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ABSTRACT

Error detection and correction in binary adders often require
computing the residue mbdulo A of a binary nunber. W present
here a totally self-checking network which extracts the residue
of a binary input nunber of arbitrary width, with respect to any
odd nodulus A, This network has the tree structure comonly used
for residue extraction: a binary tree of circuit blocks, where
each block outputs the residue of its inputs. The network we
describe differs from previous designs in that the signals between
bl ocks of the tree are not binary-coded. Instead, the |-out-of-A
code is used, where A is the modulus desired. Use of this code
permits the network to be free of inverters, giving it an advantage
in speed. The network output is also coded |-out-of-A and with
respect to this code, the residue tree is totally self-checking
in the sense of Anderson [3].

The residue tree described here requires logic gates with
A inputs, when the nodulus desired is A This makes the basic design
somewhat inpractical for a large nodulus, because gates with large
fan-in are undesirable. To extend the useful ness of this network
we present a technique which uses several residue trees of this
design, each for a different mobdulus. The outputs of these residue
trees are conmbined by a totally self-checking translator from the
code of multiple residues to the I-out-of-A code. Using this
mul tiple residue scheme, the nodulus of each residue tree can be

made nuch smaller than the desired nodul us A
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1. I NTRODUCTI ON

Theresi due check is a wi dely known nethod of checking binary
addition. The addition n, +n,=sum is checked by verifying that
R(nl) * R(nz) = R(sum), where R(n) is the residue nodulo A of
n, and * is addition modulo A As with all error detection nethods,
the effectiveness of this nethod is conpronmised by the probability
that the checking circuit fails in such a way that a subsequent
error in the addition goes undetected. ldeally, checking circuits
should be designed so that any failure causes the checker to signa
an error, even when the failure is in the checker itself [1], [2].

The residue tree presented here neets this goal of signalling
its own errors. The circuit obtains the residue of its input with
respect to a modulus A.  The circuit output thus has A distinct states
whi ch we have encoded in the |-out-of-A code. Wth respect to this
code, the residue tree neets the requirements of a totally self-

checking [3] network. Assuning only permanent, single stuck-type

faults may occur in the network, then

1) Ifthe network has suffered no failures, its output is a

code word (one line high, Al lines low), and is correct

2) |If the network does contain a failure of the type assuned
above, then the output is either a code word or it is not

If it is a code word, then it is guaranteed to be the right



code word, in spite of whatever single stuck fault is

present. This is called the fault-secure property.

3) If the network contains any particular failure of the
type assunmed above, we guarantee that at |east one particu-
lar input, in the presence of that particular failure, wll
cause the output to be non-code (not |-out-of-A). That is,
for the entire network, each and every single stuck-fault
has a corresponding set of inputs which reveal the presence
of that fault by causing a non-code output. This is the

self-testing property.

In the above, 1) defines the normal operation of the network. 2)
gives us the confidence that if the network output is a code word,
it is the correct code word. Finally, 3) asserts that if we present
the network with all of its inputs, and if only code words appear at
the network outputs, then the network contains no fault of the type
assumed above. Thus this residue tree can be used in a residue checker
with this special confidence in its output: provided that only perma-
nent, single, stuck-type faults may arise in the residue tree, the
residue tree is fault-free if and only if its output is always a code
wor d.

Wadi a [4] has presented a nodul o 3 residue tree, which is designed
with these self-checking features in mnd. H's network is "testable",
whi ch means that for every single stuck-fault in the network, at [east

one binary input nunber will cause an incorrect output. That network



is not intended to be totally self-checking by itself. The code
used to pass residues between blocks and to display the output
residue is the binary code on 2 wires. In his design, all 4 output
combi nations are valid outputs, and totally self-checking operation
results only when the network is nade part of a larger network

The residue network we present here, on the other hand, stands
alone as a totally self-checking network. This difference arises
directly from choosing the highly redundant I|-out-of-A code for block
outputs, rather than the non-redundant 2 wire binary code. Using
the |-out-of-A code to carry signals between blocks has the inmediate
di sadvantage of requiring nmore output wires. But, sonething is gained
by paying that price. First, as nentioned above, the residue tree
itself is totally self-checking. Second, the design of circuit blocks
for any nodulus is equally as straightforward as for the |owest
modulus, 3. Third, blocks in the residue tree need no inverters,
so that high speed can be obtained. Level-nerging [2,3] can be applied

to this residue tree, resulting in one gate delay per block

2. BASIC DESIGN FOR ARBI TRARY MCDULUS A

The totally self-checking residue tree has the basic structure
shown in Fig. 1. The common technique of breaking the input number n
into several bytes BO,Bl,BZ,...etc. is used. For exanple, let us
assume that there are 4 bytes, as in Fig. 1. Further assune that

each byte contains 4 bits. Thus the input nunber nis a 16-bit
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Figure 1. Mdulo A residue tree.



bi nary nunber. Let each byte have the value seen in the 4 bits which

it includes. Thus,
0<
<%0'B1’Bz’33> \ < 1510

The value of the input nunber is then the weighted sum of the 4 bytes

a Lo12 ] o4
n = B3 2 + 82 8 + B1 2+ BO

Because of the hononorphism relating mbdulo A addition with ordinary
addition*, the input nunmber nmodulo A !n}A is given by

