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ABSTRACT

The Stanford Emulation Laboratory is designed to
support general research in the area of emulation.
Central to the laboratory is a universal host
machine, the EMMY, which has been designed
specifically to be an unbiased, yet efficient host
for a wide range of target machine architectures.
Microstore in the EMMY is dynamically
microprogrammable and thus is used as the primary
data storage resource of the emulator. Other
laboratory equipment includes a reconfigurable ma in
memory system and an independent control processor
to monitor emulation experiments. Laboratory
software, including two microassemblers, is briefly
described.

Three laboratory applications are described: (1) A
conventional target machine emulation (a s y s t e m
36O)r (2) 'microscopic' examination of emulated
target machine I-streams, and (3) Direct execution
of a high level language (Fortran II).

Keywords: Emulation, Universal Host Machine, Dynamic
G.croprogramminq, Directly Executed Languages,
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1. In t roduc t i on

In recent  years attention in microprogramming has been on the
production environment. Machine designers have viewed
microprogramming as a means of easing implementation problems and
providini a  l i m i t e d  a m o u n t  o f  f l e x i b i l i t y  t o  accomodate
compatability requ i rements among various machines in a
m a n u f a c t u r e r ’s  l i n e . Microprogrammable machines designed for  this
e n v i r o n m e n t  a r e  t h u s  f a i r l y  s p e c i f i c  t o  t h e i r  t a s k  a n d  u s u a l l y
e x h i b i t  l i t t l e  f l e x i b i l i t y  w i t h  r e s p e c t  t o  t h e  f u l l  r a n g e  o f
mach ine  arch i tec tures .

In  th i s  paper  microprogramming  i s  examined  in  a  d i f f e rent
environment, that  o f  r esearch  and  educat i on . C e n t r a l  t o  t h i s  i s  a
‘u n i v e r s a l  h o s t  m a c h i n e ’,  t h a t  i s , a  machine  which  i s  capable o f
e f f i c i e n t l y  e m u l a t i n g  a  w i d e  v a r i e t y  o f  ‘t a r g e t ’ m a c h i n e
o r g a n i z a t i o n s . By taking advantage of  fast  read write  memory,  the
h o s t  m a c h i n e  p r o v i d e s  t h e  u s e r  w i t h  a n  a r c h i t e c t r u a l l y  ‘s o f t ’
sys tem which  he  may  s t ruc ture  v ia  microprogramming  to  h i s  spec i f i c
requirements. In  the  f o l l owing  we  d i s cuss  the  Stan ford  hos t
machine, EMMY, i t s  s o f t w a r e  t o o l s , a n d  t h e  c u r r e n t  s t a t u s  o f
severa l  typ i ca l  emula t i on  exper iments .

1.1 The Research and Educational  Environment

The  pr inc ipa l  env i ronment  i s  an  exper imenta l  one ,  emphas iz ing
s t u d i e s  o n :

1 )  E m u l a t i o n  o f  n o v e l ,  o b s o l e t e  a n d  ‘p a p e r ’ m a c h i n e s  f o r  t h e
rurpose o f  e x p o s i t i o n ,

2 )  Ana lys i s  o f  a r ch i tec tures  v ia  emulat i on  and  dynamic
acqu is i t i on  o f  per f o rmance  data ,  and

3 )  D e v e l o p m e n t  o f  s o f t  a r c h i t e c t u r e s  w h i c h  e f f i c i e n t l y  r e f l e c t
a r t i f a c t s  o f  h i g h e r  l e v e l  l a n g u a g e s  i n  t h e i r  u s e  o f  h a r d w a r e
resources .

‘Gz!ith r e s p e c t  t o  t h e  f i r s t  a r e a , the  laboratory  w i l l  make  ava i lab le
a  wide  var i e ty  o f  mach ines . I n  a d d i t i o n  t o  p r e s e n t i n g  r e a l  b u t
outdated  mach ines  ( e . g . IBM 1401)  the emulation laboratory
p r o v i d e s  a n  e f f e c t i v e  r e a l i z a t i o n  o f  ‘p a p e r ’ m a c h i n e s ,  s u c h  a s
FIX, o r  t h e  u s e r s ’ own c rea t i ons . Aside from economic
c o n s i d e r a t i o n s , t h e  l a b o r a t o r y  s t a n d a r d i z e s  a c c e s s  t o  t h e s e
machines and thus al lows the user  to  be more concerned with basic
arch i te c tura l  Eeatures  o f  the  targe t  mach ine  ra ther  than
bookkeep ing  de ta i l s . In this  environment the ease with which
laboratory hardware and software can be used is  a  more important
cons idera t i on  than  speed .
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A r c h i t e c t u r a l  a n a l y s i s  i m p l i e s  d i r e c t  i n s i g h t  i n t o  t h e
i n s t r u c t i o n  c h a r a c t e r i s t i c s  o f  t a r g e t  m a c h i n e  a r c h i t e c t u r e s .
I n i t i a l l y , the  exper imenter  cons t ruc t s  an  emula tor  f o r  a  targe t
m a c h i n e  o f  i n t e r e s t . T h i s  e m u l a t o r  i s  t h e n  b e  m o d i f i e d  t o  c o l l e c t
s t a t i s t i c s  r e l a t i n g  t o  t h e  t a r g e t  m a c h i n e ’s  p e r f o r m a n c e  d u r i n g
emulated target  machine execution. We expect  this  mode of
ins t ruc t i on  s t ream examinat i on  t o  be  more  e f f e c t i ve  and  l e ss
c o s t l y  t h a n  c u r r e n t  s o f t w a r e  ( i . e . t r a c e  t a p e  e v a l u a t i o n s )  o r
hardware monitoring techniques. For  th i s  app l i ca t i on  we  are
particularaly i n t e r e s t e d  i n  a f f o r d i n g  t h e  e x p e r i m e n t e r  e f f i c i e n t
emulator  representation and respec tab le  targe t  mach ine
performance.

A n o t h e r  e x p e r i m e n t a l  s i t u a t i o n  i s  t h a t  o f  d e v e l o p i n g ‘s o f t ’
mach ine  arch i tec tures . In  par t i cu lar  i t  has  been  demonstra ted
t h a t  m a n y  comDutationa1 s i t u a t i o n s  p r o c e e d  m o r e  e f f i c i e n t l y  w h e n
e x e c u t e d  a t  a  r e l a t i v e l y  h i g h  i n t e r p r e t i v e  l e v e l  r a t h e r  t h a n  v i a
the  usua l  compi la t i on  and  mach ine  language  in terpre ta t i on
Trocedure  [l]. T h i s  d i r e c t  e x e c u t i o n  i s  a c c o m p l i s h e d  b y  d e s i g n i n g
an  in termed ia te  o r ‘Direct ly  Executed Language (DEL) ’ to  stand
between the microlanguage associated with the hardware resources
and t h e  h i g h - l e v e l  l a n g u a g e  a s s o c i a t e d  w i t h  t h e  p r o b l e m
enn,Ti rcnment- .

1 . 2  D i s c u s s i o n  o f  L a b o r a t o r y  C h a r a c t e r i s t i c s

C e n t r a l  t o  t h e  e m u l a t i o n  l a b o r a t o r y  i s  t h e  u s e  o f  a
‘u n i v e r s a l ’ host  machine. Such a machine should be capable of
e f f i c i e n t l y  e m u l a t i n g  a  w i d e  r a n g e  o f  c o n v e n t i o n a l l y  s t r u c t u r e d
‘t a r g e t ’ machines. Wi th  the  recent  in t roduc t i on  o f  h igh  speed
read-wr i te LSI memories ( b o t h  b i p o l a r  a n d  f a s t  NrOS),  t h e
poss ib i l i ty  o f  such  a  hos t  mach ine  wi th  f l ex ib ly  programmed  s ta te
t r a n s i s t i o n s  h a s  b e c o m e  a  r e a l i t y . Correspondinaly,  two new
a r c h i t e c t u r a l  c o n c e p t s  h a v e  b e e n  d e v e l o p e d :  t h e  ‘s o f t ’
organ izat i on  and

computer
‘dynamic microprogramming’.

S o f t  a r c h i t e c t u r e s , s u c h  a s  t h e  Nanaodata C+?-1 121 a n d  t h e
B u r r o u g h s  91700 [3], are  mach ine  organ izat i ons  which  a l l ow  the
user  t o s t ruc ture  the  pr imi t ive  computat i ona l  and  s to rage
r e s o u r c e s  a v a i l a b l e  i n  a  w a y  b e s t  s u i t e d  t o  a p a r t i c u l a r  t a r g e t
machine’s requirements. In  par t i cu lar  we  may  ident i fy  the
f o l l o w i n g  d e s i r a b l e  c h a r a c t e r i s t i c s  o f  s u c h  s o f t  m a c h i n e s *

1) B i t  f i e l d  h a n d l i n g  and s e l e c t i o n ,
2 )  F l e x i b l e ,  h i g h  s p e e d s h i f t  a n d  r o t a t e  c a p a b i l i t y ,
3 )  E x t e n s i v e  b i t  t e s t i n g ,  a n d
4 )  F l e x i b l e  d a t a  p a t h  s p e c i f i c a t i o n  ( u s u a l l y  v i a  r e s i d u a l

c o n t r o l ) .

O u r  p r e v i o u s  i n v e s t i g a t i o n s  o f  h o s t  m a c h i n e  a r c h i t e c t u r e  [4,5]
have  shown these  f ea tures  t o  be  use fu l  in  bo th  emulat i on  and
i n t e r p r e t i v e  c o m p u t a t i o n  s i t u a t i o n s .
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Sof t  a r ch i te c tures  can  be  enhanced  through  the  use  o f
'dynamic microprogramming' [7] i n  w h i c h  t h e  r e a d - w r i t e  c o n t r o l
s t o r e  i s  u s e d , no t  on ly  f o r  mic roprogram s toraqe ,  but  a l so  as  the
pr imary  da ta  s t o rage  resource  o f  the  sys tem. T h i s  t e c h n i q u e  i s  a
n a t u r a l  t e c h n o l o g i c a l  e x t e n s i o n  o f  p r e v i o u s  c o n t r o l  s t o r e
a p p l i c a t i o n s . B r i e f l y  w e  m a y  c l a s s i f y  t h e  u s e  o f  microprogramminq
i n  c u r r e n t  t a r g e t  m a c h i n e  a r c h i t e c t u r e s  a s  beinq e i t h e r
implementat i on  o r  ex tens i on  o r i ented . Implementation oriented
systems, such as the 361)  series , make use of  ROM control  stores
fo r  the  purpose  o f  s t ruc tur ing  the  mach ine  des iqn . ROM memory by
n a t u r e  i s  n o t  v e r y  f l e x i b l e  a n d  c h a n g e s , w h i l e  c l e a r l y  l e s s  c o s t l y
than  in  cor respond ing  hardwired  implementat i ons ,  must  s t i l l  be
in f requent . The HP2100 [9] series  of  microproqramable machine
typ i f i e s  the  ex tens i on  o r i ented  use  o f  mi c roprogrammed
o r q a n i z a t i o n s . RAN contro l  s t o re  in  these  mach ines  i s  eas i l y
w r i t t e n  v i a  a n  e x t e r n a l  I / O  b u s  b u t  i s  n o t  c o n v e n i e n t l y  a c c e s s i b l e
to  the  mic roprogram in  rea l  t ime , t h u s  p r e v e n t i n g  i t s  e f f e c t i v e
use as  a  data storage medium.

In a dynamical ly  microprogrammed machine the control  store is
d i re c t l y  a c cess ib l e  by  the  mic roprogrammer  f o r  da ta  s t o raqe  in
much the same sense that  main memory is  accessible  to  the assembly
lanquage programmer in conventional  machines. In  add i t i on ,  we
h a v e  a s s u m e d  t h a t  t h i s  s t o r e  i s  a c c e s s i b l e  t o  e x t e r n a l  d e v i c e s  o n
a  shared  bas i s  v ia  the  processor  bus  sys tem. Thus, we term this
s t o r a g e  l e v e l  ' m i c r o s t o r e ' s i n c e  i t s  f u n c t i o n  g o e s  w e l l  b e y o n d
c o n t r o l . T h e  c o m b i n a t i o n  o f  t h e s e  a c c e s s i n g  c a p a b i l i t i e s  p r o v i d e s
severa l  advantages :

1)  Microstore  now becomes the primary storage medium
( w i t h  r e s p e c t  t o  a c c e s s  t i m e )  f o r  d a t a  a s  w e l l  a s
microprogram. This  al lows the microprogrammer a continuum
of  t rade -o f f s  be tween  mic roprogram and  data  s t o rage .

