
SEL-73-030

Self - Testing Residue Trees

by

Stephen G. Kobpaev

August 1973

Technical Report No. 49

This work was supported by the
National Science Foundation
under Grant GJ-27527.

DltlTRL5VSTE~~LABORRTORV

STARFORD ELECTRORICS LRBORRTORIES
STRRFORD URIUERSITV . STRRFORP,CRUFORRlR

SEL 73-030

SELF-TESTING RESIDUE TREES

Stephen G. Kolupaev

August 1973

Technical Report no. 49

DIGITAL SYSTEMS LABORATORY

Dept. of Electrical Engineering Dept. of Computer Science

Stanford University

Stanford, California

This work was supported by the National Science Foundation under
grant GJ-27527.

ABSTRACT

Error detection and correction in binary adders often require

computing the residue modulo A of a binary number. We present

here a totally self-checking network which extracts the residue

of a binary input number of arbitrary width, with respect to any

odd modulus A. This network has the tree structure commonly used

for residue extraction: a binary tree of circuit blocks, where

each block outputs the residue of its inputs. The network we

describe differs from previous designs in that the signals between

blocks of the tree are not binary-coded. Instead, the l-out-of-A

code is used, where A is the modulus desired. Use of this code

permits the network to be free of inverters, giving it an advantage

in speed. The network output is also coded l-out-of-A, and with

respect to this code, the residue tree is totally self-checking

in the sense of Anderson [S].

The residue tree described here requires logic gates with

A inputs, when the modulus desired is A. This makes the basic design

somewhat impractical for a large modulus, because gates with large

fan-in are undesirable. To extend the usefulness of this network,

we present a technique which uses several residue trees of this

design, each for a different modulus. The outputs of these residue

trees are combined by a totally self-checking translator from the

code of multiple residues to the l-out-of-A code. Using this

multiple residue scheme, the modulus of each residue tree can be

made much smaller than the desired modulus A.

ii

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

1.

2.

3.

4.

5.

6.

7.

8.

INTRODUCTION . 1

BASIC DESIGN FOR ARBITRARY MODULUS A 3

SELF-TESTING OPERATION MODULO 3 10

MODULO 5 RESIDUE TREE

PROOF OF TOTALLY SELF-CHECKING OPERATION

BIRESIDUES FOR LARGE MODULI

USE IN A TOTALLY SELF-CHECKING RESIDUE CHECKER

LEVEL MERGING OF SECOND RANK CELLS

REFERENCES . 39

APPENDIXA . 40

APPENDIXB . 42

Page

iii

15

22

27

29

32

iii

LIST OF ILLUSTRATIONS

Figure Page

1. Modulo A residue tree 4

2. 16-bit modulo 3 residue tree . e 11

3. 1 Ix 3 block of modulo 3 residue tree 12

4. +3 block of modulo 3 residue tree 14

5. 1x1~ block of modulo 5 residue tree 17

6. +5 block of modulo 5 residue tree 18

7. Modulo 5 residue tree 19

8. Modulo 15 residue network 28

9. Residue checker for addition 31

10. kth subnetwork of OR-AND +A block 34

11. Complete OR-AND +3 block 35

Bl. 32-bit wide modulo 5 residue tree 43

B2. 32-bit wide modulo 5 residue tree 44

B3. 32-bit wide modulo 5 residue tree using MS1
decoders . 45

B4. 32-bit wide modulo 7 residue three using MS1
decoders and programmed logic array 46

B5. 1x1~ block of MS1 modulo 7 residue tree 47

1. INTRODUCTION

The residue check is a widely known method of checking binary

addition. The addition nl+n2=sum is checked by verifying that

R(nl) * R(n2) = R(sum), where R(n) is the residue modulo A of

n, and * is addition modulo A. As with all error detection methods,

the effectiveness of this method is compromised by the probability

that the checking circuit fails in such a way that a subsequent

error in the addition goes undetected. Ideally, checking circuits

should be designed so that any failure causes the checker to signal

an error, even when the failure is in the checker itself [I], [2].

The residue tree presented here meets this goal of signalling

its own errors. The circuit obtains the residue of its input with

respect to a modulus A. The circuit output thus has A distinct states,

which we have encoded in the l-out-of-A code. With respect to this

code, the residue tree meets the requirements of a totally self-

checking [3] network. Assuming only permanent, single stuck-type

faults may occur in the network, then

1) If the network has suffered no failures, its output is a

code word (one line high, A-l lines low), and is correct.

2) If the network does contain a failure of the type assumed

above, then the output is either a code word or it is not.

If it is a code word, then it is guaranteed to be the right

3)

code word, in spite of whatever single stuck fault is

present. This is called the fault-secure property.

If the network contains any particular failure of the

type assumed above, we guarantee that at least one particu-

lar input, in the presence of that particular failure, will

cause the output to be non-code (not l-out-of-A). That is,

for the entire network, each and every single stuck-fault

has a corresponding set of inputs which reveal the presence

of that fault by causing a non-code output. This is the

self-testing property.

In the above, 1) defines the normal operation of the network. 2)

gives us the confidence that if the network output is a code word,

it is the correct code word. Finally, 3) asserts that if we present

the network with all of its inputs, and if only code words appear at

the network outputs, then the network contains no fault of the type

assumed above. Thus this residue tree can be used in a residue checker

with this special confidence in its output: provided that only perma-

nent, single, stuck-type faults may arise in the residue tree, the

residue tree is fault-free if and only if its output is always a code--pm

word.

Wadia [4] has presented a modulo 3 residue tree, which is designed

with these self-checking features in mind. His network is "testable",

which means that for every single stuck-fault in the network, at least

one binary input number will cause an incorrect output. That network

3

is not intended to be totally self-checking by itself. The code

used to pass residues between blocks and to display the output

residue is the binary code on 2 wires. In his design, all 4 output

combinations are valid outputs, and totally self-checking operation

results only when the network is made part of a larger network.

