A Distributed Algorithm for

~> Constructing Minimal Spanning Trees

in Computer-Communication Networks

by

Yogen K. Dalal

June 1976

-,

Technical Report No. 111

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

The views and conclusions contained in this
document are those of the author and should
not be interpreted as necessarily representing
the officia | policies, either express or implied,
of the Defense Advance Research Projects

. Agency or the United States Government.

This research was supported by the Defense
Advanced Research Projects Agency under
ARPA Order No. 2494, Contract No. MDA9Q3-
76C-0093 and the National Science Foundation
under research grant MCS73-07973-Al, 2.

D

A Distributed Algorithm for Constructing
Minimal Spanning Trees

in Computer-Communication Networks

Technical Report No. 111
June, 1976

Yogen K. Dalal
Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
Stanford, California

ABSTRACT

This paper presents a distributed algorithm for constructing minimal
spanning trees in computer-communication networks. The algorithm can be
executed concurrently and asynchronously by the different computers of
the network. This algorithm is also suitable for constructing minimal
spanning trees using a multiprocessor computer system. There are many
reasons for constructing minimal spanning trees in
computer-communication networks since minimal spanning tree routing is
useful in distributed operating systems for performing broadcast, in
adaptive routing algorithms for transmitting delay estimates, and in
other networks like the Packet Radio Network.

Kev Words and Phrases

Minimal Spanning Trees, Graphs, Distributed Control, Multiprocessing,
Computer-Communication Networks, Operating Systems, Distributed
Computing, Routing

CR Categories 3.81, 4.32, 4.35, 5.32

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either express or implied, of the Defense Advance
Research Projects Agency or the United States Government

This research was supported by the Defense Advanced Research Projects
Agency under ARPA Order No. 2494, Contract No. MDA903-76C-0093 and the
National Science Foundation under research grant MCS73-07973-A1,2.

D

A Distributed MST Algorithm

1. Introduction

Distributed operating systems that support a distributed computing
environment [Farber72a, Thomas73, Crocker75] may often have to make
available to a user process a remotely resident resource. The resource
may be capable of migration (e.g. files in a distributed file system or
processes capable of performing specialized functions), or could be the
least expensive copy of a duplicated resource [Cosell75, Dalal76]. In
order to find such a resource the requesting host may have to send a

request message to all hosts potentially capable of supplying the

resource. In general, this set of hosts will be a subset of all the
hosts in the network. For the purpose of this paper, however, we
xonsider the problem of del ivering the message to all hosts. The

requestor will be said to broadcast the message (to all hosts).

The efficiency of the broadcast is greatly dependent on the nature
of the particular subnet over which it is attempted. The structure of
the subnet also influences the design of the broadcast protocol chosen
to find resources. For example, mul tiaccess channels, 1like those
available in the ALOHA system [Abramson70], the Ethernet [Metcalfe75],
satellite networks [Abramson73], or ring networks [Farber72] lend
themselves very well to broadcast protocols since the very nature of the
subnet makes every transmission available to all hosts. Circuit
Switched Networks (CSN) provide point-to-point communication, and so
broadcast is done either by having a separate circuit between the
broadcaster and each receiver, or by creating a multidrop circuit, that
behaves like a ring, between the broadcaster and the receivers. Packet
Switched Networks (PSN) have storage and a (small) holding time at every

switching node, and so can be thought of as providing statistical tine

A Distributed MST Algorithm 2

division multiplexed communication. PSNs are more suitable for
performing broadcast than CSNs, as advantage can be taken of the packet
mode of communication, and so a separate virtual connection between the

bxoadcaster and each receiver need not be created.

This paper examines techniques for performing broadcast in PSNs and
analyzes a particular one in detail. The ARPANET [Roberts72,

McQuillan72] will be used as the model for PSNs.

There appear to be two ways of performing broadcast in PSNs so as
to minimize the total amount of communication needed, thereby performing
the broadcast quickly and cheaply, as well as lowering the possibility

of subnet congestion. These techniques are
E-

1. If a spanning tree with the smallest radius (cf section 2.) is
embedded on the existing subnet with the initiator of the broadcast
being the root (cf section 2.), then messages can be forwarded
along the branches of this tree. This is the fastest way of
performing broadcast initiated by a host connected to the root.
The number of transmissions in a subnet having N nodes is N - 1.
Figure 1 shows two such spanning trees for a subnet in which the

cost of every edge is the same.

Such a broadcast scheme can be implemented by laying N such
spanning trees on the subnet; one for each initiator. Minimum
delay routing algorithms, however, attempt to do precisely the same
thing. Hence, if the subnet has a multi-destination routing
scheme, then broadcast is just an extension of the inherent routing

mechanism.

A Distributed MST Al gorithm

FIGURE Ta MINIMUM RADIUS SPANNING TREE WITH
NODE 5 AS THE RooTl

]

EDGE

FIGURE 1b MINIMUM RADIVS SPANNING TREE WITH
NODE 3 AS THE RooT

A Distributed MST Algorithm 4

In a subnet that has a multi-destination routing scheme, if

the optimal route from one node to (say) two others included common

1 inks, then only one packet is transmitted over the c¢ommon 1 inks.

- Broadcast is a special case of multi-destination routing, in which
the destination includes all possible recipients. Routing
algorithms that may be used in PSNs [McQuillan74] would then remain
unchanged, but the headers of packets exchanged between switching
nodes would have to be designed to carry multiple destination
information, and the forwarding function of the switching node

would have to be sensitive to this.

