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ABSTRACT

A new technique for low-cost error correction in computers is

the alternate-data retry (ADR). An ADR is initiated by the detec-
,* *

. - tion of an error in the initial execution of an operation. The ADR

is a re-execution of the operation, but with an alternate represen-

tation of the initial data. The choice of the alternate represen-

tation and the design of the processing circuits combine to insure

that even an error due to a permanent fault is not repeated during

retry. Error-correction is provided at a hardware cost comparable

to that of a conventional retry capability.

Sufficient conditions 'are given for the design of circuits

with an ADR capability. The application of an ADR capability to

memory and to the data paths of a processor is illustrated.

INDEX TERMS: Alternate-date retry, fault neutralization,

morphic circuits, recoverable, self-checking,

availability.
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INTRODUCTION

The increasing use of on-line computer systems has imposed

strict requirements of computer reliability and availability. A

computer hardware failure in a data management, interactive computing

or control environment can lead to unacceptable costs in aggravation,

idleness or even human life.

Efficient recovery procedures are essential to the reliability

required of such systems. Recovery is defined [Carter, 19701 as the

continuation of system operation with data integrity after a fault

occurs. A successful recovery from a hardware failure must correct

311 errors due to the failure to insure continued system operation

with data integrity. This error-correction must be accomplished

I -
quickly and automatically if high system availability is to be

maintained.

Repair and program rollback is a typical recovery method for

correcting undetected errors caused prior to the detection of a

fault. The entire state of a process is copied into secondary

.

storage at pre-selected points called checkpoints [Chandy, et al,

. 19751. After repair of the fault, data integrity is restored by

a program rollback to the assumed error-free checkpoint copy of

the data. The total recovery time includes the time to repair the

fault, to load the checkpoint data, and to re-execute the portion

of the program included in the rollback.
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Certain properties implemented by logic design can be used

to enhance availability by reducing the total recovery time. The

-;%self-checking  property guarantees that a fault in a circuit is

eventually detected and that no undetected errors due to the fault

can be propagated. The self-checking property obviates the need

for rollback by eliminating the possibility of any undetected errors

prior to the detection of the fault [Shedletsky, 19761. Thus, the

recovery time for a self-checking system is only the time to repair

the fault and to restart without rollback.

Automatic repair of a permanent hardware fault has typically

been achieved by automatic circumvention of the faulty hardware.
E-

. - Standby sparing [Avizienis, 19711 or simple amputation [Fox, 19751

are examples of circumvention. Both cases imply substantial

hardware redundancy. Error-correcting codes and specifically,

voting on the outputs of three or more identical modules [Dickinson,

et al, 19641 are examples of ways to provide automatic error-

correction without repair. In any case, the hardware cost of auto-

matic error-correction has been prohibitive, except in special or

critical applications. Voting, for example, increases the hardware
e.
cost by more than threefold.

Instruction or task retry is another recovery method for

automatic error-correction [Carter, et al, 19741. This technique

offers the advantage of quick repair time since it is automatic,

but without the disadvantage of excessive hardware cost. Unfortunately,

retry has only been applicable to the correction of errors caused



by transient or intermittent faults.

This paper proposes the alternate-data retry (ADR) as a

3 fundamentally new technique for automatic error-correction. An-9

ADR provides the error-correction for permanent faults found in

existing hardware-redundant schemes, but at low hardware cost over

that of a retry scheme. The example in Figure 1 illustrates the

basic principle invoked by an ADR.

transmitted erroneous transmitted error-free
vector X, received vector X, received

2
. -

vector

J stuck-at 11 U I 0 0 .+iug-
N

\ 0 1
0 0

1

(a) Initial try (b) alternate data retry (ADR)

1 1

0 0

vector

Fig..l. - Fault neutralization during an ADR.

In Figure 1, unit A sends the odd-parity vector <OOOl> over

the bus to unit B. Due to the stuck-at fault, unit B receives the

erroneous, even-parity vector <lOOl> and signals an error. For

the retry, unit A sends the alternate data-representation <lllO>,

which is received correctly despite the fault. In this example,

both the vector <OOOl> and its complement <lllO> represent the

same message and convey the same information to unit B.

