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ABSTRACT

A closed-form expression is derived for the memory bandwidth obtained
when N processors are permitted to generate requests to M memory modules.
Use of generating functions is made, in a rather unusual fashion, to obtain
this expression. The one approximation involved is shown to result in only
a very small error-- and that, too, only for small values of M and N. This
expression, which is asymptotically exact, is shown to be more accurate than
existing closed form approximations. Lastly, a family of asymptotically
exact solutions are presented which are easier to evaluate than is the first
one. Although these expressions are less accurate than the previously
derived closed-form solution, they are, nevertheless, better than existing
solutions. This family of solutions is shown to include a couple of existing
solutions.

The work described herein was supported in part by the U. S. Energy Research
and Development Administration under contract # E(O4-3) 326PA.39.





1. INTRODUCTION

Interleaved memories are employed in most medium and large scale computer
systems. More recently, a certain amount of interest has been shown in multi-
processor configurations served by a comTlOn interleaved memory, an example being
the C.mnp [6]. It is of practical interest to have available analytic tools
capable of predicting the performance of such systems.

A model of such a system was discussed by Skinner and Asher [4]. A slightly
simpler model considered by Strecker [5] will be used in this study. The model
makes the following assumptions:

1) The system consists of N identical processors and M identical memory
modules interconnected so that any processor is able to make a request
to any memory.

2) The system operates synchronously. All the processors generate their
requests at the beginning of a memory cycle. Each memory, which has
at least one request outstanding, services exactly one of those during
the cycle, at the end of which every processor whose request was
serviced during the cycle is released to make a new request. Processors
which were not serviced remain queued at the appropriate module until
serviced.

3) The system is memory limited, i.e., a processor which has been serviced
during one cycle imnediately submits a new request the very next cycle.

4) Processors make requests with equal probability to all memory modules.

5) An enqueued  processor cannot generate a new request until the previous
one has been serviced.

In [5] an approximate solution was found for the bandwidth observed in such a
model. Bhandarkar,[2],  describes the exact analysis of this model by constructing  a
Markov chain and solving for the steady state probabilities. Though this result
is an exact solution, it is computationally expensive since the analysis has to
be repeated for every pair M, N. Baskett and Smith, [1], have obtained two
asymptotically exact solutions to the same model. In addition, they give some
evidence to show that this abstract model produces results which agree fairly
well with those observed in practice.
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As in [l] and [Z] we shall represent the state of the system by a Markov
chain. Since the processors are identical, the state of the system is fully
described by an M-tuple which lists the number of processors queued or in service
at each memory module. The set of all feasible states constitutes a Markov chain
since the next state depends only on the current state. Furthermore, this Markov
chain is aperiodic since it is possible to make a transition from a state to itself,
and it is irreducible since it is possible to reach one state from another one
in a finite number of transitions. Consequently, the Markov chain has a unique
steady state solution. Our approach shall be to represent this steady state
solution by a generating function, which we shall then use to calculate the steady
state probabilities of interest. The advantage of this technique derives from
the fact that it is unnecessary to enumerate all the states. Hence it is
possible to obtain a solution to the model which is not specific to a particular
choice of the pair M, N.
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2. THE GENERATING FUNCTION TECHNIQUE

In this section we shall illustrate with a trivial example the technique
used in the next section to solve the bandwidth problem.

Assume we have an M/D/l server whose service time is 1 cycle. The arrival
process constitutes a sequence of Bernoulli trials, i.e., an arrival occurs at
the beginning of a cycle with probability p and does not occur with probability

(1-P). Let the probability during cycle t of there being n customers waiting
or receiving service be P(n;t). We can then represent the state at t by the
generating function,

H(x;t) =g P(n;t)x"
n=O

Similarly, the generating function which represents the number of arriving customers
at the beginning of a cycle is,

Q(x) = (1-P)+PX

At the end of cycle t, the server completes the service of a customer and releases
it if the server was not idle. Accordingly, if we represent the state of the
server at the end of the cycle by H(x;t+) then we have

H(x;t+) = P(O;t) +g P(n;t)x"-'
n=l

= H(x;t) - H(O;t) + H(O;t) = 1 H(x;t) + (1-l)H(O;t)
X X X

since H(O;t) = P(O;t) .