2 )  S ince  the  micros tore  may  be  ex terna l ly  l oaded  v ia  the
s y s t e m  b u s  i t  i s  p o s s i b l e  t o  q u i c k l y  l o a d  a n d  r e p l a c e
d i f f e r e n t  e m u l a t o r s .

3) The  two  l eve l  random access  memory  s t ruc ture  ( i . e .  ma in
memory  and  mic ros to re )  a l l ows  the  mic ros to re  t o
funct i on  as  an ‘e x p l i c i t  c a c h e ’. Access  t o  targe t  mach ine
d a t a  a n d  i n s t r u c t i o n s  c a n  b e  s h o r t e n e d  b y  e x p l i c i t l y
mainta in ing  l o ca l l y  used  memory  s torage  contents  in
c o n t r o l  s t o r e . I n  a  l a t e r  s e c t i o n  w e  d i s c u s s  t h e  e f f i c i e n t
u s e  o f  t h i s  c a p a b i l i t y  u n d e r  a n  i n t e r p r e t i v e  c o m p u t a t i o n
d i s c i p l i n e .

O u r  n o t i o n  o f  t h e  e m u l a t i o n  l a b o r a t o r y  i s  t h a t  i t  s h o u l d
prov ide  the  user  w i th  a  sys tem which  he  can  s t ruc ture  t o  a
p a r t i c u l a r  e m u l a t i o n  t a s k . To  complement  th i s  capab i l i t y  the  user
must  be  ab le  t o  observe  the  opera t i on  o f  the  targe t  mach ine
e m u l a t o r  a t  a  f a i r l y  d e t a i l e d  l e v e l . There f o re , t h e  l a b o r a t o r y
shou ld  inc lude  bo th  so f tware  and  hardware  t oo l s  t o  suppor t  user
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F?ccess to, and c o n t r o l  o f , t h e  h o s t  pachine. S p e c i f i c a l l y ,  h e
shou ld  be  ab le  t o  a c cess  a l l  sys tem s torage  l o ca t i ons  such  as  main
memory and  mic ros to re . T h e  Stanfcrd l a b o r a t o r y  s u p p o r t s  a c c e s s  hy
Taking u s e  o f  a  s e p a r a t e  l a b o r a t o r y  c o n t r o l  Frocessor w h i c h  i s
independent of  the host  machine. T h i s  arranqement  a f f o r d s  t h e
exper imenter  a  f l ex ib l e  observat i on  t oo l  w i th  the  added  advantage
o f  a l l o w i n g  t h e  h o s t  m a c h i n e  t o  be u s e d  e x c l u s i v e l y  f o r  t h e
c;rulJtion t a s k .



?L. T o o l s

In the  f o l l owing  sec t i on  we  d i s cuss  the  hardware  and  so f tware
too l s  ava i lab le  t o  the  exper imenter  in  the  S tan ford  Emulat i on
Laboratory.

2.1 Hardware

The  labora tory  hos t  processor ,  the  EMMY [26], i s  based  on  a
32 bit  wide microstore  word which serves both as  the data and
micro ins t ruc t i on  word  width . T h e  m i c r o s t o r e  i t s e l f  c o n t a i n s  4 0 9 6
words  and  has  a  bas i c  a c cess  t ime  o f  60  nsec  and  a  cyc l e  t ime  o f
180 nsec . Wi th in  the  CPU are  e ight  genera l  purpose  reg i s te rs ,  one
o f  whi ch  conta ins  the  mach ine  s ta te  word . E x t e r n a l  a c c e s s  i s  v i a
a  3 2  b i t  d a t a  b u s  w h i c h  s u p p o r t s  d i r e c t  a c c e s s  t o  16M l o c a t i o n s .
Al l  address  and data arithmetic  in  the CPU is  two 's  complement.

2 .1 .1  The Laboratory System

F i g u r e  2 . 1  s c h e m a t i c a l l y  i l l u s t r a t e s  t h e  l a b o r a t o r y  a n d  t h e
i n t e r c o n n e c t i o n  o f  t h e  v a r i o u s  u n i t s . E s s e n t i a l l y ,  t h e r e  a r e
three  sub - sys tems  each  o rgan ized  about  one  o f  the  bus  sys tems :

1)  Host  bus system,
2 )  Aux i l iary  bus  sys tem,  and
3 )  Contro l  p rocessor  sys tem.

Primary communication between laboratory units  takes place
over  the  hos t  bus  sys tem which  in ter connec ts  the  EPlMY CPU and  i t s
immedia te  per iphera l s  [29]. This bus  sys tem i s  a  32  b i t  w ide ,
b id i rec t i ona l  communicat i on  path  which  makes  use  o f  a  fu l l y
i n t e r l o c k e d  a s y n c h r o n o u s  c o n t r o l  d i s c i p l i n e . Under this
d i s c i p l i n e  t h e  b u s  a p p e a r s  a s  a  r e s o u r c e , a n d  a n y  e l e c t r i c a l l y  a n d
l o g i c a l l y  c a p a b l e  b u s  u n i t  m a y  s e i z e the  bus  f o r  the  purposes  o f
t r a n s f e r r i n g  d a t a . T h i r t y - t w o  b i t s  o f  a d d r e s s  i n f o r m a t i o n
cons i s t ing  o f  an  e ight  b i t  c ommand , an  e ight  b i t  un i t  address  and
a  16  b i t  in terna l  address  may  be  sent  s imul taneous ly  t o  a l l  bus
u n i t s . T h u s  NJ! l o c a t i o n s  a r e  d i r e c t l y  a c c e s s i b l e  t o  t h e
mlcroproarammer..

T h e  h o s t  b u s  s y s t e m  c o n s i s t s  o f  t h e  f o l l o w i n g  u n i t s :

1) EPYIMY CPU and 4K microstore,
2) 64K byte main memory system,
3 )  A u x i l i a r y  b u s  i n t e r f a c e ,
4 )  Maintenance  conso le ,
5 )  C o n t r o l  p r o c e s s o r  i n t e r f a c e ,  a n d
6 )  B l o c k  a c c e s s  c o n t r o l l e r .



i n  a d d i t i o n  t o  a c t i n g  a s  a  m a s t e r  d e v i c e  a n d  activelv
a c c e s s i n g  t h e  h o s t  b u s , the  EWY CPU and  i t s  assoc ia ted  mic ros to re
fmay a c t  a s  a ' s l a v e ' un i t  and  be  accessed  by  o ther  bus  un i t s .
S p e c i f i c a l l y , a l l  mi c ros tore  l o ca t i ons  and  the  eiqht CPU genera l
purpose  reg i s t e rs  may  be  read  o r  wr i t t en  by  the  cont ro l  p rocessor ,
t h u s  f a c i l i t a t i n g  t h e  l o a d i n g  o f  m i c r o p r o g r a m s  a n d  t h e  c o n t r o l  c f
experiments .

Nain memory may be conf igured to  represent  the main me,mory
system of  the target  machine [30]. One,  two,
a c c e s s  o p t i o n s  a r e  a v a i l a b l e .

three  and  f our  by te
D a t a  r e f o r m a t t i n g  i n c l u d e s  l e f t  o r

r i a h t  j u s t i f i c a t i o n  a n d  s i g n  e x t e n s i o n .
ab le  t o  hand le  these  e l ementary ,

Since the main memory is

with EMMY
r e p e t i t i v e  o p e r a t i o n s  i n  p a r a l l e l

p r o c e s s i n g , emulator  performance is  enhanced.

A  b l o c k  a c c e s s  c o n t r o l l e r  a l l o w s  t r a n s f e r  o f  d a t a  b l o c k s
between any two bus system units . T h i s  d e v i c e  s u p p o r t s  e x p l i c i t
caqinc  of  data between microstore  and main memory.

The host  bus system wil l  communicate with conventional
peripheral  u n i t s  s i t u a t e d  o n  t h e  a u x i l i a r y  b u s  s y s t e m  v i a  a  b u s
t r a n s l a t i o n  d e v i c e . A u x i l i a r y  b u s  p e r i p h e r a l s  w i l l  i n c l u d e  d i s k
a n d  maanetic t a p e  s t o r a g e  u n i t s
s imi lar  targe t  mach ine  un i t s .

w h i c h  w i l l  s t a n d  i n  t h e  p l a c e  c f
Current ly , w e  a r e  planninfl t o

(?esign a  b u s  t r a n s l a t o r  t o  i n t e r f a c e  t h e  h o s t  b u s - w i t h  t h e  FIN-11
Lnibus ( P )  s y s t e m  [39],
l o g i c a l l y  s i m i l a r .

s i n c e  t h e  h o s t  b u s  i s  e l e c t r i c a l l y  a n d

l o w  c o s t ,
T h i s  i n t e r f a c e  w i l l  a l l o w  u s  t o  u s e  r e l a t i v e l y

mass  produced  per iphera l  un i t s  in  our  sys tem. In  us ing
t h e  l a b o r a t o r y  t h e  e x p e r i m e n t e r  w i l l  a c c e s s  t h e s e  p e r i p h e r a l  u n i t s
t h rough  microprogrammed subroutines which wil l  make these units
a p p e a r  t o  b e  functionallv  e q u i v a l e n t  t o  t h o s e  o f  t h e  p a r t i c u l a r
target  machine being emulated.

A n  i m p o r t a n t  u s e r  f e a t u r e  o f  t h e  l a b o r a t o r y ,  particularaly i n
t h e  i n t e r a c t i v e  e d u c a t i o n a l  r e s e a r c h  e n v i r o n m e n t ,  i s  t h e
independent  cont ro l  p rocessor . In  our  current  sys tem the  contro l
p r o c e s s o r  i s  a  D a t a p o i n t  2 2 0 0  (R), w h i c h  i s  a  c h a r a c t e r  o r i e n t e d
' i n t e l l i g e n t '  t e r m i n a l . T h i s  p r o c e s s o r  h a s  i t s  o w n  i n t e r n a l
memory and communicates  with relat ively  low speed peripherals  via
its  own byte  width bus system. S i n c e  t h e  c o n t r o l  p r o c e s s o r  h a s
d i r e c t  a c c e s s  t o  t h e  h o s t  b u s  s t o r a g e  l o c a t i o n s ,  p a r t i c u l a r l y  m a i n
memory and microstore, the experimenter  has a  convenient  means of
i n i t i a l i z i n g , c o n t r o l l i n g  a n d  a n a l y z i n g  t h e  r e s u l t s  o f  a n
experimental  run. Ey u s i n g  t h i s  i n d e p e n d e n t  a c c e s s  c a p a b i l i t y  a n
exper iment  can  be  par t i t i oned so that the EMMY CPU deals mainly
wi th  i t s  emulat i on  aspec t s  and  the  Datapo int  2200  i s  used  f o r
cont ro l  purposes .

2.1.2 The ENMY CPU

The EMMY CPU was designed,  within relat ively  severe cost
c o n s t r a i n t s , t o  b e  a n  e f f i c i e n t ,  y e t  u n b i a s e d ,  h o s t  m a c h i n e .
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Flex ib i l i ty  i s  a ch ieved  through  the  use  o f  microprogramming  and
low cos t  has  been  mainta ined  by  re ly ing  heav i ly  on  LSI  in  bo th  the l

memory and processor  design.

