
SU-SEL-72-q

Separate Non-Homomorphic Checking

Codes for Binary Addition

b Y

Stephen G. Kobpaev

July 1972

Technicd Report No. 35

This work was supported by the
National Science Foundation
under Grant G J-27527

DIGITAL SYSTEBS LRBORIITORV

STUllFORD ElECTROllltS lRBORATORlE5
STllIlFORD URIUERSITY . STIWORD, ClllIFORi’llll

SEL-72-033

SEPARATE NON-HOMOMORPHIC CHECKING
CODES FOR BINARY ADDITION

bY

Stephen G. Kolupaev

July 1972

Technical Report no. 35

DIGITAL SYSTEMS LABORATORY
Department of Electrical Engineering Department of Computer Science

Stanford University
Stanford, California

This work was supported by the National Science Foundation under
Grant GJ-27527.

i

ABSTRACT

In this paper, necessary and sufficient conditions for
successful detection of errors in a binary adder by any separate
code are developed. We demonstrate the existence of separate
checking codes for addition modulo 2n (n 2 4) and modulo 2n-l
b ' 5, n even), which are not homomorphic images of the addi-
tion being checked. A non-homomorphic code is constructed in
a regular fashion from a single check symbol with special prop-
erties. Finding all such initial check symbols requires an
exhaustive search of a large tree, and results indicate that
the number of distinct codes for a particular modulus grows
rapidly with n. In an appendix, we examine a modulo 2n adder
where the carry out of the high position is also presented to
a checker.

ii

Abstract

Table of Contents

Table of Figures

TABLE OF CONTENTS

Page

Introduction

Detectable Errors

Necessary and Sufficient Conditions

Construction of a Code

Codes for Modulus R=2n

Codes for Modulus R=2n-l

Finding Other Codes

Some Examples

Conclusion

Appendix

References

i

ii

iii

1

3
6

9
12

13
14

17
20

21

24

iii

LIST OF FIGURES

1 Residue checking scheme

2 General separate checking scheme

3 a. Ripple adder

b. Carry bypass adder

4 Full adder with common circuitry for
sum and carry out

5 Tuple of differences
6 The tree which is searched to find all

3 element sets from Z31 which have the
composite distance property with themselves

7 Check symbol encoding for Z32 regular code

Page

1

2

3

3

5
16

17
19

SEPARATE NON-HOMOMORPHIC CHECKING

CODES FOR BINARY ADDITION

Introduction

It has previously been believed that in order to check a
binary adder using a separate code (check symbols), it is
necessary to construct a code which is some homomorphic image
of the addition operation being checked. This has been
proven 11~ for the checking scheme of Fig. 1

Y
n2

adder

checker *

3 + “2

error present

Fig, 1 Residue checking scheme

which requires o(nl)*@(n2) = $(nlfn2), where * 1s some suitable
check symbol operator. However, one may still retain the
separateness of a checking code without performing the same
check symbol transformation ($) on the adder output, as is
shown in Fig, 2. Here we present the checker with the full binary

2

output number from the adder, and deduce properties for the
check symbol map C which will allow a checker to detect
any of a set of detectable errors, The classical separate
checking scheme is included as a special case of the
generalized scheme of Fig. 2, since the output of the adder
may be transformed by the C mapping inside the checker,
and before the actual check operation takes place,

Fig, 2 General separate checking scheme

The scheme of Fig. 1 has the advantage that the check
symbol for the adder output $(nl+n2) is available at the
output also, It could then be stored in memory along with
the sum nl+n2, at some extra memory cost, Then the check
symbols for the inputs $(nl) and $(n,) would presumably have
been stored in memory along with nl and n2, and the input
check symbol transformations would be unnecessary. The same
method of storing the check symbol along with the number can
be used with the scheme of Fig. 2 by adding a check symbol
generator C at the output. However the check symbol would not
be checked by the checker since the checker does not examine
the output check symbol, but rather the output itself,
Consequently a failure in the output check symbol generator
would be undetected until the output number was fetched
back from memory as an input operand for the adder,