A logical stuck-at fault is neutralized by the signal value

of a line if the signal value is equal to the stuck-at value.
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Every message in an ADR system is represented by more than one

binary vector. After causing an error with the initial representation

<OOOl>, the fault in Figure 1 is neutralized by the alternate

representation <lllO> during the ADR. While previous methods of

error-correction seek to mask an error resulting from the applica-

tion of data, an ADR applies an alternate representation to neutral-

ize the fault so that no error is ever generated. Like any retry,

an ADR is also effective against transient and intermittent faults.

Since an ADR changes the pattern of data, it should also be effec-

tive against pattern-dependent faults.

This paper approaches the ADR as a candidate for possible use

in low cost, highly available systems. Since only detected errors

are corrected by an ADR, the self-checking property is assumed.

In this way, all errors due to a fault are detected and corrected

by an ADR before data contamination can occur.

The following section formally describes the system of message

representation and circuit properties necessary for an ADR capabil-

ity. Other sections provide guidelines for the design of circuits
4

possessing these properties. A simple example of a self-checking

processor with an ADR capability is given in the last section.

This processor can achieve automatic error-correction by an ADR

for any single fault (and many multiple faults) that may occur in

the data paths or the memory.



CIRCUIT PROPERTIES FOR AN ADR CAPABILITY

A message is conveyed by the pattern of logic values in a

binary vector. Determinism is preserved in a digital system since

each binary vector represents one and only one message. The binary

vector <OlOl> for example, represents the message "5". Each message

is represented by only one vector in a simplex system of message

representation, but by more than one vector in a morphic system of

message representation.

Let R be a relation on the set of binary vectors in a morphic

system of message representation. Define R such that one vector

. - 3-s related to another if both vectors represent the same message.

The relation R is an equivalence relation that partitions the

vectors into morphic equivalence classes (ME(%). There is a one-

to-one correspondence between MEC's and messages. Since messages

are represented by only one vector in a simplex system, there is

also a one-to-one correspondence between MEC's and simplex vectors.

For any circuit h mapping input vectors x to output vectors

h(x) in a simplex system, there is a corresponding circuit H mapping

input vectors X to output vectors H(X) in a morphic system.

Definition. The circuit H is morphic* to the circuit h when vector

X being a member of the MEC corresponding to simplex vector x im-

plies that H(X) is a member of the MEC corresponding to h(x).

*
The circuits defined in [Carter, 19721 are a special case of this
general definition.
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We refer to h as the simplex circuit and H as the morphic

circuit. There can be more than one morphic circuit corresponding

to a given simplex circuit.1 A morphic circuit preserves the corre--9
spondence between a simplex and morphic system of message represen-

tation by mapping every member of each input MEC into members of

the appropriate output MEC (Figure 2).

,*-

. a

s i m p l e x  c i r c u i t

s. h .. ..
input
vectors

output
vectors

m o r p h i c  circuit

0

H *-.

- -

input  hlEC’ s output  MEC’s

\ MEC( y)
)

\ MEC(y)

)

f- --- - --\ /

F i g .  2 .  - T h e  m a p p i n g  function  realized  by SJ simplex  cil.cuit  h nnd B
corresponding  morphic  circuit  tl.

The output Hf(X) of a faulty morphic circuit H is correct if

Hf (X> = H(X). The output Hf(X) is morphically correct if Hf(X) is

equivalent to H(X) by the equivalence relation R.
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Definition. A morphic circuit H is recoverable for a set of faults

if for every fault in the set,the output H
f (X) is correct for at

~ least one member X of every input MEC.

A broader definition of recoverability requires only that the

a output be morphically correct for at least one member of every input

MEC. The following theorem 1 holds for the broader definition, but

no practical advantage is gained. This paper assumes the narrow-

sense definition above.

Example 1. Let every MEC in Figure 1 have just two members, an odd-

parity code word and its (odd-parity) bit-complement. It follows

. a that four messages can be represented by such a morphic/coded

system. The bus in Figure 1 is morphic and recoverable for any

single stuck-at fault.

The property of recoverability insures that a faulty morphic

circuit produces a correct output for at least one member of each

MEC. The retry strategy for error-correction is to apply alternate

members of the same input MEC until a correct output is produced.

An independent means of error-detection is assumed.

Algorithm 1: Error correction by ADR.

1. Apply an as yet untried member of the given input MEC.

2. If no error is observed in the output, then exit. Other-
wise go to 3.

3. If all members of the input MEC have been tried, then signal
a failure to correct and exit. Otherwise go to 1 (retry).