2 . 1 . 2 . 1  G e n e r a l  P r i n c i p l e s

F i g u r e  2 . 2  i l l u s t r a t e s  s c h e m a t i c a l l y  t h e  f u n t i o n a l  a s p e c t s  o f
the  hos t  mach ine  o rgan iza t i on . I n  o r d e r  t o  m a k e  e f f i c i e n t  u s e  o f
the  ra ther  shor t  mic ro ins t ruc t i on  word  (32 b i t s )  we  have
i n t r o d u c e d  a  d e g r e e  o f  p a r a l l e l i s m  i n t e r n a l  t o  e a c h
m i c r o i n s t r u c t i o n . T h i s  i s  a c c o m p l i s h e d  b y  p a r t i t i o n i n g  t h e
pr imi t ive  hos t  mach ine  resources  in to  three  c lasses  and
c o n t r o l l i n g  e a c h  c l a s s  o f  r e s o u r c e s  w i t h  a  s e p a r a t e  f i n i t e  s t a t e
machine. E a c h  f i n i t e  s t a t e  m a c h i n e  r e c e i v e s  c o n t r o l  i n f o r m a t i o n
f rom the  current  micro ins t ruc t i on  word  and  i s  r espons ib l e  f o r
c o n t r o l l i n g  r e s o u r c e s  a s s o c i a t e d  w i t h  o n e  i n s t r u c t i o n  c l a s s .
Resources  are  par t i t i oned  in  a  manner  which  rouqh ly  re f l e c t s  the
requ i rements  o f  c onvent i ona l  targe t  mach ines  [6]:

1) T-machine - c o n t r o l s  f u n c t i o n a l  r e s o u r c e s ,
2)  A-machine - c o n t r o l s  s t o r a g e  r e s o u r c e s ,  a n d
3 )  I - m a c h i n e  - c o n t r o l s  m i c r o i n s t r u c t i o n  s e q u e n c i n g .

I n  a d d i t i o n , t h e r e  i s  a  f o u r t h  m a c h i n e  w h i c h  i s  r e s p o n s i b l e  f o r
bus  o r i ented  t ransac t i ons  and  opera tes  independent ly  o f  the  o ther
three .

The  e ight  genera l  purpose  reg i s te rs  a re  the  pr imary  s ta te
storage mechanism of  the host  machine. The T-machine,  in
p a r t i c u l a r , i s  o n l y  c a p a b l e  o f  m a n i p u l a t i n g  r e g i s t e r  d a t a ,  w h i l e
t h e  A - m a c h i n e  ( w h i c h  i s  a b l e  t o  a c c e s s  r e g i s t e r s ,  m i c r o s t o r e  a n d
the  sys tem bus )  i s  used  t o  move  da ta  be tween  the  reg i s t e rs  and
o t h e r  s t o r a g e  r e s o u r c e s . S ta te i n f o r m a t i o n  t o  explictly d i r e c t
t h e  m i c r o i n s t r u c t i o n  s e q u e n c i n g  i s  m a i n t a i n e d  i n  r e g i s t e r  0  o f  t h e
g e n e r a l  p u r p o s e  r e g i s t e r  f i l e  a n d  i s  a c c e s s i b l e  t o  t h e  I - m a c h i n e .

Micro ins t ruc t i ons  in  the  hos t  mach ine  are  d iv ided
a p p r o x i m a t e l y  i n  h a l f  s o  t h a t  o n e  h a l f  ( t h e  T  c o n t r o l  f i e l d  o r
TCF)  contro l s  the  T -mach ine  and  the  o ther  ha l f  ( the  A  contro l
f i e ld  o r  ACF)  contro l s  the  A -mach ine . The TCF is  14 bits  in width
and  the  ACF i s  18  b i t s  in  width . Either half  may be used
optional ly  to  modify  the normal  implicit sequential
m i c r o i n s t r u c t i o n  f e t c h i n g  o f  t h e  I - m a c h i n e . A d d i t i o n a l l y ,  t h e  ACF
half may be used as immediate  data by the T-machine resources  on
c e r t a i n  i n s t r u c t i o n s . Thus, we have what amounts to  f ive  general
t y p e s  o f  m i c r o i n s t r u c t i o n  f o r m a t s :
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TCF Half ACF Half
1) T-control Immediate data
2) T-control A-control
3) T-control I-control
4) I-control A-control
5) X-control I-control

Gy structurinq the microinstruction  set in this manner we have
obtained two objectives: explicit and independent control of the
Frimitive resources and low level parallelism reflecting
concurrence in conventionally structured  taraet machines.

2.1.2.2 T-machine Instructions

T-machine instructions orovide the microproqrammer with the
basic functional operations necessary to emulate the
transformational and control aspects of a target machine.
Instructions  for the T-machine may be divided into five classes as
follows:

1) Loqical,
2) Arithmetic,
3) Shift and Rotate,
4) Extended Arithmetic,  and
5) Field Insertion and Extraction.

Fiqure 2.3 outlines the opcode format for T-machine instructions.
Functionally, these instructions require two (or sometimes three)
operands and produce a single result which is returned to the
register file. One of these operands is from the register file
and the other may be either a register or immediate data from the
ACF half cf the microinstruction. For the first four instruction
classes a four bit opcode further defines the operation.

Insert/Extract instructions are designed specifically for
field handling and require two register operands and immediate
data from the ACF half word. In these operations a source operand
is rotated by a specified amount and combined under maskina
designated by the ACF half word with the destination operand. On
Extract instructions  the destination operand register is cleared
before the operation takes place, with the effect that the masked
field from the first operand is isolated for further processinq.

Extended Arithmetic operations are single step fragments of
frequently  used arithmetic operations such as multiFly, divide and
decimal-binary conversion. Using these microinstructions
iteratively the microprogrammer can build complex target machine
operations  efficiently.



2.1.2.3 A-machine Instructions

A-machine instructions are used by the microprogrammer to
access microstore, manipulate address pointers and communicate
with external devices. Four classes of A-machine instructions are
defined:

1) Move data between registers and microstore,
2) Load a register with immediate data,
3) Access memory indirectly, and
4) Manipulate pointers (and test results).

Figure 2.4 illustrates the way in which the ACF half of the
microinstruction word is used to specify the A-machine
instruction. For the first two classes of A-machine instruction
two fields are used to specify the register and a microstore
address (or immediate data). For the remaining instruction
classes two register operands, an opcode and an immediate data
value are specified.

Indirect memory operations control the movement of data
between the register file, microstore and the host bus system.
When external memory operations are initiated by the A-machine
they are completed independently by the host bus access machine.
This is an important source of parallelism since it allows the
host machine to continue processing of microinstructions. Pointer
manipulation instructions perform arithmetic on the reqisters for
address calculation.

2.1.2.4 I-machine Instructions

Fetching of the next microinstruction  is controlled by the
I-machine. Normally microinstructions  are fetched from the next
sequential  microstore location. The actual location of the fetch
is maintained in register 0 of the general purpose register file
and thus may be modified explictly by both T- and A-machine
instructions.

There are three classes of I-machine instructions determining
the sequence of microinstruction  fetching:

1) Conditional,
2) Branching, and
3) Looping.

The formats for these instructions are cutlined in figure 2.5.

Conditional instructions are specified in the TCF half word
and consist of two fields: a conditional mask field and a test
specification. Within the state word (register 0) are eight bits
-which record various aspects of the previous microinstruction



cycle. The mask field specifies which of these bits are to be
examined, and the test specification field describes whether the
test is valid if any or all masked bits are set and the sense of
the result. If the test is valid then the A-machine instruction
defined by the ACF half word is executed, otherwise, it is
skipped. Thus, the microprogrammer has the capability of
slr\ecifying conditional jumps, memory access, external operations
and so forth.

Eranching operations are defined in the ACF half word and, as
indicated by their format, are similar to the conditional
instructions. The result of a valid test in the case of a branch
instruction  is modification of the microaddress reqister by the
aFount given in the value field.

Loopinq is another aspect of the pointer modification
instruction. In addition to the pointer modification the
rrogrammer may test the result for one of the common arithmetic
condition (e.g. less than zero) and, if valid, modify the
Ticroaddress reqister as in the branch instruction. Thus, the
Ticroprogrammer-has the capability of defining short counting
loops. In fact, the emulation of a target machine multiply
instruction usually requires only one microinstruction  since the
TCF half word may specify a single bit multiply and the ACF WV
specify repetition for a particular word length.

Figure 2.6 illustrates the 32 bit machine state word which is
:raintained in register 0. These are four fields of importance:

1) Condition codes (8 bits)
2) Indicator codes (8 bits)
3) State (4 bits)
4) Micro Address Reg (12 bits)

Condition codes reflect the results of previous processor
operations and are directly testable via the conditional and
branch instructions. Indicator codes are testable in the same
;r.anner but are set by the programmer and remain undisturbed by
changing processor conditions. Indicator codes have proven useful
fcr storing intermediate information about target machine
conditions  (such as current word alignment). Two state bits are
specified in the state field which define the condition of
interrupts and whether the machine is running or halted. Lastly,
12 bits are set asside as the Micro Address Register and define
the next loactaion from which the I-machine will fetch a
vicroinstruction.

2.1.2.5 Host Eus Machine

Implicit in the design of the CPU is a fourth machine, the
host bus machine. This machine handles the transactions which
occur between the CPU and the external devices located on the host
l>us. Tasks which this machine performs include:
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1) CFU access (read and write) to external devices,
2) Access to CPU registers and microstore by external

devices, and
3) Interrupts generated by external devices.

CPU generated accesses are handled in an overlapped fashion by
this machine, that is, once a bus access is initiated, the CPU may
proceed with microexecution  while awaiting results. External
access to CPU storage resources by other bus devices, particularly
the console and control processor interface, are processed by the
host bus machine on a shared basis with CPU requests.

Although many micromachines do not make allowances for direct
interrupts from external sources, we felt it was necesary in the
laboratory environment to provide prompt service to dynamic
peripherals such as disk and drum. The interrupt mechanism is
quite simple: a device requiring service gains control of the bus
system as it would for a normal data transfer. It then sends an
interrupt command and a CPU microstore address. In processing the
interrupt the CPU stores the current contents of register 0 (the
state word) in the given location and loads register 0 with the
contents of the associated even-odd microstore location. This
procedure thus preserves the old machine state and initiates a new
state immediately.

2.1.3 Hardware Technology

The EMMY CPU, including register file and ALU, is implemented
using MECL 10K (R) series ECL logic. required in electrical and
mechanical design was more than offset by the speed and functional
simplicity which ECL affords. The current micromemory is fast
n-channel MOS structured around 1K by 1 bit chips (AMS 7001). Bus
logic is open collector TTL.

Physically, the CPU is contained on one 15" x 15" wire
wrapped board. The microstore requires one additional board while
the bus interface cards for specific units are built on
conventional 7" x 10" wire wrap cards.

2.2 Software

Software is designed to be primarily user oriented. In
figure 2.7 the software environment of the initial system is
illustrated. At the outset, user effort will center on the
development of specific target machine emulators and target
machine programs, a task which can be supported most efficiently
by a remotely located interactive system. The experimenter uses
the laboratory control processor to load programs from the remote
data base and to monitor the experiment. If desired, results of
the experiment can be returned to the remote system for 'off line'
examination and analysis. In effect, the laboratory system
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consists gf three computational devices:

1 )  F . e m o t e  System -- Interactive  data base development
2) Control Processor -- User oriented control functions
3) EMMY CPU -- Target machine emulation

2.2.1 xicroassemblers

Since EMMY is to be a research oriented tool available to a
larger number of users, it is important to provide users with a
relatively  easy to use microassembler. Thus, we developed a
register transfer language similar in many respects to PL360 [lo].
Although this prevents a programmer from exercising explicit
control over the microinstruction  content at the bit level, it
substantially simplifies programming. Using this language, which
is called EMMYPL [31,40], it is only necessary for the
microprogrammer to be aware of the general resource and memory
structure of EMMY. The EPIMYPL compiler then undertakes the
construction of programmer specified functions in an efficient
manner. Although this is done only on a local basis in the
microcode, the results to date have been good enough to justify
its use in situations where implementation ease is more important
than performance.

