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ABSTRACT

,.In the first part of this paper the basic differences between the
. -

classical (placement, routing) and the topological approach to solving

the circuit layout problem are outlined.

After a brief survey of some existing mathematical models for the

problem, an improved model is suggested. This model is based on the con-

cept of partially oriented graph and contains more topological information

than earlier models.

This reduces the need for special constraints on the graph embedding

algorithm. The models also allow pin and gate assignment in function of

the layout, under certain conditions.
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MATHEMATICAL MODELS FOT THE CIRCUIT LAYOUT PROBLEM

1. Introduction

The circuit layout problem is an important facet of design
3---e

automation of digital systems. This problem is encountered in

laying out printed circuit boards, integrated circuit masks,

logic diagrams, flowcharts, electronic circuit diagrams, etc.

This discussion will be limited to printed circuit board and

integrated circuit layout.

The basic problem of laying out a circuit can be formulated

as follows. Let c be a set of components C(i). Every component

C(i) is itself a set of terminals i.e., C(i) = ct&j) I j = 1 m(i)) I
where-m(i) is the number of terminals of component C(i) .. -

A net is a collection of terminals (of the same component

or of different components) that have to be equipotential at all
1 times. This is accomplished by connecting all the terminals of

a net by a continuous strip of conducting material. The order in

which the terminals of a net are to be connected is not specified

_ in advance and can be chosen in function of an optimal layout,

provided that certain physical constraints can be met (e.g. time-

delay and cross-talk limitations).

Let N be the set of all nets N(j) . Each net N(j) is itself

a set of terminals. The number of terminals of a net N(j) (or the

cardinality of the set N(j)) will be denoted by p(j).
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The circuit layout problem is then to position the components

C(i) on a plane and to realize each of the nets N(j) on one or

more planes, such that an objective function is minimized, thereby

taking into account a number of constraints, Both the objective

fun-okion and the constraints depend on the specific circuit

layout problem being considered.

Geometrical versus Topological Information.

The topological aspects of the circuit layout problem relate

primarily to the relative positions of components and inter-

connections. Other topological information includes the order

in which the terminals of a component appear on its physical

boundary-as well as the possibility of routing connections under
. -

or over the area used by the component. The requirement that

the external connections have to appear on the outside boundary

,of the circuit in a prespecified order is also a topological

characteristic of the circuit layout problem. Sometimes, the

order of terminals is not completely imposed upon the designer:

e.g. I the inputs of a three-input AND gate are interchangeable

and a good layout procedure should take this into account.

The geometrical aspects of the circuit layout problem are

related to parameters that can be measured. For layout problems

one usually does not use the ordinary Euclidian metric, but

rather the so-called Manhattan geometry, in which only vertical

and horizontal line segments are allowed. The size of individual
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components, the thickness of conductor lines and the size of a

printed circuit board or an integrated circuit chip are examples

of geometrical parameters.

An important geometrical characteristic is the concept of

finte wiring capacities. These occur when the number of connec-
.‘-*?a
tors in a given area is limited by geometrical considerations.

Such is e.g., the case for the number of wires one can route

between two adjacent terminals of a component.

The Classical Approach

Most procedures for solving the circuit layout problem first

position the components thereby minimizing an objective function.

This function should be a measure of the quality of the final

lay-t. Usually the total wirelength is the parameter one tries. -
to minimize. This tends to cluster together heavily connected

components and to shorten the longest wires, which are desirable

1 side-effects. Once the placement is obtained, it is frozen and

the routing of connections has to be performed within this

fixed-component topology.

Gate assignment is usually done before the placement phase

while pin assignment is often deferred until the interconnection

routing phase.

An excellent survey of component placement techniques is

contained in c 318 .

The routing of interconnections is frequently done sequen-



tially using algorithms such as Lee's
c l

r25 or Hightower's 121 .I

Sequential routing inherently raises the question of selecting

the order in which interconnections should be routed, This

problem was studied in 1 .CI
MW'Algorithms  that allow some degree of parallellism in the

routing phase were proposed in DO] and [262 , although these

algorithms are applicable only to a restricted class of problems.

The interconnection routing problem is surveyed in b] and [27].

The reason why the circuit layout problem is partitioned into

independent subproblems such as placement, assignment and routing

is primarily because of the computational complexity of the

global problem.

