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ABSTRACT

In this paper, necessary and sufficient conditions for
successful detection of errors in a binary adder by any separate
code are devel oped. V¢ denonstrate the existence of separate
checki ng codes for addition nodulo 2" (n = 4) and nodul o 2™-1
(n > 5, n even), which are not homonorphic imges of the addi-
tion being checked. A non-hononorphic code is constructed in
a regular fashion from a single check synbol with special prop-
erties. Finding all such initial check synbols requires an
exhaustive search of a large tree, and results indicate that
the number of distinct codes for a particular nodul us grows
rapidly with n. In an appendi x, we exam ne a nodul o o™ adder
where the carry out of the high position is also presented to
a checker.
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SEPARATE NON- HOVOMORPHI C - CHECKI NG
CODES FOR BI NARY ADDI Tl ON

[ ntroduction

It has previously been believed that in order to check a
binary adder using a separate code (check symbols), it is
necessary to construct a code which is some hononorphic inmage
of the addition operation being checked. This has been
proven [1] for the checking scheme of Fig. 1

1 adder >

n
> 1+ “2
o] Lol i
checker > error present

Fig, 1 Residue checking schenme

whi ch requires ¢(n;)*d(n,) = ¢(n,+n,), where * is some sultable
check synbol operator. However, one may still retain the
separateness of a checking code w thout performng the sane

check synbol transformation ( ¢ ) on the adder output, as is
shown in Fig, 2. Here we present the checker with the full binary



2

out put nunber from the adder, and deduce properties for the
check symbol map C which will allow a checker to detect

any of a set of detectable errors, The classical separate
checking schene is included as a special case of the
general i zed scheme of Fig. 2, since the output of the adder
may be transforned by the C mapping inside the checker

and before the actual check operation takes place,

n; > .
adder
modulo nyth
R
n2 >—
| S|
\ 1
c c --~-; C Lo——» C(n1+n2)
checker > error signal

Fig, 2 CGeneral separate checking schenme

The scheme of Fig. 1 has the advantage that the check
synbol for the adder output @(nl+m2) I's available at the
output also, It could then be stored in nenory along with
t he sumn,+n,, at sone extra menory cost, Then the check
synbol s for the inputs @(nl) and ¢(n2) woul d presunably have
been stored in nemory along with n, and n,, and the input
check synbol transformations would be unnecessary. The sane
met hod of storing the check symbol along with the nunber can
be used with the schene of Fig. 2 by adding a check synbol
generator C at the output. However the check symbol would not
be checked by the checker since the checker does not exam ne
the output check symbol, but rather the output itself,
Consequently a failure in the output check symbol generator
woul d be undetected until the output nunmber was fetched
back from menory as an input operand for the adder,



Detectable Errors

Ve nust decide exactly which errors are to be detectable,
It is, of course, most effective if we choose the nost
likely errors to be the detectable errors. The errors which
are most likely to occur are those arising fromthe |east
nunber of sinultaneous failures in the adder hardware (a
single fault). W consider the ripple-carry adder where
sum and carry out of each digit position are determ ned
by a full adder, and the full adders for the various digit
positions are independent. Oher widely used adders enploy the
carry-bypass and the carry |ook-ahead techniques. The ripple
adder and carry-bypass adder (Fig. 3)may be treated in the
same Way, since a single fault in the carry bypass circuitry
can only affect the carry out of the group, while a faulty
interdigit carry froma full adder propagates in the sane
way for both adders. For the carry |ook-ahead adder, such is
not the case. The |ook-ahead adder will not be treated here,
for there are several implementations, each affected differently
by single faults [2]. The error caused by a single fault in
the carry circuitry for the ripple adder and carry bypass
adder has the effect of adding or subtracting a sinple power
of two, as is shown bel ow.

