
SEL-76-032

PRINCIPLES OF SELF-CHECKING PROCESSOR
-9ESIGN AND AN EXAMPLE

John F. Wakerly

Technical Report No. 115

. December 1975
*

.

This work was supported by the Joint Services Electronics Program
under contract N-000 14-75-C-060 1 and by the

National Science Foundation under grant GK-43322

.

f ^

SEL-76-032

PRINCIPLES OF SELF-CHECKING PROCESSOR DESIGN AND AN EXAMPLE

John F. Wakerly

Technical Report No. 115

December 1975

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

This work was supported by the Joint Services Electronics Program under
contract N-00014-75-C-0601 and by the National Science Foundation under
grant GK-43322.

PRINCIPLES OF SELF-CHECKING PROCESSOR DESIGN AND AN EXAMPLE

John F. Wakerly

Technical Report No. 115

December 1975

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

ABSTRACT

A self-checking processor has redundant hardware to insure that

no likely failure can cause undetected errors and all likely failures

are detected in normal operation. We show how error-detecting codes

and self-checking circuits can be used to achieve these properties in
,* -

. a a microprogrammed processor. The choice of error-detecting codes and

the placement of checkers to monitor coded data paths are discussed.

The use of codes to detect errors in arithmetic and logic operations

and microprogram control units is described. An example processor de-

sign is given and some observations on the diagnosis and repair of

such a processor are made. From the example design it appears that

somewhat less than 50% overall redundancy is required to guarantee the

detection of all failures that affect a single medium- or large--scale

integration circuit package.

INDEX TERMS: Arithmetic codes
Checkers
Control units
Diagnosis
Error-detecting codes
Logical operations
Microprogramming
Self-checking circuits

INTRODUCTION

A self-checking processor has redundant hardware to detect internal

failures. Processors with some degree of self-checking have been de-

signed for spacecraft applications [Avizienis, et. al., 19711 , tele-

phone switching systems [Chang, et. al., 19731, and even general business

use [IBM, 1973. In this paper we will give principles for the design

of self-checking processors using commercially available integrated

cir&its (IC's). Many processors also have built-in diagnostic aids in

the form of additional hardware and microprograms. While our ultimate goal

is to design self-diagnosing processors, in the paper we will focus on

the prelude to diagnosis: detection.

Fault detection will be achieved through the use of error-detecting

codes and self-checking circuits. Self-checking circuits [Carter and

Schneider, 1968; Anderson and Metze, 1973; Wakerly, 19741 have properties

of self-testing and fault-secureness. Fault-secureness for a set of faults

insures that no fault in the set can produce an undetected error, while self-

testing insures that all faults frm a set are eventually detected in normal

operation. The design of a system using self-checking circuits is guided by

the principle that no likely fault should produce an undetected error and all

likely faults should be detected in normal operation. The definition of

"likely fault" depends on the system implementation. In our case, we consider

likely an arbitrary fault that affects a single integrated circuit package.

Our goal is to design a processor in which no such fault can cause an un-

detected error.

-xhe principles given in this paper apply to microprogrammed processors

with the general structure given in Fig. 1. The registers and arithmetic/

logic unit (ALU) of the processor are contained in the block labeled "data

paths." The data paths may transmit data to or receive data from an I/O

controller, which is not shown. The independent control points [Flynn,

19751 of the data paths are connected to the outputs of the microprogram

memory. The address for the microprogram memory is provided by the micro-

program sequencer. At each clock period, the sequencer provides a new

microprogram address as a function of the current address, sequencing
z-

information from the microprogram memory, and conditions from the data

paths. The current technology allows the microprogram sequencer to be

implemented as a single integrated circuit [Wakerly, et. al., 19751,

while the microprogram memory and the data paths are "sliced" into a

number of circuits operating in parallel. For example, a 10240word by

40-bit microprogram memory could use ten 1024-word by q-bit read-only

memories (ROX's), while a data path with 32-bit registers and ALU oper-

ations could be implemented with eight 4-bit data path slices [Mm, 19751

or s&teen 2-bit data path slices [Xoff, et. al., 19751.

The processor architecture of Fig. 1 is made self-checking as shown

in Fig. 2. Data in the data path block is encoded in an error-detecting

code, so that one extra slice is required to process check symbols. Likewise

the microprogram memory output is encoded, and an extra ROM package is required

..
clock

MICROPROGRAM address, MICROPROGRAM contro'MICROPROGRAM address , MICROPROGRAM control DATADATA
22 II I'I' , data bus',

SEQUENCERSEQUENCER MEMORYMEMORY II PATHSPATHS \' 0
= ’ ’ to I/O

1 . l II t.

c sequencer controlsequencer control

data bus

to I/O

conditionsconditions

opcodesopcodes

,* -
. -

Fig. 1 Microprogrammed processor.

3

cu

Y
::
C
0

to store check symbols. The microprogram sequencer is duplicated.

‘is

Checkers monitor the microprogram and data path outputs for noncode Lords

and the duplicated sequencer outputs for a mismatch. Totally self-checkir

_,3checkers for these outputs can be designed in a straightforward manner

[Anderson, 1971; Wakerly, 19731. A periodic signal checker [Usas, 1975)

monitors the clock. Data transactions with the I/O controller use the data

path code. I/O controller checking is discussed in detail in [Usas, 19761.

In the remainder of this paper we discuss the design of the blocks of Fig.

2 in more detail and give a design example. Section 2 discusses the choice

of error-detecting codes and Section 3 discusses the placement of checkers

in the data paths. In Sections 4 and 5 we describe means of checking

arithmetic and logic operations, respectively. Section 6 discusses micro-
; ^

. a program memory and decoder checking, and Section 7 discusses the sequencer

and clock. Eu'ext, Section 8 gives an overview of a self-checking processor

based on these principles that is currently being designed and built.

Finally, Sections 9 and 10 make a few observations about fault diagnosis and

repair of such a processor.

