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ABSTRACT

This is a prelimnary report on the devel opnent of

emul ator code for the Stanford EMW.

= .

Emul ation is introduced as an interpretive conputing
t echni que. Various classes of enulation and their correlation
to the image machine are presented.

Functional and structural overviews of three enulators
for the Stanford EMW are presented. These are |IBM System/360;
CRIL; and DELtran. Performance estimates are included for

each of these systens.
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BASI C CONCEPTS
"These are the best of timngs,
these are the worst of timngs'

-5 This is a prelimnary report on the general structure of various enulators
for the Stanford EMW. It is too early to provide firm space and time neasure-
ments (indeed, it nmay be that programs will have to be neasured pragmatically
to obtain solid engineering data); however, planning estimates are included.

Emul ation is the inplenentation of an inage nmachine by mapping the states

of this inmage machine into substates of a given host machine (in this case,

the Stanford EMW), and then programm ng the host nachine to perform state
transitions over this substate as required by the image architecture. Three
i mage architectures will be discussed:

1) |1 BM System/360 -- A general -purpose register-oriented inmage machine.

2¥ " CRIL -- A Polish Suffix, stack-oriented inmage nmachine whose design
is tuned to a specific source |anguage.

3) DELtran -- An experimenta’ "mixed" image machi ne conbining many of
the desirable features of both a stack-oriented and a register-
oriented architecture.

The enul ators described here are all 'Class B" in ternms of the follow ng
criterion:
Class A -- transforns all inmage substates precisely as would a true

i mage machine (i.e., duplicates failure nodes).
Class B -- transforns all image substates corresponding to "correct
- prograns" as would a true inmage machine (i.e., may fail
differently).
Class C -- transforns a selected subset of inmage substates as would
a true imge nmachine.
Class D -- transforns a selected subset of image substates in a manner
such that the behavior of a true image machine could be predicted.
Class F -- bears little or no relation to a true inage nachine.



This level precision is not actually required for the global purposes of the
Stanford Emul ation Laboratory. The final classification of these enulators

may drop to Class C, or even Class D, when they are actually tested on a working
EMW host .

This report will be updated to reflect significant changes, additional data.
and hard results as they becone available. The substance of the work to date,
however, should be useful in understanding the nature of enulator structure and
pl anni ng specific, conparative experinments on the yet-to-be-realized EMW |ab
system

SYSTEM 360 EMJLATOR

| NTRODUCTI ON

This section describes a Class B S/360 enmulator for the Palyn EMW. Based
on EMW CPU timing and the code devel oped thus far, performance should be
approxi mately that of a nodel 50. A tinming sunmary is included in the appendix
for both Model | and Mdel Il control store.

The reader is assumed famliar with both §he Palyn EMW [1], the |IBM
Systenf 360 [3], and the I BM S/ 360 Mdel 50 [5].

The emul ator inplenents the 360 basic instruction set with certain extensions
(availabl e as options on certain 360 nodels).

1) Address Specification Interrupts
- no boundary restrictions are enforced since the menory controller perforns
all necessary alignment. Timng estimates assume optinal alignment.
2) Optional Features
- Storage protect not supported and storage key field of PSWi gnored.
- Decimal feature not supported - decimal instruction will result in an
operation specification exception.
- Floating Point feature not supported at this time. Floating Point
instruction will result in an operation specification exception.
- Extended Control and Dynami ¢ Address Translation not supported.
3) Internal Timer not supported. Miin Storage locations X'50' thru X'52'
have no special significance.



4) Timng estimates are included for EMW CPU with Mdel | and Mddel 11 Control

St or age. In both cases, optimal Min Storage operand alignment is assuned.

Based on |BM studies [4], about 20 instructions account for 70% of the
instruction usage in 360 instruction streams. It was therefore decided that
these instructions should be as fast as possible. A reasonable optinization of
these and certain VFL instructions should result in Mdel 50 performance.

e

PHI LOSOPHY

I mage instruction execution consists of three phases, Operation Decode
(DECODE), Format Decode and Effective Address Cal cul ati on (EAxx), and Execution
and Prefetch (OPxx). |In addition, frequently used functions, such as condition
code setting and exception testing for arithmetic operation, are handled by
conmon routines. These appear in line for the RR-format instructions to allow

these to achieve the fastest possible speed.

The five classes of 360 interrupts are handled by a common routine. This

mni mzes mcrostorage overhead.

[/Ois handled in the same manner for both |low and high speed devices.
Initially, all I/Owll be to the Data Point. As nore devices are added to the
_ bus, /0O can either be mapped by the enulator, or by the Datapoint. Handling of
| | ow speed devices may also be done on a word by word nultiplexed basis, with the
EMW CPU acting as a channel (it may also be necessary to handle high speed devices

this way).

