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ABSTRACT
This paper presents a network-oriented approach for the treatnent of

determnistic sequential networks under random control. Considered are
the cases of multinomial, stationary Mirkov and arbitrary input processes.
Probabilities of the state and output processes are directly derived
from the primary information of the network and the source. Coded
networks are treated using the logic ciruits or Bool ean functions. The
i sonor phi sm bet ween Bool ean and event al gebras is nmade use of, and the
probabilities of the response processes are obtained in the form of
al gebrai cal probability expressions interpreted over the determnining
(i.e., input and initial state) minterm or signal joint probabilities.
Key words: Markov process, nultinom al process, output behavior,

probabilistic nodel, probability, random control, random testing,
sequential network.



| ntroduction

The configuration in which a determnistic sequential network is
controll ed by a random source while the network output is nonitored and
evaluated appears in various aspects in the conputer field. Mst indebted
to the analysis of the configuration is the randomtesting of sequential
networks, in which the network response to a known random input process
is utilized to provide diagnostic information. The analysis of the effect
of intermttent faults on the network behavior, the reliability analysis
of digital networks, the sinmulation of the operation of mass-data processing
networks, the analysis of the operation of a sequential decoder driven by
a noisy channel, etc. can also work with the above configuration as a nodel

The.concentrated study of the behavior of deterministic sequential
network under random control is due to Booth, md-60's. In[1] he
investigated the state and output processes excited by Markov or linearly
dependent input processes. By other authors, elenents of the topic were
touched upon in connection with Markov chains, comunication theory, etc
From the beginning of the 70's, the topic has also been inportant for
the random testing of sequential networks [2,3,4]. In the maj ority of
the publications the probabilistic treatnment of deternministic networks
makes use of matrix tools, or derives probabilities while operating over
the state graph of the network. At present, the use of a realization-
oriented informati on base for good and faulty networks, and the increase
in the size of networks nmake it desirable to derive probabilities associated
with signals (synbols) in the network by using nethods which operate
over logic circuits or Boolean functions

It is the aimof this paper to present a new point of view and methods

by which the stochastic behavior of a network can be followed from any



given point of tine, and also, by which the probabilities associated with
the network can be directly derived by using the prinmary infornation of the
network and the source.

.»In this paper we consider conpletely specified synchronous sequential
networks, and assume that the random source generates exactly one symnbol
at every time quantum The results are also valid for asynchronous networks
within the control range for which the behavior of the network corresponds
to a network of the above type. In part 1 we examine the case of uncoded

networ ks and obtain general relationships which will be satisfied in any
particular network realization. W show that for general input sources the
determ nation of the stochastic behavior of the network requires a separate
conput ation for each point of time whose conplexity increases with increasing
tine. I-Izil\ever, we al so show that for stationary Markov input sources a
recursive nethod with fixed parameters and conplexity for each successive

point of tinme can be used. The probabilistic treatment is specialized for

coded networks in part 2.

Not ati on
upper case letters symbol s or events
| oner case letters (Bool ean) variables or functions
superscripts time quantum identifier
subscripts identifier of an element (of a set)
P(...) probability of
— (—) projected (not projected) into

= (=) enabl es (does not enable) to derive



L Case of Uncoded Networ ks

Sequential networks considered in this paper are assuned to have the

Mealy form defined by the 5-tuple <X,Y,Z,8,0w>, where

X,Y,Zz sets of input, state and output symbols, respectively

8w next-state and output mappings, respectively.

In our discussion, the Mealy nodel is controlled by a random source, hence
t he appearance of any symbol from X, Y or Z has to be characterized by a
probability paraneter assigned to the synbol

Making use of the 5-tuple, we wish to investigate how the synbol prob-
abilities are related in the nodel, and also, which probabilities and cor-

rel ations characterize the stochastic status of the network and the network

-

"itself.

First we examne, in general, how mappings and probabilities are
related. \Wen doing so, we use the term "sources"

If a set of synbols possesses the property that at every time guantum

exactly one synbol appears, the set is said to forma source, while the

probability - distribution of the synbols is said to describe the state of

the source. W will denote the state of the source U {Ui} by P(U):{P(Ui)}.
In order to characterize the correlation between the appearance of

synbol s of two sources, (: {UI,UZ,..,QNj and V: {VI’VZ""’ VN;}’“Q

can use the set of their joint probabilities,
(1.1) P(Uivj)’ enough for Nqu-l conbinations of i and j.

(Note: the reduction-by-one of the number of probabilities appears whenever
all of the probabilities sumto 1.) It can be seen. this set of probabilities

al so describes the state of the conposite source U X V.



I ndependent of whether there exists a directed determnistic relation-
ship between the appearance of the elenents vy and VJ, we can al so describe
the correlation in a directed form For exanple, if {UiY were projected
iﬂLO {Vj}, in general, we need to assune a projection which is not determin-

istic, but which can be characterized by a set of probability projection

functions
N

(1.2) P(Vj)= ‘ kijP(Ui)’ enough for Nv-l val ues of j.

i=
The coefficient kij is equal to the conditional probability P(VjIUi).

