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ABSTRACT

A survey of the literature in the area of redundant system
reliability nodeling is presented with special enphasis on Triple Mdular
Redundancy (TMR). Areas where the classical nethod of TMR reliability
prediction may prove inadequate are identified, l|ike the interdependence
of fault patterns at points of network fan-in and fan-out. This is
especially true if the assunption of highly reliable subsystens, which is
frequently made by the nodeling techniques, is dropped, It is also not
clear if the nethods give an upper or a |lower bound to the reliability.
As a solution, a method of partitioning an arbitrary network into cells
so that faults in a cell are independent of faults in other cells is
proposed. An algorithmis then given to calculate a tight |ower bound
on the reliability of any such cell, by considering only the structure
of the interconnections within the cells. The value of reliability
found is exact if TMR is assuned to be a coherent system An
approximation to the algorithmis also described; this can be used
to find a lower bound to the reliability w thout extensive calcul ation.
Modi fications to the algorithmto inprove it and to take care of special
cases are given. Finally, the algorithmis extended to N Mdul ar Redundant

(NMR) net wor ks.






1. I NTRODUCTI ON

1.1 I ntroduction

The widely increasing use of conputers in diverse areas has
brought with it the need for very high reliability. Even if conputers
are constructed with conmponents selected for very high reliability,
t hese components will have a non-zero probability of failure. Thus
highly reliable operation necessitates the use of some form of redundancy.
Redundancy has been defined as the existence of nore than one neans of
performng a function [1]. This could be brought about by providing
extra time to performthe function, or by extra hardware within the

conputer, or by both.

Avizienis [2] has identified two forms of protective redundancy,
massi ve (masking) redundancy, and selective redundancy. In massive
redundancy , effects of faults are masked instantaneously by permanently
connected and concurrently operating replicas of the faulty el enent.

Sel ective redundancy requires detection, diagnosis, and corrective action

to overcone the effects of faults. This latter approach generally
assumes a hard core i.e., a set of logic circuits which nust function
continuously to insure the proper fault location and repair of the rest

of the system The system hard core is usually protected by sone massive

redundancy schene.

Whereas accelerated life tests on many copies of a conponent
may be feasible to experinmentally determne the conmponent. reliability as

a function of time, conputer systens are too conplex and often too



expensive to subject to such tests. Thus to evaluate and conpare various
redundant system designs, a reliability nodeling technique is required.
Wth such a model it beconmes possible to predict system behaviour and,

in particular, determ ne whether the proposed system neets the design

specifications.

Modeling requires a mathematical or physical representation which
incorporates the salient parameters of the nodel ed system [3]. A node
is an inconplete representation of the subject under study. To be of
value, the nodeling technique nust be convenient to apply, and nust
successfully predict the behaviour of the subject under various paraneter
changes. If the reliability nodel is accurate, then insights can be gained
as to how the systemreliability changes as a function of the design
paranmeters. This requires know edge of the nodel's predictive properties
under all possible systemdesigns, i.e., is it an upper bound, a |ower
bound, or sinmply a "good guess"? The follow ng discussion will illustrate
some common network configurations where the reliability npdeling
techniques in the literature for nassive redundancy are sonetines
i nadequat e predictors of systemreliability. Modifications which enable
the classical reliability nodeling techniques to handl e the troubl esone
network configurations will be denpnstrated. Finally, a new approach to
reliability modeling will be presented which is nuch nore accurate when

compared with previous nethods,



1.2 Background

The basic concept underlying massive redundancy reliability
nodel i ng schenes has been to enunerate or approximate the number of
states for which a systemstill realizes its desired function. Each
conponent in a system can have two states, failed or good, and the state
of all the conponents represents the state of the system Massive
redundancy schenes are designed to tolerate conmponent failures, thus
the number of working states in a redundant systemnay be quite |arge,
and the general approach taken is to partition the systeminto cells
such that the systemis working if all the cells are working, The
cell reliabilities are then said to be statistically independent.
Thus the systemreliability is just the product of the cell reliabilities.
Except in very specialized situations, the system cannot be partitioned
like that, so that the cell reliabilities are not statistically independent.
Then a small portion of the systemis usually selected as a cell such
that the statistical dependency between cell reliabilities is a second
order effect, i.e., consists of higher powers of conponent unreliability

than those considered in the cell [4,5].

To date nost studies have pertained only to sinple nodels of
digital systems, nanely the visualization of a conputer as a cascade
of single input, single output blocks [6,7] or as a tree network of
doubl e input single output blocks [8]. Even so the estimated relative
magni tude of the second order effect in a very specialized network is
10% [4] while networks to be presented here show differences of 20% or

more. To counteract this second order effect the customary assunption



is that the conponents are very reliable, say 0.99 or better. This may
not be a bad assunption for current redundancy applications such as
aerospace where system cost is not the prinary design constraint, As
redundancy techniques find nore and nore applications in the comrercial
sphere, the systens designer may trade the costly, highly reliable
conponents in a nonredundant or |ow redundancy configuration for cheaper
| ess reliable conponents in a highly redundant configuration to

achieve the desired systemreliability. In systems requiring maintenance-
free operation over a long period of tine, the designer nmay want to see
the effects of conponent reliability degrading to bel ow the high
reliability values given above. In these cases, a reliability node
which is accurate over all ranges of conponent reliability, not just

hi gh conponent reliability is needed

The primary vehicle for this discussion will be Triple Mdular
Redundancy (TMR). TMR augnented by standby spares is a prinme candidate
for hard cores in self-repairing computers {9]. It has been used
on the Saturn V launch vehicle conputer [10]. TVR is easy for a
designer to apply and has several good features [11]:
1) The schenme is equally effective for both wong 0 and
wong 1 errors

2) The correction nmechanism (voters) may be realized in the
same |ogic technology as the circuits being protected. No
special elenents are required

3) The size of the nodule protected is unlinted, it nay be

a single gate or a whole conputer.



4)  No nodifications to the nodules is needed, either in network
structure or in factors of usage such as fan-in or fan-out.

5) The scheme is directly extendable to higher orders of
redundancy and may indeed enploy different orders of
redundancy within the same system w thout causing any speci al
problems in design

6) As nentioned earlier, TMR is very well suited for standby
redundancy schenmes, while other nassive redundancy techniques
l'i ke Quadded | ogic [12] do not lend thenselves to this.

Finally, TMR cells are nore readily defined and provide less intercel
dependence than other existing massive redundancy techniques such as
Quadded logic [12] and its descendants, radial logic [13] and dotted

logic [14]. Hence the second order effects exhibited here will be even
nore dramatic in these other schenmes of greater cell dependancy. The
techniques to follow are translatable into handling these other redundancy

schemes.  The extension to NMR wWill be given later.

The discussion will consider the interconnection pattern of the
logic mdules in a TMR systemw thout regard to the internal |ogic design
of the nodul es. It will be assuned that the nbdul es have a known

reliability as a function of time. A nodule is assumed to be faulty if

it produces a wong output for some input conbination, and we wll

assume that a wong signal at the input of a module produces a wong

signal at the output of that nodule. These assunptions have to be made

since we do not know the internal structure of the nodules or voters and

this gives a lower bound on the reliability. A different reliability nopde



whi ch depends on the actual logic inplenentation of the nodules and

voters has been discussed by Siew orek [15].



2, RELI ABI LI TY MODELING OF TMR NETWORKS

2.1 | ntroduction

Wth the introduction of the restoring organ by von Neumann in
1956 [16] the groundwork was laid for the triple - nodul ar redundancy
(TMR) technique. Briefly, TMR consists of dividing a non-redundant
circuit into several nodules, triplicating the nodules, and inserting
a mjority gate (sometimes referred to as a voter) between the

triplicated nodules.

