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ABSTRACT

A sel f-checking processor has redundant hardware to insure that
no likely failure can cause undetected errors and all likely failures
are detected in normal operation. W show how error-detecting codes
and self-checking circuits can be used to achieve these properties in
:bnicroprogranned processor. The choice of error-detecting codes and
the placenent of checkers to monitor coded data paths are discussed.
The use of codes to detect errors in arithmetic and |ogic operations
and microprogram control units is described. An exanple processor de-
sign is given and some observations on the diagnosis and repair of
such a processor are nade. From the exanple design it appears that
somewhat |ess than 50% overall redundancy is required to guarantee the
detection of all failures that affect a single medium or |arge--scale

integration circuit package.

| NDEX TERMS: Arithnetic codes
Checkers
Control wunits
Di agnosi s
Error-detecting codes
Logi cal operations
M cropr ogranmmi ng
Sel f-checking circuits
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1. I NTRODUCTI ON

A sel f-checking processor has redundant hardware to detect internal
failures. Processors with some degree of self-checking have been de-
signed for spacecraft applications [Avizienis, et. al., 1971} , tele-
phone switching systems [Chang, et. al., 1973], and even general business
use [IBM 1973. In this paper we will give principles for the design
of sel f-checking processors using comercially available integrated
cirduits (IC's). Many processors also have built-in diagnostic aids in
the form of additional hardware and microprograns. \Wile our ultinmate goa
is to design self-diagnosing processors, in the paper we will focus on
the prelude to diagnosis: detection.

Fault detection will be achieved through the use of error-detecting
codes and self-checking circuits. Self-checking circuits [Carter and
Schnei der, 1968; Anderson and Metze, 1973; Wakerly, 1974] have properties
of self-testing and fault-secureness. Fault-secureness for a set of faults

.insures that no fault in the set can produce an undetected error, while self-

testing insures that all faults from a set are eventually detected in norm
operation. The design of a system using self-checking circuits is guided by
the principle that no likely fault should produce an undetected error and al
likely faults should be detected in normal operation. The definition of

"likely fault" depends on the system inplenentation. |n our case, we consider



likely an arbitrary fault that affects a single integrated circuit package.
Qur goal is to design a processor iN which no such fault can cause an un-
detected error.

_ZXhe principles given in this paper apply to nicroprogramed processors
with the general structure given in Fig. 1. The registers and arithnetic/
logic unit (ALU) of the processor are contained in the block |abeled "data
paths." The data paths may transnit data to or receive data froman I/0O
controller, which is not shown. The independent control points [Flynn
1975] of the data paths are connected to the outputs of the nicroprogram
menory. The address for the mcroprogramnenmory is provided by the nicro-
program sequencer. At each clock period, the sequencer provides a new
m croprogram address as a function of the current address, sequencing
infornatiZh fromthe mcroprogram nenory, and conditions fromthe data
paths. The current technology allows the nicroprogram sequencer to be
i mpl emented as a single integrated circuit [Wakerly, et. al., 1975],
whil e the microprogram nenory and the data paths are "sliced” into a
number of circuits operating in parallel. For exanple, a 1024-word by
40-bit microprogram menory could use ten 1024-word by 4-bit read-only
menories (ROM's), while a data path with 32-bit registers and ALU oper-
ations could be inplemented with eight 4-bit data path slices [AMD, 1975]

or sixteen 2-bit data path slices [Hoff, et. al., 1975].

The processor architecture of Fig. 1 is nade sel f-checki ng as shown

in Fig. 2. Data in the data path block is encoded in an error-detecting

code, so that one extra slice is required to process check synbols. Li kewi se

the microprogram menory output is encoded, and an extra ROM package is required
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to store check symbols. The nicroprogram sequencer is duplicated.
Checkers monitor the microprogram and data path outputs for noncode words
and the duplicated sequencer outputs for a mismatch. Totally self-checkirig
..ncheckers for these outputs can be designed in a straightforward manner
[ Anderson, 1971; Wakerly, 1973]. A periodic signal checker [Usas, 1975]
monitors the clock. Data transactions with the |/O controller use the data
path code. 1/0O controller checking is discussed in detail in [Usas, 1976].
In the remainder of this paper we discuss the design of the blocks of Fig.
2 in nore detail and give a design exanple. Section 2 discusses the choice
of error-detecting codes and Section 3 discusses the placenent of checkers
in the data paths. In Sections 4 and 5 we descri be means of checking
arithmetic and logic operations, respectively. Section 6 discusses mcro-
. prog;rham memory and decoder checking, and Section 7 discusses the sequencer
and clock. ©Next, Section 8 gives an overview of a self-checking processor
based on these principles that is currently being designed and built.

Finally, Sections 9 and 10 nake a few observations about fault diagnosis and

repair of such a processor.