The characterization forms (1.1) and (1.2) are equivalent. If we
associated inputs of an object with U and outputs with V, form(1.1) would
characterize the object by the input-output pairs, while form (1.2)by a
set of functions. This obj ect could be a nenoryl ess network (stochastic or
determnistic).

The synbol joint probability and probability projection characterization

types can be easily related as

(1.3) P(UiVj)=kijP(Ui)
Nu

(1.6) PO = i}-—:i P,V )

For the two-source case, |et us suppose a deterministic (one-to-one
or many-to-one) projection ¢: {Ui}*——{Vj} exists a priori. Then the specific

property arises that kijs{o,l}, Vi,j, nanely
(1.5) kij=1(0) if by ¢, Ui—-—(-+-ovj

Havi ng the know edge of the probability projection functions (1.2), the
determnistic projection can be characterized in an information lossless

manner . (One way of restoring the determnistic information is the "freezing"



i.e. to set the input probabilities to the permitted conbinations of extrenes.)
From the other side, the coefficients k.l.J can be determ ned by nerely know ng

the properties of the deterministic projection. Hence, we have two projections
1.6 {U,}—={V.} and {P(U.)}—={P(V. )}
(1,6)  ¢:{U }—={V,} and ¢ :{P(U))}—=(P(V,)
such that ¢ and ¢P cover the same information

Returning to the Mealy nodel, we can speak of input, state and out put
sources X, Y and Z, having a nunber Nx’Ny and Nz of synbol s, and of two

probability projections Gp and ub’ for which we have

(1.7) ap:P(x“xY“)—w—P(Yn“)

(1.8) wpzp(x“xy“)—+p(z“)

The behavior of the nodel at t=t™ is deternined by the projections (1.7)

and (1.8). Since in genera
(1.9)  Px™M, P(¥Y) = PX"xY")

we are to conclude
- though P(Xn) and P(Yn) contain inportant information, they do not determne
P(z"),

- according to equation (1.4)
(1.10) PE™xyMH)=>px™, P(¥"),

-~ knowi ng the 5-tuple

n+l

(1.11) P(x™xY")y=»p(¥"" "), P(2").

Sunmmari zi ng, P(anYn) can be considered to describe the stochastic status

of the network at tztn, whi ch means, P(xann) allows us to derive all possible



synbol probabilitcs at t=t" . So, the mininum amunt of information for

n+1

determning the network responses P(z") and P(Y ") is the know edge of

PX"xy¥™), §_and w
P P
..~ Ve continue with chaining the descriptors of network behavior along

the time axis. According to the relation (1.10) we would know the long-

:term network behavior if we were able to generate the series

r+l r+2 _r+2
X xY

(1.12) pxSxy®)y, p(x ™y, px ), ...

assuning t=t¥ is the initial point of time. Having the know edge of the

network and the source

1

oty ond P = (™

(1.13) P (xanﬁ)=>P (Y

-

. +
however, in general, the relation (1.9) also holds for t=t" | .

This inplies
that the information we used up to now is insufficient for deriving the
correl ation between P(X) and P(Y). Apparently, we need to know nore about

the source. In order to determ ne P(XnXYn) for arbigtary values of n, we

present two nethods, called nmethods of growing and of recursion.

A The Method of G owing

If we possess the information which exactly describes the network and
the input process, and the necessary initial conditions are known, we can
follow the stochastic status of the network along the tinme axis. For
deriving the status at t=tn, it is required to know the initial status
at t=t' and the hi story of the control between tr and t . Such an appr oach
is applicable for any kind of input process.

In the consequent discussion we use the event representation given in

Figure 1, where



Event representation for sequential network

Figure 1



Yi’ Y, |, Z. synbol events, in correspondence wth previous use
1
F?. alternative event at t=tn, formed of the appearance
J
. . Q{ n+
of input synbols which can cause a 1.-I. state
3
s transition
ng alternative event at t=tn, formed of the appearance
of input symbols which make the output synbol Zg
appear provided the network is in the state Y?.

The set of synbols belonging to F:j/G:j can be derived from the mapping §/w.
n

If the set is enpty, %j /qﬁiequals t he inpossible event.

For the events, the network establishes the relationships

n  ntl_ _n _n
(1.14):. Yi Yj = Yi Fij

n = n n
(1.15) 1z Zi Y} el
and hence, the follow ng equival ence relations hold
ntl n

3 My
ng n n n
(1.17) P(ZjIYi) =P(GijlYi).

n n
(1.16) P(Y, |Y,) = P(Fij|Yi)

Equations (1.14) through (1.17) inply the network is determnistic.

Maki ng use of general probability equalities, letting r+/=n, we obtain

(1.18)  pvty - 2 PCY; FL F‘f; F;+&'1)
iy N ZOUE ST § n 1ot 13, /1%
! £-1
+/ Z r .r r+1 r+/-1 r+l
(1.19) 1 T¢ Ak T P(Y" F S [P
3 vii.,....,i To tol1 41t 1y 43 143
01 !
(1.20) P(X;+l Yr+t) = :E: p(y" FF L+l Fr+l-1 Xr+[)

i . R
£ AL PYESTRRRTE YEPRRNE PN O S B 9 iy 4y Tk



I ntroduci ng #{Zj}= Ni the range of variables in the above equation will be

1< /< o, lsksNx, I<i i sNy, lgjsNZ, while r is an integer constant.