3

Detectable Errors

We must decide exactly which errors are to be detectable,
It is, of course, most effective if we choose the most
likely errors to be the detectable errors. The errors which
are most likely to occur are those arising from the least
number of simultaneous failures in the adder
single fault). We consider the ripple-carry
sum and carry out of each digit position are
by a full adder, and the full adders for the

hardware (a
adder where
determined
various digit

positions are independent. Other widely used adders employ the
carry-bypass and the carry look-ahead techniques. The ripple
adder and carry-bypass adder (Fig. 3) may be treated in the
sme way, since a single fault in the carry bypass circuitry
can only affect the carry out of the group, while a faulty
interdigit carry from a full adder propagates in the same
way for both adders. For the carry look-ahead adder, such is
not the case. The look-ahead adder will not be treated here,
for there are several tiplementations, each affected differently
by single faults [2]. The error caused by a single fault in
the carry circuitry for the ripple adder and carry bypass
adder has the effect of adding or subtracting a simple power
of two, as is shown below.

Fig-3a. Ripple adder.

---7-7r--
v v , v _- co 5 -I co 5- co (3 d

FA FA FA
sum suzl SUIll

I -# 1 4
ai+2 al+l ai

Fig. 3b. Carry bypass adder

4

In this paper we consider the adder to be performing addition
modulo R on two inputs, the inputs being binary encodings of
two integers, which are also modulo R (R=2n or R=2%). The
adder delivers the sum in the same binary-encoded form,

n-l
T =zak*2k .

k=o
In the study of transmission codes, the severity of a

transmission error is measured by how many bits are inverted
(incorrect), since a single error affects only one bit, However,
a single fault Ln a binary adder may affect several bits in
its output, and in different ways depending on the input
operands to the adder, When studying arithmetic codes for
adders, it is more useful to measure the severity of an
arithmetic error by the nature of the arithmetic difference
between the correct adder output and the adder output under
the fault, The reason is that the severity of the hardware
failure causing the fault is most closely related to the
arithmetic difference.

Definition: An additive error s has occurred in a modulo
R adder when the erroneous adder output t'
is related to the correct adder output t by

t' = (t+s)mod R, where SG ZR.

Thus if a failure changes bit ak from 0 to 1, the erroneous
sum is t*=t+2 k 0 Similarly,
erroneous sum is t'=t-2k

if ak changes from 1 to 0 the
k. Note that subtracting 2 is the

same as adding R-2k or (-2k)mod R. Thus the additive error
is (R02~)0 If an interdigit carry or intergroup carry out of
the kth position changes from 0 to 1 or 1 to 0, the erroneous
sums become tl=t+2 k+l and t*=t-2k+1 , respectively. Finally,
if both the sum bit and carry out bit from the kth full

kadder are inverted, the erroneous sum becomes W=t=t2 &2k+lo
depending on the nature of the double inversion. The error
tl=t*3*2k, which occurs when the sum and carry out bits are
inverted with the same sense, would be most troublesome.

5

Indeed, most studies of error detection in binary adders do
not specifically allow for detecting this sort of error,
However, all the MS1 full adders which we have examined are
equivalent to the full adder shown in Rig 4, When the carry
out is used to generate the sum output in this way, we can
show that any failure in the carry circuitry causes an error
which is a s3.mple power of two.

A B C,

-1 Co=AB + AC1 + BCI

T=ABCI -I- AC; + BC; + CiC;

cO T

Fig. 4 Full adder with common circuitry
for sum and carry out.

Suppose a failure in the carry circuit changes Co from
0 to 1, while the sum circuit is fault-free. Referring to the
Boolean expression for the sum output T in Fig. 4, if A;& and Ci
are such that T changes under the fault, T can change only
from 1 to 0, Similarly if Co changes from 1 to 0, T can only
change from 0 to 1. Thus a single failure in the carry circuit
of the kth full adder can only cause an additive error of
2k+l 9 2k+lm2k -2k+l

I& k
, or -2k+1+2k. Simplifying, these

errors are 2-- , 2 + -2k+l ; and,&2k . Any single failure
in such a full adder (except power leads) gives an additive
error of (12i)mod R, There is no possibility of an additive
error which is not a sJmple power of two,

With this justification, we shall require that the checking
code detect all additive errors in the set S,

where Ss s1 1
is=2 , or s=R-~~, i40,1,2, 000 9 n-1)

and n is the least integer 3 nalog2R.