2. CHOICE OF ERROR-DETECTING CODES

Errors in data transmission and storage can be detected if data is
encoded in an error-detecting code. Codes used for this application are
al nost always systematic. Codes are chosen on the basis of the cost of
their inplementation and their effectiveness in detecting errors. A code's
i npl enentation cost can be neasured by the nunber of redundant bits in the
code; however, the cost of self-checking checkers for the code should also
be considered. A code's effectiveness can be neasured by its mnimmdis-
tance; but additional insight can be obtained by determning the size of
the tested and secure fault sets [Wakerly, 1973) of self-checking circuits
using the fode. A code shoul d be chosen sothat the |ikely physical failures

are contained in the tested and secure fault sets of the circuits using the

codes. If a circuit is bit(byte)-sliced, then a single bit (byte) error-
detecting code should be used.

The circuits used in data paths and nenmory are generally bit(byte)-
sliced circuits with no interaction between bits (bytes), except for data
selection and addressing, which are checked separately (see Section §),
and arithmetic operations, which are considered in Section 4. |f the
data is encoded in an error-detecting code and if the circuit perforns
only aata storage, transmission, or routing, then the circuit is self-
checking, since the output is a code word if no failures have occurred

These circuits are called non-transformng circuits [Wakerly, 1976a]. Exanpl es

of suchcircuits are registers, multiplexers and demultiplexers. The secure and



tested fault sets of such circuits depend on the error-detecting code used,
and we can use the size of these sets to conpare the effectiveness of several
uiﬁ\nportant systematic codes. Any bit(byte)-sliced non-transforming circuit can
be used to make the conparison if we assume that the normal input set of the
circuit tests all fault that affect a single bit(byte)-slice.

W conpare five classes of codes for possible application in self-
checking processors. The first two codes are well known - the single bit
even parity check and duplication. The next code, the distance-2 b-adjacent
code, consists of b interleaved single bit parity checks [Bossen, 1970;
Pet erson and Weldon, 1972]. The (k,zb) checksum code has k b-bit data
bytes and a check byte which is the nodul o 2b sum of the data bytes [Garner,
‘1958;3~Wakerly, 1975]. The last code is an arithnetic code, a | ow cost residue
code with check base A = 2b-1.

The characteristics, advantages, and disadvantages of each code are
di scussed in detail in [Wakerly, 1976a]. The discussion is summaried in
Table 1. The exanple processor 0f Section 8 uses a | owcost residue code
wi th check base 24-1 for the data paths, a distance-2 4-adjacent code for

the mcroprogram and duplication for the mcroprogram sequencer.



Table 1 Properties of inmportant codes.

Code
Data part
Check synbo

Fég}t—secure
Self-testing
Checker
Conmment s

Code

Data part
Check synbol
Faul t - secure
Sel f-testing
Checker
Conmment s

Code

Data part
Check synbo
Fault—gecure
*Sel f-testing
Checker

Comment s

Code

Data part
Check synbo
Faul t - secure
Self-testing
Checker

Comment s
Code

Data part
Check synbo

Faul t - secure

Sel f-testing
Checker

Comment s

Single-bit even-parity

n bits

1 bit

Single bit slice faults

Faults affecting fewer than all bits
n-input Exclusive OR tree and 1 inverter
Least redundancy, cheapest checker

Duplication

n bits

n bits

Faults affecting different bits in the two duplicates

Faults affecting different bits in the two duplicates

n-bit totally self-checking equality checker

Most redundancy, expensive checker, not self-testing
for many double faults

Di stance-2 b-adj acent

k b-bit bytes

1 b-bit byte

Single byte slice faults

Faults affecting fewer than all bytes

b k-input Exclusive ORtrees and b-bit totally self-
checking equality checker

Cheapest, fastest checker of all codes with b check bits,
self-testing for many k+l-bit faults

(k,z% checksum

k b-bit bytes

1 b-bit byte

Single byte slice faults

Faults affecting fewer than all bits

k-byte tree of b-bit nmbdul o 2b adders and totally self-
checking equality checker

Cheaper than b-adjacent for parity-predicted arithnetic,
sl ower and core expensive checker

Low cost residue, check base A = zb—l

k b-bit bytes

1 b-bit byte

Single byte slice faults except all stuck-at-0 or al
stuck-at-1

Faults affecting fewer than all bits

k-byte tree of b-bit nodul o 2b-1 adders and totally self-
checking equality checker

Direct inplenentation of arithnetic operations, not fault-
secure for some single byte slice faults, slightly
slower checker than checksum codes.

not



3. CHECKER PLACEMENT

Sellars et. al. [1968] give criteria for the placement of checkers
in coded data paths
= 1. The checkers should ninimze undetected errors and faults
2. The checkers should | ocate the error before it corrupts further
data (so that the error indications are meani ngful for maintenance,
and so that the erroneous data can be reconstructed).
3. The checkers should | ocate the error to as small an ampunt of
hardware as necessary to ensure easy servicing
4, The checker cost should be minimnmized (usually this neans using
the mni mum nunmber of checkers that will do the job).
=9here are obviously trade-offs between satisfying the first three
criteria and satisfying the last (exanples are given in [Sellars, et. al.
1968]). Rather than dwell on these, we would like to give formal rules
for checker placenents that guarantee to detect all detectable errors
(criterion 1 above). The rules apply to networks of functional bl ocks,
such as the one shown in Fig. 3. In addition to control inputs, each block
has data inputs and outputsin soxze error-detecting code S. A detectable
error occurs when a noncode word i-> produced at the output of a block because
of afault. We would like to guarantee that every detectable error is
eventual |y either corrected or propagated to a checker. In order to do so
we nust first characterize the behavior of functional blocks in response to

noncode i nputs. W do this with the "detection |ossless" property defined

below. This property is simlar to the code disjoint property of self-

checking checkers [Anderson and Metze, 1973].
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Fig. 3 A network of functional blocks and checkers.

