
RELIABILITY hIODELIXG OF NMR NETWORKS

J. A. Abraham

D. P. Siewiorek

Technical Report No. 56

DIGITAL SYSTEMS LABORATORY

Department of Electrical Engineering Department of Computer Science

Stanford University

Stanford, California

This work was supported by the National Science Foundation grant GJ-27527





i

ABSTRACT

A survey of the literature in the area of redundant system

reliability modeling is presented with special emphasis on Triple Modular

Redundancy (TMR). Areas where the classical method of TMR reliability

prediction may prove inadequate are identified, like the interdependence

of fault patterns at points of network fan-in and fan-out. This is

especially true if the assumption of highly reliable subsystems, which is

frequently made by the modeling techniques, is dropped, It is also not

clear if the methods give an upper or a lower bound to the reliability.

As a solution, a method of partitioning an arbitrary network into cells

so that faults in a cell are independent of faults in other cells is

proposed. An algorithm is then given to calculate a tight lower bound

on the reliability of any such cell, by considering only the structure

of the interconnections within the cells. The value of reliability

found is exact if TMR is assumed to be a coherent system. An

approximation to the algorithm is also described; this can be used

to find a lower bound to the reliability without extensive calculation.

Modifications to the algorithm to improve it and to take care of special

cases are given. Finally, the algorithm is extended to N-Modular Redundant

(NMR) networks.
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1. INTRODUCTION

1.1 Introduction

The widely increasing use of computers in diverse areas has

brought with it the need for very high reliability. Even if computers

are constructed with components selected for very high reliability,

these components will have a non-zero probability of failure. Thus

highly reliable operation necessitates the use of some form of redundancy.

Redundancy has been defined as the existence of more than one means of

performing a function [ll. This could be brought about by providing

extra time to perform the function, or by extra hardware within the

computer, or by both.

Avizienis 121 has identified two forms of protective redundancy,

massive (masking) redundancy, and selective redundancy. In massive- - -

redundancy , effects of faults are masked instantaneously by permanently

connected and concurrently operating replicas of the faulty element.

Selective-. redundancy requires detection, diagnosis, and corrective action

to overcome the effects of faults. This latter approach generally

assumes a hard core i.e., a set of logic circuits which must function

continuously to insure the proper fault location and repair of the rest

of the system. The system hard core is usually protected by some massive

redundancy scheme.

Whereas accelerated life tests on many copies of a component

may be feasible to experimentally determine the component. reliability as

a function of time, computer systems are too complex and often too
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expensive to subject to such tests. Thus to evaluate and compare various

redundant system designs, a reliability modeling technique is required.

With such a model it becomes possible to predict system behaviour and,

in particular, determine whether the proposed system meets the design

specifications.

Modeling requires a mathematical or physical representation which

incorporates the salient parameters of the modeled system [3]. A model

is an incomplete representation of the subject under study. To be of

value, the modeling technique must be convenient to apply, and must

successfully predict the behaviour of the subject under various parameter

changes. If the reliability model is accurate, then insights can be gained

as to how the system reliability changes as a function of the design

parameters. This requires knowledge of the model's predictive properties

under all possible system designs, i.e., is it an upper bound, a lower

bound, or simply a "good guess"? The following discussion will illustrate

some common network configurations where the reliability modeling

techniques in the literature for massive redundancy are sometimes

inadequate predictors of system reliability. Modifications which enable

the classical reliability modeling techniques to handle the troublesome

network configurations will be demonstrated. Finally, a new approach to

reliability modeling will be presented which is much more accurate when

compared with previous methods,



1.2 Background

The basic concept underlying massive redundancy reliability

modeling schemes has been to enumerate or approximate the number of

states for which a system still realizes its desired function. Each

component in a system can have two states, failed or good, and the state

of all the components represents the state of the system. Massive

redundancy schemes are designed to tolerate component failures, thus

the number of working states in a redundant system may be quite large,

and the general approach taken is to partition the system into cells

such that the system is working if all the cells are working, The

cell reliabilities are then said to be statistically independent.

Thus the system reliability is just the product of the cell reliabilities.

Except in very specialized situations, the system cannot be partitioned

like that, so that the cell reliabilities are not statistically independenl.

Then a small portion of the system is usually selected as a cell such

that the statistical dependency between cell reliabilities is a second

order effect, i.e., consists of higher powers of component unreliability

than those considered in the cell c4,5].

To date most studies have pertained only to simple models of

digital systems, namely the visualization of a computer as a cascade

of single input, single output blocks [6,7] or as a tree network of

double input single output blocks [gl. Even so the estimated relative

magnitude of the second order effect in a very specialized network is

1% [d] while networks to be presented here show differences of 20% or

more. To counteract this second order effect the customary assumption
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is that the components are very reliable, say 0.99 or better. This may

not be a bad assumption for current redundancy applications such as

aerospace where system cost is not the primary design constraint, As

redundancy techniques find more and more applications in the commercial

sphere, the systems designer may trade the costly, highly reliable

components in a nonredundant or low redundancy configuration for cheaper

less reliable components in a highly redundant configuration to

achieve the desired system reliability. In systems requiring maintenance-

free operation over a long period of time, the designer may want to see

the effects of component reliability degrading to below the high

reliability values given above. In these cases, a reliability model

which is accurate over all ranges of component reliability, not just

high component reliability is needed.

The primary vehicle for this discussion will be Triple Modular

Redundancy (TMR). TMR augmented by standby spares is a prime candidate

for hard cores in self-repairing computers [9]. It has been used

on the Saturn V launch vehicle computer [lo]. TMR is easy for a

designer to apply and has several good features [ll]:

1) The scheme is equally effective for both wrong 0 and

wrong 1 errors.

2) The correction mechanism (voters) may be realized in the

same logic technology as the circuits being protected. No

special elements are required.

3) The size of the module protected is unlimited, it may be

a single gate or a whole computer.
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4) No modifications to the modules is needed, either in network

structure or in factors of usage such as fan-in or fan-out.

5) The scheme is directly extendable to higher orders of

redundancy and may indeed employ different orders of

redundancy within the same system without causing any special

problems in design.

6) As mentioned earlier, TMR is very well suited for standby

redundancy schemes, while other massive redundancy techniques

like Quadded logic [12] do not lend themselves to this.

Finally, TMR cells are more readily defined and provide less intercell

dependence than other existing massive redundancy techniques such as

Quadded logic [121 and its descendants, radial logic [13] and dotted

logic [14-J, Hence the second order effects exhibited here will be even

more dramatic in these other schemes of greater cell dependancy. The

techniques to follow are translatable into handling these other redundancy

schemes. The extension to ,NMR will be given later.