In&he classical approach, both the topological and the
. -

geometrical aspects of the circuit layout problem are not fully

taken into account. In the routing phase it may be impossible

to route a connection in a given routing plane. This failure

may be caused by one of the following:

1) Congestion: An interconnection cannot be routed because

of limited wiring capacities (geometrical constraint).

2) Topological obstruction: Some connections may be routed

in topologically different ways. However, choosing a

particular topological embedding may reduce the ability

to route other connections. This problem is illustrated

in Fig. 1, where four components, labeled A, B, C and D

are connected by two nets {2,7\ and &3,4,5,6,8] .
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The layout shown in Fig. l(a) shows the possibility of

embedding both nets in the same plane. In Fig. l(b) the

net {W,4,5,6,8}  has been embedded differently, thereby

making it impossible to embed t !I2,7 in the same plane.

3) Inherent non-planarity: No embedding in the plane exists.-‘-4-J
This classical approach has proven successful in the layout

of multilayer printed circuit boards with a regular structure.

When multiple interconnection layers are available and when a

given interconnection can be realized in more than one layer

(through the use of vias), then the occurrence of topological

obstructions is not of a critical nature. Furthermore total

completion of all interconnections, although desirable, is not

essential for printed circuit boards.
2 -

. -
The Topological Approach

The main concern in solving the circuit layout problem is

to embed the connections in one or more planes, such that no two

connections intersect. This criterion shows a striking similarity
*

with the planarity concept in graph theory : a graph is planar

if it can be embedded in the plane such that no two edges

intersect.

The topological approach is based on graph-theoretical con-

cepts and first constructs a graph model for the circuit. This

graph represents the topological aspects of the circuit as

* Unless otherwise defined,
Harary [lg] .

all graph-theoretical terms follow
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faithfully as possible, while neglecting all geometrical infor-

mation. This graph then is embedded in one or more planes.

If some of the connections remain unembedded, one attempts to

rout-,ss them by making use of technological properties. The

final step consists of transforming the topological layout into

a physical layout, that takes into account the geometrical

properties.

In this approach, the topological parameters are considered

at all stages, while the geometrical information is used only

in the last phase of the layout.

Although several attempts were made to solve the circuit

layout problem using graph-theoretical methods, working systems
L‘ .

have appeared only recently.

Topological methods for laying out one-sided printed

circuits were proposed by Kodres [23] and Weissman [34 . Methods

for the layout of thin film RC circuits were mentioned by

Sinden b9,30] and Bedrosian [6]. Weinberg [3$ discusses graph-

theoretical concepts such as planarity and isomorphism, that are

useful for solving circuit layout problems. Akers and Hadlock 143

describe a layout method for IC's based on a graph-theoretical

method. Akers, Geyer and Roberts II3 continue this approach and

also describe a method to transform the topological embedding

into a physical layout, which takes into account the actual di-

mensions of the components, A good survey of the topological

approach to the circuit layout problem is given by Kodres
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Working systems for the layout of integrated circuits, based

on a graph-theoretical approach are described by Yoshida and

Nakagawa @Oj, Engl and Mlynski [7,8,14], Fletcher fi67, Klamet b27

acd Sugiyama pl]. An effort to justify theoretically the models

used is given by Engl and Mlynski ~10,11,12,l&-J and by Vanlier

and Otten 11-37 .

One serious objection to topological layout methods is that

they usually do not take into account any physical parmeters,

such as the number of wires one can route between two adjacent

pins of a component or the capacity of a routing channel.

As was indicated in 36 ,cl it is possible to take some finite

capac&ies into account in a graph-theoretical model.
. -

Some interesting results on transforming a topological em-

bedding into a physical layout were reported by Zibert and

Many existing systems for topological IC layout are limited

to small-scale circuits. Because of the inadequacy of the models

and algorithms employed, they often rely heavily on interaction

for obtaining a final layout.

In the next section some of the existing models will be

critically discussed while in section 3 the properties of

physical circuits will be studied, emphasizing those properties

that are relevant to solving the circuit layout problem.
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2. Some Existing Mathematical Models.

In the previous section it was pointed out that the first

step in a topological layout procedure consists of constructing

a graph model for the circuit. This model should reflect the

topological properties of the circuit such that in the sub-3--w
sequent steps an optimal layout may be obtained.