Consequently, H(x;t+l) is given by

H(x;t+l) = Q(x)H(x;t+),since the arrivals are independent of the
state

= Q(x)[lH(x;t) + (l-1) W;t)]
X X

In steady state we have H(x;t+l) = H(x;t) and, therefore,

H(x) = 1 H(x)Q(x) + Wl)H(O)Q(x)
x x

therefore,

and

where H(x) represents the steady state value of H(x;t).

H(+ Q(x)] = (1-l)H(O)Q(x)
X z

Htx)
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NOW H(1) -2 P(n) = 1, Q(1) = (l-p) + p = 1
n=O

(1)

and H(0) = P(0) = probability the server is idle.

We can solve for H(O) by putting x=1. However, since both numerator and the
denominator on the right hand side go to zero we must apply L'Hospital's rule.
Doing so, we get,

H(o) = b 1 x=1 Hm
since Q'(1) = p we have

H(O) = l+(;jyl-p)  . 1 = 1-p

Therefore, the probability that the server is idle = (l-p) and

This trivial result demonstrates the manner in which we can employ generating
functions to solve Markov chains. The method used in the next section relies
essentially on the same technique.
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3. A RECURRENCE RELATION

In this section we shall use the generating function technique to obtain a
recurrence relation. As before, the steady state distribution of the Markov
chain corresponding to the N-processor, M-memory model is represented by a
generating function, but one involving M variables. We have

M
H(x,,...., x#) =c p(sj) n xini

jcs i=l

where d is the index set into the states of the Markov chain, S. is the j-th3
state of the Markov chain, P(Sj) is the steady probability of being in state S.

J
n i is the number of processors queued up on the i-th memory module when the system
is in state S.,

3
M

and c n. = N
i=l 1

At the end of each cycle, every memory which was not idle will release a
processor, i.e., every ni 2 1 will be decremented by 1. However, each released
processor queues up during the next cycle with equal probability on one of the
memory modules. The generating function for a released processor is given by

M
Q(x,. . .9 XM) =C 1 ‘i

i=l M

It is convenient to define an operator Ri which performs the above operations
on module i, viz,

H(xl,...,xM) = H(x,...,xM)
Xi’0

+ J-U, 3.. Sx,) - H(x, 3.. 9x,) l Q(⌧,,..☺,)

= Q(x,s..9~M) H(x~,-x~) + (I-Q(x,..-.x,)) (ui) H(x19..~xM)

'i x.
1

where Ui is defined as an operator such that

Hb , 9. l  ,⌧,) =  W, 9.  l  9⌧,)

Xi’0
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Accordingly, the generating function at the end of a cycle is given by

H(X,~**~XM)  = Q(x,,..,x~)  + 1-Q(x,,..,x~) U.1 H(⌧� 9 l l ,⌧,)

x .
1 xf

denotes the concatenation of M operators. But since the Markov

chain is in steady state by assumption, we have

H(x,'**~XM)  = Q(x ,..,XM) +1 1-Q(x ,..,X1 Hb , 3 l l S⌧,)

x.
1 'i

We can obtain an expression involving the generating function for the steady state
marginal distribution of the queue size of module 1 by putting x2 = x3 = . . . = xM = 1.