Theorem 1. If a circuit is recoverable for a fault set, and if

an independent means of error-detection is provided, then algorithm

3Pa* 1 corrects any output error caused by a fault in the set.

Proof. The recoverability property guarantees that at least one

member of the input MEC produces a correct output. A failure to

correct in step 3 can only occur if the fault is not in the pre-

scribed fault set.

Error-detecting codes provide the independent means of error

detection required by algorithm 1. A codeword represents one and

only one message while a noncode word represents no message. A
f ̂

. - noncode word indicates an error condition. A message is represented

by more than one codeword in a morphic/coded system of message

representation. A code is consistent with a morphic system if

every member of each MEC is a code word and every code word is a

member of some MEC (Figure 3).

code worus

noncode words

Fig. 3. - A consistent, morphic/coded system of
message representation.
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The following circuit properties for dynamic error-detection

were introduced in [Carter and Schneider, 19681 and refined in

3-* [Anderson, 19711.

Definition [Anderson, 19711. A circuit is secure for a fault set

if for every fault in the set, the faulty ciricut never produces

an incorrect code output for code inputs.

Definition [Anderson, 19711. A circuit is self-testing for a-

fault set if for every fault in the set, the faulty circuit produces

a noncode output for at least one normally applied code input.

Qefinition [Anderson, 19711. A circuit is self-checking if it is
. -

both secure and self-testing.

code inputs code outputs

Fig. 4. - A morphic circuit for use with a morphic/coded
system of message representation.

*

If circuit H in Figure 4 is secure, then any output error can

only force the output to a noncode word, which triggers an error-

detection. A circuit must also be self-testing in an environment

where maintenance is performed only after a fault is detected. If

a circuit were not self-testing for a fault, then the fault would

never be detected in normal operation. A second fault could occur
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before the first was repaired, and the circuit might not be secure

for the two faults combined.

Theorem 2 summarizes a list of circuit properties sufficient

for immediate error-detection and then correction by ADR.

Theorem 2. Algorithm 1 can correct any error due to a fault

in the circuit H in Figure 4 if the fault belongs to the set F and

H is:

(1) operated in a consistent morphic/coded system of message
representation

(2) morphic

(3) self-checking for F, and

,*- (4) recoverable for F.. -

The design of self-checking circuits is discussed in detail

A in [Carter and Schneider, 19681 and [Anderson, 19711.
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DESIGN OF RECOVERABLE C-MORPHIC CIRCUITS

The choice of a morphic system of message representation
3--M

depends on the set of faults that are most likely to occur. A

circuit can only be recoverable for a fault if at least one member

of each MEC can neutralize or mask the fault. Experience has in-

dicated that most faults can be modeled as logical stuck-at faults.

A single (stuck-at) fault forces the logic signal on a line to a

constant 0 or to a constant 1 value.

Since only one member of aMEC is stored in a register or memory

location, the other members must be easily derived by a hardware

.
granslator. Also, each MEC should have as few members as possible

. -
to minimize the maximum number of retrys.

The C-morphic* system of message representation is distinguised

by its equivalence relation R. In the C-morphic system, a vector

X is related to a vector Y if X = Y or X = Y. The overbar indicates

bit-by-bit complementation. Every MEC has only two members, a

vector and its bit complement.

The C-morphic system satisfies the considerations mentioned

above. Every MEC has an optimal size of two. A translator is

simply a multiplexer that chooses either the uncomplemented or

the complemented output of each latch in a register. Also, design

guidelines for recoverability developed in this section guarantee

that at least one member of each MEC can neutralize or mask any single

. single fault.

*
The "C" implies complementation.
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A code is consistent with a C-morphic system if the bit com-

plement of every code word is also a code word. Several codes have
*

this property, including the two-rail code , replication codes,'1-4
n out of 2n codes, and residue codes with checkbase A = 2a - 1

(low-cost residue codes) [Avizienis, 1969). The bit complement

of a binary linear block code word is also a code word if every

row in the parity-check matrix [Peterson and Weldon, 19721 has an

even number of ones. It follows that canonical hamming codes

[Peterson and Weldon, 19721 and simple parity over an even number

of bits are also consistent with the C-morphic system (see

Example 1).