X i carry bypass enable

T % Ca1% €% G ] i T
FA FA FA
sum sun sum -
8142 8141 8 _COFA cihCOFA Ci-—COFA £l
sum sun sum
Fig-3a. Ripple adder. | l l
8142 &4 ay

Fig. 3b. Carry bypass adder



In this paper we consider the adder to be performng addition
nodulo R on two inputs, the inputs being binary encodings of
two integers, which are also nodul o R (rR=2" or R=2"-1), The
adder delivers the sumin the sane binary-encoded form

n-|
T= Zak*Qk
k-0
In the study of transm ssion codes, the severity of a

transmssion error is measured by how many bits are inverted
(incorrect), since a single error affects only one bhit, However
a single fault in a binary adder may affect several bits in
its output, and in different ways depending on the input
operands to the adder, Wen studying arithnetic codes for
adders, it is nmore useful to neasure the severity of an
arithmetic error by the nature of the arithnetic difference
between the correct adder output and the adder output under
the fault, The reason is that the severity of the hardware

failure causing the fault is nost closely related to the
arithmetic difference.

Definition: An additive error s has occurred in a modulo
R adder when the erroneous adder output t*
is related to the correct adder output t by

t' = (t+s)mod R where SE€Zg.
Thus if a failure changes bit ak fromO to 1, the erroneous
sumis t'=t+2k. Simlarly, if a, changes from1l to 0 the
erroneous sumis t!'=t-2". Note that subtracting 2k s the
same as adding R—2k or (-2k)nnd R Thus the additive error
S (R-2k). If an interdigit carry or intergroup carry out of
the 1P position changes from0O to 1 or 1 to 0, the erroneous
suns becone tr=t+2*  and t1=t-2¥L, respectiveI%. Finally,
if both the sumbit and carry out bit fromthe kKU gy

adder are inverted, the erroneous sum becomnes t*=t:t2k::2k+l,
depending on the nature of the double inversion. The error
t'=t::3*2k, whi ch occurs when the sum and carry out bits are
inverted with the same sense, would be nost troubl esone.



I ndeed, nost studies of error detection in binary adders do
not specifically allow for detecting this sort of error
However, all the MSI full adders which we have exami ned are
equivalent to the full adder shown in Rig 4, Wen the carry
out is used to generate the sumoutput in this way, we can
show that any failure in the carry circuitry causes an error
which is a simple power of two.

A B Ci A B Cl
l,J_.I_L I I I CO=AB + ACi + BCi
L carry f sum T=ABCIL + AC + BC% + Ciég

T

Fig. 4 Full adder with common circuitry
for sumand carry out.

Suppose a failure in the carry circuit changes C, from
0 to 1, while the sumcircuit is fault-free. Referring to the
Bool ean expression for the sumoutput Tin Fig. 4,if A,:Byand C,
are such that T changes under the fault, T can change only
fromlto 0, Simlarly if ¢, changes from1to ¢, T can only
change fromO0 to 1. Thus a single failure in the carry circuit
of the k®® full adder can only cause an additive error of
oL oKL ok okl g okl Sinplifying, these
errors are ¥4, Zk, -2k+l, and -2". Any single failure
in such a full adder (except power |eads) gives an additive
error of (i:Qi)mod R., There is no possibility of an additive
error which is not a simple power of two,

Wth this justification, we shall require that the checking
code detect all additive errors in the set S,

wher e s‘:‘is | s=2', or s=R-2%, 1§0,1,2, ... » n-1}}
and n is the least integer 3 n>logspR.



Exanple:  For 232, R=32, n=5,
Then 5={1,2,4,8,16,24,28,30,31} .
For s=28=(-4)mod 32, t he 2° bit has changed
from1l to O.

Considering then the nodulus R and the set of detectable
errors S, we deduce necessary and sufficient conditions for
the check synbol mapping C to allow a checker to detect the
occurrence of any of the additive errors in S. This |eads
directly to the checking scheme, and an algorithm for
finding all check synbols which meet the necessary conditions
for inclusion in a check symbol map C. The check synbols
found nmust then be combined into a single-valued map C, and
the question of whether this can always be done efficiently
Is left unanswered. This algorithmw |l discover, in passing,
any residue codes which exist for the modulus R W discover
a particular mapping C of the same general form for al
nodul i R=2", n>4, and a simlar mapping for all nodul
r=2"-1, n>5, n even.