Figure 1 depicts the application of TMR to a sinple function.
Here, the network is partitioned so that each logic gate represents a
modul e. The gates are triplicated and trios of voters, where a circle
represents a voter, are inserted between them Each voter receives three
inputs, one fromeach of the triplicated nodules. Since the reliability
nodel under consideration is independent of the internal nodul e design
the nmodules of Fig. 1 could be represented by squares as in Fig. 2 (a).,
As a notational convenience only one path fromthe systeminputs to
the systemoutputs will be shown as in Fig. 2 (b). This will uniquely
define the redundant system A path is defined as the conponents of a
system which a logical input to the systemcould affect on its passage

to a system out put

Figure 3 shows TMR in its sinplest configuration -- triplicated

modul es followed by triplicated voters. Networks whose nonredundant form

may be represented by a serial cascade of nodules will be referred to as
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Fig. 1. The application of TMR to the function z = uv + wxy; t he
nonredundan t vVersion (a) and the redundant TMR version (b).
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Fig. 2. A generalized form(a) for the nodules of Fig. |(b) and (b) an
abbrevi ated system representation,
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serial TMR. Fig. 3 outlines a serial TMR cell. Nornally the input and
output lines for a nodule represent busses, Thus the voter synbol as well
as the nodul e synbol should be thought of as operations on vectors

rather than on single bits of information.

A binary up-counter using J-K flip-flops would be an exanple of
a serial cascade network if each flip-flop was taken as a nodule. In
general, few networks can be characterized by a serial cascade of nodul es,
However the reliability of serial TMR networks is easily calcul ated and
hence the serial TMR cell has been used to predict the reliability of
more conplicated networks. But extreme care should be exercised in
applying the results derived from consideration of this sinple npdel
For exanple, a segnent of an arithmetic unit - data bus systemfor a
conputer will be nobdeled in a subsequent section. The non-redundant
system required 17 nodul es and exhibited a probability of failure of
0.0335 (for a particular failure probability of each mobdule). Wth
triple replication and the use of 3+17 = 51 voters the probability of
failure was decrecased to 0.0035. On the basis of visualizing the
conputer segment as a cascade of 17 serial cells the failure probability

was predicted as only 0.0001.

For the remainder of this discussion the reliability of a
system (nodule) will nmean the conditional probability that the system
(nodule) will be capable of performng its specified function at tine t
given that all system (nmobdul e) conponents are functioning properly at

timet = 0. For basic conponents, such as resistors, failures are



-12-

assumed to be an independent random variable of time and the nunber of
expected failures is the same for any equal intervals of tine. Then the
reliability R (t) is given by the Poisson distribution for n = 0, where

n i s the number of expected failures in the time interval fromo to t:

-At (A =e

The reliability of nmodules will usually be nore conplicated than
the exponential given above. In a nonredundant nodul e all the conponents
must function for the nmodule to function. The reliability will be the
product of the exponential conponent reliabilities. On the other hand a
redundant nodule will require only one of several subsets of its conponents
to function. Thus its reliability will be a sum of products, where each
product represents one of the subsets.

In the subsequent formulas time is an inplicit variable. To
calculate systemreliability at time t the nodule reliability must be
evaluated at tine t. \Werever nunbers appear for R RV, etc., atimet
is inplied

The following notations will be adopted:

R: redundant systemreliability

RO: non-redundant system reliability
(non-redundant means that successful operation of al
modul es is a necessary condition for successful
operation of the system)

R : voter reliability
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2.2 Background

Several investigators have addressed the problem of nodeling the
reliability of TMR or nultiple-line networks [4,6,11,17,18,19,20,21,
22,23,24]. The first approach was to approxi mate the system by a serial
TVMR system i.e., nodeling the network as a cascade of single input,
single output nodul es, adding extra voters if required, This was the
essence of the procedures devel oped by Brown [17], Teoste [18] Rhodes (19],

Longden [ 20], Lyons [24], and Gurzi [6]. A sunmmary of their work follows.

Brown et.al. [17] considered the single and triplicated voter
cases. \Wen voters are triplicated they may be associated with the inputs
to nodules (in which case Brown added extra mgjority gates at network
fan-out points to retain the serial voter-nodule arrangenent depicted
in Fig. 3) or with the outputs of nodules. In the latter case Brown
i ntroduced the concept of symmetric chains (a specialized network
situation where only voters fan-out to nodules in the next |ayer of
triplicated nodules, the non-redundant system being essentially approximted
by a cascade of nodules). Brown then concluded that associating voters
with modul e outputs would be nore efficient than associating themwth
modul e inputs. But Brown penalized the voter-input pairing by introducing
nore voters into the network at fan-out points in order to help isolate
the cells of the network. This was to facilitate reliability nodeling
and is not a restriction on the application of TMR It should neke no
difference to the reliability prediction whether voters are associated

with nodule inputs or outputs as long as the network is the same for both
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approaches. The method essentially approximates network reliability
by use of serial cells with no indication whether the prediction tends

to be higher or lower than the actual reliability.

Teoste [18], Rhodes [19], Longden, et. al, [20], and Qurzi [6]
al so use serial voter-nodule cells to approxinmate network reliability.
In the case of fan-out, Longden adds extra voters in a manner simlar
to Brown. Rhodes attenpts to inprove the calculation of cell reliability
by including cases where nultiple failures in a cell (such as one
nodul e output failing to a constant 1 and another to constant 0)
could still be corrected by the next voter |ayer. Rhodes, however
incorrectly assumes that nodule failures to constant 1 and O are the
only nodule failures possible. Rhodes also included some nultiple
failure situations which do not lead to correct network operation for
all types of nodels, For exanple, Rhodes allows a voter to be stuck
at logical one and a nodul e which receives inputs from another voter
to be stuck at zero. If the modules were inverters then there would
al ways be two or nore zeroes on the nodul e outputs. Hence the network

fails.

Rubin [21] divides the network into augmented blocks in an attenpt
to find sections of the network in which failures inpose no restriction
on failure patterns in other sections, i.e., a failure in one cel
cannot conbine with a failure in another cell to cause systemfailure.
He nodel s networks as serial cells and inserts fictitious nodul e trios

where required to make all the cells serial cells. Then he alters the
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standard serial voter-nodule reliability formula to take into account
these added fictitious nodules. He gives no algorithmin [21]to
enunerate the augmented bl ocks (a non-trivial problemin large, conpli-
cated nets) and no indication as to whether this approach gives an

optimstic or pessimistic prediction of the actual network reliability,

Two recent approaches that do not use the serial cell approach
are by Kl aschka [4] and Jensen [22]. Their procedures rely heavily

on the work of Esary and Proschan [25] in regards to coherent systens,

systens which having once failed cannot work properly again upon failure
of nore network components. Kl aschka assigns each mininal cut of the
network to a cell and then assunes the cell interdependence is a second
order effect. A network cut is a set of conponents whose failure

causes system failure. A minimal cut is a cut fromwhich no nenbers

can be deleted without the set losing the property of being a network
cut. The probability obtained by taking the product, over all mininal
cuts, of the probability that the cut does not occur is a |ower bound

on coherent network reliability [25]. Jensen [5] denpbnstrates that a
non- coherent network with the same mininmal cuts as a coherent network

is nmore reliable than the coherent system TMR and Quadded logic form
non- coherent networks as denpnstrated in the next section. So Kl aschka's,
as well as Jensen's, approach utilizes an approximtion to the |ower
bound on the reliability of a coherent system as an approxi mation to

the reliability of a non-coherent network. Jensen uses matrix mani pu-
[ation to establish the mnimal cuts of a network. However, if there

are n nodul es in the non-redundant network, Jensen's nethod in the
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wor st case requires on the order of n2n operations and on the order
of n2 storage locations just to set up the matrices for determ ning
the minimal cuts. A nore typical case would still require about n4

oper ati ons.