In situations  where performance is very important another
microassembler, EMMYXL, is available [32,41]. While basically
using a register transfer format, EMMYXL requires the user to
state explicitly the form and function of each microinstruction.
Since each 'half' of an EMMY microinstruction  may be explicitly
defined, the high packing density necessary for efficient code
results.

Figure 2.8 shows a short example of EMMYXL and ERMYPL taken
from two separate 360 series emulators. In both examples the
microprogrammer deals directly with EMMY resources through the
register transfer notation. In the EMMYXL example the hybrid
format of the microinstruction  is explict since each line of code
represents one and only one microinstruction. In EMMYPL the exact
nature of the microinstruction  is unimportant and the
microprogrammer specifies only the function desired. Thus, one
line of code may represent more or less than one EMMY
microinstruction.

Both microassemblers currently run on the campus computer
center's 370 system.

2.2.2 Laboratory Control Program

The system also includes a control program, called FMFIYGS
[33lI which assists the user in establishing and monitoring an
experiment. The program is resident in the Datapoint 2200 and is

12



primarily concerned with supporting communications between the
user, the EMMY system hardware and external facilities, such as
the university computer center. Since the control processor has
direct access to the registers, microstore and memory resources of
the EMMY system set up and initialization of a experiment requires
no active cooperation of the EMMY.

EMMYOS makes available simple debugging aids to allow the
user to examine and modify microstore and to extablish breakpoints
in the microprogram. In addition, the Datapoint 2200 may be
configured as a collection of low speed peripheral units for use
by target machine I/O programs.

13



: :
M

AI
N 

HO
ST

 B
US

t :
: : :

32
 

i
:

3
: .

:
: :

E
PD

P-
11

:
: :

I
E

M
M

Y
CC

NS
OL

E
BL

O
CK

22
30

:
:

:
.

m
:

:
AC

CE
SS

C
PU

1 N
TE

R
-

BU
S

:
:

HA
IN

F
+

FA
CE

XL
AT

ER
:

:
CT

L
:

:
:

: : : : : : : : :
I

I
I

\
w 

_ 
1

8
ME

MO
RY

Fi
gu

re
: 

2.
1

S
tr

u
t 

tu
re

 o
f 

E
m

u
la

ti
on

 L
ob

or
ot

or
y 

F
o

ci
lf

ty



4
3
0-II I -

t

W



LO
GI

CA
L

AR
IT

HM
ET

IC
SH
IF
T 

-
EX

TE
ND

ED
1

,3’
1 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
p

,
p
L
z
?
F

J
T

r
-
ti
T

E
il
-
-
7

-
-
-

0P
l-

j
-..

---
___

. 
- -

-.
1
’
7
/
/

1 
OP

TI
ON
AL
 D

AT
A

EX
TR

AC
T

IN
SE

RT
l
-

[ C
LA

SS
 1

PO
S

1 
0P

2 
1 

OP
l 

] 
[ 
IM

ME
DI

AT
E 

DA
TA

I

FI
EL

D
SE

MA
NT

IC
S

,C
LA

SS
- 
TY

PE
 O

F 
T-

MA
CH

IN
E 

IN
ST

RU
CT

IO
N

OP
CO

DE
- 

SP
EC

IF
IC

 
OP

ER
AT

IO
N

OP
2

- 
OP

ER
AN

D 
SO

UR
CE

OP
l

- 
OP

ER
AN

D 
SO

UR
CE

/S
IN

K
PO

S
- 
RO

TA
TE

 A
MO

UN
T 

FO
R 

FI
EL

D 
SE

LE
CT

IO
N

T-
MA

CH
IN

E 
IN

ST
RU

CT
IO

N 
FO

RM
AT

Fi
gu

re
 2

.3



ST
OR

E 
RE

G
LO

AD
 I

ME
D

[C
LA

SS
 

1 
OP

7 
1

-
- AD
R

-
-

-
-

 
-.-

I

IN
DI

RE
CT

 A
DD

RE
SS

PO
 I
NT

ER
 M
OD

l
-

LC
LA

SS
 

1 
OP

l 
1 

OP
2 

i 
SU

B-
CO

DE
 

t 
VA

LU
E

3

FI
EL

D
SE

MA
NT

IC
S

CL
AS

S
- 
TY

PE
 O

F 
A-

MA
CH

IN
E 

IN
ST

RU
CT

IO
N

OP
l

- 
RE

GI
ST

ER
 P

OI
NT

ER
OP

2
- 
RE

GI
ST

ER
 P

OI
NT

ER
AD

R
- 
MI

CR
OS

TO
RE

 A
DD

RE
SS

 O
R 

DA
TA

.
SU

B-
CO

DE
 -

SP
EC

IF
IC

 A
-M

AC
HI

NE
 O

PE
RA

TI
ON

VA
LU

E
- 
IM

ME
DI

AT
E 

DA
TA

 V
AL

UE

AL
MA

CH
IN

E 
IN

ST
RU

CT
IO

N 
FO

RM
AT

S
Fi

gu
re
 2
.4



13
’1

 
I 

I 
1 

1 
I 

1 
I 

I 
1 

t 
I 

II8
3

-

CO
ND

IT
IO

NA
L 

--
j-
 /
I

MA
SK

-
[ S

PE
C 

1

FI
EL

D
SE

MA
NT

IC
S

CL
AS

S
- 
TY

PE
 O

F 
I-

MA
CH

IN
E 

IN
ST

RU
CT

IO
N

MA
SK

- 
CO

DE
 B

IT
 M

AS
K

SP
EC

- 
TE

ST
 
SP

EC
IF

IC
AT

IO
!4

VA
LU

E
- 
MI

CR
OA

DD
RE

SS
 F

lZ
OD

IF
IE

R

MA
CH

IN
E 

IN
ST

RU
CT

IO
N 

FO
RM

AT
S

Fi
gu

re
 2

.5



I

LOAD AND STORE INSTRUCTIONS

OPlO: .LOAD POSITIVE
XR,IR << 4 ; P=M(XR) .R2 VALUE
PC:=PC+2 ; IRX(PC) .NEXT INSTR
P:=P ; (NEGATIVE => PCOMP ) -TEST FOR NEGATIVE

; M(R) = P .STORE RESULT
MAR:=DECODE .DECODE NEXT INSTR

PCOMP: .COMPLEMENT NEGATIVE NUMBER
XR 1:=- ; s=s-s
s:=s-P ; M(CC)=MAR .2'S COMPLEMENT AND SET COND CODE

; M(R)=S .STORE RESULT
(tOVERFLOW => ; MAR=DECODE)

; MAR=ARITHOFL .HANDLE ARITHMETIC OVERFLOW

op12: .LOAD AND TEST (RR)
XR,IR << 4 ; P=M(XR) .R2 VALUE
PC:=PC+2 ;IR=X(PC) .FETCH NEXT INSTR
P:=P ; M(CC)=MAR .TEST AND SET CC
XR:=-1 ; M(R)=P .REPLACE Rl VALUE
MAR:=DECODE

EMMYXL

#lo: ** LPR;
DO

R2:=X(Rl); Rk=M(R7);
IF R5<0 THEN R5:=1R5+1;
SET CC: AGAIN OPWAIT:

END; -

#ll: ** LNR;
DO

R2:=X(Rl); R5:=M(R7);
IF R5>=0 THEN R5:=yR5+1;
SET CC; AGAIN  OPWAIT:

END; -

#12: ** LTR;
DO

R2:=X(Rl); R5:-M(R5)+0; SET CC; AGAIN  OPWAIT;-
END;

EMMYPL

Note: Both samples of code are from the same section of two different
System 360 emulators. They are nominally (but not exactly)
equivalent from a functional standpoint.

Micro-assembler Examples
Figure 2.6
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3.0 Laboratory Experiments

3 . 1  ' H a r d ' Processor  Emulation

A  p r i m a r y  o b j e c t i v e  o f  t h e  e m u l a t i o n  l a b o r a t o r y  i s  t o  p r o v i d e
r e s e a r c h e r s  w i t h  a c c e s s  t o  v a r i o u s  a r c h i t e c t u r e s . I n i t i a l l y  w e
a r e  b u i l d i n g  a  r e p e t o i r e  o f  e m u l a t o r s  w h o s e  t a r g e t  a r c h i t e c t u r e s
a r e  c o n v e n t i o n a l l y  s t r u c t u r e , r e g i s t e r  o r i e n t e d  m a c h i n e s . We are
i n t e r e s t e d  i n  t h i s  c l a s s  o f  m a c h i n e s  f i r s t  b e c a u s e  t h e y  a r e  i n
wide use and, s e c o n d  b e c a u s e  o n e  o f  t h e m ,  t h e  3 6 0  s e r i e s ,  i s
l ike ly  t o  become  a  pr imary  targe t  mach ine  f o r  the  l abora tory
system. I n  t h e  f o l l o w i n g  s e c t i o n  w e  d e s c r i b e  o u r  e x p e r i e n c e  w i t h
two emulators , the 360 and the INTEL 8080.

3.1 .1  360 Emulator

The  360  ser i es  emulator  current ly  under  deve lopment  in  the
l a b o r a t o r y  i s  i n t e n d e d  t o  b e  ' c l a s s  B' [35,42]. T h a t  i s ,  v a l i d
360  programs  wi l l  p roduce  cor respond ing  resu l t s  on  the  laboratory
sys tem,  whi l e  inva l id  programs  may fa i l  in  a  manner  which  d i f f e rs
f rom that  o f  the  ac tua l  360  targe t  mach ine . Our long term
ob je c t i ve  i s  t o  emula te  a l l  a spec t s  o f  the  360  system which
d i r e c t l y  i n f l u e n c e  t h e  e x e c u t i o n  o f  p r o b l e m  s t a t e  c o d e  a n d  t h e
most  impor tant  o f  the  f ea tures  r equ i red  by  superv i sor  s ta te  c ode .
Thus, o b j e c t  c o d e  d i r e c t l y  f r o m  u s e r  s o u r c e s ,  s u c h  a s  t h e  Fortran
compi l e r , may be processed without  intermediate  checking or
t r a n s l a t i o n .

For  the  shor t  t e rm the  360  emula tor  w i l l  on ly  be  requ i red  t o
h a n d l e  t h e  b a s i c  t a r g e t  i n s t r u c t i o n  s e t  ( i . e .  n o  f l o a t i n g  p o i n t  o r
d e c i m a l  o p e r a t i o n s ) . O f  t h i s  b a s i c  s e t  s e v e n t e e n  i n s t r u c t i o n s
represent  about 70 If, o f  t h e  i n s t r u c t i o n s  e n c o u n t e r e d  i n  a c t u a l
p r a c t i c e  a n d  h a v e  b e e n  g i v e n  p r i o r i t y  i n  o p t i m i z a t i o n . The
e m u l a t o r  d e s c r i b e d  b e l o w  i s  c a p a b l e  o f  s u p p o r t i n g  a  PL360
submoni tor  system which  wi l l  eventua l ly  f o rm the  bas i s  o f  the
labora tory  opera t ing  system. Cons iderat i on  has  been  g iven  to
e x t e n d i n g  t h e  3 6 0  e m u l a t o r  t o  i n c l u d e  v i r t u a l  a d d r e s s i n g  [41].

As a ' c l a s s  B' emulator  no t  a l l  ta rge t  mach ine  f ea tures  are
supported. Some o f  the  d i f f e rences  are :

1 )  No  dynamic  address  t rans la t i on  (360/67)
2 )  No  address  excep t i on
3 )  N o  p r o t e c t i o n
4 )  No  boundary  res t r i c t i ons

3 . 1 . 1 . 1  S t r u c t u r e

The  360  emula tor  i s  r epresenta t ive  o f  the  s t ruc ture  used  in
o t h e r  r e g i s t e r  o r i e n t e d , third generation machines we have
examined. A r c h i t e c t u r a l l y , t h e  3 6 0  i s  w e l l  s u i t e d  t o  e m u l a t i o n  i n
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r.rzneral b e c a u s e  t h e  i n s t r u c t i o n  f o r m a t s  a r e  f e w  a n d  r e g u l a r , and
the opcodes are  o rgan ized  in  an  order ly ,  non -over lapp ing  manner .
Furthermore, t h e  i n f o r m a t i o n  r e f l e c t i n g  t h e  c u r r e n t  s t a t e  o f  t h e
mach ine  (bas i ca l ly  the  PSW)  may  on ly  be  accessed  exp l i c i t l y  by  the
i n s t r u c t i o n  s t r e a m , thus  enab l ing  the  emulator  t o  r epresent  th i s
i n f o r m a t i o n  i n  e n c o d e d  f o r m  f o r  e f f i c i e n c y . S i n c e  i m p l i c i t
r e f e r e n c i n g  ( p e r h a p s  v i a  a d d r e s s i n g )  i s  n o t  a l l o w e d ,  r e c u r r i n g

-p e n a l t i e s f o r  check ing  and  re f o rmat t ing  are  no t  necessary .