2. If a minimum spanning tree was embedded on the existing subnet
t8pology, then any node on this minimal spanning tree could
initiate a broadcast and the packets would be forwarded along this
tree to all destinations. Such a technique results in the minimum
transmission of packets (N -1, in a subnet with N nodes). The
time for completing the broadcast is a function of where it was
initiated, as in some cases, some of the transmissions could take
place concurrently. The worst case time for completing the
broadcast is a function of the diameter (cf section 2.) of the
minimal spanning tree. This technique assumes, of course, that the
cost of communication on a branch of the minimal spanning tree is
same in both directions. This is not true, in general, for PSNs,
but is not a bad approximation as it could be defined as the
average of the two costs. Figure 2 shows the communication subnet
of a PSN with the embedded minimal spanning tree. If broadcast was
initiated from a host connected to node 1, then a packet would be

transmitted along each of the minimal spanning tree branches in the

A Distributed MST Algorithm b

directions shown in the figure. Note that all the edges in the

subnet do not have the same cost.

It might be argued that if all hosts broadcast very often, then the
edges comprising the minimal spanning tree would become very congested.
We know that for a small number of broadcasts such a technique is
preferable, and feel that even for a large number of broadcasts it will
still be suitable. This feeling is based on the fact that if there were
no special broadcast routing scheme, then by having a separate
transmission to each destination, far more congestion would be
introduced. Of course, if the minimal spanning tree were able to
reconfigure itself dynamically to changing load conditions then such a
#echnique i s far more suitable. We are currently formulating an
algorithm to do this. The minimal spanning tree routing scheme is very
simple and may be slower (for some broadcasts) than the one in which
messages are propagated along the branches of the smallest radius
spanning tree. The amount by which it is slower depends on the diameter
of the minimal spanning tree, the largest radius of the
multi-destination spanning trees, and the pattern of broadcasts. We are

also modelling this dependency more precisely.

The rest of this paper describes a distributed algorithm for
constructing minimal spanning trees in computer-communication networks,
in which there is no one source of control. This algorithm is both
asynchronous and concurrent in its operation. Conditions under which
this algorithm functions correctly will be derived, and alternatives
proposed where it does not. Such an algorithm has applications in
distributed operating systems as described earlier, and in communication

networks 1ike the Packet Radio Network (PRNET) [Kahn75, Frank75] in

A Distributed MST Algorithm

FIGURE 2 BROADCAST ALoNG THE A/sr* IMITIATED AT MDE 1

— M57T BOANMCH
LINK

* ASSUME EDGE COSTS ARE SUCH THAT THIS IS THE MST

A Distributed MST Algorithm

which the packet radio repeaters must configure themselves into &
minimal spanning tree when randomly placed in an operating environment.
Minimal spanning tree routing also appears to have application in the
d design of adaptive routing algorithms, since the branches of the minimal
spanning tree could be used to transmit delay estimates to all nodes,

rather than using the hop by hop refinement technique [McQuillan74].

Section 2 reviews construction principles for minimal spanning
trees, and section 3 proposes a model by which these trees can be
constructed in a distributed environment. Sections 4 and 5 discuss the

distributed algorithm in detail.

=2. Construction Principles for Minimal Spanning Trees

In this section we review definitions and construction principles

of minimal spanning trees. A network is composed of a set of nodes and

a set of edges that connect pairs of nodes and have a cost associated

with them. The Minimal Spanning Tree (MST) of such a network is a

subset of the edges such that there exists a route between every pair of
nodes, and the sum of the costs is a minimum. The edges in this MST

will be called the branches of the MST.

In graph theoretical terms the MST problem can be stated as
follows. Consider a connected, undirected graph, G, with vertex set V,
and edge set, E (E is a subset of VxV); a spanning tree is a subset of
E, such that there is a unique path between any two vertices in V.
Suppose there is a cost associated with every edge in E; a minimal

spanning tree of G is a spanning tree of G that minimizes the sum of the

cost of the edges. [Bentley75].

A Distributed MST Algorithm 8

The path between any two nodes in a spanning tree is the sequence
of edges of the spanning tree that must be traversed to get from one

node to the other. The cost of a path is the sum of the edges

tBmprising the path. If the cost of a path is larger than that of

another, then that path is said to be longer than the other. The

diameter of a spanning tree is the cost of the longest Path in the

spanning tree. The radius of a spanning tree, relative to a node called

‘ the root is the cost of the longest path from the root.

Bentley and Friedman [Bentley751 briefly review existing techniques
for the construction o f MSTsand propose fast algorithms for the
construction of MSTs i n multidimensional coordinate spaces. These

. algorfﬁhms are of the order of NlogN, where N is the number of nodes. A
complete bibliography on the subject (upto 1974) can be found in
[Pierce75]. The construction principles for MSTs were first formalized
by Prim [Prim57] and are applicable to networks for which the edge costs
(length, distance, delay) need not be distinct and could be anything,

and thus need not be consistent with Euclidean geometry.

The networks of interest to us Wwill be the general class of

networks studied by Prim.

-

2.1 PrimXs Principles

Prim (1957) suggested two Principles for constructing MSTs. We

paraphrase some of his definitions, construction rules, and conditions.

The principles assume that the construction process is sequential. An

isolated node is a node to which, at a given stage of the construction,

no connections have yet been made. A fragment is a subset of nodes

A Distributed MST Algorithm Y

connected by edges (which will become branches) between members of the

subset. An isolated fragment is a fragment to which, at a given stage

of construction, no external connections have been made. The distance

(cost) of a node from a fragment of which it is not an element is the

minimum of its distances (costs) from each of the individual nodes

comprising the fragment. A nearest neighbor of a node is a node whose

distance from the specified node is at least as small as that of any

other. A nearest neighbor of a fragment, analogously, is a node whose

distance from the specified fragment is at least as small as that of any

other.