An adaptation of Jensen's technique is due to Gol dberg et. al
[11). The network graph of a redundant system can be considered as a
collection of paths. Vhen nodules are connected without intervening
voters, they occupy a single path. Voters receive inputs from each
path (three in the case of TMR), internix the signals, and issue a
signal along another single path. \Wereas Jensen considered any nunber
of nodul e failures along such a path, Goldberg assunes at nost i failures,
a value of two or three was suggested for i, Goldberg uses matrix
techni ques and requires on the order of ni+| storage locations. This
procedure also requires establishing the equivalent of Rubin's [21]

cells and has all the problens thus entail ed.

The cel lul ar approach presented here is a rapid nethod to
approxi mate very closely the reliability of an arbitrary TMR network.
For now, a cell will be loosely defined as a segnent of a network whose
inputs all lead to voter trios and whose outputs issue from nodul e
trios. A nore precise definition for a cell will be presented |ater
but the intuitive notion of cells thus far established will be adequate
until that tinme. Arbitrary cell types, in addition to the standard
serial cell, are used to partition a network and approximate its

reliability. The advantage over the nethods of Kl aschka and Jensen
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resides in the fact that it is a specialized nethod for TMR and other
multiple line redundancy schenes, and can take advantage of the known
properties of the redundancy schenes. Kl aschka and Jensen pay a
penalty for utilizing a nore general approach which is applicable to

nore than one class of redundancy schenes.

In [21) Rubin claims that the augmented bl ock approach took
significantly less time (1000-fold increase in speed for |arge nets)
to calculate systemreliability than the miniml cut, Mnte Carlo, or
actual reliability calculations for the sane network . The cellular
approach is on the order of conmplexity of calculation as the augnented
bl ock method once the cells and bl ocks have been determned. The
augment ed bl ock approach, however, gives no clue as to whether in a
particular situation it represents an upper or |ower bound to actua
system reliability. A brief discussion of when a redundant system
is considered to have failed is presented before the actual problem

of reliability nodeling is undertaken
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2.3 Coher ency

Esary and Proschan [25] define a structure function ¢ as a
boolean function of x = (xl,xz,,...xn), Each conponent in the system
is represented by an X, wher e X, = 1if and only if the conponent
functions properly and equals zero otherwise. A function ¢ is saidto
be nonotone increasing if when x<y (the conparison being made on a
conponent by conponent basis), ¢ (x) < ¢ (y). A coherent systemis
then defined as one whose structure function is nonotone increasing
and such that ¢ (1) =1 and ¢ (0) = 0.

If the system conponents are considered to be nodul es, the
structure function for TMR networks is not well defined. Consider the

TMR network of Fig. 1 where the nodules are single gates. The AND

gates lettered A, B, and C would be conponents of the structure function
¢ (XA,XB,XC,XD, colxp).

Assume AND gate A and C failed such that their outputs became permanent

| ogical zero. For u=v =1, AND gate B would produce a |ogical one

while gates A and C would be |ogical zero. The correct response of

| ogi cal one would be outvoted. The network could thus produce an

incorrect output for z and nust be considered failed. For this situation

0] (0,1,0,xD, ... x.) = 0.

For the purposes of the following discussion a failure pattern

will be defined as an x where each xi is evaluated. Now consider AND
gate A failing so that its output takes on a permanent |ogical one

value while AND gate C fails so that it realizes a permanent | ogical
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zero output. \hatever value AND gate B assumes, the output of the voters
wWill realize it since either gate A or gate C will agree with the properly
functioning gate B and outvote and other faulty gate. The network will
not fail. Such a situation where the najority of the nodules in a cel
can fail yet the network still functions properly will be referred to
as conpensating nmodule failures and is explored in much greater detai
in{15]. For this case

0] (O,l,O,xD, ,xR) = 1.
The anbiguity arises fromfailed nodules being able to take on both
0 and 1 values for the sanme vector x depending on the exact nature of

the failures.. A mpdule does not often fail such that its output is

always in error as is often assumed in the literature [11,22].

Let us attenpt to elimnate the difficulty above by letting x,
represent a lead rather than a nodule. ¢ is thus well defined, but TMR
is not a coherent systemas claimed by Jensen [22]. Again referring
to Fig. 1, the leads in the triplicated version of the two input AND
gate are numbered and represent systemconponents:

P ) XgiXg Xy Xg Xg Xy Xg Xgu X gy <ae Xgg).
Assume leads 1 and 9 are stuck to a logical zero. Both AND gate A and
C woul d realize logical zero outputs and we have the first case that
we described above. The network fails
)y =o0

] 1 — )
(P (E ) - CP (O,X X vlvxsyoyxl

2'%3°%4%5 % o' " *33
A further failure in lead 7 such that lead 7 were to take on a permanent

| ogi cal one value causes AND gate A to realize a constant one while
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AND gate C still realizes a constant zero, W have the second case
above, the case of conpensating nodule failures
(P"(—)E") = q)Y!(O’X

2'%¥3:%4%5 %6 0% 20X g0 v uxg ) = 1

But x''< x' while ¢'*>¢"'. The structure function is not coherent

The reliability that will be calculated in later sections of this
paper will be understood to be the reliability of the system witth respect
to sets of failed conponents, none of whose subsets coul d cause system
failure. I f subsequent component failures, such as in ¢'' above,
restore the network to a properly working state (i.e., the structure
function is 1) the network will still be considered failed since it was
capabl e of producing an erroneous output (under structure function
@' in our exanple) before the extra conponents failed. This forces
the structure function to be nonotone increasing and is the sanme as
assuming that the first erroneous output signifies pernmanent system

failure.

When reliability nodeling is independent of nodul e design, the xi's
of the structure function will represent nodules or voters. Wen the
internal design of the nodule is considered, as in [15], each X

represents a |ead

Wth this concept of what constitutes a systemfailure, we wll

now consi der nethods for nodeling the reliability of a TMR network.



2.4 Calculating Serial TMR Reliability

The serial cell reliability npbdeling technique will be denonstrated
for some sinple systenms. The resultant reliability model Will be
conpared to the reliability nodel to be presented in this paper. It
will be shown that for these sinple systens the predicted mission tine
can be increased by 50) just by using the nore accurate nodel. An
indication of why the serial cell technique is not always accurate

will also be given.

First consider Fig-. 4 which graphically depicts the required def-
initions. A nodule trio is a group of three replicas of the non-
redundant system module. Al nmenbers of a nodule trio are identical.
Avoter trio is a group of three voters whose inputs conme froma nodul e
trio, In Fig, 4 modules (1, 2, 3), (4, 5 6) and (10, 11, 12) form
nmodule trios. Mdule 1 is said to feed voter 7, 8 and 9 while nodule 10

is driven by module 4 and voter 7.

A cell is a portion of a network such that all the nmodules in the

cell are fed by voters in the cell or by network inputs and all voters
inthe cell feed nodules in the cell or network outputs. Fig. 4 shows

three cells. Cell 1 is known as a nodule end cell and cell 3 as a voter

end cell. Finally, a level is a vertical partitioning of a network
whi ch contains voters only, or modules only. It is somewhat anal ogous

to the conbinational |ogic concept of levels. Fig. 4 has four levels,
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The serial cell technique attenpts to nodel all networks as a
cascade of serial cells, Consider the serial cell of Fig. 3. Assune
that the voters never fail, Then there exists four states or nodul e
failure patterns for which the systemstill realizes its design function
They are (1) no nodule failures, and (2) three states, each of which
has a single module failure (the two remaining working nodul es will
realize the design function and forma mjority regardless of the
behaviour of the failed nodule), Thus the cell reliability derived by

summi ng over all the working states is given by:

R = R3 + 3R
m

cel | a - RJ

_ 2
= SRm - 2R

Sw 37N

(1)

A voter failure has the same effect as a module failure so replacing

R by RR in (1) yi ;
o 0¥ R R, in (1) yields

Rl = 3(RmRV)2 - 2(RmRv)3 (2)
To alleviate the anbiguity in the structure function when the
system conponents are taken to be nodules or voters, as illustrated in
the section on coherency it will be assumed that all nodule failures in
a trio are identical. Thus any two nmodule failures in a trio would
outvote the good nodul e and cause systemfailure. This will lead to a
worst case reliability model since all nodule failures need not be
i dentical . In the calculations to follow we will ignore the casesof

conpensating modul e failures as described in [15] and consider only

a worst case reliability function. W will also consider network
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configurations nore conplex than serial cells, such as cells exhibiting

fan-in and fan-out.