10




Definition: Let a functional circuit have a control input vector C, data

i nput vectors X ,an and a single output vector Z.  The

1
circuit is detection lossless for a data code S and a set R

of control inputs if

1) C e R and Xl" . .,Xm eSimlies Ze S; and

2) Ce R and exactly one Xi é Sinplies Z ¢ S or the xi i nput

has no effect on Z for this choice of C.

It should be apparent fromthe definition above that if a circuit is
detection |ossless, then a detectable error in one of its input vectors
produces either the correct output or a detectable error. An an exanple,
consi der an adder for code words in an arithnetic code. |f one of the
i nput operands (summands) is a code word and the other is not, then the
sumwi |l be a noncode word and the presence of the erroneous summand iS
‘detGQCed. An anot her exanple, consider a nultiplexer for two coded operands.
I'f one input is a code word and the other is not, the output will be either
correct or a detectable error, depending on which input operand is selected.
an example of a circuit that is not detection |lossless, consider a circuit
for performing the |ogical OR operation by duplication, as shown in Fig. 4
The check synbol s (AC,BC) of the two input operands (Ad,Bd) are discarded,
and the logical OR is conputed by two independent circuits. The check
synbol (Tc) of the result is computed fromthe output of one of the OR
circuits, while the output of thz other becones the data part (Td) of the
result. The duplicated circuit is self-checking because failures in either
duplicated OR circuit produce a mismatch between the data part of the result
and its check synbol. (rhe tested and secure fault sets depend on the code

and the circuit inplenentation of OR) However, the circuit is not detection

11
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Fig. 4 Totally self-checking OR circuit.
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lossless because the check synbols of the inputs are thrown away.
A noncodc input operand is never detected because both duplicate OR circuits
conpute the sane erroneous result

- W can now state general requirements for the placenment of checkers
that guarantee the eventual detection of all detectable errors produced in

a single block of a network:

1. A checker should be placed at each network out put

2. There shoul d be at | east one checker in every loop in-the data
pat hs.

3. There shoul d be checkers at all the inputs of blocks that are not

detection | ossless.

4. If a data path fanout reconverges at the inputs of a detection

1

lossless bl ock, then there should be a checker in at |east al
but one of the paths fromthe fanout point to the inputs of the

bl ock.

Application of these rules to the network of Fig. 3 results in the
i ndi cated checker placenent (all blocks except OR are assumed to be de-
tection lossless). Requirenent 1 above ensures that all data is checked
before it leaves the system Requirenent 2 prevents repeated-use
- mltiple errors, and Requirenment 3 prevents undetected errors at the outputs
of blocks that are not detection lossless. Requirement 4 is necessary so
that a single error at the output of a block that fans out does not becone

an undetected nultiple error. This *requirenent, although sufficient, is not

13



necescary for the detection of single errors that fan out. For exanple,
consi der the network shown in Fig. 5 and assume that data are encoded in arith-

metic code. A weight-one arithmetic error at the output of the multiplexer has

an error value of i~2i for some i. Because of fanout, both Rl and R2 nay
al so receive errors of -+2‘i, and produce a double error at the adder input.
Howeve®, the sumw || have an error value of iziﬂ, which is also a de-
tectable error value. Hence the network will detect all single errors
even though Requirement 4 is not satisfied. On the other hand, consider
the network of Fig. 6 and assume data are coded in a |owcost code with
check base A=3. An error value of Hlat R's out put can produce an error
value of ol 1L J—'3'2i at the adder output, which is undetectable. In
this network Requirement 4 is obviously necessary.

The data paths of the exanple processor of Section 8 are designed

so that a single checker is sufficient for detecting all data path errors.

14
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4. ARITHMETIC OPERATI ONS 1

_lre basic arithnetic operations in a conputer are addition, sub-
traction and shifting. Operations such as multiplication and division
may be acconplished in software or firnware by iterative use of the basic
operations. In this section we discuss nethods of detecting errors in
the basic arithnetic operations; errors in the iterative operations are
mani fested either as errors in the basic operations or as control errors
detectable by the techniques of Sections 6 and 7

Both arithmetic and non-arithmetic codes can be used to detect
errors in arithmetic operations. The non-arithnetic codes such as parity
and check&m codes can be used with check synbol prediction techniques to
preserve the code under arithnetic operations [Sellars, et. al., 1968
Wakerly, 1975]. These techniques predict the check symbol of the sum of
two operands as a function of the check synbols of the two operands and
carries generated during the addition. The main advantage of check synbo
prediction techniques is that they can be used with codes such as b-adjacent
and checksum codes that guarantet to detect any error in a single b-bit
byte. However, parity prediction techniques require duplication of the adder
carry. generation circuitry to avoid undetectable failures.