6
Example: For z32, ~=32, n=5.

Then S={l,2,4,8,16,24,28,30,31].
For s=28=(-4)mod 32, the 22 bit has changed

from 1 to 0.

Considering then the modulus R and the set of detectable
errors S, we deduce necessary and sufficient conditions for
the check symbol mapping C to allow a checker to detect the
occurrence of any of the additive errors in S. This leads
directly to the checking scheme, and an algorithm for
finding all check symbols which meet the necessary conditions
for inclusion in a check symbol map C. The check symbols
found must then be combined into a single-valued map C, and
the question of whether this can always be done efficiently
is left unanswered. This algorithm will discover, in passing,
any residue codes which exist for the modulus R. We discover
a particular mapping C of the same general form for all
moduli R=2n, n>,4, and a similar mapping for all moduli
R=2%, n>5, n even.

Necessary and Sufficient Conditions

We make only the following initial restrictions on the
checking code: we restrict the check symbol transformation C
such that C(nl) and C(n,) provide the checker with sufficient
infomnation about the inputs to the adder, such that it can
detect the occurrence of any error in the set S of detectable
additive errors. We require that C be a single-valued mapping
from the integers modulo R to check symbols

c: zR+{HO, H1’ H2, 0.0 3
The checker is presented with two check symbols Hi and H.

3which are derived from the binary inputs to the adder. The
check symbols Hi are equivalent to sets Bi of integers, where
Bi is the set of all integers modulo R whose binary encodings
map under C to the ith check symbol Hi:

7

It will be much more convenient throughout to describe
the code in terms of these equivalence classes Bi" Now
suppose that the adder is given two integers x and y to add,

where c (X)'Hi,
c(Yl=Hj.

All that the checker knows about the adder inputs is that
one input was an integer in set Bi, and one was in set B..3
Then the checker must accept as the correct sum all the integers

tE{(a+b)mod RI a6Bi, beBj{:

These sums arise from all the possible input pairs a,b
which produce the check symbol pair Hi,Hj l We formalize
this sum set with the binary set operator@, which forms
the set of all possible sums modulo R of one integer taken
from the first set and one integer taken from the second set:

A@B gi(a+b)mod R 1 aGA, be B{ u

Then the checker must accept as the correct sum all the integers
tEBi@Bj when the check symbols presented are HI and Hj,,
Likewise, the checker would deliver an error indication
when t$Bi@Bi. Thus the operation of the checker must be
to verify ghat%he su~ll t is in the set B@Bj defined by the
check symbols H, and H, which are presented to it,

Lemmal:

I J

Given a separate checking scheme for an adder
of binary encoded integers modulo R, where the
checker examines the adder output directly, and
receives two check symbols Hi and Hj derived from
the adder inputs, Then the checking scheme is capable
of detecting the occurrence of any single additive
error s taken from a set S of detectable errors iff

vH19Hj, VX,y eBi@B.,
t

(x-y)mod RF S
where C: 'R-* H()' H1, 000 , 5rl5-1

B.%{xEZRI C(x)=HI{

AiBe{(a+b)mod R[asA, beB3 .

Proof
* (sufficiency)

Let a,beZR be inputs to the adder, where
C(a)=H1, C(b)=Hj.

Let the check symbol map C have the property
‘dHI'Hj$ Im(C), vx,y~B~~B~, (x-y)mod R4 S,

Let the checker accept as correct
all the integers in B1@B., and reject the others,3
Then by the definition of@ , the correct sum

t = (a+b)mod R6BIOBj.
But & t*E B,@B; Such that (t*-t)mod R&S.
Then 'v's ES, A &(t+s)mod RbBI@Bj, and all the
errors in S are detectable.