. a =*- A Morphic circuit for use in a C-morphic system is a

C-morphic circuit *

Example 2. A C-morphic identity circuit maps members of an

input MEC into members of the same output MEC. Both circuits in

Figure 5 are C-morphic identity circuits. There are many others.

A primary input line is an input line that does not fan-out,

or an input line up to the point of fan-out. Any single fault in

a primary input line is neutralized by one of a pair of comple-

mentary inputs. This proves lemma 3.

Lemma 3. A C-morphic circuit is recoverable for single

faults affecting the primary input lines.

*
A two-rail code is complemented duplication.
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Fig. 5. - Two C-morphic identity circuits.

Any single fault in an output line of a C-morphic circuit is

neutralized if and only if the complementary input vectors are

mapped into complementary output vectors. The dual of a single or

multi-output circuit g is denoted gd
- -

and is defined gd(x) E g(x),

where x is a normally applied input vector. A circuit g is self-
- -

dual if g(x) = g(x). The output vectors of a self-dual circuit

are complementary for complementary input vectors. Both circuits

in Figure 5 are self-dual. Lemma 4 follows.

Lemma 4. A C-morphic circuit is recoverable for single faults

affecting the output lines if and only if the circuit is self-dual

for the set of normally applied inputs.
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Any self-dual circuit may be viewed as a C-morphic circuit,

so the recoverability property applies. A self-dual circuit is

~ recoverable for a fault set if for every fault in the set, the

faulty circuit produces at least one correct output for every pair

or normally applied, complementary input vectors.

Theorem 5. A network of self-dual modules, each recoverable for

a fault set F.,1 is recoverable for the fault set F where F is the

union of all sets F..
1

The set F includes all single faults affect-

ing connections between modules.

Proof. A network of self-dual modules is self dual. The inputs to

. - any module are complementary for complementary network inputs. The

network is recoverable for any fault in a module for which the module

is recoverable. Single faults in module connections are included in

F by lemmas 3 and 4.

Theorem 5 permits the construction of a recoverable network by

the interconnection of smaller, recoverable modules. The following

development produces guidelines for the design of recoverable, self-

dual circuit modules.

We define a four-valued logic for the analysis of faulty

circuits [Roth, et al, 19671. A line in a faulty circuit can assume

one of the four logic values: 0, 1, D or 5. Table 1 describes

the meaning assigned to each value.

Table 1 - A four-valued logic and assigned meanings.

binary logic value binary logic value if
in faulty circuit circuit were fault-free

0 0 0
1 1 1
D 0 1
b 1 0
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Figure 6 shows the four-valued truth tables for an inverter,

a line stuck-at 0, and a line stuck at 1. Figure 7 shows the

3-9 four-valued truth table for a two-input AND gate and OR gate.

stuck-at 0 stuck-at 1

-+-- * *

in
0
1

D

b

out in out in

1 0 0- I 0

0 1 D 1

E D D D

D 5 0 'ij

outiir115
Fig. 6. - Four-valued truth tables for an lnverter,

a stuck-at 0 fault, and a stuck-at 1 fault.

AND OR

10 0 1

1 1 1 1

1D D 1

lij 5 1

Do

D l

D D

DE

AND OR

0 D 50

 -

D 1 Til

D D i5D

0 1 iiD

Fig. 7. - Four-valued truth tables for a 2-input AND gate and a
e-input OR gate.

Definition. The errors appearing on a line are D-monotonic
-
(D-monotonic) if,over the set of all possible inputs,the line never

assumes the value 5 (D). The errors are polytonic if the line can

assume both values D and 5.

A fault is testable if it changes the function realized by a

circuit.
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Definition. A testable fault in a single output circuit is

D-monotonic, %monotonic or polytonic if the errors on the output

line are D-monotonic, D-monotonic or polytonic respectively.

Only successor lines to a fault can assume the error values

D or5. Figure 6 indicates that a line stuck-at O(1) can only

assume an error value of D (5). A faulty line generates only

monotonic errors. Polytonic errors in a circuit of AND, OR and

inverter gates can only be generated at the output of an AND or OR

gate. These m-input gates can only generate polytonic errors if at

least one gate input line has polytonic errors, or at least two

ga&e-input lines have monotonic errors of opposing values D and 5.
. -

In a circuit with a single fault, it follows that polytonic errors

can only be generated at the output of an AND or OR gate if there

is more than one path from the fault to the gate. Furthermore,

the monotonic errors on at least two gate-inputs at the point of

reconvergence must have opposing values. Only inverters can change

D-monotonic errors to &monotonic errors and vice versa. Theorem

6 follows.

a. Theorem 6. A necessary condition for a single fault to be poly-

tonic in a single output circuit of AND, OR, and inverter gates

is at least two paths from the fault to the output, one containing

an odd number of inverters and the other an even number of inverters.
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Theorem 7. A single-output, self-dual circuit is recoverable for

a monotonic fault.