F i g u r e  3 . 1  i l l u s t r a t e s  t h e  b a s i c  a p p r o a c h  u s e d  i n  s t r u c t u r i n g
the 360 emulator  on the EMMY host  machine.
!microexecution a r e :

T h e  b a s i c  s t a g e  o f

1 )  H a n d l i n g  o f  e x t e r n a l  i n t e r r u p t s
2)  Operation decode
3 )  E f f e c t i v e  a d d r e s s  f o r m a t i o n
4 )  O p e r a t i o n  e x e c u t i o n  a n d  i n s t r u c t i o n  p r e f e t c h

Although the EMMY CPU accepts  direct  interrupts  from the
e x t e r n a l  w o r l d , i t  i s  advantageous  in  most  cases  t o  hand le  these
in terrupts  us ing  microcode . In  the  360  emulator  d i rec t  in ter rupts
are accepted by the CPU during the operation decode and address
f o r m a t i o n  s t a g e s  o f  t h e  b a s i c - e m u l a t o r  l o o p . Any  in terrupts
occuring d u r i n g  t h i s t ime  per i od  are  mapped  in to  a  c o r respond ing
i n t e r r u p t  o f  t h e  t a r g e t  m a c h i n e ,  b u t  n o  a c t u a l  p r o c e s s i n g  o f  t h e
i n t e r r u p t  w i l l  b e  u n d e r t a k e n  u n t i l  t h e  c u r r e n t  t a r g e t  i n s t r u c t i o n
execut i on  comple tes . These mapped interrupts  are  examined by the
e m u l a t o r  a t  t h e  f i r s t  s t a g e  o f  e a c h  t a r g e t  i n s t r u c t i o n  l o o p  a n d
are  then  processed  ( sub je c t  t o  mask ing )  a c cord ing  t o  360
requirements.

Cecoding o f  t h e  t a r g e t  m a c h i n e  i n s t r u c t i o n  p r o c e e d s  i n  t w o
s t a g e s :

1 )  1  ou t  o f  4  decode  t o  de te rmine  f o rmat
2 )  1  ou t  o f  256  decode  t o  de te rmine  opera t i on

The  in i t ia l  f o rmat  decode  i s  used  t o  de termine  whi ch  o f  f our
r o u t i n e s  w i l l  b e  u s e d  t o  p a r s e  t h e  i n s t r u c t i o n s ,  c a l c u l a t e
addresses  and update the target  machine program counter . Gefore
e n t e r i n g  t h e  s e l e c t e d  r o u t i n e  h o w e v e r , t h e  e n t i r e  o p - c o d e  f i e l d
( e i g h t  b i t s )  i s  d e c o d e d  t o  d e t e r m i n e  t h e  s p e c i f i c  o p e r a t i o n
rout ine  which  wi l l  u l t imate ly  be  per fo rmed . For  opera t i on  decode
a  t a b l e  o f  2 5 6  e n t r i e s  i s  i n d e x e d  d i r e c t l y  f r o m  t h e  o p - c o d e  a n d
t h e  s e m a n t i c  i n f o r m a t i o n  r e t r i e v e d  i s  u s e d  t o  d r i v e  t h e  e x e c u t i o n
p r o c e s s . T h i s  i n f o r m a t i o n  i n c l u d e s  a  p o i n t e r  t o  t h e  s e m a n t i c
r o u t i n e  i t s e l f , b u s  c o n t r o l  i n f o r m a t i o n  f o r  t h e  l a b o r a t o r y  m a i n
memory system and various indicators  which steer  the semantic
r o u t i n e .

F o l l o w i n g  t h e  d e c o d e  s t a g e  o n e  o f  f o u r  r o u t i n e s  i s  e n t e r e d  t o
parse  the  remainder  o f  the  targe t  mach ine  ins t ruc t i ons . During
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t h i s  p r o c e s s  t h e  a c t u a l  m e m o r y  s y s t e m  a d d r e s s e s  ( i f  r e q u i r e d )  o f
t h e  o p e r a n d s  a r e  c a l c u l a t e d  a n d  s a v e d  f o r  t h e  e x e c u t i o n  r o u t i n e .

Execut i on  o f  the  semant i c  r out ines  co r respond ing  t o  the
op - code  i s  s t ra ight  f o rward  and  re l i e s  upon  in fo rmat ion  assembled
i n  t h e  r e g i s t e r  f i l e  d u r i n g  t h e  p r e v i o u s  s t a g e s . Except i ona l
cond i t i ons  ar i s ing  f rom th i s  execut i on  are  hand led  by  the  same
mach inery  which  se t s  up  the  ex terna l  in terrupts .

D u r i n g  t h e  e x e c u t i o n  o f  t h e  r o u t i n e  a  f e t c h  i s  m a d e  o f  t h e
n e x t  t a r g e t  m a c h i n e  i n s t r u c t i o n . T h i s  i s  d o n e  t o  a n t i c i p a t e  t h e
n o r m a l  ( s e q u e n t i a l )  f l o w  o f  t h e  I - s t r e a m . I n  t h e  c a s e  o f  a
c o n d i t i o n a l  b r a n c h  b o t h  p o t e n t i a l  t a r g e t  i n s t r u c t i o n s  a r e  f e t c h e d
and  the  semant i c  r out ine  se l e c t s  be tween  them a f te r  eva luat ing  the
b r a n c h  c o n d i t i o n s . I t  i s  advantageous  t o  f e t ch  f r om the  mos t
l i k e l y  t a r g e t  a d d r e s s  f i r s t , s i n c e  a  p e n a l t y  i s  i n c u r r e d  i n
a w a i t i n g  t h e  c o m p l e t i o n  o f  t h e  s e c o n d  f e t c h . For  opera t i ons  such
as as BXLE and BCTR this  means fetching the branch target  f irst
and  the  sequent ia l  ta rge t  se cond .

In f igure 3 .2  the assignment of  EMMY microstore to  the
emulat i on  process  i s  shown. C u r r e n t  3 6 0  s t a t e  i n f o r m a t i o n  ( i . e .
the  reg i s te rs  and  PSW)  oc cup ies  27  l o ca t i ons . Decod ing  rout ines ,
inc lud ing  the  semant i c  po in ters  consumes  about  300  words ,  and
f i n a l l y , 1.5K words are consumed by the semantic  routines
themselves . 2K  contro l  s t o re  words  are  unused  a t  present  and  wi l l
b e  a s s i g n e d  t o  I / O  f u n c t i o n s .

We  have  chosen  no t  t o  implement  the  I /O  s t ruc ture  o f  the  360
d i r e c t l y ,  t h a t  i s , by  emulat i on  o f  such  ins t ruc t i ons  as  SIO and
HIO. Rather, the  approach  has  been  to  hand le  I /O  through  the
u s u a l  c o n v e n t i o n  o f  a  s y s t e m  s u p e r v i s o r  c a l l  ( S V C )  w h i c h  s t a r t s
e x e c u t i o n  o f  3 6 0  c o d e  t a i l o r e d  t o  t h e  p a r t i c u l a r  I / O  t a s k  a n d
equ ipment  in  the  laboratory . T h e  b a s i c  3 6 0  i n s t r u c t i o n  s e t  h a s
been  augmented  w i th  spec ia l  I /O  op - codes  t o  a l l ow  the  superv i sor
c o d e  t o  i n i t i a t e  a n d  t e s t  t h e  s t a t u s  o f  e x t e r n a l  a c t i o n s . The
d i s t r ibuted  nature  o f  the  laboratory  bus  a l l ows  the  main  memory
sys tem to  operate  in  a  manner  func t i ona l ly  equ iva lent  t o  main
memory in a 360  targe t  sys tem.

3.1 .1 .2  Emulator  Performance

Perforance es t imat ions  o f  the  360  emulator  on  EMMY [35] are
based on weighted instruct ion usage measurements. This  approach
normal i zes  the  speed  d i f f e rences  be tween  the  emula tor  and  the  hard
mach ine  when  process ing  an  ac tua l  ins t ruc t i on  s t ream.
Furthermore, under this  measure overal l  emulator  performance may
b e  i m p r o v e d  b y  m o r e  e f f i c i e n t  e m u l a t i o n  o f  f r e q u e n t l y  u s e d  t a r g e t
i n s t r u c t i o n s  a t  t h e  e x p e n s e  o f  t h o s e  w h i c h  a r e  l e s s  f r e q u e n t l y
encountered.
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F i g u r e  3 . 3  t a b u l a t e s  t h e  i n s t r u c t i o n  e x e c u t i o n  r a t e s  f o r  t h e
360  emulator  and  the  mode l  360/50 processor . Occurrances o f  t h e s e
i n s t r u c t i o n s  i n  a c t u a l  i n s t r u c t i o n  s t r e a m s  a r e  s h o w n  a s
p e r c e n t a g e s  o f  t h e  t o t a l  s t r e a m . I n  a l l , these  s eventeen
i n s t r u c t i o n s  c o m p r i s e  6 3 . 4 %  o f  t h e  o v e r a l l  I - s t r e a m  [3]. For
v a r i a b l e  l e n g t h  i n s t r u c t i o n s  t h e  t i m e s  h a v e  b e e n  c a l c u l a t e d  b a s e d
o n  s t a t i s t i c s  c o n c e r n i n g  e x p e c t e d  l e n g t h  [14]. T h i s , o f  c o u r s e ,
i s  t o  t h e  b e n e f i t  o f  t h e  e m u l a t o r  p e r f o r m a n c e  e s t i m a t e  s i n c e
i n s t r u c t i o n s s u c h  a s  MVC a r e  a b l e  t o  a m o r t i z e  t h e  o v e r h e a d  o f
,lecc/de a n d  a d d r e s s  c a l c u l a t i o n  o v e r  t h e  e n t i r e  e x e c u t i o n  c y c l e .

B a s e d  o n  t h e  i n s t r u c t i o n  s t r e a m  c h a r a c t e r i s t i c s  g i v e n  i n
f i g u r e  3 . 3  t h e  e m u l a t o r  h a s  a n  e x e c u t i o n  r a t e  o f  9 6 . 9  K I P S  a n d  t h e
360150 h a s  a  c o r r e s p o n d i n g  e x e c u t i o n  r a t e  o f  1 4 1 K I P S . Roughly
speak ing  then , the  emula tor  has  70% o f  the  computat i ona l  power  o f
the  targe t  mach ine . W i t h  i m p r o v e m e n t s  t o  t h e  a r c h i t e c t u r e ,  w h i c h
(ire d i s c u s s e d  i n  t h e  f i n a l  s e c t i o n , t h i s  g a p  w i l l  b e  c l o s e d  s o
t h a t  t h e  e m u l a t o r  h a s  e q u i v a l e n t  o r  s l i g h t l y  g r e a t e r  p e r f o r m a n c e
t n a n  t h e  h a r d  360/50.

3 . 1 . 1 . 3  C r i t i q u e  o f  E m u l a t i o n  C o d e

Heav i ly  used  segments  o f  the 360  emulator  have  been  h igh ly
o p t i m i z e d  u s i n g  E M M Y X L  t o  a l l o w  e x p l i c i t  d e f i n i t i o n  o f  e a c h
m i c r o i n s t r u c t i o n . Thus, th i s  emulator  represents  a  benchmark  in
eff ic ient  microprogramming of  the EMMY CPU.