An abstract model was proposed recently by Engl and Mlynski 15 .cl
From this model a graph can be derived for the embedding step.

This abstract model is based on the following concept:

A multiplace graph is a pair G(A,R), where A is a finite set of

vertices and R is a family of multisets*defined on A. Each

element of R is an edge of the multiplace graph.

Engl and Mlynski proposed the following model for the circuit

layout sroblem:

- Nets are represented by vertices of the multiplace graph.

- A n-terminal component is modelled by an edge of the multi-

place graph i.e. a multiset of cardinality n.

This multiplace graph is called the potential graph of the

circuit.

The transpose of a multiplace graph G(A,R) is another

multiplace graph G'(A' ,R') which has as its incidence matrix the

transpose of the incidence matrix of G. The transpose of the

potential graph is called the component graph. Here the compo-

nents are represented by vertices and the nets by multisets.

* A multiset is also known as a weighted set.
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In the potential graph, a component with n pins is modelled

by a multiset of cardinality n. The reason why multisets are

needed to model a component is that more than one terminal of a

component can be connected to the same net, For the same reason
e-4?l
multisets are needed to model nets in the component graph. It is

not possible to represent the relationships that exist between the

pins of a component with this model.

The concept of planarity of a multiplace graph is related

to the mapping of a multiplace graph M(A,R) into a simple graph

G(V,E): every element of the set A is mapped into a distinct

vertex of the graph G. Every element x of R is mapped into

a K(l,n) (i.e. star-) subgraph, with the center vertex represen-

tinTthe element and the edges representing the fact that some. -
vertices of A belong to x.

.

This mapping can result in a graph with multiple edges.

A multiplace graph is planar if the corresponding simple graph

is planar. Since multiple edges do not influence planarity, they

can be replaced by a single edge.

Mapping the potential graph into a simple graph results in

modelling a net by a vertex and a component by a star, which is

homeomorphic to the model proposed in 14 .l a Mapping the compo-

nent graph results in modelling a net by a star and a component

by a vertex, which is the model of k7]. It should be noted that

both the potential graph and the component graph map into the

same bipartite graph.

.
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This model may be planar when the actual circuit is not and

vice versa, as shown in Fig. 2.

Several other graph models were proposed. In [40] components

are modelled by vertices and nets by edges.
3 This requires a prior

--e
decomposition of every net into simple interconnections and does

not allow this to be done in function of an optimal layout.

Several authors c37, 5, 2g propose the representation of

a component by a cycle. This may lead to an embedding in which

a part of the graph is embedded inside a cycle representing a

component. This can be prevented by placing a star inside the

component p7], thereby forcing the cycle to be a face when the

star is removed from the embedding.

. - An&her problem that may occur is that the embedding results

in a plane graph in which the mirror image of the cycle occurs.

In printed circuit technology this means that the component

lshould be placed on the other side of the board, which is clearly

inacceptable. In [373 it is proposed that the embedding~ algo-

rithm take care of this constraint.

None of the existing models take into account all the proper-

ties of physical circuits that will be discussed in section 3.

Furthermore they require the embedding algorithm to be aware of

a number of constraints that essentially are of a topological

nature. E.g. that the external connections have to be placed on

the periphery of the circuit; that the cycles representing com-

ponents be embedded with a certain orientation; that the external
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connections have to appear in a certain order on the periphery.

The rest of this paper will be devoted to developing a model 1
that 1. includes those topological constraints.

2. takes into account certain properties of physical circuits. -

3. Properties of Physical Circuits.

In this section a number of properties of physical circuits

useful in solving the circuit layout problem optimally will be

discussed.

Let e= i&i)) be the set of components.

For solving the circuit layout problem it is desirable to

distinguish between the different terminals of a component since
L‘ *

* this leads to a better layout.

A component C(i) can be considered a set of terminals t(i,j). _

Let ‘e be the set of all terminals. Note that C(i) fl C(j) = @

for i # j and
v

U C(i) = ?z

i=l,/E[

The set of components P is a family of subsets of z.

Consider the set of all terminals: between two terminals that

belong to the same net, there exists a relation "are interconnected".