Arithmetic codes such as | owcost residue codes [Avizienis, 1971]
are better suited for performing arithmetic operations. A code word in a

| ow-cost residue code has a b-bit check synbol which is the modul o 2b—l resi due

16



of the data part. The main disadvantage of |ow cost residue codes is that they

al l ow sone undetected b-bit errors, nanely all I's in a b-bit byte changed

toall. Os or vice versa. However, they allow direct inplenentation'of
~~*addition, subtraction, and rotation operations in the one's conpl ement

system using standard MSI and LSl IC's. Tw s conplenment operations and

logical and arithnetic shifts require the check symbol of a result to be

nodi fied as a function of carries into and out of the | ow order and high

order bits of the data part operation. The circuitry for performng this

fix-up does not destroy or degrade the self-checking properties of a two's
compl ement ALU, but it does potentially slow down the ALU s operation. The

fix-up operations necessary for various add, subtract, and shift operations

are_described in detail in [Vakerly, 1976a]. The fix-ups for one's
conpl ement operations are given in [Mnteiro and Rao, 1972).

The exanpl e design of Section 8 uses a nodul o 24-1 | ow-cost residue
code for the data paths. Arithnetic is performed in the two's conpl ement

system, and check synmbol fix-up circuitry is provided at the output of the

ALU.

17




5. LOG CAL OPERATI ONS

It is well known that no code short of duplication is preserved by
logtzal operations such as AND and OR [Peterson and Rabin, 1959]. Hence
all schenmes for self-checking |ogical operations nmust use a formof dupli-
cation. The STAR conputer uses duplicate logic units [Avizienis, et. al.
1971], and a processor desi gned by Monteire and Rao [1972] duplicates the
AND operation and perforns the other |ogical operations using a conbination
of AND and checked arithmetic operations

Whil e no code short of duplication detects errors in |ogical operations,
it is possible to perform logical operations in a self-testing manner without
duplicat%gp. The concept of partially self-checking circuits [Wakerly, 1973]
allows the non- code- preserving |l ogical operations to be perfornmed by circuits
that are tested in normal operation by other, code-preserving, operations

(such as addition and subtraction using a residue code).

Sinple duplication (such as shown in Fig. 4) and partially self-checking
circuits for logical operations have a commn characteristic: they are not
detection lossless since the input check synbols are not used in the com
putation of the result. Thus a system using such a method will require
checkers at the inputs of the logic unit. In the remainder of this section
we describe the design of logic units that avoid this problem totally self-
checking detection lossless logic units. A logic unit for residue-coded
operands that was detection lossless for OR and EXCLUSI VE OR (XOR) operations
but not for AND was designed by Mntciro and Rao [1972]. The designs rc-

ported here are extensions of their design

18



Consider any systematic code, where the check synbol of a data part
A can be written as a function F(A). The specifications for a detection

lossless AND circuit can be given as foll ows:

a) | nputs: Ad’ Bd (data parts)
AC, Bc (check synbol s)
b) out put s: Td (data part)
'J?c (check synbol)
c) Td = Ad A Bd
= F(Ad) and Bc = F(Bd) i nplies Tc = F(Td).

™
I

d)

e) Ac # F(Ad) or Bc # F(Bd) (but not both) inplies Tc # F(Td).

Specifications for other logic functions are obtained by sinply changi ng
item (c) above. These specifications can be nmet for linear block codes,
feésidue codes, and checksum codes as described bel ow.
For exanple, consider the linear block codes. Since
Ay AB, =Ad OB, @A VB) ,

we may wite

T = F[A, €3, @@ VB)]

But due to the linearly of F with respect to @ , this nay also be

witten as

—
11

F(Ad) @ F(Bd) @ F(Ad v Bd)

Ao @B @ F(A, VB

19



Thus a detection lossless AND circuit can be designed as shown in Fig. 7-

In view of the above equation for Tc , it is quite apparent that the design
satisfies specifications (a) through (d). It also satisfies specification
(e) <we to the use of AC and BC in conputing Tc . The circuit is

totally self-checking, since it is obviously fault secure and self-testing
for all non-redundant faults in F and ® , and for a class of faults in
the AND and OR circuits that depends on the code (exactly the clases given
in Table 1).

A totally self-checking single-error detection lossless OR circuit can

be designed using the relation

A VB, A, o) By D) (A A BY

Thus the OR circuit is obtained sinply by swapping the AND and OR bl ocks
inFig 7
Detection lossless logic circuits for operands in a residue code with

check base A can be designed using relations such as

Ad A B, = A, plus B

d d m nus (Ad \Y Bd)

d
which inplies
T, = A, +, B, — F(A, V Bd).