Necessary and Sufficient Conditions

W neke only the following initial restrictions on the
checking code: we restrict the check synbol transformation C
such that C(nl) and c(n2) provide the checker with sufficient
information about the inputs to the adder, such that it can
detect the occurrence of any error in the set S of detectable
additive errors. W require that C be a single-valued mapping
fromthe integers modulo R to check synbols

0: Zp>{Hys Hys Hys wee s By g}

The checker is presented with two check synbols Hy and H
which are derived fromthe binary inputs to the adder. The
check synbol s Hy; are equivalent to sets By of integers, where
By Is the set of all integers nmodul o R whose binary encodi ngs
map under C to the Ut check symbol H, :

5,8 [xezy | ¢ (x)=H,} .



It will be nuch more convenient throughout to describe
the code in terms of these equival ence classes By . Now
suppose that the adder is given two integers x and y to add,

wher e C(x)=Hi,
C(y)=HJ.
Al'l that the checker knows about the adder inputs is that
one input was an integer in set By, and one was in set BU
Then the checker nust accept as the correct sumall the rntegers

teﬁamMde)ae%}bij};

These sums arise fromall the possible input pairs a,b
whi ch produce the check synbol pair F&,H., W formalize

: : . J :
this sumset with the binary set operator@ which forns
the set of all possible suns nmodulo R of one integer taken
fromthe first set and one integer taken from the second set:

A@B 2{(a+b)mod R|aea, be B} .

Then the checker must accept as the correct sumall the integers
t €B,@B, when the check synbols presented are Hy and Hj.
Li kew se, the checker would deliver an error indication
when t¢B,@3B,. Thus the operation of the checker nust be
to verify that the sumt isin the set E%ﬁ)f% defined by the
check synbol s H, and H, which are presented to it,
Lemma 1: Gven a separate checking schene for an adder
of binary encoded integers nodulo R where the
checker exam nes the adder output directly, and
receives two check synbols Hy and H, derived from
the adder inputs, Then the checking scheme is capable
of detecting the occurrence of any single additive
error s taken froma set S of detectable errors iff

VHi,HJ., Vx,yeB,®B;, (x-y)mdR§S
where C ZR-,{HO, Hy, 000, H 4}
B2 {xeZg| C(x)=Hiz
A@Bé{@ﬂﬂmmiR(aeA,beBE.
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<<= (sufficiency)

Let a,beZy be inputs to the adder, where
C(a)=Hi, C(b)=Hj.
Let the check synbol map C have the property
VH,,H,€ In(C), ‘V’x,yeB ®B,, (x-y)nmod R ¢ S,
Let the c%ecker accept as correct
all the integers in Bi(-BBJ, and reject the others,
Then by the definition of @, the correct sum
t = (at+b)mod ReB NOEM
But E t1 € B, @B such that (t'=t)mod RE S,
Then Vs eS, t!'=(t+s)mod R{aBi@B and all the

errors in S are detectable.
QED

—>> (necessity)

Let the checker be presented with input check
symbol s Hy and H. Then the checker nust accept

as correct al | tﬁe I ntegers

t EBi@Bj, since Vt EBi@BJ., da,ve Zg such that
C(a)=H,, C(b)=H,, and (a+b)nod R = %,

But suppose for sone xjyeBi@B;,B s € 8 such that

s=(x~-y)mod R
Then Ja,bsc,d€ Zg such that c(a)=H,, C(b)=H
C(c)=H,, (d)—H .s (atb) mod R=x, (c+d) mod R—y,
wher e x:(y+s)m)d R Thenif c¢c,d are inputs to the
adder, the checker nust accept either X or y as the
correét sum while x is an incorrect answer resulting
fromthe error s. In this instance the error s may
go undetected, which contradicts the error detecting
capability required. Thus by contradiction we nust
have

v H,;,H; € In(C), Vx,yeBi@ Bys (x-y)mod R § S,

QED



For convenience we define the property required by Lemm
1 as the conposite di stance propertye ,

Definition: The sets A and B of integers nmodulo R
have the conposite distance property,
AOB, relative to the Set S of detectable
additive errors i ff Vx,yeA®@B, (x-y)nmod R¢S.