12 8 4
A A 1Bt gt B2l IBlye (D

1n‘A = ‘B3°2
Her e +A denotes nmodulo A addition. Circuit bl ocks 1abe11edlxlA in
Fig. 1 obtain the residue nodulo A of the weighted input bytes. This
is the first step in evaluating equation (1) above, and these bl ocks
are the first rank of blocks seen in Fig. 1. Once these residues are
obtained, they are added modulo A by circuit blocks labelled * in
Fig. 1. Because of the associativity of addition modulo A it is im
material what order is chosen for the addition. W have chosen the
order inplicit in Fig. 1, so that all ]x\A output signals pass through
the same nunber of *a bl ocks. This makes the nunmber of gate del ays
from each bit of the input number to the residue tree output equal

The interblock signals in Fig. 1 and the corresponding partia

results of evaluating equation (1) above, each take on the val ues

0,1,2,...,A-1. In this design, each block has A outputs
<R0,Rl,§2,...,RA'|>. The outputs of all blocks are encoded in the

| -out-of-A code given in the follow ng table:

*A good review of residue arithmetic is given in Chapter 2 of Szabo
and Tanaka [5].



Inter block code

residue R R R R

0 1 0 0 0 0 0
1 0 1 0 0 0 0
2 0 0 1 0 0 0
A1 0 0 0 0... 0 1

If the residue tree is free of faults, each block wll have exactly
one output high. Wich output that is deternines what residue is
being emtted, as
R'=1iff the residue is i.

In order that the residue tree can be totally self-checking,
all lines must be tested for stuck-at-0 and stuck-at-1, and hence
all lines must at different tines carry logic O and logic 1. Having
chosen the |-out-of-A code, we are then obliged to have each bl ock
output exhibit all A different residues. Thus each byte nust contain
at | east r10g2 A bits. Referring to equation (1), a typical
|x\A bl ock performs the followi ng reduction nodulo A where Bis the
content of the byte, and 2i is the weight of its least significant bit.

]B-ZilA.

Because of the hononorphi sm between nmodulo A nultiplication and ordinary
multiplication, we can re-wite the above as

(2)

LERNES B, - 12, fa-

It can be seen in (2) that if a byte B contains fewer than

['1og2 Al bits, the termlB\A woul d not take on all A different values.

x[x]is the |east integer greater than or equal to x.



Si nce lzil is fixed, the product (2) would not, either. Thus the

A
requi renent that each byte contain rlogz Al bits is certainly a
necessary condition for the block output ]xlA to take on all A
values of residue. This is not a sufficient condition, as we can
show in a sinmle exanple

Suppose we have a byte B containing 3 bits, a nodulus A=6,
and the weight of the byte is 23‘ In the following multiplication

table, we show what values the product (2) assumes, when the 3 bhits

of B take all 8 different conbinations.

product
B Bl | IBlg - 123 le
0 0 0 not e: |23|6=2
1 1 2
2 2 4
3 3 0
4 4 2
5 5 4
0
7 1 2

What happened in this example was that the product (2) was always
some nultiple of the greatest common divisor of A and the byte's
wei ght 21, which in this case is GCD(6,8) = 2. |In Appendix A,
we show that restricting the nodulus A to be odd is sufficient for
the nultiplication . of the integers nodulo A (zA) by any power

of 2 to be an onto map fromz, toitself. Then for theixtA



bl ocks of Fig. 1 to exhibit all A values of residue, we require
that each byte contain at |east fiogz Al bits, and that the nodul us
A be odd

Once these restrictions are net, the |x[, blocks in Fig. 1
will emt all A values of residue. W nust also have the assurance
that the ) bl ocks will do the sane. Since the binary input nunber
is assuned to take on all possible values, the bytes of the input
nunber exhibit all possible conbinations of residues. Then each
™ block in Fig. 1 receives all A% conbinations of resi dues, and
its output ranges through all A values of residue, as desired

The design of an leA block is quite straightforward. The
nunber seen in its byte is first reduced to its residue (this is
the eval uation of |B|A in equation (2)). That residue is formed
in the |-out-of-A code. This reduction is performed by a 2 leve
AND- OR network.  Suppose there are k bits in the byte to be reduced
The network completely decodes k bits to 1 line out of 2k, - usi ng
gk k-input AND gates, and then OR s together |ines which correspond
to the sane residue. A sinple exanple of this is shown in Fig. 3
for a 4-bit byte and nodul us 3.

Once the reduction |B|, is done, the nultiplication modulo A
by the weight of the byte remains. Since the multiplication is a
1-1 onto map fromthe set of residues f{0,1,2,...,A-1} to itself,
each residue \BIA is mapped to a different residue by the product
% lB!A . IzilA |A. No two residues |§ A MEp to the same product,
because of the odd choice of A

Then to effect this nultiplication, we can sinply re-label the

A residue lines appropriately, and the nultiplication is done without



any gates. W shall show this re-labelling by drawing a "network"
which is sinply a crossover of wires. An exanple is a byte of 3 bits,

with wei ght 23, for mdulus 5. This exanple is nore fully devel oped

in Fig. 5.
i nput byte -
. [ [-===--—"71
|Bl, 1Bl - 18], J‘ 1 I
X
0 0 note: |8]_=3 5 2 level
L . 's " AND- CR net
RlL RS g% RlRO Bl
3 4
4 2
B| -

The design of the s block is little nore conplicated than
t he lx]A bl ock. Two |-out-of-A coded residues X and Y are its
i nputs, X = <XO,X1,..,XA'1>, and Y = <YO,Y1,...,YA'1>. The X lines
carry the X residue, and the Y lines carry the Y residue. Line xt
is at logic 1 iff the X residue is i, and simlarly for Yi. The
output of the ) block will be called R and its lines will be

. 0 -
labelled sinmlarly, R = <R ,Rl,,.,,RAI

The output Ris to be
the sum modulo A of the inputs X and Y. The output residue is 0 if
X,Y> = <0,0>, or < 1,A-1>, or <2,A-2>, etc.