This relation is reflexive, symmetric and transitive and therefore

is an equivalence relation. This equivalence relation partitions
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the set z into a number of disjoint subsets (equivalence classes)

called nets, A net N(k) is a subset of ? . Again N(i)oN(j) = 9

for i # j.

When a terminal T(i,j) is not connected to any other ter-

minZ1, then it belongs to a net N(i) of cardinality 1. Such

nets are degenerate. Proper nets are of cardinality 2 or greater.

The total wiring&et of all nets) is again a family of subsets

of k .

Relations between the Terminals of a Component: Cyclical Ordering.

In many cases, the order in which the terminals of a compo-

nent appear on the periphery of this component is predefined.

This can be represented by defining a function S(i), called

the-successor function for a component i. This function S(i)

maps a terminal t(i,j) of C(i) into another terminal t(i,k)

of C(i). This mapping is one-to-one. The inverse function R(i),

called the predecessor function, also maps every terminal of

C(i) into another terminal of C(i).

Relations between the Terminals of a Component: Physical

Equivalence of Terminals.

a By the physical equivalence of a set of terminals of a

component is meant that all terminals in this set are equipoten-

tial. This means that a net can be connected to any one of these

terminals.

As an example of this, consider an IC transistor: topologi-
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tally, one should consider this as a 6-terminal component, with

opposite terminals being physically equivalent, as shown in Fig. 3.

Let F be a subset of C(i), consisting of terminals that are

physically equivalent, At least one of these terminals has to

*tie connected to a net N(k). Each group of physically equivalent

terminals of component i can be represented by a set F(i,j),

with \F(i,j)\ at least equal to 1. Component i can be

represented by the set C(i) = {F&j)) .

Relations between the Terminals of a Component: Logical Equivalence

of Terminals.

It often occurs that a number of terminals of a component

have__identical logical functions; this allows terminals to be inter-
. -
changed in order to obtain a better layout. An example of such

a situation is an AND gate with 3 inputs: suppose that each of

4 the terminals has to be connected to a net, one should not a priori

assign a net to a physical terminal but rather do this in function

of an optimal layout. This problem is often referred to as the

pin assignment problem.

Let L be a subset of C(i), consisting of terminals having

identical logical functions. Each of these terminals is incident

with a net N(k). Since the terminals in the set L all perform

identical logical functions, it is permissible to assign the

nets N(k) to any permutation of the terminals t(i,j). The

terminals in the set L are logically equivalent.

-14-



Each group of logically equivalent terminals of a component

l .

i can be represented by a set L(i,j) of terminals, The cardina-

lity of each such set is at least 1. We can represent component i

by a....set C(i) = (L(M)} .

I It is possible that within a component both physical and

logical equivalence of terminals exists, In that case, the

following property holds: if tEF(i,j) and teL(i,k), then

for all elements t G Wi,j) : t ~5 L(i,k).

Relations between the Terminals of a Component: Subcomponent

Equivalence.

In some cases, a component can be made up of a number of
L' .

identical subcomponents, that are logically interchangeable.

As an example of this is a quadruple 2-input NAND gate, which is

a common IC module available commercially. Another example is

a 3-3-3 AND-OR-INVERT gate (Fig. 4).

In such cases, one should not randomly assign a physical compo-

nent to a particular group of nets to be connected to one such

subcomponent, but rather do this in function of an optimal

layout.

This can be modelled by representing component i by a collection

of sets of equivalent subcomponents C(i) = cE&j)4 ,where

E(i,j) = i L(i,j,k) 4 , i.e., each subcomponent consists of a set

of logically equivalent terminal sets L(i,j,k); furthermore

L(i,j,k) = t each set of logically equivalent

-15-
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*-

.--

terminals consists of a set of physically equivalent terminal

sets, and finally F(i,j,k.l) = i t(i,j,k,l,m) 1 i.e., each set of

physically equivalent terminals consists of one or more physical

terminals.
rc.4 9

4. Representing Nets

As was mentioned before, a net is a collection of terminals

that have to be equipotential at all times, The order in which

the terminals are connected is not a priori defined and may be

chosen in functions of the layout.

Assuming that every terminal is represented by a distinct

vertex, then any spanning tree on the n vertices of the n-terminal

net would be a satisfactory solution. Unfortunately there are. -
n-2n possible spanning trees on n vertices. In order to find

an optimal layout one would have to enumerate all possible

4 combinations over all nets. This is clearly impractical.