Prim proved that a MST could always be constructed by following the

£ollowing two principles.

Principle 1 (P1): Any isolated node can be connected to a nearest

neighbor.

Principle 2 (P2): Any isolated fragment can be connected to a

nearest neighbor by a shortest available edge*.
These principles were based on two necessary conditions.

Necessary Condition 1 (NC1): Every node in a MST must be connected

to at least one nearest neighbor.

Necessary Condition 2 (NC2): Every fragment in a MST must be

connected to at least one nearest neighbor by a shortest available

edge.

*The nearest neighbor of a fragment may be connected to the nodes of the
fragment by more than one edge. Usually the process of determining the
nearest neighbor of a fragment will involve examining the edge costs
connecting nodes within the fragment to nodes outside it, and so the
shortest available edge will easily be determined.

A Distributed MST Algorithm 10

2.2 Existing Algorithms

Most existing algorithms use Pl and P2 to create an isolated
fragment and then increase the number of nodes in the fragment until it
l?:comes a MST. The primary concern has been how to structure the data
so that it is possible to quickly determine the shortest edge by which
an isolated fragment can be connected to a node outside it. This is of
great importance if a fully connected network having a large number of
nodes is under study. All these algorithms are sequential; there is no

concurrency in growing many isolated fragments. The multi-fragment

algorithm [Bentley75] is sequential in its operation.

The goal of this paper is to describe a concurrent, asynchronous

-~

algorithm to create an MST. Such an algorithm is desirable not
necessarily for the increased speed of execution (which we expect), but
also because it ensures that there is no one source of control. Such
algorithms are ideally suited to computer-communication networks. The
algorithm may also be used for constructing MSTs for other applications

using a multiprocessor computer, such as the Pluribus [Ornstein75].

3. Distributed MST algorithms

A distributed algorithm consists of a program executing in each of
the nodes such that, when all the programs terminate, the result would
be a MST connecting the nodes. Every node will know which of the edges
connected to it are branches of the MST. It will be necessary for the
nodes to communicate with their neighbors or some other node by means of

messages. Properties of such algorithms that are of interest include:

A Distributed MST Algorithm 11

(1) Does shared information between nodes have to be locked when

modified?

(i1) What form of synchronization is required between the nodes?

(iii) Are there any special initial conditions?

(iv) Does the algorithm work only for certain combination edge

costs?

(v) In a network environment can the algorithm account for some of

the nodes going down, edges breaking, or new nodes coming up?

In the discussion of the algorithm, and in proving its correctness,
Sre will constantly map the state of the evolving MST to that of a MST

being constructed by conventional sequential methods.

3.1 The Basic Model

In order to prove that any algorithm for constructing MSTs works,
it is sufficient to show that every operation performed is identical to

Pl or P2, and that the algorithm terminates.

The underlying philosophy of the distributed algorithm for
constructing a MST is based on NCl, which states that every node must be
connected to at least one of its nearest neighbors. Hence every node

knows which neighbor to form a branch with. However, the result of such
an action by every node will create a MST only in some cases. In
general, such an action will produce a number of fragments that must be
connected together appropriately . The distributed algorithm must

discover that such a fragment has been created and then choose an

A Distributed MST Algorithm 12

appropriate edge to connect the fragment to other such fragments without

introducing any cycles in the graph.

We now introduce some definitions, and prove some simple properties
o the model. This is mainly to provide a framework and vocabulary for

the treatment of the algorithm which will follow.

3.2 Definitions

Figure 3a shows a network, in which every edge has a cost
associated with it. The MST for this network is shown in figure 3b.
Notice that some of the branches of this MST have been marked. The

markings have the following interpretation:

"«———— Such a branch is called a singly marked branch. This branch

is part of the MST since it connects the node from which the

arrow emanates to its nearest neighbor (by virtue of NC1).

o —@e Such a branch is called a doubly marked branch. It connects

both nodes to their nearest neighbors.

o————— This branch is unmarked.

In figure 3b, edges BD, CF, GF, FJ, NM, ElI, HK and PO are singly
marked. Edges AD, IK, LO and JM are doubly marked while DE, EF and IL

are unmarked.

The largest fragment composed only of marked branches (singly or

doubly) will be called a Marked Fragment (MF). Notice that MFs are

connected by unmarked branches to form larger fragments until the MST is
formed. In figure 3b, unmarked branch DE connects marked fragments

{a, B, D} and{ H, K, I, E}

A Distributed MST Algorithm

25 8

10 40

/%‘\
ya
Y4

]

FIGURE 3 a

A NETWORK.

FI6oRE 3}

P
THE NETWORK'S

MsT

13

A Distributed MST Algorithm 14
We now state and prove some simple properties of these MSTs.
We know that a network with N nodes has a MST with N-I branches.

TReorem 1 : In a MST, the number of MFs equals the number of doubly
marked branches, and each such fragment contains exactly one doubly

marked branch.

Proof: By definition every MF is a MST for that node subset. Since
the number of marked branches is equal to the number of node in
that set minus one, it follows that one branch must be doubly
marked. Hence, each MF has one and only one doubly marked branch.
Therefore the number of MFs is equal to the number of doubly marked

Branches of the complete MST. .

Corollary 1.1: Every MST has at least one doubly marked branch

Proof: The smallest number of MFs in a MST is one, and therefore

the proof follows from Theorem 1. |

In a network that does not have distinct edge costs a number of
MSTs are possible. There may be different ways of creating MFs in each
case and so the number and identity of the doubly marked branch will

vary.

