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ABSTRACT

This paper presents a network-oriented approach for the treatment of

deterministic sequential networks under random control. Considered are

the cases of multinomial, stationary Markov and arbitrary input processes.

Probabilities of the state and output processes are directly derived

from the primary information of the network and the source. Coded

networks are treated using the logic ciruits or Boolean functions. The

isomorphism between Boolean and event algebras is made use of, and the

probabilities of the response processes are obtained in the form of

algebraical probability expressions interpreted over the determining

(i.e., input and initial state) minterm or signal joint probabilities.

Key words: Markov process, multinomial process, output behavior,
probabilistic model, probability, random control, random testing,
sequential network.



Introduction

The configuration in which a deterministic sequential network is

controlled by a random source while the network output is monitored and

ev&uated appears in various aspects in the computer field. Most indebted

to the analysis of the configuration is the random testing of sequential

networks, in which the network response to a known random input process

is utilized to provide diagnostic information. The analysis of the effect

of intermittent faults on the network behavior, the reliability analysis

of digital networks, the simulation of the operation of mass-data processing

networks, the analysis of the operation of a sequential decoder driven by

a noisy channel, etc. can also work with the above configuration as a model.

The.concentrated  study of the behavior of deterministic sequential

network under random control is due to Booth, mid-60's. In [l] he

investigated the state and output processes excited by Markov or linearly

dependent input processes. By other authors, elements of the topic were

touched upon in connection with Markov chains, communication theory, etc.

From the beginning of the 70's, the topic has also been important for

the random testing of sequential networks [2,3,4]. In the majority of

the publications the probabilistic treatment of deterministic networks

makes use of matrix tools, or derives probabilities while operating over

the state graph of the network. At present, the use of a realization-

oriented information base for good and faulty networks, and the increase

in the size of networks make it desirable to derive probabilities associated

with signals (symbols) in the network by using methods which operate

over logic circuits or Boolean functions.

It is the aim of this paper to present a new point of view and methods

by which the stochastic behavior of a network can be followed from any
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given point of time, and also, by which the probabilities associated with

the network can be directly derived by using the primary information of the

network and the source.

_+.,In this paper we consider completely specified synchronous sequential

networks, and assume that the random source generates exactly one symbol

at every time quantum. The results are also valid for asynchronous networks

within the control range for which the behavior of the network corresponds

to a network of the above type. In part 1 we examine the case of uncoded

networks and obtain general relationships which will be satisfied in any

particular network realization. We show that for general input sources the

determination of the stochastic behavior of the network requires a separate

computation for each point of time whose complexity increases with increasing
L‘ .

time. However, we also show that for stationary Markov input sources a

recursive method with fixed parameters and complexity for each successive

point of time can be used. The probabilistic treatment is specialized for

coded networks in part 2.

Notation

upper case letters

lower case letters

superscripts

subscripts

P(...)

-bw

-(iw

symbols or events

(Boolean) variables or functions

time quantum identifier

identifier of an element (of a set)

probability of

projected (not projected) into

enables (does not enable) to derive



1. Case of Uncoded Networks

Sequential networks considered in this paper are assumed to have the

Mealy form, defined by the 5-tuple <X,Y,Z,6,o>, where

x,y,z sets of input, state and output symbols, respectively

6,W next-state and output mappings, respectively.

In our discussion, the Eiealy model is controlled by a random source, hence

the appearance of any symbol from X,Y or Z has to be characterized by a

probability parameter assigned to the symbol.

Making use of the 5-tuple, we wish to investigate how the symbol prob-

abilities are related in the model, and also, which probabilities and cor-

relations characterize the stochastic status of the network and the network
," .

'itself.

First we examine, in general, how mappings and probabilities are
rl

I related. When doing so, we use the term "sources".

1 If a set of symbols possesses the property that at every time quantum

exactly one symbol appears, the set is said to form a source, while the

probability - distribution of the symbols is said to describe the state of

the source. We will denote the state of the source U: {U,) by P(U):{P(Ui)).

In order to characterize the correlation between the appearance of
r

symbols of two sources, U: {U 1' U29-9  N
U } and V: (V1,V2,...,  VN'},we

U V
can use the set of their joint probabilities,

(1.1) P(U V.), enough for NuNv
13

-1 combinations of i and j.

(Note: the reduction-by-one of the number of probabilities appears whenever

a?.1 of the probabilities sum to 1.) It can be seen. this set of probabilities

also describes the state of the composite source U x V.



Independent of whether there exjsts a directed deterministic relation-

ship between the appearance of the elements Ui and V., we can also describeJ

the correlation in a directed form. For example, if tUiy were projected

into lVjl, in general, we need to assume a projection which is not determin-
a-3
istic, but which can be characterized by a set of probability projection

functions

N

(1.2) P(vJ)= 2
i=l

kijP(Ui), enough for Nv-1 values of j.

The coefficient kij is equal to the conditional probability P(VjIUi).

The characterization forms (1.1) and (1.2) are equivalent. If we

associated inputs of an object with U and outputs with V, form (1.1) would

characterize the object by the input-output pairs, while form (1.2)  by a
2 -

. set of functions. This object could be a memoryless network (stochastic or

deterministic).