2. CHOICE OF ERROR-D5TECTING CODES

Errors in data transmission and storage can be detected if data is

encow in an error-detecting code. Codes used for this application are

almost always systematic. Codes are chosen on the basis of the cost of

their implementation and their effectiveness in detecting errors. A code's

implementation cost can be measured by the number of redundant bits in the

code; however, the cost of self-checking checkers for the code should also

be considered. A code's effectiveness can be measured by its minimum dis-

tance; but additional insight can be obtained by determining the size of

the tested and secure fault sets [Wakerly, 1973) of self-checking circuits

using the code.
25-

A code should be chosen SO that the likely physical failures
. -

are contained in the tested and secure fault sets of the circuits using the

codes. If a circuit is bit(byte)-sliced, then a single bit (byte) error-

detecting code should be used.

The circuits used in data paths and memory are generally bit(byte)-

sliced circuits with no interaction between bits (bytes), except for data

selection and addressing, which are checked separately (see Section 6),

and arithmetic operations, which are considered in Section 4. If the

data is encoded in an error-detecting code and if the circuit performs
c

only data storage, transmission, or routing, then the circuit is self-

checking, since the output is a code word if no failures have occurred.

These circuits are called non-transforming circuits [Wakerly, 1976a]. Examples

of SUCK circuits are registers, multiplexers and demultiplexers. The secure and

tested fault sets of such circuits depend on the error-detecting code used,

and we can use the size of these sets to compare the effectiveness of several

important systematic codes..-a Any bit(byte)-sliced non-transforming circuit can

be used to make the comparison if we assume that the normal input set of the

circuit tests all fault that affect a single bit(byte)-slice.

We compare five classes of codes for possible application in self-

checking processors. The first two codes are well known - the single bit

even parity check and duplication. The next code, the distance-2 b-adjacent

code, consists of b interleaved single bit parity checks [Bossen, 1970;

Peterson and Weldon, 19721. The b(k,2) checksum code has k b-bit data

bytes and a check byte which is the modulo 2b sum of the data bytes [Garner,

. .1958r*Wakerly, 19751. The last code is an arithmetic code, a low-cost residue

bcode with check base A = 2 -1.

The characteristics, advantages, and disadvantages of each code are

discussed in detail in [Wakerly, 1976a]. The discussion is summaried in

Table 1. The example processor o f Section 8 uses a low-cost residue code

with check base 2 4-1 for the data paths, a distance-2 4-adjacent code for

the microprogram, and duplication for the microprogram sequencer.

7

Table 1 Properties of important codes.

Code
Data part
Check symbol
Fc+.t-secure
Self-testing
Checker
Comments

Code
Data part
Check symbol
Fault-secure
Self-testing
Checker
Comments

Code
Data part
Check symbol
Fault-wcure
*Self-testing
Checker

Comments

1
Code
Data part
Check symbol
Fault-secure
Self-testing
Checker

Comments

Cude
Data part
Check symbol
Fault-secure

Self-testing
Checker

Comments

Single-bit even-parity
n bits
1 bit
Single bit slice faults
Faults affecting fewer than all bits
n-input Exclusive OR tree and 1 inverter
Least redundancy, cheapest checker

Duplication
n bits
n bits
Faults affecting different bits in the two duplicates
Faults affecting different bits in the two duplicates
n-bit totally self-checking equality checker
Most redundancy, expensive checker, not self-testing

for many double faults

Distance-2 b-adjacent
k b-bit bytes
1 b-bit byte
Single byte slice faults
Faults affecting fewer than all bytes
b k-input Exclusive OR trees and b-bit totally self-

checking equality checker
Cheapest, fastest checker of all codes with b check bits, not

self-testing for many k+l-bit faults

b(k,2) checksum
k b-bit bytes
1 b-bit byte
Single byte slice faults
Faults affecting fewer than all bits
k-byte tree of b-bit modulo 2b adders and totally self-

checking equality checker
Cheaper than b-adjacent for parity-predicted arithmetic,

slower and core expensive checker

Low-cost residue, check base A = 2b-l
k b-bit bytes
1 b-bit byte
Single byte slice faults except all stuck-at-0 or all

stuck-at71
Faults affecting fewer than all bits
k-byte tree of b-bit modulo 2b-l adders and totally self-

checking equality checker
Direct implementation of arithmetic operations, not fault-

secure for some single byte slice faults, slightly
slower checker than checksum codes.

8

3. CHECKER PLACEXENT

Sellars et. al. [1968] give criteria for the placement of checkers

in coded data paths:
1-‘-M

1. The checkers should minimize undetected errors and faults.

2. The checkers should locate the error before it corrupts further

data (so that the error indications are meaningful for maintenance,

and so that the erroneous data can be reconstructed).

3. The checkers should locate the error to as small an amount of

hardware as necessary to ensure easy servicing.

4. The checker cost should be minimized (usually this means using

the minimum number of checkers that will do the job).

*There are obviously trade-offs between satisfying the first three. a

criteria and satisfying the last (examples are given in [Sellars, et- al.,

19681). Zather than dwell on these, w2 would like to give formal rules

for checker placements that guarantee to detect all detectable errors

(criterion 1 above). The rules a??ly to networks of functional blocks,

such as the one shown in Fig. 3. In addition to control inputs, each block

has data inputs and outputsin sax error-detecting code S. A detectable

error occurs when a noncode word i-> produced at the output of a block because

*of a fault. L'e would like to guarantee that every detectable error is

eventually either corrected or propagated to a checker. In order to do so,

we must first characterize the behavior of functional blocks in response to

noncode inputs. We do this with the "detection lossless" property defined

below. This property is similar to the code disjoint property of self-

checking checkers [Anderson and Netze, 1973-J.

9

1 .1 1

N
1 2 CHECKER

OR :
\/'

. ADD r

_ NETWORK
INPUT

Fig. 3 A network of functional blocks and checkers.