A

Defining "4 " as the conponentwise + b addi tion operation for (n, Zb)

2

20
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checksum code vectors and " — " as subtraction, We can wite

AdABd=Ad~§-Bd-—-(AdVBd),

so that for a checksum code AND circuit,

T = A + B - F(A, V B.) .
2 czb d d

Since linear block codes are preserved by the XOR operation, a de-

tection lossless XOR can be inplenented directly. FEor residue and

checksum codes, XOR can be inplenented by making use of the identity

AdEBBd = A, plus B, m nus 2(Ad ABd)

d

[f both the AND and OR operations are required in a processor, then
it is posgfble to design a detection lossless totally self-checking Iogic
unit in which neither operation is duplicated. As shown in Fig. 8 for
linear block codes, a switch is used to swap the AND and OR bl ocks dependi ng
on which operation is desired. O course, the switch may be nore costly
t han an approach that uses two szparate logic units. At worst the switch
consi sts of two conventional 2-inzut multiplexers for each data bit. At
best the switch could use a pair of CMOS transmi ssion gates per bit [Hnatek
1973] or sone schene involving rmultiple out put IZL gates and three-state
logic [Horton et. al., 1975]. Another alternative is to use a conventiona
logic unit that has circuitry to select either the AND or OR operation, and
to perform the checked computation in two steps. This is the approach used
in the design exanple of Section 8  The two-step approach works only if
there are no faults that can produce an erroneous 1 in the AND operation and

an erroncous 0 in the same bit position in the OR operation (or vice versa).

22



6. MICROPROGRAM MEMORY AND DECODERS

Detection of errors in mcroinstructions fetched from m croprogram
menory is generally acconplished by encoding each microinstruction in an
error-detecting code [Cook et. al., 1973; Chang et. al., 1973a,b]. A
checker then monitors the mcroprogramdata regi ster and non-code words
indicate errors. Wile this schene detects errors in fetching microin-
structions, it does not guarantee that the control signals reach their
destinations correctly. For exanple, suppose one bit of the microinstruction
is msed to gate bus A onto bus T, as shown in Fig. 9. Assune that data on
the buses is encoded in an error-detecting code. A break in the "T ¢ A"
control line affects multiple bits of the output on the T bus and thus may
not be detected by the data path error-detecting code. Errors caused by
broken wires do not seea |likely when one thinks in terns of #14 house wring,
but bad connections in plug-in cards and breaks in the wires between bonding
pads and pins in integrated circuit packages are quite commn. Therefore
means of detecting errors caused by these failure nodes nust be provided

A sinple nodification of the basic microinstruction coding schene all ows

control line failures to be detected. |nstead of checking that the mcro-
program data register is a code word, all of the control lines are routed
to their destinations and then collected in a "sink register". The com

bi nati on of the sink register and the check synbol in the m croprogram

23
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data register is then monitored by the checker, as shown in Fig. 10.

With this scheme, a failure in the main control line is detected by the
sink register checker, while a failure in a line to an individual bit (byte)
slice is detected by the data path error-detecting code.

i The previous exanple showed a single bit of the mcroinstruction used
to enable the operation "T & A" In a typical processor there are severa
possi bl e sources for each bus, and several possible destinations. Only
one source and generally only one destination is used for each bus during
a single mcroinstruction. Therefore the length of the microinstructions
can be shortened by consolidating the n one-bit fields such as "T & A"

"T ¢ B," etc. into a single field of length flq% n] "T source." The
"T source" field is used as the input to a |l-out-of-n decoder to activate
the proper source during each nicroinstruction. Failures in a source de-

" coder can cause no source or two Of nore sources to be gated to the same
bus, and an erroneous code word on the bus may be produced. Thus sone
means nust be provided for detecting decoder failures.

One nethod of detecting decoder failures is sinply to nmonitor the
decoder outputs with a checker. Self-testing and totally self-checking de-
coder checker designs for l-out-ofi-n and general k-out-of-n codes have been
given by Toy [1971], Carter, et. al. [1971], Anderson and Metze [1973], and
Reddy [1974].

Anot her method of detecting decoder failures is based on the use of
the sink register. Decoder outputs can be re-encoded into their original
form after being routed to their destinations, and then l|oaded into the

sink register. |f the re-encoded field in the sink register is different
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fromthe original field in the mcroprogram data register, then the error
in the decoder can be detected by the checker for the mcroprogram data.
This assumes that the field is no wider than b bits, where b is
the nunmber of adjacent bit errors that can be detected by the m croprogram
~..Zl\ata error-detecting code. An mbit field in the mcroprogramcan be
decoded into a 1—out—of—(2m—1) code and re-encoded into mbits in the, sink
register so that the circuit is self-testing but not fault secure for al
single stuck-at faults in the decoder and encoder. |If the mbit field

is already encoded in a k-out-of-mcode and decoded into a |-out-of- code

m
Ok
then the circuit is both self-testing and fault-secure for single faults
[ Wakerly, 1976 a].
In commercially available LSI data path slices, there are already