Y
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As devices are added to the bus, it may well be desirable to inplenent
device controllers around mcroprocessors, to allow some degree of device
emulation with | ower CPU overhead

CRGANI ZATI ON OF M CROMEMORY

The first 16 words of Mcronenory are the 16 general registers of 360
architecture. The next 8 words represent the 4 floating point registers
(floating point is not yet inplemented). The 360 PSWis stored in Mcronenory
in decoded format. The high order half remains as it appears in nainstorage

upon retrieval. The low order half is parsed as foll ows:
BUS CONTROL BYTE ILC | UNSPECIFIED o ENTRY ADDRESS PCI NTER
N 26232221 1615 14 1 0

31:24 Initial BUS Control byte for Main Store accesses
23:22 Actual 360 ILC
27:16 unspecified
=-15:14  must be zeros
11:0 Semantic Routine entry point

FIGURE 3. Semantic Pointer

16 words 360 General Purpose Registers
¥ worags 360 Floating Point Registers
3 words Program Stetus Word (decoded)
20 words IPL and Inturrupt code
5 words Operation Decode
49 words Format Decode FIGURE 4. Micrcmemory
Usage
1.5 K werds Semantic Routines
2 £ words unused
256  words Semantic Pointers




Next Instruction Address--mai nstorage address of the next target instruction

in host register 1 (R1-PC).

360 condition code (CC) occupies its own word in micromenory, as does the

Pr ogr am Mask.

ILC is stored in host register @ (RP=MAR).

The high-order 256 words of control store contain pointers to the entry
points of various execution routines. Bits 31-12 of these pointers are not used
to address microstore, and may contain information pertinent to each specific
execution sequence. The enulator code resides in the |loworder part of the

bl ock of mcronenory between these storage areas
It is assumed that the image machine will be interrupted infrequently.

Therefore, the extra overhead required to reformat the 360 PSW at each

interruption is acceptable.

FIELDS IN MICROMCMORY

PSHO SMASK AMHP ZEROS
3 24 23 20 19 16 15 0
P31 FMSK
31 3029 28 27 24 23 0
COND cc
CODE
31 3329 o o]
ILC (RO (o
3
24 23 22 2% T6 15 1 17 —7
PC (RI) EE?QL INST ADDR
3 24 23 T 0l

FIELDS IN REGISTERS



OPERATI ON
Instruction Prefetching

Instructions are prefetched by the previous execution routine, thereby
ensuring that instructions are immediately available to the Decode routine
The Conditional Branch instruction initially assumes no branch is to be taken
and Prefetches the next sequential instruction upon entry to the execution
routine. The branch target instruction is then prefetched. In this way, if
it is determined that a branch should be taken, the penalty will be ninimzed

The Decode routine perforns two levels of operation decoding as well as
initial parse of the 360 instruction. The first decode is that of the instruction
length code. This is used as an increnent to a 4-element transfer vector table
In this way, the proper routine to parse the instruction, update program counter
and calculate addresses will be selected. (Actually, the final entry of this
table in the actual RR format decode routine, thus elimnating a branch and
speedi ng the decode of this class of instruction.)

‘The second level of decode involves the selection of semantic pointer to
the execution entry point from nicrostore. These pointers are stored in the
hi gh order 256 words of mcrostore. Since only the low order 12 bits of these
pointers are actually used to address microstore, the remainder can contain
special information pertinent to each specific instruction execution, such as
actual instruction length code and nenory control bytes. Loading of the host
MAR with this pointer sets the I-codes. The actual ILC for each instruction is

set in this way.

Format decoding proceeds with as nuch generality as possible. This requires
some -functions to be repeated in several execution sequences, however, the
simplification of the decoding process seems a worthwhile tradeoff. Predefined
holding registers contain pertinent portions of the parsed and decoded 360
i nstruction. Exit fromthe Format Decode is a register transfer to R@, the

mcro control register

An interesting tradeoff was made in the RR format decode. A 500 ns
reduction in execution time (4.3 ns to 3.8 ns) was achieved by doing a partial



decode in the RR decode routine. Parsing and Program Counter updating is

conpl emented in the execution routine. This is done utilizing unused portions
of already existing mcroinstructions in the execution code, resulting in a size
reduction as well as the above nmentioned speed increase. The sane technique
could not effectively be enployed in other decode sequences.

Upon entry to the execution routine, a holding register still contains the
sémantic pointer word. In addition, the I-codes of Rp have been |oaded with
the information in bits 21-16 of the semantic pointer. Useful information from
the holding register is usually retrieved immediately, and this register used
as a scratch in the execution sequence.