3-=u

Proof. Complementary inputs correctly produce complementary values

on the output line. A monotonic fault can cause at most one of each

pair of complementary output values to be incorrect.

Monotonicity of output errors is not a necessary condition for

recoverability.

In a tree circuit, no gate outputs fan-out, although primary

input lines may fan-out.

; -

. a Corollary 8. A single-output, self-dual circuit is recoverable

for single faults if the circuit is either:

(1) a tree circuit of AND, OR, or inverter gates, or

(2) a general circuit of AND or OR gates, or

(3) a general circuit of AND, OR, or inverter gates such that
the number of inverters in every path from a fan-out point
to the output are either all odd or all even, for every
fan-out point.

Proof. In every case but (l), single faults are monotonic by

theorem 6. In case (l), all single faults are necessarily mono-

tonic by theorem 6 except those in primary input lines that fan-out.

The circuit is recoverable for single faults in input lines by

lemma 3.

Theorem 5 and corollary 8 together form guidelines for the
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design and verification of recoverable, C-morphic circuits. The

conditions given in corollary 8 are sufficient to insure recover-

ability, but not necessary.
Ma

The following section discusses two specific codes consistent

with a C-morphic system of message representation. The self-checking

property is particularly easy to satisfy for circuits using the

first code. The second code is particularly hardware efficient.
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SPECIAL CASES: TWO CONSISTENT CODES

The self-checking condition in theorem 2 is generally the

a most difficult to satisfy. A duplication code is a special case

for which the self-checking property is much easier to attain.

A C-duplication code is formed in two steps. First form

a C-morphic system of message representation by appending an

invert bit i to an r-bit simplex vector. The uncomplemented

(complemented) member of a MEC is that member with invert bit

equal to O(1). The second step is to duplicate each of the r + 1

bits to form a 2(r + 1) bit duplication code word.

A C-morphic circuit G for the C-duplication code is formed
, 2.
with two identical, C-morphic modules Gl and G2 (Figure 8).

i n v e r t  b i t

s i m p l e x  b i t s

d u p l i c a t e d
i n v e r t  b i t

d u p l i c a t e d
s i m p l e x  b i t s

F i g .  8 . - A  m o r p h i c  c i r c u i t  f o r  u s e  w i t h  o C - d u p l i c a t i o n  c o d e .

The C-morphic circuit G is easily verified to the self-checking;

it is secure for any fault limited to Gl or G2, and self-testing for

any testable fault in Gl or G2*.

*
It is assumed that all 2r+l input vectors are normally applied to
Gl and G2.
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Let g be the simplex circuit to which the morphic module Gl

corresponds. Module Gl can be constructed as shown in Figure 9a.

--ark Detail of the multiplexer in Figure 9a is shown in Figure 9b.

Module G2 is identical to Gl.

,*-

invert
bit

simplex
bits

r------t
I
I
I
I

I U

I
I<
I

L-----GIJ

(a) Overall diagram.

i i

(b) Multiplexer detail.

Fig. 9. - A C-morphic circuit corresponding to the simplex circuit g.

Module Gl is self-dual even if the simplex circuit g is not.

A careful analysis of the multiplexer verifies that Gl is recoverable

for single faults in the multiplexer. Furthermore, it is easy to

verify that Gl is recoverable for faults in the simplex circuit g

and the dual gd, and single faults in the primary input lines and

output lines. We conclude that the module Gl and hence the C-morphic

-* circuit G is recoverable for single faults.

If the simplex circuit g is self-dual, then module Gl can be

constructed as shown in Figure 10.
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i _-

Fig. 10. - A C-morphic circuit corresponding to
the self-dual, simplex circuit g.

The C-morphic circuit G is recoverable for single faults if

g in Figure 10 is designed according to theorem 5 and corollary 8.