In general, the output residue is i when <X,y~= <0,i>, or
<1,i-1>, or <2,i-2>, etc. Because of the |-out-of-A encoding of
the X and Y inputs, the |ogical proposition "the X residue is i"
is the same as the logical proposition "line Xi is1." Then the
gA-1

out put lines RO,Rl,..., should carry the logic values of the

following logical equations
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RO = x0y04 yIAT . AL
gl = xO¢l 4 x140 4+ ¢ A2
P e N e

The A bl ock is designed by sinply inplenmenting these equations
with logic gates. Each output Ri is realized by an independent 2
level AND-OR network, just as given above. Exanples for A=3 and
A=5 appear in Figs. 4 and 6.

In the sections which follow, we will show an exanple of the
designs for nodulo 3 and for nodulo 5 residue trees. Follow ng these
exampl es, we shall prove that this basic design is totally self-

checking for single stuck-at faults.
3. SELF- TESTI NG OPERATI ON MODULO 3

A modulo 3 residue tree is shown in Fig. 2. The first rank

of the tree, i.e., those circuits connected directly to the input
nunber n, is conposed of 4 identical circuits called Ix!sblocks.

The first rank circuit reduces a 4 bit weighted byte to its
resi due nodulo 3. Because the byte widths are 4 bits, their weights
are 1, 24, 28, and 212‘ But each of these weights has a residue of
1 nodulo 3, so the product of byte residue with its weight is the
sanme as the byte residue in all 4 circuits. The weight of each byte
can then be ignored. The |x| g bl ock emts its output residue
in the |-out-of-3 code, and its outputs are labelled RO, Rl, and Rz‘
r? is logic 1 iff the residue of the 4 bit input is 0, that is, the
input is the binary encoding of 0, 3, 6, . . . . 12, or 15. Sinilarly

1

with outputs R- and RZ.



16-bit i nput number

1

|X[3

EJ

LI

=

%] 4

[/

Figure 2.

2_54/

+

coded out put
| - out - of -3

I

AV

16-bit nodul o 3 residue tree.

11

-out-of -3
coded



\

9

oo} 10

o)

>4 5/
N

° /

A

ol | O

]
o)
o | 1003 010N 100y 00N
2

9
3

o
o

x
Q
0]

~n
o/
(o)

(o]

© 16

X2
en'tf),'-' <Ro K, Rl)

: ﬂ residue is i

Ri‘zl <> (Z 2£Xi)moj3=i

0¢j<3

Figure 3. |x|3 bl ock of

nodul o 3residue tree.

Ty

[

O

w

VY LY

ny

%

l




13

The \x]a bl ock shown in Fig. 3. It realizes
Ro = 7(0,3,6,9,12,15), Rl = ©(1,4,7,10,13), and R® = 2(2,5,8,11,14)
with 4 inverters followed by 2 levels of NAND logic. The prime im-

plicants of RO, Rl, and 42 are single isolated cells on the Karnaugh
map. Thus, this realization is a 4 bit to |-out-of-16 decoder, fol-
| owed by sunmming gates to collect the respective inplicants of RO,
RY and R®. Except for the inverters, the circuitry for each R

is disjoint fromthe others.

The second rank block +, is shown in Fig. 4. [ts inputs are
2 residues, each carried on 3 lines. W shall nane these the X
. 0.1 .2
resi due X = <.XO,X1,XZ> and the Y residue Y =<Y ,Y ,Y >. Its out-
0.1 _2

put Ris carried on 3 lines <R ,R" R"™>. The output is the |-out-of-3
encoding of the sum (nodulo 3) of the X and Y residues.
Inverters are unnecessary because of the |-out-of-3 encoding

of the inputs. The functions realized are

Ro = XOYO + X1Y2 + XzY1

1 XOY1 + XlYO + X2Y2

g2 = x%2 + xvl+ x%°

-]
1

Each of the 9 NAND gates in Fig. 4 connected directly to the primry
inputs corresponds to one of the 9 possible pairs of X and Y residues.
Resi due pairs with the sane sum mbdulo 3 are collected by a second

| evel NAND gate.
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4. MODULO 5 RESI DUE TREE

A modulo 5 design is given as an exanple in Figs. 5 6, and 7.
The input is divided into 3 bit bytes, and thus the byte weights
are 1, 23, 26, 29, etc. The residues of these weights are 1, 3,

4, 2, etc., respectively. Consequently, the nultiplication of byte
residue by byte weight is explicitly present as wire crossovers in
Fig. 7. The width of the input nunber is not stated, so it mght

be necessary for the leftnost (nost significant) 1x15 bl ock to have
a byte width different from3. That byte width is constrained to

be at least 3 bits, since rlogzs"l = 3. In this example we have
chosen to make all but one |x|5 cell have the mninum byte wdth

of 3. The last |x|5 cell nust then have the appropriate width

to finish off the input nunber which would then be 3, 4, or 5, depend-
ing on the width of the input nunber. For exanple, a 32 bit input
number would require a width of 5 bits for the |ast |x5| cell.

