SEL-76-024

EMMY/ 360 Functional Characteristics

A

by

Walter A. Wallach

June 1976

Technical Report No. 114

The work described herein was

supported in part by the Army
Research Office-Durham under
Grant DAAG-29-76-G-0001.

DIGITAL SYSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY .STRNFORD, CALIFORNIA

et

SU-SEL 76-024

EMMY/360 FUNCTIONAL CHARACTERISTICS

by

Walter A. Wallach

June 1976

Technical Report No. 114

DIGITALSYSTEMSLABORATORY
Stanford Electronics Laboratories
Stanford University
Stanford, CA 94305

The work described herein was supported in part by the Army Research Office-
Durham under Grant DAAG-29-76-G-0001.

Digital Systems Laboratory

Stanford Electronics Laboratories

Techni cal Report No. 114

June 1976

EMMY/ 360 FUNCTI ONAL CHARACTERI STI CS
by
Walter A Wallach

]

Abstract

An emul ation of the I1BM Systenm 360 architecture is presented-
the EMMY/360. Problem state code which executes correctly on an
IBM 360 will also execute correctly on the EMMY/360. Code
produci ng execution exceptions will, in nost cases, produce the
same results on the two systens. Certain exceptions occurring on
IBM 360 cannot occur on the EMMY/360, such as address
specification exceptions for main store operands, and certain
precise interrupts on IBM 360 will be inprecise on the EMMY/360,
such as address exceptions. The EMW/360 supports the Standard
360 instruction set with single precision floating point. The 360
i nput/output structure is not supported; 1/0O on the EMW systemis

-done by Function Call instruction, rather than channel program and
Start-Test /0O

The work herein was supported in part by the Arny Research
O fice-Durham under grant DAAG 29-76-G 0001.

v }

1.0 Introduction

The EMW/ 360 is a class B [5] enulator for the |IBM Systen 360

architecture [2] witten for the Stanford EMW [3]. The current
version supports the basic 360 instruction_ set (problemstate)
with single precision floating point. The 360 i nput/out put

structure is not supported.

The EMW/ 360 is intended to run the Stanford PL360 system
devel oped by wirth [9]. This system provides a single job nonitor

environnent for the execution of PL360 prograns. A 360 object
text |oader will be added to allow the execution of standard |BM
probl em state code, such as Fortran object, for the purpose of

architectural eval uation.

The basic configuration of the EMW/ 360 consists of the EMW
CPU [3] and the Datapoint 2200 termnal [1], which is wused as a

| ow speed I/O channel and diagnostic console. The Dat apoi nt
provides two 2400 baud cassette drives and access to a
printer-keyboard, CRT- keyboard, paper tape reader-punch, and

communi cati ons adapter.

=- System expansion plans call for the addition of a DEC PDP-11
and Uni bus system [7] to support mass storage facilities, higher
speed uni t record equi pnent , and a mor e power f ul
channel / di agnostic consol e.

2.0 Conpatability to IBM 360

The EMW/ 360 maintains compatability with the 1 BM Systenf 360
in problem state for the 360 basic instruction set. "Correct"
code wll produce the same results on both systens. Most
exceptional conditions are handled the sane in the emulator as in
| BM 360. The differences will be discussed.

Jaeoy. §

2.1 Pocessor State and the PSW

The emulator maintains a 64 bit PSW (decoded internally),
which is returned to thedprogamin 360 basic control format at the
appropriate main store address upon interruption (see [2]).

The emul at or progam consi sts of 3 phases- operation decode
(DECODE), operation execution (EXEC), and channel emulation (1/0.
DECODE and EXEC proceed sequentially until an 1/O operation or
interruption is requested. The enmulator then enters channel node
to service the transfer. In the case of an I/0 request, t he
0ﬁerands of the I/Oinstruction are checked, and a request to the
channel processor (either the Datapoint or the PDP-11) is
formatted. The channel processor then perforns the transfer while
the emulator returns control to the 360 program

Channel conpletion or error is signalled by a hardware
interrupt of the EMW CPU. The channel emulator determines if the
interrupt is allowed, and, if so, causes a trap to be taken to the
PSW swap code the next time DECODE is entered. This insures the
current 360 instruction will conplete before the interrupt is
servi ced. If the interrupt is not allowed (masked out in the
current PSW, the channel conpletion information is stored and,
the next time the channel is accessed, a channel status word is
returned to the program The 1/O request is not initiated in this
case.

