
SU-SEL-72-034

Adaptive Design Methods

for Checking Sequences

bY

Raymond T. Boute

July 1972

Technical Report No. 30

This work was supported by the
National Science Foundation under
Grant GJ-27527

DIGITR~ svsrEm5 MIBORRTORV

5TRllFORD ELECTROIII~S LRBORRTORlEs
STRRFORD URlUERSlTV . STARFORD, CRllFORRlR

SEL-72-034

ADAF'TIVE DESIGN METHODS FOR CHECKING SEQUENCES

bY

Raymond T. Boute

July 1972

Technical Report No. 30

DIGITAL SYSTEMS LABORATORY
Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

Research reported in this paper was supported by the National Science
Foundation under grant GJ 27527, and while Mr. Boute was partially
supported by the Nationaal Fonds voor Wetenschappelijk Onderzoek of
Belgium.

Adaptive design methods for checking sequences

bY

Raymond T. Boute

Digital Systems Laboratory
Department of Electrical Engineering

Stanford University

ABSTRACT

The length of checking sequences for sequential machines can be

considerably reduced if, instead of preset distinguishing sequences, one

uses so-called "distinguishing sets" of sequences, which serve the same

purpose but are generally shorter. The design of such a set turns out to

be equivalent to the design of an adaptive distinguishing experiment, *

though a checking sequence, using a distinguishing set, remains essentially

preset. This property also explains the title.

All machines having preset distinguishing sequences also have

distinguishing sets. In case no preset distinguishing sequences exist,

most of the earlier methods call for the use of locating sequences, which

result in long checking experiments. However, in many of these cases, a

distinguishing set can be found, thus resulting in even more savings in

length.

Finally, the characterizing sequences used in locating sequences can

also be adaptively designed, and thus the basic idea presented below is

advantageous even when no distinguishing sets exist.

* BY "experiment" we mean the application of sequence(s) to the machine

while observing the output. In some instances, the words "experiment"

and " sequence" can be used interchangeably.

ii

TABLE OF CONTENTS

Abstract

Table of Contents

List of Figures

List of Tables

Introduction

Preset Distinguishing Sequences and Distinguishing Sets

Preset Distinguishing Sequences for Chetiking Experiments

Distinguishing Sets

Examples

Conclusion

References

Page

i

ii

iii

iv

1

4

5

10

21

30

31

iii

LIST OF FIGURES

1 Design of preset distinguishing sequences for Ml -

2 Design of a distinguishing set for Ml

3 Optimal choice for a distinguishing set

4 Design of a distinguishing set for M2

page

8

17

19

27

iv

LIST OF TABLES

1 a. Machine Ml

b.

2 a.

b.

3 a.

Tabular Equivalent of Fig. 1

A Distinguishing Set for Ml and corresponding responses

Decompositions for the sequences of the distinguishing set
in (a)

State-output table

b. Distinguishing set 9

4 Tabular Equivalent of Fig. 2

5 a. State identification for Ml

b. Situation before transition verification

c. Transition verifications

6 Transition check status table corresponding to Tables
5(b) and (c)

7 a. More efficient checking experiment for Ml

b. Transition check status table corresponding to Table 7(a)

C. Checking experiment for Ml using a distinguishing
sequence

8 a. State-output table for machine M2

b. Distinguishing set for machine M2

9 Checking experiment for M2 using a distinguishing set

10 Construction of locating sequences for M2

Page

7

7

11

12

14

14

18

21

22

22

23

24

25

25

26

26

28

29

I. INTRODUCI'ION

The concept of "experiments" on sequential machines [l) has led to

methods for checking certain classes of machines against faults [2,4,>].

For strongly-connected (an essential requirement) and reduced (a simplifying

condition) machines, checking experiments consist, in principle, of three

parts:

(1) A synchronizing [2,3] sequence or, if none exists, a homing

sequence followed by an appropriate sequence to bring the machine

in a given initial state. This latter sequence depends on the

state at the end of the homing sequence, and is thus always

adaptive.

(2) Identification of the states by means of distinguishing or, if

none exist, locating sequences. This is essentially based on

the assumption that no fault can increase the number of states
*

of the machine.

(3) Checking the transitions out of each state, again including

identification of the next states.

Most often (2) and (3) are not really separate parts, but are designed

together: state identifications and transition checks are performed

together in the checking sequence whenever doing so might shorten the

final result.