Noting that

Q(x,,l,..,l)  = x, + M-l
( )

= V(x,) by definition
M M

and that

{ >'i Hh,,l,..., 1) will have a 0 in the i-th position

we get
M

H(x,,l,..,l)  = Vx,) +
(

'('1 )+(l-v(xl 1) 'i

x1

where the operator Ui, i # 1, now has the effect of replacing the 1 in the i-th
posit ion by a 0. However, by the symmetry  of the model, the probability of a
certa in configuration of queue sizes is the same irrespective of the module that
each of those queues is associated with. Consequently, H(xl ,...,x~) is symmetric
in all the Xi’s’ In particular,

x Hb,,‘,..,‘)

H(xl,l,l,..,l) = 1) fori#l,j#l,i#j.

It is, therefore, of no consequence which position i, i # 1 has the zero.
All that matters is the total number of positions which contain a zero. We can
also replace the operator Ui, i # 1 by the single operator U, and the operator U k

may be defined as one which replaces k l's by 0's.
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Lastly, if we define GM(Xl;k) to mean H(x,,l,...,l) with k l's replaced by
O's and where the subscript M refers to the dimensionality of H(xl,...,xM), we
have

UkGM(xl;O) = GM(x,;k) if k < M

therefore, GM(xl;O) = H(x,,l...,l)
M-l

=
0

v + 1-v u1 I[ V+(l-v)uJ > GM(x, ;o)
x1 x1 J

where V z V(x,)

M-l
=

I[
v+ (1-Q q

IC
c

x1 x1 i=O
V"-'-i(l-V)iUi(M;')

= v + (1-v) u,x1 x1

]} 5’ (“i’) V”-‘-i(i-V)i GM(X
i=O

therefore,
M-' M-1

GM(x,;O)=M~~Mi')VM-i(i-V)iGM(x,;i) +x ( i )(I-V )V"-
i=O

x1
i=O x1

, ii>

NOW, GM(O;i) = GM(l;i+l) , i # M-l, by the definition of GM(.;.)

and GM(O;M-1) = 0 since the probability of the queue size at all the

modules being 0 simultaneously is 0 for N>O.
M-l M-l

( 1therefore, c I i
i=O

=f?(“i’) (1-v )v”-‘-‘(bvjbM(l ;i+l)
x1

M-l
=qj, (1-v N

x1

M-i(l_V)i-lGM(l;i)
=

therefore,
GM(x,;o) =vM GM(X1;o)  t"g ("T1)vM-i(l-V)iGM(xl;i)

x1 i=l x1
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M-l
t~(~~~)V"-'(i-V)'-'(l-~  )G&l;i)
i=l -

x1*

Replacing x, by x and multiplying on both sides by x we get

xGM(X;O) - V"GM(x;O)=~(M$M-i(l-V)iGM(x;i)  -
i=O

therefore

"f-' M-1 M-i
-t-c (i-l)V (l-V)i-'(x-V)G,,,(l;i)
i-l

M-' M-1 M-' M-1
GM(x;O) =C ( i ) V"-'(1-V)' GM(x;i)+F,(i-l)  V"-'(l-V)'-'(x-V) GM(l ii)

(x-V")
=

i-l (x-V") (2)

We now make the one approximation in the entire analysis.

GM(x;j) is the conditional marginal distribution of one queue given that j
GEl(l;jJ

other queues are empty. To see that this is so we first observe that

M un i H(x, ,... ,xM), j <M, i.e.,
i=M-jtl >

H(x, ,. . 3 xM) with the last j xi’s put t0 0, is the generating function representing

those states for which the queue sizes of modules (M-j+l) through M are 0. And
M
n

i=M-jtl Ui)H(xl.,XM)
I

is the total probability of being
x1=. ."XM'l

in ;ne of these states, and it is identical to GM(l;j). Therefore,

n
i=M-jtl 'i 1

Hbl 9.0. ,x,) = the conditional generating function for

GM{1 ;j) modules 1 through M-j given that modules
M-j+1 through M are idle (0 queue size)

And if We put x*=...=x#,j=l  We get

GM(xl ;j) = the conditional marginal generating function for module 1 given
q-m-r that j other modules are idle.