2.2 Addressing
2.2.1 Address Boundary Alignmnent

System 360 nornmally requires that operands be aligned on
certain address boundari es. Full word (32 bit) operands nust
reside on byte addresses divisible by 4, and so forth. Thi s
restriction has been renoved in the EMMY/360. Al'l boundary
alignment, rmulti word fetching, and buffering is performed by the
EMMY mai n menory controller [4]. A byte, halfword or word operand

requested on an arbitrary byte address is always returned
correctly by the nenory controller. Unaligned operand fetch or
store operations require two mainstore acceses; properly aligned
operands will be accessed about tw ce as fast as unaligned ones.

2.2.2 Addressing Exception

All 360 addresses are treated as 24 bit unsigned integer
val ues. No check is done as to the |legality of requested 360
addr esses. When a non-existant byte of main store is addressed, a
Bus Tinmeout interrupt of the CPU will result (see [3]). This wll
be passed on to the 360 program as an inprecise addressing
exception (ILC=O if the request was made by the CPU. Note that,
since the CPU cannot clear the bus following a tineout, t he
Dat apoi nt or PDP-11 nust clear the bus before the program can
conti nue. QG herwi se, the systemw !l halt.

2.2.3 Storage Protect

No storage protect ~ feature s provi ded. Any
protection-related operation will result in an operation exception
interrupt. The key field of the PSWis ignored.

-

2.3 Optional Features
2.3.1 Decimal Feature

Deci mal feature is not supported. Any decinmal feature
instruction will result in an operation exception interruption.
Decimal feature will be supported at a later date.

2.3.2 Dynamic Address Translation

At present, dynamic address translation will not be provided.
In the future some formof virtual addressing will be supported.
The 360-370 schene of segment and page tables in main store wll
not be used, since this requires additional hardware such as CAM
buffers.

~ A schene based on a translation table in control store and
pagi ng control bits has been explored and will be inplenented when
the mass storage system beconmes operational [8].

2.3.3 ASCI | Mode

The EMW/ 360 supports only EBCDIC nmode (as in system/370).
The ASCII bit of the PSWis ignored. Al zone and sign digits
generated are EBCDI C and all sign codes are assuned EBCDIC

2.3.4 Floating Point

P}

Only limted floating point support is provided. This
i ncl udes the 360 single precision instructions of the 360 Floating
Point Feature.

2.3.5 Interval Tiner

An Interval Timer feature is included, which increnents min
store location 50 (hex) by one in the least significant bit
position every 40,000 CPU cycles. Wen an overflow condition is
detected (in the tinmer update operation), an EXTERNAL interruption
of the programis generated with interrupt code x'80' (if not
masked by PSWbit 56). The timer may be loaded with any val ue and
read at any tinme. Resolution is 2.4 ms at 60ns internal cycle,
and 1.4 ns at 35ns internal cycle.

-

. The timer may be used for event timing, time of day, or
internal cycle counting.

3.0 1/0 Support
3.1 Processor Support

The CMMY/360 does not support 360 channel program 1/Q 1/0
requests are made by nmeans of a Function Call instruction (OpCcde
= B2).

=

[nput Qutput Function Call

(B2 Til | b2 | a2 |

i I/ O operation requested

00 Read
02 Wite
08 Rewi nd
= 09 Wite Tape Mark
A Foreward Space TM
0B Foreward Space Record
oc Back Space T™M
0D Back Space Record
b2,d2 Unit Address

Ceneral Register 0 specifies Buffer Address
Ceneral Register 1 specifies Buffer Length

Condi ti on Code

00 Operation Started

01 CSW St ored

10 Channel / Devi ce Busy

11 Devi ce Not Operati onal

Interrupt Action
Privileged Operation Exception

3.2 Program Support

~ The primary program support for the EMWY/360 is the PL360
Mnitor System It consists of a single job nonitor, /0
routines, Interrupt response and error recovery routines.

Progam level I/0 requests are nade via Supervisor Call
instructions (SVC). Paraneters are passed in General Registers O,
1, and 2. The convention is as follows:

RO contains buffer address
R1 contains buffer |ength
R2 contains Unit address

R1 may be nodified by the 1/O routine if the requested buffer
length differs from the actual record read. ~The SVC routines map
| ogical unit requests into device requests via a device table and
code translation table, performlogical record buffering and code

translation (unit record devices), and data transfer between
system buffers and program buffers. Since the Mnitor is a single
job system the programis forced to wait wuntil the requested
record “has been transferred to its buffer. The condition code

returned to the programreflects the outcome of the 1/O operation
(see [9] for details of programlevel 1/0).

The nonitor performs all tasks related to physical device
- access. The programnerely issues an svc instruction wth the
proper code and paraneters. The nonitor retrieves the device type
and characteristics fromthe device table and issues the proper
/O Function Call. Note that, if the |1/0O request can be satisfied
by a system buffer, data is transferred between this buffer and
the user buffer and no 1/0O Function will be issued.