The symbol joint probability and probability projection characterization

types can be easily related as

(1.3) P(U,Vj)=kijP(Ui)

h

(1.4) P(Vj) = c
i=l

p (UiV j )

For the two-source case, let us suppose a deterministic (one-to-one

or many-to-one) projection $: IUi3--IVj1  exists a priori. Then the specific

property arises that k
ij
cW,l), Vi,j, namely

(la5) kij =1(O) if by 4, UiW(-sC)V*
J

Having the knowledge of the probability projection functions (1.2), the

deterministic projection can be characterized in an information lossless

manner. (One way of restoring the deterministic information is the "freezing",
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i.e. to set the input probabilities to the permitted combinations of extremes.)

From the other side, the coefficients k..
=J

can be determined by merely knowing

the properties of the deterministic projection. Hence, we have two projections

(1.6)m-3 $4U.b---~Vj~ and $1 P
:UWJi))-U’(Vj)~

such that 4 and 4 cover the same information.
P

Returning to the Mealy model, we can speak of input, state and output

sources X, Y and Z, having a number Nx,Ny and NZ of symbols, and of two

probability projections 6p and w 9 for which we have
P

.

(1.7)
n-I-1Gp:P(XnxYn)SP(Y )

(1.8)
wP

:P(xnxYn)--'P(zn)

2‘ .
. - The behavior of the model at t=tn is determined by the projections (1.7)

and (1.8). Since in general

. (1.9) P(X"), P(Yn) Z$& P(xnxYn)

we are to conclude

- though P(Xn) and P(Y") contain important information, they do not determine

p V) 9

- according to equation (1.4)

- knowing the 5-tuple

(1.11) P(xnxYn)=jP(Yn+l), P(Z").

.
Summarizing, P(XnxYn) can be considered to describe the stochastic status

nof the network at t=t , which means, P(X"xY") allows us to derive all possible
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* , nsymbol probabilitcs at t=t . So, the minimum amount of information for

determining the network responses P(Zn) and P(Yn+l ) is the knowledge of

P(XnxYn), hp and o ,
P

--X+3 We continue with chaining the descriptors of network behavior along

the time axis. According to the relation (1.10) we would know the long-

:term network behavior if we were able to generate the series

(1.12) P(XrxYr), P(xr+lxYr+l), P(Xr+2xYr+2),...

assuming t=tr is the initial point of time. Having the knowledge of the

network and the source

(1.13) P(X"xY ),jp(Yn+') and P(Xn)*P(Xn+')tr

.

‘.

however, in general, the relation (1.9) also holds for t=tn+l . This implies

that the information we used up to now is insufficient for deriving the

correlation between P(X) and P(Y). Apparently, we need to know more aboutA

the source. In order to determine P(XnxYn) for arbiprary values of n, we

present two methods, called methods of growing and of recursion.

A. The Method of Growing

If we possess the information which exactly describes the network and

the input process, and the necessary initial conditions are known, we can

follow the stochastic status of the network along the time axis. For

deriving the status at t=t", it is required to know the initial status

r r nat t=t and the history of the control between t and t . Such an approach

. is applicable for any kind of input process.

In the consequent discussion we use the event representation given in

Figure 1, where



Event representation for sequential network

Figure 1
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n Yn+l Zn
'i' i ) j

symbol events, in correspondence with previous use

F" alternative event at t=tn, formed of the appearance
ij

n n+l
of input symbols which can cause a Y.-I. state

1 3

transition

G”
ij

alternative event at t=tn, formed of the appearance
.

of input symbols which make the output symbol Z*
3

appear provided the network is in the state Yq.

The set of symbols belonging to F"ij'Gij
can be derived from the mapping 6/u.

If the set is empty, F" /G" equals the impossible event.
13 ij

For the events, the network establishes the relationships

(1.14)=. Ye Y;"= Ye F~j
. -

c
(1.15) zj". =c Y; ""ij

i

.*

and hence, the following equivalence relations hold

(1.16) P(Y;+'Iun) = P(F;jiY; )1

(1.17) P(z;IY;) = P(G;j IYi) l

Equations (1.14) through (1.17) imply the network is deterministic.

Making use of general probability equalities, letting r+j!=n, we obtain

(1.18) P(Y$ = c P(Yr Fr Fr+l r+&-1

Vio,il'"~ $1
i, i,il iliZ"' Fi )

&-lie

(1.19) P(Z;+p) = c P(Yr Fr Fr+l . . .
vioil,-,ip iO ioil ili2

(1.20) p(xt;+l YIfl)  = c r+l r+j-1
P(Yf Fii Fii...Fi r+B)

vio'+""i~-l 10 0 1 1 2 L-l? 'k



Introducing #{Zj )= N ,Z the range of variables in the above equation will be

lr 1~~0, l&aX ’ ldpil'...,,$ fly, lrja , while r is an integer constant.Z

It can be seen, that an F-chain in the equations (1.18) through (1.20),

fos. a particular combination of values of io,il,..., ij 1, describes a

particular wequence of states Yr
iO

through Yq[ -which occurs in 1 input steps.