Since EMMY uses an assymetrical , s p l i t  m i c r o i n s t r u c t i o n
fo rmat , c o d i n g  i n e f f i c i e n c i e s  o c c u r  w h e n  a n  a v a i l a b l e
m i c r o i n s t r u c t i o n ' h a l f '  w i l l  n o t  s e r v e  t h e  r e q u i r e d  p u r p o s e .
S t a t i c  c o d e  a n a l y s i s  s h o w s  t h e  f o l l o w i n g :

1) TCF h a l f unused - - 13 p e r c e n t
2) ACF h a l f unused - - 4 p e r c e n t

T h i s  i m p l i e s  t h a t  a b o u t  n i n e  p e r c e n t  o f  t h e  m i c r o c o d e  c o n t a i n s
n u l l  o p e r a t i o n s  a l t h o u g h  t h i s  a c t u a l  r e p r e s e n t s  o n l y  a  2  p e r c e n t
t i m e  i n e f f i c i e n c y , s i n c e  m o s t  n u l l  o p e r a t i o n s  c o n s u m e  n o  e x e c u t i o n
t ime .

A p p r o x i m a t e l y  2 6  p e r c e n t  o f  t h e  m i c r o i n s t r u c t i o n s  m a k e  d a t a
r e f e r e n c e s  t o  t h e  m i c r o s t o r e . E i g h t  p e r c e n t  a r e  d i r e c t
r e f e r e n c e s , a n d  e i g h t e e n  p e r c e n t  a r e  i n d i r e c t  r e f e r e n c e s . These
r e f e r e n c e s  t o  m i c r o s t o r e  a r e  d u e  t o  i t s  u s e  a s  t h e  priinary s t o r a g e
r e s o u r c e  i n  t h e  e m u l a t i o n  e n v i r o n m e n t .

A n  a v e r a g e  m i c r o i n s t r u c t i o n  c o n s u m e s  1 2 . 7  i n t e r n a l  c l o c k
c y c l e s , w h i c h  i s  e q u i v a l e n t  t o  4 4 5  n s e c . Approx imate ly  12  percent
o f  t h e  C P U  e x e c u t i o n  t i m e  i s  s p e n t  i n  p r o c e s s i n g  s h i f t / r o t a t e
o p e r a t i o n s .
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3.1.2 Intel 8080 Emulator

The results of one project involving the emulation laboratory
has been the construction of an emulator for the Intel 8080
microprocessor [36]. This target machine is an eight bit single
package processor finding wide application where control rather
than compuataion is required. The instruction set of this
processor is very orderly and as such provides a low end benchmark
for the EMMY processor. Also, it is an interesting execise in
scaling down the 32 bit resources of EMMY to the 8 and 16 bit
requirements of the 8080.

Eight bits specify the opcodes of the 8080 instruction
yielding 244 executable combinations consisting of 76 basic
instructions and their variations. Since 4K of Microstore is
available, the approach taken in this emulator has been to perform
a one out of 256 decode. This results in a fetch and decode time
of 1.5 usec. Execution of the semantic aspects of the instruction
consumes varing amounts of time as illustrated in figure 3.4.
EMMY's 650 nsec main memory falls between the two RAM memory
systems available for the 8080 system. EMMY has comparable
performance in a absolute sense. In the future we will to make a
determination of instruction frequency distribution in 8080 code
in order to optimize the emulator in the same manner used on the
360 discussed above.

Total control store space requirements of the 8080 emulator
are 1.5 words.
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I GENERAL PURPOSE REGISTERS

I FLOa4TING POINT REGISTERS
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!I
I

SEMANTIC ROUTINES

I SEMANTIC POINTERS

MORDS
1p- ItI

- 8

. 3

- 20

- 25

- 256

MICROSTORE ASSIGNMENT FCR 360 EMULATOR

Figure 3.2



INSTRUCTION %

L 16.1
BC 8.7
BCR 6.9
LA 4.8

ST 3.6
MVC *l* 3.5
LR 2.2
AR 2.2

A 2.0
BXLE 2.0
TM 1.8
LH 1.8

CLC *z* 1.7
BALR 1.6
S 1.6
LM *3* 1.5

MVI 1.4
63.4%

360/50 360/EMMY
(USEC) (USEC)

5.5 8.3
4.2 10.0
4.0 7.3
3.25 9.0

5.5 8.25
30.0 22.4
3.0 5.25
3.75 6.5

5.5 10.25
5.5 12.75
6.25 10.1
6.25 8.3

24.6 27.5
4.25 8.5
5.5 10.2

20.0 24.7

5.5 8.0
7.00 USEC AVG. l.0.3 USEC AVG

*1* Average length = 14 characters
*2* Average length = 10 characters
*3* Average length = 7 characters

COMPARISON OF 360/50 AND EMULATOR

Figure 3.3



8080 EMMY 8080
INSTRUCTION (450 NSEC+ (650 NSEC)2 (850 NSEC)l

ADD B 2.0 3.0 2.5
INR B 2.5 4.7 3.0
MOV B, C 2.5 2.8 3.0
AN1 D8 3.5 3.2 4.5
PUSH B 5.5 3.6 7.0
CALL ADR 8.5 8.6 10.0

1 RAM CYCLE TIME
2 MAXIMUM MAIN MEMORY CYCLE TIME

COMPARISON OF 8080 AND EMULATOR TIMINGS

Figure 3.4



3 . L1 .\rchitectural E v a l u a t i o n

3 . 2 . 1  I n t r o d u c t i o n

The e v a l u a t i o n  o f  s p e c i f i c  m a c h i n e  a r c h i t e c t u r e s  h a s
t r a d i t i o n a l l y  b e e n  a  q u a l i t a t i v e  r a t h e r  t h a n  q u a n t i t a t i v e  p u r s u i t .
,Vthile the  per f o rmance  o f  sys tems  has  been  s tud ied  ex tens ive ly  on  a
altibal o r  ‘m a c r o ’ l e v e l ,  t h e  l o c a l  o r  ‘m i c r o ’ l e v e l  h a s  r e c e i v e d
l i t t l e  a t t e n t i o n . O n e  a p p l i c a t i o n  a r e a  f o r  a  u n i v e r s a l  h o s t
-achine, such as EMMY, i s  i n  t h e  s t u d y  o f  m a c h i n e  a r c h i t e c t u r e s
t h r o u g h  t h e  m i c r o s c o p i c  e x a m i n a t i o n  o f  t a r g e t  rachine i n s t r u c t i o n
nd data  s t reams . S p e c i f i c a l l y , the  emulat i on  aporoach a l l ows
zxperimenter t o  make  de ta i l ed  and  quant i ta t i ve  s ta tements  about

the

!~OW a  p a r t i c u l a r  a r c h i t e c t u r e  d y n a m i c a l l y  e m p l o y s  i t s  i n t e r n a l
resources . I n  a  l a r g e r  s e n s e , such  an  examinat ion  wi l l  a l so
reveal  the manner in which the user, e i t h e r  d i r e c t l y  o r  i n d i r e c t l y
(v ia  l anguage  t rans la tors )  maps  prob lem resource  requ i rements  onto
available mach ine  resources .

7 -4.i. 2  H i s t o r i c a l  P e r s p e c t i v e

I n s t r u c t i o n s t ream ana lyses  o f  an  elementary nature  have  been
carr i ed  out  on  most  ma jor  mach ine  arch i te c tures . Cpcode frequency
d a t a  h a s  b e e n  d e r i v e d  f o r  s e v e r a l  r e g i s t e r  o r i e n t e d  s e c o n d  a n d
th i rd  generat i on  mach ines :  IBM 7094  [ll], 360  ser i e s  [12], RCA 70
[13,14] a n d  t h e  P D P - 1 0  [17].

Lunde [17] in his  analysis  of  the PDP-10 has measured a much
b r o a d e r  r a n g e  o f  i n s t r u c t i o n  s t r e a m  s t a t i s t i c s . O f  p a r t i c u l a r
i m p o r t a n c e  i s  t h e  a n a l y s i s  o f  d a t a  f l o w  t h r o u g h  r e g i s t e r s  a n d  i t s
r e l a t i o n s h i p  t o  r e g i s t e r  u s a g e . Rossman  a n d  R a o  [14] h a v e  c a r r i e d
o u t  e x t e n s i v e  a n a l y s i s  o f  t h e  R C A  t r a c e  l i b r a r y  [13] i n  o r d e r  t o
p r o v i d e  s t a t i s t i c s  r e l a t e d  p r i m a r i l y  t o  i n s t r u c t i o n  s t r e a m
seqencing. S t a t i s t i c s , s u c h  a s  t h e  d i s t r i b u t i o n  o f  d i s t a n c e
b e t w e e n  s e t t i n g  a n d  t e s t i n g  o f  c o n d i t i o n  c o d e s ,  c a n  b e  v e r y  u s e f u l
in  des ign ing  a  h igh  per formance ,
p a r t i c u l a r  p r o c e s s o r .

p ipe l ined  implementat i on  o f  a

The  ins t ruc t i on  s t ream s t u d i e s  r e f e r r e d  t o  a b o v e  h a v e  a l l
been  carr i ed  out  on  the  nat ive  mach ine  us ing  t race  t e chn iques
augmented, in some cases , w i th  spec ia l  purpose  hardware  moni tors .
Trac ing , a s  c a r r i e d  o u t  i n  t h e  a b o v e  s t u d i e s ,  i n v o l v e s  e x e c u t i o n
of  the program to  be examined on the native machine. A f te r  each
inctruction o r ,  i n  s o m e  c a s e s , an  uncond i t i ona l  sequence  o f
i n s t r u c t i o n s , a  re cord  o f  the  re l evant  mach ine  s ta te  i s  made .
This u s u a l l y  i n c l u d e s  c u r r e n t  a d d r e s s ,  i n s t r u c t i o n  o p - c o d e ,
e f f e c t i v e  a d d r e s s e s  o f  o p e r a n d s  a n d  n e x t  i n s t r u c t i o n  a d d r e s s .
Data from the trace is  captured on a  permanent storage medium
vlhere i t  i s  t h e n  s u b j e c t  t o  a n a l y s i s .
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Tracing has the advantage that a permanent record is
preserved that may be referenced later if a different aspect of
the instruction stream needs to be analyzed. Since the same trace
may be used many times, anomalies such as I/O access and
multiprocessing interruptions may be factored out. Complex
analyses, such as the 'register life' statistics of Lunde [17],
may be carried out efficiently on the static data resulting from
the trace step.

There are, however, limitations to the tracing process.
First, the production of the trace tapes can be expensive and may
involve complex trapping mechanisms or external hardware
monitoring systems. Reductions in processing rates can be in the
order of 50 to 1 [13] or higher. Second, production of the trace
data must be carried out on the native machine in order to
generate the proper I-sequences reflecting data dependencies in
the execution process. If a general comparison of several
architectures is to be made, availability of the actual hardware
is beyond the capability of most facilities. Third, the trace
production process must, in order to be efficient, produce output
which has less information than the actual execution produces.
Specifically, the data stream is usually lost, as is information
reflecting internal machine states. Although this information may
be reconstructed from the trace it is usually a formidable task.

3.2.3 I-stream Analysis via Emulation

Emulation presents a unique opportunity to gather data
related to the instruction execution process. Since an emulator,
by definition, tracks all external aspects of a target machine,
the host machine has direct access to this information. With all
aspects of the target machine state transformation available the
experimenter may examine as much or as little of the emulation
process as desired.

Such techniques have been employed in the study of a specific
architecture (the HP 2100) on a well mapped host machine [15,16].
In one case [15] the experimenter was primarily interested in
generating a program trace for debugging purposes. This is
accomplished by microcoded routines which were inserted in to the
host microprogram following the instruction decode and address
calculation phases. Target machine instruction "accounting" [16]
follows essentially the same approach to collect instruction class
frequency data.