4.0 Enul ator Program Logic

The 360 emulator for the EMWY/360 consists of 3 states-
operati on decode (DECODE), senmantic execute (EXEC), and channel
emulator (1/0. Mcrostore is organized in essentially 7 regions:

o +
360 Local Store 000 | | Local Store
OlF | |
tmmm e - +
Speci al Functi ons 020 \ \ Speci al
OFF \ \
e i +
DECODE 100 | DECODE
12D l |
e +
[/O (Interrupt) 12E \ \ 1/0
154 \ \
e L T T pp—— +
I nterrupt 155 \ [NT
177 \
Fomm - +
EXEC Senmmntics 178 | | EXEC
- 57A \ \
o —— e +
57B | | unused
EFF | |
Fomrr e +
Semantic Pointers FOO \ \ PTR
FFF e +

The regions are organi zed according to function into 5 segnents.
The | ow 36 words contain 360 |local storage: general purpose
registers, floating point registers, channel status registers,
PSW and so forth. The next segnent contains special code such as
IPL, PSWRestart, microcode to clear local and nain storage. A
third segment is conprised of DECODE and EXEC code, along wth
INT, the interrupt generating mcrocode. The fourth segnment is
channel enul at or (110, and the last contains the semantic
poi nters.

4.1 Local Storage

The 360 architecture provides the programer with 16 32-bit
general purpose registers and 4 64-bit floating point registers.

These are stored in the low 20 words of mcrostore. The 360
architecture provides a 64 bit Progam Status Wrd _Wwhich reflects
the state of the 360 following an interruption. This is stored in
mcrostore in decoded form Part of the interrupt-generating code
formats this information into a 360 basic control PSW (as opposed
to extended control format used in the Mdel 67 and System 370
processors). St at us and devi ce registers for external ,
mul ti pl exor and sel ector channel interrupt classes conplete the
emul ated | ocal storage.

et

Only the general purpose and floating point registers are
available to the program These may be referenced only explicitly
(not inplicitly, as in PDP-11, where registers are also main store
| ocations). The decoded PsWw and device registers are never
avail able to the program

4.2 Main Storage

Since all status and register information is kept in
mcrostore, the entire EMW main storage systemis available as
360 storage. The main menory controller maps all byte addresses

to the proper EMW word addresses and performs the necessary
fetches. This relieves the emulator of the task of checking
boundary alignment and address translation. The wunaligned fetch

.fgature-is avai l able on sone 360 nodels and all 370 nodels.

Since nultiple fetches are required when operands are not
properly aligned, the nost efficient wuse wll be nade of the
EMW/ 360 processor by observing 360 alignnent conventions.

4.3 Addressing

Al local storage addresses are 4-bit addresses. Gener al
purpose registers, used for data storage and address conpletion,
are mapped directly into the low 16 words of mcrostore. Fl oat i ng
poi nt register addresses are also 4-bit addresses and are mapped
into words 16 through 24 of mcrostore. All local storage
addresses must conformto 360 address restrictions (for exanple,
even/odd register pairs, double length register operands, and
floating point register addresses always bei ng even). A
specification exception wll result from any inproper [ocal
storage address.

All main storage addresses are 24 bit unsigned values. No
checking is done as to validity of addresses, and no alignnment
restrictions are enforced. Invalid addresses will result in a bus

et

timeout. The CPU wll generate an inprecise (ILC=0) address
exception interrupt if the tineout resulted froma CPU initiated
operation and the bus is cleared by the control console rocessor
(either the Datapoint or the PDP-11). Other wise the condition is
i gnored by the CPU.

When timeout code is entered, the CPU will halt. The
processor which clears the bus nust start the CPU, at which time
EMMY checks if the last bus operation was CPU initiated (if so,
the busy bit of Od Processor State Register will be 1). [f the
busy bit was zero, processing resumes. O herwi se, a program
interrupt is taken with address exception specified. The ILC is
set to 0.

it

5.0 Special Functions

T h e emulator provides certain special functions whi ch
sinplify sone operations.

5.1 Di agnostic Logout
—~

When an error occurs during the enulation, or when requested
by an external processor, a diagnostic logout is taken to 360 main
store. The current PSWis witten out to main store |ocation O.
The 360 general registers and floating point registers are witten
to mainstore locations 256 through 280. (100 through 15C hex).
Enul ator status is witten to locations 160 through 16B, and
device registers to locations 16C t hr ough 17F. Finally,
mcrostore is witten out to main store |ocations (€000 through
FFFF (the upper 4k words). The CPU then halts.