The use of serial cell reliability nodeling for networks that
exhibit fan-in and/or fan-out can lead to serious errors in estinates
for overall system reliability. Yet such networks are fairly common

candi dates for the application of TMR.

Consi der the 16 register multiplexed data bus system and
ALU of Fig. 5 which might use TMR on a long space mission. The data
register transfer block, block 1 in Fig. 4, exhibits fan-out. The
contents of the data register can be supplied to any one of the 16
general purpose registers. Block 2, the ALU to nultiplexer transfer,
represents fan-in. The results of any one of 16 ALU operations is

sel ected by the 16 nultiplexers for transmission to the data registers.

Figure 6 shows a TMR configuration of Block 1, the data register
to register transfer. One approach to handle fan-in/out in the serial
cell reliability nodel is to assign the voters to the nodul es they
drive [26] since a voter failure affects only the module it drives.
Thus cell 2 in Fig. 6 shows one way to assign the voters to the driven

nmodules.  Now the serial cell reliability nodel will be devel oped.

The reliability of a module end cell such as cell 1 can be

derived from (2) by letting R = 1. Simlarily setting Rm =1in (2

yields the reliability of voter end cells such as cell 3; Next assune
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-2 -

Rm = RV = R. Lyons [24] has shown that the maxi mum systemreliability
i s obtained when nodul es and voters are on the same order of conplexity,
i.e., %]z Rv. This will yield the network partitioning for the maxi mum
obt ai nabl e systemreliability, This sinplification is not crucial and
simlar results are obtained when RV and Rm retain their seperate
identities, as will be denobnstrated later. The end cell reliability

is thus 3R2-2R3. The serial cell reliability nodel for the system

of Fig. 6 would consist of 17 end cells (16 voter and 1 nodul e) and

16 serial cells, like cell 2, each of which share the one voter trio.
The systemreliability is thus nodel ed by,

3.17 4 6,16

2
Reerial = (R7-2R) (R -2R")"° . (3)

Thus the nodel calculates the reliability of a corresponding system

whi ch replaces the fan-out voter trio by 16 voter trios.

The systemreliability devel oped by techniques in this discussion
(which is known to be a |ower bound), for the network of Fig. 6 is
plotted with (3) as a function of nmodule reliability in Fig. 7 and
their difference is plotted in Fig. 8. In actual design situations
a mssion time, i.e., the desired operating life of the system would
be selected. This would a nuneric value for nmodule reliability which
is then substituted for Rm in the equations devel oped by the nodeling
techniques. Note that here, we are only interested in the variation of
the predicted systemreliability for each nmodeling technique as a
function of nodule reliability. Plots of the formof Fig. 7 and Fig. 8

were chosen to display this variation. W are conparing nodeling
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t echni ques and not redundant systemdesings. There are better nethods for

conparing redundant system designs presented in the literature, (3l

Various reliability models for the sane redundant system nay
predict widely varying systemcapabilities. For exanple consider one
interesting paranmeter for conparing redundant system designs, nanely,
mssion tinme inprovement, | [3]. Assume an exponential failure distri-

. . =\t -t S
bution, i.e., R =e 171 and Ré:e 2’2 . The reliability nodel for the
two redundant systens is derived. A value for Rm is assumed and substi-
]
tuted i n one equation. Then an R is calculcated such that the two

1
o , , I
system reliabilities are identical. If we represent Rm by Rm =R t hen

At At ce A A _ i
11 29 . Further if {1 = 9 t hen tl = Itz and desi gn one has

the same systemreliability at t, as design two does at tine Itz

1
The mission time inprovenent is defined as I. This parameter can

al so be used to conpare reliability nodels, Fig. 9 shows a plot of
mssion time inprovenent when systemone is the serial cell nodel.

It can be seen that a mission tine inprovenent of 507, can be obtai ned
by using a nore accurate reliability nodel. Another way of |ooking at
the parameter | is that if the serial cell nodel is used then the
resultant systemis overdesigned by 50%, since it could meet its mission
tinme specification with less reliable conponents. Alternatively it

coul d use the sanme conponent reliability and contain sqz nore conponents

and still meet the specifications.

The source of the variation between the two techniques as displayed
inFig. 7, 8 and 9 lies in the serial cell approach assuming that the

voter trio, which is the origin of the fan-out is replaced by sixteen
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voter trios, one for each nodule trio the original voter trio feeds.
Equation 3 counts failure patterns for which the network fails. As an
exanpl e of the inclusion of a pattern for which the network fails,
consider the failure of voter Ain Fig. 6. If the failure were assigned
to the serial cell marked 2 then nodule B could fail and the serial

cel | approach would predict correct systemfunctioning. Yet the system
has failed, since the second trio of fan-out nodul es containing nodule B
could produce two incorrect signals, one due to nobdule B failing and

one due to the failure of voter A

The serial cell approach is also pessimistic in the sense that
it penalizes the network for conponents it does not have. In Fig. 6 the
serial cell approach nodels the system by another system which has
sixteen trios of voters instead of one fan-out trio. The actual system
does not include this extra hardware and hence is penalized by the
unreliability of the extra voters. The interaction of these two effects
is very conplex and it is very difficult to determne which one, if
any, donminates in an arbitrary network. This is why we cannot say
whet her the serial cell approach is an upper or |ower bound on actual

network reliability.

In the case of fan-in, such as the ALU nultiplexer block, (3)
also applies if the serial cells are assigned as in Fig. 10 and it is
assuned there are sixteen ALU functions to select from  The system
reliability for this configuration, as derived using techniques to be

devel oped in the next section, is also plotted in Fig, 7 and Fig. 8.



-30-

1.0
0.8]-
0.6 -
R
system
0.4 S
yd
e
/’/’
RFan-out
min-cut // /
o.2| ’/’///,/’ S /
e R
~~ Rpan-in " “Fan-in

-

S

_ P Exact ‘////// n n- cut
-
L, ~—
0.0 Lﬁ‘ |
: 0.90

-—" | |
0.92 0.b4 0.96 0.98 1.00

Rrmdule

Fig. 7. Systemreliability as a function of nodule reliability for the fan-out

network of Fig. 6 and the fan-in network of Fig. 10. The serial cell appr oxi ma-
tion to both networks is identical and plotted as the solid |ine.



-31~

. - R )
Rserlal fan-in

10

10721

Di fference
in
Reliability

10

10”4

-5 [ (Y 1 4 1 ) ! 1 1 1 1

10 “20.90 0.92 0.94  0.96 0.98
Mbdul e Reliability

Fig. 8. The difference in systemreliability as calculated by the techniques
of this discussion and the serial cell approximation for the fan-out network
of Fig. 6 and the fan-in network of Fig. 10.

.00



-32-

2.0
1.5 i
. I Fan-out
M ssion Tine —1\
| npr ovenent :
|
1.0 |—
I Fan-in
005 r—
, | | | |
0.0 ¥ i 0.9k 0.96 0.98 T.00
0.90 0.92
R
m

obt ai nabl e when utilizing the nmore accurate

Fig. 9. Mssion time inprovenent
6 and Fig. 10.

reliability model for the networks of Fig.