On the other hand, an a priori arbitrary decomposition of

the net into simple (two-point) interconnections- as proposed in

c I40 may lead to a far-from-optimal layout.

A compromise solution is to represent a net by a single

vertex. Several authors (e.g. w,c 937 ) propose a represen -

tation that results in a single vertex, not only modelling the

net but also all terminals belonging to that net. This can

. I

* I

lead to difficulties in identifying individual terminals in the

embedding step.
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The most appropriate model is a star as proposed by

Goldstein and Schweikert k7]. This will not always result in
--*3

an optimal decomposition of the net, as illustrated in Fig. 2(c,d)

where a planar circuit results in a nonplanar graph model.

However, modelling a net by a star appears to be the only

feasible solution not requiring the enumeration of all possible

combinations of net decompositions, In the following sections

it will therefore be assumed that nets are modelled by stars.
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5. Graph Models for Components.

It will be assumed here that nets are modelled by stars (see

section 4). Furthermore, it will be required that nets be embedded

in the region exterior to a component's boundary and that no mirror-

*??mage equivalents of components are available.

We will introduce the following terminology here before examining

graph models for components.

The

ces

Let G(V,E) be a graph with a vertex set V and an edge set E.

neighborhood N(v) of a vertex v of G is the set of all verti-

of G that are adjacent to v.

An orientation o(v) of a vertex v of G is a cyclic permutation

of the elements of the neighborhood of v.

2 -An orientation O(G) of a graph G is a mapping of the vertex
. -

set V into the set of orientations of all vertices of G.
*

The triple (V,E,O) is an oriented graph.

A graph G(V.E.0) is partially oriented if the mapping of V

into the set of orientations is partially defined (i.e. O(G) is

defined for a proper subset of V only).

An oriented vertex is a vertex for which an orientation is

defined.

A graph G with p vertices and q edges is planar (i.e.

embeddable in 2 plane S) if it is possible to associate a collec--

tion of p distinct points of S (corresponding to the vertices of

G) and a collection of q Jordan arcs (corresponding to the edges

of G) r such that if an arc "a" corresponds to an edge e= u,v ,i 1

* The concept of oriented graph was introduced by Ulrich [32] .
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I .

then only the endpoints of "a" correspond to vertices of G

(i.e. u and v).

A plane graph is a graph that is embedded in the plane.

A region or a face of a plane graph G is a maximal portion

of the plane forwhich any two points may be joined by a Jordan

arc "b", such that any point of "b" neither corresponds to a vertex

of G nor lies on a Jordan arc corresponding to an edge of G.

The boundary of a region R of a plane graph consists of all

the points x corresponding to vertices of G or lying on a Jordan

arc corresponding to an edge of G such that x can be joined to

a point of R by a Jordan arc all of whose points (except for x)

belong to R.

A graph G is outerplanar if it can be embedded in the plane
L‘ .

such that every vertex of G lies on the boundary of the same

region (usually the exterior).

1
Let G(V,E) be a graph and let Vl be a subset of V, then G

is outerplanar with respect to V1 if it can be embedded in the

plane such that all vertices of Vl lie on the boundary of the

same region.

A partially oriented graph G is planar if it can be embedded

in the plane such that for the arcs a(i) with a common endpoint P,

that-correspond to the edges incident to a given vertex v, a

clockwise sweep around P encounters these arcs a(i) in the order

prescribed by the orientation.

’ . It should be noted that with every plane graph, one can

associate an oriented graph. However, not every oriented graph
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has a corresponding plane graph (i.e. is planar).

Desirable Properties of an Adequate Component Model.

1)

-**73

2)

In order to avoid introducing non-planarities a graph

model for a component should be outerplanar with respect

to the vertices, that represent the component's terminals.

Every possible embedding of the component together with

the nets connected to it should be compatible with the

cyclical ordering of the terminals on the component%

boundary. In other words, every possible embedding

must have a physical meaning.

Cyclic Ordering of the Terminals.

In section 3 it was mentioned that the ordering of terminals
* -

. along a component's boundary can be modelled by a successor function.

This cyclic relationship can be represented by a cycle.