5.2 Restart

A restart facility is provided, where the PSWis | oaded from
location 0 (Restart New PSW) and the registers restored from
locatiens 100 t hrough 15F (hex). Devices registers are cleared to
-zero (channel reset). Processi ng conti nues.

_ Logout/ Restart facility is provided to allow processing to be
interrupted and resunmed |ater. Errors can be <corrected in the

.. mcrocode and the 360 program restarted.

5.3 Initial Program Load

Initial Program Load is acconplished by mcrocode. A record
is read froma device into mainstore (the mcrocode assumes that
the control console has acconplished this). The double word at
| ocation zero becomes the new PSW and processing begins at the
| ocation specified.

Speci al functions are provided to clear main store and |ocal
store (registers) to zero. The processor halts follow ng each of
t hese operations. Running the processor from here initiates the

| PL sequence.

-10-

i

360 Fixed Storage Locations

Addr ess
0

8

24
32
40
48
56
64
72
80
84
88
96
104
112
120
128
256
256
320
332

Eiex Addr ess Lengt h

8
1

OO CO OO 0O CO £~ I~ OO CO OO OO Co oo o O

[EEN
© N
o 00

N O
o

=11~

Functi on

Initial Program Load PSW -
Restart New PSW

unused

External A d PSW
Supervisor Call Od PSW
Program dd PSW

Machi ne Check O d PSW

[nput/Qutput A d PSW
Channel Status Wrd

unused

I nterval Tiner

unused

External New PSW

Supervi sor Call New PSW
Program New PSW

Machi ne Check New PSW

[nput/ Qut put New PSW
unused

Di agnosti ¢ Logout Area
CGeneral Registers (0O 16)
CPU Status

External, Muiltiplexor, and
Sel ector Channel Status,Device
Regi sters.

5.4 Invoking Special Functions

The special functions of the EMW/ 360 processor can be
invoked by forcing a trap to the start of the proper mcrocoded
routine. The routine for invoking a trap from the maintainance
console will differ with the type of programming support. The
procedure outlined here applies to the Debug G program (binary
havdware di agnostic).

5.4.1 Initiating Mcroroutines fromthe Mintai nance Consol e

Before performing any function involving altering t he
mcroinstruction stream or processor registers, the nmachine must
be halted. Oherwise, results will be unpredictable.

Halt the processor fromthe display console by depressing the
HALT toggle swtch, or type "HALT" on the Datapoint Keyboard.
Wien the procesor has halted, type 028<return>. The 028 nust
appear under the hashmarks on the CRT. The console wll now be
di splaying the Special Function Trap Vector. The vector should be
zero in the high 20 bit positions. Type the address of the
desired special function in the low 12 bits of the display (in
binary“at present). Terminate wth <return>. Type T<return>.
This will issue an interrupt to the displayed address and the
processor will initiate the special function. If it is desired,
bit 15 of the displayed trap vector may be set to 1. This wll
cause the processor to halt before beginning the invoked function.

Speci al Function Addresses

M crostore Synbol i ¢ Name Function
Addr ess
076 SCLEARLS Cear local storage
072 SCLEARMS Clear nmin storage
0SF SDUMP Dump microstore to mainstore
(high 4K words)

06E $IPL Initial Program Load

R 050 SLOGOT Di agnosti ¢ Logout and $DUMP
064 SRESTART Reset |ocal store and PSW restar

-12-

D

6.0 Emul ator Status and Instruction Interpretation
6.1 The Program Status Wrd

~The 360 PSWis parsed and stored in decoded form Since the
PSWis accessible only through explicit reference, the PSW my be
stored in a form convenient for the emulation.

When referenced, only the parts needed are assenbled to 360
format. These references include conditional branching, branch
and link, and interrupt generation.

The 64-bit PSWis stored as recieved in Local Storage
Fields which are infrequently accessed remain stored in 360
format. These fields include System Mask (bits 63:56), Wit and
Probl em State (bits 49:48), and the Program Mask (bits 27:24), The
Key field (bits 55:52) is ignored. The Interrupt Code field (bits
47:32) is cleared to zero prior to storage.

The Instruction Length Code as specified in the PSWis
ignored. Each instruction cycle, a new ILCis obtained from the
Semantic Pointer. The Condition Code is left justified and stored
in=Local Storage. During instructions which nodify the 360
condition code, the mcronachine control register, or a register
with the required condition code in the high two bits, is stored
in control store. The condition code is left justified, since the
host MAR contains encoded CCODES in these bit positions. This
mni mzes target nmachine condition code nodification overhead.