The residue network we present here, on the other hand, stands

alone as a totally self-checking network. This difference arises

directly from choosing the highly redundant l-out-of-A code for block

outputs, rather than the non-redundant 2 wire binary code. Using

the l-out-of-A code to carry signals between blocks has the immediate

disadvantage of requiring more output wires. But, something is gained

by paying that price. First, as mentioned above, the residue tree

itself is totally self-checking. Second, the design of circuit blocks

for any modulus is equally as straightforward as for the lowest

modulus, 3. Third, blocks in the residue tree need no inverters,

so that high speed can be obtained. Level-merging [2,3] can be applied

to this residue tree, resulting in one gate delay per block.

2. BASIC DESIGN FOR ARBITRARY MODULUS A

The totally self-checking residue tree has the basic structure

shown in Fig. 1. The common technique of breaking the input number n

into several bytes B0,B1,B2,...etc. is used. For example, let us

assume that there are 4 bytes, as in Fig. 1. Further assume that

each byte contains 4 bits. Thus the input number n is a 16-bit

4

binary input number

coded output
l-out-of-A

Figure 1. Modulo A residue tree.

5

binary number. Let each byte have the value seen in the 4 bits which

it includes. Thus,

The value of the input number is then the weighted sum of the 4 bytes:

n=B*2 l23 + B2 l 28 + B102~ + B.

Because of the homomorphism relating modulo A addition with ordinary
*

addition , the input number modulo A \nlA is given by

I A+A lB2*281A +A IBl’241A +A IB()lA* (1)

IA inHere +A denotes modulo A addition. Circuit blocks labelled 1x

Fig. 1 obtain the residue modulo A of the weighted input bytes . This

is the first step in evaluating equation (1) above, and these blocks

are the first rank of blocks seen in Fig. 1. Once these residues are

obtained, they are added modulo A by circuit blocks labelled fA in

Fig. 1. Because of the associativity of addition modulo A, it is im-

material what order is chosen for the addition. We have chosen the

order implicit in Fig. 1, so that all \xlA output signals pass through

the same number of +A blocks. This makes the number of gate delays

from each bit of the input number to the residue tree output equal.

The interblock signals in Fig. 1 and the corresponding partial

results of evaluating equation (1) above, each take on the values

0,1,2,...,A-1. In this design, each block has A outputs

0 1 2 A-l
43 ,R ,R ,...,R >. The outputs of all blocks are encoded in the

l-out-of-A code given in the following table:

*A good review of residue arithmetic is given in Chapter 2 of Szabo
and Tanaka [5].

Inter block code

residue R0 Rl R2 R3 A - 2 RA-lR

0 1 0 0 o... 0 0

1 0 1 0 o... 0 0
2 0 0 1 0 . . . 0 0

.

.

A-l 0 0 0 o... 0 1

If the residue tree is free of faults, each block will have exactly

one output high. Which output that is determines what residue is

being emitted, as

R'=l iff the residue is i.

In order that the residue tree can be totally self-checking,

all lines must be tested for stuck-at-0 and stuck-at-l, and hence

all lines must at different times carry logic 0 and logic 1. Having

chosen the l-out-of-A code, we are then obliged to have each block

output exhibit all A different residues. Thus each byte must contain

at least hog 2 Al* bits. Referring to equation (I), a typical

I 1x A block performs the following reduction modulo A, where B is the

content of the byte, and 2 i is the weight of its least significant bit.

/B*2i/A.

Because of the homomorphism between modulo A multiplication and ordinary

multiplication, we can re-write the above as

(2)

It can be seen in (2) that if a byte B contains fewer than

Flog2 A7 bits, the term lBIA would not take on all A different values.

*i-xl is the least integer greater than or equal to x.

7

.
Since 1211A is fixed, the product (2) would not, either. Thus the

requirement that each byte contain ha A1 bits is certainly a

necessary condition for the block output \xIA to take on all A

values of residue. This is not a sufficient condition, as we can

show in a simple example.

Suppose we have a byte B containing 3 bits, a modulus A=6,

and the weight of the byte is 23 . In the following multiplication

table, we show what values the product (2) assumes, when the 3 bits

of B take all 8 different combinations.

product

B lB4j
6

0 0 0

1 1 2

2 2 4

3 3 0

4 4 2

5 5 4
.--mm I-------------------------.

6 0 0

7 1 2

3note: 2 =I I 62

What happened in this example was that the product (2) was always

some multiple of the greatest common divisor of A and the byte's

weight i2 , which in this case is GCD(6,8) = 2. In Appendix A,

we show that restricting the modulus A to be odd is sufficient for

the multiplication l of the integers modulo A (Z) by any powerA
of 2 to be an onto map from ZA to itself. Then for the x AI I

8

blocks of Fig. 1 to exhibit all A values of residue, we require

that each byte contain at least rm2 A7 bits, and that the modulus

A be odd.

Once these restrictions are met, the lxlA blocks in Fig. 1

will emit all A values of residue. We must also have the assurance

that the +A blocks will do the same. Since the binary input number

is assumed to take on all possible values, the bytes of the input

number exhibit all possible combinations of residues. Then each

TA block in Fig. 1 receives all A2 combinations of residues, and

its output ranges through all A values of residue, as desired.

The design of an 1x1 A block is quite straightforward. The

number seen in its byte is first reduced to its residue (this is

the evaluation of I 1B A in equation (2)). That residue is formed

in the l-out-of-A code. This reduction is performed by a 2 level

AND-OR network. Suppose there are k bits in the byte to be reduced.

The network completely decodes k bits to 1 line out of 2k , -using

c+2, k-input AND gates, and then OR's together lines which correspond

to the same residue. A simple example of this is shown in Fig. 3

for a 4-bit byte and modulus 3.