What ever the width of that cell turns out to be, it has basically the
same design as the 3 bit le 5 block in Fig. 5. The decoder width,
and output gate fan-ins would be the only difference.

The basic 3 bit wide lxls bl ock is shown in Fig. 5, together
with specifications of the wire crossovers for any byte weight. The
same conplete decoding is the basis of the block, in this case 3 bhits
to |-out-of-g. After decoding, appropriate products are sumed to-

gether by second | evel NAND gates. Adjacent cells of the Karnaugh

map can be seen to have different residues. This is generally true,
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for adjacent cells correspond to inputs which differ by a power of
2, and they could have the sane residue only if the nodul us divided
that power of 2 difference. W are restricted to an odd nodul us,
so this can never happen.

The g block is shown in Fig. 6. Its structure follows the

basic design closely. Wth two 5 wire inputs <X0,X1,X2,X3,X4> and

0.1 2 3 4 . . 0 . .
<< ,Y,Y ,Y ,¥'>, its 5 wire output <r ,Rl,Rz,RB,R4> is given

by the | ogic equations given in the basic design section, for A=5:

0 4
R = XOYO + XlY + XzY3 + X3Y2 + X‘]tY1

Rl = x%% + xIy0 + 2yt + 5y 4 xH2
rRZ = x%%+ - - -

RS = %3+ o

4 0,4

=o}
11
>
<
+
1

1

]
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The exanple for an input width of 32 bits and a nodulus of 5
is not the only design possible. The lxl5 bl ocks need not have
the same width. Their widths are each at the designer's option,
subject to the minimum width constraint of 3. Choosing the nininmum
wi dt h |xl5 cell gives the smallest gate count over the |x|5 cells,
except for end effects: an !x\5 cell of width w has w inverters,
and 2%+5 decoding and summing gates. A good exanple of the end
effect is that for modulus 5 and an input nunmber of width 32 bits,
the snmallest gate count over the le5 bl ocks is realized when 8
bl ocks have the mnimum width of 3 bits, and 2 blocks have a width
of 4 bits. Several specific designs for a 32-bit wide, modulo 5
residue tree are given in Appendix B.

M nim zing the gate count over the lx]A cells in a general
design for nodulus A however, increases the nunber of \ cells
needed to sum their outputs. This could possibly require an extra
level in the +, tree, over the nunber of levels required for a

A

design with wider ix|, -cells.

The \ trees seen in Figs. 1, 2, and 7 have all appeared
bal anced.  The basic design does not, however, require such a bal ance,
Indeed, the exanple of a 32-bit wide nmodulo 5 residue tree would
have an unbal anced arrangement of + bl ocks, since no bal anced
binary tree has 10 termnal nodes. A designer mght wish to further
i mbal ance the +A tree, in order to mininmze the propagation delay
through the network for certain bits. For exanple, in a sinple ripple-

carry adder without end-around carry, the least significant output
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bits would be ready sooner than the npbst significant ones. |f it
were desired to have the residue of this output with as snall a delay
as possible, a design with short propagation delay for the nost

significant bits, and a long propagation delay for the |east signi-
ficant bits would be faster. A + tree which has this character-

istic has a great deal of inbalance:

(1‘rom|x|A bl ocks)

mst | B | east
signifi cant ! ' | ! |

byt e \ ! ! " ; |/ significant

U byte
+
U

A
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M ni ni zation of gate count or propagation tinme of a residue
tree is an involved matter, which we will not present in this paper.
This minimzation is essentially a solution of system of integer
equations, for which we have used sinple exhaustion of cases. Wth
the application of MSI, a mininum gate count design night not have
m ni num package count, and obtaining ninimm delay or package count
depends heavily on what is available in MSI. W give a sanple design
using part MSI and part small-scale integration in Appendix B, for

a 32 bit wide nmpdulo 7 residue tree.

5. PROOF OF TOTALLY SELF- CHECKI NG OPERATI ON

In order that the residue tree be totally self-checking, we
must prove that a single fault can never cause the output to be a
code word other than the correct one (fault-secure), and that at
| east one input number exists for each single stuck-fault, such that
the output with that input and that fault is a non-code output (self-
testing).