To an !-step state transition belongs a set of distinct sequences of input

symbols which can perform the given transition, and naturally, this set can

be smaller than that of all e-length input sequences. The length of the

F-chains grows as 1 increases.

Let Tit\ denote the evt3nt that M !&symbol input sequence starts at

t=tr and results in a state sequence beginning with Yr and ending with

,r+it iO

9’
$en we can rewrite equations (1.18) through (1.20) as

(l/21) P(Yr+l =
9

) c P(YY T(j) )
Vi0 '0 iOie

(1.22) P(z;+') = c P(YiO T:lgjlG:ljl)

vi09!t

(1.23) P(X;+' Yl-+lje ) = c P(Yf Tte> r+P

Vi0 lo ioie xk )

The term T:",:1 could also be derived as an element of the product matrix

r*e-1 .
equal to iH, S', where Si is the state transition matrix associated with

ithe network, and the elements of which are interpreted at t=t . Though the

arguments of probabilities at the right side of equations (1.21) through

(1.23) can be algorithmically generated as 1 increases, the probabilities

themselves are affected by the source, at any point of time,. It is this

property that allows us to handle non-stationary input processes.

In order to interpret equations (1.18) through (1.20), it should be

noted that the random process generated by the input source is completely
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defined if and only if from its description, starting with the initial point

rof time t=t , the stochastic source-state

(1.24) P(xrxx r+l,

i. il
), O</, lSio,il,..., 2<-Nx, VI!

-.*-a
can be generated. This implies the knowledge of all possible symbol sequence

probabilities.

The right side of equations (1.18) through (1.20) have a similar structure.

so all of these sides could be rewritten as

(1.25) c P(Yr . ..)
=o

Hence, the behavior of the Mealy model can only be well-defined if all of

the sequence probabilities of the input source, conditioned upon':the initial

state ef the model, are determined anyway. Let this topic be analyzed. We

have certain conditions imposed by the source/network configuration under

discussion:

Logical Conditions 1.1

a) For the network: At every time quantum the network must stay in a single

state.

b) For the configuration: The network cannot influence the input source in

any way.

d For the initial state: The uncertainty about the network initial state

Yr
iO

is expressed by the probability P(Yr ), trio, while
iO

c P(Yr ) = 1,.

d) For the experinrnton the configuration:
vi0 i.

The network can only behave in I/
NY different ways at t=t r (we have the initial state uncertainty combined 1

with single states allowed). We assume that the initial state of the
I

network is not determined or influenced by the input source in any way.

We have to think that the overall stochastic behavior of the network, which
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we describe in the form of the state and output processes, can be decom-

posed into N different modes of stochastic behavior, in accordance with
Y

the possible initial states, and the probability of each mode of behavior

to appear should equal that of the corresponding initial state.
e-3

The logical conditions lead to the probabilistic condition given in Theorem 1.1.

Theorem 1.1

From Logical Conditions 1.1 follow the unique probabilistic condition that

the appearance of any input symbol sequence is stochastically independent

of any of the network initial states. This probabilistic condition is mathe-

matically contradiction-free.
***

(Proofs for theorems throughout this paper will be omitted; however, they
z .

' exist.),

The stochastic independence given in Theorem 1.1 will be assumed to hold from

1 now on. If the stochastic independence is utilized in equations (1.18) through

(1.20)) which up to now only supposed the network was deterministic, we obtain

(1.26) r+/
NY. > =

v
c P(Yf)P(F'

ViO'il 9 l a lp -1 l0 ioil

Fr+l

ili2
. . . Fr+e-l

' )
il-li,!

(1.27) ri.1
pa >

r+&l= c P(Yr ) P(Fr
loi

Fr+' . ..F
ili2 j-j -lit

Grtl .
.I

j Vio,il,...,il =0 q,J

(-1.28) rteyr+l =
'('k

9
> c P(Yr )

iO
P(Fr Fr+l Frt-!-l r+1

Vio,+-.,~l-l
ioil ili2 l ** ijWlji % )

l

In view of equations (1.26) through (1.28), we have an explicit solution

for the network behavior along the time axis. Knowing the initial state

distribution and the input source sequence probabilitYes,  we are given the

. possibility of computing the network behavior by using a mapping-typed network

representation. It should be seen that it is enough to compute P(X"xY")
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according to equation (1.28), while P(Z") and P(Y") flow in a "static" way.

When deriving the left side of the above equations, as & increases, our

computational work also increases. In the next section we show that for

stationary Narkov input processes, the amount of work could be moderate, and
-*3

lessens as the order of the Markov process becomes smaller.