10

Definition: Let a functional circuit have a control input vector C, data

input vectors X1 ,...,Xm'
and a single output vector Z. The

circuit is detection lossless for a data code S and a set R

of control inputs if

1) CcRandXl,Xm c S implies Z E; S; and

2) C E R and exactly one Xi 4 S implies Z # S or the Xi input

has no effect on Z for this choice of C.

It should be apparent from the definition above that if a circuit is

detection lossless, then a detectable error in one of its input vectors

produces either the correct output or a detectable error. kn an example,

consider an adder for code words in an arithmetic code. If one of the

input operands (summands) is a code word and the other is not, then the

sum will be a noncode word and the presence of the erroneous summand is

deteted. An another example, consider a multiplexer for two coded operands.. a

If one input is a code word and the other is not, the output will be either

correct or a detectable error, depending on which input operand is selected. As

an example of a circuit that is not detection lossless, consider a circuit

for performing the logical OR operation by duplication, as shown in Fig. 4.

The check symbols (Ac,Bc) of the two input operands (Ad,Bd) are discarded,

and the logical OR is computed by two independent circuits. The check

symbol (Tc) of the result is cozquted from the output of one of the OR

circuits, while the output of ths other becomes the data part (Td) of the

result. The duplicated circuit is self-checking because failures in either

duplicated OR circuit produce a mismatch between the data part of the result

and its check symbol. (Ihe. tested and secure fault sets depend on the code

and the circuit implementation of OR.) However, the circuit is not detection

11

1--w-

Ad

,

Fig. 4 Totally self-checking OR circuit.

12

lossless because the check symbols of the inputs are thros.m away.

A noncodc input operand is never detected because both duplicate OR circuits

compute the same erroneous result.

We can now state general requirements for the placement of checkers

that guarantee the eventual detection of all detectable errors produced in

a single block of a network:

1.

2.

3.

4.,* ̂. -

A checker should be placed at each network output.

There should be at least one checker in every loop in-the data

paths.

There should be checkers at all the inputs of blocks that are not

detection lossless.

If a data path fanout reconverges at the inputs of a detection

lossless block, then there should be a checker in at least all

but one of the paths from the fanout point to the inputs of the

block.

Application of these rules to the network of Fig. 3 results in the

indicated checker placement (all blocks except OR are assumed to be de-

tection lossless). Requirement 1 above ensures that all data is checked

before it leaves the system, Requirement 2 prevents repeated-use

a multiple errors, and Requirement 3 prevents undetected errors at the outputs

of blocks that are not detection lossless. Requirement 4 is necessary so

that a single error at the output of a block that fans out does not become

an undetected multiple error. This *requirement, although sufficient, is not

13

neces>;nry for the detection of single errors that fan out. For example,

consider the network shcr.~n in Fig. 5 and assume that data are encoded in arith-

metic code. A weight-one arithmetic error at the output of the multiplexer has
.

an error value of fZ1 for some i. Because of fanout, both RI and R2 may

+ialso receive errors of -2 , and produce a double error at the adder input.

Howeve??, the sum will have an error value of f2 i+l , which is also a de-

tectable error value. Hence the network will detect all single errors

even though Requirement 4 is not satisfied. On the other hand, consider

the network of Fig. 6 and assume data are coded in a low-cost code with
.

check base A=3. An error value of ' '-2 at Rl's output can produce an error

value of +2i f 2i+l = +3.2i at the adder output, which is undetectable. In

this network Requirement 4 is obviously necessary.

The data paths of the example processor of Section 8 are designed

so that a single checker is suEficient for detecting all data path errors.
,- ^

. -

14

ADD = 1

NETWORK
INPUT OUTPUT

2z- Fig. 5 A network for which Requirement 4 is not necessary.
. -

?
\

1 0

. ADD
. 4 Y
LEFT SHIFT f /

. 4 b/ I
.

PlULTIPLEXER

NETWORK
INPUT

NETWORK
OUTPUT

Fig. 6 A network for which Requirement 4 is necessary.

15

4. ARITILXETIC OPERATIONS

The basic arithmetic operations in a computer are addition, sub-
-a

traction and shifting. Operations such as multiplication and division

may be accomplished in software or firmware by iterative use of the basic

operations. In this section we discuss methods of detecting errors in

the basic arithmetic operations; errors in the iterative operations are

manifested either as errors in the basic operations or as control errors

detectable by the techniques of Sections 6 and 7.

Both arithmetic and non-arithmetic codes can be used to detect

errors in arithmetic operations. The non-arithmetic codes such as parity

and check&m codes can be used with check symbol prediction techniques to

preserve the code under arithmetic operations [Sellars, et. al., 1968;

Wakerly, 19751. These techniques predict the check symbol of the sum of

two operands as a function of the check symbols of the two operands and

carries generated during the addition. The main advantage of check symbol

prediction techniques is that they can be used with codes such as b-adjacent

and checksum codes that guarantet to detect any error in a single b-bit

byte. However, parity prediction techniques require duplication of the adder

carry. generation circuitry to avoid undetectable failures.

Arithmetic codes such as low-cost residue codes [Avizienis, 1971)

are better suited for performing arithmetic operations. A code word in a

low-cost residue code has a b-bit check symbol which is the modulo 2b-l residue

16

of the data part. The main disadvantage of low-cost residue codes is that they

allow some undetected b-bit errors, namely all l's in a b-bit byte changed

to all. O's or vice versa. However, they allow direct inplementation'of

-*3addition, subtraction, and rotation operations in the one's complement

system using standard MS1 and LSI IC's. TWO'S complement operations and

logical and arithmetic shifts require the check symbol of a result to be

modified as a function of carries into and out of the low order and high

order bits of the data part operation. The circuitry for performing this

fix-up does not destroy or degrade the self-checking properties of a two's

complement ALU, but it does potentially slow down the ALU's operation. The

fix-up operations necessary for various add, subtract, and shift operations

areSdescribed in detail in [Wakerly, 1976a]. The fix-ups for one's^
. -

complement operations are given in [Monteiro and Rao, 1972).