Usually, the distinguishing or locating sequences used for state

identification in a checking experiment are designed as preset [3]

* Otherwise the procedure is more complicated and requires much longer

checking experiments.

2

experiments. Although a checking experiment is essentially preset (i.e.

apart from the initialization, in case no synchronizing sequence exists),

it is possible to replace the single distinguishing sequence, that is used

for the identification of every state, by a well-chosen set of sequences,

each of which is "adapted' to the state that is being identified. It

turns out that the design of such a distinguishing set is equivalent to the

design of an adaptive distinguishing experiment [3].

The sequences in a distinguishing set are nearly always shorter, and

never longer, than the shortest preset distinguishing sequences. Since

state identifications have to be done very frequently during a checking

experiment, this results in considerable savings in the number of input

symbols in the checking sequence.

Furthermore, there are many machines that have no preset distinguishing

sequence but for which a distinguishing set can be found. For such machines,

the use of a distinguishing set eliminates the need for (usually very long)

locating sequences and thus results in even more important reductions in

length. The possibility of constructing short checking experiments for

machines with adaptive distinguishing sequences has been anticipated by

I. and Z. Kohavi in [7], although they did not further explore the under-

lying principles and the practical design aspects.

In section II, we recall the basic ideas regarding preset distinguishing

sequences for later comparison with the use of distinguishing sets. We then

define the concept of "distinguishing sets" in a rigorous fashion and prove

that they can be used instead of preset distinguishing sequences. A simple

design procedure is presented and the similarities and differences with the

design of adaptive distinguishing experiments are pointed out, as well as

the advantages over distinguishing sequences. Finally, in section III, we

3

show by means of examples how to implement these ideas in designing checking

experiments. The use of a transition check status table allows additional

short cuts in an algorithmic fashion, while in the past short cuts were

found in a rather "ad hoc" fashion. The use of a distinguishing set turns

out to allow more "telescoping" than distinguishing sequences.

4

I I . PRESET DISTINGUISHING SEQUENCES AND DISTINGUISHING SETS

In this section we explain the basic ideas leading to the replacement

of preset distinguishing sequences by distinguishing sets. The reader will

soon realize that the design of distinguishing sets is equivalent to the

design of adaptive distinguishing experiments, which are discussed in

detail by Hennie [j].

First we introduce some notation and basic definitions.

Notation

We denote a sequential machine M as follows [63: M=<I,O,Q,G,h> where

I, 0, Q are respectively the input, output and state sets, 6: QXI-+Q the

next-state function and X: &x1-+0 (or Q+O for Moore machines) the output

function. Further, I*= I+U(A), where If is the set of nonempty finite

sequences of symbols from I and A is the empty sequence. Finally, we

extend 6 and h in a natural way to sequences:

6 : &XI*&, where 6(q,x) is the final state of the machine, started

in q and driven by input sequence ';;.

1 : QxIJho*, where x(q,x) is the response of the machine to ';; when

started in state q. For Moore machines: r;:QXI++O+.

Convention: 6(q,A)=q. Also x(q,A)=A for Mealy and X(q,A)d[q) for Moore

machines.

A preset distinguishing sequence for a machine M is a sequence x E I*

such that x(q,x)=T;(q',';;) implies q=q'.

In other words, the machine responds differently to x for each initial

state.

Only reduced machines -- but not all of them -- have distinguishing

sequences. However, all reduced machines have characterizing sets [2,3].

A characterizing set for a machine M is a finite subset ccI* such

that ~(q,~)=~(q' ,G) for all Z E e implies q=q'.

Usually, in case no distinguishing sequence exists, state identification

is accomplished by locating sequences, as explained in [2]. A locating

sequence (for a given state) is built from characterizing sequences and

includes repetitions to ensure that the circuit is in the same state each

time a new characterizing sequence is introduced for identifying that state.

We will not discuss this subject in detail, since characterizing sets can

be re.defined(and used)in essentially the same way as distinguishing sets

(to be defined later).

A.

qzq’

Preset Distinguishing Sequences for Checking Experiments

Definition: For every x c I*, define a partition fl: on Q as follows:

(3~) iff ?;(q,X)=X(q',G).

From the preceding definitions we immediately deduce the following

lemma:

Lemma: -x is a (preset) distinguishing sequence iff fi;; = 0 (i.e. each

block is a singleton).