R
It can be seen, that an F-chain in the equations (1.18) through (1.20),

fop, a particular conbination of values of io 11,..., %l 1’ describes a

particul ar wequence of states Yz t hr ough Y@leh occurs in f input steps.
0
To an !-step state transition belongs a set of distinct sequences of input

synbol s which can performthe given transition, and naturally, this set can
be smaller than that of all e-length input sequences. The length of the

F-chains grows as [ increases.

Let T([) denot e tneevent that aan f-sywbol i nput sequence starts at

1o}

t=t" and results in a state sequence beginning with gf and ending with

Yr+g Then we can rewite equations (1.18) through (1.20) as

i

(1.21) P(Yr+l) = ZP(Y T(l)

l V1 Oji
(1.22) p(zr"l - Z P(Yi ) ¢ ’i“*jl)

Vi, 0¥
(1.23) P(Xr+l Y Z P(YS T(Q) x:"l)
Yo tol

The tern1T(l) could al so be derived as an el ement of the product matrix

Lol

r+f-1 . {

equal to igr S, where S is the state transition matrix associated with
the network, and the elenments of which are interpreted at t=t . Though the

argunents of probabilities at the right side of equations (1.21) through
(1.23) can be algorithmically generated as £ increases, the probabilities
thenmsel ves are affected by the source, at any point of tinme,. It is this
property that allows us to handl e non-stationary input processes.

In order to interpret equations (1.18) through (1.20), it should be

noted that the random process generated by the input source is conpletely
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defined if and only if fromits description, starting with the initial point

of time t=t r, the stochastic source-state

(1.24) P(xrxx‘i’“x“.x x‘i’;[), 0<f, 1<i

1 <
i i SN, \7)
0 1

O’il""’ L

-

can be generated. This inplies the know edge of all possible symbol sequence
probabilities.

The right side of equations (1.18) through (1.20) have a simlar structure.
so all of these sides could be rewitten as
(L25) D P(;...) = p_pC..lY] ) P(Y] )

0 19
Hence, the behavior of the Mealy nodel can only be well-defined if all of
the sequence probabilities of the input source, conditioned uponthe initial
state 8f the nodel, are determined anyway. Let this topic be analyzed. W
have certain conditions inposed by the source/network configuration under

di scussi on:

Logical Conditions 1.1

a) For the network: At every time quantumthe network nust stay in a single
state.

b) For the configuration: The network cannot influence the input source in
any way.

¢) For the initial state: The uncertainty about the network initial state

Yi is expressed by the probability P(Y ) Vi , While Z P(Y} 0) =1

d) Forothe experinrnton the configuration: The network can gnly behave in
Ny di fferent ways at t=t * (we have the initial state uncertainty conbined
with single states allowed). W assune that the initial state of the

network is not determined or influenced by the input source in any way.

We have to think that the overall stochastic behavior of the network, which
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we describe in the formof the state and output processes, can be decom
posed into NY di fferent nbdes of stochastic behavior, in accordance with
the possible initial states, and the probability of each node of behavi or

to appear should equal that of the corresponding initial state

.Y

The logical conditions lead to the probabilistic condition given in Theorem 1. 1.

Theorem 1.1

From Logi cal Conditions 1.1 follow the unique probabilistic condition that
the appearance of any input synmbol sequence IS stochastically independent

of any of the network initial states. This probabilistic condition is mathe-

matically contradiction-free
Kk

(Proofs for theorems throughout this paper will be omtted; however, they

-,

" exist.)

The stochastic independence given in Theorem 1.1 will be assuned to hold from
now on. |f the stochastic independence is utilized in equations (1.18) through

(1.20), which up to now only supposed the network was deterministic, we obtain

! r+1 r+[ -1
(1.26) p(YeH) = Z P(Y )P(F Fi g o )
iy Vig.1, ot S SRR SE PSR VIRLY)
4 r+l r+f-1 _r+/
(1.27) ezt = WI) B, Py FL L G
] v10,2;;,..‘,11 g ighy )1, Y 4l
L r+/ r+1 r+f-1 +/
(-1.28)  pxIEyTHYy o POY]) P(F] , F T )
ko iy V10§,...,11_1 S T b R A L) i

In view of equations (1.26) through (1.28), we have an explicit solution
for the network behavior along the tine axis. Knowing the initial state
distribution and the input source sequence probabilitYies, we are given the
possibility of conputing the network behavior by using a mapping-typed network

representation. It should be seen that it is enough to conpute P(anYn)
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according to equation (1.28), while P(z™) and P(Y™) flow in a "static" way.
Wien deriving the left side of the above equations, as [ increases, our

conputational work also increases. In the next section we show that for

stationary Markov input processes, the amount of work could be noderate, and
| essens as the order of the Markov process becomes smaller.

