
D 2 8

More efficient design of the checking part

By now the reader will have realized that separate state identification
and transition checking is not the nmost efficient way for constructing a
checking experiment. Indeed, in our general treatment of checking
experiments, be it wth distinguishing sequences or g-sets, we pointed out
that all that is needed for state identification is the appearance of an
identification sequence for each state at |east once sonewhere in the
experinment. Because of the strongly-connectedness, every state appears at
| east once in the next-state colums of the state table, and thus al
state identifications will automatically take place during the transition
checks. O course, in the beginning sone state identification mght be

needed in order to know in what state we are just before the first

24

transition check. Also, if we use distinguishing sets rather than
di stinguishing sequences, it wll very often be possible to telescope

sequences, for exanple: state @ is identified by x. = 11, but since

C

8§(c,1) = A the second "1" of EC can be used as the first "1" for §A = 10.
Since we always know the state of the good machine during the design of
the checking part, it is possible to check the possibility for telescoping
sequences from the distinguishing set each time a new input symbol is to be
added. Also, the information gained from past transitions (stored in the
transition check status table) is always at hand to get the nachine faster
into a known state

W illustrate these observations in Table 7(a). The transition check
table (Table 7(b)) and the nunbers between parentheses in Table 7{a) show
how, every tine a new transition is checked, we go back and see whet her

new known states can be filled in for the machine under test, and maybe

sone other transitions are checked in this fashion

TABLE 7(a): More efficient checking experinent for M.

1011100101 110010H01110
D C—A-D B A D-B A-B A B-D
011101 0O0O0O1O0O0O0OO0O0ODO0O0DO0TG0?1

(1)@ (3) (3) (8) (k) (6) (7)

25

TABLE 7(b)

Transition check status table corresponding to Table 7(a).

0 1
A 6 2
B 5 T
c 3 1
D 8 L

For what concerns the use of past information, we are not restricted to
single-input transition check status tables, but past transitions caused
by sequences can also be incorporated: for exanple, the state marked q in
Table 7(a) is known to be C because we verified §(D,10) = C at the very start.

The arrows in Table 7(a) indicate transitions that are checked for the
first tine.

Conclusion. Using the distinguishing set of Table 2(a), the length of
the checki ng sequence for M is 24. |If we use the shortest distinguishing
sequence, we obtain Table 7(c), a checking sequence of |ength 50 (including
initialization). Thus we obtain about 50%saving in length with the use of

di stingui shing sets (for nachine Ml).

TABLE 7(c)

Checking experinent for M using a distinguishing sequence

1 (100)% 0 (100)° 1 (100)% 1 100 0 0 100 1 0 100 1 1 100 1 0 1 100

- - - - - -

BC CA BD CB DA DB AD

26

(b) Exanple of a Machine with a Distinguishing Set but no Distinguishing
Sequence

Tabl e 8(a) gives the state and output functions for Mé, a maching
having exactly this property, while Table 8(b) represents a distinguishing
set (optimal) for M. The reader can verify that no preset distinguishing
sequence exists.

The graph for designing distinguishing sets is given in Fig. L.

TABLE 8

(a) State-output table for machine M,.

2
state g i nput X
0 1
A D/1 B/C
B A/0 c/0
C B/1 B/0
D c/0 B/1

Next state/ Qut put

(b) Distinguishing set for machine M,.

2
state i nput response final
state
q Zq X(q,Eq) 6(q,§q)
A 01 11 B
B 001 011 B
C 01 10 C
D 001 010 C

/N

[(merge)
AC BD

. ©
BD (merge) AC K

Figure 4, Design of a distinguishing set for MZ

27

28

Design of a Checking Sequence Using 9

Initialization: synchronizing sequence 1001, leads to state B.

Checking part: the checking sequence is given in Table 9,

Again we use arrows to indicate where transitions are checked for the
first time. Oher transitions are inplicitly checked (e.g. §(A,01) = B and
8(A,0) = D checks &§(D,1) etc.). The length of this checking sequence is 31.

TABLE 9

Checki ng experiment for I\/E using a distinguishing set.

0 01 001 0O0O0OO0O0T1O01O0O0O0T71 (i nput)
B-A B A B A-D-C C B B (state)
01101101 010101011 (out put)
(1) (3) (2) k) (6) (5)

¢c 10 ¢C1 11 0 01 (i nput)

B A-B B B (state)

010 1100011 (out put)

(7) (8)

Wth locating sequences, the checking experinent becomes nuch |onger.
Table 10 gives the sequences needed for the design. The synchronizing
sequence and the appearance of each |ocating sequence already require 35

symbols. Al transition verifications still have to be perforned.

TABLE 10

Construction of locating sequences for M,

characterizing set
state i nput 1 i nput 01 | ocating
sequence
final final
response state response state
4
A 0 B 11 B (10) 01
B 0 C 00 B (10)401
c 0 B 10 c an o
D 1 B 00 B 1

30

CONCLUSI ON

We have shown that checking experinents can be made considerably
shorter by using distinguishing sets. This is a consequence not only of
the shorter length of the sequences used for state identification but also
of the increased possibility for "telescoping"” sequences and inplicit
transition verification, as shown in the exanples.

Further, in case no preset distinguishing sequence exists, a
di stinguishing set, if one exists, can be used to replace the rather
cunmber sone | ocating sequences.

As pointed out during the discussion of distinguishing sets, some
even nore general approach might be possible. Indeed, if better use could
be made of all information given by a checking experinent, we mght be able
to waive the restriction that the next input be the sane for all elenents
of a block (in the design graph). However, this would require a different
design philosophy. It is hoped that other sinple methods will be found to

further reduce the length of checking experiments.

31

REFERENCES

[1] E F. More, "Gedanken Experiments on Sequential Machines", Autonmata
Studies No. 3k, pp. 129-153, Princeton University Press, Princeton,
N.J. (1956).

[2] F. C. Hennie, "Fault Detecting Experinents for Sequential Circuits",

Proc. 5th Ann. Synposi um on Switching Theory and Logi c Design, pp. 95-

110, Princeton, N.J. (Nov. 1964).

[3] F. C Hennie, Finite State Mdels for Logical Mchines, Wley, New York

(1968).

(4] E P. Hsieh, Optinmal Checking Experiments for Sequential Machines,

Ph.D. dissertation, Colunbia University, N Y. (Septenber 1969).
[5] E P. Hsieh, "Checking experinments for Sequential Machines," |EEE

Transactions on Conputers, Vol. G20, No. 10, pp. 1153-1166 (Cctober

1971).
(6] J. Hartmanis, R E. Stearns, Agebraic Structure Theory of Sequential

Machi nes, Prentice-Hall (1966).

[7] 1. Kohavi, Z. Kohavi, "Variable-Length Distinguishing Sequences and

their application to Fault-Detection Experinments," |EEE Transactions

on Conputers, vol. G17, No. 8, pp. 792-795 (August 1968).