The circuit corresponding to a self-dual g in Figure 10 is much

more economical in hardware than the circuit in Figure 9. Fortunately,

many computer circuits are self-dual.. a

An error in the output of a self-checking circuit is detected

by the observation of a noncode word. In fact, a noncode output

is detected by a code checker. The checker for a C-duplication

code checks for the equality of duplicated bits. Errors due to

checker faults may also be detected, then corrected by an ADR

if the checker satisfies the conditions of theorem 2.

To be secure for a single fault on an output line, the output

of a checker must be coded. We choose a two-rail code for the

checker output with the convention that a code output of <Ol> or

<lo> signals a no-error condition, while a noncode output of <OO>

or x11> initiates ADR.

To satisfy theorem 2, a checker may be viewed as a C-morphic

circuit mapping code word members of every input MEC into code
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word members of one output MEC, {<Ol>, <lo>].

The two-rail checker in Figure 11 was reported in [Anderson,

,,31971]. The checker is self-checking for single faults [Anderson,

19711, and self-dual for the set of normally applied inputs. It

is recoverable for single faults by theorem 5 and corollary 8.

l-out-of-2 l-out-of-2 l-out-of-2

v---m -------v--- J
Fig. 11. - A recoverable, two-rail checker.

A two-rail checker for any odd number of two-rail inputs can

be formed by constructing a tree of the checkers in Figure 11. A

duplication checker is formed by adding inverters to one of each

* pair of two-rail inputs. A duplication checker constructed in

this manner is self-checking for single faults [Anderson, 19711.

It is self-dual and recoverable for single faults by theorem 5.

The checker for 17 duplicated bits in Figure 12 satisfies the

conditions of theorem 2.



3-*

1 J

II II
The recoverable two-
checker in Fig. 11.

Fig. 12. - A recoverable checker for 17 duplicated signals
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The use of a duplication code makes self-checking design

easier, but at a cost of duplicated hardware. A single-error-

detecting parity code uses much less hardware.

The C-parity code is formed by appending an invert bit i and

a parity bit p to a simplex vector. The simplex vector must have

an even number of bits, so that the parity code word has an even

number of bits. An even number of bits is required for consistency

with the C-morphic system. The C-parity code may use even or odd

parity over all bits. Assume odd parity.
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Example 3. The message "5" is represented in a simplex system by

the vector <OlOl>. The C-parity code words representing "5" are

--aa <lOOlOl> and <OllOlO>, where the parity and invert bits are the

most significant and the next most significant bits respectively.

A two-level implementation of a 3-input exclusive-or (XOR)

circuit is self-dual and recoverable for single faults by corollary

8. A C-morphic checker for an even-bit parity code can be con-

structed by forming two independent trees of the 3-input XOR circuits

mentioned above. Any odd number of code word bits are inputs for

one tree, while the remaining odd number of code word bits are in-

pug” for the second tree. If the parity code uses even parity,
. -

then an inverter is added to the output of one of the trees.

A parity checker so constructed is self-checking for single

faults [Anderson, 19711. It is also self-dual and recoverable for

single faults by theorem 5 and corollary 8.
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A C-MORPHIC PROCESSOR

This section illustrates the design of a dual, C-morphic

processor system. The design guidelines for a C-duplication

code apply, since error-detection is provided by comparing the

results of two C-morphic processors operating in synchronization.

The processors correspond to modules Gl and G2 in Figure 8. The

correction of any error due to single faults in the data paths

and the memory is achieved by an ADR.

An ADR achieves error-correction in an operation that applies

stored binary vectors to a circuit for processing and observation

zf the result. This suggests that an ADR is best utilized at

the level of primitive operations executed by a single micro-

instruction.

A microinstruction retry capability imposes design constraints

additional to those imposed by the recoverability property. An

important problem is the loss of an operand for retry due to the

over-writing of a register [Maestri, 19721. The approach taken

here is to insert an intermediate latch at the output of the pro-

cessing circuit. The result in the intermediate latch can be

verified to be correct before it is returned to the registers.

We note here that a stuck-at fault can be neutralized only

if the logic value assumed by a line is supposed to remain constant

for the duration of an operation. This necessarily excludes faults

on lines with changing logic values from the set of faults for which
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a C-morphic processor is recoverable. Faults on clock and timing

lines for example, cannot be neutralized.