The approximation used is to equate this conditional marginal generating
function to the marginal generating function obtained if there were only
M-j modules (N being held constant), i.e. GM(x;j) = G

M-j(';O)  9 j<M

-q-m
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the rationale being that since we are given that j modules are idle, they might
as well have not been present at all! From the above equation we get the

relation

GM(x;j) =GMwj(X;o) GM(l;j) 9 j < M (3)

If in Equation (2) we put x=1, we shall obtain the recurrence relation
we desire. On the left hand side we have

GM(l;Oj = H(l,...,l) = 1 (4)

On the right hand side, both the numerator and the denominator go to zero as
x approaches 1. By applying L'Hospital's  rule twice and then putting x=1 we
get the following results:

As x+1,

M-l
c(";') v"-'(1-V)' GM-i (x;o)GM(l ii) +
i=l

(x-V")

2(M-1) GM_1(1;O)GM(l;l)  + 2G/M-1(l;O)GM(l;l)  - (Mi2) GM_2(1;O)GM(1;2)
M

But GM(1;2) = GM(O;l) by the definition of GM(.;.)

= GM(l ;')Gn-, (0 ;O) by (3)

and GM-l(l;O) = G~-2(1;0) = 1 by (4)

and so the above e pression, in the limit, reduces to

2JM-1) + 2G;-,(l;O) - M-2 G
M

M M-,(&o)] $hl) (5)

Similarly, as x41

v~-'(~-\~-'(x-v) GM(l;i) + -2(M-1) + 2(M~ll) GM-I(O;O)]GM(l;l)
i

(6)(x-V”) M

Adding up Expressions (5) and (6) we get

lim
X-U

GMh;O) = GM(l;O) = 1 = G#(1;~)(GM-,(o;o)+2G~_,(1;o))

therefore, GM(l;l) = 1
$,, , (0;0)+2G;-, (1 30)
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However, GM(l;l) = GM(O;O) by

and GM-, (1;o) = average queue

there are (M-l) modules and N
= N

M-l
therefore,

the definition of GM(.;.)

size at any one of the (M-l) modules when

processors in the system

GH(O;O) = 1
GM-1( M-l0 ;O)+ZN

This is the desired recurrence relation in M for GM(O;O) which is the probability
that a module will be idle in steady state. To make the dependence on N more
explicit we define

F(M,N) = GM(O;O) = probability that a memory module is idle in an N-processor,
M-memory system

and T(M,N) = M(l-F(M,N)) = the average memory bandwidth in an N-processor,
M-memory system.

Since F(M-l,N) = 1 - T(M-l,N)
M-l

and F(M,N) = 1
Fo+ZN

M-l
we have T(M,N) = M(l-F(M,N)) = M 1 9 (7)

l-T(M-l,N) + 2N
M-l M-l 1

which is a recurrence relation for T(M,N) in M. Knowing that T(l,N) = 1 for all
N, we can recursively calculate T(M,N) for any M,N. Table 1 lists the values so
computed and Table 2 displays the percentage errors of these results relative to
the correct results obtained by an exact solution of the Markov chain as documented
in [Z]. The agreement is very good.

An examination of Table 1 would lead one to suspect that T(M,N) is symmetric
in M and N. To prove this we shall show that T(M,N) also satisfies the following
recurrence relation,

1
l-T(M,N-1) + 2M

- 1N-l N-l

(8)

We shall do so by'two-dimensional induction. Assume that relation (8) is true
for all N> 1 , 1 <MC m and for l<N <n, M=m. We shall then show that- - - -
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T(m,n+l) = (n+l) 1
1-T(m,n) - 2m

n -ii 1

By (7) we have

T(m,n+l) = m I
1-T(m-l,n+l) + 2Jn+l)

m-l m-l I

By the above assumptions and by (8) we have

T(m-l,n+l)  = (n+l) I
1-T(m-l,n) + 2(m-11

n n -1
and again by (7) we have

I
1-T(m-1,n) + 2n

m-l m-l 1
by rewriting which we get

(9)

(10)

T(m-1,n) = (m-l) 1 + 2n - 1m-l *&J (11)
m

Substituting for T(m-l,n+l) in (9) by using (10) and for T(m-1,n) in the
resulting expression by using (11) and after some tedious simplification we obtain

T(m,n+l) = (n+l) 1 - 1
1-T(m,n) + 2m

n n

which proves the induction step.