The conposite distance property is always relative to a
modul us R and set S of detectable errors. The nodulus and
set of detectable errors will not be nentioned whenever
their presence is clearly understood.

Wth this definition, the code mentioned in Lenma 1 can
detect any of the detectable errors iff \fBi,Bj, BiEJBjo
The conposite distance property is a convenient and conpact
criterion for selecting check synbol equival ence classes

while constructing a code.

For exanple, consider the integers z,, The set of integers
32 )
£0,53,6,9% coul d be used as a check synbol equival ence cl ass

By in a separate checking code for an adder modulo 32 since

S =41,2,4,8,16,24,28,30,31}%

B, = {0,3,6,9}

B,@B, =10,3,6,9,12,15,18}

§ (x-y)mod 32 | x,y € B = §18,15,12,9,6,3,0,
14,17,20,23,26,29% .

This set of differences has an enpty intersection

with S, so B.tIB

0 o°

Construction of a Code

To construct a code for a particul ar moddtus R and its
associ ated set of forhidden distances S, we nust divide the

Integers Zp into equival ence classes Bys Bys ees, B _q such
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that each pair B, » Bj has the conposite distance property
(Lemma 1). W will not be concerned with the inplenmentation
of the check synbol transformation C or with the operation

of the checker here, since they may be inplenented by table

| ook-up, if by no other means. The inplementation for a
special code which recurs in the same formfor all nodul

2% will be discussed in a subsequent section. Once the check
symbol transformation C is defined, the structure of the code
I's conpletely specified.

Once a set B of integers modulo R has been found which has
the conposite distance property with itself, several other
sets may be found directly from B which have the conposite
di stance property with B, and with each other.

Definition: B'is a rotation of the set B of integers
modulo Riff J ke z, such that B'=p®{Kk}.

Exanple: §1,4,7,1 is a rotation of
{0,3,6,9} for R=32,

Lemma 2 Gven two sets A,B of integers nodulo R (not

necessarily distinct). |If AgB then At B! where
Avis arotation of A and B'is a rotation of B,

Proof
Since AoB, then Va,b'e A®@B, (a-b)mod rR¢ s. That
IS \7'a1,a2 € A Vbl,]f)‘2 € B,
( (aq+by)-(aytby) )mod R{ S.

Now consi der

A'@B' = {(a'+b)mod R | a'g A', bre B}

= {((a+k)+(b+k,))mod R | a€h, be B}
for sone kysky € Zpe

The difference nod R of any two integers in A'@®B!
L ((al+bl+kl+k:2)—(a2+b2+kl+k2))mod R

= ((al+bl) - (a2+b2))mod R for some a;,a,€ A

bl:b2€Bo

But this is identical to the difference nod R of two
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integers in A®B, and since AOB, that difference is
not one of the forbidden distances in S. Then
Vi,year@B', (x-y)md R&S and Ar9Br,
QED
This suggests building a code froma single basic set B,
as B, B@{1} , B®{1}, ..., B®{1.}, where each of the
nunbers in ZR occurs in exactly one of the sets By o Thi s
can be easily done for the "regular" codes which we wll
define shortly, In other cases, difficulties may arise
wi th duplication of nunbers in different sets By s in which
case one can renove nunbers at will fromB@{i} and | eave only
the subset desired, It is obvious that doing so will not
harm the conposite distance property. It is also possible
to build a code with any rotations of distinct non-overlapping
sets, so long as the sets have the conposite distance
property with thenmselves and with each other,

Wien constructing a code froma known set of check symbol
equi val ence cl asses{BB, the situation becomes rather chaotic,
for we have been able to inpose no other restriction upon the
choi ce of equival ence classes than that of Lemma 1., For
exanpl e, one m ght suppose that ais transitive, i.e.