Equations (1.26) and (1.27) also allow us to describe the state and

output processes generated by the network. For the state symbol sequences

we have

(1.29) yr+e yr+!+l yr+m = yr+l ,r+1 rim-l

je ij+l l '* im 9 4ie&" Fi .
m-llm

which leads to

(1.30&. P(Yr+k! yr+P+l yr+m =) c P(Y: ) P(Fr r+l
. - 9 ip+l l ** im Vio,il,...,ie 1 '0 ioil Fili2-*

For the output symbol sequences we can derive

(1.31) Zr-t! Zr+jfl r+m
f. 4 . . .

zjm =
c

yr+e

Jl Jj+l ie
Fr+e

vipj+y**,im ieie+l""

wehich leads to

(1.32) r+! ,r+/+l
Nz.Je $+1

rim

'jrn ) =
c P(Y' ) P(Fr r+l

ViO'il' im. . . , iO loi Fili2

rim-1

Fim-lim

rtm
l l l Gimjm)

Applying the Method of Growing to the case of multinomial (also known

as O-order Markov) input processes, we could achieve a significant reduction
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in the complexity of the above formulas caused by the fact that the stochastic

independence of input symbols at different points of time is transferable to

groups of input symbols. Analyzing equation (1.28), the following important

properties arise.
..yll)

Theorem 1.2

For multinomial input processes, whatever be the network, it holds

P(X”, YY> = P(c) P(Yy) ,vi, k, n .
***

Moreover, we also have

(1.33) NY;+l) =~I$) I$).
i

(1.34)__* P(Z;) =cP(Y;) P(Gyj)
. - j

B. The Method of Recursion

In case of deterministic control, the derivation of the behavior of the

Mealy model is greatly simplified by the fact that the present and next states

of the network can be related by means of a finite set of time-invariant

difference equations, derivable from the projection 6. For random control,

we desire to find a set of difference equations for probabilities, such that

they only contain a finite number of time-invariant coefficients, and also,

P(X"xY") can be computed making use of the value, at t=tn, of variables

of the equations. It can be easily seen that the existence of such a set

of equations depends on the type of the input process. Without analyzing the

case for various input sources, we will present an approach which holds for

stationary Markov input processes (combined with no restrictions on the

network), and which requires a minimal number of probability variables.
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If the above set of probability equations exists, we can consider the

equations as the stochastic state equations of the configuration, and their

variables, S, as the stochastic state variables. Possessing the state

equations, from any point of time, t=tn, we can move forward, t>t", byh..+
performing a recursion for Sn+l , or move backward, t<tn, by recursion for

sn, possibly step-by-step up to the initial point of time, t=tr.

It would be the simplest case, if P(Y") itself behaved as a statei

variable. Considering equation (1.34) and Theorem 1.2, we see this holds

for a stationary multinomial process. Not restricting the network, the

minimum number of state variables in N -1.
Y

Assuming the network is given, making use of general probability equali-

ties we can derive
= - N Nx. _

(1.35) P(Y;+l) = m
j=l k=l

aijk'(~I Ye) P(Y;)

where CL dO,l),ijk and aijk = l(0) if by 6, eYy+(4) Yp'.
.

The value of the conditional probabilities in equation (1.35) is not

apparent (excluding the case of the multinomial process), because the network

more or less memorizes the past control history, and the "forecast " on the

present symbol depends on the past input sequences. From this it follows

that, even for Markov input processes, we can only have more sophisticated

state variables.

The above preferable property of multinomial processes suggests to reduce

the case of non-zero-order Markov input processes to that of multinomial

processes, in an information lossless manner. To perform the reduction, we

cu[lsCruct the universal O-transform network, given in Figure 2, whose

structure is applicable for any p-order stationary Markov process. (From

the other side, the transform network could establish any p-order Markov
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I DECODER for X"xXn-lx . ..xXn-p+1

1
II 0

1

- xn-l + xn
xn+l

Stage No.: 12 n- t- -

Universal O-transform network

Figure 2

l

I
?
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source, making use of O-order sources.) The network inputs are Q,,Q,,...,Q.,

random sources. The output is the contents of the first stage of the symbol

shift register. The network can be identified as a Moore machine. The

principle of network operation is that the contents of the shift register
^.,1
uniquely select an input source and the symbol at that source is fed into

the shift register. The input sources are multinomial sources, and form a

stochastically totally independent group of sources. The Q, sources have

the same set of symbols, however the symbol probabilities are determined

source-by-source, by the process to be generated. In rough words, the

network will work properly, if the sequence of past symbols stored in the

shift register selects the corresponding "forecast" on the next symbol.

The parameters and the probability relations of the O-transform network

will h given in Theorem 1.3. The p-order stationary Markov process is

defined by

(1.36) P(X” IF1 q-2..  .xy...) = P(Xi
kokl 2 P

Vn,Vko,kl,...kp,... , r:constant

and p is the smallest number for which all this is satisfied,

while the operation of a Markov source is determined if in addition we know

(1.37) P(Xr xc-l... xk
kl 2

r-p+1) ,vkl,k2,...,k
P P

because either these probabilities are unique, or they are not unique but given.

Theorem 1.3

Consider the operation (1.37) of a p-order Markov source (1.36). Let it be

satisfied that
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;I ) 7%~ number of (1, sources is v=(N )', and the i-th source is labclled
X

d I by klk2... k(, so that i= t:- (N )'-'kjj=l x
b) The set of symbols of Qi sources is {X (Qi')- = (X1,X2,...+,.,  1, VQ,.