_sourteand destination field decoders on each slice. A failure in one of

t hese decoders affects only a single slice and so decoder failures do not
have to be detected explicitly. The exanple processor of Section 8 is de-
signed so that there are no decolers between the mcroprogram data register
and the control inputs of the slices. However, the sink register concept is

used, so that the nmicroprogramdata is checked after it has been routed to

the slices.
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7. MICROPROGRAM SEQUENCER AND CLOCK
e

A microprogram sequencer is a circuit which, along with ROM, conprises
a mcroprogrammed control unit. As a mininum a sequencer nust contain a
m croprogram address register and logic to update the address register. It
may al so contain such features as a pushdown stack for mcro-subroutines,
condition code latches, and instruction register. The inputs of a se-
quencer are: 1) a command indicating how to conpute the next m croprogram
address (e.g., increnment, subroutine return, conditional branch); 2) status
bits for.conditional branching; and 3) a microprogram address for reloading
fhe'address regi ster for branches, subroutine junps, instruction decoding,
etc. The outputs of a sequencer are sinply the microprogram address
. (which is connected directly to the ROM) and possibly a few control bits.

A nunber of "tricks" for checking m croprogram sequencer operations
wi thout conpl ete duplication have been described in the literature [Chang,
et. al., 1973; Wakerly, 1973, 1975a], For exanple, errors in a nicroprogram
counter can be detected by an arithmetic code, and errors in the fetching
of linked mcroinstrcctions can be detected by address parity bits.
However many operations of a sequencer, such as intepreting conditiona
branches, decoding instructions, and setting and storing individual condition
code bits, can be checked only by duplication [Wakerly, 1973, 1976a]. Since

the present technology allows a conpl ete nicroprogram sequencer to be
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implemented on a single LSl package, it is best to duplicate the entire

m croprogram sequencer
The exanpl e processor in the next section uses a duplicated m croprogram
'”éequencer. Both copies of the sequencer receive identical inputs. The
output of one of the sequencers is used to address the microprogram ROM,
and the outputs of both sequencers are conmpared using a totally sel f-checking
equal ity checker.
Both the m croprogram sequencer and the data path slices of a processor

operate from aconmmon clock. Cock errors can be detected by a totally

sel f-checki ng periodic signal checker as described by Usas [1975].

i
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8. DESI CN EXAMPLE -- SCAMP
ot

A sel f-checking processor based on the foregoing principles is being
designed and constructed at Stanford University. Dubbed SCAMP (Self-
Checking And Maintainable Processor), the processor has a mcroprogramed
control unit and 16-bit data paths, registers, and two's conplenent arith-
metic. Using standard speed TTL logic and main nemory with 600 ns access
tine, the target nachine will performa 16-bit register-to-register add in
about 1 us.

SC&? instructions are one or two words (16 or 32 bits); the second
word of a double word instruction is an immediate operand or an address
The first 8 bits of any instruction is always an opcode that can be uni-
| formy decoded as in the I1BM360/370. There are 16 general - purpose reg-
isters, one of which is a stack pointer. Register-to-register and regis-
ter-to-menory instructions are available, and operations and formats are
simlar to those of an Interdata 7/16 [Interdata, 1971]. Two 4-bit fields
in nmost instructions specify two general registers. For nenory reference
instructions a variety of addressing nodes can be used for the nmenory
operand, simlar to those of a Pp?-11 [ DEC, 1973]. There are no input/
output instructions; nenmory-mapped |/Ois used as in the PDP-11 and the

MB800 [Motorola, 1975].
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The processor is partitioned along the lines of Fig. 1 into data paths,
m croprogram nenory, and mcroprogram sequencer. The data paths are im
plemented using five identical 4-bit slices, four for the data part and one
for the check synbol. Associated with the check slice is fix-up circuitry for
‘qgrithnetic and logical operations. The microprogram nmenory is inplenented
with 1K word by 4-bit ROM's, and has one extra ROM for checking. The
m croprogram sequencer is duplicated. There are only four checkers in
the system nmonitoring the clock, the data path bus (D-bus), the mcro-
program nmenory, and the duplicate sequencers
The organi zation of the 4-bit data path slice is shown in Fig. 11. Mst
of the control lines have been omtted. Each slice contains 16 genera
purpose registers, four scratchpad registers, an ALU, and a shifter. The
RW and RX registers can be | oaded from an external source; the contents
. of e?fher one of these registers can be used to select one of the genera
registers. The selected general register may be used as the ALU A input
and/or witten into. The scratchpad is a two-port register file, so that
one scratchpad may be used as the ALU A input and another can be used as
the Binput. The RWand RX registers can also be used as ALU B inputs
This is useful for operations in which RW and RX contain not register num
bers but short operands. The shifted ALU output may be placed on the D bus,
However, the D-bus is a three-state bus, and the shifter output may be dis-
-abled so that external data may be placed on the bus. A general register
or scratchpad can be |oaded with either the D-bus or the K-bus, an auxiliary

i nput bus.
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The conpl ete data paths are obtained using five 4-bit slices as shown