~*> (necessity)
Let the checker be presented with input check
symbols Hi and H..3 Then the checker must accept
as correct all the integers

tEBiOB.,3 since vtEBi@B j, 3 a,bE ZR such that
C(a)=H,, C(b)=H,, and (a+b)mod R = t,

But suppose for some x:y$B,@B:&sES such that
x=(x-y)mod R.

a. J

Then 3a,b,c&dEZR such that C(a)=Hi, C(b)=H.,J
C(C)=H~, C(d)=Hj, (a+b)mod R=x, (c+d)mod R-,
where x=(y+s)mod R. Then if c,d are inputs to the
adder, the checker must accept ejlther x or y as the
correct sum, while x is an incorrect answer resulting
from the error s. In this instance the error s may
go undetected, which contradicts the error detecting
capability required.
have

v Hi,HjbIm(C),

Thus by contradiction we must

v X,Yt:B@B.,3 (x-y)mod R+S.

QlED

9

For convenience we define the property required by Lemma
1 as the composite distance propertyd ,

Definition: The sets A and B of integers modulo R
have the composite distance property,
AaB, relative to the Set S of detectable
additive errors iff tjx,ye A@B, (x-y)mod R+S.

The composite distance property is always relative to a
modulus R and set S of detectable errors* The modulus and
set of detectable errors will not be mentioned whenever
their presence is clearly understood.

With this definition, the Oode mentioned in Lemma 1 can
detect any of the detectable errors iff VB Bi, j, BlaB..3
The composite distance property is a convenient ,and compact
criterion for selecting check symbol equivalence classes
while constructing a code.

For example, consider the integers 232’ The set of integers
@,3,6,9\ could be used as a check symbol equivalence class
B. in a separate checking code for an adder modulo 32 since

S = j1,2,4,8,16,24,28,30,3lj
Bo + C&3,6,93
BOOB, =Co,3,6,9,12,15,18~
{ (x-~)mod 32 j X,Y E By) = [18,15,12,9,6,3,0,

14,17,20,23,26,29)0
This set of differences has an empty intersection

with S, so BoUBo,,

Construction of a Code

To construct a code for a particular modd&us R and its
associated set of forbidden distances S, we must divide the
integers ZR into equivalence classes Bo, Bl, 000 , Bm 1 suchI

10

that each pair Bi,
(Lemma 1).

Bj has the composite distance property
We will not be concerned with the implementation

of the check symbol transformation C or with the operation
of the checker here, since they may be implemented by table
look-up, if by no other means. The implementation for a
special code which recurs in the same form for all moduli
2n will be discussed in a subsequent section. Once the check
symbol transformation C is defined, the structure of the code
is completely specified.

Once a set B of integers modulo R has been found which has
the composite distance property with itself, several other
sets may be found directly from B which have the composite
distance property with B, and with each other.

Definition: B* is a rotation of the set B of integers
modulo R iff 3 kE ZR such that B*=E@{k').

Example: {1,4,7,16) is a rotation of
@,3,6,P]for R=32.

Lemma 2 Given two sets A,B of integers modulo R (not
necessarily distinct). If A-fi3B then AlaB* where
A' is a rotation of A and B* is a rotation of B,

P r o o f

Since ACIB, then va,b'eA@B, (a-b)mod R& So That
is \dal,a2 tz A, bl,bg c B,

((alfbl)-(a2+b2))mod Rg Se
Now consider

A'@B' = ((a+b*)mod RI a*e Al, blf B$
= ~((a+kl)+(b+k2))mod R 1 aeA, be B{

for some kl,k2F,ZR.
The difference mod R of any two integers in A*@B*
iS

((al+bl+kl+k2)-(a2+b2+kl+k2))mod R
= ((al+bl) - (a2+b2))mod R, for some a1,a2G A,

bl'b2 e Bo

But this is identical to the difference mod R of two

11

integers in A@B, and since ADB, that difference is
not one of the forbidden distances in So Then
vq,yEA'@B', (x-y)mod R&S and A*aB*,