~33=

3
t N
F-—--- 1N
i R | ! \\\
A L A
' Y, SN
{ P .
| P 2N
{ 1 N
{ v /1 N
1 ) i AN
{ (. N
NudiNe \
1 l { \\
' : ! AN
L — - - — \\ No
F}_ N N
N ‘L
N
/—\\\ \\
~ ~
-~ \\
\\ N
~ N
o ™ \
\\ N -7
N o1 1
AN [ 1
O N — 0
a .
AN
2 .. N : 1 (:) |
~ | |
0 \\ ; .
N to |
e N ' | O i
N | [
6 NS ! |
, ~oov b
. N
) N
¢ Ml ti pl exer
'Y
°
o
»

O
O

Fi6

ALU Functions

Fig. 10. The TMR configuration for one bit of the ALU to Multiplexer fan-in

bl ock.  The ALU perforns 16 functions. Only one TMR path is shown.



~34-

Now (3) is optimstic. Fig. 9 shows that the systemhas only 50% of its
designed mission time. So the serial cell approach may not be an upper
nor a lower bound to systemreliability and for ﬁn: 0.95, Fig. 8 shows

that it may not even be a "good guess”

I n designing and conparing redundant systens, a good predictive
technique for systemreliability is needed, not one which is nerely a
guess and m ght be high or |ow depending on the network it nodel ed. | f
the exact reliability is too difficult to find then a | ower bound is
desirable. A technique which gives the exact reliability, and if desired,
a tight lower bound in return for a saving in tinme is presented in the

next section
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3. CALCULATI NG THE EXACT COHERENT RELIABILITY OF A TMR NETWORK

3.1 | ntroduction

The algorithmwe present will calculate the exact reliability
assumng TMR is a coherent system The basic assunptions when treating
TMR as a coherent systemare [5].

1. Once a nodule or voter has failed it will always give an

incorrect output.

2. Once a nodule has a failed input its output is also failed.

It should be noted that TMR is not a coherent system when consider-
ing failure modes other than conplete failure. For exanpl e, one input
to a voter could be stuck-at-1 and another stuck-at-O  Since two voter
i nputs have failed the systemhas failed by the coherent system assunption
In actuality the systemfunctions correctly. These conpensating failures
can be incorporated into the reliability nmodel at the expense of nore
conputation time. The coherent systemreliability calculated is thus

a | ower bound on actual systemreliability.

For the renminder of this discussion the reliability of a system
(nodule) will nean the conditional probability that the system (nodul e)
will be capable of performing its specified function at time t given
that all system (nodule) conponents are functioning properly at time

t =0

In the subsequent fornulas tine is an inmplicit variable. To
calculate systemreliability at tinme t the nodule reliability nust be

evaluated at tine t.
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Qur approach is to partition an arbitrary T™R network into indepen-
dent "cells" so that a failure in one cell cannot conbine with a failure
in another cell to cause systemfailure. The reliability of each cel
is found and the reliability of the whole network is found fromthe
cell reliabilities. This is nuch sinmpler than finding the reliability
of the whole network at one tine. If there are N nmbdules in a network
whi ch can be partitioned into n independent cells of m nodul es each
where N = m'n, and if the conplexity of the reliability evaluation
algorithmis a function { of the nunmber of nodules, it is easily seen
that n-y(m) >> y(m-n) especially when ¢ is exponential, as is usually
the case. Also, this nmethod is a specialized one for TMR and takes

advant age of the known properties of TMR.

Consider Fig. 11 where the non-redundant network (a) and its TMR
counterpart (b) are depicted. Each of the triplicated nodules or voters
will be referred to as a nodule or voter trio, and each nodule or voter
inatriois said.to occupy a particular position in the trio. It is
to be noted that the nodul es need not be a single output nmodule, and

that there need not be voters after every nodule trio. Systemfailure

in a TMR system occurs when there are two or nore errors in any of the
(triplicated) output lines. Under assunption (1), systemfailure wll
occur if any of the nodule or voter trios have nore than one failed
modul e or voter. Assunption (2) inplies that system failure can also
occur if nmore than one nmodule or voter in a trio has a wong input or
if one nodule in atriois failed and another has a failed input. The

reliability of a network is then the probability that system does not

have one of these failure nopdes



(a) Unredundant Network

(b) T.M.R. Network

Fig. 11. Network showing T.MR structure and division into cells.
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3.2 Partitioning a Network into Cells

W will now discuss the partitioning of an arbitrary network
which sinplifies the task of reliability evaluation,

In a TMR network a voter or nmodule trio p is defined to be directly
c mected to a voter or nodule trio q if a single fault in a particular
p.sition of p allows only the single fault in the correspondi ng position
o q without causing system failure. In Fig. 12 for exanple, if a
sirrgle fault occurs in voter trio p - say the voter nmarked x has
f.iled ~ then only one of the three nodules in nodule trio r (the one
marked X) can fail without causing systemfailure. Therefore, p is
directly connected to r. Sinilarly, q is directly connected to r, and
p is directly connected to g. On the other hand, neither p, ¢, or r

1

is directly connected to s. W denote the relation "is directly connected

to" by D. Cearly, Dis a symetric relation. Further, we define

that every trio is directly connected to itself, i.e., Dis reflexive.
For any set of trios in a TR network, two trios p and r are

defined to be connected if there exists a sequence of trios in the set

(possibly a null sequence) ;. g coa 4y such t hat

2
pDq,q Daq, ... g Dr.

Let C be the relation "is connected to". It is obvious that Cis an

equi val ence relation.
Therefore, an arbitrary TMR network can be partitioned into
equi val ence classes using the relation C. VW call these equival ence

classes cells. As an exanple, Fig. 13 shows a TMR network with the

cells enclosed in dotted Iines. The trios within a cell which feed

trios in other cells or network outputs are known as cell output trios,
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Fig. 12. A portion of @ redundant network.
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Any single error at an output trio of a cell will be corrected
by the input (voter) trio of the next cell, while two or nore errors

will result in systemfailure. Therefore the cell reliability is

defined as the probability of at npbst one error at each output trio

of the cell. The network reliability is then the product of all the

cell reliabilities.

3.3 Assumptions and Definitions used in the Al gorithm

To sinplify the explanation of the algorithm only networks wth
single output nodules and voters following all the nmodules will be
used. For the present, we will also assune that all the nodules in
a cell have the same reliability. The algorithmcan be readily extended
to include nore conplex cases, as wll be discussed briefly later.

The cell shown in Fig, 14 (a) will be used as the exanple to

illustrate the algorithm Let NV and Nm be the number of voter and

modul e trios in a cell respectively. In the exanpl e, Nv = 4, and

The Structure Matrix, s, of a cell is defined as follows. This

matrix can be witten down frominspection of the cell, and indicates
whi ch voter trios of the cell have paths to which nodule trios, Each
of the voter and module trios is nunbered arbitrarily, the voter trios
from1lto N, and the nodule trios from1l to Nm, In Fig. 14 (a), the
voter trios are nunbered from1l to 4, and the nodule trios from1l to 3.

The Structure Matrix S is then defined to be an \'/\l X Nmrratrix such that

S(i,j) =1, if there is a path fromvoter trio i to nodule
trio |

0, otherw se.
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The Structure Matrix of the cell of the exanple is thus obtained in
Fig. 14 (b). For exanple, there is a path fromvoter trio 1 to nodule
trio 1, but no path fromvoter trio 1 to nodule trios 2 and 3. Therefore
S(1,1) =1 but s(1,2) = s(1,3) = 0. The other rows are obtained in
a simlar manner

The Fault Mtrix, F, of a cell is defined as an (Nv + 1) X (Nm -t1)

matrix, where F(i,j) is the nunber of exactly i voter faults and |

nodul e faults that the cell can have and yet renain reliable, i.e.,
produce at nobst one error at each output trio. If F can be obtained
then calculating the reliability of a cell is a sinple matter, since

F enumerates all possible fault patterns that the cell can tolerate.