Once the reduction I IBA is done, the multiplication modulo A

by the weight of the byte remains. Since the multiplication is a

1-l onto map from the set of residues (0,1,2,...,A-13 to itself,

each residue I IBA is mapped to a different residue by the product

I lBIA l 1 2?A IA� No two residues B A1 I map to the same product,

because of the odd choice of A.

Then to effect this multiplication, we can simply re-label the

A residue lines appropriately, and the multiplication is done without

I

9

any gates. We shall show this re-labelling by drawing a I(network"

which is simply a crossover of wires. An example is a byte of 3 bits,
3with weight 2 , for modulus 5. This example is more fully developed

in Fig. 5.

note:

1 I -
- - -

1
input byte -a-

Im-w a --

I" "

1815=3 2 level
AND-OR net

R4 R3 R2 R1 R
BI
'3

IBly 313

The design of the +A block is little more complicated than

the lxlA block. Two l-out-of-A coded residues X and Y are its
0 1inputs, X = G ,X 1 l l 9 #-1>, and Y = CY',Y',..., YA -1

>. The X lines
.

carry the X residue, and the Y lines carry the Y residue. Line X1

iis at logic 1 iff the X residue is i, and similarly for Y . The

output of the +A block will be called R, and its lines will be

labelled similarly, R = a",R1 A-l
9 l * l 9 R >. The output R is to be

the sum module A of the inputs X and Y. The output residue is 0 if

cx,Y> = <O,o>, or < l&l>, or CZ,A-2>, etc.

In general, the output residue is i when GX,YY. = <O,i>, or

<l,i-I>, or C&i-2>, etc. Because of the l-out-of-A encoding of

the X and Y inputs, the logical proposition "the X residue is i"

is the same as the logical proposition "line X i is 1." Then the

output lines R0 1,R ,***J RA-l should carry the logic values of the

following logical equations

10

R0 = XOYO + x1ti --I + + rp -lyl

R1 = x0$ + XIYO + . . . + xA-ly2

iA-1 = xop-l + x1,p-2 + + xA-lyO

The +A block is designed by simply implementing these equations
.

with logic gates. Each output Ri is realized by an independent 2

level AND-OR network, just as given above. Examples for A=3 and

A=5 appear in Figs. 4 and 6.

In the sections which follow, we will show an example of the

designs for modulo 3 and for modulo 5 residue trees. Following these

examples, we shall prove that this basic design is totally self-

checking for single stuck-at faults.

3. SELF-TESTING OPERATION MODULO 3

A modulo 3 residue tree is shown in Fig. 2. The first rank

of the tree, i.e., those circuits connected directly to the input

number n, is composed of 4 identical circuits called 1~1~ blocks.

The first rank circuit reduces a 4 bit weighted byte to its

residue modulo 3. Because the byte widths are 4 bits, their weights

4 8areI, ,2 ,and2 12 . But each of these weights has a residue of

1 modulo 3, so the product of byte residue with its weight is the

same as the byte residue in all 4 circuits. The weight of each byte

can then be ignored. The 1x1 3 block emits its output residue
0and its outputs are labelled R , RI, and R2in the l-out-of-3 code, .

R" is logic 1 iff the residue of the 4 bit input is 0, that is, the

input is the binary encoding of 0, 3, 6, 12, or 15. Similarly

with outputs R1 and R2.

11

16-bit input number, I 1 I

I I I 4

t w - . 4 ’

I Ix3 I Ix3 I Ix3 I Ix3

I +3 , +3

+3

I I I

111

coded output
l-out-of-3

l-out-of-3
coded

Figure 2. 16-bit modulo 3 residue tree.

9ill??
- --a -~ . -,1 “_-. .-

Figure 3. 1x1
3

block of

modulo 3 residue tree.

C - .C - .

tctc

33 1515
c - - -c - - -

\\

13

The 1x1, block shown in Fig. 3. It realizes

R0 = Z(O,3,6,9,12,15), R1 = C(1,4,7,10,13), and R2 = c(2,5,8,11,14)

with 4 inverters followed by 2 levels of NAND logic. The prime im-

plicants of R", RI, and 42 are single isolated cells on the Karnaugh

map. Thus, this realization is a 4 bit to l-out-of-16 decoder, fol-

lowed by summing gates to collect the respective implicants of Rot

R1 , and R2 . Except for the inverters, the circuitry for each R1

is disjoint from the others.

The second rank block +3 is shown in Fig. 4. Its inputs are

2 residues, each carried on 3 lines. We shall name these the X

residue X = cX",X1,X2> and the Y residue Y = cryO,Y1 ,Y2,. Its out-

put R is carried on 3 lines a0 R1 R2>? , . The output is the l-out-of-3.

encoding of the sum (modulo 3) of the X and Y residues.

Inverters are unnecessary because of the l-out-of-3 encoding

of the inputs. The functions realized are

R” = x”yo + X1Y2 + X2Y1
RI = XOY1 + XIYO + X2Y2

R2 = x"y2 + XIY1 + X2Y0 .

Each of the 9 NAND gates in Fig. 4 connected directly to the primary

inputs corresponds to one of the 9 possible pairs of X and Y residues.

Residue pairs with the same sum modulo 3 are collected by a second

level NAND gate.

14

X0

X1

X2

Y2

Y1

.
PO

>

>

> ,

.

1

Figure 4. +
3

block of

modulo 3 residue tree.

15

4. MODUIB 5 RESIDUE TREE

A modulo 5 design is given as an example in Figs. 5, 6, and 7.