Theorem 2: In a MST, the number of unmarked branches is equal to one

less than the number of MFs.

Proof: For a given MST let NMF be the Number of Marked Fragments.

Let n(1i) be the number of nodes in the ith MF.

D

A Distributed MST Algorithm 1>

Since each MF is a MST for its node subset, the number of branches

in the ith MF is n(i) - 1. Therefore, the number of marked

branches in the complete MST is equal to

NMF

z [a(i) - 11

i=1

N =NMF

The total number of branches in the complete MST is equal to N - 1,
and therefore the number of unmarked branches in the MST is equal

to

N -1- (N - NMF)

= NMF -1
and hence the theorem is proved. |

A chain is a node subset (containing one or more nodes) connected
by edges between members of the subset, such that each edge connects a
node to its nearest neighbor (and hence is also a branch). Edges are
unique to a node, i.e. an edge can not connect two nodes to each others
nearest neighbors. Such a chain is a fragment, and a MST for the node
subset. The chain will be said to have one active node - the node that
will connect itself to its nearest neighbor and still keep the fragment
a chain. Chains only have branches which are singly marked. In figure
3b some of the chains and their active nodes are {GF; F active},
{6; G active), {GF, FJ; J active), {CF, GF, FJ; J active} and

{CF, GF; F active).

A Distributed MST Algorithm 16

Notice that there is a certain monotinicity among the costs of
branches in a chain. For every node in the <chain, the cost of the
branches incident at the node (as determined by the markings on the
b:anch) is larger or equal to the cost of the branch leaving the node
(there is only one). This fact will be proved in the following theorem.

Theorem 3: The cost of the potential branch from the active node of the

chain must be less than or equal to the cost of the branches in the

starting chain.
Proof: This theorem is proved by induction.

If the chain consists of only one node (which is also active) then
the cost of the potential branch must be less than those already in

the chain (the null set).

Now assume that the chain has n branches satisfying this property.
The active node has at least one branch incident at it. The active
node has an edge to its nearest neighbor. The cost of this edge
can be less than or equal to that of the lowest cost incident
branch, but not more otherwise the node at the other end of the
potential branch would not be the active node nearest

neighbor. o

Corollary 3.1: If the edge costs are distinct, then the branch out of

the active node of a chain has a cost less than that of any branch in

the starting chain.

Proof: The proof s identical to that for Theorem 3, except that
since edges have distinct costs, it can never be that the cost of
the potent ial branch out of an active node is equal to that of a

branch incident to the active node in the starting chain. |

A Distributed MST Algorithm 17

If the active nodes of two chains decide they are each others
neighbors, then the two chains merge, and this branch becomes a doubly
marked branch of the resulting MF that these two chains are part of.

The resulting fragment is no longer a chain.

When MFs connect to each other by an unmarked branch, the resulting

fragment will be called a Minimal Spanning Subtree (MSS). A MSS becomes

a MST when it contains all the MFs. The active node of a MF or a MSS is
the node from which the unmarked branch to another MF or MSS will
emerge. A MST has no active node because there are no more branches to

create.

We now prove some simple properties for unmarked and doubly marked
branches. The proofs will be made for networks with distinct edge
costs. The theorems will be valid for networks with this restriction

removed except that the strict inequality will be replaced by a weaker

inequality.

Theorem 4: For a network with distinct edge costs, the doubly marked

branch of a MF has the lowest cost among the branches of that fragment.

Proof: The two nodes on either end of the doubly marked branch are
active nodes of two chains which have all the nodes of the MF
contained within them. The potential branch from these active
nodes have a cost less than that for branches in their respective
chains (from Corollary 3.1). The cost of potential branches is the
same since they are the same branch - a doubly marked branch.
Hence the cost of a doubly marked branch is less than that of any

other branch in the MF, .

A Distributed MST Algorithm 18

Theorem 5: For a network with distinct edge costs, the cost of an
unmarked branch connecting two MFs is larger than that for the doubly

marked branch of either MF.

Proof: The unmarked branch is connected to a node in the MF. This

node is also connected to a marked branch in the MF and so the cost
of the unmarked branch is greater (since edge costs are distinct)
than that of the marked branch. From Theorem 4 it follows that the
cost of this marked branch is greater than or equal to that of the
doubly marked branch of the MF. Hence the cost of the unmarked
branch is larger than that of the doubly marked branch. Since this
applies to both MFs connected by the unmarked branch, the theorem

ks proved. |

These definitions and proofs are useful in understanding how the
distributed algorithm for constructing a MST works, since the algorithm
revolves around the ideas of concurrently creating MFs and having them

grow into MSSs until the MST results.

4. Statement of the Algorithm

We now describe a distributed algorithm for constructing a MST in a
network with distinct edge costs. In the next section we show how this

algorithm can be extended to construct a MST in a network where the edge

costs are not distinct.
Since the edge costs are distinct, the MST is unique [Kruskal56].

The basic philosophy of the algorithm is that each node must

independently find its nearest neighbor and make the edge connecting it

A Distributed MST Algorithm 19

to that neighbor into a branch of the MST. The node then sends off a
message to the neighbor informing it of this construction. Two nodes
may realize that they are connected by a doubly marked branch. This is
when the core of a MF is formed. This must grow into the MF. Such MFs
will connect to other MFs or MSSs until a MST is created. Since the
edge costs are distinct, the MST is uniqgue. We will show in detail how
MFs connect to other MFs or MSSs and also that no cycles are introduced

by the asynchrony and concurrency of the computation.

