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ABSTRACT
-.In the first part of this paper the basic differences between the

classical (placenent, routing) and the topological approach to solving
the circuit layout problem are outlined

After a brief survey of some existing mathematical mpdels for the
problem an inproved nodel is suggested. This nodel is based on the con-
cept of partially oriented graph and contains nore topological infornmation
than earlier nodels.

This reduces the need for special constraints on the graph enbedding
al gorithm The nodels also allow pin and gate assignment in function of

the layout, under certain conditions
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MATHEMATI CAL MODELS FOT' THE CI RCUI T LAYQUT PRCBLEM

1. I nt roducti on

The circuit layout problemis an inportant facet of design
aut omat i on of digital systems. This problemis encountered in
llaying out printed circuit boards, jntegrated circuit masks,
| ogic diagrams, flowcharts, electronic circuit diagrams, etc.

This discussion will be limted to printed circuit board and
integrated circuit |ayout.

The basic problem of laying out a circuit can be formul ated
as follows. Let C be a set of conponents C(i). Every conponent
C(i) is itself a set of termnals i.e., C(i) = {t(i,j) , =1 m(i%’,

~where'm(i) is the nunber of termnals of conponent (i)

A net is a collection of termnals (of the same conponent
or of different components) that have to be equipotential at al
tines. This is acconplished by connecting all the term nals of
a net by a continuous strip of conducting material. The order in
which the termnals of a net are to be connected is not specified

. in advance and can be chosen in function of an optinml |ayout,
provi ded that certain physical constraints can be net (e.g. time-
delay and cross-talk limtations).

Let N be the set of all nets N(j) . Each net N(j) is itself
a set of termnals. The nunber of terminals of a net N(j) (or the

cardinality of the set N(j)) will be denoted by p(j).



The circuit |layout problemis then to position the conponents
C(i) on a plane and to realize each of the nets N(j) on one or
nore planes, such that an objective function is mnimzed, thereby
taking into account a nunber of constraints, Both the objective
funetion and the constraints depend on the specific circuit

| ayout probl em bei ng consi dered.

Ceonetrical versus Topol ogical Information

The topol ogi cal aspects of the circuit |ayout problemrelate
primarily to the relative positions of conponents and inter-
connecti ons. O her topological information includes the order
in which the terminals of a conponent appear on its physical
boundary as well as the possibility of routing connections under
of 6ver the area used by the conponent. The requirenent that
the external connections have to appear on the outside boundary
.of the circuit in a prespecified order is also a topol ogica
characteristic of the circuit |ayout problem Soneti mes, the
order of termnals is not conpletely inposed upon the designer:
e.g., the inputs of a three-input AND gate are interchangeabl e
and a good | ayout procedure should take this into account.

The geonetrical aspects of the circuit |ayout problem are
related to paraneters that can be measured. For |ayout problens
one usually does not use the ordinary Euclidian netric, but
rather the so-called Manhattan geonetry, in which only vertica

and horizontal |ine segnments are all owed. The size of individual



conponents, the thickness of conductor lines and the size of a
printed circuit board or an integrated circuit chip are exanples
of geonetrical paraneters.

An inportant geonetrical characteristic is the concept of
finte wring capacities. These occur when the nunber of connec-

Y

tors in a given area is limited by geonetrical considerations.

Such is e.g., the case for the nunber of wires one can route

between two adjacent termnals of a conponent.

The d assical Approach

Most procedures for solving the circuit |ayout problem first
position the conponents thereby m nimzing an objective function
This function should be a neasure of the quality of the final
layaut. Usually the total wirelength is the paraneter one tries
to mnimze. This tends to cluster together heavily connected
conmponents and to shorten the |ongest wires, which are desirable
side-effects. Once the placenent is obtained, it is frozen and
the routing of connections has to be performed within this
fi xed- conponent topol ogy.

Gate assignnment is usually done before the placenent phase
while pin assignnment is often deferred until the interconnection
routi ng phase.

An excellent survey of conponent placenent techniques is
contained in [18.

The routing of interconnections is frequently done sequen-



tially using algorithns such as Lee's CZ? or Hi ghtower's Z}é].
Sequent i al routing inherently raises the question of selecting
the order in which interconnections should be routed, Thi s
probl em was studied in[;].

"ﬁAlgorithms that allow sone degree of parallellism in the
routi ng phase were proposed in [?Q] and [2@] , although these
algorithns are applicable only to a restricted class of problens.

The interconnection routing problemis surveyed in [;]'and [éj].