The general process of gathering I-stream data via emulation
is depicted in figure 3.5. Emulation of conventional
architectures consists of an I-fetch/Decode phase followed by the
formation of the effective addresss and finally the actual
execution phase. At each stage data may be collected
corresponding to the procedural, memory and functional resource
usage. With little increase in overhead, microcoded host routines
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may under take  preprocess ing  and  cor re la t i on  o f  th i s  da ta . At the
terminat i on  o f  an  exper iment  in fo rmat ion  i s  dumped  f o r  fur ther
processinq  a n d  e v a l u a t i o n .

Examples  o f  s ta t i s t i c s  whi ch  may  be  ga thered  a t  each  phase  o f
t h e  e m u l a t i o n  p r o c e s s  i n c l u d e  t h e  f o l l o w i n g :

1 )  Frocedural p h a s e

a )  yachine s t a t e  a n d  c o n d i t i o n  c o d e  d i s t r i b u t i o n
b )  I - s t r e a m  d i v e r s i o n  r e s u l t i n g  f r o m  s t a t e  t e s t i n g
c )  E x p l i c i t  d i v e r s i o n  ( i . e .  c a l l s  a n d  b r a n c h e s )

2) Storage phase

a )  R e s o u r c e  u s a g e  d i s t r i b u t i o n  ( r e g i s t e r s ,  m e m o r y ,  s t a c k s )
b )  R e s o u r c e  a c t i v i t y  ( e . g .  r e g i s t e r  l i f e )

3 )  Funct i ona l  phase

a )  R e s o u r c e  u s a g e  d i s t r i b u t i o n  ( a d d e r ,  s h i f t e r  e t c . )
b )  S e r i a l  r e u s a g e  (e.g. a v e r a g e  s t r i n g  l e n g t h )
c )  U s a g e  o b j e c t i v e  ( f i x e d ,  f l o a t i n g ,  i n d e x i n g )

T h e  c l a s s i f i c a t i o n s a b o v e  a r e  q u i t e  m i c r o s c o p i c . At a higher
l eve l  we  are  in teres ted  in  captur ing  data  which  wou ld  descr ibe  the
w a y  i n  w h i c h  r e s o u r c e s  i n  e a c h  o f  t h e s e  c l a s s i f i c a t i o n s  w o u l d  w o r k
toge ther  in  per f o rming  targe t  mach ine  tasks . For example, we
w o u l d  l i k e  t o  e x a m i n e  t h e  c o n n e c t i v i t y  o f  a n d  t h e  t r a f f i c  v o l u m e
between  the  var i ous  mach ine  resources . Recurr ing  pat terns  o f
resource  usage  [17] may  a l so  be  used  t o  measure  the  e f f e c t i veness
o f  a  targe t  mach ine  in  a  par t i cu lar  prob lem env i ronment .

3 . 2 . 4  C r o s s  A r c h i t e c t u r a l  E v a l u a t i o n s

A  un iversa l  hos t  mach ine ,  such  as  the  EMMY,  i s  par t i cu lar ly
w e l l  s u i t e d  t o  t h e  t a s k  t o  a r c h i t e c t u r a l  e v a l u a t i o n  o u t l i n e d
above. B e c a u s e  o f  i t s  f l e x i b l e  c h a r a c t e r  t h e  ENMY s y s t e m  i s  a b l e
t o  c a r r y  o u t  a n  e f f i c i e n t  e m u l a t i o n  a n d  a s s o c i a t e d  I - s t r e a m  d a t a
capture  f o r  a  w ide  range  o f  ta rge t  mach ines . T h i s  i n  t u r n  a l l o w s
the  exper imenter  t o  make  c ross  a r ch i t e c tura l  c ompar i sons  o f
m a c h i n e  c h a r a c t e r i s t i c s . Such a comparison has been made for
three machines,  the 7090,  360 and PDP-10 [6,18]. Although data
fo r  th i s  c ompar i son  was  ga thered  v ia  the  t race  method ,  i t
i l l u s t r a t e s the  f o rm such  an  ana lys i s  might  take . T h e  b a s i s  o f
c o m p a r i s o n  i s  t h e  a n a l y s i s  o f  i n s t r u c t i o n  c o d e  d i s t r i b u t i o n s .

Opcode f r e q u e n c y  d a t a  i s d i v i d e d  i n t o  t h r e e  c l a s s e s
( p r o c e d u r a l  ( P ) , m e m o r y  (M) a n d  f u n c t i o n a l  ( F ) )  a n d  r a t i o s  a r e
t a k e n  b e t w e e n  t h e  v a r i o u s  c l a s s e s  a s  s u m m a r i z e d  i n  f i g u r e  3 . 6 .  I n
a  broad  sense  the  P  and  M c lass  ins t ruc t i ons  represent  overhead  in
the  computat i on  process  in  that  they  are  pr imar i l y  concerned  wi th
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d e c i s i o n  m a k i n g  a n d  t h e  s t a g i n g  o f  d a t a  f o r  t h e  f u n c t i o n a l
r e s o u r c e s . Taken  toge ther  the  P  and  M ins t ruc t i ons  f o rm a  c lass
o f  n o n - f u n c t i o n a l  ( N F )  i n s t r u c t i o n s . Thus, the  ra t i o  o f  NF  t o  F
and  NF to  f l oa t ing  po in t  may  be  taken  as  an  ind i ca t i on  o f  how
e f f i c i e n t l y  a  m a c h i n e  p e r f o r m s  i t s  p r i m a r y  t a s k ,  w h i c h  i s  F  c l a s s
p r o c e s s i n g .

E v e n  f r o m  t h i s  r e l a t i v e l y  g r o s s  a n a l y s i s  o f  I - s t r e a m s
impor tant  conc lus ions  have  be  drawn concern ing  the  three
a r c h i t e c t u r e s :

1 )  In t roduc t i on  o f  a  base  reg i s ter  address ing  mechanism has
required extra overhead expenditures when making machine
s t a t e  t r a n s i s t i o n s  ( o b s e r v e  t h e  360's h i g h  V - r a t i o )

2 )  Cirect t e s t i n g  o f  o p e r a n d s  i s  m o r e  e f f e c t i v e  t h a n  u s i n g
c o n d i t i o n  c o d e s

3)  The more complex nature of  the program environment
( contro l  and  data  s t ruc tures )  may  contr ibute  t o  the
high NF ratio  observed in more recent  machines.

T h i s  a n a l y s i s  i s  u n a b l e  t o  d i s t i n g u i s h  t h e  f i n e  s t r u c t u r e  o f
resource  usage . Thus, t h e  M - c l a s s  s t a t i s t i c s  i n c l u d e  a s  o v e r h e a d
memory operations, which  in  tasks  such  as  sor t ing  would  be
c o n s i d e r e d  f u n c t i o n a l . A l s o , s p e c i f i c  o p e r a t i o n s  s u c h  a s  s t r i n g
moves and shi ft ing may be used to  perform the same external
f u n c t i o n , b u t  o n e  i s  a r b i t r a r i l y  c o n s i d e r e d  o v e r h e a d  a n d  t h e  o t h e r
f u n c t i o n a l . We hope  that  a  more  de ta i l ed  ins t ruc t i on  s t ream
analys i s  w i l l  a l l ow  us  t o  reso lve  these  ambigu i t i e s  and  make  more
d e f i n i t i v e  s t a t e m e n t s  a b o u t  a r c h i t e c t u r a l  p e r f o r m a n c e .

22



\f
IR

ST
RU

C;
;;

N 
FE

TC
H

c
PR

OC
ED

UR
AL

RE
SO

UR
CE

DE
CO

DE
4

- D
AT

A 
CO

LL
EC

TI
ON

-ii-
ii;c

c- 
I

1 
RE

SO
UR

CE
l
-
-
-
-
-
d
 

un
'n

-
~

-
-
_

b c

EX
EC

UT
IO

N
J 

FU
NC

TI
ON

AL
RE

SO
UR

CE
-I

DA
TA
 C
OL

LE
CT

IO
N 

1

I-
ST

RE
BM
 DA

TA
 CO

LL
EC

TI
ON

Fi
gu

re
.3

.5



7090 [6] 360 [6]
25.1% 15.3%

20.4% 38.3%

49.2% 45.1%

DEC le, [18]
27.7

30.5

41.5

M-Ratio (M/F) 1.96 2.9 1.5

P-Patio (P/F) 0.81 2.5 1.1

NF-Ratio (M+P/F) 2.8 5.5 2.6

CROSS ARCHITECTURE COMPARISON FOR GENERAL TECHNICAL CODE

Figure 3.6



3.3 "Soft" Versus "Hard" Architectures

We have already noted EMMY's ability to emulate traditional
machine architectures. Given optimized emulator code, EMMY drives
the image store of these machines at a significant fraction of the
main store bandwidth. Algebraically: if A is the average number
of image store accesses reqired per image instruction, N is the
number of image instructions emulated per unit time, and B is the
maximum number of accesses that can be made to main store per unit
t ime; then A*N is at least 258 of B. Comparing the performance of
an emulation to the technology of the host's main store is one way -
to obtain a reasonable efficiency estimate that is, to some
degree, technology independent.

In general, a "soft" host can emulate many different image
machines efficiently. In contrast, a "hard" host is designed
specifically to interpret only a single "native" architecture (or
small set of architectures) with similar efficiency. Within a
given technology, of course, a hard host should be more cost
effective than a soft host when emulating its native architecture.
The generality of a soft host need not severely limit its cost
effectiveness, though, as evidenced by EMMY's performance when
emulating 360 machine architecture. The significant question is
whether enough additional performance can be gained by exploiting
the flexibility of a soft host to offset the inherent specific
advantage of a hard host.

This duality is perhaps more visible in the context of a
complete system in which several source languages are to be
evaluated. In hard host systems, the native language must serve
as a "target language" for every source language compiler, though
only this native language need be emulated directly. In soft host
systems, the reverse is true. There is one target language for
each source language, but the soft host must be able to interpret
all of these target languages efficiently.

System development cost in either instance will be roughly
equal. A non-trivial and relatively complex compiler (or set of
compilers) must be created for each desired source language in
systems with a hard host. Given a soft host, however, only a ‘
single comparatively simple compiler (and emulator) is required
for each source language. The cost of the extra component per
source language (the emulator) should be offset by a reduction in
the complexity of the compiler and attendant run-time support.
Further, if nothing can be expressed in an image architecture that
does not have a direct analogue in the source language, then the
impetus for re-coding system (and production) programs in
"assembler language" is removed.
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3 .4  D i rec t ly  Executed  Languages  (DELs)

ye c a l l  a n  i n t e r m e d i a t e  l a n g u a g e  t h a t  i s  t a i l o r e d  t o  a
spec i f i c  s ource :hos t  combinat i on  a  DEL. This notion is similar to
a number of  ideas proposed in other  contexts . An UNCOL, or
"Universa l  Compi l e r  Or iented  Language" ,  i s  an  in termed ia te
language designed for maximal machine-independence and
p o r t a b i l i t y . I t  n e e d  n o t  b e  " t a i l o r e d " t o  a n y  s p e c i f i c  s o u r c e
language,  however, a n d  e f f i c i e n c y  o f  e x e c u t i o n  i s  u s u a l l y
s a c r i f i c e d  t o  o b t a i n  i n d e p e n d e n c e  o f  t h e  h o s t  m a c h i n e  [19].

A "Machine Oriented Language" , d e s i g n e d  t o  a l l o w  u s e r s  t o
i n t e r f a c e  w i t h  a  h o s t  a t  a  l o w  l e v e l ,  i s  r e a l l y  o n l y  " h a l f "  a  D E L .
Al though  we l l - tuned  to  a  spec i f i c  hos t  mach ine ,  i t  mzy not  be  a
g o o d  t a r g e t  l a n g u a g e  f o r  a n y  h i g h  l e v e l ,  u s e r - o r i e n t e d  s o u r c e
l a n g u a g e .  A " H i g h  L e v e l  L a n g u a g e "  a r c h i t e c t u r e  - -  a l s o  c a l l e d  a
"Language Oriented Machine" - -  i s  c l o s e r  t o  o u r  c o n c e p t  o f  a  D E L
~W. I f  t h e  H i g h  L e v e l  L a n g u a g e  a r c h i t e c t u r e  i s  r e a l i z e d
direct ly  in hardware (as is  Bashkow's  FORTRAN machine [21])
however, i t  m a y  b e  t o o  i n f l e x i b l e  f o r  a n y  b u t  i t s  p r e - s e l e c t e d
" n a t i v e " source  language . Our  research  i s  d i re c ted  t oward  sys tems
b a s e d  o n  f l e x i b l e , m i c r o p r o g r a m m a b l e  h o s t s ;  i . e . ,  u n b i a s e d  " s o f t "
hosts like EMMY. EULER, an  in termed ia te  language  f o r  ALCOL:360/30
systems, and the Burroughs "S-languages" for FORTRAN and
COBOL:B-1700 systems are noteworthy examples of DELs as the term
i s  u s e d  h e r e  [22,23].