When we assume nets to be embedded in the region exterior to the

component's boundary and if the nets are represented by stars

then we can model a component and its incident net-edges by a

partially oriented graph G, as shown in Fig. 5(a). The vertex set

of G consists of oriented vertices, representing terminals and

of non-oriented vertices, representing the nets. The edge set of

G- consists of a cycle, modelling the component's boundary and of

edges, connecting the terminals to the net-vertices.

Physical Equivalence of Terminals.

Consider a component C(i) = where F(i,j) is a set of
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physically equivalent erminals. Then \F(i,j)\>l  and

F(i,j)flF(i,k)  = @ if j # k .

It will be assumed here that no two elements of F(i,j) are

phys&cally adjacent,1-w If two or more terminals are physically

adjacent, there is no problem of pin assignment between them and

they can be represented by a single terminal.

Consider the partially oriented graph G', obtained from the

original graph G by contracting the sets of physically equivalent

terminals. The vertex set of G' consists of vertices, representing

the sets of physically equivalent terminals and of vertices,

representing the nets. The edge set of G' consists of the edges,

connecting the terminals to the corresponding net-vertices and

of edge: representing a relation between physically equivalent

sets. An example of this is given in Fig. 5(b), where the sets

X and Y of physically equivalent terminals are contracted.

A vertex corresponding to a set F(i,j)of cardinality greater than

1, must be non-oriented, on order to allow the incident net-edge

to be embedded properly. The vertices, corresponding to sets F(i,j)

o-f cardinality 1, remain oriented.

In order for the resulting model to be suitable, every

possible embedding must have a physical meaning. From Fig. 5(b)

it can be seen that the net connected to the set X can be

embedded in two different ways, corresponding to assigning the

physical net to either terminal 2 or to terminal 9.

Fig. 6 shows an example where this pin assignment is critical for
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the net connecting terminals lc, 2a and (3b or 3e). If the net

had been a priori assigned to terminal 3e then no solution exists

as shown in Fig. 6(a). By using a model as described above, the

solution of Fig. 6(b) would be obtained.
3--w

Another condition to be met by the resulting model is that

it has to be outerplanar with respect to the set of vertices that

represent terminals. This condition can be verified as follows.

Consider the partially oriented graph G, with a cycle

modelling the component's boundary and with oriented vertices

representing the terminals and non-oriented vertices representing

the nets as shown in Fig. 5(a). We can then construct a new

graph G' as follows.

-For every set F(i,j) = {t(i,j,k)\ of cardinality greater. -
than 1, we add a star subgraph to the model, with a new vertex

d(i,j) being the center, connected to the vertices t(i,j,k) such

4 that d(i,j) lies between c(i,j,k) and a(i,j,k), where t(i,j,k) =

S(a(i,j,k)) and c(i,j,.k) = S(t(i,j,k)). If the oriented graph so

obtained is outerplanar, then the graph derived by contracting all

the K(l,n) subgraphs is also outerplanar. Fig. 5(c) shows the

graph G' corresponding to the graph G of Fig. 5(a).

Logical Equivalence of Terminals.

Let C(i) = { L(Lj)\ r where L(i,j) is a set of logically

equivalent terminals. Then(L(i,j)\)/l and L(i,j)f\L(i,k)  = @

if j # k.
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Consider a set L(i,j) = {t(i,j,k)) of terminals with identical

logical functions, Each of the terminals t(i,j,k) is incident with

a net N(1). The component model should be outerplanar and for

eveir'y" permutation of the terminals, the cyclic ordering should be

respected.

Let G be the partially oriented graph, representing the

component boundary and its incident net-edges, We can then con-

sider the partially oriented graph G', obtained by contracting the

sets L(i,j). The vertices of G', corresponding to sets L(i,j)

of cardinality 1 remain oriented. An example is shown in Fig. 7.

In order to perform pin assignment in function of the layout

the origtation of the nets around a vertex corresponding to a
. -

set L(i,j) of cardinality greater than 1 should not be specified.

This can be accomplished by inserting an edge for every set L(i,j)

of cardinality greater than 1, as shown in Fig, 7(c). Let G[L(i,jg

be the subgraphs of the cycle, generated by the subsets L(i,j).