Again, execution will include a prefetch of the next target instruction.

CODI NG AND TESTI NG
Per f or mance

Sanpl e code for the Decode, Format Decode and certain representative

instructions has been devel oped. Performance estimtes, for a CPU with Mdel I
*control store and no overlap or concurrency, indicates approximately Mdel 50
execution speed. The RR Format instructions are equivalent; AR instruction

t akes about 3.18 us, while a nodel 50 required 3.75 us. Rx format instructions
are also somewhat slower; an Add Word required 6.30 us, while the nmodel 50
requires 5.50 us. SS format instructions are significantly faster than Mbdel
50, however. .

Testing of the routines will consist of walking through each routine as it
is coded to ensure the proper information is available at the proper tinmes. In
addition, individual segnents of code will be tested on the nachine for proper
information transfer. Testing of the integrated Enulator will consist of the
running of Benchmark software, significantly the PL360 nonitor subsystem
devel oped by M:C ure.






CRIL EMILATOR

| NTRODUCTI ON

CRIL is an intermediate, executable text developed by ICL for the CORAL
source |anguage and existing line of ICL mcroprogrammable hosts. The CRIL
i mage machine contains a dynamic evaluation stack (up to 17 elements deep) and
8_data sector base registers. Its machi ne | anguage mani pul ates these resources
directly, and is organized along the lines of a Polish Suffix notation.

Instructions are of varying length, and nore than one instruction may be
packed into a single word of program store. Instructions are packed fromright-
to-left (least significant bits on the right with respect to the normal order of
executi on. Fields within an instruction are ordered right-to-left with respect
to the normal sequence of interpretation. Each instruction explicitly indicates
whet her the next instruction is to be Fetched froma new word in program store
(Fetch node), or is contained in the Currently obtained program word (Continue
mode) .

The first instruction in a program word begins six bits in fromthe right
(least significant) end of the word. Bits from other packed instructions may
wrap around the left (nmost significant ) end of the instruction word into these
six loworder bit positions.

Finally, there are a nunber of error conditions which must be checked for
when the CRIL machine is running in a special "Debug-Trace" node. These conditions
are transparent, however, when running in a normal "Production" mpbde. In terns
of our classification of emulators, then, the CRIL machine can be run in a Cass A
or Cass B node.

PHI LOSOPHY

I mege machine instruction execution proceeds in three phases: Operation
Decode, Operation Execution, Next Instruction Fetch. The fetch of the next
instruction is included, rather than the fetch of the current instruction, due
to the nature of the CRIL sequencing rules. Since EMW lacks a right-circular
shift, it was necessary to convert the circular CRIL decode rules into |ogical
right shift rules. The enulator nucleus devel oped so far depends on the
fol | owi ng assunptions:



1) No program word is so packed that either:

a) cyclic looping occurs within the word (i.e., all of the instructions
in the word are Continue-node, in which case a non-terminating |oop
will result since every CRIL instruction capable of modifying the
Program Counter is Fetch mode).

or
b) any bit is used as part of the encoding of nore than one instruction
(i.e., instructions do not "overlap").
2) Akl bits not part of an instruction encoding (i.e., 'unused') are |ow (zero).

3) Only O ass B enulation (Production node) is required.

STORAGE ORGANI ZATI ON

All internal CRIL resources are mapped into EMW's Mcro Store as indicated
in the table bel ow

CRIL Resource EMW Resource
(8) Addressing Registers Mcro Store, words 0:7
(17) Evaluation Stack cells Mcro Store, words 8:24
Top- OF - Stack Pointer Mcro Register 7
Ra operand Mcro Register 4
Rb operand Mcro Register 5
Program Count er Mcro Register 1 °
Instruction Register Mcro Register 3

A&ditionally, Mcro Register 2 is used for general indexing during all phases of
instruction execution, and Mcro Register 6 is used as a "Pre-Fetch" all for the
next inage program word.

CODI NG TECHNI QUES

Since CRIL instruction fields are interpreted naturally fromright-to-left,
beginning six bits fromthe |ow order position of an instruction word, each Fetch
cycle starts by:

1) Moving the program word containing the current stream of CRIL instructions
into the image instruction register (IR while fetching the next program
word into the prefetch register (PF) and updating the program counter
regi ster (PC).

2) Duplicating this program word in the indexing register (XR) adjacent to
the instruction register (IR).

3) Right aligning the low order bit of the first CRIL instruction in the current
program word by using a shift left (double) to sinulate a shift right
circular (single).