We proceed by first showing that any non-code (not I-out-of-A)
output, from any bl ock of the network, propagates to the output, giving
a non-code output. Such propagation occurs only through ) bl ocks,
as seen in Fig. 1. W reproduce here the logical equations for the
* bl ock, given in the basic design section.

g9 = x%%+ xI AT 4 L ;A1

A~
1o 400 & (30 4o . . AT12

R

N L + A0
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These can be condensed into a single general form the sum of products

R = Xij
o< j<A-1
k=(i-j)mod A

(3)

Suppose we have a non-code input with k 1's (k22) on the X residue, and
sone correctly coded Y residue. Examning (3), we have a2 2 i nput
AND gates, each set to output a 1 for the occurrence of a unique
X, Y residue pair. Wth this non-code input, k different X Y residue
pairs seen present. Each pair has a different sum nodulo A so the
output has as many |'s as the X inputs. Since the X and Y inputs
may be exchanged without changing the output, the *a network propa-
gates a multiple |'s input as a nultiple I's output, provided only
that its other input is a |-out-of-A code word. This proviso is
satisfied by the single-fault assunption, Wwhich we have already made

Now consi der the case of either the X or Y input being all zero
Referring to (3), obviously no R' can be 1, since all products are
zero. Thus an all-zero non-code input to a 7\ bl ock propagates
toits output. The all-zero and nultiple |I's cases exhaust all the
non-code words on A lines. Then if a single fault occurs in some
bl ock, and some input nunber causes that block output to be non-code
all bl ocks which are successors of the faulty one will have a non-
code output. Thus the residue tree output will be non-code

We nust now show that as the input number takes on all val ues,
each block receives inputs which are sufficient to cause at |east
one non-code block output,for any particular single stuck fault in

that block. Further, we nust show that under any particul ar stuck
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fault within a block, no correctly coded input can cause the block
output to be a different code word fromthe correct one. There are
no stuck-faults between blocks -- they are the sanme as a bl ock output
l'ine being stuck.

The second point (fault-secureness) is easiest to deal with
For the ) bl ocks, (see Figs. 4 and 6) each output line is realized
by a different subnetwork. Then a single fault can cause an error
of maxi mum Hamming distance 1, while the code is distance 2. Then
it is inpossible for a fault to change the output of a ta bl ock
from one code word to another.

For the lx\A bl ock, the output subnetworks are disjoint, except
for the inverters (see Figs. 3 and 5). An inverter output stuck-at-I
causes 2 adjacent inputs to be sensed by the decoder, when the corres-
ponding input line is 1. Adjacent inputs have different residues
(since A#zi), so 2 output lines go up, giving a non-code output. An
inverter output stuck-at-0 gives an all-zero non-code output when
the corresponding input line is 0. The other faults in the lx]A
bl ock can affect only one output line, and the code distance assures
that none of these faults can change one code word to another.

The first point (self-test property) remains to be dealt with --
each block must receive sufficient inputs, under nornmal operation
such that at |east one non-code block output occurs for each fault
in that block. For the K IA bl ock, we have already verified this
for inverter faults. The remaining faults can change only one output

lead, so if an input conbination "detects'" one of these fauits, the
output for that input is distance 1 away from the correct output, and

hence is a non-code output, whenever that fault is present
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It is easy to verify that the normal inputs detect every one
of the remaining faults. Since the normal inputs to a lxIA bl ock
are all possible combinations, we need only verify that the 1x1A
block is irredundant. For if so, there are no "undetectable" faults,
and the set of normal inputs will detect all faults. The terns which
the output gates sum are all fundamental products, or single cells
on the Karnaugh map. Since all adjacent cells have different residues,
the prime inplicants of each output line are single cells on the
Karnaugh map. Since each output line is realized by summing the
appropriate single cells of the Karnaugh nmap, the realization is a
sum of prine inplicants, and hence is irredundant.

The ta bl ock must now be examined to see if the A2 conbi nati ons
of input residues, which it receives under normal operation, are
sufficient to cause at |east one non-code output for each single
fault. The networks which realize each of the A output lines are
disjoint, so when a pair of input residues detects a fault, only one
output line will be wong. Because the |-out-of-A code has distance
2, the output then is non-code. So we will show that each fault of
each output subnetwork is detected by one of the AZ residue pairs
presented to the block.

If the network is 2 levels of NAND logic, its behavior under
no faults and under single faults is the sane as the equivalent 2 |evel
AND- OR realization. Because the output subnetworks are disjoint, and
each is realized in 2 levels of logic, we need only test the AND gate
inputs for stuck-at-1 and stuck-at-O [7] These tests cover all the

OR gate faults and the AND gate stuck-output faults as well.
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Consi der the subnetwork which realizes R*, and specifically
consi der the gate

i - d A
X%(1 a)mo where a,i e {0,1,2,..., Al}.

(i-a)mod A

To test the X input for stuck-at-l1, we need a 0 on x* alony

and at least one 0 on all the other AND gates of this subnetwork. Any
residue pair with Y residue (i-a) nod Awill put the 1 on Y(i-a)mOd A,
and referring to (3), it will put a 0 on the Y inputs of all the other
AND gates in the subnetwork. Any X residue other than a puts the required
0 on lead x*, so we have Al valid residue pairs which test the x* |ead
for stuck-at-1. Simlarly, an X residue of a and any Y residue other
than (i-a) nmod A tests the Y input of this gate for stuck-at-I

To test this same gate for inputs stuck-at-O we need a 1 on the

(i-a)ymd A |ead, and at least one 0 on each

X* lead and a 1 on the Y
of the other AND gates in the subnetwork. The residue pair with X
residue a and Y residue (i-a) nmod A furnishes the |I's, and puts two
O s on every other AND gate in this subnetwork.