The basis step is as follows -- by definition, T(O,N)=T(M,O)=T(O,O)=O.
Therefore,

N-l )
TN-II-T(l,&,)+2M J

= 1 for all N.

and T(W) = 1 7
[ - * ]= ' for a" M

irrespective of the value that T(M,-0) assumes.

Both these above results are correct and, therefore, the basis step is valid.

Since the recurrence relations in M and in N are duals and since the boundary
conditions for both recursions are identical, T(a,b) when obtained by one recurrence
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rel
rel

ation must necessa rily be indentical with T(b,a) obtained by the other recurrence

T(O) = Tb,a) _ _a>O, b>O

and, therefore, T(M,N) is symmetric in M and N.
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4. CLOSED FORM SOLUTION

Using the recurrence relation in M, Equation (7), we can obtain expressions
for the bandwidth obtained for a particular value of M and as a function of N.

T(l,N) = 1

1

I

= 4N-2
l- T(l,N) + 2N -2N

1 -i

Similarly T(3,N) = 12N2-12N+6
4N2+2

T(4,N) = 32N3-48N2+64N-24
8N3+1 6N

T&N) = 80N4-160N3+400N2-320N+l20
16N +80N2+244

We can use these expressions to make certain observations which can guide us
in our quest for the closed form solution. Firstly, we are led to the conjecture
that T(M,N) is the ratio of two (M-l)-th order polynomials in N. The closed form
solution must, therefore, contain a function which makes the coefficient of higher
powers of N go to zero. A likely candidate for T(M,N) is then given by

a0
T(M,N) = ~("~')(polynomial  of order i in N)

i=O_ -
2 (“;lj ( another polynomial of order i in N)
i=O

For QM, ("i') = 0 and, therefore, both the numerator polynomial and the
denominator polynomial will be of order (M-l). However, we know that T(M,N) is
symmetric in M and N and also that (NT') is an i-th order polynomial in N. It
is tempting to

T(M,N) =

look for a soluti
co

on of the form

-13-



If we attempt to write A(M,N) in this form for M = 1,...,5 we get

A(1 ,N) = ’ c,“, (“,‘,

A(2,N) =

A(3,N) = 6 (;) (",') + 12

A(W) =24 (;) (N,‘) + 48 (;)(N;‘)+  96 (;) (N;‘) + 192 (;) (N;‘)

A(5,N) =120(;)(N,') +240(~)(N;1)t480(~)(N;1~  + 96C$;)(N;') + 1920

Noting that the coefficients are each twice the previous one and that the f
one is M!, we conjecture that

A(M,N) = M! 5 2i c"f') cNf')
i=O

By a similar procedure we are led to the conjecture that

B(M,N) = M! 2 zi (M;') (N;')
i=O (it])

Accordingly, T(M,N) is given by

T(M,N) = 2 2i (M;') tN;')
i=O

We shall now prove that this expression satisfies the recurrence relation of F(M,N)

F(M,N) = 1
- A T(M9N) = '

- c 2i (M;') (N;')

MC i$ (M;') (N;')

where the limits of summation are assumed to be from 0 to 00 unless otherwise
stated.
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therefore, F(M,N) = 1 - C 2i ("f'j cN7')

C 2i (iFI) (Ni')

but ii~l! = (7;;) + CM;') , refer to [3],

therefore, F(M,N) =

(12)

('3)

N o w , x2+1 (“f2)  iNi’) = C 2i (:I:)  (!$ =c2i (7::)  (!fj)

i>l-

since

therefore, F(M,N) =

= 0

again,
C2i (7$(r) = x $(3(3 = C$+’ c"i2) 6%

i>l

= 2 C 2i(Mi2) 69
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therefore, F(M,N) =

therefore, F(M,N) =

= 1
2NF(M-1, N) + jj-q-

by (13) and (12)

therefore, our solution satisfies the recurrence relation.