The example design of Sectio;l 8 uses a modulo 42 -1 low-cost residue

code for the data paths. Arithmetic is performed in the two's complement

system, and check symbol fix-up circuitry is provided at the output of the

ALU.

17

5. LOGICAL OPERATIONS

It is well known that no code short of duplication is preserved by

logr&l operations such as AND and OR [Peterson and Rabin, 19591. Hence

all schemes for self-checking logical operations must use a form of dupli-

cation. The STAR computer uses duplicate logic units [Avizienis, et. al.,

19711, and a processor designed by Monteiro and Rao cl9721 duplicates the

AND operation and performs the other logical operations using a combination

of AND and checked arithmetic operations.

While no code short of duplication detects errors in logical operations,

it is possible to perform logical operations in a self-testing manner without

duplicati-n. The concept of partially self-checking circuits [Wakerly, 19731
. -

allows the non-code-preserving logical operations to be performed by circuits

that are tested in normal operation by other, code-preserving, operations

(such as addition and subtraction using a residue code).

Simple duplication (such as shown in Fig. 4) and partially self-checking

circuits for logical operations have a common characteristic: they are not

detection lossless since the input check symbols are not used in the com-

putation of the result. Thus a system using such a method will require

checkers at the inputs of the logic unit. In the remainder of this section

we describe the design of logic units that avoid this problem: totally self-

checking detection lossless logic units. A logic unit for residue-coded

operands that was detection lossless for OR and EXCLUSIVE OR (XOR) operations

but not for AND was designed by Montciro and Rao [1972]. The designs rc-

ported here are extensions of their design.

18

Consider any systematic code, where the check symbol of a data part

A con be written as a function F(A). The specifications for a detection

lossless AND circuit can be given as follows:

1-‘-u

a>

b)

cl

d)

d

Inputs: Ad, Bd (data parts)

AC’
Bc (check symbols)

outputs: Td (data part)

Tc (check symbol)

Td = Ad A Bd

AC
= F(Ad) and Bc = F(Bd) implies Tc = F(Td).

AC # F(Ad) or Bc # F(Bd) (but not both) implies Tc # F(Td).

Specifications for other logic functions are obtained by simply changing

item (c) above. These specifications can be met for linear block codes,
,* -

. - residue codes, and checksum codes as described below.

For example, consider the linear block codes. Since

we may write

Ad A Bd = Ad @ Bd @ (Ad v Bd> 1

T =
C

F[Ad G Bd @ (Ad V Bd)] l

But due to the linearly of F wit5 respect to @ , this nay also be

written as

T
C
= F(Ad) @ F(Bd) @ F(Ad v 'd>

= AC.@ H;@ F(Ad V Bd>

19

Thus a detection lossless /iND circuit can be designed as shown in Fig. 7.

In view of the above equation for Tc , it is quite apparent that the design

satisfies specifications (a) through (d). It also satisfies specification

(e) -she to the use of AC and B in computing Tc . The circuit is
C

totally self-checking, since it is obviously fault secure and self-testing

for all non-redundant faults in F and @ , and for a class of faults in

the AND and OR circuits that depends on the code (exactly the clases given

in Table 1).

A totally self-checking single-error detection lossless OR circuit can

be designed using the relation,

*d V Bd = Ad @ �d @ (Ad A Bd) l

Thus the OR circuit is obtained simply by swapping the AXD and OR blocks

in Fig. 7.
1

Detection lossless logic circuits for operands in a residue code with

check base A can be designed using relations such as

Ad Pi Bd = Ad ?lus B d minus (Ad V Bd> ,

which implies

=Ac+ BA c-AF(AdVBd)*

Defining "+ " as the componentwise
+qb

addition operation for (n, Zb)

20

Ad

Bd

Fig. 7 Totally self-checking detection lossless AMI circuit.

Ad

Bd

AND/OR

AC

BC

Td

Fig. 8 Totally self-checking detection lossless AND/OR circuit.

21

chccl;sim code vectors and " - " ClS su5traction, we can write

Ad A Bd =L Ad -k Bd - (Ad V Bd) ,

SO that for a checksum code AND circuit,

Tc = Ac +$ Bc -2b F(Ad v Bd> -

Since linear block codes are preserved by the XOR operation, a de-

tection lossless XOR can be implemented directly. For residue and

checksum codes, XOR can be implemented by making use of the identity

*de Bd = Ad plus Bd minus 2(Ad A Bd> .

If both the AND and OR operations are required in a processor, then
3 ^

it-is possible to design a detection lossless totally self-checking logic

unit in which neither operation is dtiplicated. As shown in Fig. 8 for

linear block codes, a switch is used to swap the MD and OR blocks depending

on which operation is desired. Of course, the switch may be more costly

than an approach that uses two separate logic units. At worst the switch

consists of two conventional 2-ixsut multiplexers for each data bit. At

best the switch could use a pair of CMOS transmission gates per bit [Hnatek,

19731 or some scheme involving czitiple output 12L gates and three-state

logic [Horton et. al., 19751. Another alternative is to use a conventional

logic unit that has circuitry to select either the A3D or OR operation, and

to perform the checked computation in two steps. This is the approach used

in the design example of Section 8, The two-step approach works only if

there are no faults that can produce an erroneous 1 irk the ANT> operation and

an crroncous 0 in the same bit position in the OR operation (or vice vcrsn).

I 22

6. HICROYROCRLU~ KE~4ORY AND DECODERS
1me*

Detection of errors in microinstructions fetched from microprogram

memory is generally accomplished by encoding each microinstruction in an

error-detecting code [Cook et. al., 1973; Chang et. al., 1973a,b]. A

checker then monitors the microprogram data register and non-code words

indicate errors. While this scheme detects errors in fetching microin-

structions, it does not guarantee that the control signals reach their

destinations correctly. For example, suppose one bit of the microinstruction

is %sed to gate bus A onto bus T, as shoti in Fig. 9. Assume that data on. -

the buses is encoded in an error-detecting code. A break in the "T f A"

control line affects multiple bits of the output on the T bus and thus may

not be detected by the data path error-detecting code. Errors caused by

broken wires do not seezl likely when one thinks in terms of 914 house wiring,

but bad connections in plug-in cards and breaks in the wires between bonding

pads and pins in integrated circuit packages are quite common. Therefore

means of detecting errors caused by these failure modes must be provided.