Gven a set with N elenents, a conbination of i elenents is

defined as one of the ( ?l)subsets of Nwth i elenents. A conbination
of trios can be further partitioned into equival ence classes generated
by C, and these are called groups.

For a conbination of i voter trios in a cell, Gv is defined as
t he nunber of ways in which i voter failures (one fromeach trio) can
occur without causing systemfailure. Suppose these i voter trios can
be partitioned into n groups. Each voter in a group is connected to the
ot her voters in the group, and so the voters in a group can fail in only
three ways. Then, for this particular conbination, Gv = 3“, since the
groups are elenents of a partition. Fromthe cell of Fig. 5(a),
consi der the conbination of three voter trios, (1,3,4). There are two
groups, ((1), (3,4)), and Gv= 32 = 9.

For a conbination of voter trios, L is defined as an Nm l ength

bi nary vector such that,
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L(j) =0, if and only if there is no path fromany voter
trios in the given conbination to nodule trio |

= 1, otherw se.

For the conbination of voter trios (1,2) for exanple, L = 110, since
there is nopath fromvoter trios 1 and 2 to nmodule trio 3.

For a conbination of i voter and j nodule trios, Gm is defined
as the nunber of ways in which j nodule failures (one fr—;m each nodul e
trio) can occur, given that i voter failures have occurred, without
causing system failure. Al the nodules to which the i voter trios
have paths can fail in only one way, while each of the nmodule trios
inthe set of j module trios which are not connected to the i voter
trios can fail in three ways. If the nunber of such nmodule trios in
the second set is m then, Gm: 3M Fromthe definition of L it can
be seen that if we take the L corresponding to the conbination of i
voter trios, mis the nunber of zeros in the positions of L corresponding
to the j nodule trios. For the voter trio conmbination (1,2) which has

an L = 110 and a nodule trio conbination (2,3) for exanple, the nunber

of zeros in positions 2 and 3 of L is 1, thus m= 1.



3.4 Algorithmto Calculate the Reliability of a Cel

The algorithmto be described generates the Fault Matrix directly
fromthe Structure Matrix of the cell. Table 1 gives the devel opnent
of the algorithmfor the cell of Fig. 14(a) and Table 2 is the Fault
Matrix of the cell

If no voters fail, the mobdules can fail independently, one nodul e
fromeach trio. The nunber of ways in which j nodules can fail is
then given by the nunmber of ways of choosing j out of Nm trios, multiplied

by the nunber of ways j nodul es can be chosen fromthe j trios, sothat,

N .
F(0,3) =(,m) 37, =0 .
J

This gives the first row of the Fault Matrix in Table 2.

Consider F(i,0),i > 0, which is the total nunber of ways in
which i voters and 0 nodul es can fail, If we take any conbination of
i voter trios, the number of ways in which i voter failures can occur
is given by GV Therefore the total nunber of ways in which i voter
failures and O nodule failures can occur is the sum of Gv over al

N

the possibleoiv conbi nati ons,

For each combination, the partition into groups can be made in
many ways, but one way quite attractive for programming on a digita

conputer is the foll ow ng. If two voter trios i_, i, are directly

1" 2

connected, then the rows of the Structure matrix corresponding to them

(rows i i2) will both have a 1 in the same position, and the AND of

ll
the two rows will not be the 0 vector. (A logical binary operation on
two vectors is carried out by performing the binary operation on

corresponding bits of the two vectors). They then belong to the same



‘G "B14 Ul 119D 8UYl JO XLIBN 1|ned
'z algel

(¢ 6 6 ¢
gl Va9 Vi 81

¢y Wil 20l 0¢
%S  80L 99 Cl
Ltz oz 6 L

15 [4 l 0
sa|npow

SJ19]10A

O — N O

‘wylobly a8yl Jo uswdojanag

*l 3lqel
L ! 5 L L [ € L l L Lt €] (W°e*ZF1) SI81on %
L € l L L € L L L Lt el (%'e*D) o
l € L L L € L L L Lt 6 | (veL)
L € L 1 l € ! l L LLL NG ANAND) S4910A ¢
L € L L L € L ! gl LLL € gz
€ L L € 3 3 L l € L10 €| (v°¢)
L € L l L € l L l Lt €| (%D
L € L L L € L l L LLt €| (€D
L € L l L € L L L Lt 6 | (v°L) SA810A 2
L € L L L 9 L { l Lt 6 | (€°1)
€ L € € L S € L L oLl € | (z°L)
¢ L L 3 € 3 t 1 3 L0 €| ()
€ L L € € S L L € Lo € | (€
¢ L ¢ € L S € L ] oLt €| (D 4310A 1
6 Gl 6 € € L € € L 001 € | (L)
€z' ) w ¢ € TCEOT @V 4, L ®© @1 A
saTnpow ¢ 9 & ss|npow ¢ "o x| a|npow 7 1T 9
w I I

© = suoIlBUIqWOY 3|NPOIA SUOIT_UIqWIOD 1810




-] -

group. The OR of the two vectors is found and this is conmpared to the
rest of the rows; all rows not giving a zero vector when the AND
operation is performed correspond to voter trios belonging to the

sane group, and they are all OR-ed together. This process is continued
until the combination has been partitioned.

Table 1 shows the result for the cell of Fig. 14(a). Every
conbination of i = 1,2,..,,Nv rows of the Structure Matrix S is taken
and the val ue of GV found for each, The vector L corresponding to a
conbination is the OR of all the rows of S corresponding to the combin-

ation, The 0th colum of F is then obtained from

F(i,0) = z G i>0
al |l conbinations
of i rows of S

To find F(2,0) in the exanple we have to take the six possible

conbi nati ons and sum the val ue of Gv for these, which gives 30. For
t he conbination (3,4), the vector L is the OR of rows 3 and 4 of s,
and is equal to 011.

Now consider F(i,j), i,j > 0, which is the total nunber of ways
in which i voters and j nodul es can fail w thout causing systemfailure.
G ven a conbination of i voter trios, G is the nunber of ways in which
j nodule failures can occur in a conbination of j nodule trios. The
nunber of ways in which i voters and | nmobdules can fail for any given
conbi nation of i voter and j nodule trios is then 53 Gm and the total
nunber of ways in which i voters and j nodules can fail is the sum of
Gv .Gm over all such conbinations of i voter and j nodule trios.

Thus for every conbination of voter trios, we take every possible

conbination of | = 1,2,...,Nm bits of L, and for each of these,
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Gm = 3™ where mis the nunber of zeros in that combination of bits

of L. This is shown in Table 1.

Taking the exanple again, consider the vector L of voter conbination
(1,2), which is 110.  For nodul e conbination (1,3) the nunber of
zeros in the positions 1 and 3 of L is 1, and Gm for this conbination is
3t = 3, but for nodule conbination (1,2) there are no zeros in those
posi tions, and Gm for that combination is 37 = 1. F(,3)is given

by 39 + 3-3 + 3.3 + 3.3 = 54

Thus the rest of the entries of the Fault Mtrix are,

F(i,j) = Z G .G, i>0.
all conbinations of i i >0.
rows of S; all conbina-
tions of j digits of L
corresponding to the i
conbi nati ons

If all the nodules of a cell have the sanme reliability, we do not need

the separate entries of Gm but only the sum In that case, if L has m
zeros init, Gmfor j modul e combinations is
J m N -m
' Zd I Gm :z ) " ' 3j~k
J tn:)i (L)Jse k=0 \J7K k

It is assumed here that when k is negative or greater than n, the
bi nom al coefficient : is zero. The above expression is obtained by

consi dering a particuPar conmbination of j digits of L. If it has k I's

and j-k Os in it, these can be arranged in (jl) . (Nmk—m> ways,

and for each of the arrangenents, the val ue of Gm is sj'k. W then

sum over all possible values of k.
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The reliability of the cell is then given by,

- i 3N -j j
= z F@i,3) R3Nv L. (-Rr )1 R%m 7Y . (1-R )J
H v v m
wher e Rv and Rm are the reliabilities of a single voter and a single

modul e respectively.