A Figure 13 is a simplified diagram of the data paths of a

microprogrammed, C-morphic processor. Data paths are 16 bits plus

1 invert bit. An exception is the A and B busses which are 16 bits

each plus 1 shared invert bit. The uncomplemented (complemented)

output of each latch in a register is placed on the AU, BU, or

RU (AC, BC, or RC) busses. Registers M and D are the memory

address and memory data registers.

The execution of a micro-instruction is generally accomplished

in two phases. In phase 1 operands are applied to the processing

. - ci%uits via busses A and B and the result is stored in the inter-

mediate latch IL. In phase 2 the result in the intermediate latch

is applied to the shifter and the shifted result is stored in a
4

destination register. Registers may be latch registers.

The C-morphic processor operates in two modes of message

representation, controlled by the toggle flip-flop T. When

T = O(l), messages are represented by the uncomplemented (comple-

mented) member of each MEC. Recall that the invert bit of an

. uncomplemented (complemented) member of a MEC is O(1). In normal

operation, T is toggled at the completion of each micro-instruction,

thus insuring a roughly equal proportion of uncomplemented and

complemented representations in storage. Both representations must

be normally applied to circuits to insure the self-testing property.
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Fig. 13. - A simplified diagram of the data paths of a C-morphic processor.
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The translation multiplexers TMUXA, TMUXB, and TMUXR are

controlled by the flip-flop T. The buses A and B must both carry

= 0 or both carry complemented members1 uncomplemented members when T-9
when T = 1, since A and B share the same invert bit. Figure 14

illustrates the detail of TMUXA and TMUXB. TMUXR is identical

to TMUXB.

SOURCE REGISTER SOURCE REGISTER

c h o o s e  q
choose  q_- - -  -

bus A

s i m p l e x  b i t s i n v e r t  b i t
-i #. qGqqqG. . K ---___- --I -- -----i-- ----- 1

eTI--I-. --- --

-- -

b u s  B s h a r e d f
invert  bit

I
I
- T

I

J

Fig. 14. - Detail  o f  1MUXA  n n d  TMUW.

It is easy to verify that if the latches of the source registers

are in error-free states, then a single fault in Figure 14 causing

an error in busses A or B when T = O(1) will not cause an error
a

when T = l(0).

The duplication checkers Cl and C2 are connected to the busses

RU and BU in both processors. Figure 12 illustrates the design of

the checkers.

The execution of a micro-instruction is described by algorithm 2.
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Algorithm 2: Execution of a micro-instruction.

1. Execute phase 1 (T is 0 or 1)

3--e

2. If checker Cl indicates no error in the vector stored in
IL, then go to 5.

3. Toggle T and re-execute phase 1.

4. If checker Cl still indicates an error, signal the failure
of the ADR and exit.

5. Execute phase 2.

6. If checker C2 indicates no error in the vector stored in
the destination register, then toggle T and exit.

7. Toggle T and re-execute p.hase 2.

8. If checker C2 still indicates an error, signal the failure
of the ADR and exit.

-- -
. a The C-morphic processor is recoverable for any single fault

in a data path from source registers to intermediate latch IL to

checker Cl in phase one, or a data path from IL to destination

register to checker C2 in phase two. The entire processor is

actually recoverable for much more than just single faults. For

example, the processor can continue to operate correctly with one

stuck bit in every register, or with single faults in the adder

and shifter.

Functional circuits for the C-morphic processor may be

designed according to Figure 9 or Figure 10. Two examples follow.

The inputs to an adder bit position j are the operand bits

Aj and Bj and carry-in C..
J

The outputs are the sum bit S, and
J

the carry-out Cj+l' The adder functions are:
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S
j =Aj @Bj  “*J

(1)

Cj+l = Aj Bj + Aj Cj + B. C.0
J J (2)

3-9

The carry bits CO (least significant) through Cn 1 in an n-bit

adder form a carry vector.

Circuits implementing equations 1 and 2 are both self-dual.

It follows that an n-bit adder is self-dual for the sum and the carry

vector; the sum and carry vector are complemented when the operands

and Co are complemented.

Figure 15 illustrates a C-morphic, carry look-ahead adder.

invert
A bit

carry look-
ahead circuits

sum circuits

R3 R2 R1 R
0

* invert
bit

Fig. 15. - A C-morphic adder with carry look-ahead.