The next instruction address (NIA, PSW<23:0>) is placed in a
host register gPC, regi ster 1), concatenated on the left wth an
MMC byte specifying 4 byte transfer on a byte address (X'30').
All 24 bits of NITA are saved and used. No checking is done as to
validity of the address, no boundary alignment restrictions are
enforced, and no checking is done as to overflow into the MMC
field of the PC upon increnenting of the N A

6.2 Interpretation Loop

Phases DECODE and EXEC conprise what is known as the
interpretation |oop of the enulation. DECODE and EXEC proceed
until an interruption is generated (through external action or as
the result of an exception or SVC instruction).

-13-

_.GX
1/0
o §
EXEC__} —4 INTERRUPT |
Interpretation Loop Channel Enmul ator and
[nterrupt

6.2.1:Qecode

Target instructions arc Jdccoded ~y @ two level preocess. The
Instruction Length Indicat.: (righ 2 bits cf the operation code)
is used to select the prop 'r {armat d°c~22 routine, and the entire
operation code is wused t. select a Semantic Pointer to the
execution semantic code.

Host Regi ster Assignments

Narme Regi st er Pur pose

MAR RO Mcro Status Register

PC R1 Target Program Counter

XR R2 Scrat ch

IR R3 Target Instruction Register

P R4 hol ds Target 12 specification
Q R5 hol ds Target Operand 2 address
R R6 hol ds Target R1 specification
S R7 hol ds Semantic Pol nter

-1Y4-

Upon entry to the decode routine, the XR (host register 2) is
assuned cleared to all ones and the IR (host register 3) contains
the next instruction to beinterpreted. These registers are set
by the previous execution routine. No checking is done as to the
validity of these registers.

Interrupts are enabled by the first instruction of DECODE
(during the execute phase, hard interrupts are disabled). An
- interrupt of the CPU by an external device causesthis instruction
to be replaced by a trap instruction to the proper interrupt
generation code. In this way, it is ensured that the currently
executing instruction will conplete before the interrupt is taken.

The high 2 bits of the IR are shifted into the XR This puts
a negative nunmber in the XR (-1 for SS instructions, -2 for Sl
instructions, -3 for RXinstructions and -4 for RR instructions).
This value is called the Fornmat |ndex.

The rest of the operation code is then shifted into the Xg,
| eavi ng the opcode right justified and one filled in XR, ~ and the
remaining bits of the instruction left justified in the IR

The XR is used to address control store and select one of 256
semantic pointers fromthe high-order 256 words of control store.

Subtracting the format index from the MAR causes a branch
foreward of 1, 2, 3, or 4 words beyond the current value of the
MAR. (For SS, SI, RX, and RR formats respectively). The SS, SI,
and RX decode routines are entered via a branch table of 3
consecutive words, while the RR decode lies in-line followng the
branch table. The various format decode routines conplete parsing
of the instruction and interpretation of the fields as outlined in
the Principles of Operation for the System/360 (reference 2).
Ef fective addresses are calculated where necessary.

The parsed instruction is passed to the execute semantic
routine in predefined registers. The values contained in various
registers are determined by the particular operation. The PC

_ (next instruction address) is updated in sone cases by t he decode
routine, and in others nust be done by the semantic routine.

RR R-register (host R6) contains R1 specification (right
justified, zero filled.
XR contains R1 specification
IR contains R2 specification (left justified)

-15-

Semantic code nust parse R2 specification and update the PC
(increment by 2).

RX " R contains the R1 specification
Q (host R5) contains the operand 2 storage address as a 24
bit value. Bits 31:24 are unpredictable.
S (host R7) contains the Semantic Pointer, with MMC in bits
31:24.

The semantic code mustupdate the PC (increment by 4).

SI,Rs R contains R1 specification (instruction bits 23:20) _
P (host R4) contains the 11 specification (instruction bits
23:16)
C contains the 24 bit operand 2 storage address
S contains the semantic pointer

The PC is updated by the decode routine, and should not be
modi fi ed

SS R contains the length specification(s) (instruction bits
23:16)
IR contains operand 1 address (24 bits, the high 8 bits are
unpr edi ct abl e)
&contains operand 2 storage address.
S contains the semantic polnter

The PC is updated by the decode routine and should not be
modi fi ed

6.2.2 The Semantic Pointer

The upper 256 words of control store contain a table of
semantic pointers - one for each possible 360 operation code.
Each semantic pointer contains information which ~controls the
interpretation of a particular instruction

-16-

Semanti ¢ Poi nter

[mmC | 1c | FLAGS | H 00 0] ©EwTRY]
31 24 23 22 21 16 15 12 11 0
MMC - nenUrY controller command byte gstorage operations only)
ILC - actual Instruction Length Code for this operation
~a FLAGS - operation dependent flags initially ones
H - halt indicator - normally zero, 1 indicates

"halt when semantic code entered"
reserved - must be zeros _ _ _
ENTRY - address of the semantic code for this operation

6.2.3 Execution Semantics

The execution semantic code perforns the required target
operation and sets up the registers for the next decode. Setup
requires the prefetch of the next instruction and clearing of XR
to ones.