3.5 An Exanpl e

Fig. 15(a) shows a block diagramof a full adder, while (b) is
one possible NAND inplenmentation of it. Fig. 16 is a TMR version of
the NAND gate realization with one data path sketched in. The relia-
bility of the TMR network was cal cul ated both by the al gorithm given
in the previous section, and by the serial cell approximtion, for
conpari son. In order to get a better idea of the difference between

the two nmethods, Klaschka's "reliability inprovement index" [g] was

used as the basis of conparison. This is a ratio of the |ogarithms

of the nonredundant and redundant reliabilities, and is given by,

Reliability inprovement index = Iog(Rnon-_redundant )

7

Log (R, o qundant )

This index gives a better idea of the inprovenent in reliability
obtai ned by using the redundancy schene [4].

Fig. 17 shows the conparison for the exanmple. Here, the
reliability inprovement index is plotted against nodule failure
probability, for a fixed voter failure probability. As can be seen
from the graph, the algorithm described gives a nuch better | ower

bound to the reliability. The inprovement increases as the nodul es
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Fig. 15. A full adder made up of (a) half adders and (b) NAND gates.
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becone nore reliable.

3.6 Approximation to the Algorithmto Reduce the Conputational Conplexity

The algorithm described in the previous pages provides a neans
of finding the exact reliability of a coherent TMR network. The
al gorithm does not take much storage space, since each conbination of
rows of Sis generated one at a time, and the Gm and % val ues found
for that conmbination. There is no need to remenber the conbination
fromone row of the table to the next. What is sacrificed is execution
time, since for n voters and mnodules in a cell, on the order of
2n+m operations is required, because we have to take all possible
conmbi nations of voters and nodules. W are in effect trading time for
accuracy. The entries in the Fault Matrix are the possible fault
patterns for voters and modul es which do not cause systemfailure,
A nethod will now be described to obtain approxinmate values for some of
the entries so that the total execution tine is reduced; the reliability
estimate is, nevertheless, very close to that which would have been
obt ai ned by using the exact nethod.

For an arbitrary cell, if we assune that every voter trio feeds
every nodule trio, i.e., the S matrix consists of all |I's, we get a
| ower bound on the entries of the F matrix. This is because the

assunption restricts the nunber of failure patterns. The nunber of ways

in which voters and nodules can fail increases if some voters or nodul es
can fail independently of others. In the given case, (S matrix consisting
of all 1's), no voter or nodule can fail independently of another

Then Gv for every conbination of voter trios is 3, and Gm for every
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conbination of nodule trios is 1, and the entries of the Fault Matrix

are given by,

()
F(i,j) = 3 . ﬁ'@@gfm) i>o

Wien we take combinations of i voter trios, they represent cases where i
voter failures occur. If the voters are made of single gates (as in
threshold voters), or are single integrated circuit chips, they will
usually have a very high reliability. Therefore, for i voter failures,
the term (1 - RV)1 termin the reliability equation becomes |arger
: Hence for large i, we are justified in using the |ower bound given above
One way to use the approximate nmethod to save time without
sacrificing too nuch accuracy is to use the exact nethod for i = 0,1

i', and then use the approximate algorithmfor i = i'+ 1,...,N

VK

The choice of i' is dictated by the tine available, and the accuracy
required; the accuracy depends on the voter and nodule reliabilities.

If an accuracy and a time linmt are specified, the reliability can be

cal cul ated as described above, and then, i’ can be increased by 1, and
the reliability again calculated. If the difference in the two
reliabilities is less than the accuracy required, we can stop. |f not
and there is nore time available, the iteration can be continued. |f

we run out of time, the accuracy to be expected can be returned by the
progr am

To illustrate this nmethod, the reliability of one of the cells
in the Full adder (used in the previous exanple) is found by the exact
method and then approximated. Fig. 18 gives the cell and the Fault

Matrices, one using the exact nethod for all the rows, and the other
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(a) Fault Matrix for the cell

on the left, using the exact method

for all the rows.

o 1 2 3 4 ) 6
P ey
1 18 135 540 1215 1458 729

9 114 579 1500 2079 1458 405
9 54135 180 135 54 9

3 18 45 60 45 18 3

W N - oo

(b) Fault Matrix for the cell
on the left, using the exact nethod

for rows 0, 1 and the approximation
for rows 2, 3.

Fig.18 . Cell used to conpare the

exact and approxi mat e methods
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using the exact nethod for i = 0,1 and the approximtion for i = 2,3,
Fig. 19 plots the difference in the reliabilities as calculated by the
two nmethods. The approxi mate method always gives a | ower val ue of
reliability, but, as can be seen fromthe graph, it is not much | ower,

6 to1o'5.

only of the order of 10
The approxi mate method for n voters and m nodules in a cell
requires on the order of n.m operations. Therefore, this nethod

used in conjunction with the exact nethod can significantly reduce

the time required for the reliability calculation
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3.7 Mdifications to the Al gorithm

3.7.1 Different Mbdule Reliabilities

If the reliabilities of the different nodules in a cell are
different, the entries of the Fault hlatrix must be split up in order
to reflect the different failure nodes of the different nodule trios,
This information is readily available when the algorithmis devel oped.
An exanple wi Il show the procedure necessary. Suppose the three nodul e
trios in the cell of Fig. 5(a) have nmodules with reliabilities Rm,

R _, and R i nstead of the sane Am. Consi der the conbinati on of voter

m2 nB

trios (1,2) for which Gv = 3 (from Table 1) and the conbination of

nodul e trios corresponding to these, (2,3) for which 9%= 3. Then the

termin the reliability of the cell corresponding to these failures is
3 _2

. . plo 2 _ 2
3 3 Rv (l-Rv) @n Rhg (1 Rmz) Rm3 (1 ng)

Thus we do not find YG . G but consi der each Gv'Gm product as
\Y

above. Therefore, with only a slight nodification to the algorithm

the fact that different nodul es have different reliabilities can be

taken into account,

3.7.2 Conpensating Failures

In theprevious discussion of the algorithm only one failure
per nodule trio was assumed. But if one nodule in a trio is stuck-
at-0 at the output, another stuck-at-l at the output, while the third
functions correctly,the next |evel of voters will vote on the correct

out put. COearly, neglecting such "conpensating failures' gives a

| ower bound on the reliability.



Such failures may be taken into account by adding a termto the
final reliability, as found in the previous section. Suppose there
are N module trios in a cell, with the reliability of a nodule being
Rm. Let the probability of a nodule being stuck-at-zero and st yck-
at-1 be P, and P, respectively, where 1—(P0 + pl) =R

0 1 n
conmpensating failures in j nodule trios, the nunber of ways in which

Consi deri ng

this can happen is

(Nm) 6‘J )
J
since a conpensating failure can occur in 6 different ways in a

modul e trio; the corresponding termin the reliability is

(N )6‘] p J pd r (BN ~23) 3N,
m o i m v

J
for a cell with N voter trios. So the termto be added to take care
\"

of conpensating failures is

3.7.3 Mdule Trios Not Followed by Voter Trios

If every module trio is not followed by a voter trio, the nodul es
cannot fail independently, since they are directly connected to each
ot her. If they are assuned to be independent, we get an upper bound,
and if they are all assuned to be connected to each other we get a
| ower bound to the reliability.