A simple modification of th e basic microinstruction coding scheme allows

control line failures to be detected. Instead of checking that the micro-

program data register is a code word, all of the control lines are routed

to their destinations and then collected in a "sink register". The com-

bination of the sink register and the check symbol in the microprogram

23

error
indicator checker

Lcheck symbol

t

microprogram
data registert

I
I 0 0 0

“T c A”

Fig. 9 Example of ineffective control line checking.

24

d:ita register %s then tilonitored by the checker, as shoxn in Fig. 10.

With this scheme, a failure in the main control line is detected by the

sink register checker, Anile a failure in a line to an individual bit (byte)

slice is detected by the data path error-detecting code.

1-e The previous example showed a single bit of the microinstruction used

to enable the operation "T f- A." In a typical processor there are several

possible sources for each bus, and several possible destinations. Only

one source and generally only one destination is used for each bus during

a single microinstruction. Therefore the length of the microinstructions

can be shortened by consolidatin g the n one-bit fields such as "T e A,"

"T c B," etc. into a single field of length rloo nl "T source." The"2
"T source" field is used as the input to a l-out-of-n decoder to activate

the proper source during each microinstruction. Failures in a source de-,- ̂
. -

coder can cause no source or tt;o or more sources to be gated to the sarx

bus, and an erroneous code word on the bus may be produced. Thus some

means must be provided for detecti;lg decoder failures.4

One method of detecting decoder failures is simply to monitor the

decoder outputs with a checker. Self-testing and totally self-checking de-

coder checker designs for l-out-of- n and general k-out-of-n codes have been

given by Toy [1971], Carter, et. al. [1971], Anderson and Netze [1973], and

Reddy [1974].

Another method of detecting decoder failures is based on the use of

the sink register. Decoder outputs can be re-encoded into their original

form after being routed to their destinations, and then loaded into the

sink register. If the re-encoded field in the sink register is different

25

J
--M 1 microprogram

data register

1 0
. c

I 0 0 @ 0 0 0 4

check symbol c A"

t0
break detected by
data path code

break detected by
'- 0 0

f-
sink register check. -

0 0

5

0 0

’ I

I

1

t n-l

error
Indicator

.

checker

Fig. 10 Control line checking using sink

register.

26

from the original field in the microprogram data register, then the error

in the decoder can be detected by the checker for the microprogram data.

This assumes that the field is no wider than b bits, where b is

the number of adjacent bit errors that can be detected by the microprogram
..-a
data error-detecting code. An m-bit field in the microprogram can be

decoded into a 1-out-of-(Zm-1) code and re-encoded into m bits in the, sink

register so that the circuit is self-testing but not fault secure for all

single stuck-at faults in the decoder and encoder. If the m-bit field

is already encoded in a k-out-of-m code and decoded into a l-out-of- z
0

code,

then the circuit is both self-testing and fault-secure for single faults

[Wakerly, 1976 a].

In commercially available LSI data path slices, there are already

sour?6 and destination field decoders on each slice. A failure in one of. -

these decoders affects only a single slice and so decoder failures do not

have to be detected explicitly. The example processor of Section 8 is de-

signed so that there are no deco?ers between the microprogram data register

and the control inputs of the slices. However, the sink register concept is

used, so that the microprogram data is checked after it has been routed to

the slices.

27

7. MICROPROGlUN SEQUENCER AND CLOCK

A microprogram sequencer is a circuit which, along with ROH, comprises

a microprogrammed control unit. As a minimum, a sequencer must contain a

microprogram address register and logic to update the address register. It

may also contain such features as a pushdown stack for micro-subroutines,

condition code latches, and instruction register. The inputs of a se-

quencer are: 1) a command indicating how to compute the next microprogram

address (e.g., increment, subroutine return, conditional branch); 2) status

bits forzconditional branching; and 3) a microprogram address for reloading

the address register for branches, subroutine jumps, instruction decoding,

etc. The outputs of a sequencer are simply the microprogram address

1 (which is connected directly to the ROX) and possibly a few control bits.

A number of "tricks" for checking microprogram sequencer operations

without complete duplication have been described in the literature [Chang,

et. al., 1973; Wakerly, 1973, 1975a]. For example, errors in a microprogram

counter can be detected by an arithmetic code, and errors in the fetching

of linked microinstrcctions can be detected by address parity bits.

However many operations of a sequencer, such as intepreting conditional

branches, decoding instructions, and setting and storing individual condition

code bits, can be checked only by duplication [IJakerly, 1973, 1976a]. Since

the present technology allows a complete microprogram sequencer to be

28

impletnented on a single LSI packagts, it is best to duplicate the entire

microprogram sequencer.

The example processor in the next section uses a duplicated microprogram

*%zquencer. Both copies of the sequencer receive identical inputs. The

output of one of the sequencers is used to address the microprogram ROX,

and the outputs of both sequencers are compared using a totally self-checking

equality checker.

Both the microprogram sequencer and the data path slices of a processor

operate from 2 common clock. Clock errors can be detected by a totally

self-checking periodic signal checker as described by Usas [1975].

,- ^
. -

29

8. DESICN EXAMPLE -- SCANI?
4

A self-checking processor based on the foregoing principles is being

designed and constructed at Stanford University. Dubbed SCAMP (Self-

Checking And Maintainable Processor), the processor has a microprogrammed

control unit and 16-bit data paths, registers, and two's complement arith-

metic. Using standard speed TTL logic and main memory with 600 ns access

time, the target machine will perform a 16-bit register-to-register add in

about 1 us.

. - SC&? instructions are one or two words (16 or 32 bits); the second

word of a double word instruction is an immediate operand or an address.