4 The symbol probabilities, according to (1.36), at the Qi socrces are

t=tn, Vn: P($QJ)= p($IX;;-' g-2 . . . %-'), VQi,k.
-.,-a 1 2 P

, d) The Qi sources are considered to form a composite source X , havingl-J

the set of symbols (X.(Qllx x(Q2)x . . . x x(Qv) }
Q j2 jy ’

e) The Qi sources are defined to be totally uncorrelated, i.e.

P(llx(Qi))
ji

= I[P(x(~-,-)), Vjl,j2,...,jy, lf+j2'-4v~Nx
ji

and the multiplication is extended over any group of the sources.

f) The contents of the shift register at t=t" is denoted by

Y”
lJ

= Y” XY” . . . ..Y”k ,
,*. kl k2 P

and at the same time

y” =
ek

x n-1x . . .x n-m
l-J 1 2 xk

P

where n
xk is the network output symbol at t=tn.

1
g) At each time t = tn, exactly one source Qi is selected, where i is

determined by Y"
P

by the method of part (a).

h) At some t=tr, the symbol probability distribution of the Y source
1-I

was set to

P(Yi Yr . . .
1 k2

Y; ) = P($
r-l

P
1 'k2 "= p~;-'+~),\rk~,k~,...'kp

according to condition (1.37).

Then the universal O--transform network, upon the control XU, for any

t2tr, will provide an output which is a true realization of the operation

of the p-order Markov source considered above. ***
We illustrate 'Cheorcm 1.3 by means of an example.
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Assume a source has two symbols, X0 and X1, which are generated in a second

order stationary Markov process. Given the set of conditional probabilities

r-l r-2
(1.38) P($p;-l q21, P(Xt;l x5-l x;-2), p(x;Ix;-' x;-2), P(x;Ixl x1 ),

this also determines2

(1.39) p(xfIx;-l x;;-2), p(x;lx;-l x:-2), P(x;l xi-1 x5-2), P(Xflx;-l xi-2)

since the "column" sums in this order of writing must equal 1. The operation

of the source is defined by the set of probabilities

(1.40) pat; x0r-1), P(Xi x:-l), P(Xt; xy-l,, P(XI xi-l).

Determine the parameters of the O-transform network.

&ccording to Theorem 1.3, we have a 2-stage shift register whose cells

are capable of storing X0 and X1. We have 4 random sources which are

selected by the contents 5: Yz Y"
1 V2.

of the shift register. The sources Q,

through Q, are selected by the register contents

(1.41) Yt": x"o x:-l, x; x:-l, x; x;-1, X'; x;-1

respectively. The symbols generated by the Q sources are X0 and X1, while the

symbol probabilities at the sources are

(1.42) Q,: P(Xo)  = P(X;lx’o-’ X;-2)

(1.43) Q,: P(Xo) = P(X;lX;-' Xt;-2)

(1.44) Q,: P(Xo) = P(X;lX;-' X;-2)

(1.45) Q,: P(Xo)  = P(X;lX;-' Xf-2)

and P(X1) = I-P(Xo),  for each Q source. The initial state probability dis-

tribution of the shift register, P(Yr Y’ ),
p 1 h?

is given by (1.40) so that Xr
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and Xr-l refer to Yr and Yr
p1 V2'

respectively.

Theorem 1.4

Given a configuration formed of a p-order stationary Markov input source

aA a Mealy model. Defined the operation of the input source. Performed

the p-to-0 reduction according to Theorem 1.3, assuming t=tr is the initial

point of time an experiment begins on the configuration. P(Yr) and P(YE>

are defined to be stochastically independent of each other and Theorem

1.1 holds for P(YrxYE). Then

4 upon the effect of the replacement, the state and output processes of

the Mealy model remain unchanged,

b) the stochastic state variables of the configuration are P(Y"x Y;),

enough NY (Nx) p-1 of them, and this number of variables is an overall. _

minimum, considering the configuration is parametrically unspecified,

c) P(XT: Yn) = n-l Xn-p+l

=o 3 c
VilJ2, *.*9$)-l

P(YY x; x. l **
0 5

i )
P-1

included, the variable left out in point b) equals the one-complement

of the sum of the others.
***

The replacing configuration is illustrated in Figure 3.

Ry means of Theorem 1.4 we reduced the treatment of the case of a

higher-order Markov source to that of a multinomial source, and simultaneously,

we can generate P(XnxY"> for the original configuration. Not going into

details, the knowledge of the Mealy model and the value of the stochastic

status variables of the replacing configuration also enable us to derive the

state and output sequence probabilities.

Closing the probabilistic treatment of uncoded networks, in Figure 4 we

summarized the relationships between the states of the characteristic sources

of the configuration.
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.