Equations (1.26) and (1.27) also allow us to describe the state and
out put processes generated by the network. For the state synmbol sequences

we have

I Liml
(L2g)  yob grHiHL grimo o grdlord F

Y 41 - ‘i iy i[ il+1 im-l-lm

which leads to

r L+l
(1.30):. P(Y§+l Y§+l+1 S 2 P(YL) P(F P Fg e
- / 7+1 m V10,11,...,i£ 1 0 0
r+f-1 _r+/ ) Fr-hn—l )

ol Y lpadn
For the output synbol sequences we can derive

+ _r+
Zx.--fl er+l+1‘ ~,rim Z s £ Pt £

| In = 'v'il,il_'_l,...,imil i

(1.31)

r+m-1 Gr+£ Gr+[+1 B Gr+m)

F . . . .
im-lim ilJl 1[+IJ[+1 imjm

which |l eads to

+_
(L3 ettt L zg”’“ - > POYL ) Py  FL ...
o I m) Vigin.oo.i 0 0’1 172
tim L r+f r+f+] r+m
Fs i C4,1,%1, 3,.....% 3
m-1"m £ Tf+1°p+1 m’m

Appl ying the Method of Growing to the case of nultinonmal (also known

as O-order Mrkov) input processes, Wwe could achieve a significant reduction
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in the conplexity of the above formulas caused by the fact that the stochastic
i ndependence of input synbols at different points of time is transferable to
groups of input synbols. Analyzing equation (1.28), the follow ng inportant

properties arise.

]

Theorem 1.2
For multinom al input processes, whatever be the network, it holds
n _n, _ n n .
P(Xk Yi) = P(Xk) P(Yi) , Vi, k, n . xx

Moreover, we also have

(1.33) P(Y;H) =1ZP(Y2) P(F},)

n n n
(1.36), P =ij(yi) P(],)

B. The Met hod of Recursion

In case of deterministic control, the derivation of the behavior of the
Mealy nodel is greatly sinplified by the fact that the present and next states
of the network can be related by nmeans of a finite set of tine-invariant
difference equations, derivable fromthe projection 6. For random control
we desire to find a set of difference equations for probabilities, such that
they only contain a finite nunmber of time-invariant coefficients, and also,
P(X"xY™) can be conputed meking use of the value, at t=t", of variables
of the equations. It can be easily seen that the existence of such a set
of equations depends on the type of the input process. Wthout analyzing the
case for various input sources, we wll present an approach which holds for
stationary Markov input processes (conbined with no restrictions on the

network), and which requires a mnimal nunber of probability variables.
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If the above set of probability equations exists, we can consider the
equations as the stochastic state equations of the configuration, and their
variables, S, as the stochastic state variables. Possessing the state
ngations, fromany point of tinme, t=tn, we can nove forward, t>tn, by

: : + .
performng a recursion for st 1, or nove backward, t<t®, by recursion for

Sn, possi bly step-by-step up to the initial point of tine, t=t %,

It would be the sinplest case, if P(Y?) itself behaved as a state
variable. Considering equation (1.34) and Theorem 1.2, we see this holds
for a stationary nultinomal process. Not restricting the network, the
m ni num nunber of state variables in NY-L

Assuming the network is given, making use of general probability equali-

ties we can derive

-

_ Ny, Ny
n+l :Ef n, _n n
(1.35) P(Y & kZ: 1J.kP(Xk[ Yj) P(Yj)

where o e(0,1}, and oy = 1(0) if by 6, XpY§—s=(—) L
The value of the conditional probabilities in equation (1.35) is not
apparent (excluding the case of the nultinom al process), because the network
more or |ess nenorizes the past control history, and the "forecast " on the
present synbol depends on the past input sequences. Fromthis it follows
that, even for Markov input processes, we can only have nore sophisticated
state variabl es

The above preferable property of multinom al processes suggests to reduce
the case of non-zero-order Markov input processes to that of multinoma
processes, in an information lossless manner. To performthe reduction, we
construct theuni versal O transformnetwork, given in ¥igure 2, whose

structure is applicable for any p-order stationary Markov process. (From

the other side, the transform network could establish any p-order Markov
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source, making use of Oorder sources.) The network inputs are Q1’Q2""’Qw
random sources. The output is the contents of the first stage of the symbo
shift register. The network can be identified as a More nachine. The
principle of network operation is that the contents of the shift register
dﬁ?quely sel ect an input source and the synbol at that source is fed into
the shift register. The input sources are nultinom al sources, and forma
stochastically totally independent group of sources. The Q, sources have
the same set of synbols, however the synbol probabilities are determ ned
source-by-source, by the process to be generated. In rough words, the
network will work properly, if the sequence of past symbols stored in the
shift register selects the corresponding "forecast” on the next synbol

The paranmeters and the probability relations of the O transform network

will be given in Theorem1.3. The p-order stationary Mirkov process is

defined by
(1.36) P(xrli I,XTL'I xﬁ'z.. .x{z'p...) = P(XE |x1’i'1 XE"Z xli )
0 1 2 P 0 1 2 P
Vn’VkO’kl"”kp"" , r:constant

and p is the smallest nunber for which all this is satisfied,

while the operation of a Markov source is determned if in addition we know

r _r-1 r-p+1
(1.37) P(Xk Xk Xk ) ’Vkl’kz"“’k

1 <2 0 P

because either these probabilities are unique, or they are not unique but given

Theorem 1.3
Consi der the operation (1.37) of a p-order Markov source (1.36). Let it be

satisfied that
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a) The number of ( sources i s v= (N )p and the i-th source is |abclled
1
= NI,
by klk2 kp so that i= i ( ) j

L
b) The set of synbols of Qi sources is {X(Ql’} = {XI’XZ""’XN }, VQ .
c¢) The synbol probabilities, according to (1.36), at the Q sources are
_.n . Q- ry ,r-1_r-2 r-p
£, Vn: P(X°1) P(xklxk_lxkﬂ L X D), YLk

-3 2 p
d) The Qi sources are considered to forma conposite source Xu, havi ng

the set of synbols (X(Q Px x{@Qx x x(QV }.
I 32 J\)
e) The Qi sources are defined to be totally uncorrelated, i.e.