Also, T(l,N) = 2O (001 (",'I = 1 for all N

Then, since the solution is correct for M=l and since it satisfies the recurrence
relation, it must be the closed form solution that we are looking for.

Table 1 tabulates T(M,N) for M and N ranging from 1 through 8. Table 2
tabulates the error in T(M,N) when compared with the exact values obtained by
the solution of the Markov chain in the conventional manner. These exact values
have been tabulated in [2]. It may be observed that the errors, expressed as
percentages are extremely small indeed, thereby confirming that our approximation
was a good one.
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5. ASYMPTOTIC EXPRESSIONS

The closed form solution, though very accurate, has one drawback in that
the computation involved in evaluating it becomes extremely large as M and N
increase. Thi s is the result of having to evaluate a number of factorials.
Consequently, it is desirable to seek approximations which are less burdensome
to evaluate. Of particular interest are asymptotically exact approximations,
i.e., expressi ons such that the relative error becomes vanishingly small for
large M and N, since this is the region in which evaluation of the closed form
solution is troublesome.

Simple Asymptotic Expressions

The asymptotic approximations obtained here, all derive from the basic
recurrence relation. We have

F(M,N) = 1

M-l

Now, when M is extremely large, the addition of one more memory module may be
expected to have a negligible effect on the idle fraction of each module, i.e.,

F(M) y F(M-1, N) for large M

Also, 2N e 2N
M-l M

for large M

we can therefore rewrite the recurrence relation as

F(M,N) = 1
F(M,N) + 2N

M
this leades to the quadratic equation

(14)

F2(M,N) + + F(M,N) - 1 = 0

which has the solution

F(M,N) = - # + 2
J rj-j +l

T(M,N) = M(l-F(M,N))  = M+N -

the other solution being unacceptable since T(M,N) cannot be greater than M or N.
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The derivation of this result relied on M being very large with no
assumptions about the value of N. However, since the expression is symmetric
in N and M and since the closed form solution is symmetric too, we see that the
simple asymptotic solution is equally good for large N as for large M. In other
words, the simple asymptotic solution is asymptotically exact when either M or N
or both increase. Unfortunately, this solution leads to relatively large percentage
errors when both M and N are small and in the range of practical interest. This
simple asymptotic solution has been obtained using a different approach in [l].

An Improved Asymptotic Solution

We shall now proceed to obtain a family of asymptotic expressions. We
shall see that this family includes an asymptotic solution reported in [l].
However, this is not amongst the better solutions belonging to this family.

Our approach shall be, basically, to perturb Equation (14) in such a
fashion as to improve its accuracy for small values of M and N without affecting
its asymptotic behavior. By adjusting this perturbation, we can "tune" the
behavior of the asymptotic solution for small M and N.

For the remainder of this section, for the purposes of notational convenience,
we shall abbreviate F(M,N) to F.

Let us consider equations of the form

F =
F:b

(15)

where c =

and b = 2N

1 1where 0 M9 fi( 1 represents a polynomial such that every term in that has
a denominator which consists of a power of M of order greater than or equal to 1
and/or a power of N of order greater than or equal to 1, e.g., 1, 1, 1 , 1 , etc.