&ED
This suggests building a code from a single basic set B,

as 13, B@iJ, B@{i2\, .OO , B@@k[, where each of the
numbers in ZR occurs in exactly one of the sets Bio This
can be easily done for the "regular" codes which we will
define shortly, In other cases, difficulties may arise
with duplication of numbers in different sets Bi, in which
case one can remove numbers at will from B@{i{ and leave only
the subset desired, It is obvious that doing so will not
harm the composite distance property. It is also possible
to build a code with any rotations of distinct non-overlapping
sets, so long as the sets have the composite distance
property with themselves and with each other,

When constructing a code from a known set of check symbol
equivalence classes Bi ,t 3 the situation becomes rather chaotic,
for we have been able to impose no other restriction upon the
choice of equivalence classes than that of Lemma 1, For
example, one might suppose that 63 is transitive, i,e.
AOB, and BuC*AUC. We can immediately dispense with
this proposition by the counterexample from ZG4

S=(1,2,4,8,16,32,48,56,60,62,63)
A=10,9,18) A@A={0,9,18,27,36) + A1=rA
B=iL4,7\ B@B=l2,5,8,11,14) + BdB
C=i2,25,481 C@C={4,9,27,32,50) + C13c

A@B={1,4,7,10,13,16,19,22,25) + ADS
~@c=f3,6,9,26,29,32,49,52,55] e BaC
A@C=fWWW5,34,43,48,57~

but (43011)=326S so A+c

Further, one might suppose that AaB iff A=l?@k{,
i,e, A has the composite distance property with B only if
(we proved the if part in Lemma 2) A is a rotation of B,

12

But B and C of the example above. have the composite distance
property, yet they are not rotations of each other,

Codes for Modulus R=2n

For a modulus R=2n, n>,4, we show that the set

B = 1 0,396, l o o 9 3*(2n'3-1)l
has the composite distance property with itself, and that

constitutes a code, This is the "special form'" or '"regular"
code mentioned above, For this modulus, the set of forbidden
distances (detectable additive errors) is

s ={1,2,4, l oo , 2-5 2n-2n'2, 2n-2n'3, 000 j 2".13

But B@B={0,3,6,9, l o o a (2n-3-l)*3*23 , and the distance
between any two numbers in BOB is a multiple of 3, and in fact
does not exceed the (2n'3-l)*2th multiple of 3. The smallest
forbidden distance which might be a multiple of 3 is 2n-2n'20
However

(2n-3-l)*3 <2n-3*3

(2nn3--Q*3*2<2n+*3 = 2n,2n'2

Then the smallest forbidden distance which is a multiple of 3
must be still greater than the largest distance in B@B.
Then B has the composite distance property with Itself,

Moreover,
all possible
Further, any

any one of the Bi is a rotation of any other, so
pairs BI,BJ have the composite distance property,,
number n6ZR is mentioned in exactly one of the

Bi, for assuming the converse leads to a contradiction as
follows

suppose &Lc zR 3 neBi, nt?B., B =B3 3 H
k*2n-31

Then (n-k*2n-3)6Bi,
t lSks7o

and Bi has distance k*2n-3 o
But by construction of B, B+ has only distances

m*3) where ljm<2n-3-lo

13

Consequently, for some m, m*3 = k*2n03, and
3 divides k, l<k$7

Case 1 Case 2
k=3 k=6

m*3=3*2n-3 m*3=6+Qn-3
m&Jnm3 m=2n'3

contradiction contradiction

This completes the proof, and we have a code of the same form
for all moduli Rs~~, n34,

Codes for Modulus R=2n-l

For a modulus R=';ln-1, n even, we show that the set

B =@,3,6, 000 3 (2no3-2) *3’)
has the composite distance property with itself, and that the
set

(B, B@flj, B@23, B@&+-3jJ B@{kfLC3, B@k+5],
B&k%], B@{2k+'& B@l2k+8'51

where k = (2“‘3-2) *3

can form a code after an ad hoc procedure of truncating
duplicated numbers from the last 3 sets,