The discussion will consider the interconnection pattern of the

logic modules in a TAlR system without regard to the internal logic design

of the modules. It will be assumed that the modules have a known

reliability as a function of time. A module is assumed to be faulty if -

it produces a wrong output for some input combination, and we will

assume that a wrong signal at the input of a module produces a wrong-

signal at the output of that module. These assumptions have to be made- P--Y

since we do not know the internal structure of the modules or voters and

this gives a lower bound on the reliability. A different reliability model
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which depends on the actual logic implementation of the modules and

voters has been discussed by Siewiorek [15].
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2. RELIABILITY hlODELING OF TMR NETWORKS

2.1 Introduction

With the introduction of the restoring organ by von Neumann in

1956 [16] the groundwork was laid for the triple - modular redundancy

(TMR) technique. Briefly, TMR consists of dividing a non-redundant

circuit into several modules, triplicating the modules, and inserting

a majority gate (sometimes referred to as a voter) between the

triplicated modules.

Figure 1 depicts the application of TMR to a simple function.

Here, the network is partitioned so that each logic gate represents a

module. The gates are triplicated and trios of voters, where a circle

represents a voter, are inserted between them. Each voter receives three

inputs, one from each of the triplicated modules. Since the reliability

model under consideration is independent of the internal module design,

the modules of Fig. 1 could be represented by squares as in Fig. 2 (a).,

As a notational convenience only one path from the system inputs to

the system outputs will be shown as in Fig. 2 (b). This will uniquely

define the redundant system. A path is defined as the components of a

system which a logical input to the system could affect on its passage

to a system output.

Figure 3 shows TMR in its simplest configuration -- triplicated

modules followed by triplicated voters. Networks whose nonredundant form

may be represented by a serial cascade of modules will be referred to as
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Majority Voter

Fig. 1. The application of TMR to the function z = uv -t- wxy; the
nonredund‘ant  version (a) and the redundant TMR version (b).
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Fig. 2. A generalized form (a) for the modules of Fig. l(b) and (b) an
abbreviated system representation,
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serial ThIR. Fig. 3 outlines a serial ThIR cell. Normally the input and

output lines for a module represent busses, Thus the voter symbol as well

as the module symbol should be thought of as operations on vectors

rather than on single bits of information.

A binary up-counter using J-K flip-flops would be an example of

a serial cascade network if each flip-flop was taken as a module. In

general, few networks can be characterized by a serial cascade of modules,

However the reliability of serial ThlR networks is easily calculated and

hence the serial ThlR cell has been used to predict the reliability of

more complicated networks. But extreme care should be exercised in

applying the results derived from consideration of this simple model.

For example, a segment of an arithmetic unit - data bus system for a

computer will be modeled in a subsequent section. The non-redundant

system required 17 modules and exhibited a probability of failure of

0.0335 (for a particular failure probability of each module). With

triple replication and the use of 3*17 = 51 voters the probability of

failure was decreased to 0.0035. On the basis of visualizing the

computer segment as a cascade of 17 serial cells the failure probability

was predicted as only 0.0001.

For the remainder of this discussion the reliability of a

system (module) will mean the conditional probability that the system

(module) will be capable of performing its specified function at time t

given that all system (module) components are functioning properly at

time t = 0. For basic components, such as resistors, failures are
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assumed to be an independent random variable of time and the number of

expected failures is the same for any equal intervals of time. Then the

reliability R (t) is given by the Poisson distribution for n = 0, where

n is the number of expected failures in the time interval from 0 to t:

n --At
-At (At> = e-

r(t) = e n! n=O

The reliability of modules will usually be more complicated than

the exponential given above. In a nonredundant module all the components

must function for the module to function. The reliability will be the

product of the exponential component reliabilities. On the other hand a

redundant module will require only one of several subsets of its components

to function. Thus its reliability will be a sum of products, where each

product represents one of the subsets.

In the subsequent formulas time is an implicit variable. To

calculate system reliability at time t the module reliability must be

evaluated at time t. Wherever numbers appear for R, R
VP

etc., a time t

is implied.

The following notations will be adopted:

R : redundant system reliability

Ro: non-redundant system reliability

(non-redundant means that successful operation of all

modules is a necessary condition for successful

operation of the system,)

Rv: voter reliability
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2.2 Background~.

Several investigators have addressed the problem of modeling the

reliability of TMR or multiple-line networks {4,G,l1,17,18,19,20,21,

22,23,24]. The first approach was to approximate the system by a serial

TMR system, i.e., modeling the network as a cascade of single input,

single output modules, adding extra voters if required, This was the

essence of the procedures developed by Brown [17], Teoste [18] Rhodes [19],

Longden [20], Lyons c24], and Gurzi [6]. A summary of their work follows.

Brown et.al. [17] considered the single and triplicated voter

cases. When voters are triplicated they may be associated with the inputs

to modules (in which case Brown added extra majority gates at network

fan-out points to retain the serial voter-module arrangement depicted

in Fig. 3) or with the outputs of modules. In the latter case Brown

introduced the concept of symmetric chains (a specialized network

situation where only voters fan-out to modules in the next layer of

triplicated modules, the non-redundant system being essentially approximated

by a cascade of modules). Brown then concluded that associating voters

with module outputs would be more efficient than associating them with

module inputs. But Brown penalized the voter-input pairing by introducing

more voters into the network at fan-out points in order to help isolate

the cells of the network. This was to facilitate reliability modeling

and is not a restriction on the application of TMR. It should make no

difference to the reliability prediction whether voters are associated

with module inputs or outputs as long as the network is the same for both
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approaches. The method essentially approximates network reliability

by use of serial cells with no indication whether the prediction tends

to be higher or lower than the actual reliability.

Teoste [lS], Rhodes [19], Longden, et. al, [20], and Gurzi [63

also use serial voter-module cells to approximate network reliability.

In the case of fan-out, Longden adds extra voters in a manner similar

to Brown. Rhodes attempts to improve the calculation of cell reliability

by including cases where multiple failures in a cell (such as one

module output failing to a constant 1 and another to constant 0)

could still be corrected by the next voter layer. Rhodes, however,

incorrectly assumes that module failures to constant 1 and 0 are the

only module failures possible. Rhodes also included some multiple

failure situations which do not lead to correct network operation for

all types of models, For example, Rhodes allows a voter to be stuck

at logical one and a module which receives inputs from another voter

to be stuck at zero. If the modules were inverters then there would

always be two or more zeroes on the module outputs. Hence the network

fails.

Rubin [211 d'rvides the network into augmented blocks in an attempt

to find sections of the network in which failures impose no restriction

on failure patterns in other sections, i.e., a failure in one cell

cannot combine with a failure in another cell to cause system failure.