The reason why the circuit layout problemis partitioned into
i ndependent subprobl ens such as placenent, assignnent and routing
is primarily because of the conputational conplexity of the
gl obal probl em

In.the cl assical approach, both the topological and the
géoﬁetrical aspects of the circuit |ayout problem are not fully
taken into account. In the routing phase it may be inpossible
.to route a connection in a given routing plane. This failure
may be caused by one of the follow ng:

1) Congestion: An interconnection cannot be routed because

of limted wiring capacities (geonetrical constraint).

2) Topol ogi cal obstruction: Sone connections may be routed

in topologically different ways. However, choosing a
particul ar topol ogi cal enbedding may reduce the ability
to route other connections. This problemis illustrated
in Fig. 1, where four conponents, |abeled A, B, C and D

are connected by two nets {2,7& and {1,3,4,5,6,8} .



The layout shown in Fig. |(a) shows the possibility of
enbeddi ng both nets in the sane plane. In Fig. 1(b) the
net {1,3,4,5,6,85 has been enbedded differently, thereby
making it inpossible to enbed {2,7Sin the sane plane

3) Inherent non-planarity: No enbedding in the plane exists.

This classical approach has proven successful in the |ayout
of multilayer printed circuit boards with a regular structure.
When multiple interconnection |ayers are available and when a
giveninterconnection can be realized in nore than one |ayer
(through the use of vias), then the occurrence of topologica
obstructions is not of a critical nature. Furthernore total
conpletion of all interconnections, although desirable, is not

essential for printed circuit boards.

= .

The Topol ogi cal Approach

The main concern in solving the circuit layout problemis
to enbed the connections in one or nore planes, such that no two
connections intersect. This criterion shows a striking simlarity
with the planarity concept in graph theory*: a graph is planar
if it can be enbedded in the plane such that no two edges
i ntersect.

The topol ogi cal approach is based on graph-theoretical con-
cepts and first constructs a graph nodel for the circuit. This

graph represents the topol ogi cal aspects of the circuit as

* Unl ess otherw se defined, all graph-theoretical terns follow
Har ary [;Q]



faithfully as possible, while neglecting all geonetrical infor-
mat i on. This graph then is enbedded in one or nore planes.

If some of the connections remain unenbedded, one attenpts to
route them by naki ng use of technol ogical properties. The
final step consists of transform ng the topological |ayout into
a physical layout, that takes into account the geonetrica
properti es.

In this approach, the topol ogical paraneters are considered
at all stages, while the geonetrical information is used only
in the | ast phase of the |ayout.

Al t hough several attenpts were nmade to solve the circuit
| ayout problem using graph-theoretical nethods, working systens
have apSéared only recently.

Topol ogi cal nethods for |aying out one-sided printed
circuits were proposed by Kodres [23] and Weissman [39]. Methods
for the layout of thin filmRC circuits were nentioned by
Sinden [}9,3@] and Bedrosian [ﬁ]. Wi nberg {}é} di scusses graph-
theoretical concepts such as planarity and isonorphism that are
useful for solving circuit layout problens. Akers and Hadlock [4}
describe a layout nmethod for IC's based on a graph-theoretica
met hod. Akers, GCeyer and Roberts [3]continue t his approach and
al so describe a nmethod to transform the topol ogi cal enbeddi ng
into a physical layout, which takes into account the actual di-
mensi ons of the conponents, A good survey of the topol ogica

approach to the circuit layout problemis given by Kodres [24}.



Wrking systens for the layout of integrated circuits, based
on a graph-theoretical approach are described by Yoshida and
Nekagawa [40], Engl and Mynski [7,8,14], Fletcher [16], Kl anet [22]
and Sugi yama [?i]. An effort to justify theoretically the nodels
used is given by Engl and M ynski [;0,11,12,1@] and by Vanlier
and Otten EBW:[.

One serious objection to topological |ayout nmethods is that
they usually do not take into account any physical parneters,
such as the nunber of wires one can route between two adjacent
pins of a conponent or the capacity of a routing channel.

As was indicated in [3@} it is possible to take some finite
capacdities into account in a graph-theoretical nodel

‘ Sonme interesting results on transformng a topological em
bedding into a physical |ayout were reported by Zi bert and

saa1 [a1), [42].

Many existing systens for topological IC layout are limted
to small-scale circuits. Because of the inadequacy of the nodels
and al gorithms enployed, they often rely heavily on interaction
for obtaining a final |ayout.

In the next section sone of the existing nodels will be
critically discussed while in section 3 the properties of
physical circuits will be studied, enphasizing those properties

that are relevant to solving the circuit |ayout problem



2. Some Existing Mathematical Models.

In the previous section it was pointed out that the first
step in a topol ogical |ayout procedure consists of constructing
a graph nodel for the circuit. This nodel should reflect the
topgkogical properties of the circuit such that in the sub-
sequent steps an optinmal |ayout nmay be obtained.