So we have sufficient input residue pairs to detect all faults at

x3y(i-amod A e R output subnetwork.  Since the argument

the gate

above is valid for any a and any i in the range {0,1,...,A-1}, we have

sufficient residue pairs to detect all faults of all AND gates in al

out put subnetworks, and hence, all faults in all gates in the ) bl ock.
Wth this result, we can now say that every block in the residue

tree will exhibit a non-code output for each fault within. W have already

shown that no fault in any block can cause its output to change from one

code word to another, and we have shown that any non-code input to a *a

bl ock causes a non-code block output. W conclude that the residue tree

is totally self-checking when all input numbers are given as inputs
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6. BIRESIDUES FOR LARGE MODULI

For large noduli, the fan-in required at the output gates of
the ) bl ock becones excessively large. For modulus 3 (Fig. 3),
3 inputs were needed. For nmodulus 5 (Fig. 5),5 inputs were needed,
and in general, nodulus A requires A inputs. There is -a practical
[imt on how many |ines can be OR'ed together, even with the wred-OR
technique, or . with small-scale expandable gates. This difficulty
can be circunvented by using two or nore distinct totally self-

checking residue trees, with noduli P, Q R etc., chosen so that
their |east comon nultiple equals or exceeds A Their outputs

are then conbined by a translator, which translates from the code
of multiple residues to |-out-of-A  The translator consists of
A disjoint 2-1level AND-OR networks. |If the noduli P, Q R etc.
are relatively prime and their product equals A the translator

reduces A single AND gates, one for each output residue

An exanple is given here using two residue trees, one nodulo 3,
and one nmodulo 5, to obtain, the nodulo 15 residue of an input nunber.
The circuit is given in Fig. 8.  The translator is very simlar to
t he A bl ock, of the basic design. By sinilar reasoning, it propagates
non-code inputs (i.e., inputs which have all zero or multiple-l's
from one of the residue trees) as non-code outputs, and it is tested

by code inputs.
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7. USE IN A TOTALLY SELF' - CHECKI NG RESI DUE CHECKER

An immediate application of the totally self-checking residue
tree is checking addition. The checking technique is the long-

recogni zed residue check. Suppose an adder network obtains the sum

of two inputs, n_ and n,- Let the adder output be named "sum

1
Thus the correct addition is given alegbraically by
n1+n2=sum,
where + is addition nodulo M If the adder is one's conpl enent,
Mis one less than some power of two. If the adder is two's conple-
ment, Mis equal to sone power of two. In either case, the homor-~

nmor phy of modul o addition hol ds. when Adivides M, so that

1n1!A A “nZ\A:lsum’A. (4)
|f, because of sonme failure in the adder, its output differs from
the correct output by a nunber which is not a multiple of A t he
actual (incorrect) output and the inputs, n_ and n will not satisfy

1 2'

(4). Thus the residue check consists of obtaining lnle, in2|A,

and |sum| and then checking that they satisfy (4). A network which

A’
performs this check is shown in Fig. 9.

If the totally self-checking residue tree is used to extract
the three residues, the i\ block is used to add the input residues,
and a totally self-checking equality checker EQ can be designed
for |-out-of-A coded inputs, the checker shown in Fig. 9 will be
totally self-checking. GQher totally self-checking addition checkers

have already been found in [4]. W show Fig. 9 as an exercise in the

use of the residue tree presented here.
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Referring to Fig. 9, if a single fault occurs in one of the
two residue generators [n |, or In,[, or in the nodulo A adder

the output of + wll be non I-out-of-A for some set of checker

+A A

i nput s n_, sum. For this set of inputs, the equality checker

By Byo

will signal failure, just as if the sumitself were in error. If,
however, a fault occurs in the binary adder which is detectable by
the residue code, the equality checker will see two properly encoded
(l-out-of-A) but different signals X Y, and it will signal a failure.
If, instead, a fault occurs in the residue generator ‘sum}A. t hat
generator output will be non |-out-of-A for some set of inputs, and
EQ will sense the resultant disparity of X and Y. Lastly, if a
fault occurs in the equality checker EQ we aren't sure what may
happen. If EQ is totally self-checking with respect to the inputs

it receives when the residue generators, the binary adder, and 7\
are all working correctly, then the whole residue checker is totally
sel f-checking. Qherwise, all we can say is that nmost of it is.

The question of whether EQ can be realized in a totally self-checking
fashion will be dealt with in another paper. Al we shall say here
is that for A=3, EQ cannot be nade totally self-checking, while for

A=15, it can.
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8. LEVEL MERG NG OF SECOND RANK CELLS

The residue tree for a general modulus A (seen in Fig. 1)
requires 2 levels of logic for each second rank cell unless wred-OR
is practical. For very wde input nunbers, the total delay thus
incurred may be prohibitively large. The witer is indebted to one
of the anonynous reviewers of this paper, for suggesting the level-
nerging technique as a neans of reducing this delay. This technique
was used in references [2] and [3].

1

The second rank cell ("+A' in Fig. 1) can be realized by a 2

| evel OR-AND network. Then by using alternating layers of AND OR
and OR- AND " bl ocks, adjacent |ayers can be "nmerged" together,

| eaving only one -gate del ay per |ayer. The nerge operation sinply
repl aces any cascade of OR gates with a single, equivalent OR gate,
and does likewi se with cascaded AND gates.