He models networks as serial cells and inserts fictitious module trios

where required to make all the cells serial cells. Then he alters the



-15-

standard serial voter-module reliability formula to take into account

these added fictitious modules. He gives no algorithm in [21] to

enumerate the augmented blocks (a non-trivial problem in large, compli-

cated nets) and no indication as to whether this approach gives an

optimistic or pessimistic prediction of the actual network reliability,

Two recent approaches that do not use the serial cell approach

are by Klaschka [4] and Jensen [22]. Their procedures rely heavily

on the work of Esary and Proschan [25] in regards to coherent systems,

systems which having once failed cannot work properly again upon failure

of more network components. Klaschka assigns each minimal cut of the

network to a cell and then assumes the cell interdependence is a second

order effect. A network cut is a set of components whose failure

causes system failure. A minimal cut is a cut from which no members

can be deleted without the set losing the property of being a network

cut. The probability obtained by taking the product, over all minimal

cuts, of the probability that the cut does not occur is a lower bound

on coherent network reliability [25]. Jensen [5] demonstrates that a

non-coherent network with the same minimal cuts as a coherent network

is more reliable than the coherent system. TMR and Quadded logic form

non-coherent networks as demonstrated in the next section. So Klaschka's,

as well as Jensen's, approach utilizes an approximation to the lower

bound on the reliability of a coherent system as an approximation to

the reliability of a non-coherent network. Jensen uses matrix manipu-

lation to establish the minimal cuts of a network. However, if there

are n modules in the non-redundant network, Jensen's method in the
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worst case requires on the order of n2n operations and on the order

of n2 storage locations just to set up the matrices for determining

the minimal cuts. A more typical case would still require about n4

operations.

An adaptation of Jensen's technique is due to Goldberg et. al.

II1 1 3 l
The network graph of a redundant system can be considered as a

collection of paths. When modules are connected without intervening

voters, they occupy a single path. Voters receive inputs from each

path (three in the case of TMR), intermix the signals, and issue a

signal along another single path. Whereas Jensen considered any number

of module failures along such a path, Goldberg assumes at most i failures,

a value of two or three was suggested for i. Goldberg uses matrix

techniques and requires on the order of ni+l storage locations. This

procedure also requires establishing the equivalent of Rubin's [Zl]

cells and has all the problems thus entailed.

The cellular approach presented here is a rapid method to

approximate very closely the reliability of an arbitrary TMR network.

For now, a cell will be loosely defined as a segment of a network whose

inputs all lead to voter trios and whose outputs issue from module

trios. A more precise definition for a cell will be presented later

but the intuitive notion of cells thus far established will be adequate

until that time. Arbitrary cell types, in addition to the standard

serial cell, are used to partition a network and approximate its

reliability. The advantage over the methods of Klaschka and Jensen
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resides in the fact that it is a specialized method for TMR and other

multiple line redundancy schemes, and can take advantage of the known

properties of the redundancy schemes. Klaschka and Jensen pay a

penalty for utilizing a more general approach which is applicable to

more than one class of redundancy schemes.

In [21] Rubin claims that the augmented block approach took

significantly less time (lOOO-fold increase in speed for large nets)

to calculate system reliability than the minimal cut, Monte Carlo, or

actual reliability calculations for the same network . The cellular

approach is on the order of complexity of calculation as the augmented

block method once the cells and blocks have been determined. The

augmented block approach, however, gives no clue as to whether in a

particular situation it represents an upper or lower bound to actual

system reliability. A brief discussion of when a redundant system

is considered to have failed is presented before the actual problem

of reliability modeling is undertaken.
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2.3 Coherency

Esary and Proschan [25] define a structure function cp as a

boole;ln function of x = (x1,x2, .-. ,x,).- Each component in the system

is represented by an x i where x i = 1 if and only if the component

functions properly and equals zero otherwise. A function cp is said to

be monotone increasing if when xi y (the comparison being made on a- -

component by component basis), 'p (x)5 'p (y). A coherent system is- -

then defined as one whose structure function is monotone increasing

and such that CJJ (1) = 1 and (p (0) = 0.- -

If the system components are considered to be modules, the

structure function for TMR networks is not well defined. Consider the

TMR network of Fig. 1 where the modules are single gates. The AND

gates lettered A, B, and C would be components of the structure function:

cp (xA,XBY~C,~DP *a  l �XR) l

Assume AND gate A and C failed such that their outputs became permanent

logical zero. For u = v = 1, AND gate B would produce a logical one

while gates A and C would be logical zero. The correct response of

logical one would be outvoted. The network could thus produce an

incorrect output for z and must be considered failed. For this situation:

cp (O,l,O,XD, ,.. x,) = 0.

gate A failing so that its output takes on a permanent logical one

value while AND gate C fails so that it realizes a permanent logical
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zero output. Whatever value AND gate B assumes, the output of the voters

will realize it since either gate A or gate C will agree with the properly

functioning gate B and outvote and other faulty gate. The network wJP1

not fail. Such a situation where the majority of the modules in a cell

can fail yet the network still functions properly will be referred to

as compensating module failures and is explored in much greater detail

in [15]. For this case:

cp (O,l,O,XD, *.. ,x,) = 1.

The ambiguity arises from failed modules being able to take on both

0 and 1 values for the same vector x depending on the exact nature of-

the failures.. A module does not often fail such that its output is

always in error as is often assumed in the literature 1111,221.

Let us attempt to eliminate the difficulty above by letting xi

represent a lead rather than a module. (p is thus well defined, but TMR

is not a coherent system as claimed by Jensen [22]. Again referring

to Fig. 1, the leads in the triplicated version of the two input A.ND

gate are numbered and represent system components:

Assume leads 1 and 9 are stuck to a logical zero. Both AND gate A and

C would realize logical zero outputs and we have the first case that

we described above. The network fails.

‘p’(g) = cp’(o,x 2~x3,X4~x5~x~~ 1 Jg90,X 1o I * 0 * 9x33 1 0=

A further failure in lead 7 such that lead 7 were to take on a permanent

logical one value causes AND gate A to realize a constant one while
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AND gate C still realizes a constant zero, We have the second case

above, the case of compensating module failures:

~“(~“) =  (p”(o,x2’x3’x4’x5’x~,~,x~,~,xlo,  ..* ,x33 1 =  1 .

But x1'< x' while rp">cp'. The structure function is not coherent.

The reliability that will be calculated in later sections of this

paper will be understood to be the reliability of the system with respect

to sets of failed components, none of whose subsets could cause system

failure. If subsequent component failures, such as in v" above,

restore the network to a properly working state (i.e., the structure

function is 1) the network will still be considered failed since it was

capable of producing an erroneous output (under structure function

9' in our example) before the extra components failed. This forces

the structure function to be monotone increasing and is the same as

assuming that the first erroneous output signifies permanent system

failure.

When reliability modeling is independent of module design, the xi's

of the structure function will represent modules or voters. When the

internal design of the module is considered, as in [15], each x i

represents a lead.