We now introduce some more terminology. A node is said to be the
master if it decides from which node of the fragment a branch should be
created to a node lying outside the fragment. The node that actually
makes the construction will become active. In a MF there is only one
node that can be master. Initially there are no masters. When a doubly
marked branch gets created, one of the two nodes at either end
unambiguously becomes master. We show later how this decision can be
made. When two MFs get connected by an unmarked branch, there may be
two potential masters (one in each MF). One of the masters
unambiguously relinquishes control to the other, who then determines
which node (of the fragment it has knowledge about) becomes active. The

result of all this is a MST!

Since there is one unique unmarked branch connecting two MFs, there
is never any ambiguity in choosing it. Hence a race condition can not
arise, where the two MFs choose different edges as branches connecting

each other, thereby creating a cycle.

Every operation described so far has been consistent with Prim's
Principles. We will show this more precisely a little later, and will

now proceed to describe the algorithm formally.

A Distributed MST Algorithm 20

4.1 State Information at Each Node

The statement of the algorithm will assume that each node has a set
of state variables. These consist of the node state, information about
éach of the edges this node is part of, and a list of all nodes that are
part of the fragment as seen by this node. This list contains for each

node in the fragment*, edges that connect them to nodes outside the

fragment and their costs.

4.1.1 The Node State

The variable NODESTATE is equal to inactive, active or master.
This variable determines what the algorithm should do when it gets

. messages from other nodes.

4.1.2 Edge Information

The node has a descriptor for each edge from that node. This

information is called EDGEINFO and consists of the following entries:

" SOURCE - The source node of this edge. It is the identity of this
node.
DEST - The destination node of this edge. It is equal to the

identity of the node at the other end of this edge.

COST - The cost associated with this edge.

BRANCH - A boolean, which if true indicates that this wedge is a

branch of the MST.

“—a'D

A Distributed MST Algorithm 21

MYMIN ~ A boolean, which if true indicates that this edge is a
branch and was marked by this node, since it is the MINimum

cost edge at this node.

HISMIN - A boolean, which if true indicates that the this edge is a
branch and was marked by DEST since it was the MINimum cost

edge at that node.

ICON - A boolean, which if true indicates that this node made this
edge into a branch but did not mark it. This is because the
node CONnected the fragment, it is part of and has knowl edge

of, to the fragments nearest neighbor.

HECON - A boolean, which if true indicates that DEST made this edge
into a branch but did not mark it. This is because DEST was
CONnecting the fragment, it has knowledge of, to the

fragment nearest neighbor.

4.1.3 The Fragment State

A data structure called the FRAGSTATE represents the state of the
fragment as seen by this node. Conceptually, it could be viewed as a
table indexed by nodes which lie in the fragment. For each such entry,
there is a chain of entries identifying edges which connect this node to
nodes outside the fragment, and their cost. Note that some of these
edges could be branches, since the node at which this data structure
resides may not know to what other nodes the node at the other end of
the branch is connected to, and so can not include the node in the
fragment state. Any suitable data structure which permits a fast search
will do. Note that any node already in the fragment can not be part of

an edge for another node in the fragment.

A Distributed MST Algorithm 22

4.2 Internode Communication

Internode communication is achieved by sending messages called

SIGNALS. Signals have a number of parameters. A signal can be sent to

D

a node that is a neighbor, or to a node that is part of the same

fragment.

FROM - The node from which the signal originated.

TO - The destination of the signal.

FRAGSTATE - The fragment state at the node at the time the signal
was created.

EDGE INFO - The descriptor for the edge that is being made into a
branch.

COMMAND - This causes a particular action at the destination of
the signal. If the command is "connect", it implies that

a marked branch is being created. EDGEINFO must be
present. If the command is "master”, it implies that the
destination node is to become master. If EDGEINFO is
also present then a branch (potentially unmarked) is also
being created. If it is not then the command acts as a

transfer of master control.

4.3 Associated Routines

There are some special routines at each node. MERGEFRAGSTATE
merges the fragment state received in a signal with the fragment state

already present at the node. Merging consists in adding nodes not

A Distributed MST Algorithm 23

already part of the fragment and deleting edges whose nodes now lie

within the fragment.

A routine called MERGEDGEINFO merges the edge information received

in the signal with that contained for this edge at the node.

DECIDE is a routine that determines which of two nodes should
become master. Relative node numbering could be used as an unambiguous
decision. More esoteric techniques could be used which may help the
algorithm execute faster. For example, both nodes know which edges the
other is part of (since both nodes just exchanged FRAGSTATEs). The node
that becomes master is the one that has a lower cost edge excluding the

one that connects both together.

ANYNEIGHBOR is a routine which examines FRAGSTATE and determines
which node (if any) should become master. If ANYNEIGHBOR returns true,
then the identity of this node is returned in MASTERNODE, and the
identity of the node at the other end of the edge from MASTERNODE in
DESTNODE. The edge determined by (MASTERNODE, DESTNODE) connects this

fragment to its nearest neighbor.

4.4 The Main Program

This is the main program. It consists of a main loop and a
procedure call. Both use the data structures and routines defined in
the previous sub-section. The program will be written in an ALGOL-like

language.

A Distributed MST Algorithm 24

procedure TRANSFERMASTERCONTROL;

begin

comment - This procedure examines FRAGSTATE to find the MASTERNODE

and the DESTNODE. If the MASTERNODE is itself, then the node converts

“the edge determined by (MASTERNODE, DESTNODE) into a branch if it is not
already one; if it is a branch then DESTNODE is signalled to become master.
If a branch was being created it does not have MYMIN set

since it is not the node's nearest neighbor.