Again, the distance between any two numbers in B@B is ath
multiple of 3, and does not exceed the (2n-3-2)*2 multiple.
The set of forbidden distances is ,

, S = I 1,2,4, 000 3 2n-l , 2n&2n’l, p&p”2, etc, -3

Now since n is even, 3 does not divide 2n’L&L1,2n-10

Then the smallest forbidden distance which may be a multiple
0f 3 is 2nn1-22nw2=3*2n-2n10 One can easily show that
3*2*(2n-3-2) < 3*2n-2 -1, so no pair of numbers in BOB differs
by a forbidden distance, Thus B has the composite distance
property with itself,

14

We can construct the nine rotations of B as above, and
since (the largest number in the sixth rotation)
2k+5 = @'3-2)*3+5 <2n- 1, the first 6 rotations mention the
numbers O,l, 000 9 2k+5 once and only once, Since 2k+8<2%,
we can begin using the last 3 rotations of B, Since they are
successively offset by 1, there is no overlap between them,
and it only remains to truncate away any high order members
of the 3 sets which wrap around the modulus R=2%.

Finding Other Codes

A code is the division of the integers ZR into several
non-overlapping sets, where any set has the composite
distance property with any other set, and with itself, So
the first step in finding a new code is finding a set B having
the composite distance property with itself, Then a code may
be constructed using only rotations of the same set, Also,
if two distinct sets can be found, both being self-composite,
and having the composite distance property with each other,
a code may be constructed using any rotations of the two
starting sets, This may be extended to any number of
original sets,

We have devised a computer program which will find all
self-composite sets with a given number of elements and
containing the element 0, The sets are constructed by adding
new elements onesby one to a self-composite set with less
than the required number of elements. The new elements are
apoended in ascending numerical ossder, All-the sets found,
including the intermediate ones, are assigned to the
nodes of a tree, The tree has as many &WA@ as elements in
the sets tol‘be constructed, for the algorithm starts at
the top of the tree (level l), with the single element 0
in a starting set, The next level contains all sets of 2
elements, and so on, until the lowest level of the tree
has all sets of the desired number of elements. The nodes
are arranged so that any node is contained in its successorso
Thus, each successor is formed by appending a new element

15

to the elements of its immediate predecessor, One can see
that this is a huge tree, It is searched depth-first for
nodes having the composite distance property with themselves,
and the downward search stops as soon as a node is reached *
which ds not self-composite, For, if this is true, no
successor node can be self-composite, The search then continues
at another node on the same level, This searching algorithm
was implemented recursively in ALGOL W, It was later
coded in IBM 360 assembly language, increasing speed approx-
Fmately tenfold, Even so, 7 or 8 is the largest number of
levels which can be searched exhaustively in a reasonable
length of time.

This algorithm has the fault that several representatives
of what is essentially the same set may be discovered. In
Particular, a set may be represented by the differences
between adjacent-numbers in the set. Then, depending on
the degree of asymmetry of the tuple of differences, there
may be up to 2*p distinct unorderedc&ets 'of integers
corresponding to the same tuple of differences, where p is
the number of elements in the set. These are the various
rotations and flips of the geometric shape of the tuple of
differences, All of the sets arising from a particular
ordered tuple of differences are self-composite or not, in
the same way, since it is immaterial which element is
rotated to the zero position,

For example, the set B=~O,3,6,12,39,45,60') for ~=63 wap
found to have the composite distance property with itself,
The ordered tuple of differences of adjacent elements for
this set is (3,3,6,27,6,15,3). The geometric shape of Fig, 5
can be flipped and rotated in 14 ways to produce all the
sets

16

(o,3,6,g,W+2,4d ~0,3,6,9,%30,573
@,3,6,12,W+5,6o\ &3,6,21,27,54,603
50,3,9,36,%57,603 jO,3,18,24,5L57,60)
b,6,33,39,54,57,603 ~0,15,21,48,54,57,60’)
10,27,33,48,51,54,57) C 0,6,33,39,W+5,48\
f0,6,21,24,27,30,36 1 ~0,27,33,36,39042,57~
cO,15,18,21,24,30,573 {0,6,9,1w!m,36] o