AOB, and BOC => AdC. W can imediately dispense with
this proposition by the counterexanple fromzg,

s={1,2,4,8,16,32,48,56,60,62,63}
A={0,9,18}% A®A={0,9,18,27,36t <> AdA
B={1,4,7}% B®B={2,5,8,11,14} = BaB
c=§2,25,48t Cc@®C={4,9,27,32,50% = CIC

A®B={1,4,7,10,13,16,19,22,25% = AD3

B®C={3,6,9,26,29,32,49,52,55} = BOC

A®C={2,11,20,25,34,43,48,57¢

but (43-11)=32€S SO athe

Further, one mght suppose that AcB iff A=Eejki,
i.e. A has the conposite distance property with Bonly if
(we proved the if part in Lemma 2) Ais a rotation of B,
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But B and C of the exanple above. have the conposite distance
property, yet they are not rotations of each other,

Codes for Mdul us R=2"

For a modul us R=2", n>4, we show that the set

B=1{0,3,6, « m , 3%(2"73-1)}
has the conposite distance property with itself, and that

c: zy»{B, B&{2"3}, nefexen 3], .., %{7*2“"3:@

constitutes a code, This is the "special form" or '"regular"
code nentioned above, For this nmodulus, the set of forbidden
di stances (detectable additive errors) is

s ={1,2,4, .00 , 2771, 2RpR7E 2N D=3 ggq | oP ]

But B@®B={0,3,6,9, « oo (2“"3-1)*3*2} , and the distance

bet ween any two nunbers in B@B is a nultiple of 3,and in fact
does not exceed the (2%73-1)%2®™® |t ple of 3. The smallest

f orbi dden di stance which might be a multiple of 3is ph_ph=2
However

(2773-1)%3 <2773x3
(2773-1) %32« 2P 2x3 = plph"
Then the snallest forbidden distance which is a nultiple of 3

must be still greater than the largest distance in B®@s,
Then B has the conposite distance property with itself.

2

Moreover, any one of the B, is a rotation of any other, so
all possible pairs Bi,Bj have the conposite distance property,,
Further, any nunber ne'zR I's mentioned in exactly one of the
By, for assumng the converse leads to a contradiction as

foll ows

'

Then (n-k*2™3) €B,;, and B, has distance kxpN-3
But by construction of B, B, has only distances

Suppose ane Zn > neBi, neé BJ, B :Bp{k*2n"3}, 1<kg 7o

m*3, where 1<mg2% 3.1,
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Consequently, for some m m¥*3 = k*2n'3, and
3divides k, 1<k<7

Case 1 Case 2

k=3 k=6
m*3=3%2""3 m*3=6%2"3

n=p""3 =73
contradi ction contradi ction

This conpletes the proof, and we have a code of the same form
for all moduli R=2", n324.

Codes for Mbdulus R=2"™-1

For a modul us R=2™-1, n even, we show that the set

B =§0,3,6, 000 , (2"73-2)*3}

has the conposite distance property with itself, and that the
set

3, 3@, &N, 20 fk+3t, @I, BOk+5Y,
B®$2k+6} , B® {2k+T7} , BO§2k+8Y §
where k = (2P3-2)#3

can forma code after an ad hoc procedure of truncating
duplicated numbers fromthe |ast 3sets,

Agai n, the distance between any two nunbers intEGBB is a
mul tiple of 3, and does not exceed the (27"3-2) %2 " mul ti pl e.