” I 2. Case of Coded Networks

22

.
We wish to examine how the tools of probabilistic treatment can be

specialized if the Mealy model is further specified by binary coding for

thd'iymbols. Wef assume, the sets X, Y and Z of coded symbols are binarily

complete, i.e. contain Nx = 2'X, N
Y
= Zny and NZ = Znz elements, where

n
X’ nY

and nZ are integers. (If the case originally were not such, then

properly extending the 5-tuple over dummy symbols we could satisfy the

assumption, and later, by using zero probabilities, we could disregard the

dummies.) The assumption on the completeness of the set of coded symbols

is met if we have a completely specified binary network.

Introducing the coding, we have a set of input Boolean functions

2 .
(L-1) y;+l = fi(YY,...,$ ; x$***,$ 1, i: w~.**~ny

Y X

and a set of output Boolean functions

(2.2) zY = gi(+...,yi ; x
Y

y,...,c 1, i: l,L-,nZ
X

and correspondingly, we speak of the input and output logic.

The isomorphism between the Boolean and event algebras links the

probabilistic terms with those we use to describe a coded network. There

are two considerable possibilities of using the Boolean calculus to helpe.

the probability calculations.

One possibility is to calculate probabilities by using minterms

assigned to the symbols. We denote this approach by "minterm probability

calculus". The correspondence between symbols and minterms establishes a

strict parallelism between the probabilistic treatment of uncoded and

coded networks. However, minterms are associated with the canonical form

of Boolean functions, and therefore, in general, are not immediately at hand.
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The usual matrix-oriented methods of probability calculations operate over

minterm probabilities.

The other possibility for calculating probabilities is to make use of

the-logic variables assigned to the signals of a network. If q is a logic

variable, we denote the events that the corresponding signal is at HIGH/LOW

level by q/T and correspondingly, we introduce the probabilities P(q)/P(Q).

Since P(T) = l-P(q), we shall only speak of "the signal probability"

interpreted as P(q). However, even if the stochastic state of a source

is to be described, it is not enough to determine the signal probabilities

assigned to the lines where the symbols appear. It is also required to

know the spatial dependencies,i.e. the probabilistic correlations of the

signals at the same point of time. The spatial dependencies can be properly2 ,
. _

. characterized by using conditional or joint probabilities. Since the

multiplication is inherent in the Boolean calculus, we shall make use of

*the joint probabilities, and correspondingly, we can speak of the "joint

term probability calculus". Joint terms are composed of uncomplemented

Boolean variables, which makes this approach preferable over the minterm

approach if we have to derive probabilities for sources of functions as

in the case of P(Y) or P(Z). It is another favorable feature of the joint

term probability calculus that it explicitly works with the signal probabil-

ities, an important matter of our interest.

For using the joint term probability calculus, it is needed to determine

which joint probabilities can provide exhaustive information of the sources.

This will be given in Theorems 2.1 through 2.3, in parallel with the

probabilities necessary in the minterm calculus. In the theorems we refer

to the "complete set of joint probabilities" associated with bn, signal lines.
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* , By this term we mean the (2nS-1)-element set of probabilities, composed of

. the #n, signal probabilities and all of the probabilities that logic ones

simultaneously appear at pairs, triples 9***9 ns-tunle of the lines.

--*
TheoGem 2.1

The stochastic state of the source S, whose symbols appear at #n, binary

lines, can be exhaustively described by any 2"s-1 minterm probabilities,

or by the complete set of joint probabilities associated with /In, signal. lines.

Theorem 2.2

The correlation between the stochastic states of sources U and V, whose

symbols appear at i/n, and #n, binary lines, can be exhaustively described

by any 2nU”v-1 composite minterm probabilities, obtained by replacing
L‘ .

Symbols by minterms in the set of probabilities (l.l), or by the complete

set of joint probabilities associated with ~~(n,+n,) signal lines.

' Theorem 2.3

The probability projection $p: IP(Ui))~{P(Vj)), where Ui and Vj are symbols

of sources U and V having ?n, and /In, binary lines, can be exhaustively

-described by Znv-l minterm probability projection functions obtained by

replacing symbols by minterms in functions (1.2), or by the complete set of

joint probabilities associated with #n, signal lines so that the elements of

the latter set are expressed as functions of the U-line (joint term or

I minterm) probabilities.

The equivalent power of characterization possessed by the sets of

minterm and joint term probabilities is due to the fact that an element

of either set is zomputablc from (scvernl) elements of the other set (see

[5], or the methods we later use for combinational networks), moreover,
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either complete set can be generated in such a way if and only if we know

each element of the other set. Hence, without specifying a particular case

of use, we generally have to work with the same number of probability para-

meters in both the minterm and joint term probability calculi, however to

generate and to use the joint probabilities is usually more convenient. It

is natural that the joint term and minterm probability calculi can be

mixed if it provides ease in a particular application.

We continue with specializing the probability relations for the coded

Mealy model. As we saw for uncoded networks, if P(X"xY"> is available, we

can perform the probability calculations at t = tn making use of d and w .
P P

In the coded form, this requires the ability of treating multi-output

combinatiznal  networks under general probabilistic input conditions. Therefore

we need to extend the results obtained in [6], and with the latter the

reader is assumed to be familiar.