The input is divided into 3 bit bytes, and thus the byte weights

are 1, 23 6 9, 2 , 2 , etc. The residues of these weights are 1, 3,

4, 2, etc., respectively. Consequently, the multiplication of byte

residue by byte weight is explicitly present as wire crossovers in

Fig. 7. The width of the input number is not stated, so it might

be necessary for the leftmost (most significant) lx15 block to have

a byte width different from 3. That byte width is constrained to

be at least 3 bits, since hog257 = 3 . In this example we have

chosen to make all but one 1x1 5
cell have the minimum byte width.

of 3. The last I 1x5 cell must then have the appropriate width

to finish off the input number which would then be 3, 4, or 5, depend-

ing on the width of the input number. For example, a 32 bit input

number would require a width of 5 bits for the last 1x5(cell.

Whatever the width of that cell turns out to be, it has basically the

same design as the 3 bit 1 Ix 5 block in Fig. 5. The decoder width,

and output gate fan-ins would be the only difference.

The basic 3 bit wide lx15 block is shown in Fig. 5, together

with specifications of the wire crossovers for any byte weight. The

same complete decoding is the basis of the block, in this case 3 bits

to l-out-of-g. After decoding, appropriate products are summed to-

gether by second level NAND gates. Adjacent cells of the Karnaugh

map can be seen to have different residues. This is generally true,

16

for adjacent cells correspond to inputs which differ by a power of

2, and they could have the same residue only if the modulus divided

that power of 2 difference. We are restricted to an odd modulus,

so this can never happen.

The +5 block is shown in Fig. 6. Its structure follows the

basic design closely. With two 5 wire inputs M",X1,X2,X3,X4> and

cYO,Y1 ,Y2 ,Y3 ,Y4>, its 5 wire output q1',R1,R2,R3,R4> is given

by the logic equations given in the basic design section, for A=5:

R0 = XOYO + X1Y4 + X2Y3 + X3Y2 + X4Y1

R1 = XOY1 + XIYO + X2Y4 + X3Y3 f X4Y2

R2 = X0Y2 + - - -

R3 = x"y3 + - - -

R4 = X0Y4 + - - I

17

unweighted weighted
residue

I

lcka, -
I

1
.

>A

fesidue
\

1"
t

- I +R*
I

I I
I

weight
of x0

wire
permutation

I

L
I
i4Karnaugh Map

x0 \ 2 X1
. .

2
X

01000 00001
0

X 00100 10000I

X1
I

⌧ 3, Xl ⌧, block in
w I position

entry: Figure 5. x 51 1 block of mod 5

R4 . . . R”
Tmf

: residue is i
residue tree, showing wire

crossovers for group weight 3' (mod 5).

18

r

- --.

3

6kc,

binary input number

\ I
\ I
\ I

\
\ *

\
\
\

binary t ree
\
\ 0f
\\\ +5 b l o c k s

\ ,
\ I

\ I
\ I

Figure 7. Modulo 5 residue tree.

20

The example for an input width of 32 bits and a modulus of 5

is not the only design possible. The 1~1~ blocks need not have

the same width. Their widths are each at the designer's option,

subject to the minimum width constraint of 3. Choosing the minimum

width 1x1 5 cell gives the smallest gate count over the 1x1 5 cells,

except for end effects: an 1x1 cell of width w has w5 inverters,

and 2w+5 decoding and summing gates. A good example of the end

effect is that for modulus 5 and an input number of width 32 bits,

the smallest gate count over the 1x15 blocks is realized when 8

blocks have the minimum width of 3 bits, and 2 blocks have a width

of 4 bits. Several specific designs for a 32-bit wide, modulo 5

residue tree are given in Appendix B. .

Minimizing the gate count over the \xlA cells in a general

design for modulus A, however, increases the number of +A cells

needed to sum their outputs. This could possibly require an extra

level in the +A tree, over the number of levels required for a

design with wider lXIA cells.

The +A trees seen in Figs. 1, 2, and 7 have all appeared

balanced. The basic design does not, however, require such a balance,

Indeed, the example of a 32-bit wide modulo 5 residue tree would

have an unbalanced arrangement of +A blocks, since no balanced

binary tree has 10 terminal nodes. A designer might wish to further

imbalance the +A tree, in order to minimize the propagation delay

through the network for certain bits. For example, in a simple ripple-

carry adder without end-around carry, the least significant output

21

bits would be ready sooner than the most significant ones. If it

were desired to have the residue of this output with as small a delay

as possible, a design with short propagation delay for the most

significant bits, and a long propagation delay for the least signi-

ficant bits would be faster. A +A tree which has this character-

istic has a great deal of imbalance:

most

(from IxlA blocks)

I I I
cantsignifi

byte

I I least
significant
byte

22

Minimization of gate count or propagation time of a residue

tree is an involved matter, which we will not present in this paper.

This minimization is essentially a solution of system of integer

equations, for which we have used simple exhaustion of cases. With

the application of MSI, a minimum gate count design might not have

minimum package count, and obtaining minimum delay or package count

depends heavily on what is available in MSI. We give a sample design

using part MS1 and part small-scale integration in Appendix B, for

a 32 bit wide modulo 7 residue tree.

5. PROOF OF TOTALLY SELF-CHECKING OPERATION

In order that the residue tree be totally self-checking, we

must prove that a single fault can never cause the output to be a

code word other than the correct one (fault-secure), and that at

least one input number exists for each single stuck-fault, such that

the output with that input and that fault is a non-code output (self-

testing).

We proceed by first showing that any non-code (not I-out-of-A)

output,from any block of the network,propagates to the output, giving

a non-code output. Such propagation occurs only through 2 blocks,

as seen in Fig. 1. We reproduce here the logical equations for the

+A block, given in the basic design section.

R0 = XOYO + xv- + - - - - + xA-lyl

R1 = xoyl + XIYO + - - - - + xA-ly2

A-lR = xOyA-1 + x18-2 + - - + xA-lYO .