) = (M), VI 3geneady 18I o3 S
i i

and the nultiplication is extended over any group of the sources.

f) The contents of the shift register at t=t" is denoted by

n n n n
Y =Y. XY. . XY,
- u k1 k2 kp
and at the sanme tine
n—p+1

wher e XE is the network output symbol at t=t".

9) At each time t = t", exactly one source Q; IS selected, where i is

det ermi ned by Y; by the nmethod of part (a).
h) At sone t=tr, the symbol probability distribution of the YH source

was set to
pyr yf r = r | 1 s Vk .,k <ok

according to condition (1.37).

Then the universal O-transform network, upon the control X , for any

t2t™, will provide an output which is a true realization of the operation

of the p-order Markov source consi dered above. fkk

W illustrate Theorem 1.3 by nmeans of an exanpl e.



Exanple 1.1 18

Assume a source has two synbols, X, and X, which are generated in a second

order stati onary Mar kov process. Gven the set of conditional pr obabilities

L. r-1 _r-2 r r-1 _r-2 ry r-1 _r-2 rr'k r-2
. P(X.|X X , - ’
(1.38) (Xo | X, o ) P I X7 XY, P IX)T X7, Paxglx; X: )
this also determ nes
m—d
ri,r-1 _r-2 ri . r-1 -2 r r-1 _r-2 r{,r~1 _r-2
(1.39) P IXy T X)), PCX X Xy ) PG| X7 XD, PGK X X, )

since the "colum" suns in this order of witing nust equal 1. The operation

of the source is defined by the set of probabilities

r-1

r-1 r ,r-1 r
), P(X0 X, ), P(xl X ).

r ,x-1 r
(1. 40) P(Xy X5 ), P(X; X,
Determi ne the paraneters of the O transform network.

According to Theorem 1.3, we have a 2-stage shift register whose cells

are capable of storing XO and Xl' W have 4 random sources which are

selected by the contents Y': ¥Y© y"

M1 Wy,
t hrough Q3 are selected by the register contents

of the shift register. The sources Q0

n

. 1 n _n-1
(1.41) Yu. 1

n n-
XOXO,X 0

respectively. The synbol s generated by the Q sources are X, and X., while the

0 1’
synbol probabilities at the sources are

(1.42) Q) P(X) = P(x’(;lx(r)_1 x(r)'z)
(1.43) Q¢ P(Xy) = P(xglx’{‘l x;—?')
(1. 44) Q,: P(Xy) = P(xglxg‘l x’;'z)
(1. 45) Qq: P(Xy) = P(xglxi'l xi’z)

and P(Xl) :I-P(XO),for each Q source. Theinitial state probability dis-

tribution of the shift register, P(%: %f), is given by (1.40) so that X
172
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and Xr'I refer to YE and YE , respectively.

1 2

Theorem 1.4

G ven a configuration forned of a p-order stationary Markov input source
and a Mealy nodel. Defined the operation of the input source. Perforned

the p-to-0 reduction according to Theorem 1.3, assum ng t=t* is the initia

poi nt of tine an experinent begins on the configuration. P(Yr) and P(Yﬁ)

are defined to be stochastically independent of each other and Theorem

1.1 hol ds for P(YrXYE)' Then

a) upon the effect of the replacement, the state and output processes of
the Mealy nodel renain unchanged

b) the stochastic state variables of the configuration are P(Ynx YE),
enough Ny(Nx)p—l of them and this nunber of variables is an overal
m ni num considering the configuration is parametrically unspecified,

? rrl.** Xn—p+1)

X.
J N 1o-1

¢) PEE YD = > P(Y? X
i o j
0 V11,12,...,i

p-1
i ncluded, the variable left out in point b) equals the one-conpl ement

of the sum of the others
kK%

The replacing configuration is illustrated in Figure 3.