15 0° 9

| east significant) and one slice for check synbols- With afew exceptions,

in Fig. 12. There are four slices for the data parts of operands (b

i dentical control signals go to all of the slices. The W and X inputs of al

the slices are connected to D7_4 and D3—0 respectively, since the register-
~elect fields of instructions appear at these positions. In the data part,

the K-bus is connected directly to the D-bus as a 4-bit right rotation. In

the check slice, the K-bus is connected to the output of the check synbo

fixup circuitry. For nost operations that require no check synmbol fixup,

the registers of both the data part and the check slice are | oaded from

the D-bus. For an operation that requires a fixup, the R-bus is used to

| oad the check synbol slice's register only. A 4-bit right rotation of

the data part using the K-bus should | eave the check symbol unchanged;

therefore in the check slice the D-bus is selected for such operations.

The contents of the D-bus are latched into a check register at the end
of each mcro-cycle. Checking is overlapped with the next nicrocycle. The
generated check symbol nay be subtracted by the fixup unit fromthe out-
put of the check slice for perforning detection lossless |ogical operations
in two steps as described in Section 5.

Every data transaction in the system makes use of the D-bus, and so
a single checker on the D-bus is sufficient for all data checking. Micro-
program constants are |loaded into the data paths by disabling the slices'
D-bus outputs and gating the appropriate mcroprogramfield onto the p-bus.

Opcodes are | oaded into the sequencer by placing the instruction register
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(one of the scratchpads) on the D-bus and enabling an 8-bit sequencer input
bus that is connected to the high-order bits of the D-bus. The only
limtation that arises fromhaving only a single data path checker is in
mul tiplication and division. Since these operations require essentially a
deuble precision shift at each iteration, the iteration cannot be done in
one mcrocycle. Some LSI data path slices have a "Q register"” that nakes
possible one-microcycle iterations, but a Qregister in a self-checking
machine would require an additional checker. SCAMP requires two mcrocycles
per iteration of the multiplication |oop

There are no I/O instructions in SCAMP; nmenory-mapped I/O similar to
a PDP-11 or M6800 is used. The I/O controller consists of a bus address
register (BAR), a bus data register (BDR), and a few control signals (MSYNC,
SSYNC, R'W. The BAR can be |oaded fromthe D-bus and its output is the
110 aadress bus. The BDR can be | oaded fromthe D-bus and its output can
drive the bidirectional 1/O data bus. Alternatively, the I/O data bus can
drive the D bus

In order to sinmplify 1/0O control and to facilitate checking with the
existing checking mechanism /O is perfornmed strictly under mcroprogram
control. For a read operation, the mcroprogram|oads an address into the
BAR and sets the read/write (R/W) bit. Then it asserts MSYNC and proceeds
with any operations that are to be overlapped with the read. Meanwhile
the 1/0O device asserts SSYNC after placing its data on the I/O data bus.
Vhen the mcroprogramis ready for the input data it does a conditional branch
on SSYNC. A loop counter in the sequencer (also used for nmultiply and divide

| oops) is used to force an exit if the device does not respond within a fixed
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time. Write operations proceed in a sinilar manner.

Al though the present design allows detection of errors in |loading the
BDR 5_’3._\‘1 BAR and in the assertion of control'signals, it does not detect errors
further down the 1/0 bus. The nmeans of detecting I/O controller and device
errors has not yet been deternined, although the methods of Usas [1976] are
appl i cabl e.

The preceding is nmeant to be only a brief overview of SCAMP's organiati on.
The detail ed design of the processor will be discussed in another paper
[Wakerly, 1976b]. This paper will exam ne the cost and performance penalties

incurred by providing conplete error detection.

&
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9. DIAGNOSIS
. §

Sel f-checki ng processors follow ng the design principles of the previous
sections have a number of totally self-checking checkers whose outputs can
be conmbined to produce a signal that indicates the presence of any detectable
error in the processor. As a nmininmum this global error signal should be
used for error-logging or perhaps to halt the processor. However, it would

be nore desirable for the processor to be_self-diagnosing. Upon recognizing

an error signal, the processor would initiate steps to deternmne the source

of the failure. A trustworthy diagnostic would either give the processor

- a clezﬁkbill of health (the failure was a transient) or it would isolate the
failure to a replaceable package for manual repair. There are three inportant
di agnostic areas for processors following our design principles: data paths
m croprogram nenory, and microprogram sequencer. W discuss each of these
briefly.