An abstract nodel was proposed recently by Engl and M ynski [ié}
From this nodel a graph can be derived for the enbeddi ng step.

This abstract nodel is based on the follow ng concept:

A multiplace graph is a pair G(A,R), where Ais a finite set of

vertices and Ris a famly of multisets*defined on A Each
el ement of R is an edge of the multiplace graph
Engl and Mynski proposed the followi ng nodel for the circuit
| ayout problem:
- Nets are represented by vertices of the multiplace graph.
- A n-termnal conmponent is modelled by an edge of the multi-
pl ace graph i.e. a multiset of cardinality n.

This nultiplace graph is called the potential graph of the

circuit.

The transpose of a multiplace graph G(A,R) i s another
nmul ti pl ace graph G'(A',R') which has as its incidence matrix the
transpose of the incidence matrix of G  The transpose of the

potential graph is called the conmponent graph. Here the conpo-

nents are represented by vertices and the nets by nmultisets.

* A multiset iS also known as a weighted set.



In the potential graph, a conmponent with n pins is modelled
by a multiset of cardinality n. The reason why nultisets are
needed to nodel a conponent is that nore than one termnal of a
conponent can be connected to the same net, For the sane reason

wﬁultisets are needed to nodel nets in the conponent graph. It is
not possible to represent the relationships that exist between the
pins of a conponent with this nodel.

The concept of planarity of a multiplace graph is related
to the mapping of a multiplace graph M(A,R) into a sinple graph
G(V,E): every elenment of the set Ais mapped into a distinct
vertex of the graph G Every elenment x of R is mapped into
a K(1,n) (i.e. star-) subgraph, with the center vertex represen-
<ting-the el ement and the edges representing the fact that sone
vertices of A belong to x.

This mapping can result in a graph with multiple edges.

A multiplace graph is planar if the corresponding sinple graph
is planar. Since nmultiple edges do not influence planarity, they
can be replaced by a single edge.

Mappi ng the potential graph into a sinple graph results in
nodel ling a net by a vertex and a conponent by a star, which is
homeomorphic to the nodel proposed in £4a- Mappi ng the conpo-
nent graph results in nodelling a net by a star and a conponent
by a vertex, which is the nodel of @7]. It should be noted that
both the potential graph and the conponent graph map into the

sanme bipartite graph.
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This nodel may be planar when the actual circuit is not and
vice versa, as shown in Fig. 2.

Several other graph nodels were proposed. I n [gq] conponent s
are modelled by vertices and nets by edges. This requires a prior
deégnposition of every net into sinple interconnections and does
not allow this to be done in function of an optimal |ayout.

Several authors [?Z 5, 2@] propose the representation of
a conponent by a cycle. This may lead to an enbedding in which
a part of the graph is enbedded inside a cycle representing a
conponent . This can be prevented by placing a star inside the
conponent [?j], thereby forcing the cycle to be a face when the
star is renoved from the enbedding.

Andther problem that may occur is that the enbedding results
in a plane graph in which the mrror imge of the cycle occurs.

In printed circuit technology this means that the conmponent
‘should be placed on the other side of the board, which is clearly
i naccept abl e. In [3{] it is proposed that the embedding al go-

rithm take care of this constraint.

None of the existing nodels take into account all the proper-
ties of physical circuits that will be discussed in section 3.
Furthernore they require the enbedding algorithmto be aware of
a nunber of constraints that essentially are of a topologica
nature. E.g. that the external connections have to be placed on
the periphery of the circuit; that the cycles representing com

ponents be enbedded with a certain orientation; that the externa

-11-



connections have to appear in a certain order on the periphery.
The rest of this paper will be devoted to devel oping a node
that 1. i ncludes those topol ogical constraints

2. takes into account certain properties of physical circuits.

'

3. Properties of Physical CGrcuits.

In this section a nunber of properties of physical circuits
useful in solving the circuit layout problemoptimally will be
di scussed.

Let ¥= {C(i)} be the set of conponents

For solving the circuit layout problemit is desirable to
di stinguish between the different termnals of a conponent since
' this-yeads to a better |ayout.

A conponent C(i) can be considered a set of termnals t(i,j).
Let ?; be the set of all termnals. Note that C(i) N (j) = ¢
for i #j and

udai) =€
i=1, (€]

The set of conponents E is a famly of subsets of 2;

Consider the set of all termnals: between two term nals that
belong to the sane net, there exists a relation "are interconnected".
This relation is reflexive, symetric and transitive and therefore

is an equival ence rel ation. This equival ence relation partitions
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t he set Ef into a nunber of disjoint subsets (equival ence classes)
called nets, A net N(k) is a subset of—Z’. Again N(i)IN(j) = ¢
for i #].