M N 6'iN M2N

It is clear then, that as M,N -+ 00, c + 1, b + 2N
M

and Equation (15) + (14). Accordingly, the asymptotic behavior of the solution is
unchanged. However, the behavior at the low end is influenced by our choice of
c and b.
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Clearly, we can get an infinite number of solutions depending on our
choice of c and b. We shall restrict ourselves to a set of solutions which
are symmetric in M and N since this is the case for the closed form solution.

Since F =
F:b

we have, F2+bF-c=O

therefore, F = -b -ViTii
2

and T = M(l-F)

T will be symmetric if both

2+Mc are symmetric

therefore, we have that b must be of the form

b = 2N + 2x + 2 Q,
M M  Fi

where Q, is a polynomial in 1 of order greater than 0.
MN

Consequently, for the part under the square root sign to be symmetric we
require c to be of the form

c = l+$+;.Q
'1

+ c+l- Q,
M2 M2

where Q2, too, is a polynomial in 1 of order greater than 0.
MN

We then have as the template for our symptotic solutions the following:

T =M+N+x+Q,- 2 -M t N't 2x(MtN) t x + Z + 2(MtN) Q,t 2xQ,t Q12+ Q,

The family of solutions which we derive here will be the subset obtained by
taking Q, and Q, to be identically equal to 0. Therefore,

\
T = M + N + x - \ M2t N2t 2x(M+N) t x 2t Z

-19-



and the quadratic equation in F which gives rise to this is

F* + 2N + 2x
(

= 0
M M

which can be written in the form

- 1 Z+ F2t2N F- 1 =Owax z c M ) (16)

In this form, the equation is a linear equation in x and Z. We can solve
for x and Z if we have two such simultaneous equations. We obtain these by
choosing two pairs of M,N points and substituting the values of M,N and the correct
value of F(M,N) into (16). The choice of the two points is arbitrary. However,
the choice of M = N = 1 is rather beneficial since this causes T(M,N) to be
correct for M = 1 (for all N) and for N = 1 (for all M). If we do so we obtain
the relation

z = - (2x + 1)

Our final asymptotic solution now has x as a parameter. It was found that
a value of about -0.6374, corresponding to the choice of M = N = 4 as the second
point, gave about the best results. Tables 3 and 4 display the results obtained
using this improved asymptotic expression and the attendent error respectively.
In Tables 5 and 6 we compare the performance of the closed form solution, our
improved asymptotic solution, the simple asymptotic expression and another
asymptotic solution termed the "Binomial Approximation", reported in [1] along
the line N = M. It is of interest to note that the Binomial Approximation of [l]
though obtained by other means, corresponds to the choice of x = -0.5. In the
Tables 7 and 8 we compare the performance of the improved asymptotic solution for
different values of x along the line M = N.

The asymptotic solution corresponding to x = -0.6374 is

T(M) = M + N -0.6374 - (M+N)2 -1.2748(M+N) -2MN +).6811

This is roughly the optimal asymptotic solution under the constraints that Ql and
Q, be identically zero. If this constraint is removed we can obtain very much
more accurate approximations. Another alternative could be to remove the constraint
that the solution be symmetric, and obtain a solution which would be very accurate
for, say, M > N.- By taking the dual solution we would also have an accurate
solution for M < N.-

-2o-



6. CONCLUSION

We have employed generating functions in a somewhat unusual manner to
obtain an "almost exact" closed form solution to the problem of evaluating
the memory bandwidth obtained in an often used model of an N-processor,
M-memory computer system. This solution is:

a0

. M-l N-l
T(M,N) = I=() " i i

I

Qo
c

M-l N-l
Pi i i

i=O(i+l

We have also obtained a family of asymptotically exact approximations to the
above solution which though somewhat less accurate are computationally preferable.
One of the better approximations belonging to this family is:

T(M,N) = M + N -0.6374 -\(M+N)2 - l.Z748(M+N) -2MN +0.6811

Both these expressions have been shown to be more accurate than existing
solutions.
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Table 7 Influence of the Parameter x on the Improved Asymptotic Solution