This lemma leads directly to a design procedure [3] which we explain

here for later comparison with the design of distinguishing sets.

Design of Preset Distinguishing Sequences

We construct a tree-like directed graph, starting with nA and proceeding

level by level. The vertices are partitions of the form q. Each 5 gets

either 111 successors, namely the partitions s-. as i ranges over I, or
Xl

none at all: we do not introduce successors for Z; in case a partition

equal to Y? has already been encountered before, during the construction of
X

the tree. In this fashion, repetitions are avoided and the procedure

terminates after a finite number of steps.

6
.

Distinguishing sequences -- if any exist -- are then represented by

paths leading from xn to some zero-partition,

For implementation it is easier to represent blocks of partitions 7c~;

by their state transformations under G, i.e. if (q1' q2,"' kq] is a block

of 5, it will be represented by the block [~(ql,~),...,6(s,,~)) during

the procedure. This representation is adequate for deciding whether or not

we reached a partition 5~3; = 0, provided no merges occur for the sequence 2.

By a merge we mean that, for some 2 states ql # q2, we have x!ql,x)~(q2,~)

and 6(ql,x)=6(q2,G). But since such sequences can never be an initial part

of a distinguishing sequence, the corresponding paths in the graph are

terminated as soon as a merge is observed. This is very easy to do when

using the representation just described, since then two different states,

e.g. 6(q,G) and &(q',';;) are in the same block iff F(q,T)z(ql,r). If some

next input (after x) leads to a merge, this is immediately detected, and

for such an input no edge will leave that block.

The advantages of this representation become apparent in the following

example.

Example

For machine M1, whose state-output table is given by Table l(a), the

design graph for preset distinguishing sequences is shown in Fig. 1. The

tabular equivalent, which is more practical for computer implementation is

given in Table l(b). The three shortest distinguishing sequences are:

100, 101, 110.

Blocks containing only 1 state are not represented. In case all

blocks are singletons (i.e. "cs; = 0 and x is a distinguishing sequence) an

asterisk is written.

7

TABLE1

(a) Machine M,

input x
1

D/l

D/O

Ml

B/O

6 (%X)/h hx)

(b) Tabular Equivalent of Fig. 1

input
sequences

blocks to be
split

i

0

input blocks to be input
sequences split 0 1

nn ABCDABCD -me AD,BD

11 AD,BDAD,BD ABAB BD

1010 ABAB ** *

1111 BD ** BDBD

8

ABCD
y \-

(A,C merge) AD, BD
O/ \

1
/

AB BD

Figure 1. Design of preset distinguishing sequences for Ml.

Application to Checking Sequences

Since the design of checking sequences is discussed by Hennie [2] we

will emphasize here only the role of distinguishing sequences. This

discussion is necessary in order to justify later on their replacement by

distinguishing sets.

We assume here that the good machine has a distinguishing sequence.

Let N be the number of states. We also assume that no faulty machine can

have more than N states. (property 1)

A checking sequence is always designed in such a way that, after the

initialization part, the machine under test would be in a predetermined*

state go , in case it were the good machine. (vw=-ty 2)

The checking part itself is constructed in such a way that it would

take the good machine, started in go, at least once through each of its N

states, and identify each of these states by means of the same

distinguishing sequence 2 (yielding N different responses, by definition).

This allows to make the following conclusions for the machine under

test, depending on its response to the checking sequence:

(>1 if the response is incorrect, the machine must be faulty,

because of property 2.

(>2 if the response is correct, we have obtained N different

responses to the same sequence. Together with property 1, this

implies that there are exactly N (nonequivalent) states. This

further implies that, in case the same response to the

* In this way, only one checking experiment has to be designed. Other-

wise, one would need several ones depending on the outcome of the

initialization.

10

distinguishing sequence x is obtained at different points of the

experiment, the circuit under test must have been in the same

state each time.

The last statement in (2) forms the basis for the verification of

state transitions, since we can now identify each state unambiguously by

means of the distinguishing sequence f;.

B. Distinguishing Sets

Our main purpose is here to replace the distinguishing sequence used

to identify the states by a set of sequences that are individually designed

for each state to be identified. The following scheme is not the most

general solution possible, but seems to be the easiest to design and

implement.

The initialization of the checking experiment is done in exactly the

same fashion as explained before. Thus point (1) above is still valid.