If the network with alternating AND-OR and OR- AND bl ocks

A
is totally self-checking, the network will be totally self-checking
after the nerge operation, as follows. Suppose a network contains
two cascaded OR gates A and B,

a1
a

|

T
no
\
w
N
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with [ines labelled as shown. Gate C has the same truth table as
the A,B cascade, when both are fault-free. Further, for each single
stuck-fault of gate C, there is one single stuck-fault of the cascade
A B which has the sane truth table. Stuck-at-0O on ai,bi, and Z of
gate C produce the sane truth table as stuck-at-0 on ai’tf‘ and Z,
respectively, of cascade A ,B. Simlarly for stuck-at-I on these Ilines.
Thus each fault of gate C mimics a fault in the original cascade, so
a parent network which is totally self-checking and contains cascade
A B, would be totally self-checking if the cascade were nmerged into
the single gate C. The sane argunent extends to cascaded AND's.

The AND-OR second rank cell which we used earlier is equivalent

to the sumof-products expression

k z xIyEI,y
J
eg. r? = x%Px YA ¥ o3¢ 4B

for modulus 5 (A=5)

=]
1}

Here, justaposition is the AND operation, z is the OR operation,
and the arithmetic in the superscript position is done nodulo A
The thoughtful reviewer proposed an OR-AND cell which has nearly
the sanme truth table. To describe it conveniently we shall introduce
alittle notation. Let X° represent the a—tE | ead of the X group,
just as before. But let
2 = Y0+Y1+, . .+Ya_1 +Ya+1+Ya+2+. . .+YA'I ‘

which is the OR of all the Y | eads, except for the aicE one. Wth

this notation the proferred OR-AND cell is equivalent to the product-

of - suns expression



34

RS = I Ik
J
3
g2 = x%¢?) xleyl). xS
1.0.2 .3 4
= (X%Y%Y¥WQW4NX4¥'W-W-W Yoo

“‘(X4+YO+Y1+Y2+Y4)

for nodulus 5 (A=5).
Here, + is the OR operation, [T is the AND operation, and the super-
script arithnetic is once again nodulo A, The corresponding network
is seen in Fig. 10. W use "output subnetwork" to denote all the
predecessor gates of a particular output line. A conplete OR AND

all for A=3 is given in Fig. 11

k
R

Figure 10. & subnetwork of OR-AND +, bl ock.
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Figure 11. Conplete OR-AND +3 bl ock.

We shall first verify that this cell produces the correctly
encoded nodulo A sum of its inputs. Next, we shall verify that,
given an all-zero or nultiple-I's input, the cell output will be
all-zero or multiple-1's respectively. Finally, we shall verify
that the A2 properly encoded combinations of X and Y residues com
pletely test this cell for single stuck-at faults. (Once these clains
are established, it follows that this cell may be used interchangeably
with the + cell in the residue tree of Fig. 1. Then AND-OR and

A
OR- AND *a cells could be used in alternate layers, and the tree
woul d still be totally self-checking. Then cascaded AND gates could
be collapsed into single gates with no change in the residue tree's

normal, fault-free behavior, or in its behavior under a single stuck-

fault. Simlarly for OR gates. The final result of the |evel-merging
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operation is an mlayer tree of second rank +, cells with only

m+1 gate delays. O course, this increase in speed isn't free.
For the A=5 nodulus, we need 25 (Az) 5-input (A-input) gates per
second-rank cell, conpared to the 5 (A) 5-input (A-input) gates
needed when level merging isn't used.

Suppose the OR-AND cell is presented with correctly coded
(I-out-of-A) residues u and k-u, on the X and Y inputs, respectively.
We shall use mbdulo A arithnetic in the follow ng. R® i's true as

follows. Yj, either j=u, and XJis true, or else #u, and Yk_u i's

in YU so ¥ s true.  Then all the R gates of the kth output

subnetwork have true outputs, so RK is true. Rm, m#k, i s fal se,

as follows. In this subnetwork, the OR gate with Y inputs Yk'u

m (k- u)

has no Y inputs true, and its X input, X is false, because

only X" is true, while m (k-u)#u. Then the AND gate of this subnetwork
has at least one false input and indeed, it has exactly one false
input, for any other OR gate has Yk'u anmong its inputs and hence

has a true output. Then the R™ subnetwork has a false out put .

Suppose the OR-AND cell is presented with an all-zero Xinput,

while the Y input residue is u, and is properly encoded. Then RN

is false as follows, Vk. R can be true only if all its OR gates

have true outputs, which is the case only if every OR gate has a Y
input true. But the jECR gate, where k-j=u, has no Y inputs true,

Suppose the OR-AND cell is presented with a properly encoded

ute

Y residue,but 2 X lines are up (true). Let x", and X be true,

k-u k k+e

where e#0, and let Y be true. Then R~ and R are both true,

by the same argunment which was used regarding normal operation.
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Suppose the OR-AND cell is presented with an all-0 Y input,
while the X input is properly encoded. Then R can be true iff
x)is true, Vj. But this is patently false, so R¥ is fal se, Vk.

Suppose the OR-AND cell is presented with a properly encoded
X residue, but 2 Y lines are up. By the same argument used for
nornmal operation, two R lines are up.