The majority of 360 operation codes are invalid and generate
Qperation Exception interruptions. Three operation exception
semantics are included. One each for RR and RX, where the PC nust
be updated before the interruption can be formatted. A third is
provided for the SI and Ss classes of instructions, where the
Interrupt may be formatted i medi ately.

Details of each semantic routine are not included.
G 3 Interruptions of the 360 Program

Interrupts of the 360 program mayresult fromthree distinct
actions - external action EXTERNAL and 1/0 interrupts),
programed action (SVC instruction), and exceptional condi tions
(PROGRAM) . The actual PSW Swap is handled by a single routine.
Interrupts are expected infrequently, thus the extra overhead of
formatting a call to one swap routine is acceptable.

6.3.1 External Action

-17-

Hardware interrupts are disabled during the execute phase of
the interpretation cycle. During DECODE, interrupts are enabled.
When a peripheral processor requires service by the CPU an
interrupt of the EMMY processor is initiated (see 3). Wen
recogni zed by the hardware, micro code interprets the interrupt
and determnes is the interrupt is to be passed on to the program
(ie whether the interrupt is nmasked). If allowed by the SYSTEM
MASK of the PSW the first instruction of the decode loop is
reg\l aced by a trap instruction- a branch to the proper micro code
ts™ format the interrupt. Hardware interrupts are disabled.
Execution resunes. In this way, it is guaranteed that the
currently executing instruction conpletes execution before the
interrupt is serviced (that is, the interrupt will occur between
360 instructions). If the interrupt is masked out (mask bit is
zero), the channel status is saved, channel flagged as being in
the "interrupt pending" state, and processing resunmes. No trap
instruction Is Inserted and hardware interrupts renmain enabled.
No interrupt of the 360 programis generated.

The programwill be informed of the Interrupt Pending state
the next time the channel is accessed (through an /0O Function
Call). Channel Status will be stored in the Channel Status Wrd

of main store (CSW and condition code set. Note that this
differs from 360 in that, when an interrupt is masked, it remains
pending and will occur as soon as the system nmask allows. In

EMMY/360, once channel status has been stored in the Channel
.Status register of local store and the channel flagged as
interrupt pending, no further interrupt action will occur. A nore
appropriate flag for the emlated channel would be "Interrupt
Suppr essed”.

The 360 Start I/O and Halt |/Oinstructions are invalid and
will result in operation exception conditions. Test 1/0 wll
return the same condition codes as its 360 counterpart, as well as
clear the "Interrupt Pending" state.

External and I/Ointerrupts are formatted by retrieving the
" appropriate device (or interrupt class) and passing this, along
wth Od PSWaddress as a (32-bit) word address, rather than a
byte address, to the PSW Swap routine.

6.3.2 Supervisor Call

Supervisor Call (SVC) causes a call to Psw Swap to be
formatted. The R-R2 field of the instruction is passed as
i nterrupt code.

-18-

6.3.3 Exceptional Conditions

Two types of exceptional conditions may ari se dur ing
execution of an operation. One type causes an interrupt follow ng
execution of the instruction and is intended to warn of a
potential |y dangerous result being detected during execution. The
second prohibits execution of the instruction (for reasons such as
invalid data) and causes the operation to be suppressed and an

—alnterrupt to be generated inmedi ately. In this case, no operands
are nodified.

Wien a prohibitive condition is detected, a PSW swap is
immediately fornmatted and execution semantic code exited. Wen a
questionabl e condition is detected, a note of the condition is
made and execution conpleted. Results are stored. I f any Program
Mask bits are applicable, these are interrogated and, if set, an
interrupt formatted upon conpletion of the operation.

6.3.4 PSW Swap

A single routine is responsible for PSWswap. This includes
the assenbly of the current PSWinto 360 format, inserting the
svecified interrupt code in bits 470 32, and storing at the
specif ied Od Psw location. A newpPsSwis fetched from AOd PSW
plus 16 and decoded.

The ¢ register contains the Od PSWw location, as a word
addr ess. The new PSWis always retrieved fromthis address plus
16. XR contains the interrupt code to be inserted in bits 47: 32
of the old pSw. This value is sinply added to the high 32 bits of
the Current PSw prior to storage in main store, thus the Jlow 16
bits of the high word of the current PSWare cleared upon | oading
a new Psw, and the high 16 bits of XR nust be zero upon entry to
PSW swap.