If we also want to obtain conclusions similar to (2), based solely* on

observing the appearance of each sequence (possibly different for each

state) from the distinguishing set 9, together with a correct response, we

can proceed as follows.

Definition: A distinguishing set 9 for a machine M with state set Q

is a set of input sequences Xi, one for each qi E Q, such that for every

pair of (different) states qi, q. c Q we can write:
J

-x.=u y1 ij ij
T; =i;
j

zij ij

* This is one of the restrictions that make this scheme not the most

general one possible.

11

where the sequences Gij' C I* are such that ~(qi,~ij)fi(q.,~..).J 13
Remark: The double subscripts ij in the above definition emphasize

the fact that the decomposision of ';;i and z
j

into u's, yls, etc. may depend

on both qi and q..3
It is also easy to see that, for Mealy machines, the

definition implies that the first input symbol be the same for all xi C a.

This observation is the first step toward the design procedure described

below.

Example

For the machine of Table 1, a distinguishing set is given in Table 2(a).

Further, in Table 2(b) we show the decomposition into i,y,z's.

TAJ3J.3 2

(a) A Distinguishing Set for Ml and corresponding responses:

state input response final state

q xqc rD wlFq) 6 (q,xq)

A 11 10 B

B 10 00 A

C 11 11 D

D 10 01 C

I

12

(b) Decompositions for the sequences of the distinguishing set in (a):

B C D

bb0 11, A, A

w-w V,l

l,l,O w-w

10, A, A 19% 1

b 190

10, A, A

1,190

u,y zij ij' ij

Theorem. Let 3 be a distinguishing set.

If the machine under test responds to a given application of xi E 9

(at the input) by x(si,"i> and to xj E 3 by x(sj,xj), then the states

before these applications must be different (assuming qi#qj).

Proof. We denote by XT the %-function for the machine under test.

Let the states of the machine under test be q resp. q' before application

of 5;i req. X..
J Then xT(q,xi)=x(qi, Fi) and ~T(q',~j)=~(qj,xj). By

definition, there exists a common initial part i
ij of iii and 2

3
such that

'(qi,'ij)iT;(sj';;ij)' Therefore ~T(q,'ij)f7;,(q','ij) implying 424'0

Q.E.D.

Corollary

If an experiment is constructed using the same algorithm as for

designing checking experiments, except for the fact that each state q
i is

identified by the corresponding xi c 3 rather than by a fixed distinguishing

sequence, then the result is a checking experiment.

13

Proof. In case the machine under test responds incorrectly to the

experiment, it is known to be faulty. In case it responds correctly, each

xi E 9 has appeared at least once (with its correct response). Therefore

we know by the preceding theorem that there must be at least N different

states. Since, by assumption, we have at most N states, the arguments

given for the checking experiments using a distinguishing sequence carry

through.

Q.E.D.

Remark

A distinguishing set should not be confused with a compound

distinguishing sequence [>] which is defined as a set of input sequences

c = (X1,X2,. . . , ",I having a common prefix ';; but otherwise unrestricted, with

the following properties:

(>1 For each block B of 'II- there is an 5;
Y i 6 c that distinguishes the

states in B (i.e. given q,q' E B then x(q,xi) = x(q',xi) implies

q =q �) l

(2) The deletion of any sequence from e will leave some states in

some block B in n- c c.
Y

not distinguished by any xi
Although the definitions are completely different, we have observed

that for machines with only a few (up to 4) states a distinguishing set 'D

satisfies at least property (1) in the above definition. This phenomenon

is purely coincidental, due to the small size of the partition blocks (this

can be verified by trying a couple of examples). However, consider now a

machine with more states, such as in Table 3(a). A distinguishing set is

shown in Table j(b).

14

5x-
The longest common prefix is 1 and rc1 = ?%, ACDE and the shortest

sequence to distinguish all states of ACDE is 1111 (or 1100). Thus no

sequence 'f; i c 9 can split up this block and $) is therefore not a compound

distinguishing sequence.

TABLE 3

To illustrate the difference between a distinguishing set and

a compound distinguishing sequence

(a) State-output table (b) Distinguishing set9

state q l- 0
input

D/O

B/l

B/l

c/o

B/l

A/O

B/l

A/O

D/l

F/l

C/l

E/O

Construction of a distinguishing set

state q ';;
q

A 110

B 10

C 111

D 110

E 111

F 10

response

100

00

110

101

111

01

Now we show that the construction of a distinguishing set is similar

to the design of an adaptive distinguishing experiment [3].