Wen a termnal T(i,j) is not connected to any other ter-
minal, then it belongs to a net N(i) of cardinality 1. Such
nets are degenerate. Proper nets are of cardinality 2or greater

The total wring&t of all nets) is again a famly of subsets

of E;

Rel ati ons between the Termi nals of a Conmponent: Cyclical O dering.

In many cases, the order in which the termnals of a conpo-
nent appear on the periphery of this conponent is predefined.
This can be represented by defining a function S(i), called

-

t he- successor function for a conmponent i. This function S(i)

maps a termnal t(i,3j) of C(i) into another termnal t(i,k)
of C(i). This mapping is one-to-one. The inverse function R(i),

called the predecessor function, also naps every termnal of

C(i) into another termnal of C(i).

Rel ati ons between the Termnals of a Conponent: Physica

Equi val ence of Term nal s.

. By the physical equivalence of a set of termnals of a

conponent is nmeant that all termnals in this set are equipoten-
tial. This means that a net can be connected to any one of these
t erm nal s.

As an exanple of this, consider an IC transistor: topologi-

~-13-



cally, one should consider this as a 6-terminal conponent, wth
opposite termnals being physically equivalent, as shown in Fig. 3.

Let F be a subset of C(i), consisting of termnals that are

physically equivalent, At |east one of these ternmnals has to
e connected to a net N(k). Each group of physically equival ent
termnals of conponent i can be represented by a set F(i,j),
with \F(i,j)\ at least equal to 1. Conponent i can be

represented by the set C(i) = {F(i,j)},

Rel ati ons between the Term nals of a Conponent: Logical Equival ence

of Term nal s.

It often occurs that a nunber of termnals of a conponent
have_identical |ogical functions; this allows ternminals to be inter-
changed in order to obtain a better layout. An exanpl e of such
a situation is an AND gate with 3 inputs: suppose that each of
the termnals has to be connected to a net, one should not a priori
assign a net to a physical termnal but rather do this in function
of an optinmal |ayout. This problemis often referred to as the
pi n assi gnment probl em

Let L be a subset of C(i), consisting of termnals having
identical |ogical functions. Each of these termnals is incident
Qith a net N(k). Since the termnals in the set L all perform
identical l|ogical functions, it is permssible to assign the
nets N(k) to any permutation of the termnals t(i,j). The

termnals in the set L are |ogically equivalent.

-14—



Each group of logically equivalent termnals of a conponent
i can be represented by a set L(i,j) of termnals, The cardi na-
ity of each such set is at least 1. W can represent conponent i
by a.set (i) = {u(i, 9],

It is possible that within a conponent both physical and
| ogi cal equivalence of termnals exists, In that case, the
followi ng property holds: if te€F(i,3j) and teL(i,k), then

for all elements t ¢ (F(i,j) : t € L(i,k).

Rel ati ons between the Term nals of a Conponent: Subconponent

Equi val ence.

In sone cases, a conponent can be made up of a nunber of
identicél subcomponents, that are logically interchangeabl e.
As an exanple of this is a quadruple 2-input NAND gate, which is
a common | C nodule available comercially. Another exanple is
a 3-3-3 AND-OR-I NVERT gate (Fig. 4).
In such cases, one should not randomy assign a physical conpo-
nent to a particular group of nets to be connected to one such
subcomponent, but rather do this in function of an opti mal
| ayout .

This can be modelled by representing conponent i by a collection
of sets of equival ent subconponents C(i) = {E(i,j)4 ;,Where
E(i,3) = {L(i,j,k)4 , i.e., each subconponent consists of a set
of logically equivalent termnal sets L(i,j,k); furthernore

L(i,j,k) = -(F(i,j,k,l)} i.e., each set of logically equivalent

-15-



termnals consists of a set of physically equivalent termna
sets, and finally F(i,j,k.1) = gt(i,j,k,l,HUB i.e., each set of
physically equivalent terminals consists of one or nore physica

term nal s.

o™

4, Representing Nets

As was nentioned before, a net is a collection of termnals
that have to be equipotential at all tines, The order in which
the termnals are connected is not a priori defined and may be
chosen in functions of the |ayout.

Assuming that every termnal is represented by a distinct
vertex, then any spanning tree on the n vertices of the n-termna
net would be a satisfactory solution. Unfortunately there are
hn-z possi bl e spanning trees on n vertices. In order to find
an optimal |ayout one would have to enunerate all possible
conbi nations over all nets. This is clearly inpractical

On the other hand, an a priori arbitrary deconposition of
the net into sinple (two-point) interconnections- as proposed in
[4d1nay lead to a far-fromoptimal |ayout.