23

These can be condensed into a single general form, the sum of products

Ri = c XjYk . (3)
Bj<A-1
k=(i-j)mod A

Suppose we have a non-code input with k l's (kr2) on the X residue, and

some correctly coded Y residue. Examining (3), we have A2 2 input

AND gates, each set to output a 1 for the occurrence of a unique

X,Y residue pair. With this non-code input, k different X,Y residue

pairs seen present. Each pair has a different sum modulo A, so the

output has as many l's as the X inputs. Since the X and Y inputs

may be exchanged without changing the output, the +A network propa-

gates a multiple l's input as a multiple l's output, provided only

that its other input is a l-out-of-A code word. This proviso is

satisfied by the single-fault assumption, which we have already made.

Now consider the case of either the X or Y input being all zero.

Referring to (3), obviously no R1 can be 1, since all products are

zero. Thus an all-zero non-code input to a +A block propagates

to its output. The all-zero and multiple l's cases exhaust all the

non-code words on A lines. Then if a single fault occurs in some

block, and some input number causes that block output to be non-code,

all blocks which are successors of the faulty one will have a non-

code output. Thus the residue tree output will be non-code.

We must now show that as the input number takes on all values,

each block receives inputs which are sufficient to cause at least

one non-code block output,for any particular single stuck fault in

that block. Further, we must show that under any particular stuck

24

fault within a block, no correctly coded input can cause the block

output to be a different code word fromthe correct one. There are

no stuck-faults between blocks -- they are the same as a block output

line being stuck.

The second point (fault-secureness) is easiest to deal with.

For the +A blocks, (see Figs. 4 and 6) each output line is realized

by a different subnetwork. Then a single fault can cause an error

of maximum Hamming distance 1, while the code is distance 2. Then

it is impossible for a fault to change the output of a +A block

from one code word to another.

For the HA block, the output subnetworks are disjoint, except

for the inverters (see Figs. 3 and 5). An inverter output stuck-at-l

causes 2 adjacent inputs to be sensed by the decoder, when the corres-

ponding input line is 1. Adjacent inputs have different residues

(since A#25, so 2 output lines go up, giving a non-code output. An

inverter output stuck-at-0 gives an all-zero non-code output when

the corresponding input line is 0. The other faults in the 1 Ix A

block can affect only one output line, and the code distance assures

that none of these faults can change one code word to another.

The first point (self-test property) remains to be dealt with --

each block must receive sufficient inputs, under normal operation,

such that at least one non-code block output occurs for each fault

in that block. For the x AI I block, we have already verified this

for inverter faults. The remaining faults can change only one output

lead, so if an input combination lldetects" one of these fauits, the

output for that input is distance 1 away from the correct output, and

hence is a non-code output, whenever that fault is present.

25

It is easy to verify that the normal inputs detect every one

of the remaining faults. Since the normal inputs to a lxlA block

are all possible combinations, we need only verify that the jxlA

block is irredundant. For if so, there are no "undetectable" faults,

and the set of normal inputs will detect all faults. The terms which

the output gates sum are all fundamental products, or single cells

on the Karnaugh map. Since all adjacent cells have different residues,

the prime implicants of each output line are single cells on the

Karnaugh map. Since each output line is realized by summing the

appropriate single cells of the Karnaugh map, the realization is a

sum of prime implicants, and hence is irredundant.

The +A block must now be examined to see if the A2 combinations

of input residues, which it receives under normal operation, are

sufficient to cause at least one non-code output for each single

fault. The networks which realize each of the A output lines are

disjoint, so when a pair of input residues detects a fault, only one

output line will be wrong. Because the l-out-of-A code has distance

2, the output then is non-code. So we will show that each fault of

each output subnetwork is detected by one of the A2 residue pairs

presented to the block.

If the network is 2 levels of NAND logic, its behavior under

no faults and under single faults is the same as the equivalent 2 level

AND-OR realization. Because the output subnetworks are disjoint, and

each is realized in 2 levels of logic, we need only test the AND gate

inputs for stuck-at-l and stuck-at-O. [7] These tests cover all the

OR gate faults and the AND gate stuck-output faults as well.

26

Consider the subnetwork which realizes R', and specifically

consider the gate
a (i-a)mod AXY where a,i e {*,I,2 9***9 A-l}.

To test the X input for stuck-at-l, we need a 0 on Xa, a 1 on Y
(i-a)mod A

,

and at least one 0 on all the other AND gates of this subnetwork. Any

residue pair with Y residue (i-a) mod A will put the 1 on Y
(i-a)mod A

7

and referring to (3), it will put a 0 on the Y inputs of all the other

AND gates in the subnetwork. Any X residue other than a puts the required

0 on lead Xa, so we have A-l valid residue pairs which test the Xa lead

for stuck-at-l. Similarly, an X residue of a and any Y residue other

than (i-a) mod A tests the Y input of this gate for stuck-at-l.

To test this same gate for inputs stuck-at-O, we need a 1 on the

Xa lead and a 1 on the Y (i-a)mod A lead, and at least one 0 on each

of the other AND gates in the subnetwork. The residue pair with X

residue a and Y residue (i-a) mod A furnishes the l's, and puts two

O's on every other AND gate in this subnetwork.

So we have sufficient input residue pairs to detect all faults at

the gate a (i-a)mod AX Y in the R1 output subnetwork. Since the argument

above is valid for any a and any i in the range {O,l,...,A-I), we have

sufficient residue pairs to detect all faults of all AND gates in all

output subnetworks, and hence, all faults in all gates in the +A block.

With this result, we can now say that every block in the residue

tree will exhibit a non-code output for each fault within. We have already

shown that no fault in any block can cause its output to change from one

code word to another, and we have shown that any non-code input to a +A

block causes a non-code block output. We conclude that the residue tree

is totally self-checking when all input numbers are given as inputs.