The ILC is obtained from MAR<23:22>. The NIA is obtained
fromthe PC (host register 1) bits 23:0. The <condition code is
obtained fromcontrol store, shifted right 2 bits for alignment,
and inserted in PSW<29:28>. For Branch and Link instructions,

~only the low 32 bits of the current pPsw are formatted, and no new
PSW is processed.

The new PSWw is retrieved and decoded. Various fields are
stored at the appropriate locations. A display status word is
prepared with Wait and (inverted) Problem state bits in bits 31:30
and the specified “IA in the low 24 bits. This is displayed on

-19-~

the console and stored in control store. If the wait state bit is
set, a wait loop is entered with hardware interrupts enabled. The
interrupt bit of the MAR is tested each |loop and, if reset, decode

resuned. |If an interrupt occurred during the wait loop, the
interrupt bit will have been reset and a trap inserted in the
decode loop. Thus, the wait loop wIll be termnated and the

i nterrupt processed.

~* 1f the wait state was not specified, the XRis cleared to
ones and the specified next instruction fetched. Decode I esunes.

)

-20-

7.0 Status of EMMY/360 Project

Code for the interpretation |oop has been witten and the
decode routines tested. Semantic routines have al so been checked,
t hough not to the extent the decode routines have. A 360 program
was witten and used to test the functionality of the various 360
operati ons.

- Approxi mately 1400 words of EMW Control Store are occupied
by emul ator code. Semantic pointers occupy an additional 256
wor ds. This leaves approximately 2400 words free for t he
i npl ementation of additional instructions and I/O support.

I/0 support nust still be developed for t he various
peri pheral processors. /O interrupt generation is included in
the enulator; only the semantic code for the actual I/0 Function
Call instruction need be witten.

Fl oati ng point semantics nust be added to the emnul ator. Thi s
code has already been devel oped for DELTRAN [10], and need only be
copied, with code to test for 360 exceptional conditions.

*-Streans of 360 instructions have been executed using the

“enul at or. The DECODE/ EXEC interpretation | oop per f or med
reliably,though some hardware probl ens were encountered. Due to
hardware availability, i nstruction timng det erm nati on I's
i nconpl et e.

ACKNOWN.EDGEVENT

Many people contributed to the devel opnent of the
EMW/ 360 and it is not possible to nmention all here.
However, the author w shes to thank, in particular,

Lee Hoevel, Robert MCure, and Charles Neuhauser for
their comments, suggestions, and contributions to the
design of the EMMY/360.

-21-

10.

1]

Ref erences
Dat apoi nt Corp., Datapoint 200 Reference Munual, Datapoirt
Corp., 9725 Datapoint Drive, San Antonio, Texas /8284.

18M Corp., System/360 Principles of Operation, order no
GA22-6821-8,

Neuhauger, , c., An Enul ati on Ori ent ed. Dynami c
Microprogrammable Processor (Version 3),TN 6o, October 197%,
Digital Systems Lab, Stanford University, Stanford, Ca 94305.

Neuhauser, C., EMMY System Peripherals -- Principles of
%erati on, TN 77, Decenmber 1975, Digital Systems Lab,
tanford University, Stanford, Ca. 94305.

Hoevel, L. and Wallach, w., A Tale of Three Enulators, TR 98,
Cct ober 1975, Digital Systems Lab, Stanford University,
Stanford, Ca 94305.

Wallach, W, 360 Enul at or Performance Lstimate, TN 656,
Cctober 1975, Digital Systems Lab, Stanford University,
Stanford Ca. 94335.

wallach, W., EMMY/Unibus Interface-Prelimnary Specification,
TN 88, June 1976, Digital Systems Lab, Stantford University,
Stanford Ca., 94305.

Val | ach, w., Virtual Addressing for EMMY/360, TN 89, June
1976, Digital Systens Lab, Stanford University, Stanford Ca.

94305.

wirth, N, The PL360 System, TR Cs91, April 1968, Conputer
Sci ence Department, Stanford University, Stanford Ca., 94305.

Hoevel , L., report on DELTRAN (direct execution of FORTRAN)
to beissued

-29-

Appendi x A - Notes on |/O Support

As currently witten, the enulator includes code to support
I/0 interruptions. Hard interrupts of the EmMY CPU are
interpreted into soft interrupts of the 360 program The
peripheral processor nust supply certain information.