* It is easily seen that, the longer 7, the smaller the blocks of z-+ and

the more possibility to satisfy property (1) of a C-set.

15

(a) For Mealy Machines

As explained before, the first input x is the same for every sequence

in 3, thus independent of the state to be identified. In choosing this

input, the only condition, apart from optimization criteria explained later

On, is that there be no merge under x, i.e. there should be no 2 states

qlfs2 such that i(ql,x)a(q2,x) and 6(sl,x)=6(s29x)m

This first input splits Q in equivalence classes under the relation:

q=q' iff h(q,x)=A(q',x). Since states in different classes respond

differently to the same first input, they are distinguished from each other,

and the second symbol of the corresponding sequences may be different (in

fact, for singleton classes no second symbol is needed). Thus we can now

treat each class separately, in exactly the same fashion as we originally

started out with Q.

Distinguishing sets can thus be constructed in the same way, using a

tree-like graph, as adaptive distinguishing experiments (see Hennie [3] or

the example below). However, there are two differences:

(1) In an A.D.E., the tree is used during the experiment itself in

order to decide on the next input at each moment. In our case,

however, the checking experiment is essentially preset, and the tree

is used only during the design.

(2) During an A.D.E. we may choose arbitrarily the next input among

equally acceptable (qua optimality) candidates. While designing a

distinguishing set, we have to choose the same next-input for each

state of a given block (at that stage). It is indeed not allowed to

apply different inputs for different states before a different output

has been observed. This follows directly from the definition. This

procedure allows us to decide, by looking only at the corresponding

i
16

sequences from 9 and their responses, whether the states are, in

fact, different.

(>b For Moore Machines

The procedure is completely analogous. The only difference is that

before the application of the first input (i.e. we apply A) we can already

split Q into equivalence classes, since X is a map Q+O.

Example

Fig. 2 represents the design graph for machine Ml (see Table l), and

Table 4 its tabular equivalent.

As before, we represent the blocks by the successors of the initial

states as we trace our path along the graph. Singletons are not

represented. The symbols between parentheses represent the output

corresponding to each block, except for single blocks. Table 2(a)

represents the distinguishing set having the shortest sequences.

Optimal Choice of a Distinguishing Set

This can be done in exactly the same way as choosing the optimal

next-input during an adaptive distinguishing experiment [3]. To recall

briefly: assign a number to each block in the graph, starting with zero's

for singletons. Assign the predecessor numbers according to the following

formulae:

n = min(y, m2,...nj)

m. =
3

max(n. ,
Jl '*+%

>+l

The symbols are explained in Fig. 3. Clearly those numbers give, for each

block, the length of the shortest sequence for distinguishing a given state

in that block, assuming the worst chaise regarding that state. For more

details we refer to Hennie [3].

Y 1

0
\ / 0”
-

18

TABLE 4

Tabular Equivalent of Fig. 2

44

inputinput blocks to beblocks to be inputinput

sequencessequences splitsplit 00 11

AA ABCDABCD W-MW-M AD,BDAD,BD

11 ADAD ABAB **

11 BDBD ** BDBD

1010 ABAB ** 3636

r=j
d -
.

d

20

Comparison with (Preset) Distinguishing Sequences

In designing distinguishing sequences, we have to refine partitions,

while the design of distinguishing sets consists of splitting up the blocks

of these partitions separately. The significance of this observation can

be appreciated by comparing the construction of the corresponding graphs.

The main consequences are:

-- the longest sequence in an optimal distinguishing set is at most as

long as the shortest preset distinguishing sequence.

-- since it may be the case that certain blocks cannot be split up

simultaneously by any single sequence while allowing refinement by

separate sequences, distinguishing sets may exist where no

distinguishing sequences can be found.

21

III. EXAMPLES

(>a Checking Experiment for M1
Initialization: the shortest synchronizing sequence for Ml is 0101

and brings the machine in state D.

Checking part. We first illustrate the design of the checking part

with separate state identification and transition checking. State

identification is done as follows (use Table 2(a)).

- Identify starting state D by xD = 10

This brings us in state C.

- Identify C by 11. New state: D.

- Go from D to A by input 0.

- Identify A by 11. New state: B.

- Identify B by 10. New state: A.

The resulting sequence, together with its response, is given in Table ?(a).