With this concept of what constitutes a system failure, we will

now consider methods for modeling the reliability of a TMR network.
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2.4 Calculating Serial ThlR Reliability

The serial cell reliability modeling technique will be demonstrated

for some simple systems. The resultant reliability model will be

compared to the reliability model to be presented in this paper. It

will be shown that for these simple systems the predicted mission time

can be increased by 501 just by using the more accurate model. An

indication of why the serial cell technique is not always accurate

will also be given.

First consider Fig-. 4 which graphically depicts the required def-

initions. A module trio is a group of three replicas of the non-

redundant system module. All members of a module trio are identical..

A voter trio is a group of three voters whose inputs come from a module

trio, In Fig, 4 modules (1, 2, 3), (4, 5, 6) and (10, 11, 12) form

module trios. Module 1 is said to feed voter 7, 8 and 9 while module 10

is driven by module 4 and voter 7.

A cell is a portion of a network such that all the modules in the

cell are fed by voters in the cell or by network inputs and all voters

in the cell feed modules in the cell or network outputs. Fig. 4 shows

three cells. Cell 1 is known as a module end cell and cell 3 as a voter----____

end cell. Finally, a level is a vertical partitioning of a network

which contains voters only, or modules only. It is somewhat analogous

to the combinational logic concept of levels. Fig. 4 has four levels,
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The serial cell

cascade of serial cells,

technique attempts to model all networks as a

that the voters never fail,

Consider the serial cell of Fig. 3. Assume

Then there exists four states or module

failure patterns for which the system still realizes its design function.

They are (1) no module failures, and (2) three states, each of which

has a single module failure (the two remaining working modules will

realize the design function and form a majority regardless of the

behaviour of the failed module), Thus the cell reliability derived by

summing over all the working states is given by:

Rcell
= R3

m + 3R;(l - R,'

= 3R2 - 2R3m m (1)

Rcell = 3(RmRv)2 - 2(RmRv13

To alleviate the ambiguity in the structure function when the

system components are taken to be modules or voters, as illustrated in

the section on coherency it will be assumed that all module failures in

a trio are identical. Thus any two module failures in a trio would

outvote the good module and cause system failure. This will lead to a

worst case reliability model since all module failures need not be

identical. In the calculations to follow we will ignore the cases  of

compensating module failures as described in [15] and consider only

a worst case reliability function. We will also consider network
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configurations more complex than serial cells, such as cells exhibiting

fan-in and fan-out.

The use of serial cell reliability modeling for networks that

exhibit fan-in and/or fan-out can lead to serious errors in estimates

for overall system reliability. Yet such networks are fairly common

candidates for the application of TMR.

Consider the 16 register multiplexed data bus system and

ALU of Fig. 5 which might use TMR on a long space mission. The data

register transfer block, block 1 in Fig. 4, exhibits fan-out. The

contents of the data register can be supplied to any one of the 16

general purpose registers. Block 2, the ALU to multiplexer transfer,

represents fan-in. The results of any one of 16 ALU operations is

selected by the 16 multiplexers for transmission to the data registers.

Figure 6 shows a TMR configuration of Block 1, the data register

to register transfer. One approach to handle fan-in/out in the serial

cell reliability model is to assign the voters to the modules they

drive [26] since a voter failure affects only the module it drives.

Thus cell 2 in Fig. 6 shows one way to assign the voters to the driven

modules. Now the serial cell reliability model will be developed.

The reliability of a module end cell such as cell 1 can be

derived from (2) by letting Rv = 1. Similarily setting Rm = 1 in (2)

yields the reliability of voter end cells such as cell 3; Next assume
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Rm=R =R.
V

Lyons [24] has shown that the maximum system reliability

is obtained when modules and voters are on the same order of complexity,

i.e., R = Rm V'
This will yield the network partitioning for the maximum

obtainable system reliability, This simplification is not crucial and

similar results are obtained when R and R retain their se
V m pera te

identities, as will be demonstrated later. The end cell reliability

2 3is thus 3R -2R . The serial cell reliability model for the system

of Fig. 6 would consist of 17 end cells (16 voter and 1 module) and

16 serial cells, like cell 2, each of which share the one voter trio.

The system reliability is thus modeled by,

R - (3R2-2R3)17  (3R4-2R6)16 .serial - (3)

Thus the model calculates the reliability of a corresponding system

which replaces the fan-out voter trio by 16 voter trios.

The system reliability developed by techniques in this discussion,

(which is known to be a lower bound), for the network of Fig. 6 is

plotted with (3) as a function of module reliability in Fig. 7 and

their difference is plotted in Fig. 8. In actual design situations

a mission time, i.e., the desired operating life of the system, would

be selected. This would a numeric value for module reliability which

is then substituted for Rm in the equations developed by the modeling

techniques. Note that here, we are only interested in the variation of

the predicted system reliability for each modeling technique as a

function of module reliability. Plots of the form of Fig. 7 and Fig. 8

were chosen to display this variation. We are comparing modeling
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techniques and not redundant system desings. There are better methods for

comparing redundant system designs presented in the literature, 3 .L-J

Various reliability models for the same redundant system may

predict widely varying system capabilities. For example consider one

interesting parameter for comparing redundant system designs, namely,

mission time improvement, I [3]. Assume an exponential failure distri-

bution, i.e., Rm=e-lltl and R'-e-X2t2m- . The reliability model for the

two redundant systems is derived. A value for R is assumed and substi-m

tuted in one equation. Then an R' is calculcated such that the twon1

system reliabilities are identical. If we represent Rm by Rm = Rl’ then

A t AtI Further if A h
11= 22 l

=

1 2 then t 1 = It2 and design one has

the same system reliability at t 1 as design two does at time It 2"

The mission time improvement is defined as I. This parameter can

also be used to compare reliability models, Fig. 9 shows a plot of

mission time improvement when system one is the serial cell model.

It can be seen that a mission time improvement of 50xcan be obtained

by using a more accurate reliability model. Another way of looking at

the parameter I is that if the serial cell model is used then the

resultant system is overdesigned by 507. since it could meet its mission

time specification with less reliable components. Alternatively it

could use the same component reliability and contain 5Oz more components

and still meet the specifications.

The source of the variation between the two techniques as displayed

in Fig. 7, 8 and 9 lies in the serial cell approach assuming that the

voter trio, which is the origin of the fan-out is replaced by sixteen
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voter trios, one for each module trio the original voter trio feeds.

Equation 3 counts failure patterns for which the network fails. As an

example of the inclusion of a pattern for which the network fails,

consider the failure of voter A in Fig. 6. If the failure were assigned

to the serial cell marked 2 then module B could fail and the serial

cell approach would predict correct system functioning. Yet the system

has failed, since the second trio of fan-out modules containing module B

could produce two incorrect signals, one due to module B failing and

one due to the failure of voter A.