If the MASTERNODE is not itself, then that node is told to become master;

if ANYNEIGHBOR
then begin
if [MASTERNODE = this node]
then begin
if [For this edge, BRANCH = true]
thﬂSIGNAL(ME, DESTNODE, FRAGSTATE, null, MASTER)
else begin
comment - Convert this edge into a branch;
NODESTATE := ACTIVE;
[For this edge, BRANCH := ICON := true];
SIGNAL(ME, DESTNODE, FEUGSTATE, EDGEINFO, MASTER);
end

end
else SIGNAL(ME, MASTERNODE, FRAGSTATE, null, MASTER);
end;

end TRANSFERMASTERCONTROL;

D

A Distributed MST Algorithm 25

procedure MAINLOOP;
begin

comment - This is the main loop of the program;

comment - Local initializations;
[Determine the cost of all possible edges at this node, and for
each create a descriptor EDGEINFO. Set up the parameters of EDGEINFO

appropriately, with BRANCH := MYMIN := HISMIN := ICON := HECON := false];

[Build FRAGSTATE];

comment - Convert an edge into a branch using NCl;
NODESTATE := ACTIVE;
if ANYNEIGHBOR then
begin
[For this edge, BRANCH := MYMIN := true];
comment - Signal the node at the other end of the branch;
SIGNAL(ME, DESTNODE, FRAGSTATE, EDGEINFO, CONNECT);

end;

NODESTATE := INACTIVE;

comment - Now wait for for a signal from other nodes;

LOOP:begin
[Wait for a signal];

comment = A signal just arrived, so continue;

MERGEFRAGSTATE;
case [The COMMAND field of this signal] of
begin

begin

A Distributed MST Algorithm 26

)

comment - COMMAND = CONNECT;

MERGEDGEINFO;

if [For this branch, MYMIN = true] thﬂ
comment - This is a doubly marked branch;
NODESTATE := MASTER;

if DECIDE then TRANSFERMASTERCONTROL,;

NODESTATE := INACTIVE;
end;

end;

comment - COMMAND = MASTER,;
NODESTATE := MASTER;
if [For this signal, EDGEINFO := null]
then begin
comment - The node is not required to change an
edge into a branch, but just to find the right master;
TRANSFERMASTERCONTROL;
end

else begin

comment - Not only does this node have to
find the right master, but it has also been
told about a new branch. This may be an
unmarked branch;

MERGEDGEINFO;

if [For this branch, ICON := true]

then begin

A Distributed MST Algorithm 27

comment - Both nodes of this branch
converted the edge into an unmarked
branch. Resolve who is master;

if DECIDE then TRANSFERMASTERCONTROL,;

else TRANSFERMASTERCONTROL,;

comment - Just find the right master;
end;
NODESTATE := INACTIVE;
end;
end;
end;

repeat LOOP;

-

nd MAINLOOP.

4.5 Analysis of the Algorithm

The analysis of the algorithm is probably the most difficult part.
We put off determining its complexity for the present, and just prove
that it does in fact construct the MST. The underlying basis for its
correct functioning is that the resulting MST is unique, and the premise
that every edge made into a branch by a fragment is consistent with

Prim's Principles. We will now justify the premise.

Recall the following properties of MSTs and the algorithm:

(i) Every node creates a branch out of the edge that is of minimum
cost incident to itself. The message indicating this may take a

while getting to the node at the other end of the branch.

A Distributed MST Algorithm 28

(ii) Marked Fragments are connected together by unmarked branches

to create the MST.

o Every node starts off by creating a branch out of edges incident to
it using Pl. The node informs its neighbor at the other end of this
branch. This message may incur a delay before arriving at its

destination, and in the meantime the generator of the message is free to

cont inue processing.
Every node now waits for messages.

If a message arrives announcing the establishment of a singly
marked branch, then the node checks to see if it too had marked this

- branch. If not, then the node updates its data structures and continues

to wait for other messages (should there be any).

If this branch turns out to be a doubly marked branch, then the
core of a MF has been created, and one of the +two nodes unambiguously
becomes master. There may be many such cores in creation in the
network. This event is of great importance in the algorithm. The node
that is master of this MF must now grow this MF into a MST using P2. |n
other words, the master node is in search of an ‘“unmarked branch” that
will connect this MF to another MF or MSS. The decision on which edge
to convert to a branch is based on the node* current information of the
fragment. We know that the resulting MST is unique since the edge costs
are distinct, and that a fragment must be connected to its nearest
neighbor (P2). Hence this branch is wunique, and so even with the
asynchrony in the operation of the algorithm, the decision of the active

node is always correct . Note that this is true even when the signals

D

A Distributed MST Algorithm 29

take different amounts of time to be successfully transmitted. This is

elaborated below.

In quest of this “unmarked branch” the node may pick an edge such
that the node at the other end is part of the same MF. This is possible
since the message from that node announcing the creation of the singly
marked branch may not have yet arrived. Such an action is not harmful
and is in fact important. Master control will be transferred to the new
node, which will now grow the MF with the help of more complete fragment
information, and master control will propagate until the ‘unmarked

branch” to another MF or MSS is found.

A node that is master may even decide that an edge that has already
:b.een made into a branch (but still exists in the fragment state)
connects the fragment to its nearest neighbor outside the fragment. The
node just transfers master control to that node since it may have a more
accurate view of the fragment and can make a better decision. The node
which transfers master control can not pick another edge to convert into
a branch since it is not the lowest cost edge and can easily create a

cycle.

Note that a node that is active may convert an edge into the
“unmarked branch” without knowing what its complete MF looks like. This
is not harmful since MF branches always consist of constructions based
on Pl, and messages notifying neighbor nodes of this construction will

eventually arrive.

Two active nodes may decide to make an edge into an unmarked branch
simultaneously, in which case one of them unambiguously relinquishes

control to the other, and the master grows this MSS.