If the machine under test responds correctly, we know the states q1'92'93,44

are different (see central theorem, section II).

TABLE j(a): State identification for Ml.

1 0 1 1 0 1 1 1 0 input

q1 q2 q3 q4 state

0111c1000 output

We denote these states by the corresponding names borrowed from the good

machine (resp. D, C, A, B). Since we assume that the machine under test

has at most 4 states, it must now be in one of the states already

encountered. If it were the good machine it would be state A. By means of

22

xA = 11 we verify for the machine under test that it is indeed in the state

we decided to call A. The new situation is shown in Table 3(b).

2(b):TABLE Situation before transition verification.

1 0 1 1 0 1 1 1 0 1 1 (input)

D C A B A (state)

0 1 1 1 0 1 0 0 0 1 0 (output)

Now we are ready for the transition verification. From Table 3(b) it

is clear that the machine under test is in state B since 6(A,ll) = B has

been verified.

We check now the transition out of this state under input 1 (on the left

side of Table 3(c)) by means of x,, = 10 (we know we should use T,., by
JJ

referring to the good machine).

TABLE 5k): Transition verifications.

1 1 0 1 1 1 0 1 1 0 1

B D C A B C A

0 0 1 1 1 0 1 1 1 0 1

(>1 (31 (4) (5)

u

1 0 0 1 0 0 1 0 1 1

D C B A B A D

0 1 0 0 0 0 0 0 1 0

(6) (7) (8 >

1 0

B

0 0

Note here that 6(B, 10) = A and 6(B,l) = D (just verified) now automatically

verifies 6(D,O) = A (see (2), Table 3(b)).

We proceed in this manner until all transitions have been verified.

Table 2(c) completes the sequence. The numbers correspond to the order in

which the transitions are verified, while Table 6 allows us to keep track

23

of these verifications (and see which check to do next). In practice one

does not put numbers in such a "transition check status table" but only

check marks, as the design goes along.

TABLE 6

Transition check status table corresponding

to Tables 5(b) and (c).

0 1

7 5
4 1

6 3

2 8
\

More efficient design of the checking part

By now the reader will have realized that separate state identification

and transition checking is not the most efficient way for constructing a

checking experiment. Indeed, in our general treatment of checking

experiments, be it with distinguishing sequences or g-sets, we pointed out

that all that is needed for state identification is the appearance of an

identification sequence for each state at least once somewhere in the

experiment. Because of the strongly-connectedness, every state appears at

least once in the next-state columns of the state table, and thus all

state identifications will automatically take place during the transition

checks. Of course, in the beginning some state identification might be

needed in order to know in what state we are just before the first

24

transition check. Also, if we use distinguishing sets rather than

distinguishing sequences, it will very often be possible to telescope

sequences, for example: state c is identified by 5C = 11, but since

6(C,l) = A, the second "1" of xc can be used as the first "1" for xA = 10.

Since we always know the state of the good machine during the design of

the checking part, it is possible to check the possibility for telescoping

sequences from the distinguishing set each time a new input symbol is to be

added. Also, the information gained from past transitions (stored in the

transition check status table) is always at hand to get the machine faster

into a known state.

We illustrate these observations in Table 7(a). The transition check

table (Table 7(b)) and the numbers between parentheses in Table 7(a) show

how, every time a new transition is checked, we go back and see whether

new known states can be filled in for the machine under test, and maybe

some other transitions are checked in this fashion.

TABLE 7(a): More efficient checking experiment for Ml.

1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0

D C'A'D q-+B A D+B A-+B A B-D

0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1

(l?(2) ir? (3) (8) (4) (7)

25

TABLE 7(b)

Transition check status table corresponding to Table 7(a).

0 1

6 2

5 7

3 1

8 4

For what concerns the use of past information, we are not restricted to

single-input transition check status tables, but past transitions caused

by sequences can also be incorporated: for example, the state marked q in

Table 7(a) is known to be C because we verified &(D,lO) = C at the very start.

The arrows in Table 7(a) indicate transitions that are checked for the

first time.

Conclusion. Using the distinguishing set of Table 2(a), the length of

the checking sequence for Ml is 24. If we use the shortest distinguishing

sequence, we obtain Table 7(c), a checking sequence of length 50 (including

initialization). Thus we obtain about 50% saving in length with the use of

distinguishing sets (for machine Ml).