Each n-bit field extraction is subsequently achieved by:

1) Isolating the loworder n bits of the instruction register using either
an EMW Extract or And instruction

2) Shifting the instruction register right (single) n bits

Qperation decode consists of a field extraction followed by a relative branch
forward by the value of the field

PERFORMANCE

The entire enulator, including I/0O should fit easily into the available 4K
Mcro Store. Typical execution tines for "sinple" operations range from3 to 6 us
on the Stanford EMW (I1.t-2.5 on a production EMW). This is certainly cost-
effective in conparison to existing CRIL enulators which run at 15-30 us per
instruction and require nore costly host support: Exact instruction timngs
as well as a prelininary version of the emulator itself may be found in [6].

DELtran EMJLATOR

| NTRODUCTI ON

DELtran is an internmedi ate, executable text |anguage devel oped specifically
for evaluating BASIC FORTRAN on the Stanford EMW. Its design follows the genera
precepts set forth in [7]. The DELtran inmmge machine contains a dynamic eval uation
stack (nunber of elenents nenory-linited), and a program dependent nunber of
Randonly Accessable "register" cells. [Each of these storage resources can be
mani pul ated directly by DELtran instructions.

Instruction units are of varying lengths, and more than one instruction can
- be packed into a single word. Also, instruction units can extend across program
word boundaries, although the individual syllables of which they are constructed
nmust lie entirely within a single word (note: an n-bit syllable with mtrailing
zero's may be packed into the low order n-mbits of a program word).

RAM cells are accessed indirectly through a table of dynam c descriptions
(or SCOPE), and may refer to either scalar or array variables. Paraneter-passing
is achieved by coping dynanmic descriptors for the actual arguments into the space
reserved for the dynamc descriptors for the formats (e.g., a true call-by-reference).

- 10 -~



PHI LOSOPHY

The execution of a typical DELtran instruction unit takes place in three
phases:

1) Lead Syllables parse/decode--during this phase, the general type and |exical
format of an instruction are deternined;

2) Ref erence Syllable parse/decode--during this phase, the actual operands of
an instruction unit are recognized and a "standard interface" established
-«for the next phase;

3) Qperator Syllable parse/decode/ execute--during this phase, the image nachine
state is transformed according to the DELtran operator specified by that
instruction and the dynamic values in the interface established by the
previ ous phase.

DELtran syllables are encoded so that the zero-value neans "fetch a new program
word" and frequently-used interpretations are assigned codes with trailing zeros.
This promotes efficient packing of syllables into program words.

DELtran resources map into the host machine as follows:

DELtran Resource EMW Resour ce

Eval uation Stack cells Mcro Store; anchored at high end,
= grows toward | ow end.

Dynanmi ¢ descriptors (Scope) Mcro Store; anchored just above

emul at or code, grows toward high end.

Top- OF - Stack pointer Mcro Register 1

Current Program Wrd Mcro Register 3

Qperand 1 Val ue (p) Mcro Register 4

Qperand 2 Value (q) Mcro Register 5

Result Location (r) Mcro Register 6

Addressing State (s) Mcro Register 7

Program Count er Mcro Store, word O

Additionally, Mcro Register 2 is used for general indexing operations, and Mcro
Regi ster 7 contains auxiliary DELtran State information.

CODI NG TECHNI QUES

A doubl e-shift left operation is used to nove the next syllabel in a DELtran
instruction stream from the Current Program Wrd into the indexing register.
Reference Syllables are then checked for validity by decrementing the index
register and testing for a negative value (it will be positive or zero unless the
syl lable value was zero originally). If the resulting value is equal to mnus

- 11 -



one, a new programword is fetched, and the entire operation repeated. Senantic
Syl |l abl es are checked for zero-value through indexing into a "junp table", each
el ement of which is an entry point into the routine for the code correspondi ng
to the offset of the element. In this case, the zeroth elenent in the table is
the entry point to a routine which fetches a new program word.

PERFORVANCE

The basic emulator, excluding the evaluation stack and Scope areas, wll
require less than 800 words of Mcro Store. Allow ng 1.2K words for dynamc
data, the emulator should require about 2K words. Typical instruction units
will execute in 6 to 10 us, however, this does not indicate the conparative
performance of DELtran to 360 machine code. To perform a conparative analysis
the ratio of DELtran instruction units to 360 instructions, as generated by a

BASI C FORTRAN conpiler, must be taken into consideration. Prelininary estimtes

based on very snall fragnents show that one DELtran instruction unit is worth
at least 3 or 7 360 instructions (functional surrogate fragment), and possibly

8 to 10 360 instructions (process control surrogate fragment).
of ‘a "production” EMW, with a 100 ns Mcro Store and 30 ns internal cycle,

the DELtran nmachine woul d execute instruction units in 4 to 7 us. |f an additional

one or two Mcro Registers were available, this would drop to 2.5 to 5 us.

- 12 -
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