The carry look-ahead circuits [Morris and Miller, 19711 in Figure 15

are also self-dual. If the sum circuits and carry look-ahead circuits

are designed according to corollary 8, then by theorem 5, the C-

morphic adder in Figure 15 is recoverable.
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Unlike an adder, the circuits for logic operations AND and

OR are not self-dual. Figure 16 illustrates a C-morphic AND circuit
3-4 designed according to Figure 9.

. . . A2  B2 Al  Bl *o  B.
i n v e r t

m o d u l e  2 I I m o d u l e  1 I I

b i t

r- --,

3 -
. . .. a

F i g .  16. - A  C - m o r p h i c  AND(OII)  c i r c u i t .

b i t

Each module in Figure 16 is self-dual and recoverable for single

faults. The entire C-morphic AND circuit is recoverable by theorem

5. A C-morphic OR circuit is formed by inserting an inverter at

point E in Figure 16.

Faults sticking a single bit in a memory location can be

neutralized by the following algorithm. The algorithm applies

for any C-morphic system of message representation.

Algorithm 3: Fault-neutralization in memory.

1. Write the member W of a given MEC.

2. Read W immediately
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3. If an error in storage has occured, write the alternate
member of the same MEC, W.

-.a Algorithm 3 is implicitly used for storage in registers by

the execution of algorithm 2. Algorithm 3 can correct errors

only if the fault exists before an attempted storage.

Note that members of a MEC in the memory address register M

must be translated into a simplex address for use by the memory.

The C-morphic processor is necessarily not recoverable for faults

in the output lines of the morphic-to-simplex translator.

Dual (non-morphic) processors have been used for the purpose

of error detection in high-availability systems [Ressler, 19731.

. When% mismatch is detected, each processor must interrupt and

run programs for self-diagnosis. Since transient faults are com-

monly believed to be much more frequent than permanent faults, a

retry capability is recommended for such systems. If an error

due to a transient fault is corrected by retry, then a system

interruption for self-diagnosis can be avoided.

Self-diagnosis by a permanently faulty processor is not

guaranteed to be accurate. If both processors agree as to which

is faulty, then the faulty processor is purge{! while the other

continues. In this case, the error-detection capability is lost

and data contamination can occur. If the processors disagree as

to which is faulty, then the decision to purge the processor cannot

be made reliably. Either choice risks data contamination.
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An ADR capability enhances the availability of a dual processor

system. An ADR is guaranteed to correct an error in the recoverable

processor, restore duplication between processors, and allow the

continuation of dual processor service. Thus a fault for which

the processor is recoverable neither halts the dual system, nor

forces it to operate in a single processor mode where error-detection

is lost. As indicated, the C-morphic processor in Figure 13 can

continue morphically correct operation even for certain multiple

faults.

The additional hardware cost for this ADR capability, over that

of a dual processor with a simple retry capability, is low. The
E -
cost in time is modest. Extra propagation delays are usually in-

curred due to the morphic circuits. Also, a permanent fault is

expected to trigger frequent retrys. For example, a stuck-at fault

on a bus line that is 0 half the time and 1 half the time causes

an error half the time in one execution phase. Since an error-

correction requires an ADR, the effective execution rate is re-

duced to 80 per cent of the normal rate, assuming equal execution

time for both phase 1 and phase 2. Such degraded performance,

however, may be preferrable to a system shutdown or a contaminated

data base.



, 9
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CONCLUSIONS

An alternate-data retry (ADR) is a fundamentally new way to

achieve automatic error-correction in a high-availability system.

An ADR capability insures the continuation of error-free service

despite the occurrence of a fault, thereby allowing the postponement

of repair until a more convenient time.

The application of an ADR capability to the memory and the

data paths of a dual processor was illustrated. Other experimental

designs indicate that such a capability may be extended to certain

control lines and parts of the micro-program sequencer.

f- The additional hardware cost of an ADR capability over that

of a single retry capability is relatively low. An investigation

is continuing into the design of a single C-morphic processor that

would satisfy the requirements for an ADR capability. Such a

design might impose the recoverability property on the low-cost

self-checking circuits discussed in [Wakerly. 19731. The C-parity

code is one candidate for use in such a processor. For example,

a recoverable, C-morphic adder has been designed using the predicted

parity techniques in [Sellers, 19681. This adder is self-checking

and recoverable for a suprisingly low hardware cost.
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