A conprom se solution is to represent a net by a single
vertex. Several authors (e.g. [}4]1?7]) propose a represen -
tation that results in a single vertex, not only nodelling the
net but also all termnals belonging to that net. Thi s can

lead to difficulties in identifying individual termnals in the

enbeddi ng step

-16-



The nost appropriate nodel is a star as proposed by
Gol dstein and Schwei kert [17]. This will not always result in
an g;)tirral deconposition of the net, as illustrated in Fig. 2(c,d)
where a planar circuit results in a nonplanar graph nodel.
However, nodelling a net by a star appears to be the only
feasible solution not requiring the enuneration of all possible

conbi nati ons of net deconpositions, In the follow ng sections

it wll therefore be assuned that nets are modelled by stars.

L]
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5. G aph Mbdels for Conponents.

It will be assunmed here that nets are modelled by stars (see
section 4). Furthernore, it will be required that nets be enbedded
in the region exterior to a conponent's boundary and that no mirror-

~fmage equival ents of conponents are avail able.
W will introduce the follow ng term nology here before exam ning
graph nodels for conponents.

Let G(V,E) be a graph with a vertex set V and an edge set E.

The nei ghborhood N(v) of a vertex v of Gis the set of all verti-

ces of Gthat are adjacent to v.

An orientation o(v) of a vertex v of Gis a cyclic pernutation

of the elenments of the nei ghborhood of v.

2 An orientation QG of a graph Gis a mapping of the vertex

‘set V into the set of orientations of all vertices of G

The triple (V,E,O) is an oriented graph.*

A graph G(V.E.O) is partially oriented if the mapping of V

into the set of orientations is partially defined (i.e. QG is
defined for a proper subset of V only).

An oriented vertex is a vertex for which an orientation is

def i ned.

A graph Gwith p vertices and q edges is planar (i.e.

enbeddable in a plane S) if it is possible to associate a collec-

tion of p distinct points of S (corresponding to the vertices of
G) and a collection of g Jordan arcs (corresponding to the edges

of G), such that if an arc "a" corresponds to an edge e:{u,v},

* The concept of oriented graph was introduced by Ulrich [32]
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then only the endpoints of "a" correspond to vertices of G
(i.e. u and v).

A plane graph is a graph that is enbedded in the plane.

A region or a face of a plane graph Gis a nmaxinmal portion
of tRhe plane forwhich any two points may be joined by a Jordan
arc "b", such that any point of "b" neither corresponds to a vertex
of Gnor lies on a Jordan arc corresponding to an edge of G

The boundary of a region R of a plane graph consists of all
the points x corresponding to vertices of G or lying on a Jordan
arc corresponding to an edge of G such that x can be joined to
a point of R by a Jordan arc all of whose points (except for x)
belong to R

A graph Gis outerplanar if it can be enbedded in the plane

such théi every vertex of Glies on the boundary of the sane
region (usually the exterior).

Let G(V,E) be a graph and | et vy be a subset of V, then G
}s outerplanar with respect to V, if it can be enbedded in the

1
pl ane such that all vertices of vV, lie on the boundary of the

sane region.

A partially oriented graph Gis planar if it can be enbedded

in the plane such that for the arcs a(i) with a conmon endpoint P,
t hat-correspond to the edges incident to a given vertex v, a
cl ockwi se sweep around P encounters these arcs a(i) in the order
prescribed by the orientation.

It should be noted that with every plane graph, one can

associate an oriented graph. However, not every oriented graph
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has a corresponding plane graph (i.e. is planar).

Desirabl e Properties of an Adequate Conponent Model

1) In order to avoid introducing non-planarities a graph
nodel for a conmponent should be outerplanar with respect

to the vertices, that represent the conponent's termnals.

2) Every possible enbedding of the conponent together wth
the nets connected to it should be conpatible with the
cyclical ordering of the termnals on the conponent%
boundary. In other words, every possible enbedding

nmust have a physical neaning.

Cyclic Ordering of the Term nal s.

In section 3it was nmentioned that the ordering of termnals
alona'a conponent's boundary can be modelled by a successor function.
This cyclic relationship can be represented by a cycle.
Wien we assune nets to be enbedded in the region exterior to the
conponent's boundary and if the nets are represented by stars
then we can nodel a conponent and its incident net-edges by a
partially oriented graph G as shown in Fig. 5(a). The vertex set
of G consists of oriented vertices, representing termnals and
of non-oriented vertices, representing the nets. The edge set of
G consists of a cycle, nodelling the conmponent’'s boundary and of

edges, connecting the termnals to the net-vertices.