The serial cell approach is also pessimistic in the sense that

it penalizes the network for components it does not have. In Fig. 6 the

serial cell approach models the system by another system which has

sixteen trios of voters instead of one fan-out trio. The actual system

does not include this extra hardware and hence is penalized by the

unreliability of the extra voters. The interaction of these two effects

is very complex and it is very difficult to determine which one, if

any 9 dominates in an arbitrary network. This is why we cannot say

whether the serial cell approach is an upper or lower bound on actual

network reliability.

In the case of fan-in, such as the ALU multiplexer block, (3)

also applies if the serial cells are assigned as in Fig. 10 and it is

assumed there are sixteen ALU functions to select from, The system

reliability for this configuration, as derived using techniques to be

developed in the next section, is also plotted in Fig, 7 and Fig. 8.
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Now (3) is optimistic. Fig. 9 shows that the system has only 50% of its

designed mission time. So the serial cell approach may not be an upper

nor a lower bound to system reliability and for R = 0.95, Fig. 8 showsm

that it may not even be a "good guess",

In designing and comparing redundant systems, a good predictive

technique for system reliability is needed, not one which is merely a

guess and might be high or low depending on the network it modeled. If

the exact reliability is too difficult to find then a lower bound is

desirable. A technique which gives the exact reliability, and if desired,

a tight lower bound in return for a saving in time is presented in the

next section.
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3. CALCULATING THE EXACT COHERENT RELIABILITS  OF A ThlR NETWORK

3.1 Introduction

The algorithm we present will calculate the exact reliability

assuming ThlR is a coherent system. The basic assumptions when treating

TMR as a coherent system are [5].

1. Once a module or voter has failed it will always give an

incorrect output.

2. Once a module has a failed input its output is also failed.

It should be noted that TMR is not a coherent system when consider-

ing failure modes other than complete failure. For example, one input

to a voter could be stuck-at-l and another stuck-at-O. Since two voter

inputs have failed the system has failed by the coherent system assumption.

In actuality the system functions correctly. These compensating failures

can be incorporated into the reliability model at the expense of more

computation time. The coherent system reliability calculated is thus

a lower bound on actual system reliability.

For the remainder of this discussion the reliability of a system

(module) will mean the conditional probability that the system (module)

will be capable of performing its specified function at time t given

that all system (module) components are functioning properly at time

t = 0,

In the subsequent formulas time is an implicit variable. To

calculate system reliability at time t the module reliability must be

evaluated at time t.
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Our approach is to partition an arbitrary TMR network into indepen-

dent "cells" so that a failure in one cell cannot combine with a failure

in another cell to cause system failure. The reliability of each cell

is found and the reliability of the whole network is found from the

cell reliabilities. This is much simpler than finding the reliability

of the whole network at one time. If there are N modules in a network

which can be partitioned into n independent cells of m modules each.

where N = m'n 9 and if the complexity of the reliability evaluation

algorithm is a function 9 of the number of modules, it is easily seen

that n*@(m) >> @(men), especially when q is exponential, as is usually

the case. Also, this method is a specialized one for TMR, and takes

advantage of the known properties of TMR.

Consider Fig. 11 where the non-redundant network (a) and its TMR

counterpart (b) are depicted. Each of the triplicated modules or voters

will be referred to as a module or voter trio, and each module or voter

in a trio is said.to occupy a particular position in the trio. It is

to be noted that the modules need not be a single output module, and

that there need not be voters after every module trio. System failure

in a TMR system occurs when there are two or more errors in any of the

(triplicated) output lines. Under assumption (l), system failure will

occur if any of the module or voter trios have more than one failed

module or voter. Assumption (2) implies that system failure can also

occur if more than one module or voter in a trio has a wrong input or

if one module in a trio is failed and another has a failed input. The

reliability of a network is then the probability that system does not

have one of these failure modes.
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3.2 Partitioning a Network into Cells

We will now discuss the partitioning of an arbitrary network

wh'ch simplifies the task of reliability evaluation.

In a TMR network a voter or module trio p is defined to be directly

cf lnected to a voter or module trio q if a single fault in a particular

pc,rition of p allows only the single fault in the corresponding position

0. q without causing system failure. In Fig. 12 for example, if a

sirrgle fault occurs in voter trio p - say the voter marked x has

f:!cled - then only one of the three modules in module trio r (the one

m,lrked x) can fail without causing system failure. Therefore, p is

directly connected to r. Similarly, q is directly connected to r, and

p is directly connected to q. On the other hand, neither p, q, or r

is directly connected to s. We denote the relation )tis directly connected

to" by D. Clearly, D is a symmetric relation. Further, we define-

that every trio is directly connected to itself, i.e., D is reflexive.

For any set of trios in a ThlR network, two trios p and r are

defined to be connected if there exists a sequence of trios in the set

(possibly a null sequence) ql, q2, ,.., qn such that

pDqly q1Dq2, . . . . qnDr.

Let C be the relation )lis connected to". It is obvious that C is an-

equivalence relation.

Therefore, an arbitrary TMR network can be partitioned into

equivalence classes using the relation C. We call these equivalence

classes cells. As an example, Fig. 13 shows a Th!R network with the

cells enclosed in dotted lines. The trios within a cell which feed

trios in other cells or network outputs are known as cell output trios.

i

i

ITT‘-
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w\

Fig. 12. A portion of a redundant network.
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Any single error at an output trio of a cell will be corrected

by the input (voter) trio of the next cell, while two or more errors

will result in system failure. Therefore the cell reliability is

defined as the probability of at most one error at each output trio

of the cell. The network reliability is then the product of all the

cell reliabilities.

3.3 Assumptions and Definitions used in the Algorithm

To simplify the explanation of the algorithm, only networks with

single output modules and voters following all the modules will be

used. For the present, we will also assume that all the modules in

a cell have the same reliability. The algorithm can be readily extended

to include more complex cases, as will be discussed briefly later.

The cell shown in Fig, 14 (a) will be used as the example to

illustrate the algorithm. Let NV and Nm be the number of voter and

module trios in a cell respectively. In the example, NV = 4, and

Nm = 3.

The Structure Matrix, 2, of a cell is defined as follows. This

matrix can be written down from inspection of the cell, and indicates

which voter trios of the cell have paths to which module trios, Each

of the voter and module trios is numbered arbitrarily, the voter trios

from 1 to Nv9 and the module trios from 1 to Nme In Fig. 14 (a), the

voter trios are numbered from 1 to 4, and the module trios from 1 to 3.

The Structure Matrix S is then defined to be an N x N matrix such that
V m

S&j) = 1, if there is a path from voter trio i to module
trio j

= 0, otherwise.



r -I--------c-----------
1

I -42-1

i
1
I
:

xl
I
I

I

t (b) . Structure Matrix

of the cell in (a>

(a). Cell of redundant network

Fig. 14. Cell used in the example.
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The Structure Matrix of the cell of the example is thus obtained in

Fig. 14 (b). For example, there is a path from voter trio 1 to module

trio 1, but no path from voter trio 1 to module trios 2 and 3. Therefore p

S(l,l) = 1 but S(1,2) = S(1,3) = 0. The other rows are obtained in

a similar manner.