Each potential source of hard interrupt (that is, sources
capabl e of producing a 360 EXTERNAL or |/O interrupt) is provided
with a Device Register. 1/0 channel processors are also provided
with a Status Register. Just prior to initiating an interruption
of the emmy CPU, the peripheral processor should wite the device
identifier (channel/device for |/Q EXTERNAL SOURCE for EXTERNAL)
to its Device Register. The EXTERNAL Device Register is |ocated
at Control Store location X'lB', Selector Channel 0O Device
Regi ster (the Datapoint) at location X'1D', and Sel ector Channel 1
(not installed) at location Xx'1F'. The low 16 bits of this
register will pe inserted into the Interrupt Code field of the Ad
F5w upon interrupt generation (the high 16 bits nust be zero, or
the high 16 bits of the Ad Psw will be unpredictable).

The 1/ G processors are al so supﬁl ied with a Status Register.
The CPU should set the high bit of this register when an operation

involving its associated channel is initiated, indicating the
cn&rnel IS busy. when the peripheral processor conpletes the 1/0
operation, this bit should be cleared. Any relevant status
i nformation shoul d be placed in the low 24 bits of the register.
This information wl be supplied to the 360 program upon
interrupt.

If a peripheral processor attenpts to interrupt the 360
programwhile its mask bit is zero, bit 30 of the channel's status
register will be set by the CPU This indicates there is an
interrupt pending for that channel and inhibits further access of
that channel until the 360 program clears the interrupt. The
interrupt may be cleared by issuing a Test I/O instruction or an
/O Function Call. In each case, the Channel Status Register wll
be stored in main store (location 64, the Channel Status word) and
condition code set to 01.

-23=

Channel Status Register

s] || reserved STATUS |
31 30 29 24 23 0

B BUSY- 1 i ndicates channel is busy

I Interrupt Pending-l indicates an interrupt

from this channel is pending
STATUS Channel ana Device status bits dependent uoon
channel »rocessor and device characteristics

D

ST

Appendix B - Supported Instructions

fist of Instructions by Set and Feature

Standard

NAME
Add
Add
Add Ialfword
Add Logical
Add Logical
AND

~AND
AND
AND

Branch and Link
Branch and Link
Branch on
Condition
Branch on
Condition
Branch on Count
Branch on Count
Branch on Index
High
Branch on Index
Low or Equal

Compare
Compare

Compare Halfword
Compare Logical
Compare Logical
Compare Logical
Compare Logical
Convertto Binary
- Convert to Decimal

Divide
Divide
Exclusve OR
Exclusve OR
Exclusve OR
Exclusve OR
Execute

Insert Character

Load

Load

Load Address
Load and Test
Load Complemen t
Load Halfword
Load Multiple
Load Negative
Load Positive
Load PSW

Move

Move

Move Numerics
Move with Offsct
Move Zones
Multiply
Multiply

Multiply | Talfword
OR

OR

OR

OR

Pack

Instruction Set

MNEMONIC

AR
A
AH
ALR
AL
NR
N

NI
NC
BALR
BAL

BCR

BC
BCTR
BCT

BXH

BXLE

CR
C
CH
CLR
CL
CLC
CL1
CvB
CvD

DR

XR

XI
X C
EX

PACK

3
m

RR

RR
R X
S1
SS
RXx

coO0OOOOO

coDOOOO

co OO

oo

o000

copx
1A
5A

1E
SE
14
54

05
45

47
46
80

87

19
59
49
15

D5
95

4F
4E

1D

17

44

43
18

411
12
13
48
98
11
10
82

92

D2
DI
Fl
D3
1C
SC
4c
16

56
06
D6
F2

—25-

NAME MNEMONIC TYPE

Sct Program Mask SPM RR L
Set System Mask SSM Sl
Shift Left Double SLDA RS C
Shift Left Single SLA RS C
Shift Left Double

Logical SLDL RS
Shift Left Single

Logical SLL RS
Shift Right Double SRDA RS C
Shift Right Single SRA RS C
Shift Right Double

Logical SRDL RS
Shift Right Single

Logical SRL RS
Store ST RX
Store Character STC RX
Store Halfword STH RX
Store Multiple STM RS
Subtract SR RR C
Subtract S R X C
Subtract Halfword SH RX C
Subtract Logical SLR RR C
Subtract Logical SL R X C
Supervisor Cdl SvC RR
Test and Set TS SI C
Test Under Mask ™ SI c
Translate TR ss
Translate and Test TRT SS C
Unpack UNPK SS

Key

C Condition Code set

L new Condition Code loaded

(Reproduced from Reference 2)

CODE

04

8F
8B

8D

89
8E
8A

8C
88

50
42
40
90
1B
5B
4B
IF
SF
OA
93

91

DD
F3