Combinational networks

The input and output combinational networks of a sequential network are

usually given by a logic circuit or Boolean functions. For single-output

networks, [6] presents two algorithms for calculating the output signal

probability. First we extend these algorithms for arbitrary input conditions.

We treat two cases:

a) Logic circuit is given.--------------------------

Algorithm No. 2 [6] results in a function for the output signal probability

in terms of the input signal probabilities. The extension of the algorithm

is given in Theorem 2.4.
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Theorem 2.4

Derive the output probability function by means of Algorithm No. 2 [6],

assuming that the network is controlled by spatially independent signals.

WritX'the  function so obtained in a parenthesis-free form. If each oummand

in the parenthesis-free form is replaced as

n
(2.3) ,El '((Ii) -P($!1q

where qi are the input logic variables, the probability function is valid for

any input source.
***

As an illustration for Theorem 2.4, if Algorithm No. 2 [6] presented a

probability function P(ql)[l-P(q2)]  then the application of the theorem would

result idP(ql)-P(qlq2).

We can see that the function obtained by applying Theorem 2.4 follows

the joint term probability calculus.

After the general form of a particular output probability function is

determined, we can perform some reductions if we know that a signal or group

of signals is stochastically independent of another signal, or group of

s'ignals. Then the terms of the form P(JIqi) can be broken into a product

of factors, as IIP(lIq ),i in correspondence with the existing spatial

independencies. (Naturally, we could use these independencies in the first

place by grouping the logic variables according to their stochastic dependencies

in the parenthesis-free form.) Hence, we can say that the case of a source

with spatially independent signals spans a parenthesis-free probability

expression which, by properly inserting parentheses, can be adjusted to

arbitrary source.
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b) Boolean function is given.---_--_--_-------------------

If we derive the sum-of-minterms form of a Boolean function, following the

instruction of Algorithm No. 1 [6], then by summing the probabilities

assigced to the minterms, we have a method for deriving the output probability

valid for any input sources. This method follows the minterm probability

calculus. In the general case, the minterm probabilities cannot be broken

into a product of probabilities associated with signals and signal-complements.

If we have a sum-of-products form of a Boolean function another method

of obtaining the output probability function can have advantages. This

method follows the joint term probability calculus, and makes use of the

associated two-level circuit realization, i.e. the case reduces tothat ,where.

a logic cjrcuit is given.
. _

For multi-output networks, we have to describe the stochastic state

of the source formed by the network output lines. Here we also consider the

two cases.

a) Logic circuit is given-------------------------

Making use of the joint term probability calculus, we need the output signal

probabilities and the output joint probabilities. If joint probabilities

are to be derived, we can feed the corresponding output signals into an

AND gate, so that the output probability of the AND gate equals the required

joint probability. If the output minterm probabilities are to be derived,

we can insert network-output-driven inverters before AND-ing. In such a

way 9 cases are reduced to the probabilistic treatment of single-output networks.

b) Boolean function is given----------------------.- -----

Assume the Boolean functions q1,q2,...,q, are associated with the output signals
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of a multi-output network. For stochastically describing the output source,

referring to Theorem 2.1, we need either the probabilities

(2.4) --
*w-J Nq p l* l l

Q, P(q192...R), P(qlq2.*.qn)r.**., Pblf12***qn)

or

(2.5) P(q1)’ WqzL** P(q,), P(qlq2)' P(qlq+** P(q p 2- l 4 ,)

Both series of probabilities require the Boolean functions to be placed in

the arguments, and the case reduces to that of the single-output networks.

Continuing with the probabilistic treatment of the coded Mealy model

a t t = tn, we have to derive the stochastic output states of the input and

output nztworks both fed by the signals of the X" and Yn sources. We can

represent P(XnXYn) according to Theorem 2.2, and the necessary output proba-

bilities can be derived following the above considerations on combinational

networks.

When representing P(X"XY") in the joint term probability calculus, we

can have independence of signals, with a time-independent validity, if

L the input and state processes are stochastically independent, i.e. the

case of a multinomial source,

- some of the input signals may be stochastically independent of each other,

determined by the source.

We illustrate the probability calculations at t = tL1 by an example.

Example 2.1

Consider the network given in Figure 5. Derive the stochastic states P(Z")

and P(Y n+l ), assuming P(X"xyn) is given.
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For obtaining P(Z") and P(Yn+l ) we use the joint term probability

calculus. Also considering the two AND gates of dashed lines in Figure 5,

using Algorithm No. 2 [6‘j, eliminating parentheses we have

--*
(2.Qj

(2.7)

(2.8)

(2.9) n-t1
p(y1 )

(2.10) n+l
PCY, 1

= P($ + P($) - P(YpY;>

= 1 - P(Y;)P(Y;P(x;>

= P(y;) + P($) - P(Y;)P(Y;) - P(Y;)P(Y;)P(x;)

= P(yT) + P(x;)P(x;) - zP(y;)P(+P(+

= NY;>

(2.11) n+l n+lP(y1 y2 > = P(yY) - P(Y;)P(x;)P(x;)