The first 8 bits of any instruction is always an opcode that can be uni-
.
formly decoded as in the IBM 360/370. There are 16 general-purpose reg-

isters, one of which is a stack pointer. Register-to-register and regis-

ter-to-memory instructions are available, and operations and formats are

similar to those of an Interdata 7/16 [Interdata, 19711. Two 4-bit fields

in most instructions specify two general registers. For memory reference

instructions a variety of addressing modes can be used for the memory

operand, similar to those of a PDP-11 [DEC, 19731. There are no input/

output instructions; memory-mapped I/O is used as in the PDP-11 and the

M6800 [Motorola, 19751.

30

The processor is partitioned along the lines of Fig. 1 into data paths,

microprogram memory, and microprogram sequencer. The data paths are im-

plemented using five identical 4-bit slices, four for the data part and one

for the check symbol. Associated with the check slice is fix-up circuitry for

arithmetic and logical operations. The microprogram memory is implemented

with 1K word by 4-bit ROX's, and has one extra ROM for checking. The

microprogram sequencer is duplicated. There are only four checkers in

the system, monitoring the clock, the data path bus (D-bus), the micro-

program memory, and the duplicate sequencers.

The organization of the 4-bit data path slice is shown in Fig. II. Most

of the control lines have been omitted. Each slice contains 16 general

purpose registers, four scratchpad registers, an ALU, and a shifter. The

RW and RX registers can be loaded from an external source; the contents
3 -

. - of either one of these registers can be used to select one of the general

registers. The selected general register may be used as the ALU A input

and/or written into. The scratchpad is a two-port register file, so that

one scratchpad may be used as the ALU A input and another can be used as

the B input. The RW and RX registers can also be used as ALU B inputs.

This is useful for operations in -Which RW and RX contain not register num-

bers but short operands. The shifted ALU output may be placed on the D-bus,

However, the D-bus is a three-state bus, and the shifter output may be dis-

-abled so that external data may be placed on the bus. A general register

or scratchpad can be loaded with either the D-bus or the K-bus, an auxiliary

input bus.

31

4 4
K-BUS:-],r----I

KULTIPLEXER

II I RE~‘S I II
ALU

J

O U T P U T . _ .
ENABLE

Fig. 11 4-bit slice organization.

32

The complete data paths are obtained using five 4-bit slices as s1lor.m

in Fig. 12. There are four slices for the data parts of operands (D15 C, D0
least significant) and one slice for check symbols- Kith a few exceptions,

identical control signals go to all of the slices. The TJ and X inputs of all

the slices are connected to D7-4 and D3-o respectively, since the register-

-*%elect fields of instructions appear at these positions. In the data part,

the K-bus is connected directly to the D-bus as a 4-bit right rotation. In

the check slice, the K-bus is connected to the output of the check symbol

fixup circuitry. For most operations that require no check symbol fixup,

the registers of both the data part and the check slice are loaded from

the D-bus. For an operation that requires a fixup, the R-bus is used to

load the check symbol slice's register only. A 4-bit right rotation of

the data part using the K-bus should leave the check symbol unchanged;

thesefore in the check slice the D-bus is selected for such operations.
. -

The contents of the D-bus are latched into a check register at the end

of each micro-cycle. Checking is overlapped with the next microcycle. The

4 generated check symbol may be subtracted by the fixup unit from the out-

put of the check slice for perforning detection lossless logical operations

in two steps as described in Section 5.

Every data transaction in the system makes use of the D-bus, and so

a single checker on the D-bus is sufficient for all data checking. Plicro-

progran constants 2re loaded into the data paths by disabling the slices'

D-bus outputs and gating the appropriate microprogram field onto the D-bus.

Opcodes are loaded into the sequencer by placing the instruction register

33

D7-4
ZZI-

. a

D7-4

D3-0

4
I r -a

I

7

I

D15-lz

Dll-8

Fig. 12 SCM data path checking.

34

(one of the scratchpads) on the D-bus and enabling an B-bit sequencer input

bus th.at is connected to the high-order bits of the D-bus. The only

limitation that arises from having only a single data path checker is in

multiplication and division. Since these operations require essentially a

,&uble precision shift at each iteration, the iteration cannot be done in

one microcycle. Some LSI data path slices have a "Q register" that makes

possible one-microcycle iterations, but a Q register in a self-checking

machine would require an additional checker. SCAMP requires two microcycles

per iteration of the multiplication loop.

There are no I/O instructions in SC&P; memory-mapped I/O similar to

a PDP-11 or H6800 is used. The I/O controller consists of a bus address

register (BAR), a bus data register (BDR), and a few control signals (NSYNC,

SSYNC, R/W). The BAR can be loaded from the D-bus and its output is the
2z -

* I/O address bus. The BDR can be loaded from the D-bus and its output can

drive the bidirectional I/O data bus. Alternatively, the I/O data bus can

drive the D-bus.

In order to simplify I/O control and to facilitate checking with the

existing checking mechanism, I/O is performed strictly under microprogram

control. For a read operation, t;>e microprogram loads an address into the

BAR and sets the read/write (R/K) bit. Then it asserts MSYNC and proceeds

with any operations that are to 52 overlapped with the read. Meanwhile

the I/O device asserts SSYNC after placing its data on the I/O data bus.

Khen'the microprogram is ready for the input data it does a conditional branch

on SSYNC. A loop counter in the sequencer (also used for multiply and divide

loops) is used to force an exit if the device does not respond within a fixed

35

.

time.. \+!rite operations proceed in a similar manner.

Although the present design allows detection of errors in loading the

EDR az$ BAR and in the assertion of control'signals, it does not detect errors

further down the I/O bus. The means of detecting I/O controller and device

errors has not yet been determined, although the methods of Usas [1976] are

applicable.

The preceding j.s meant to be only a brief overview of SCAMP's organiation.

The detailed design of the processor will be discussed in another paper

[Wakerly, 1976b]. This paper will examine the cost and performance penalties

incurred by providing complete error detection.