0

Fig, 5 Tuple of differences

Unfortunately, there is no known algorithm for generating
the distinct tuples of differences under rotation and flipping
which may be formed by rearranging a given set of integral
differences, The best we can do is enumerate them via
Polya's counting theory,

Some Examples

level L c)0 i

17

bad

Fig, 6 The tree which is searched to find all 3 element
sets from Z

31 which have the composite distance
property with themselves

Some Self-Composite Sets Which Have Been Found

#
elements

3 31
3 31
3 31
3 31
3 31
4 31
4 32
7 63
8 64

modulus
R # rotations

prototype set and flips

0,396 3
0,3,17 3
0,6,12 3
0,7,14 3
0,7,19 3
none exist
093,699 4
over 2000 found
wr6,9,12,15,1~,21 8

18

Implementing the Regular Form Code for 232

check symbol
equivalence class sum sets

B,=D,3r6,9f
B1={4,7'10,13~
B2={8,11,14,17j
~~=@,15,18,21)
B4={16,19,22,25$
B5={2wW,2g)
B6={24,27,30,1)
B7=@,%2,5]

BO@BO=B6@B2= 000 =h3,6,9,12,15,18t =A0
Bl@BO=B4@B5= o o o =~4,7,10,13,16,19,22~ =A1

I {8;11,14,17,20,23,263=~~
I
1

~12,15,18,21,24,27,3~A3
I ~16,19,22,25,28,31,2) =A4
I
I @,23,2Wv,3,6f =A5

I
I {24,27,3w,4,7,10) =A6

~28,31,2,5,8,11,14) =A7

We have listed the check symbol classes BO, BIJ 000 3
and then listed the sum sets BLOB B7

Jo Only 8 distinct sum
sets occur, and they overlap. For example, 8 appears in
both A2 and A7" Thus the sum 8 might result from the summands
4 and 4 from Bl and B1 (SW in 9, or it might result from
the summands 6 and 2 from B. and 9 (sum in A7). Note that
the elements within any Ai do not differ by a forbidden
distance (detectable additive error), as indeed they must not,
The distances in any Ai are all multiples of 3, so the errors
which may be detected in this case are*1,&2,34,&5,27,
~8,~10,fll, zkl3,kl4, and + 16, These include several
double errors, and the triple errors 211, & 13@

The sum sets have been named so that if the check symbol
classes from the input are Bi, Bj' then the output sum from
the adder should lie in A Then to perform the
check,

(i+j)mod 8,
the checker examines the adder output and verifies

that the sum is in the correct sum set, The SIX-II may also
lie in another sum set, but this is immaterial.

The processes of check symbol mapping and output verification
are similar. A decision tree for the input encodlng is shown
in Fig, 7e

19

* n mod 3

n<12 n-c4q II‘!- N y N
B. a3 B6 3

52 *n<8

B3 B6

Fig, 7 Check symbol encoding for 232 regular code

The adder output verification for the 232 regular code
is given in the following table,

residue
sum set condition

I
n mod 3=0
n mod 3=1
n mod 3=2
n mod 3=0
n mod 3=1
n mod 3=2
n mod 3=2
n mod 3=0
n mod 3=0
n mod 3=1
n mod 3=1
n mod 3=2

range

n<21
10X25
5<n<29
n>9
n>13
n,5
n>17
nd 9
r-021
n< 13
n>25
r-x 17

20

Similar constructions hold for the regular (0,3,6, etc,)
codes for moduli 2", all n>5. The encoding and checking
processes shown here are necessarily more complex than the
homomorphic residue codes. However, this code is not necessarily
representative of all the non-homomorphic codes, and.further
investigation is needed before making a comparison to the
residue codes, Also of interest here is the fact that there
is no homomorphic residue code for checking addition modulo
2n which will detect all single errors. This is so because the
residue must be taken modulo a power of two, which corresponds
to a single error which is not detectable, A residue code
can only be used for a modulo 2n adder if the carry out or
extend bit is given to the checker, so that the adder can be
considered as modulo 2n+l , with no possibility of overflow,
This technique is investigated in Appendix 1,

Conclusion

We have. described non-homomorphic separate codes for
checking modulo addition, for the important moduli 2n, and
for 2% with even n, These codes have essentially the same
form for any suitable value of n larger than 5. This was
done mainly to establish their existence, The most general
non-homomorphic codes do not have this systematic form, and
we expect them to vary widely, as they arise from number
theoretic arguments, rather than from a defining algebraic
structure.