A Distributed MST Algorithm 30

Note that when the algorithm starts, there may be many nodes that
are master nodes, but eventually this number will decrease until there
is only one. This one will eventually determine that there are no more
nodes lying outside this fragment, and will thus conclude that the MST
has been created. The program at each node is said to terminate when it
receives no more messages. Of course, the node does not know if it is
going to receive any more signals or not, and so if it transmits
messages along the branches of the minimal spanning tree before it has
been completely cons truc ted, the messages may not get to all
destinations. The proof of the fact that the algorithm terminates is
based on the observation that a new signal only gets sent, (in response
to one received, that has a command indicating that the node should
' becom(;master) if and only if the fragment state at the node indicates
that there is a possibility of still growing the fragment. Nodes which
are told to become master will eventually refine their fragment states

such that there will be no nodes lying outside the fragment and so no

more signals will be generated.

The algorithm is thus very similar to the large class of sequential
MST algorithms that use Pl once and then use P2 continuously. However,
this algorithm is sel f synchronizing, and thus suitable in an

asynchronous, concurrent operating environment.

5. Networks in which the edge costs are not distinct

The algorithm presented in the previous section constructed a MST
since the edge costs were distinct, and so the decision made by an
active node to convert an edge into a branch was always correct and

unaffected by the asynchrony of the computation.

.

A Distributed MST Algorithm 31

When the edge costs are not distinct, the asynchrony of the
operation may introduce cycles, and thus will not construct a MST. To
see why this is possible, consider the example shown in figure 4. Nodes
1, 2, and 3 are part of a larger network. Edges (1, 2), (2, 3) and
(1, 3) are all of the same cost. It may so happen that when each node
is converting an edge into a branch using Pl that node 1 chooses 2, node

2 chooses 3, and node 3 chooses 1. A cycle has resulted.

Similarly, if there are two MFs that have more than one possible
unmarked branch connecting them together, then the master node in each
MF may choose a different edge to convert into a branch, thus creating a
cycle. General izing, we can say that if there is more than one edge

“that can be converted into a branch so as to connect two fragments

together, then there is the possibility of a cycle.

Prim (1957) showed that if there are many edges of the same cost
connecting a fragment to its nearest neighbor, then it did not matter

which was chosen, and a MST would still be constructed.

Therefore if the network is converted into one with distinct edge
costs, either implicitly or explicitly, then the algorithm presented in
section 4, would be suitable since it would construct a MST. The next
subsection indicates how a network can be converted into one with
distinct edge costs very easily. Although we would like to create a MST
with the minimum diameter, since that would reduce the maximum time for
broadcast, any MST will do. We feel that by using a concurrent,
asynchronous algorithm based on Prim “greedy” algorithm, it is not
possible to guarantee that the MST constructed will be the one with the

minimum diameter.

A Distributed MST Algorithm 32

FGURE 4 A PART OF A NETWORK WITH NON-XSTINCT
EDGES . THE POSSIBILITY OF A CYELE EXISTS

A Distributed MST Algorithm 33

5.1 Transforming a network into one with distinct edge costs

In this section a technique is described for converting the network
into one with distinct edge costs so that the algorithm presented
earlier is still usable. This technique is again distributed and is an

extension of the previous algorithm, as we shall see.

Since there is only one edge connecting any two nodes in the
network, and nodes have distinct identities (numbers) each edge has a
unique pair of node identities associated with it. This makes it very
easy to dynamically order edges with the same cost, thus transforming

the network into one with distinct edge costs.

=. Let us assume that the edge costs are accurate to the Mth decimal

place. When deciding which edge to convert into a branch, the node

could modify (temporarily) the edge cost using the following algorithm.

Let C(e) be the cost associated with edge e, where e is a tuple
(N1, N2), where Nl and N2 are the identities of the two nodes. Let NN
be the total number of nodes in the network. Then the new value of C(e)

is given by:

C(e)new = C(e)old + min[N1, N2]*(10%-ceiling(LlogNN))*(10*-M)

+ max[Nl, N2]*(10%-(2%ceiling(1logNN)))*(10*-M)

This complicated looking formula is just adding the number got by
correctly concatenating the minimum of N1 and N2, and the maximum of N1

and N2 to C(e)old, beyond the Mth decimal place.

Note that this is a distributed computation, and so the master

nodes in two fragments unambiguously decide which of two edges with

A Distributed MST Algorithm 34

equal costs is the “lower” cost one. Since the computation that decides
this only affects the edge cost beyond the Mth place of accuracy, the

relative ordering between the edge costs has not changed, and a MST can

e constructed.

This computation can be performed by ANYNEIGHBOR every time it
decides to find the minimum cost edge, or only when it realizes that
there are two potential edges that could become branches, thus breaking
the tie. The computation need not performed explicitly by modifying the
edge costs as specified by the formula, and then testing if one edge
cost is less than the other. It can also be performed by examining the
magnitudes of the node identities (as specified by the formula), and
theréby order the edge costs without having to worry about loss of

accuracy in performing the arithmetic.

6. Conclusions

An algorithm has been described that is useful for constructing a
MST in a computer-communication network, or a mul tiprocessor. This
algorithm is asynchronous and concurrent, and so can be thought of as a
parallel algorithm for constructing a MST. It is believed that this is
the first algorithm of its kind to construct MSTs. Networks which do
not have distinct edge costs can very easily be converted into ones that

do, thus making them suitable for the algorithm.