3 -

. -

36

9. DIACXOSIS

I-9

Self-checking processors following the design principles of the previous

sections have a number of totally self-checking checkers whose outputs can

be combined to produce a signal that indicates the presence of any detectable

error in the processor. As a minimum, this global error signal should be

used for error-logging or perhaps to halt the processor. However, it would

be more desirable for the processor to be self-diagnosing. Upon recognizing

an error signal, the processor would initiate steps to determine the source

of the failure. A trustworthy diagnostic would either give the processor
*

- a cle& bill of health (the failure was a transient) or it would isolate the

failure to a replaceable package for manual repair. There are three important

diagnostic areas for processors following our design principles: data paths,

microprogram memory, and microprogram sequencer. We discuss each of these

briefly.

If a data path failure is detected, then we can use the microprogram

memory and sequencer as tools for diagnosis. Microdiagnostics are used in

non-self-checking coz?rcial mach?lr: 2s and they have been studied in the literature

FJohnson, 1971; Cuffin, 1971; Remzmoorthy and Chang, 1972). In a non-self-

checking machine, a microdiagnostic must provide a stimulus for each fault,

observe the output, and compare the output with the expected output. In a

self-checking machine, microdiagnostics are much easier, Because of the.

37

built-in checkers and the self-testing nature of the circuits, the micro-

diagnostics need only provide a sufficient set of stimuli and monitor the

checker output. The usual problems of interdependence amoilg the units being

testgJ%and the units being used to make comparisons and decisions are eliminated.

A failure in microprogram memory is detected by the memory's error-

detecting code. Once the failure is detected, it should be isolated to

a single ROlY or microprogram data register package. Unfortunately a simple

distance-two code gives no diagnostic information, and due to the read-only

nature of ROX it is not possible to apply selective-patterns that sensitize

one ROM package at a time. A distance-3 or greater code is needed to isolate
m

ROH failures. Rather than use a wider ROX word (more check bits), it is

possible &-store a checksum one word of RON, effectively encoding the entire
. -

ROM in a distance-4 code. The checksum word should be a b-bit bytewise check

over the RO>l words, where b is th,p wxd length of the individual RON packages.

En this way, a single package failure will result in an easily identifiable

error in the corresponding byte of the checksum. However, note that the code

must be chosen carefully to detect, the failures that cause errors in all of

the words of a ROY package. For example, a simple vertical parity check will.

not detect a RO.t.1 output bit stuck-at zero.

to diagnose. If a sequencer failure occurs, then we observe a mismatch bc-

tween the outputs of the duplicated sequencers, but it is impossible without

additional information to determine which is the incorrect one. One possible

38

approacll to sequencer diagnosis is to write a microprogram that tests a

single sequencer and gives an indication of the sequencer's correctness

independent of the checI:ing hardware. For example, the program could be

exercised all of the sequencer's features and halted at aw%written so that it

certain location 0nly if all of the steps had been executed properly. Diagnosis

would consist of running this test on both sequencers and tossing out the

one that fails the test. We note that the complexity of sequencer testing

is comparable to that of microprocessors.

. -

Since all errors in a self-checking machine are detected with self-

checking checkers, there is always a chance that an error signal indicates

a failure in the checker. The diagnostic technique must take this into ac-

count. For example,f- in SCAMP it is possible for the microprogram to place

constants on the D-bus that exercise the data path checker without using the

data path slices. Another example is in sequencer testing -- if both sequencers

pass the test then it can be assu-\=.,.,d that the sequencer equality checker is

bad.

39

10. ,B+,EPAIR

It is interesting to note that a self-checking processor with the

structure of Fig. 2 has in it almost all of the hardware needed to continue

operation in a unchecked mode after a failure. If it is diagnosed that a

failure affects only a data path or microprogram memory check slice or a

checker, then obviously it is possible to ignore the checker outputs and con-

tinue correct operation. If a failure affects a data path slice that is

processing data parts, then the failed slice can be removed and replaced-w^
. a

with the check slice since it is identical. If there is a failure in one

of the duplicate microprogram sequencers, then the non-failed sequencer must

be made the one whose outputs are connected to the ROM. The only failure

that does not allow a direct swap is a ROX package failure, since the contents

of the check ROX are obviously diffe rent from the contents of the other XOX's.

However, if we know which RON pacSlage is faulty, then it can he removed and

its contents can be computed as a function of the other ROM contents and the

check ROX. This co~?u:a tion can 5s carried out by the existing checking

circuitry, as shobn in Zig. 13 for a system that uses 4-bit ROX packages and a

4-adjacent code. In practice, this example would require that the RON's be

mounted in sockets and some small jumpers would be needed for the change.

40

-failedP

;^t. -
ROM

1
4L

-

CHECK R(
ROM :

& A -

#-'4

c

(a) Before repair.

I CHECKRON

4. . .
'4

0

(b) After repair.

Fig. 13 ROM failures.

41

11. CONCLIJSION

We have described checking methods for each of the major elements of

a minicomputer-like processor. These methods can guarantee concurrent

detection of all single integrated circuit failures. The redundancy re-

quired for checking consists mainly of checkers, a duplicate microprogram

sequencer, one extra microprogram memory slice, one extra data path slice

and fixup circuitry (the complexity of the fixup circuitry is much less

than that of a data path slice). Additional costs are one or two micro-

program bits that must be provided separately for the data path slices and
3 -

the-check slice, a few microprogram bits to control the checkers and fix-

up circuitry, and a few extra microprogram words for certain checking op-

erations. For most operations no performance penalty is incurred by

checking, since the check slice is just as fast as the data path slices

and operates in parallel, and checking can be overlapped with execution.

However, a penalty is incurred in operations that require extra steps for

checking (such as two-step logic21 operations) and in arithmetic operations

that require a fisup (in SCAW the fixup takes less than l/3 microcycle).

When the design of SCAMP is completed , we will be able to discuss these factors

in detail, but it appears that the total redundancy for checking will be

somewhat less than 50% and the performance degradation will be minimal

(about 10%).