By neans of Theorem 1.4 we reduced the treatnment of the case of a
hi gher-order Markov source to that of a multinom al source, and sinultaneously,
we can generate P(X"xY") for the original configuration. Not going into
details, the know edge of the Mealy nodel and the value of the stochastic
status variables of the replacing configuration also enable us to derive the
state and output sequence probabilities

G osing the probabilistic treatnment of uncoded networks, in Figure 4 we

summari zed the relationships between the states of the characteristic sources

of the configuration
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2. Case of Coded Networks

We wish to exanmine how the tools of probabilistic treatment can be
specialized if the Mealy nodel is further specified by binary coding for
thé“%ymbols. Wer assume, the sets X, Y and Z of coded synbols are binarily
conplete, i.e. contain NX = znx, NY = 2ny and NZ = ZnZ el ements, where
n.s ny and n are i ntegers. (If the case originally were not such, then
properly extending the 5-tuple over dummy synbols we could satisfy the
assunption, and later, by using zero probabilities, we could disregard the
dunmies.) The assunption on the conpleteness of the set of coded synbols

is met if we have a conpletely specified binary network

Introducing the coding, we have a set of input Bool ean functions

-

+1 n n n .
2.1) yg = fi(yT""’YQ : xl""’in ), 1i: 1,2,...,ny
and a set of output Bool ean functions
(2.2) zz = gi(y?,...,yﬁY; x?,...,xﬂ ), 1i: 1,2,...,nz
X

and correspondingly, we speak of the input and output logic

The i sonorphi sm between the Bool ean and event al gebras links the
probabilistic ternms with those we use to describe a coded network. There
are two consi derabl e possibilities of using the Bool ean calculus to help
the probability calculations.

One possibility is to calculate probabilities by using mnterns
assigned to the symbols. W denote this approach by "mnterm probability
calculus". The correspondence between synbols and minterns establishes a
strict parallelismbetween the probabilistic treatment of uncoded and
coded networKks. However, mnterns are associated with the canonical form

of Bool ean functions, and therefore, in general, are not inmmediately at hand.
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The usual matrix-oriented nethods of probability calculations operate over
m nterm probabilities.

The other possibility for calculating probabilities is to make use of
the -Yogic variables assigned to the signals of a network. If gis a logic
variabl e, we denote the events that the corresponding signal is at H GYLOW
|l evel by q/q and correspondingly, we introduce the probabilities P(q)/P(q).
Since P(q) = |-P(q), we shall only speak of "the signal probability"
interpreted as P(q). However, even if the stochastic state of a source
is to be described, it is not enough to deternine the signal probabilities
assigned to the lines where the synbols appear. It is also required to
know the spatial dependencies,i.e. the probabilistic correlations of the
signal s qt the same point of time. The spatial dependencies can be properly
charact eri zed by using conditional or joint probabilities. Since the
multiplication is inherent in the Bool ean cal culus, we shall make use of
. the joint probabilities, and correspondingly, we can speak of the "joint
term probability calculus". Joint terns are conposed of unconpl emented
Bool ean variables, which makes this approach preferable over the mnterm
approach if we have to derive probabilities for sources of functions as
in the case of P(Y) or P(Z). It is another favorable feature of the joint
termprobability calculus that it explicitly works with the signal probabil-
ities, an inportant matter of our interest.

For using the joint termprobability calculus, it is needed to determ ne
whi ch joint probabilities can provide exhaustive information of the sources.
This will be given in Theorems 2.1 through 2.3, in parallel with the
probabilities necessary in the minterm calculus. In the theorems we refer

to the "conplete set of joint probabilities" associated with #n_. signal |ines.

s
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n
By this term we mean the (2 S-1)-e|ement set of probabilities, conposed of
the #ng signal probabilities and all of the probabilities that |ogic ones

si mul taneously appear at pairs, triples,...,ng~tunle of the lines.

Théggem 2.1
The stochastic state of the source S, whose synbols appear at #ng binary
lines, can be exhaustively described by any 2™s-1 minterm probabilities,

or by the conplete set of joint probabilities associated with #ng signal. lines

Theorem 2.2

The correl ation between the stochastic states of sources U and V, whose
synbol s appear at #n, and #n, binary lines, can be exhaustively described
by any 2n“nv-1 conposite mnterm probabilities, obtained by replacing
Symbols;zy mnterms in the set of probabilities (1.1), or by the conplete

set of joint probabilities associated with #(n, +ny) signal |ines.

* Theorem 2.3
The probability projection by {P(Ui)}-4>{P(Vj)}, where U and Vj are synbols

of sources U and V having #n, and #n, binary lines, can be exhaustively

u
n

-described by 2 v-1 minterm probability projection functions obtained by

replacing synbols by minterms in functions (1.2), or by the conplete set of

joint probabilities associated with #n, signal lines so that the elenents of

the latter set are expressed as functions of the U-line (joint termor

mnterm probabilities.
kokk

The equival ent power of characterization possessed by the sets of
mntermand joint termprobabilities is due to the fact that an el ement
of either set is computable from (several) el enents of the other set (sce

[5], or the nethods we later use for conbinational networks), noreover
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either conplete set can be generated in such a way if and only if we know

each elenent of the other set. Hence, w thout specifying a particular case

of use, we generally have to work with the same nunber of probability para-

neters in both the mintermand joint termprobability calculi, however to
e

generate and to use the joint probabilities is usually nmore convenient. It

is natural that the joint termand mntermprobability calculi can be

mxed if it provides ease in a particular application.