Physi cal Equi val ence of Term nal s.

Consi der a conponent C(i) :={F(i,j)3 where F(i,j) is a set of
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physi cally equival ent ermnals. Then \F(i,j)\},l and
F(1i,3)/1F(i,k) = 8 if | # K

It wll be assumed here that no two elenents of F(i,j) are
physically adj acent, |f two or nore termnals are physically
adj acent, there is no problem of pin assignnment between them and
they can be represented by a single term nal.

Consider the partially oriented graph G', obtained from the
original graph G by contracting the sets of physically equival ent
term nal s. The vertex set of G' consists of vertices, representing
the sets of physically equivalent termnals and of vertices,
representing the nets. The edge set of G' consists of the edges,
connecting the termnals to the corresponding net-vertices and
of edgeg representing a relation between physically equival ent
sets. An exanple of this is given in Fig. 5(b), where the sets
X and Y of physically equivalent termnals are contracted.

A vertex corresponding to a set F(i,j)of cardinality greater than

1, nust be non-oriented, on order to allow the incident net-edge

to be enbedded properly. The vertices, corresponding to sets F(i,j)
of cardinality 1, remain oriented.

In order for the resulting nodel to be suitable, every

possi bl e enbeddi ng nust have a physical neaning. From Fig. 5(b)
it can be seen that the net connected to the set X can be
enbedded in two different ways, corresponding to assigning the
physical net to either termnal 2 or to termnal 9.

Fig. 6 shows an exanple where this pin assignnent is critical for

-21-



the net connecting termnals Ic, 2a and (3b or 3e). If the net
had been a priori assigned to termnal 3e then no solution exists
as shown in Fig. 6(a). By using a nodel as described above, the
solution of Fig. 6(b) would be obtained.
- Anot her condition to be net by the resulting nodel is that
it has to be outerplanar with respect to the set of vertices that
represent termnals. This condition can be verified as foll ows.
Consider the partially oriented graph G with a cycle
nodel I ing the conmponent's boundary and with oriented vertices
representing the termnals and non-oriented vertices representing
the nets as shown in Fig. 5(a). W can then construct a new
graph G' as follows.

-For every set F(i,j) = {t(i,j,k)§ of cardinality greater
than 1, we add a star subgraph to the nodel, with a new vertex
d(i,j) being the center, connected to the vertices t(i,j,k) such
that d(i,j) lies between c(i,j,k) and a(i,j,k), where t(i,j,k) =
S(a(i,j,k)) and c(i,j,k) = S(t(i,j,k)). If the oriented graph so
obtained is outerplanar, then the graph derived by contracting al
the K(1,n) subgraphs is also outerplanar. Fig. 5(c) shows the

graph G' corresponding to the graph G of Fig. 5(a).

Logi cal Equi val ence of Term nal s.

Let C(i) = { L(i,j)& , Where L(i,j) is a set of logically
equi val ent term nals. Then[L(i,j)\)l_ and L(i,3)(1L(i,k) = &

ifj # k.
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Consider a set L(i,j) = {t(i,j,k)} of termnals with identica
| ogi cal functions, Each of the termnals t(i,j,k) is incident with
a net N(1). The conponent nodel should be outerplanar and for
eve¥y pernutation of the terminals, the cyclic ordering should be
respect ed.

Let G be the partially oriented graph, representing the
conponent boundary and its incident net-edges, We can then con-
sider the partially oriented graph G', obtained by contracting the
sets L(i,j). The vertices of G', corresponding to sets L(i,J)
of cardinality 1 remain oriented. An exanple is shown in Fig. 7.

In order to perform pin assignment in function of the |ayout
the orientation of the nets around a vertex corresponding to a
sef‘L(i,j) of cardinality greater than 1 should not be specified.
This can be acconplished by inserting an edge for every set L(i,j)
of cardinality greater than 1, as shown in Fig, 7(c). Let G[L(i,jﬂ
be the subgraphs of the cycle, generated by the subsets L(i,j).
Then there exist two possibilities:

1) Al of the subgraphs G[@(i,jﬂ are connected. This inplies

that the vertices of L(i,j) are physically adjacent. Then
the new graph G' remains 2-connected, A vertex in G',
corresponding to a set L(i,j) of cardinality n, will then
be connected to n nets. Assunming that the total circuit

| ayout graph is planar, then every possible enbeddi ng

will satisfy the requirenents.
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2) At least one of the subgraphs G[ﬁ(i,jﬂ i s di sconnect ed.

This inplies that the vertices of L(i,j) are not all

adjacent. As a result the graph G' is |-connected and if the
. set L(i,j) has cardinality n, then the corresponding vertex
will be connected to n nets. Not every possible enbeddi ng

however satisfies the requirenents.