27

6. BIRESIDUES FOR LARGE MODULI

For large moduli, the fan-in required at the output gates of

the +A block becomes excessively large. For modulus 3 (Fig. 3),

3 inputs were needed. For modulus 5 (Fig. 5), 5 inputs were needed,

and in general, modulus A requires A inputs. There is -a practical

limit on how many lines can be OR'ed together, even with the wired-OR

technique, or I with small-scale expandable gates. This difficulty

can be circumvented by using two or more distinct totally self-

checking residue trees, with moduli P, Q, R, etc., chosen so that

their least common multiple equals or exceeds A. Their outputs

are then combined by a translator, which translates from the code

of multiple residues to l-out-of-A. The translator consists of

A disjoint a-level AND-OR networks. If the moduli P, Q, R, etc.,

are relatively prime and their product equals A, the translator

reduces A single AND gates, one for each output residue.

An example is given here using two residue trees, one modulo 3,

and one modulo 5, to obtain, the modulo 15 residue of an input number.

The circuit is given in Fig. 8. The translator is very similar to

the +A block, of the basic design. By similar reasoning, it propagates

non-code inputs (i.e., inputs which have all zero or multiple-l's

from one of the residue trees) as non-code outputs, and it is tested

by code inputs.

28

3L

I
I
I
I
I

I

II
I

-
I
I
I
I
I
I
I
-

-
I
I
I
I
I
I
4L

-3
T-i

-Lx
-1
-1
-1

- 0cr;

29

7. USE IN A TOTALLY SELF'-CHECKING RESIDUE CHECKER

An immediate application of the totally self-checking residue

tree is checking addition. The checking technique is the long-

recognized residue check. Suppose an adder network obtains the sum

of two inputs, 3 and n2. Let the adder output be named "sum."

Thus the correct addition is given alegbraically by

nl+n2=sum,

where + is addition modulo M. If the adder is one's complement,

M is one less than some power of two. If the adder is two's comple-

ment, M is equal to some power of two. In either case, the homor-

morphy of modulo addition holds.when Adivides M, SO that

I 1nl A +A n2 AI I = JsumlA. (4)

If, because of some failure in the adder, its output differs from

the correct output by a number which is not a multiple of A, the

actual (incorrect) output and the inputs, % and n2' will not satisfy

(4). Thus the residue check consists of obtaining In 1 A' In21A'1

and bumlAy and then checking that they satisfy (4). A network which

performs this check is shown in Fig. 9.

If the totally self-checking residue tree is used to extract

the three residues, the +A block is used to add the input residues,

and a totally self-checking equality checker EQ can be designed

for l-out-of-A coded inputs, the checker shown in Fig. 9 will be

totally self-checking. Other totally self-checking addition checkers

have already been found in [4]. We show Fig. 9 as an exercise in the

use of the residue tree presented here.

30

Referring to Fig. 9, if a single fault occurs in one of the

two residue generators \nllA or ln2iA or in the modulo A adder

+A' the output of +A will be non l-out-of-A for some set of checker

inputs v n2' sum- For this set of inputs, the equality checker

will signal failure, just as if the sum itself were in error. If,

however, a fault occurs in the binary adder which is detectable by

the residue code, the equality checker will see two properly encoded

(l-out-of-A) but different signals X,Y, and it will signal a failure.

If, instead, a fault occurs in the residue generator Isum\ A' that

generator output will be non l-out-of-A for some set of inputs, and

EQ will sense the resultant disparity of X and Y. Lastly, if a

fault occurs in the equality checker EQ, we aren't sure what may

happen. If EQ is totally self-checking with respect to the inputs

it receives when the residue generators, the binary adder, and +A

are all working correctly, then the whole residue checker is totally

self-checking. Otherwise, all we can say is that most of it is.-mm

The question of whether EQ can be realized in a totally self-checking

fashion will be dealt with in another paper. All we shall say here

is that for A=3, EQ cannot be made totally self-checking, while for

A=15, it can.

. +I: s
u

m

,
\

R(
nJ

/

\
R

h
)

/

\
I

L

I

Fi
gu

re
 9

.
Re

si
du

e
ch

ec
ke

r
fo

r
ad

di
ti

on
.

32

8. LEVEL MERGING OF SECOND RANK CELLS

The residue tree for a general modulus A (seen in Fig. 1)

requires 2 levels of logic for each second rank cell unless wired-OR

is practical. For very wide input numbers, the total delay thus

incurred may be prohibitively large. The writer is indebted to one

of the anonymous reviewers of this paper, for suggesting the level-

merging technique as a means of reducing this delay. This technique

was used in references [123 and [3].

The second rank cell (V+A" in Fig. 1) can be realized by a 2

level OR-AND network. Then by using alternating layers of AND-OR

and OR-AND +A blocks, adjacent layers can be "merged" together,

leaving only one.gate delay per layer. The merge operation simply

replaces any cascade of OR gates with a single, equivalent OR gate,

and does likewise with cascaded AND gates.

If the network with alternating AND-OR and OR-AND +A blocks

is totally self-checking, the network will be totally self-checking

after the merge operation, as follows. Suppose a network contains

two cascaded OR gates A and B,

. Z.

b2
b-1

33

with lines labelled as shown. Gate C has the same truth table as

the A$ cascade, when both are fault-free. Further, for each single

stuck-fault of gate C, there is one single stuck-fault of the cascade

A,B which has the same truth table. Stuck-at-O on ai,b., and Z of
1

gate C produce the same truth table as stuck-at-0 on a.,bi i' and Z,

respectively, of cascade A ,B. Similarly for stuck-at-l on these lines.

Thus each fault of gate C mimics a fault in the original cascade, so

a parent network which is totally self-checking and contains cascade

A,B, would be totally self-checking if the cascade were merged into

the single gate C. The same argument extends to cascaded AND%.