W continue with specializing the probability relations for the coded
Mealy nodel. As we saw for uncoded networks, if P(XHXYn) is avail able, we
can performthe probability calculations at t = " maki ng use of GP and wP
In the coded form this requires the ability of treating nulti-output
combinat%gpal networ ks under general probabilistic input conditions. Therefore
we need to extend the results obtained in [6], and with the latter the

reader is assumed to be famliar

Conbi nati onal networks

The input and output conbinational networks of a sequential network are

usually given by a logic circuit or Boolean functions. For single-output

networks, [6] presents two algorithms for cal culating the output signa
probability. First we extend these algorithns for arbitrary input conditions.

W treat two cases

a)_Logic_circuit _is_given

Algorithm No. 2 [6] results in a function for the output signal probability
in terms of the input signal probabilities. The extension of the algorithm

is given in Theorem 2.4
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Theorem 2.4
Derive the output probability function by means of AlgorithmNo. 2 [6],
assunming that the network is controlled by spatially independent signals.
Write the function so obtained in a parenthesis-free form I f each summand
in the parenthesis-free formis replaced as

n n
(2.3) 34 Blap—=P( I a))
wher e q; are the input logic variables, the probability function is valid for

any input source
k%%

As an illustration for Theorem 2.4, if A gorithm No. 2 [6] presented a
probability function P(ql)[l—P(qz)] then the application of the theorem would
result in:P(ql)—P(qlqz).

W can see that the function obtained by applying Theorem 2.4 follows
the joint term probability calculus

After the general formof a particular output probability function is
determned, we can performsonme reductions if we know that a signal or group
of signals is stochastically independent of another signal, or group of
signals. Then the terms of the forn1P(Hqi) can be broken into a product
of factors, as HP(HqQ, in correspondence with the existing spatial
i ndependenci es. (Naturally, we could use these independencies in the first
pl ace by grouping the logic variables according to their stochastic dependencies
in the parenthesis-free form) Hence, we can say that the case of a source
with spatially independent signals spans a parenthesis-free probability
expression which, by properly inserting parentheses, can be adjusted to

arbitrary source
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b) Bool ean function is given

e ————— — . — O - " W " e T s o i S T s e

If we derive the sumof-nminterns formof a Boolean function, follow ng the

instruction of Algorithm No. 1 [6], then by summing the probabilities

assiéﬁ%d to the minternms, we have a nethod for deriving the output probability

valid for any input sources. This method follows the minterm probability

cal cul us. In the general case, the mintermprobabilities cannot be broken

into a product of probabilities associated with signals and signal - conpl enents.
If we have a sumof-products formof a Bool ean function another nethod

of obtaining the output probability function can have advantages. This

nethod follows the joint termprobability cal culus, and nmakes use of the

associated two-level circuit realization, i.e. t he case reduces to that where

a logic circuit is given.

For nulti-output networks, we have to describe the stochastic state

of the source formed by the network output lines. Here we also consider the

two cases.

Maki ng use of the joint termprobability calculus, we need the output signa
probabilities and the output joint probabilities. [If joint probabilities
are to be derived, we can feed the corresponding output signals into an

AND gate, so that the output probability of the AND gate equals the required
joint probability. [If the output minterm probabilities are to be derived

we can insert network-output-driven inverters before AND-ing. In such a

way, cases are reduced to the probabilistic treatnent of single-output networks.

Assume t he Bool ean functions 4159950 -4, are associated with the output signals



of a multi-output network. For stochastically describing the output source

referring to Theorem 2.1, we need either the probabilities

(2.1)" P(qlql"'qn)’ P(qlqz"'qn)’ P(qlqz...qn),...., P(qlqz...qn)
or
(2.5 P(a)), P(ay)5---5P(a)s P(q)q,)5 P(aya3)s---sP(aya,e . q,)

Both series of probabilities require the Bool ean functions to be placed in

the argunents, and the case reduces to that of the single-output networks.

Continuing with the probabilistic treatment of the coded Mealy nodel
att=t n, we have to derive the stochastic output states of the input and
out put networks both fed by the signals of the X® and Y™ sources. V& can
repr esent P(XHXYn) according to Theorem 2.2, and the necessary output proba-
bilities can be derived followi ng the above considerations on conbi nati ona
net wor ks.

When representing P(XHXYn) inthe joint termprobability cal culus, we
can have independence of signals, with a time-independent validity, if
- the input and state processes are stochastically independent, i.e. the

case of a multinomal source
- sone of the input signals may be stochastically independent of each other

determined by the source

W illustrate the probability calculations at t = " by an exanpl e
Exanple 2.1

Consider the network given in Figure 5. Derive the stochastic states P(z")

+ . .
and P(YnI ), assuming P(anYn) is given.
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For obtai ni ng P(z") and P(Yn+| ) we use the joint term probability

cal culus. Also considering the two AND gates of dashed lines in Figure 5,

using Algorithm No. 2 [6], elimnating parentheses we have

-~y

(2.6) Pz} = P(y]) + P(yy) =~ POGPER(,)
(2.7)  P(zp) =1 - PODPHHP(xy)
(2.8) PGz = PG + Py - PR - POPPGIEE)
2.9 pOTTH = peD + PaHRGD) - 22GDRPENREG)
o+

(2.10) Py, ) P(y})

2.1 poTY = PG - PODRPEDRGY

Merging the arguments in the products we obtain the general form as

(2.12) =* P(2]) P(y]) + P(yy) -~ P(y)¥y)
n nnn
2)