The Fault Matrix, 2, of a cell is defined as an (NV + 1) x (Nm -tl)

matrix, where F(i,j) is the number of exactly i voter faults and j

module faults that the cell can have and yet remain reliable, i.e.,

produce at most one error at each output trio. If F can be obtained,

then calculating the reliability of a cell is a simple matter, since

F enumerates all possible fault patterns that the cell can tolerate.

Given a set with N elements, a combination of i elements is

defined as one of the subsets of N with i elements. A combination

of trios can be further partitioned into equivalence classes generated

bY c, and these are called groups.

For a combination of i voter trios in a cell, Gv is defined as

the number of ways in which i voter failures (one from each trio) can

occur without causing system failure. Suppose these i voter trios can

be partitioned into n groups. Each voter in a group is connected to the

other voters in the group, and so the voters in a group can fail in only

three ways. Then, for this particular combination, Gv = 3", since the

groups are elements of a partition. From the cell of Fig. 5(a),

consider the combination of three voter trios, (1,3,4). There are two

groups, ((l), (3,4)), and G = 32 = 9.
V

For a combination of voter trios, L is defined as an Nm length

binary vector such that,
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L(j) = 0, if and only if there is no path from any voter

trios in the given combination to module trio j

= 1, otherwise.

For the combination of voter trios (1,2) for example, L = 110, since

there is no path from voter trios 1 and 2 to module trio 3.

For a combination of i voter and j module trios, Gm is defined

as the number of ways in which j module failures (one from each module

trio) can occur, given that i voter failures have occurred, without

causing system failure. All the modules to which the i voter trios

have paths can fail in only one way, while each of the module trios

in the set of j module trios which are not connected to the i voter

trios can fail in three ways. If the number of such module trios in

mthe second set is m, then, G = 3 . From the definition of L it canm

be seen that if we take the L corresponding to the combination of i

voter trios, m is the number of zeros in the positions of L corresponding

to the j module trios. For the voter trio combination (1,2) which has

an L = 110 and a module trio combination (2,3) for example, the number

of zeros in positions 2 and 3 of L is 1, thus m = 1,
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3.4 Algorithm to Calculate the Reliability of a Cell

The algorithm to be described generates the Fault Matrix directly

from the Structure Matrix of the cell. Table 1 gives the development

of the algorithm for the cell of Fig. 14(a) and Table 2 is the Fault

Matrix of the cell.

If no voters fail, the modules can fail independently, one module

from each trio. The number of ways in which j modules can fail is

then given by the number of ways of choosing j out of Nm trios, multiplied

by the number of ways j modules can be chosen from the j trios, SO that,

F(O,j) = Nm

0j 3j, jr0 a

This gives the first row of the Fault Matrix in Table 2.

Consider F(i,O), i > 0, which is the total number of ways in

which i voters and 0 modules can fail, If we take any combination of

i voter trios, the number of ways in which i voter failures can occur

is given by G . Therefore the total number of ways in which i voter
V

failures and 0 module failures can occur is the sum of Gv over all

the possible
0

NVi combinations,

For each combination, the partition into groups can be made in

many ways, but one way quite attractive for programming on a digital

computer is the following. If two voter trios il, i2 are directly

connected, then the rows of the Structure matrix corresponding to them

(rows i i1' 2) will both have a 1 in the same position, and the AND of

the two rows will not be the 0 vector. (A logical binary operation on

two vectors is carried out by performing the binary operation on

corresponding bits of the two vectors). They then belong to the same
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group. The OR of the two vectors is found and this is compared to the

rest of the rows; all rows not giving a zero vector when the AND

operation is performed correspond to voter trios belonging to the

same group, and they are all OR-ed together. This process is continued

until the combination has been partitioned.

Table 1 shows the result for the cell of Fig. 14(a). Every

combination of i = 1,2,... ,Nv rows of the Structure Matrix S is taken

and the value of G found for each,
V

The vector L corresponding to a

combination is the OR of all the rows of S corresponding to the combin-

ation. The 0th column of F is then obtained from,

F(i,O) = /, G i.>O
all combinations v f

of i rows of S

To find F(2,O) in the example we have to take the six possible

combinations and sum the value of G for these, which gives 30. For
V

the combination (3,4), the vector L is the OR of rows 3 and 4 of S,

and is equal to 011.

Now consider F(i,j), i,j > 0, which is the total number of ways

in which i voters and j modules can fail without causing system failure.

Given a combination of i voter trios, Gm is the number of ways in which

j module failures can occur in a combination of j module trios. The

number of ways in which i voters and j modules can fail for any given

combination of i voter and j module trios is then G a G and the total
V m'

number of ways in which i voters and j modules can fail is the sum of

GV
l Gm over all such combinations of i voter and j module trios.

Thus for every combination of voter trios, we take every possible

combination of j = 1,2,... 'Nrn bits of L, and for each of these,
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Gm = 3m where m is the number of zeros in that combination of bits

of L. This is shown in Table 1.

Taking the example again, consider the vector L of voter combination

(1,2), which is 110. For module combination (1,3) the number of

zeros in the positions 1 and 3 of L is 1, and G for this combination ism
3l = 3, but for module combination (1,2) there are no zeros in those

positions, and G for that combination is 3 0m = 1. F(1,3) is given

by 3'9 + 3.3 + 3+3 f 3.3 = 54.

Thus the rest of the entries of the Fault Matrix are,

F(i,j) = /, G i > 0.
all combinations of i m l Gv9

j > 0.
rows of S; all combina-
tions of j digits of L
corresponding to the i
combinations

If all the modules of a cell have the same reliability, we do not need

the separate entries of Gm but only the sum. In that case, if L has m

zeros in it, Gm for j module combinations is

c
j module

trios

Gm =i cjyk) 9 r;) - 3j-k

It is assumed here that when k is negative or greater than n, the

binomial coefficient z
0

is zero. The above expression is obtained by

considering a particular combination of j digits of L. If it has k l's

and j-k O's in it, these can be arranged in
(j~k ) l bum) waYs9

and for each of the arrangements, the value of G is 3jmk. We thenm

sum over all possible values of k.
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The reliability of the cell is then given by,

Rcell zf z
i=O

F(i,j)  - RzNvwi . (l-Rv)i l RzNm -j D (1-Rm)j
j=O

where R and R are the reliabilities of a single voter and a single
V m

module respectively.