If a data path failure is detected, then we can use the m croprogram
nenory and sequencer as tools for diagnosis. Mcrodiagnostics are used in
non-sel f-checki ng cozmercial machines and they have been studied in the literature
Fiohnson, 1971; Guffia, 1971, Ramamoorthy and Chang, 1972). In a non-self-
checking machine, a mcrodiagnostic nust provide a stimulus for each fault,
observe the output, and conpare the output with the expected output. In a

sel f-checking machine, mcrodiagnostics are nmuch easier. Because of the
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built-in checkers and the self-testing nature of the circuits, the micro-
di agnostics need only provide a sufficient set of stinuli and nonitor the
checker output. The usual problens of interdependence among the units being
testéaaand the units being used to nake conpari sons and deci sions are elimnated.
A failure in mcroprogrammenory is detected by the nmenory's error—
detecting code. Once the failure is detected, it should be isolated to
a single ROM or nicroprogramdata register package. Unfortunately a sinple
di stance-two code gives no diagnostic information, and due to the read-only
nature of ROM it is not possible to apply selective-patterns that sensitize
one ROM package at a tine. A distance-3 or greater code is needed to isolate
ROM failures. Rather than use a w der ROM word.(nnre check bits), it is
possi bl e to. store a checksum one word of RON, effectively encoding the entire
ROM ih a distance-4 code. The checksum word should be a b-bit bytewise check
over the ROM words, where b is thes word length of the individual RON packages.
En this way, a single package failure will result in an easily identifiable
error in the corresponding byte of the checksum However, note that the code
must be chosen carefully to detect the failures that cause errors in all of
the words of a ROY package. For exanple, a sinple vertical parity check will.
not detect a ROM output bit stuck-at zero.
Although the microprogram szquancer is duplicated, representing the highest
level redundancy in a self-checking processor, it is nonetheless difficult
to diagnose. |f a sequencer failure occurs, then we observe a m smatch be-
tween the outputs of the duplicated sequencers, but it is inpossible wthout

additional information to determne which is the incorrect one. One possible
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approach to sequencer diagnosis is to wite a mcroprogramthat tests a
single sequencer and gives an indication of the sequencer's correctness

i ndependent of the checking hardware. For exanple, the program could be

~Ayritten so that it exercised all of the sequencer's features and halted at a

certain location Only if all of the steps had been executed properly. Diagnosis
woul d consist of running this test on both sequencers and tossing out the
one that fails the test. W note that the conplexity of sequencer testing
is conparable to that of microprocessors

Since all errors in a self-checking machine are detected with self-
checking checkers, there is always a chance that an error signal indicates
a failure in the checker. The diagnostic technique nust take this into ac-
count. For exanple, in SCAMP it is possible for the microprogramto place
constants on the D-bus that exercise the data path checker wi thout using the
data path slices. Another example is in sequencer testing -- if both sequencers
pass the test then it can be assuxmesd that the sequencer equality checker is

bad.
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10.  .REPAIR

It is interesting to note that a self-checking processor with the
structure of Fig. 2 has in it alnost all of the hardware needed to continue
operation in a unchecked node after a failure. If it is diagnosed that a
failure affects only a data path or mcroprogram nmenory check slice or a
checker, then obviously it is possible to ignore the checker outputs and con-
tinue correct operation. If a failure affects a data path slice that is
processing data parts, then the failed slice can be renoved and replaced
mﬁfh‘the check slice since it is identical. |If there is a failure in one
of the duplicate mcroprogram sequencers, then the non-failed sequencer nust
be nade the one whose outputs are connected to the ROM  The only failure
that does not allow a direct swap is a ROM package failure, since the contents
of the check ROM are obviously different fromthe contents of the other ROM's.
However, if we know which ROM package is faulty, then it can he renoved and
its contents can be computed as a function of the other ROM contents and the
check ROM. This cozmputzation can b2 carried out by the existing checking
circuitry, as shown in Fig. 13 for a systemthat uses 4-bit RO packages and a
4- adj acent code. In practice, this exanple would require that the RON' s be

mounted in sockets and some small junpers would be needed for the change.
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11. CONCLUSION
.

We have described checking nmethods for each of the major elenents of
a mniconputer-like processor. These methods can guarantee concurrent
detection of all single integrated circuit failures. The redundancy re-
qui red for checking consists mainly of checkers, a duplicate mcroprogram
sequencer, one extra mcroprogram menory slice, one extra data path slice
and fixup circuitry (the conplexity of the fixup circuitry is much |ess
than that of a data path slice). Additional costs are one or two mcro-
program bits that nust be provided separately for the data path slices and
the-checibslice, a few microprogram bits to control the checkers and fix-
up circuitry, and a few extra mcroprogram words for certain checking op-
erations. For nost operations no perfornance penalty is incurred by
checking, since the check slice is just as fast as the data path slices
and operates in parallel, and checking can be overlapped wth execution.
However, a penalty is incurred in operations that require extra steps for
checking (such as two-step logical operations) and in arithmetic operations
that require a fisup (in SCAMP the f£ixup takes less than 1/3 m crocycle).
Nhe; the design of SCAMP is conpleted, we will be able to discuss these factors
in detail, but it appears that the total redundancy for checking wll be

somewhat | ess than 50% and the perfornmance degradation will be m ninal

(about 10%.
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