(2.13) P(z I =P (y]y,xy)

nnn
P(y]) + P(yy) = B(y]y3) = P(y1yyx,)

(2.14) P(zfl‘z‘z‘)

(215 PG

2.16)  PGAETH

n
PG} + PGxy) - 2Py xyxy)

P(y?)

nnn

n+l n+  _ n, _
= P(yl) P(ylxlx2)

(2.17) P(y, ¥, )

If the control source were a (general) multinomal source we could al so

perform the following factorization in equations (2.12) through (2.17")

nnn nn n
(2.18) P(ylyzxz)"‘" P(ylyz)P(xz)

n_n_n n n_n
(2.19) P(ylxlxz)-——" P (y,) P (x;%,)

and if in addition, the source provided spatially independent signals, we could
further factorize as

{2.20) P(xlxz) ——bp(xl)P(xz) s
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In order to derive the stochastic behavior of the network along the
tine axis, we can nmake use of the iterative expansion of sequential networks,
given in Figure 6a. In such a way, we only have to deal with a combinationa
netwerk for which the probability cal cul ati on methods are possessed.

If the iterative expansion is originated at t = tr,me can derive P(zn)
and P(Yn) provided the initial state probability distribution of the network
and the stochastic description of the source for the time interval trststn
are known, and Theorem 1.1 is supposed to hold. Then the network to treat
consists of the conbinational segments for t K tr+|,...,tn. In each segment
we have network inputs while outputs appear in the segnment for t™. Ve can
al so derive any state or output sequence probability within the above tinme
interval, and then we treat combinational network outputs in some consequent

segnents. This approach corresponds to the Method of Growi ng for uncoded

net wor ks.

If the sequential network were fed by a nultinom al input source,
P(XxY) coul d be generated for each segnent, having the know edge of the
stochastic outputs of the preceding segnent. In such a way, for any tine
interval, we could follow the state and output processes in the iterative
networ k, proceedi ng segmnent - by- segnent. It means we sinultaneously have
an iterative expansion for both the deterministic and the stochastic

behavi or of the network

For the p-order stationary Markov input sources we can al so consider
Figure 6b. The introduction of the universal O transform network makes it
possible to treat a periodic conbinational structure which has a stochastic
i nput source in each segment, while the sources are stochastically identica

mul tinom al sources, spatially totally independent of each other for any
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group of the segments. In correspondence with the Method of Recursion we
can derive the network state and output processes by treating a m ni num
time-invariant structure which, in the iterative expansion, appears as the
sourge/network conbinational periodic pattern. The set of stochastic state
vari ables of the configuration (see Theorem l.4)can be identified as the
set of input mintermprobabilities interpreted over the joint conbinationa
network which is formed of the More network output and Mealy network input
logics, Figure 6. |If we followthe joint termprobability cal culus, another
equi val ent set of stochastic state variables is obtained, namely, the com
plete set of joint probabilities associated with the input lines of the
above joint conbinational network

Maki ng use of the iterative expansion, the state and output sequence

-,

probabilities could be derived by treating the correspondi ng nunmber of
source/ network conbinational segments. It is apparent that it is the
periodi c conbinational structure and the set of stochastically identica
sources that allows us to determi ne the sequence probabilities for tztn

if we only know the value of the state variables for t = "
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Concl usi on

W have presented a network-oriented approach for the probabilistic
treatment of sequential networks. When discussing the case of uncoded
netwgfks, we devel oped the Methods of Growing and of Recursion. The forner
nmethod is valid for any type of input process, the latter well suited the
case of stationary Markov input processes. I ntroducing the universa
Otransform network, we could represent a stationary Markov process by a
network with nultinomal control. For networks with a stationary Mrkov
i nput source we have generated a replacing configuration conposed of a
replacing network and a multinomal input source. The states of the
replacing network are the conposite states formed of the origina
network states and the Markov process states while the probabilities of the
conpositglstates appeared as the stochastic state variables of the config-
uration.

For coded networks, we have extended the applicability of known
probabi lity-calculation algorithnms [6] of conbinational networks, and
sequential networks becane treatable by the iterative expansion. The use
of the universal Otransformnetwork allowed us to integrate a stationary
Markov process in the iterative expansion, and in this case, we only had to
stochastically treat a periodic conbinational network pattern. The joint
termprobability calculus for coded networks proved to be favorable over
the minter-mprobability calculus, since its terns are easier to generate
and have explicit relations with the signals of the network. The case of
mul tinomial control proved to be easy to work with in many aspects
t hroughout this paper.

For conputational purposes we did not generate any state graph or

matrix, instead we have worked with al gebraical probability expressions
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derived fromthe primary information of the network and the source.

Results in the paper are unconditionally valid for conpletely specified
synchronous sequential networks. [If the operation of an asynchronous
network, with a specified input range, corresponds to that of a network of
théﬂabove type, the results also hold. W can control the range of inputs
by suitably specifying the source, nanely, input patterns or sequences of
them can be prohibited by setting their probabilities to zero. For the
sequence elimnation we need a properly sophisticated source.

The obtained results can find application, anong other fields, in the

random testing of sequential networks, e.g. [7].
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