The process of finding a non-homomorphic code is exhausting,
even for a fast computer, We are currently improving the
computer search technique, in order to exhaustively examine
several representative moduli. This must be done in order
to make meaningful comparisons between the cost-effectiveness
of non-homomorphic separate checking codes and the more well-
known methods,,

21

APPENDIX

Checking an adder where carry out of the highest bit position
is available

In a modulo 2n adder, the carry out of the highest bit
position is usually available, If that bit is also presented
to the checker, the checking code can be simplified considerably,
In effect, the checker is then checking a modulo 2n+1 addition,
where the adder inputs are restricted to be smaller than 2no
Then the sum never wraps around the modulus 2n*l , so we
may assume that the adder is not modulo any number, but
rather performs ordinary addition, The development of a
separate checking code proceeds in mubh the same fashion,

Additive error: An additive error s is said to have occurred
if the adder output under fault t* is
related to the correct adder output t by

t' = t -I- s , where -2n93<+2no

Detectable errors:

Check symbol map:

S = {+21 1 i+l, OoO I n))

c: 53 --3 1 Ho, Hl, 000 3 Hm-l l

Check symbol equivalence classes:

Set operator 0:

Error detection:
Checker indicates error if sum t4 B#Bj
Checker indicates no error if sum teBi@B.3

Necessary and sufficient conditions on C for the checker to
detect the occurrence of any error in set S:

22

Constructing a code: We can remove half the elements from S
by noting that if for some
(y-x)= 2io

x,yEBi@Bj9 (x-y)= -2’, then
So we need only check the sum sets BI@Bj for

pairs whose difference is +2’.

As an example, we construct a code for a modulo 32 adder,
A similar code exists for any modulus 2no

S = ill 2, 4, 8, 16, 32)

Boa i 0,3,6,9, 000 9 30)
B1= { 1,4,7,10, 0 0 0 3 31)
B2= { 2,5,8,11, l eo 3 293

Bo@Bo= f&3,6, l o o t 603
Bo@Bl= {1,4,7, o o o > 61’1

B(pB2= [2,5,8, 0 0 0 9 592
BlOBl= { 2,5,8, o o o 9 621
B10B2= ☯3,6,9, l o o 3 601

B2@B2= [4,7,10, o o o t 581

Now if the adder is given two inputs &am Bo, the correct
output is some multiple of 3 between 0 and 60 inclusive,
Since the number 63 differs from any of these by a multiple
of 3 (which cannot be a power of two), we could just as well
allow the checker to pass as correct the sum 630 We can
similarly extend the sets Bo(4B2, Bl@B2, and B2@B2 so the
checker operates as shown in the following table

Check symbol pair Accept

Ho3 Ho @,3,6, l o o a 63’5

Ho3 Hl {J-,4,7, l o o 3 61)

Ho' H2 i2,5,8, 0.0 3 62)

Hl9 Hl {2,5,8, l o l 3 627

Hl9 H2 t&3,6, l o o 3 63)

H29 H2 b,4,7, . .e 3 61’)

23

It can be seen that this checker is a simple residue-
checker, It corresponds to the widely known fact that any
residue which is not a power of two can be used to check a
modulo 2n addition, provided that the carry out of the high
digl;t is available to the checker.

24

REFERENCES

PI Peterson, W.W., "On checking an adder," IBM Journal

of Res. and Dev., vol. 2, no.2, April 1958.

[2] Langdon, F.F. and C.K. Tang, "Concurrent error detection

for grwp look-ahead binary adders," IBM Journal of Res.

and Dev., vol. 14, Sept. 1970.