The set of forbidden distances is

y S = | 1,2’4, OOO F) 2n-l’ 2n-l-2n-1, 2n-1-2n-2’ et0.3 -

Now since n is even, 3does not divide 2
Then the snallest forbidden distance which nay be a multiple
of 3 ig 2P-1-072g3x0™2_1, (One can easily show that
3*2*(2n‘3_2)<;3*2n'2-L so no pair of nunmbers in B@®B differs
by a forbidden distance, Thus B has the conposite distance
property with itself,
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We can construct the nine rotations of B as above, and

since (the largest nunber in the sixth rotation)
ok+5 = 2(2%"3-2)%3+5 ¢2"-1, the first 6 rotations mention the

nunbers 0,1, 000 , 2k+5 once and only once, Since ok+8 <21,
we can begin using the last 3 rotations of B, Since they are
successively offset by 1, there is no overlap between them

and it only remains to truncate away any high order nenbers
of the 3 sets which wap around the nodul us R=2"-1,

Fi nding O her Codes

A code is the division of the integers ZR into several
non-overl appi ng sets, where any set has the conposite
di stance property with any other set, and with itself, So
the first step in finding a new code is finding a set B having
the conposite distance property with itself, Then a code nay
be constructed using only rotations of the same set, Al so,
if two distinct sets can be found, both being self-conposite,
and having the conposite distance property wth each other,
a code may be constructed using any rotations of the two
starting sets, This may be extended to any number of
original sets,

W have devised a conputer program which will find al
sel f-conposite sets with a given nunber of elements and
containing the element 0, The sets are constructed by adding
new el enents one by one to a self-conposite set with [ess
than the required nunber of elements. The new el enents are
appended i n ascendi ng nunerical order, Al-the sets found,
including the internediate ones, are assigned to the
nodes of a tree, The tree has as many levels as elements in
the sets to be constructed, for the algorithm starts at
the top of the tree (level 1), With the single element 0
ina starting set, The next level contains all sets of 2
el enents, and so on, until the lowest |evel of the tree
has all sets of the desired number of elements. The nodes
are arranged so that any node is contained in its successors,
Thus, each successor is formed by appendi ng a new el ement
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to the elenents of its imediate predecessor, One can see
that this is a huge tree, It is searched depth-first for
nodes having the conposite distance property with thenselves,
and the downward search stops as soon as a node is reached -
whi ch Ls not self-conposite, For, if this is true, no
successor node can be self-conposite, The search then continues
at another node on the same level, This searching algorithm
was inplenented recursively in ALGOL w, It was later

coded in | BM 360assenbly |anguage, increasing speed approx-
imatelytenfold, Even so, 7or 8is the largest nunber of

| evel s which can be searched exhaustively in a reasonable

| ength of tinme.

This algorithm has the fault that several representatives
of what is essentially the sane set may be discovered. In
Particular, a set nay be represented by the differences
bet ween adj acent-nunbers in the set. Then, depending on
the degree of asymetry of the tuple of differences, there
may be up to 2%p distinct unordered:sets 'of integers
corresponding to the same tuple of differences, where p is
the nunber of elements in the set. These are the various
rotations and flips of the geonetric shape of the tuple of
differences, Al of the sets arising froma particular
ordered tuple of differences are self-conmposite or not, in
the sane way, since it is immterial which elenent is
rotated to the zero position,

For exanple, the set B={0,3,6,12,39,45,60}f or R=63 was
found to have the conposite distance property with itself,
The ordered tuple of differences of adjacent elements for
this set is <3,3,6,27,6,15,§>.The geonetric shape of Fig, 5
can be flipped and rotated in 14 ways to produce all the
sets
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§0,3,6,9,15,42,48}% £0,3,6,9,24,30,57%
$0,3,6,12,39,45,60% {0,3,6,21,27,54,60%
§0,3,9,36,42,57,60} 10,3,18,24,51,57,60%

§0,6,33,39,54,57,60} {0,15,21,48,54,57,60%
{0,27,33,48,51,54,57} {0,6,33,39,42,45,48}
£0,6,21,24,27,30,36} §0,27,33,36,39,42,57}
{0,15,18,21,24,30,57§ {0,6,9,12,15,30,36}.