TABLE 7(c)

Checking experiment for Ml using a distinguishing sequence.

1 (1oo)2 0 (loo)2 1 (1oo)2 1 100 0 0 100 1 0 100 1 1 100 1 0 1 100
4 -4 4 + -B 3 4

B C C A B D C B D A D B A D

26

(>b Example of a Machine with a Distinguishing Set but no Distinguishing
Sequence

Table 8(a) gives the state and output functions for M2, a maching

having exactly this property, while Table 8(b) represents a distinguishing

set (optimal) for M2. The reader can verify that no preset distinguishing

sequence exists.

The graph for designing distinguishing sets is given in Fig. 4.

TABLE 8

(a) State-output table for machine M2.

state q input x
0 1

A D/l B/O

B 4/O c/o

C B/l B/O

D c/o B/l
_-~ _

Next state/Output

(b) Distinguishing set for machine Mz.

state input response final
state

cl ";;
q wb~q) 6 (Gq)

A 01 11 B

B 001 011 B

C 01 10 C

D 001 010 C

Fj \
2, n

- 1
0 -

m
-

c7

L- \
0 7
/

kL
\

>

28

Design of a Checking Sequence Using 9

Initialization: synchronizing sequence 1001, leads to state B.

Checking part: the checking sequence is given in Table 9.

Again we use arrows to indicate where transitions are checked for the

first time. Other transitions are implicitly checked (e.g. 6(A,Ol) = B and

abo) = D checks 6(D,l) etc.). The length of this checking sequence is 31.

TABLE 9

Checking experiment for M2 using a distinguishing set.

0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 (input)

B-A B A B A-D-C C C?-+B B (state)

0 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 (output)

(1) (3) (2) 4) (6)

..o 1 0

. . B A-+B

. . 0 1 0

(7)

(5)

c111001 (input)

B c-1B (state)

1 1 0 0 0 1 1 (output)

(8)

With locating sequences, the checking experiment becomes much longer.

Table 10 gives the sequences needed for the design. The synchronizing

sequence and the appearance of each locating sequence already require 35

symbols. All transition verifications still have to be performed.

29

TABLE 10

Construction of locating sequences for M2

characterizing set
I

state input 1 input 01 locating
, sequence

final final
response state response state

,

A 0 B 11 B (1o>4o1

B 0 C 00 B (1o)4o1

C 0 B 10 C (1U401

D 1 B 00 B 1

30

CONCLUSION

We have shown that checking experiments can be made considerably

shorter by using distinguishing sets. This is a consequence not only of

the shorter length of the sequences used for state identification but also

of the increased possibility for "telescoping" sequences and implicit

transition verification, as shown in the examples.

Further, in case no preset distinguishing sequence exists, a

distinguishing set, if one exists, can be used to replace the rather

cumbersome locating sequences.

As pointed out during the discussion of distinguishing sets, some

even more general approach might be possible. Indeed, if better use could

be made of all information given by a checking experiment, we might be able

to waive the restriction that the next input be the same for all elements

of a block (in the design graph). However, this would require a different

design philosophy. It is hoped that other simple methods will be found to

further reduce the length of checking experiments.

31

REFERENCES

[l] E. F. Moore, "Gedanken Experiments on Sequential Machines", Automata

Studies No. 34, pp. 129-153, Princeton University Press, Princeton,

NJ. (1956).

[2] F. C. Hennie, "Fault Detecting Experiments for Sequential Circuits",

Proc. 5th Ann. Symposium on Switching Theory and Logic Design, pp. 95-

110, Princeton, N.J. (Nov. 1964).

[3] F. C. Hennie, Finite State Models for Logical Machines, Wiley, New York

(1968).

L41 E. P. Hsieh, Optimal Checking Experiments for Sequential Machines,

Ph.D. dissertation, Columbia University, N.Y. (September 1969).

c51 E. P. Hsieh, "Checking experiments for Sequential Machines," IEEE

Transactions on Computers, Vol. C-20, No. 10, pp. 1153-1166 (October

1971).

[6] 3. Hartmanis, R. E. Stearns, Algebraic Structure Theory of Sequential

Machines, Prentice-Hall (1966).

[7] I. Kohavi, Z. Kohavi, "Variable-Length Distinguishing Sequences and

their application to Fault-Detection Experiments," IEEE Transactions

on Computers, vol. C-17, No. 8, pp. 792-795 (August 1968).