Then there exist two possibilities:

1) All of the subgraphs G&(i,jd are connected. This implies

that the vertices of L(i,j) are physically adjacent. Then

the new graph G' remains 2-connected, A vertex in G',

corresponding to a set L(i,j) of cardinality n, will then

be connected to n nets. Assuming that the total circuit

layout graph is planar, then every possible embedding

will satisfy the requirements.
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2) At least one of the subgraphs G&(i,j$ is disconnected.

This implies that the vertices of L(i,j) are not all

adjacent. As a result the graph G' is l-connected and if the

M-41 set L(i,j) has cardinality n, then the corresponding vertex

will be connected to n nets. Not every possible embedding

however satisfies the requirements.

Therefore , this model is appropriate for logical equivalence,

if all logically equivalent terminals are physically adjacent.

Fig. 8 shows an example where the modelling of logical equivalence

may result in a better layout. Assume that the terminals a,b and c

of component 1 are logically equivalent. Fig. 8(a) shows a non-planar

laY,o.ut resulting from assigning nets arbitrarily to the ter-
. -
minals of component 1. Fig. 8(b) shows a planar layout that may be

obtained by using an appropriate graph model.

It should be pointed out here that it may be possible to model

logical equivalence even if the terminals are not physically

adjacent.

- Unspecified Order of Terminals.

In some cases, the components can be (re-) designed if this

Would result in a better layout. From the point of view of cir-

cuit layout, this property is similar to logical equivalence of

terminals.

In case the order of all terminals is unspecified, the
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component can be represented by a single undirected vertex

(or by a star subgraph if one desires a distinct vertex to repre-

sent each terminal). This results in a model, similar to the one

proposed by Engl and Mlynski Ll4]

3--w

Logical Equivalence of Subcomponents.

Let c(i) be a component, consisting of n sets E(i,j)* of logically

equivalent subcomponents.

In the following discussion, we will

restrictions:

impose the following

1) a subcomponent is a collection of physically adjacent

terminals, performing a specified logical function.

2) In order for 2 subcomponents to belong to the same
2z -

. - set E(i,j)$hey have to perform identical logical functions,

have the same number of terminals and the order in which

the terminals appear on the component's boundary must be

the same.

Consider the partially oriented graph model G for the order

of the terminals on the component's boundary, as illustrated in

Fig. 9 (a) and 10.(a). Let G&(id denote the subgraph G, generated

by a subcomponent S(i). Since we require the terminals of a sub-

component to be physically adjacent, all Gb(id are connected

paths. Let x(i) and y(i) be the vertices of valency 1 of Gb(i)] ,

such that y(i) = S+(x(i)). * Let x,(i) be the vertex preceding x(i)

* By a=S+(b) we will denote that a was obtained from b by multiple
application of the successor function S.
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Le. x(i) = S(xl(i)) and let y,(i) be the vertex following y(i) on

the original cycle i.e. y,(i) = S(y(i)). We now derive a new graph

model G' for the component as follows.

WG' ) = V(G) U a(i)i 1
-?E(G') = E(G) - i (xl(i) ,x(i) 1 I (y (i> ,yl (9 ,)

U
i (x,(i) ,a(i> 1 I (a(i) ,y,(i)) r (a(i) ,x(i)) I (a(i) ,yW 1

where a(i) is a new vertex, associated with

subcomponent S(i).

By repeating this for every subcomponent S(i) with more than

1 terminal, we obatin a new oriented graph model G". For the pur-

pose of embedding, G" is iquivalent to the original model G.

Examples are given in Fig. 9 W and 10 (b).

. - "'As a result of this transformation, the graph model now con-

sists of a cycle for the component itself and of cycles for each

of the subcomponents, The cycle modelling the component itself,

contains vertices that represent terminals as well as vertices

a(i) for each subcomponent.

Let E(i) = t S(i,j)J be a set of subcomponents with identical

logical functions. Let every subcomponent S(i,j) be connected

to a collection N(i,j) of nets. The component model to be derived

e should be outerplanar and every permutation of the logically

equivalent subcomponents, allowed by the graph model should have

a physical meaning i.e. be compatible with the cyclical ordering

of the terminals.

We can now consider the oriented graph, obtained by contrac-
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ting the edges (a(i),a(j)) of the cycle, such that both a(i)e E(k)

and a(j) & E(k) for some k. Then two possibilities exist:

1) all vertices of a set E (k) are physically adjacent

-a (Fig. 9(d). When the total circuit layout graph is

planar, then every possible embedding will satisfy the

requirements.