S
~

Fig, 5Tuple of differences

Unfortunately, there is no known algorithm for generating
the distinct tuples of differences under rotation and flipping

which nmay be forned by rearranging a given set of integra
differences, The best we can do is enunerate them via
Polya's counting theory,



Sone Exanpl es

level 2

Fig, 6The tree which is searched to find all 3elenent
1 whi ch have the conposite distance
property mﬁ?h t hemsel ves

sets fromZ

Sone Sel f-Conposite Sets \Wich Have Been Found

# nodul us
el enent's R
3 31
3 31
3 31
3 31
3 31
4 31
4 32
4 63
3 64

# rotations

prototype set and flips
0,3,6 3
0,3,17 3
0,6,12 3
0,7,14 3
0,7,19 3
none exi st
0,3,6,9 b
over 2000 found
0,3,6,9,12,15,18,21 8

17
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| npl enenting the Regul ar Form Code for Z3p

check synbo
equi val ence cl ass sum sets
By=10,3,6,9} By@B,=Bg®By= 000 ={0,3,6,9,12,15,18% =a,
B,={4,7,10,13} By ®By=B) @B~ 000 ={4,7,10,13,16,19,22} =4,
B,={8,11,14,17} {8,11,14,17,20,23,26§=p,
B.={12,15,18,21} {12,15,18,21,24,27,30-4,

§16,19,22,25,28,31,2% =y,
B5={2o,23,26,29} {20,23,26,29,0,3,6} =g
Be={24,27,30,1} {24,27,30,1,4,7,10% =Ag
B7={28,31,2,5} {28,31,2,5,8,11,14% =A;

B),={16,19,22,25}

We have listed the check synbol classes Bys Bys 000 , B7
and then listed the sumsets BiC)Bj. Only 8 distinct sum
sets occur, and they overlap. For exanple, 8 appears in
both A, and A,, Thus the sum & nmight result from the summands
4 and 4 fromBl and Bl (sum in Ag), or it mght result from
t he summands 6 and 2 fronlBo and B, (sumin AT). Not e t hat
the el enents within any A, do not differ by a forbidden
distance (detectable additive error), as indeed they nust not,
The di stances in any A, are all multiples of 3, so the errors
which may be detected in this case are 1, 2, x4, +5, +7,
*8, 10, £11, *13, +14, and % 16, These include several
double errors, and the triple errors #11, * 13,

The sum sets have been named so that if the check synbo
cl asses fromthe input are By, BJ, then the output sum from
the adder should lie in A i +iympd 8. 1hen to perform the
check, the checker exanines %e adder output and verifies
that the sumis in the correct sumset, The sum may al so

[ie in another sum set, but this is immterial.

The processes of check synbol mapping and output verification
are simlar. A decision tree for the input encoding i S shown

in Fig. Te.
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0 1 2
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| nmod 3
1 2
n<24 n<28 n< 20
Y J lN Y 1 lN Y l lN
33 BG Bll— B.( 52 B5

Fig, 7 Check symbol encoding for Z3p regul ar code

The adder output verification for the Z3p regul ar code
Is given in the followng table,

resi due
sum set condition range
A, n nmod 3=0 n<2l
Aq nnmd 3=1 | 1< n<25
Ay n nod 3=2 | 5< n<29
A3 n nod 3=0 n>9
Ay n nod 3=1 n>13
Ay n nod 3=2 n>5
A5 n nod 3=2 n>17
A5 n nod 3=0 n<g
Ag n nod 3=0 r-021
Ag n nod 3=1 n<13
A7 n nod 3=1 n>25
A7 n nod 3=2 n< 17
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Simlar constructions hold for the regular (0,3,6, etc,)
codes for moduli 2%, all n>5, The encoding and checking
processes shown here are necessarily nmore conplex than the
honoror phi ¢ residue codes. However, this code is not necessarily
representative of all the non-homonorphic codes, and.further
investigation 1S needed before nmaking a conparison to the
resi due codes, Also of interest here is the fact that there
I's no hononorphic residue code for checking addition nodul o
2™ which will detect all single errors. This is so because the
resi due must be taken nodulo a power of two, which corresponds
to a single error which is not detectable, A residue code
can only be used for a nodul o 2™ adder if the carry out or
extend bit is given to the checker, so that the adder can be
considered as modul o 2™ with no possibility of overflow,
This technique is investigated in Appendix 1.