Therefore , this nodel is appropriate for |ogical equivalence,
if all logically equivalent termnals are physically adjacent.
Fig. 8 shows an exanple where the nodelling of |ogical equivalence
may result in a better layout. Assunme that the terminals a,b and c
of conponent 1 are l|ogically equivalent. Fig. 8(a) shows a non-planar

layout resulting from assigning nets arbitrarily to the ter-

"minals of conmponent 1. Fig. 8(b) shows a planar |ayout that nmay be
obt ai ned by using an appropriate graph nodel

It should be pointed out here that it nmay be possible to node
| ogi cal equival ence even if the termnals are not physically

adj acent.

- Unspecified Order of Term nals.

In sone cases, the conponents can be (re-) designed if this
Wuld result in a better |ayout. From the point of view of cir-
cuit layout, this property is simlar to |ogical equival ence of
term nal s.

In case the order of all termnals is unspecified, the
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conponent can be represented by a single undirected vertex
(or by a star subgraph if one desires a distinct vertex to repre-

sent each termnal). This results in a nodel, simlar to the one

proposed by Engl and M ynski [}4]

D

Logi cal Equi val ence of Subconponents.

Let Cc(i) be a conponent, consisting of n sets E(i,j)- of logically
equi val ent subconponents.

In the follow ng discussion, we will inpose the follow ng
restrictions:

1) a subconponent is a collection of physically adjacent

termnals, performng a specified |ogical function
2) In order for 2 subconponents to belong to the sane
“set E(i,j)they have to performidentical |ogical functions,
have the same nunber of terminals and the order in which
the term nals appear on the conponent's boundary nust be
t he sane.
Consider the partially oriented graph nodel G for the order
of the termnals on the conponent's boundary, as illustrated in
Fig. 9 (a) and 10(a). Let G[S(i)] denote the subgraph G generated
by a subconponent S(i). Since we require the termnals of a sub-
conponent to be physically adjacent, all G[é(iﬂ are connected

pat hs. Let x(i) and y(i) be the vertices of valency 1 of G[é(ii],

such that y(i) = St(x(i)). * Let xl(i) be the vertex preceding x(i)

* By a=S+(b) we will denote that a was obtained fromb by multiple
application of the successor function S.
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i,e. x(i) = S(xl(i)) and | et yl(i) be the vertex followng y(i) on
the original cycle i.e. y,(i) = S(y(i)). W now derive a new graph
nodel G' for the conponent as follows.
v =V Ufagi)}
B = KO - {(xg(3),x(1)), (v (1) y, ()]

U {xg (1) 4ali)) (@i vy (), (@) x (1), (i) v (i)

where a(i) is a new vertex, associated with

subconponent S(i).

By repeating this for every subconponent S(i) with nore than

1 terminal, we obatin a new oriented graph nodel G". For the pur-
pose of enbedding, G" is iquivalent to the original nodel G
Examples are given in Fig. 9 (b) and 10 (b).

""As a result of this transformation, the graph nodel now con-
sists of a cycle for the conponent itself and of cycles for each
of the subconponents, The cycle nodelling the component itself,
contains vertices that represent termnals as well as vertices
a(i) for each subconponent.

Let E(i) = {S(i,j{}be a set of subconponents with identica
| ogi cal functions. Let every subconponent S(i,j) be connected
to a collection N(i,j) of nets. The conponent nodel to be derived
~should be outerplanar and every pernutation of the logically
equi val ent subconponents, allowed by the graph nodel should have
a physical nmeaning i.e. be conpatible with the cyclical ordering

of the termnals.

We can now consider the oriented graph, obtained by contrac-
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ting the edges (a(i),a(j)) of the cycle, such that both a(i)€ E(k)
and a(j) & E(k) for sone k. Then two possibilities exist:

1) all vertices of a set E (k) are physically adjacent

-~ (Fig. 9(c)). Wien the total circuit layout graph is
pl anar, then every possible enbedding will satisfy the
requirements.

2) The vertices of the set E (k) are not physically adjacent

(Fig.10 (d)). Then not every enbedding satisfies the re-
qui rement s.

Therefore, we are able to use |ogical equival ence of sub-
conponents if the sets of termnals of subconponents that are
equivalgpt are physically adjacent.

Fig. 10(c) shows the correct nodel that allows partial sub-
conponent assignnent in function of the layout (for subconponents

A and A2).

6. G aph Mdels for the External Connections.

When the order of these connections is predeterm ned, one can
again use an oriented graph. Al nets now have to be enbedded in
the interior region (as opposed to the exterior region for com
ponents.).