The AND-OR second rank cell which we used earlier is equivalent

to the sum-of-products expression

Rk = c (xjyW)

R2 0 2 1 1 2 0 3 4 4 3e.g. = x y +x Y +x Y +x Y +x Y

for modulus 5 (A=5)

Here, justaposition is the AND operation, c is the OR operation,

and the arithmetic in the superscript

The thoughtful reviewer proposed

the same truth table. To describe it

position is done modulo A.

an OR-AND cell which has nearly

conveniently we shall introduce
+ha little notation. Let xa represent the a= lead of the X group,

just as before. But let

Y8 = y”+yl+. . .+Ya-l a+1 a+2 A-l+y +Y +...+y ,

which is the OR of all the Y leads, except for the Rth one. With

this notation the proferred OR-AND cell is equivalent to the product-

of-sums expression

34

R2 = (x"+Y2) (xl+yl). . . (x4+Y3)

= (⌧ 0+y 0+y 1 +y 3+y 4) (X1 +Y0+Y2+Y3+Y4) l � l

. . . (x4+Yo+Y1+Y2+Y4)

for modulus 5 (A=5).

Here, + is the OR operation, n is the AND operation, and the super-

script arithmetic is once again modulo A. The corresponding network

is seen in Fig. 10. We use "output subnetwork" to denote all the

predecessor gates of a particular output line. A complete OR-AND

all for A=3 is given in Fig. 11.

Figure 10. kg subnetwork of OR-AND +A block.

35

R1

Figure 11. Complete OR-AND +
3

block.

We shall first verify that this cell produces the correctly

encoded modulo A sum of its inputs. Next, we shall verify that,

given an all-zero or multiple-l's input, the cell output will be

all-zero or multiple-l's respectively. Finally, we shall verify

that the A2 properly encoded combinations of X and Y residues com-

pletely test this cell for single stuck-at faults. Once these claims

are established, it follows that this cell may be used interchangeably

with the +A cell in the residue tree of Fig. 1. Then AND-OR and

OR-AND +A cells could be used in alternate layers, and the tree

would still be totally self-checking. Then cascaded AND gates could

be collapsed into single gates with no change in the residue tree's

normal, fault-free behavior, or in its behavior under a single stuck-

fault. Similarly for OR gates. The final result of the level-merging

36

operation is an m-layer tree of second rank +A cells with only

m-+1 gate delays. Of course, this increase in speed isn't free.

For the A=5 modulus, we need 25 (A 2) 5-input (A-input) gates per

second-rank cell, compared to the 5 (A) 5-input (A-input) gates

needed when level merging isn't used.

Suppose the OR-AND cell is presented with correctly coded

(l-out-of-A) residues u and k-u, on the X and Y inputs, respectively.

We shall use modulo A arithmetic in the following. Rk is true as
.

follows. Vj, either j=u, and XJ is true, or else #u, and yk -U is

k-jin Y k-jso Y is true. Then all the OR gates of the kth output

subnetwork have true outputs, so RK
mis true. R , m#k, is false,

k-uas follows. In this subnetwork, the OR gate with Y inputs Y

has no Y inputs true, and its X input, Xm-(k-u) is false, because

only XU is true, while m-(k-u)#u. Then the AND gate of this subnetwork

has at least one false input and indeed, it has exactly one false

k-uinput, for any other OR gate has Y among its inputs and hence

has a true output. Then the Rm subnetwork has a false output.

Suppose the OR-AND cell is presented with an all-zero Xinput,

while the Y input residue is u, and is properly encoded. Then Rk

is false as follows, Yk. Rk can be true only if all its OR gates

have true outputs, which is the case only if every OR gate has a Y

input true. But the jth OR gate, where k-j=u, has no Y inputs true,

Suppose the OR-AND cell is presented with a properly encoded

Y residue,but 2 X lines are up (true). Let X", and Xu+e be true,

where e#O, and let Yk-u be true. Then Rk and Rk+e are both true,

by the same argument which was used regarding normal operation.

37

Suppose the OR-AND cell is presented with an all-0 Y input,

while the X input is properly encoded. Then Rk can be true iff
.

XJ is true, Vj. But this is patently false, so Rk is false, vk.

Suppose the OR-AND cell is presented with a properly encoded

X residue, but 2 Y lines are up. By the same argument used for

normal operation, two R lines are up.

This establishes the operation of the OR-AND cell for properly

encoded inputs, and for inputs having one bit incorrect. Next, we

shall verify that the set of A2 properly encoded input pairs X,Y

is a complete fault detection test set for single faults. We shall

use a deductive argument, as before. The network in Fig. 10 would

be tested for all single stuck faults by a test set which

l)(bubble-1 test) places a single "1" input on each of the

OR gates. Over the entire test set, for any particular OR

gate 9 each input of that gate must be visited by the "l", and

2)(all-zero test) for each OR gate, places all O's on its inputs,

while placing at least one "1" on every other OR gate.

Happily, every properly encoded input sets up a bit pattern

as described in either 1) or 2), on every one of the output subnetworks.

No proper input creates a bit pattern on the OR gates of any output

subnetwork, which is not one of the single-fault test patterns described

in 1) and 2). And moreover, all the test patterns required by 1) and

2) exist in the set of A2 properly encoded inputs. We shall verify

this, in the following, and conclude that the OR-AND cell in Fig. 9 is

tested for single faults by the normal inputs (X and Y residues both

l-out-of-A).