References-

Am, 1975. Am2900 I:ipdlar: Hit roproc_c_ssor Fami&, Advanced Micro- - - -
Devices, Sunnyvale, California.

Anderson, D. A., 1971. "Design of self-checking
coding techniques," Tech. Rep. R-527, Univ
Science Laboratory, Urbana, Illinois.

'1--u
Anderson, D. A., and G. Metze, 1973. "Design of

check circuits for m-out-of-n codes," IEEE

.
digital networks using
of Illinois Coordinated

totally self-checking
Trans. Comput. C-22(3):- -

263-269.

Avizienis, A., 1971. "Arithmetic codes: Cost and effectiveness studies
for application in digital systems design," IEEE Trans. Comput.
C-20(11): 1322-1331.

Avizienis, A., G. C. Giley, F. P. Mathur, D. A. Rennels, J. A. Rohr,
and D. K. Rubin, 1971. "The STAR computer: An investigation of
the theory and practice of fault-tolerant computer design," IEEE
Trans. Comput. C-20(11): 1312-1321.

Bossen, D. C., 1970. "b-Adjacent error correction,' IBM J. Res.
Develop. 14(7): 402-408.

. - Carrier, W. C., and P. R. Schneider, 1968. "Design of dynamically checked
computers," IFIP Conf. Proc. 2: 878-883, Amsterdam: North-Holland
Publishing Company.

Carter, W. C., K. A. Dukte, and 9. C. Jessep, 1971. "A simple self-testing
decoder checking circuit," IEEE Trans. Conput. C-20(11): 1413-1414.

Chang, H. Y., R. C. Dorr, and D. J. Senesa, 1973. "The design of a
microprograFzed self-checking processor of an electronic switching
system," IEEE Trans. Compu:. C-22(5): 489-500.

Cook, R. W., W. H. Sisson, T. F. Storey, and W. N. Toy, 1973. "Design of
a self-checking rzicroprogrzz! control." IEEE Trans. Conput. C-22(3):
255-262.

. . Flynn, M. J., 1975. ">Iicroprogrz-ling - Another look at internal computer
control," Proc. IEEE 63(11): 1554-1567.

Garner, H. L., 1958. "Generalized parity checking," IRE Trans. Electron.
Comput. EC-7(9): 207-213.

Guffin, R. M., 1971. "Microdiagnostics for the Standard Computer MLP-900
processor," IEEE Trans. Comput. C-20(7): 803-808.

Hnatck, E. R., 1973. A User's Handbook of Integrated Circuits, New York:
John Wiley & Sons.

43

Iloft, Pi. E. Jr., J. Sugg, and R. Yarn, 1975. Central Processor Design;--_- ~-
Using the Intel Series 3000 Computing Ele~lent~,I~pplic3tiOII f;;ote hp-1~- - - -___ _ .-I__ J
Santa Clara, Calif: Intel Corporation.

Horton, K. L., J. Englade, and G. McGee, 1975. "12L takes bipolar
integration a significant step forward," Electronics 48(3): 83-90.

IB?l, 1973. IE>! System/3 Model 15 ProcessingUnit Theory-Efaintenance
-giagram<, Form SY31-0367-1, Uhite Plains, N. Y.

Johnson, A. M., 1971. "The microdiagnostics for the IBM 360/30,"
IEEE Trans. Comput. C-20(7): 798-803.

Peterson, W. W., and M. 0. Rabin, 1959. "On codes for checking logical
operations," IBM J. Res. Develop. 3(2): 163-168.

Peterson, W. W., and E. J. Weldon, 1972. Error-Correcting Codes,
Cambridge, MIT Press.

Ramamoorthy, C. V. and L. C. Chang, 1972. "System modeling and testing proced-
ures for microdiagnostics," IEEE Trans. Comput. C-21(11): 1169-1182,

Rao, T. R. N., and P. Monteiro, 1972. "A residue checker for arithmetic
and logical operations," Dig. 1972 Int'l. Symp. Fault-Tolerant
Computing, IEEE pub. 73CK0772-4C, 79-84.

,* ̂
Rehdy, S. M., 1974. "A note on self-checking checkers," IEEE Trans. Comput.

c-23(10): llOf)--1102.

Sellars, F. F., M. Y. Hsaio, and L. W. Bearnson, 1968. Error Detecting
1 Logic for Digital Computers, New York: McGraw-Hill.

Toy, W. N., 1971. "Molular LSI control logic design with error detection,"
IEEE Trans. Conput. C-20(2): 161-166.

Usas, A. M., 1975. "X totally self-checking checker design for the
detection of errors in periodic signals," IEEE Trans. Conput.- A--
C-24(5): 483-488.

Usas, A. M., 1976. "Error manaz:eznt in digital computer input/output
systems," Ph.D. thesis, Sxnford Cniversity, Stanford, California.

Wakerly, J. F.? 1973. "Low-cost error detection techniques for ~~1211
computers," Ph. D. Dissertation, Department of Electrical Engineering,
Digital Systems Taboratory, Stanford University, Stanford, CA.

Wakcrly, J. F., 1974. "Partially self-checking circuits and their use
in performing logical operations," IEEE Trans. Comput. C-23(7):
658-666.

Wakerly, J. I'., 1975. "Checked binary addition using parity prediction
and cllccksum codes , ” Tcclinical Note No.39, Digital Systems Labora-
tory, Stanford University, Stanford, California.

44

\hkerly, J. F., C. R. Hollander, D. Davies, V. Coleman, K. Rallapalli,
J. R. Flick, and C. Ghest, 1975. "LSI microprogram sequencers,"
Proc. Eighth Annual Workshop on Microprograrrrming, IEEE publ,
CH1053-8C, Session 4, pp. 46-68.

-a IJakerly, J. F., 1976a. Error-Detecting Codes, Self-Checking Circuits, and
Applications. American Elsevier, New York, New York (in preparation).

Wakerly, J. F., 1976b. "SCAM? - A self-checking and maintainable
processor," in preparation.

,- ^
. -

45

I
I.