2) The vertices of the set E (k) are not physically adjacent

(Fig.10 (d)). Then not every embedding satisfies the re-

quirements.

Therefore, we are able to use logical equivalence of sub-

components if the sets of terminals of subcomponents that are

equivalent are physically adjacent.L‘ .
. -

Fig. 10(c) shows the correct model that allows partial sub-

component assignment in function of the layout (for subcomponents

Al and A2).1

6. Graph Models for the External Connections.

When the order of these connections is predetermined, one can

again use an oriented graph. All nets now have to be embedded in

the interior region (as opposed to the exterior region for com-

ponents.).

In some cases, a certain degree of freedom exists, allowing

logical signals to be assigned to physical terminals in function

of the layout. This property is similar to the logical equivalence

of the terminals of a component, As for components, the condition

-27-



for being able to model the logical equivalence of a set of

tg;minals is that they are physically adjacent.

7. Conclusions

The mathematical model presented in this paper, based on the

concept of partially oriented graphs, allows the formulation of

the circuit layout problem as an embedding problem of partially

oriented graphs. All of the topological information is contained

in the model itself and no special constraints have to be imposed

upon the embedding algorithm.L' .
. -

Furthermore, the models derived here allow pin and gate

assignment in function of an optimal layout under certain

conditions.
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Figure captions.

Fig. 1 (a) Planar embedding of nets tL3AL6,8 !I

(b) Embedding of net {1,3,4,5,w34 creating a
topological obstruction.

,,-Gg . 2 (a) Non-planar circuit.

(b) Planar model for the circuit of Fig. 2(a).

(c) Planar circuit.

(d) Non-planar model for the circuit of Fig. 2(c).

Fig. 3 Physical equivalence of the terminals of an IC transistor.

Fig. 4 A 3-3-3 AND-OR-INVERT gate as an example of subcomponent
equivalence.

Fig. 5 (a) Partially oriented graph, modelling the circular
ordering of the terminals.

(b) Partially oriented graph modelling physical
L‘ . equivalence.. -

(c) Graph G' for verifying the possiblity of modelling
physical equivalence of terminals.

Fig. 6 (a) Non-planar layout as a result of a priori pin
assignment (terminals 3b and 3e physically equivalent).

(b) Planar layout obtained by performing pin assignment
in function of the layout.

Fig. 7 (a) Circuit with logically equivalent sets A and B.

(b) After contracting the sets A and B.

(c) Correct oriented graph model.

* Fig. 8 (a) Non-planar layout as a result of a priori pin
assignment (terminals la, lb, lc logically equivalent).

(b) Planar layout obtained by performing pin assignment
in function of the layout.
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Fig. 9 Derivation of a model for subcomponent equivalence when
equivalent subcomponents are physically adjacent.

Fig.10 Derivation of a model for subcomponent equivalence when
not all equivalent subcomponents are not physically
adjacent.

L‘ .
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Fig. 1 (a) Planar embedding of nets tl/3,4,5,6,84

(b) Embedding of net [WAU-,$f creating a
topological obstruction.
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Fig. 2 (a) Non-planar circuit.

(b) Planar model for the circuit of Fig. 2(a).

Y (c) Planar circuit.

(d) Non-planar model for the circuit of Fig. 2 k).
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Fig. 3 Physical equivalence of the terminals of an IC transistor.
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Fig. 5 (a) Partially oriented graph, modelling the circular
ordering of the terminals.

(b) Partially oriented graph modelling physical
equivalence.

(c) Graph G' for verifying the possiblity of modelling
physical equivalence of terminals.
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Fig. 6 (a) Non-planar layout as a result of a priori pin
assignment (terminals 3b and 3e physically equivalent).

(b) Planar layout obtained by performinga.pin askignment
in function of the layout.
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Fig. 7 (a) Circuit with logically equivalent sets A and B.

(b) After contracting the sets A and B.

(c) Correct oriented graph model.
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Fig. 9 Derivation of a model for subcomponent equivalence when
equivalent subcomponents are physically adjacent.
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Fig.10 Derivation of a model for subcomponent equivalence when
not all equivalent subcomponents are not physically
adjacent.
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