Concl usi on

W have. described non-honmonorphic separate codes for
checking nmodul o addition, for the inportant noduli 2%, and
for 2"-1 with even n, These codes have essentially the sane
formfor any suitable value of n larger than 5. This was
done mainly to establish their existence, The nost genera
non- hormonor phi ¢ codes do not have this systematic form and
we expect themto vary widely, as they arise from nunber
theoretic arguments, rather than from a defining al gebraic
structure,

The process of finding a non-homonorphic code is exhausting,
even for a fast conputer, W are currently inproving the
conput er search technique, in order to exhaustively exam ne
several representative noduli. This nust be done in order
to make neani ngful conparisons between the cost-effectiveness
of non- hononor phi ¢ separate checking codes and the nore well-
known net hods, ,
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APPENDI X

Checking an adder where carry out of the highest bit position
s available

In a nodul o 2™ adder, the carry out of the highest bit

position is usually available, [If that bit is also presented

to the checker, the checking code can be sinplified considerably,
In effect, the checker is then checking a nodul o o+l addi tion,
where the adder inputs are restricted to be smaller than 2%,
Then the sum never waps around the nodul us 2n+l, SO we

may assume that the adder is not modul o any nunber, but

rather perforns ordinary addition, The devel opnent of a
separate checking code proceeds in nubh the sanme fashion

Additive error: An additive error s is said to have occurred
I f the adder output under fault t'is
related to the correct adder output t by

t' = t + s , where -2"<s<+2",
Det ect abl e errors: S = {121} 1e{o,1, ceo s n}}
Check symbol nap: C. Zon —»{HO, Hy, 000, Hy }

Check synmbol equival ence cl asses: Bié x € Z,n , C(x) = Hi%

Set operator @ : A@Bé{a+b’aeA, beB%.

Error detection:

Checker indicates error if sum téBi@Bj

Checker indicates no error if sumteBieaBJ

Necessary and sufficient conditions on C for the checker to
detect the occurrence of any error in set S

\V/Bi.’Bjs v X,y € Bi@Bj’ (x-y) ¢ Se
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Constructing a code: W can renove half the elenents from S
by noting that if for some x,ye B,®B,, (x=y)= -Qi,then
(y-x)= 21, So we need only check the sumsets 131@13J for

pairs whose difference is s2t,

As an example, we construct a code for a nodul o 32 adder,
A simlar code exists for any nodul us 2%,

S = {l.’ 2, 4, 8, 16, 32}

n.=10,3,6,9, 000 , 30}
Bl= {1:4:7,103 eee 31}
By={255,8,11, 1o 5 29}

BO@ BO= {0:3:6: e oo o 60;
BO®B1={1’4,7.’0 o o ,612
Bo®B= {2,5,8,5 o » ,59%
B)®By={2,5,8, .00 , 62}
B{®B,= {3,6,9, . 5 60}
B, ® B,= {4,7,20,, . . ,581%

Now i f the adder is given two inputs from Bys the correct
output is some nultiple of 3between 0 and 60i ncl usive,
Since the nunber 63differs fromany of these by a nultiple
of 3(which cannot be a power of two), we could just as well
al l ow the checker to pass as correct the sum63,\W can
simlarly extend the sets By@® 3By, Bi® By, and B,@® B, SO t he
checker operates as shown in the follow ng table

Check symbol pair ~ Accept

Hys Hy | £0,3,6, . w , 63
Hys Hy §1,4,7, « o= , 61}
HO’ H2 {2;5,8, eee 62}
Hy, Hy {2,5,8, . o . , 62}
Hys Hy £0,3,6, . w , 63}
Hg: H2 {1:4:7: . e0 g 61}
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It can be seen that this checker is a sinple residue-
checker, It corresponds to the widely known fact that any
residue which is not a power of two can be used to check a
modul o 2™ addition, provided that the carry out of the high
digit i s available to the checker.
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