Merging the arguments in the products we obtain the general form as

(2.12)  =* P(zf;). - = P($ + NY;> - P(Yf;YY)

(2.13) P(z’;) = 1 - p (Y;Y;x;)

(2.14) P (z;z;) = P(yY) + P($) - P(Yf;Y;> - P(Y;Y;x;)

' (2.15) n+l
NY1 ) = P(yf;) + P(x;x;) - 2P(+#)

(2.16) NY;+‘) = P(YY)

(2.17) n+l n+lP(y1 y2 ) = NY;) - P(YF>J)

If the control source were a (general) multinomial source we could also

perform the following factorization in equations (2.12) through (2.17')

(2.18) pcY;Y;x;P-+  P(Y;Y;P(x;)

(2.19) p (Yy+';) - p (Y;) P b+;>

and if in addition, the source provided spatially independent signals, we could

further factorize as

(2.20) P(x1x2) -P(x1)P(x2)
***
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In order to derive the stochastic behavior of the network along the

time axis, we can make use of the iterative expansion of sequential networks,

given in Figure 6a. In such a way, we only have to deal with a combinational

netw&k for which the probability calculation methods are possessed.

If the iterative expansion is originated at t = tr, we can derive P(Zn)

and P(Y") provided the initial state probability distribution of the network

and the stochastic description of the source for the time interval trStLt n

are known, and Theorem 1.1 is supposed to hold. Then the network to treat

rconsists of the combinational segments for t , tr+l s*-'s tn. In each segment

we have network inputs while outputs appear in the segment for t'l. We can

also derive any state or output sequence probability within the above time

interval, and then we treat combinational network outputs in some consequent-.
. _

segments. This approach corresponds to the Method of Growing for uncoded

networks.

If the sequential network were fed by a multinomial input source,

P(XxY) could be generated for each segment, having the knowledge of the

stochastic outputs of the preceding segment. In such a way, for any time

interval, we could follow the state and output processes in the iterative

network, proceeding segment-by-segment. It means we simultaneously have

an iterative expansion for both the deterministic and the stochastic

behavior of the network.

For the p-order stationary Markov input sources we can also consider

Figure 6b. The introduction of the universal O-transform network makes it

possible to treat a periodic combinational structure which has a stochastic

input source in each segment, while the sources are stochastically identical

multinomial sources, spatially totally independent of each other for any
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group of the segments. In correspondence with the Method of Recursion we

can derive the network state and output processes by treating a minimum

time-invariant structure which, in the iterative expansion, appears as the

souy_l;e/network  combinational periodic pattern. The set of stochastic state

variables of the configuration (see Theorem 1.4) can be identified as the

set of input minterm probabilities interpreted over the joint combinational

network which is formed of the Moore network output and Mealy network input

logics, Figure 6. If we follow the joint term probability calculus, another

equivalent set of stochastic state variables is obtained, namely, the com-

plete set of joint probabilities associated with the input lines of the

above joint combinational network.

Making use of the iterative expansion, the state and output sequence
L‘ .

probabilities could be derived by treating the corresponding number of

source/network combinational segments. It is apparent that it is the

periodic combinational structure and the set of stochastically identical

sources that allows us to determine the sequence probabilities for tit n

if we only know the value of the state variables for t = tn .
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, Conclusion.--

' We have presented a network-oriented approach for the probabilistic

treatment of sequential networks. When discussing the case of uncoded

networks, we developed the Methods of Growing and of Recursion. The former-.*1

method is valid for any type of input process, the latter well suited the

case of stationary Markov input processes. Introducing the universal

O-transform network, we could represent a stationary Markov process by a

network with multinomial control. For networks with a stationary Markov

input source we have generated a replacing configuration composed of a

replacing network and a multinomial input source. The states of the

replacing network are the composite states formed of the original

network states and the Markov process states while the probabilities of the
L' .

composite states appeared as the stochastic state variables of the config-

uration.

For coded networks, we have extended the applicability of known

probability-calculation algorithms [6] of combinational networks, and

sequential networks became treatable by the iterative expansion. The use

of the universal O-transform network allowed us to integrate a stationary

&rkov process in the iterative expansion, and in this case, we only had to

stochastically  treat a periodic combinational network pattern. The joint

term probability calculus for coded networks proved to be favorable over

the minter-m probability calculus, since its terms are easier to generate

and have explicit relations with the signals of the network. The case of

c

\

multinomial control proved to be easy to work with in many aspects

throughout this paper.

For computational purposes we did not generate any state graph or

matrix, instead we have worked with algebraical probability expressions
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derived from the primary information of the network and the source.

Results in the paper are unconditionally valid for completely specified

synchronous sequential networks. If the operation of an asynchronous

network, with a specified input range, corresponds to that of a network of
* *->

the above type, the results also hold. We can control the range of inputs

by suitably specifying the source, namely, input patterns or sequences of

them can be prohibited by setting their probabilities to zero. For the

sequence elimination we need a properly sophisticated source.

The obtained results can find application, among other fields, in the

random testing of sequential networks, e.g. [7].
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