M=N 1 2 3 4 5 6 7 8

x=-O.7500 1.0000 1.5000 2.0779 2.6606 3.2448 3.8296 4.4147 5.0000

x=-O.6579 1.0000 1.4752 2.0476 2.6281 3.2110 3.7950 4.3795 4.9644

x=-O.6374 1.0000 1.4700 2.0411 2.6210 3.2036 3.7874 4.3718 4.9566

x=-O.6262 1.0000 1.4672 2.0376 2.6172 3.1996 3.7833 4.3676 4.9524

Table 8 Influence of the Parameter x on the Percentage Error of the Improved
Asymptotic Solution

M=N 1 2 3 4 5 6 7 8

x=-o.7500 0 0 1.478 1.511 1.412 1.288 1.171 1.069
x=-O.6579 0 -1.655 0 0.269 0.356 0.372 0.365 0.351
x=-O.6374 0 -1.999 -0.317 0 0.126 0.172 0.189 0.193
x=-O.6262 0 -2.184 -0.488 -0.146 0 0.063 0.092 0.106



Table 1 Closed Form Solution

tiM 1 2 3 4 5 6 7 8

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.500 1.6667 1.7500 1.8000 1.8333 1.8571 1.875
3 1.0000 1.6667 2.0526 2.2727 2.4118 2.5068 2.5758 2.6279
4 1.0000 1.7500 2.2727 2.625 2.8667 3.0395 3.1681 3.2670
5 1.f ,OO 1.800 2.4118 2.8667 32036 3.4569 3.6516 3.8048
6 1JOOO 1.8333 2.5068 3.0395 3.4569 3.7849 4.0454 4.2553
7 1.0000 1.8571 2.5758 3.1681 3.6516 4.0454 4.3675 4.6331
8 1.0000 1.875 2.6279 3.2670 3.8048 4.2553 4.6331 4.9510

Table 2 Percentage Error of Closed Form Solution

tiM 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0.244 0.155 0.094 0.058 0.037 0.027
4 0 0 0.116 0.153 0.128 0.098 0.075 0.057
5 0 0 0.065 0.118 0.125 0.112 0.092 0.075
6 0 0 0.038 0.082 0.103 0.105 0.097 0.083
7 0 0 0.026 0.056 0.081 0.089 0.090 0.084
8 0 0 0.019 0.041 0.062 0.076 0.080 0.080



Table 3 Improved Asymptotic Solution

NV
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1 .oooo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.4700 1.6594 1.7526 1.8066 1.8415 1.8658 1.8838
1.0000 1.6594 2.0411 2.269 2.4146 2.5138 2.5852 2.6387
1.0000 1.7526 2.2690 2.621 2.8664 3.0433 3.1752 3.2766
1.0000 1.8066 2.4146 2.8664 3.2036 3.4591 3.6565 3.8122
1.0000 1.8415 2.5138 3.0433 3.4591 3.7874 4.0494 4.2613
1.0000 1.8658 2.5852 3.1752 3.6565 4.0494 4.3718 4.6385
1 .oooo 1.8838 2.6387 3.2766 3.8122 4.2613 4.6385 4.9566

Table 4

N\M
1
2
3
4
5
6
7
8

Percentage Error of Improved Asymptotic Solution
1 2 3 4 5 6 7 8

0 0 0 0 0 0 0 0
0 -1.999 -0.436 0.147 0.365 0.447 0.471 0.467
0 -0.436 -0.317 -0.008 0.212 0.337 0.404 0.439
0 0.147 -0.048 0 0.120 0.225 0.301 0.349
0 0.365 0.183 0.109 0.126 0.177 0.228 0.272
0 0.447 0.317 0.209 0.168 0.172 0.196 0.223
0 0.471 0.392 0.282 0.217 0.189 0.189 0.200
0 0.467 0.431 0.334 0.259 0.216 0.196 0.193