In some cases, a certain degree of freedom exists, allow ng
| ogical signals to be assigned to physical termnals in function
of the layout. This property is simlar to the |ogical equival ence

of the termnals of a conmponent, As for conponents, the condition
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for peingable to nodel the |ogical equivalence of a set of

términals is that they are physically adjacent.

7. Concl usi ons

The mat hematical nodel presented in this paper, based on the
concept of partially oriented graphs, allows the fornul ati on of
the circuit |ayout problem as an enbeddi ng problem of partially
ori ented graphs. Al of the topological information is contained
in the nodel itself and no special constraints have to be inposed
upon the enbeddi ng al gorithm

Furthernore, the nodels derived here allow pin and gate

assignment in function of an optimal |ayout under certain

condi ti ons.
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Fi gure

capti ons.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
"Fig. 8

(a)
(b)

(a)
(b)
(c)
(d)

Pl anar enbeddi ng of nets {1,3,4,5,6,85 and {2,75

Enbeddi ng of net {1,3,4,5,6,8} creating a
t opol ogi cal obstruction.

Non- pl anar circuit.
Pl anar nodel for the circuit of Fig. 2(a).
Pl anar circuit.

Non- pl anar nodel for the circuit of Fig. 2(c).

Physi cal equival ence of the termnals of an IC transistor

A 3-3-3 AND-OR-INVERT gate as an exanple of subconponent
equi val ence.

(a)

(b)

Partially oriented graph, nodelling the circular
ordering of the term nals.

Partially oriented graph nodelling physical
equi val ence.

(c) Gaph G' for verifying the possiblity of nodelling

(a)

(b)

(a)
(b)
(c)
(a)

(b)

physi cal equi val ence of term nals.

Non- pl anar layout as a result of a priori pin
assignnent (termnals 3b and 3e physically equival ent).

Pl anar | ayout obtained by perform ng pin assignnent
in function of the |ayout.

Crcuit with logically equivalent sets A and B.
After contracting the sets A and B.
Correct oriented graph nodel.

Non-pl anar |layout as a result of a priori pin
assignment (termnals la, |b, 1lc logically equivalent).

Pl anar | ayout obtained by perform ng pin assignnent
in function of the |ayout.
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Fig. 9 Derivation of a nodel for subconmponent equival ence when
equi val ent subconponents are physically adjacent.

Fig.10 Derivation of a nodel for subconponent equival ence when
not all equival ent subconponents are not physically

adj acent.
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Fig. 1 (a) Planar enbedding of nets {1,3,4,5,6,84 and {2,7.’!

(b) Enbeddi ng of net {1,3,4,5,6,8} creating a
t opol ogi cal obstructi on.
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Fig. 2 (a) Non-planar circuit.
(b) Planar nmodel for the circuit of Fig. 2(a).
(c) Planar circuit.

(d) Non-planar nodel for the circuit of Fig. 2 (c).
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Fig. 3 Physical equivalence of the termnals of an IC transistor.
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Fig. 4 A 3-3-3 AND-OR- I NVERT gate as an exanpl e of subconponent
* equi val ence.
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(a)

® net vertex
o oriented vertex
-@ non-oriented vertex

(b)

th

(c)

Fig. 5 (a) Partially oriented graph, nodelling the circular
ordering of the termnals.

(b) Partially oriented graph nodelling physica
equi val ence.

(c) Gaph G*' for verifying the possiblity of nodelling
physi cal equival ence of termnals.

’
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ig. 6 (a) Non-planar layout as a result of a priori pin
i (@) assignnent (t%rnina|s 3b and 3e physically equivalent).

(b) Planar |ayout obtained by performing-pin assignment
in function of the |ayout.
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Fig.

O oriented vertex
® non-oriented verte

(c)

7 (a) Circuit with logically equivalent sets A and B.
(b) After contracting the sets A and B.

(c) Correct oriented graph nodel.

-40-



*noAke | ay1l Jo uollouny ul
wauub 1sse uid bu wlioyiad Ag pauiei1go 1noke| Jteue|d (q)

“(wajeainba Ajjeoibo| ©21 ‘g| ‘| S|euwlal) wauub isse
uld 11o1ud & Jo 1|nsal e se 1noAke| Jeue|d-uoN (e) 8 O

-41

(9) (®)
—— q
€ — €
> - N P
V q i q >
N Z 9 v ¢ q
- )
U ”
b s I 9




(a)

C oriented vertex
° non-oriented vertex

(b)

(c)

Fig. 9 Derivation of a nodel for subconmponent equival ence when
equi val ent subconmponents are physically adjacent.
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(d)

Fig.10 Derivation of a nodel for subconponent equivalence when
not all equival ent subconponents are not physically
adj acent.
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