This establishes the operation of the OR-AND cell for properly
encoded inputs, and for inputs having one bit incorrect. Next, we
shall verify that the set of A2 properly encoded input pairs XY
is a conplete fault detection test set for single faults. W shall
use a deductive argument, as before. The network in Fig. 10 would
be tested for all single stuck faults by a test set which

1)(bubble-1 test) places a single "1" input on each of the

OR gates. CQver the entire test set, for any particular OR

gate, each input of that gate nust be visited by the "1", and

2)(all-zero test) for each CR gate, places all Os on its inputs,

whil e placing at |east one "1" on every other OR gate.

Happily, every properly encoded input sets up a bit pattern
as described in either 1) or 2), on every one of the output subnetworks.
No proper input creates a bit pattern on the OR gates of any output
subnetwork, which is not one of the single-fault test patterns described
in1)and 2). And noreover, all the test patterns required by 1) and
2) exist in the set of A2 properly encoded inputs. W shall verify
this, in the following, and conclude that the OR-AND cell in Fig. 9 is
tested for single faults by the normal inputs (X and Y residues both

| -out-of-A).
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Suppose we apply all A input codewords, which should result
in an output residue of k, for sone ke Z, These are all the
possibilities of Xu=1, Yl_u=1, XJ=0 Vi#k, Yj =0 Vj# k-u. Consi der
t he j—t--Il OR gate of the kE-tl out put subnetwork, for sone jeZA. Now
if j=u, that gate has its X lead at 1, and all of its Y leads at 0
since Y9 =v"™¥ is the Y lead which is absent. If j#u, that gate

k-u is among its inputs, and Yk_u=1‘ Thus every

has x’=0, while Y
gate has one input 1, and all others 0. If we fix j, and exam ne
t he jEE OR gate while u ranges through all of its values, the single
1is seen to visit all A inputs of the gate. So for any gate j,
and for any output subnetwork k. Thus the set of properly encoded
inputs contains all the tests in 1).

Now suppose we apply the sane set of input codewords, but now
consi der the mln out put subnetwork, where m# k. The OR gate with
i nputs Y™ has all 0 inputs, as we have already discussed in the
section on normal operation of the OR-AND cell. Al the other OR
gates of this group have "1" outputs, since Y™ is included in their
inputs. As u ranges over all its values, all the OR gates of this
subnetwork get the all-zero test required in 2) above, one at a tine.
Thus, when the input results in an output residue of k, and all A
such inputs are applied, the kth output subnetwork gets all the tests
of 1), while the nth output subnetwork gets all the tests of 2),
Vm#k. Then the set of properly encoded inputs (X residue is |-out-of-A
and Y residue is I-out-of-A) contains all the tests mentioned in 1) and
2) above, and the level nerging schene gives a totally self-checking

resi due tree
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APPENDI X A
Proof that multiplication of the integers Z, (zAis the set of
integers nmodulo A) by the group weight s = 2¥) nod A is al-1 onto

map from ZA to itself, solong as Ais odd. This is proven by
proving the two propositions below. The hypothesis above follows

directly from these two propositions.

Proposition A: That nultiplication by s (nmodulo A) of the integers
Zy is al-I onto mapping fromZA to itself iff
GCD(s,A) = 1.

Proposition B: T h a t A =GCD(i[i'P|ECD(r,A) = 1. Here Inl,

means the residue (n) nodulo A

Proof of A

Suppose GCD(s,A) # 1. Then E a where al # a,,

1532 € ZA’
such that: s'(al—az) = A Then sea, = s.a, (nodul o A) and
the multiplication is not a |- map. Proves the only if part
of the proposition by having proven the contrapositive here.

Now to prove the if part of proposition A suppose the

multiplication is not |I-1. Then & a,,a, € ZA, wher e al ,éaz,
a, > a, such t hat

s.a; = s+a, (nodul o A).
Then s- (al-az) = mA, where m = integer. Since 0 < (al—az) < A

(al-az) does not contain all the factors of A and therefore s

nust contain the balance of them and GCD(s,A) # 1. Then the
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contrapositive holds: GCD(s,A) =1 == (multiplicationis I-1).
Since any |-1 map fromany set Z to itself is necessarily onto,

so is this nultiplication. Proves the if part.

Proof of B

GCD(r,A) = 1 <=> GCD(rn,A) = 1, so we shall prove

n

GCD(lrnlA, A) =1 «==> D (rn,A) = 1. [ ndeed, let » =1,

and we shall prove GCD ([tlA,A) = 1 «= GCD (t,A) = 1.
This is all that is needed to prove the proposition.

NowytlA+mA=t (m integer)

Suppose GCD(t,A) # 1. Then GCD(t ,A) =s, some s > 1. Then

A=1f+s,t = f_»s.

1 2

lt[A = t-mA
|t[A= f,es - m-fl-s

[t], = s (fz—m-fl)

A

Then the contrapositive holds: [GCD([t[A,A) = 1] ==> [GCD(t,A) = 1].

Suppose now mD(|t1A,A) # 1. Then GCD(|t‘A,A) = s, some s > 1.

Then A = f.*s, ]t[A = f,°s.
U=t], + ma
t =

. + Y [y
f2 s m fl S
t = s-(f2 + m-fl)

GCD(t,A) 2's, s # 1.

Then the contrapositive holds: [GCD(t,A) = 1] ==> [GCD(]t [A,A) =1].
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APPENDI X B

Desi gn Exanpl es
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