38

Suppose we apply all A input codewords, which should result

in an output residue of k, for some ks ZA These are all the.

possibilities of X"=l, Ylmu=l, XJ=O vj#k, Yj=O Yj# k-u. Consider

the jth OR gate of the kth output subnetwork, for some j"ZA. Now

if j=u, that gate has its X lead at 1, and all of its Y leads at 0,

since yk -3 = yk-u is the Y lead which is absent. If j+u, that gate

has XJ=O, while Yk-u is among its inputs, and Yk-K1 . Thus every

gate has one input 1, and all others 0. If we fix j, and examine

the jth OR gate while u ranges through all of its values, the single

1 is seen to visit all A inputs of the gate. So for any gate j,

and for any output subnetwork k. Thus the set of properly encoded

inputs contains all the tests in 1).

Now suppose we apply the same set of input codewords, but now
thconsider the m- output subnetwork, where m# k. The OR gate with

inputs yk -U has all 0 inputs, as we have already discussed in the

section on normal operation of the OR-AND cell. All the other OR

gates of this group have "I" outputs, since yk -U is included in their

inputs. As u ranges over all its values, all the OR gates of this

subnetwork get the all-zero test required in 2) above, one at a time.

Thus, when the input results in an output residue of k, and all A

such inputs are applied, the kth output subnetwork gets all the tests

of 11, while the mth output subnetwork gets all the tests of 2),

Ym#k. Then the set of properly encoded inputs (X residue is l-out-of-A

and Y residue is l-out-of-A) contains all the tests mentioned in 1) and

2) above, and the level merging scheme gives a totally self-checking

residue tree.

39

REFERENCES

[1] W. C. Carter and P. R. Schneider, "Design of dynamically
checked computers," IFIPS 1968, pp. 878 ff.

[2] W. C. Carter, D. C. Jessup, and A. B. Wadia, "Implementation
of checkable acyclic automata," IBM Report No. RC-3324, April
1971.

[3] D. A. Anderson, "Design of self-checking digital networks
using coding techniques," University of Illinois Coordinated
Science Laboratory Report No. R-527, September 1971. Also
published as Ph. D. thesis.

[4] A. B. Wadia, "Investigation into the design of dynamically
checked arithmetic units," IBM Report No. RC-2787, February
1970.

[5] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and its
Applications to Computer Technology, McGraw-Hill, 1967.

[6] M. R. Paige, "Generation of diagnostic tests using prime
implicants," University of Illinois Coordinated Science
Laboratory Report No. R-414, May 1969.

[7] Z. Kohavi and D. Spires, "Designing sets of fault-detection
tests for combinational logic circuits,' IEEE Trans. on
Computers, Vol. C-20, December 1971.

40

APPENDIX A

Proof that multiplication of the integers ZA (ZA is the set of

integers modulo A) by the group weight s = (Zw) mod A is a l-l onto

map from ZA to itself, so long as A is odd. This is proven by

proving the two propositions below. The hypothesis above follows

directly from these two propositions.

Proposition A: That multiplication by s (modulo A) of the integers

ZA is a l-l onto mapping from ZA to itself iff

GCD(s,A) = 1.

Proposition B: T h a t GCD(lrnlA,A) = 1 iff GCD(r,A) = 1. Here lnlA

means the residue (n) modulo A.

Proof of A

Suppose GCD(a,A) { 1. Then B al,a2 G ZA, where al { a2,

such that: s*(a 1-a2) = A. Then seal s s*a2 (modulo A) and

the multiplication is not a l-l map. Proves the only if part

of the proposition by having proven the contrapositive here.

Now to prove the if part of proposition A, suppose the

multiplication is not l-l. Then 3 al,a2 c ZA, where al # a2,

al' a2 such that

saa 1
E soa 2 (modulo A).

Then so (a 1-a2) = mA, where m = integer. Since 0 C (a l-a2) < A,

(a 1-a2) does not contain all the factors of A, and therefore s

must contain the balance of them, and GCD(s,A) f 1. Then the

41

contrapositive holds: GCD(s,A) = 1 ==I (multiplication is l-l).

Since any l-l map from any set Z to itself is necessarily onto,

so is this multiplication. Proves the is part.

Proof of B

GCD(r,A) = 1 +=> GCD(m,A) = 1, so we shall prove

wD(lrnlA, A) = 1 <==> GCD (rn,A) = 1. Indeed, let rn = t,

and we shall prove GCD (Itl,,A) = 1 e-3 GCD (t,A) = 1.

This is all that is needed to prove the proposition.

Now ltlA + mA = t (m integer)

Suppose GCD(t,A) { 1. Then GCD(t ,A) = s, some s > 1. Then

A = fl*s,t 4 f2.*s.

It/A = t-mA

ltlA = f2*s - mafl-s

PIA = s*(f2-mmfl)

Then the contrapositive holds: [GCD(jtjA,A) = l] ==> [GCD(t,A) = l].

Suppose now GCD(jtlA,A) { 1. Then GCD(ltlA,A) = s, some s > 1.

Then A = fl*s, ItI,A = f2'S.

t = 1 !tA + mA

t = f2*s + m*flas

t = s*(f2 + mafl)

GCD(t,A) 2 s, s f: 1.

Then the contrapositive holds: [GCD(t,A) = 1] ==> [GCD(\t iA,A) = 11.

42

APPENDIX B

Design Examples

B

binary input number 43
f I I I 1 I I 1 1

1 I I I I 1

I
I I I

Figure Bl. 32 bit wide modulo 3 residue tree.

44

binary input number

J

0
l 3-bit Ix15 block

I +5- I B 0
l 4-bit \x15 block

output

Figure B2. 32 bit wide modulo 5 residue tree.

46

: National Semiconductor-

DM7575 PIA, programmed

A

In$

as +7 block.

D : part MS1 impkmentation

Of 1x17 block (see Fig.

output

Figure B4. 32 bit wide modulo 7 residue tree

B5) >

using MS1 decoders and programmed

logic array.

47

9311 DECODER

Figure B?. 1-51 block of MS1 modulo
7

7 residue tree.