The algorithm has the following properties:

(1) EDGEINFO is a data structure that is duplicated at both nodes
of the edge. This data structure reflects the state of the edge,

and need not be locked when each node decides to modify it.

ooy §

A Distributed MST Algorithm 35

(i1) Synchronization between the nodes for the purpose of creating
branches, and for refining the state of the fragment at each node
is achieved by sending message from a node to either its neighbor
or to another node in the same fragment. Transmission of messages
to a node that is not a neighbor but in the same fragment, can be
done by broadcasting (or relaying) it along the branches of the ?IST
of this fragment. Hence there is no need for another routing

scheme.

(iii) The only special initial condition is that all nodes know the
cost of the wedges connecting them to other nodes, and the
identities of those nodes. Each node must also know the maximum
number of nodes in the network, and must maintain the edge costs

with the same degree of precision.

(iv) The algorithm is able to construct a MST in a network that has

no constraint on the combination of edge costs.

(v) The algorithm can not incrementally account for nodes going
down, edges breaking or nodes coming up. The MST has to be

recomputed.

We are in the process of determining the complexity of this

algorithm, and formalizing an adaptive algorithm that dynamically

reconfigures a MST when edge costs change.

7. Acknowledgements

and

I would like to thank B. Ramakrishna Rau for the many discussions

exchange of ideas that helped crystallize this algorithm, and Phil

A Distributed MST Algorithm 36

Spira for suggesting an idea that led to the technique for handling

networks with non-distinct edge costs.

D

8. References

[Abramson70] N. Abramson, "THE ALOHA SYSTEM - Another alternative for

Computer Communication,” Fall Joint Computer Conf., 1970, AFIPS

Press, pp. 281-285.

[Abramson73] N. Abramson, "Packet Switching with Satellites,” National

Computer Conf., 1973, AFIPS Press, pp. 695-702.

[Bentley75}J. L. Bentley and J. H. Friedman, "Fast Algorithms for

-

Constructing Minimal Spanning Trees in Coordinate Spaces," SLAC

Technical Report SLAC PUB-1665, Stanford University, December 1975.

[Cosell75] B. P. Cosell, P. R. Johnson et. al., "An Operational System

for Computer Resource Sharing," Proc. Fifth Symposium on Operating

Systems Principles, November 1975, (available as ACM Operating

Systems Review, Vol. 9, No. 5, pp. 75-81).

[Crocker75] S. D. Crocker, "The National Software Works: A New Method
. for Providing Software Development Tools wusing the Arpanet,"
Consiglio Nazionale delle Ricerche INSTITUTO DI ELABORAZIONE DELLA
INFORMAZIONE Meeting on 20 years of Computer Science, Pisa, June

1975.

[Dalal76] Y. K. Dalal, "Distributed File Systems," Presented as a
working paper at the Berkeley Workshop on Distributed Data

Management and Computer Networks, May 25-26 1976.

A Distributed MST Algorithm 37

(Farber72] D . J . Farber and K. C. Larson, "The Structure of 3
Distributed Computing System - The Communication System," Proc. of

the Symposium on Computer-Communications Networks and Traffic,

Polytechnic Institute of Brooklyn, April 1972, pp. 21-27.

[Farber72a]l] D. J. Farber and K. C. Larson, "The Structure of a

Distributed Computing System - Software," Proc. of the Symposium on

Computer-Communications Networks and Traffic, Polytechnic Institute

of Brooklyn, April 1972, pp. 538-545.

[Frank75] H. Frank, I|. Gitman and R. VanSlyke, "Packet Radio Network

Design - System Considerations,” National Computer Conf., 1975,

~. AFIPS Press, pp. 217-231.

[Kahn75] R. E. Kahn, "The Organization of Computer Resources Into a

Packet Radio Network,” National Computer Conf., May 1975, AFTPS

Press, pp. 177-186.

[(Kruskal56] J. B. Kruskal Jr., "On the Shortest Spanning Subtree of a

graph and the Traveling Salesman Problem,” Proc. Amer. Math. Soc.,

7, 1956, pp. 48-50.

[McQuillan72] J. M. McQuillan, W. R. Crowther, B. P. Cosell, D. Walden
and F. E. Heart, "Improvements in the Design and Performance of the

ARPA Network," Proc. Fall Joint Computer Conf., 1972, AFIPS Press,

pp. 741-754.

[McQuillan74] J. M. McQuillan, "Adaptive Routing Algorithms for

Distributed Computer Networks," BBN Report No. 2831, May 1974.

A Distributed MST Algorithm 38

[Metcalfe75] R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed
Packet Switching for Local Computer Networks," Xerox Palo Alto

Research Center Technical Report CSL 75-7, November 1975.
—— D

[Ornstein75] S. M. Ornstein, W. R. Crowther, M. F. Krayley, R. D.
Bressler, A. Michel, F. E. Heart, "Pluribus - A reliable

multiprocessor,” National Computer Conf., May 1975, AFIPS Press,

pp. 551-559.

[Pierce75] A. R. Pierce, "Bibliography on Algorithms for Shortest Path,
Shortest Spanning Tree, and Related Circuit Routing Problems

(1956-1974)," Networks, Vol. 5, 1975, pp. 129-149.

-

-[Prim57} R. C. Prim, "Shortest Connection Networks and Some

Generalizations,” Bell Systems Tech. J., November 1957, pp.
1389-1401.

[Roberts72] L. G. Roberts and B. D. Wessler, "Computer Network

Development to Achieve Resource Sharing,” Proc. Spring Joint

Computer Conf., 1970, AFIPS Press, pp. 543-549.

[Thomas73] R . H . Thomas, "A Resource Sharing Executive for the

- ARPANET," Spring Joint Computer Conf., June 1973, AFIPS Press, pp.

155-163.