3.5 An Example

Fig. 15(a) shows a block diagram of a full adder, while (b) is

one possible NAND implementation of it. Fig. 16 is a TMR version of

the NAND gate realization with one data path sketched in. The relia-

bility of the ThJR network was calculated both by the algorithm given

in the previous section, and by the serial cell approximation, for

comparison. In order to get a better idea of the difference between

the two methods, Klaschka's "reliability improvement index" [4] was-

used as the basis of comparison. This is a ratio of the logarithms

of the nonredundant and redundant reliabilities, and is given by,

Reliability improvement index = log R
( non-redundant- -

log/R
-

t redundant

This index gives a better idea of the improvement in reliability

obtained by using the redundancy scheme [4].

Fig. 17 shows the comparison for the example. Here, the

reliability improvement index is plotted against module failure

probability, for a fixed voter failure probability. As can be seen

from the graph, the algorithm described gives a much better lower

bound to the reliability. The improvement increases as the modules
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become more reliable.

3.6 Approximation to the Algorithm to Reduce the Computational Complexity

The algorithm described in the previous pages provides a means

of finding the exact reliability of a coherent TMR network. The

algorithm does not take much storage space, since each combination of

rows of S is generated one at a time, and the G and G values foundm V

for that combination. There is no need to remember the combination

from one row of the table to the next. What is sacrificed is execution

time, since for n voters and m modules in a cell, on the order of

2n+m operations is required, because we have to take all possible

combinations of voters and modules. We are in effect trading time for

accuracy. The entries in the Fault Matrix are the possible fault

patterns for voters and modules which do not cause system failure,

A method will now be described to obtain approximate values for some (sf

the entries so that the total execution time is reduced; the reliability

estimate is, nevertheless, very close to that which would have been

obtained by using the exact method.

For an arbitrary cell, if we assume that every voter trio feeds

every module trio, i.e., the S matrix consists of all l's, we get a

lower bound on the entries of the F matrix. This is because the

assumption restricts the number of failure patterns. The number of ways

in which voters and modules can fail increases if some voters or modules

can fail independently of others. In the given case, (S matrix consisting

of all l's), no voter or module can fail independently of another.

Then Gv for every combination of voter trios is 3, and Gm for every
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combination of module trios is 1, and the entries of the Fault Matrix

are given by,

F(i,j) = 3 l (:). (�) ,i>o
When we take combinations of i voter trios, they represent cases where i

voter failures occur. If the voters are made of single gates (as in

threshold voters), or are single integrated circuit chips, they will

usually have a very high reliability. Therefore, for i voter failures,

the term (1 - Rv)' term in the reliability equation becomes larger.

: Hence for large i,4 we are justified in using the lower bound given above.

One way to use the approximate method to save time without

sacrificing too much accuracy is to use the exact method for i = 0,l
9 * l l ,

* 1
11, and then use the approximate algorithm for i = i' + l,...,N

V '

The choice of i' is dictated by the time available, and the accuracy

required; the accuracy depends on the voter and module reliabilities.

If an accuracy and a time limit are specified, the reliability can be

calculated as described above, and then, i' can be increased by 1, and

the reliability again calculated. If the difference in the two

reliabilities is less than the accuracy required, we can stop. If not,

and there is more time available, the iteration can be continued. If

we run out of time, the accuracy to be expected can be returned by the

program.

To illustrate this method, the reliability of one of the cells

in the Full adder (used in the previous example) is found by the exact

method and then approximated. Fig. 18 gives the cell and the Fault

hjatrices,  one using the exact method for all the rows, and the other
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(a) Fault Matrix for the cell

on the left, using the exact method

for all the rows.

(b) Fault Matrix for the cell

on the left, using the exact method
for rows 0, 1 and the approximation
for rows 2, 3.

Fig.18 . Cell used to compare the

exact and approximate methods
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using the exact method for i = 0,l and the approximation for i =
\

2,3.

Fig. 19 plots the difference in the reliabilities as calculated by the

two methods. The approximate method always gives a lower value of

reliability, but, as can be seen from the graph, it is not much lower,

only of the order of 10-6 -5to10 .

The approximate method for n voters and m modules in a cell

requires on the order of n.m operations. Therefore, this method

used in conjunction with the exact method can significantly reduce

the time required for the reliability calculation.
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3.7 Modifications to the Algorithm

3.7.1 Different Module Reliabilities-

If the reliabilities of the different modules in a cell are

different, the entries of the Fault hlatrix must be split up in order

to reflect the different failure modes of the different module trios,

This information is readily available when the algorithm is developed.

An example will show the procedure necessary. Suppose the three module

trios in the cell of Fig. 5(a) have modules with reliabilities Rml'
Rm2' and Rm3 instead of the same Am' Consider the combination of voter

trios (1,2) for which Gv = 3 (from Table 1) and the combination of

module trios corresponding to these, (2,3) for which G = 3. Then them

term in the reliability of the cell corresponding to these failures is

3 * 3. R"(l-R )2 R3 R2
V V ml m2 (1-Rm2) RE3 (1-Rm3)

Thus we do not find CC
V

. Gm but consider each Gv l Gm product as

above. Therefore, with only a slight modification to the algorithm,

the fact that different modules have different reliabilities can be

taken into account,

3.7.2 Compensating Failures

In the previous discussion of the algorithm, only one failure

per module trio was assumed. But if one module in a trio is stuck-

at-0 at the output, another stuck-at-l at the output, while the third

functions correctly,the next level of voters will vote on the correct

output. Clearly, neglecting such "compensating failurestl gives a

lower bound on the reliability.
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Such failures may be taken into account by adding a term to the

final reliability, as found in the previous section. Suppose t

are Nm module trios in a cell, with the reliability of a module

Rm' Let the probability of a module being stuck-at-zero and st

lere

being

lck-

at-l be P0 and P 1 respectively, where 1-(Po + Pl) = R , Consideringm
compensating failures in j module trios, the number of ways in which

this can happen is

3

since a compensating failure can occur in 6 different ways in a

module trio; the corresponding term in the reliability is

gJ Poj P; R (3Nm-2j) R3Nv
m V

for a cell with N voter trios. So the term to be added to take care
V

of compensating failures is

6j pj -
0 '!i! m

R(3Nm-2j> R3Nv
V

3.7.3 Module Trios Not Followed by Voter Trios

If every module trio is not followed by a voter trio, the modules

cannot fail independently, since they are directly connected to each

other. If they are assumed to be independent, we get an upper bound,

and if they are all assumed to be connected to each other we get a

lower bound to the reliability.

The exact count of failure (or non-failure) patterns in this

case is non-trivial. More information must be maintained in the
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structure matrix, for example, having rows corresponding to modules

More work is being done in this area.
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4. RELIABILITY MODELING OF NMR NETWORKS

4.1 Introduction- -

The Triple Modular Redundancy (TMR) concepts described earlier

can be generalized [9] to an N-tuply Modular Redundancy (NMR) system

having N = 2t + 1 modules and voters, each voter being a t f 1 out of

N voter. Such a system can be used where high reliability is required.