The exact count of failure (or non-failure) patterns in this

case is non-trivial. More information nust be maintained in the
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structure matrix, for exanple, having rows corresponding to nodul es

too. Mre work is being done in this area.
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4. RELI ABI LI TY MODELI NG OF NVR NETWORKS

4.1 I ntroduction

The Triple Mdular Redundancy (TMR) concepts described earlier
can be generalized [9] to an N-tuply Mdul ar Redundancy (NMVR) system
having N = 2t + 1 modul es and voters, each voter being at + 1 out of
N voter. Such a system can be used where high reliability is required.
NMR can al so be used as the hard core in standby systens. [t m ght
seemthat in such systems a TMR core is best since it provides maxi mum
“utilization of the nodules (when a systemhas failed, there is only
one good nodule left), but it has been shown [27] that certain switch
desi gns make an NMR core nore practical. Aso, a TMR core allows only
one failure in the core, which may not be ideal

The algorithm given earlier for the reliability calculation of
TMR cannot be carried over per se for the reliability nodeling of
NVR. The problem arises because in TMR only one failure per triois
allowed, and this fact was inplicitly used in the algorithm In NMVR
however, up to t failures per nodule or voter N-tuple (where N =2t + 1)
are allowed, and this conplicates matters. The follow ng section gives

a nodification of the algorithmfor a general NMR,
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4.2 Extension of the Algorithmto NMWR

VW will use the cell of Fig. 20 as an exanple. The devel op-
ment of the algorithmis given in Table 3. The structure matrix Sis
the sane as before, but the Fault Matrix F is Nv.t +1X Nm-t + 1
Instead of taking all the possible conbinations of the rows of S as
previously, we take all possible conbinations of rows of S with
repetition, with the nunber of repetitions being restricted to t.
This is to include the possibility of multiple failures in a group
The number of repetitions of a rowwll be kept track of by a super-
script. For example, in Table 3, the possible conbinations of two

rows of S with repetition, the repetitions being restricted to two are,
2 2
a), @,2), (29).

Now, L is an integer vector of length N and is found by taking
the arithmetic sum of the corresponding rows of S, with repetition
if necessary. For exanple, the L for conbination (1T,2) in Table 3
is found by sunmming the vectors (11), (11), and (01), which gives
L = (23)

To find Gv for a voter conbination, we have to seperate the
conbi nation into independent groups as before, Wile in the previous
(TMR) case each group could fail only in three ways, this is not
true any nore. Suppose one group consists of the rows of S pa,
qb, rc, ..... , a lower bound for the partial GV for that group is
found as follows. W take each of the superscripts a,b,c, . . . in
turn and use the current superscript and the sum of the previous

superscripts. The sum of the previous superscripts, say k, gives the

total number of failures in the voters up till this, and the current
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al algorithm

ed to illustrate the gener

Cell us

Fig. 20
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Modul e  combi nati ons, Gm
Voter
conbi nati ons G L| ) [(2 :E:I(lz) 1,2) ) 2:2(12,2)k1,22) 2.3 (12,22)
1) 5 11y 5 5 10 | 4 25 4133 20 20 40 16
2| 5|ot| 5|5 10fl120| 25| 4)39| 50 | 20 |70 | 40
a®» w0 |22 2| a4l 4] 1]6] 2| 2 | 4 1
(1,2) | 25 12 5 2 7 4 10 1115 8 5 13 4
25|10 02| 5 |2]| 7]10] 20| 1f21]| 20 5 |25 | 10
%2y |20 |23 ]2 2] 4| 1 s 1| e| 2| 2 | 4 |
(1,22 Y | 20 13 5 2 7 4 10 1115 8 5 13 4
%2 (10 |24 | 2 | 2| 4| 1 2| 16| 2| 2 | 4 |
I
Table 3
Devel opnent of the general algorithm applied to the
cell of Fig. 20.
0 1 2 3 4
1 10 45 100 100]

10 100 360 550 280

45 285 645 615 210

40 220 420 340 100

"0 40 60 40 1o
Table 4

Fault Matrix of the cell in Fig. 20.
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superscript, say f, gives the additional failures in the voters.
Since only up tot failures are allowed per group, the current
[ failures can happen, given k failures already, (if k>t, k is taken

as t) in,

/

min(t,k) N-k
. . X ways.

J -3
j=k+f-min (k,t)

This follows because the j failures can be chosen fromthe positions
of the k voters already failed or fromother positions,, and j varies

fromk + £ -t to £since only t failures are allowed per group. Here

N
as before,\\i(>::0 if k <0 or k>N. This is a |lower bound since

all voters need not be connected to all voters, and failure patterns
may exist which are not counted above. However, this is a tight

| ower bound, and finding the exact value is very conmplex, if not

i mpossible.  Then the | ower bound for the partial Gv for that group

is the product of the values for each of the superscripts,

T_T lz min(t,k) N-k
abc, ... j = k+f-min(k,t) J L-3

>

= a, a+b, atb+c,

The Gb for the combination is then the product of the partial Gv's of
the independent groups. For exanple, GV for conbination (1,22) in
Table 3 is,

| 2 1 4
> 2.
. * J= : .

:— |J@
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Gn val ues are found by taking the combinations of modules with

up to t repetitions. Suppose an L is (al,az,aB,...) and a conbi nation

of nmodules is (wbl, ;2, )?3, ...). Then as for Gk, each of the
superscripts bl‘ b 2,b g is conpared with the entry of L corresponding
tow x.y, ..., If the entry of L is a, (this neans that a voters

feeding this nodule have failed, and for a | ower bound we assume that
all the a are different), and the superscript is b, (i.e., b nodules

have failed), the partial g%is,

b
a N-a
L]
j = a+b-t J b-j
since j module failures can be assigned to positions corresponding
to a voter failures or the remaining positions, but only up tot - a

of these. This is also obviously a | ower bound. The Gm for the

conbi nation is then the product of the partial GQ S. For exanple

for voter conbination (22), L = (02). Consi der nodul e conbi nation
a?,2).
2 0 5 2 2 3
G = :2:: . x EE: ;
mo jop-2 \J/ \27J j=2¢1-2  \’ L5
0 5 2 3
= X
0 2 1 0
= 20

The entries in the Fault Matrix are found by sunm ng Gni Gv as

for the TMR case. The reliability is then given by,

Nyt Nm't N'Nv"i i N'Nm-j J
Rom = :{; F(i,3) R, -(1-R )".R_ - Q-R)
1=0 J=



-67-

5. CONCLUSI ONS

Vari ous approaches given in the literature for calculating the
reliability of TMR netw oks have been described, and their limtations
pointed out. An algorithm has been given to find a very tight |ower
bound on the reliability of an arbitrary TMR network, and this
al gorithm has been shown to give a much better |ower bound than previous
met hods. If a network is divided into cells, the cell reliability
may be a poor predictor of system performance. For exanple, if a
network has 10 cells, and if the reliability of each cell is found
by a nmethod which gives a val ue about 5%, 1ower, then the reliability
of the whole network will be found to be calculated to be about 402
[ower than the actual reliability.

For n nodules in a cell, the algorithmtakes on the order of
22n operations in the worst case. If there are mcells in a network,
for a total of m-n nodules, the total operations required are on
the order of m-22n, in the worst case. A general algorithm using cut

sets like Jensen's [22] will take on the order of m-n-22 M0

operations
in the worst case. This illustrates the advantage of the cellular

met hod, which has to work on only one cell at a time, as conpared to

ot her met hods which consider the network as a whole. Qher methods
which use the cellular approach |ike Kl aschka's [4] require that we
take all conbinations of 1 2, . . . . n things which is on the order of

2" operations. Thus, in conparison, the method given is not too

time consuning

An approxi mati on has been given to the algorithm which takes
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mich less tinme, and gives a |lower bound on the reliability. The

al gorithm has al so been extended to general NMR networKks,
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