NMR can also be used as the hard core in standby systems. It might

seem that in such systems a TMR core is best since it provides maximum

' utilization of the modules (when a system has failed, there is only

one good module left), but it has been shown [27] that certain switch

designs make an NMR core more practical. Also, a TMR core allows only

one failure in the core, which may not be ideal.

The algorithm given earlier for the reliability calculation of

TMR cannot be carried over per se for the reliability modeling of

NMR. The problem arises because in TMR only one failure per trio is

allowed, and this fact was implicitly used in the algorithm. In NMR,

however, up to t failures per module or voter N-tuple (where N = 2t + 1)

are allowed, and this complicates matters. The following section gives

a modification of the algorithm for a general NMR.
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4.2 Extension of the Algorithm to NMR

We will use the cell of Fig. 20 as an example. The develop-

ment of the algorithm is given in Table 3. The structure matrix S is

the same as before, but the Fault Matrix F is N lv t + 1 x Nm't + 1

Instead of taking all the possible combinations of the rows of S as

previously, we take all possible combinations of rows of S with

repetition, with the number of repetitions being restricted to t.

This is to include the possibility of multiple failures in a group.

The number of repetitions of a row will be kept track of by a super-

script. For example, in Table 3, the possible combinations of two

rows of S with repetition, the repetitions being restricted to two are,

(12>, (1,2), (22).

Now, L is an integer vector of length Nm, and is found by taking

the arithmetic sum of the corresponding rows of S, with repetition

if necessary. For example, the L for combination (1 2',2) in Table 3

is found by summing the vectors (ll), (ll), and (Ol), which gives

L = (23).

To find Gv for a voter combination, we have to seperate the

combination into independent groups as before, While in the previous

(TMR) case each group could fail only in three ways, this is not

true any more. Suppose one group consists of the rows of S, pa,

qb, rc, . . . . . . a lower bound for the partial G
V

for that group is

found as follows. We take each of the superscripts a,b,c, . . . in

turn and use the current superscript and the sum of the previous

superscripts. The sum of the previous superscripts, say k, gives the

total number of failures in the voters up till this, and the current
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Fig. 20. Ccl1 used to illustrate the general algorithm.
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r
I Module combinations, Gm

combinations

(1) 5 11' 5 5 10

(2) 5 01 5 5 10

(12) 10 22 2 2 4

(1,2) 25 12 5 2 7

(22) 10 02 5 2 7

(12,2 ) 20 23 2 2 4

(1,22 ) 20 13 5 2 7

(12,22) 10 24 2 2 4

I I I I I I I

4 25

10 25

.l 4

4 10

10 10

1 4

4 10

1 2

Table 3.

U2)

4

4

1

1

1

I

12 02,2) (1,22)

33 20 20

39 50 20

6 2 2

15 8 5

21 20 5

6 2 2

15 8 5

6 2 2

40 16

70 40

4

13

25

1

4

10

4

13

4

Development of the general algorithm applied to the

cell of Fig. 20.

0 1 2 3 4

el 10 45 100 1 00

10 100 360 550 280

45 285 645 615 210

40 220 420 340 100

I, 10 40 60 40 10 -

(12J2)

1

4

1

Table 4.

Fault Matrix of the ccl1 in Fig. 20. '
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superscript, say !, gives the additional failures in the voters.

Since only up to t failures are allowed per group, the current

lfailures can happen, given k failures already, (if Wt, k is taken

as t) in,

j=k+/!-min

ways.

This follows because the j failures can be chosen from the positions

of the k voters already failed or from other positions,, and j varies

from k + 1 - t to esince only t failures are allowed per group. Here,

/ N
as before,

\
=O ifk<Oork>N. This is a lower bound sincek

all voters need not be connected to all voters, and failure patterns

may exist which are not counted above. However, this is a tight

lower bound, and finding the exact value is very complex, if not

impossible. Then the lower bound for the partial Gv for that group

is the product of the values for each of the superscripts,

&= J-r
a,b,c, . . .

k = a, a+b, a+b+c, a.0

The G
V

for the combination is then the product of the partial Gv's of

the independent groups. For example, Gv for combination (1,22) in

Table 3 is,

1

c
(

0

j=-1 j

= 5*4 = 20

5)( ’b
l-j) ⌧ $ 1 (Ii) l (21 ,
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Gm values are found by taking the combinations  of modules with

up to t repetitions. Suppose an L is (al,a2,a3,...) and a combination

of modules is (wbl b2 b3, x , y , ,..>. Then as for G
V’

each of the

superscripts b b b1' 2' 3"" is compared with the entry of L corresponding

to w, x. y, . . . , If the entry of L is a, (this means that a voters

feeding this module have failed, and for a lower bound we assume that

all the a are different), and the superscript is b, (i.e., b modules

have failed), the partial G is,m

'a+b tj= - (:) ' (,I:)

since j module failures can be assigned to positions corresponding

to a voter failures or the remaining positions, but only up to t - a

of these. This is also obviously a lower bound. The Gm for the

combination is then the product of the partial G 's.m For example,

for voter combination (22), L = (02). Consider module combination

2 3()o.j l-j

The entries in the Fault Matrix are found by summing G . Gv asm

for the TMR case. The reliability is then given by,

RmR = kt 2t F(i,j) .R~~Nv-i.(l-Rv)i.R~'Nm-j~  (1.Rm)j
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5. CONCLUSIONS

Various approaches given in the literature for calculating the

reliability of TMR netwroks have been described, and their limitations

pointed out. An algorithm has been given to find a very tight lower

bound on the reliability of an arbitrary TMR network, and this

algorithm has been shown to give a much better lower bound than previous

methods. If a network is divided into cells, the cell reliability

may be a poor predictor of system performance. For example, if a

network has 10 cells, and if the reliability of each cell is found

by a method which gives a value about 5% lower, then the reliability

of the whole network will be found to be calculated to be about 40%

lower than the actual reliability.

For n modules in a cell, the algorithm takes on the order of

22n operations in the worst case. If there are m cells in a network,

for a total of men modules, the total operations required are on

the order of rnv22n , in the worst case. A general algorithm using cut

sets like Jensen's [22] will take on the order of man-22*m*n operations

in the worst case. This illustrates the advantage of the cellular

method, which has to work on only one cell at a time, as compared to

other methods which consider the network as a whole. Other methods

which use the cellular approach like Klaschka's [4] require that we

take all combinations of 1 2, . . . . n things which is on the order of

2n operations.

time consuming.

Thus, in comparison, the method given is not too

An approximation has been given to the algorithm which takes
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much less time, and gives a lower bound on the reliability. The

algorithm has also been extended to geneial Nh4R networks,
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