The  s tudy  o f  DELs inc ludes  language  des ign ,  implementat i on  o f
a s s o c i a t e d  p r o c e s s o r s , a n d  p r e d i c t i o n / a n a l y s i s  o f  p e r f o r m a n c e .
The  goa l  i s  t o  deve lop  methods  f o r  synthes i z ing  a  DEL which
minimizes the space and time required to  evaluate a "typical"  user
program, g i v e n  a  f u l l  s p e c i f i c a t i o n  o f  t h e  s o u r c e  l a n g u a g e  a n d
host  machine. Some of  the aspects  o f  a  system's performance that
can  be  op t imized  by  choos ing  an  " idea l "  DEL are :

1) T h e  s i z e  o f  c o m p i l e r  r e q u i r e d .

2) The t ime needed to  compile  source ,programs.

3) The  s i ze  o f  a  typ i ca l  DEL surrogate .

4) The time needed to execute a DEL surrogate.

5) The  complex i ty  o f  ana lyz ing  a  source  program
b y  o b s e r v i n g  t h e  b e h a v i o r  o f  i t s  s u r r o g a t e .

T h e  f i r s t  f o u r  f a c t o r s  r e f e r  t o  s y s t e m  r e s o u r c e s ;  t h e  f i f t h  r e f e r s
t o " u se r " space and time. A l t h o u g h  u s e  o f  a  s p e c i f i c a l l y  t a i l o r e d
D E L  d o e s  n o t  i m p r o v e  a  s o u r c e  l a n g u a g e  i t s e l f ,  i t  u s u a l l y  l e a d s  t o
a comparatively simple run-time system, permitting more
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transparent program check-out and debug at the source level. This
is particularly important in systems where development and
maintenance costs often exceed actual production costs.

3.4.1 Toward a Theory of DELs

Our results to date, though limited, do provide motivation
for further investigation [1,6,25,34]. An "Existence Theorem" for
non-trivial DELs has been developed by analyzing several different
methods of evaluating programs. It shows that neither the high
level source language for a soft system, nor the primitive
micro-orders of its host machine is an "ideal" DEL -- under
easily satisfied technological assumptions [l].

With respect to the synthesis of "ideal" DELs, we have
established the feasibility of combining register and stack
oriented instruction streams within a single DEL [25]. Even naive
compilers can generate code relatively free of Load/Store
(Push/Pop) overhead instructions by using the set of 'templates',
or generalized instruction formats, resulting from this union.
This is pragmatically significant, since trace-tape statistics
show that the memory-accessing instructions eliminated using this
technique account for 308 of "traditional" instruction streams
[6,14,17].

We have also experimented with the implementation of Direct
Operand Addressing via a Data Feference Table maintained in
microstore. Elements of this table are dope vectors in l-l
correspondence with the named entities in a source program. By
establishing a unique Data Reference Table for each scope
activated during execution -- binding only the size and ordering
of this table during compilation, a minimal number of bits are
required to uniquely identify DEL variables (as operands). In
effect, this reduces the "address space" of a DEL surrogate to
the "name space" of the original source program. The l-l
correspondence between elements of the Data Reference Table and
named entities in a source program also eliminates the problem of
register allocation, significantly reducing the complexity of the
compiler required to translate source code into DEL code [1,25].

There is, however, a time penalty (one microstore cycle per
data access) incurred during execution in order to obtain this
space reduction. Although the time needed to access a simple
variable would be reduced by having the compiler map scalar
variables directly into microstore cells, it would also complicate
the passing of parameters (by reference), and would certainly
introduce some Load/Store overhead instruction units into DEL
code. Difficulties with direct mapping of data are compounded in
partitioned hosts like EMMY, in which different micro-operators
must be used to access main and micro stores. Operand addresses
must be checked to determine the module to which they refer, and a
conditional branch must be executed that is dependent on the
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outcome of this check. The actual data transfer to or from main
store need not impose a large time penalty if it can be overalpped
by other decoding operations [34,35].

Having conducted these preliminary investigations, we were
left with a strong conviction that a DEL derived from the above
theoretical studies would result in dramatic improvements in
system performance -- as compared to traditional machine language
DELs. To test this thesis against "real-world" problems, we have
designed and implemented a DEL specifically tailored to
FORTRAN-II. We expect to use "interpretive probes" imbedded
within the emulator for this DEL to gather statistics on salient
characteristics of user behavior -- in much the same way that we
intend to monitor the use of traditional machine architectures.

3.4.2 The DELtran Design

DELtran is an intermediate text tailored to FORTRAN-II as a
source language and EMMY as a host machine. It is designed to
optimize space and time during execution subject to the following
compilation constraints:

1) At most, two passes over the source code be required --
the first pass to generate a Symbol Table; the second pass
to produce the DELtran equivalent for the FORTRAN source.

2) The time needed to generate DELtran code be linear
with respect to the number of source program operators.

3) There be a simple correspondence between FORTRAN-II
and DELtran operators (including built-in functions).

4) There be a simple correspondence between explicitly
named entities (i.e., variables, labels, constants, etc.)
in a FORTRAM-II source program and explicitly referenced
items in its DELtran surrogate.

Although all of the features in FORTRAN-II are captured by
DELtran, not all I/O and Floating Point operators are implemented
at this time. The total program and data space for DELtran is
limited to the 64K bytes of existing main store, and no more than
about 2000 distinct named entities are permitted in a single
source program. However, some FORTRAN restrictions have been
removed: any expression may be used as an array subscript;
procedure names may be passed as arguments; subprocedures can be
defined within the body of an enclosing procedure (or MAIN): and
no "run-time" subroutine library is required (built-in functions
are implemented in micro-code).
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3.4.3 General Structure

3.4.3.1 Control Structure

DELtran programs are linear arrays of "instruction units"
stored at the upper end of EMMY's main memory. COMMON and LOCAL
data is stored at the lower end of main memory, just above a 64
word LIFO evaluation stack. The emulator for DELtran occupies
less than 2K words of microstore, including all I/O and Floating
Point operators (not all of which are implemented in the current
version, which takes less than 800 words of microstore). The
upper 2K words of microstore are reserved for Data Reference
Tables. Given an asynchronous Block-Access Controller that moves
segments between main and micro stores using bus access
interleaving (a device anticipated in the design of DELtran, but
not yet implemented on the Stanford EMMY), Data Reference Table
requirements could be reduced to 256 words. In this case, the
entire emulator -- including all I/O and Floating Point operators
-- would fit within 2K words of microstore.

Individual instruction units vary from 8 to more than 32 bits
in length, and may be packed into one or more words of physical
storage. Each instruction unit is composed of one or more
sub-fields, called "syllables", each of which must lie entirely
within a single storage word. Syllables within a given
instruction unit are use-ordered with respect to the emulation
process to minimize the size of the emulator's internal state and
make effective use of scarce host resources.

A typical flow of control during emulation of an instruction
unit might be:

1) Decode a leading "template" syllable, and transfer to a
micro-routine that: decodes any explicit references,
fetches operand values, calculates the result address
(if any) I and establishes a standard interface.

2) Decode deferred operator syllable, and transfer to the
micro-routine which performs the required function --
this routine decodes references for, and fetches values
of, deferred operand syllables.

3) Store the result and check for exceptional conditions,
if required, and start emulating the next instruction
unit at Step 1.

This general sequence would vary in terms of the number of
explicit reference syllales decoded, operand values fetched, etc.,
depending on the specific codes in the instruction unit being
executed. Also, the lead syllable may be an immediate program
control operator (these are encoded along with interface
specifications due to the observed frequency of Branch/Test
instructions in the instruction streams for traditional
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architectures).

The nature of DELtran is such that almost any sensible
DELtran program can be directly expressed in FORTRAN-II (the only
exception here is that an implicit evaluation stack can be
manipulated in DELtran in ways not permitted in FORTRAN-II,
however, this is easily remedied by a few changes in source
language syntax). Its basic superstructure appears to be suitable
for most high-level, block-structured source languages, although
the existing CALL/RETURN and data accessing code would have to be
augmented to support recursion and dynamic storage allocation and
reclamation.

3.3.4.2 Instruction Unit and Data Structure

DELtran instructions always begin with a leading syllable
that is 5 bits wide. This syllable indicates whether an
instruction is:

1) a program control operation (like "GOTO" or "CALL")

2) a binary template (for operators like "+" and "*")

3) a unary template (for operators like "FIX" and "EXP")

4) a null template (for operators like "REWIND").

There are 10 program control operators (including "MOVE", which
performs simple scalar assignments), 15 binary templates, 5 unary
templates, and the null template -- leaving one unused leading
syllable code. Program control templates directly invoke a unique
semantic routine for each of the 10 possible control operations.
Binary and unary templates parse operand reference syllables
appearing explicitly within an instruction unit, decode a four bit
"deferred operator" syllable, and transfer control to the
micro-routine that implements this deferred operator. The null
template merely decodes a three bit deferred operator and branches
to an appropriate micro-routine. There is a different
interpretation of deferred operator codes for binary, unary, and
null templates -- so that the same code may ,stand for different
operators in different contexts. Only the zero-code has an
invariant meaning -- "fetch the next instruction word".

Explicit operand references are n-bit codes (where n depends
on the size of the current scope -- i.e., the number of entries in
the active DRT). An internal host register '9" contains the base
address of the current Data Reference Table and value of n. This
register is saved and restored by the execution semantics for CALL
and RETURN.

The dope vector for a variable with reference code "z" is
located at "S + z - 1" in microstore. The upper byte of each dope
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vector contains a code defining the “shape” of the data to which
it refers, while the lower three bytes contain the address of the
cell in which this data item is stored. “Shape” refers to the
elementary size and address units for a DELtran variable.
halfword,

Byte,
and fullword (32 bit) signed integers, and halfword and

fullword floating point numbers are permitted. Both one and two
dimensional arrays are stored as linear sequences of data
elements.

The shape of an array is consistent with the size of its
elements: i.e., arrays of halfwords are addressed in halfword
increments, arrays of fullwords in fullword increments. All
iTapping of shaped addresses and alignment of values is performed
asynchronously by EMMY’s main memory control unit. The internal
representation of integers and floating numbers is such that all
permissable shapes can be treated in a uniform manner by execution
routines. Conversion between shapes for Load/Store operations is
performed entirely within the main memory control unit, b~ced W-I
the information contained in the upper byte of the dope vector for
any given data element. The “zeroth” word of a two dimensional
array contains a left-justified multiplier for the higher order
subscript value, which is used by array accessing operators to
linearize references to two dimensional arrays.

Not all operand references appear explicitly within the
DELtran instruction stream, however. Both binary and unary
templates may desiqnate one or both operands (and/or the result
location) as “implicit”. Implicit values are kept on a 64 element
LIFO stack in main store: the upper 5 bits of environment vector
” s ” point to the top element on this stack. The length of all
intermedate results is assumed to be one word, so shape-typinq of
stack entries is not required.

The evaluation stack is maintained in main store for the zame
reason that scalar values are not kept in micro store: the t iTe
needed to distinguish between main and micro store addresses
exceeds the time required to complete a main store access, and
substantial space-time compression results from treating all
addresses in a consistent manner. Additionally, we would not be
able to take advantage of the mapping capabilities of the main
store control unit for data maintained in microstore. In general,
we have tried to reference variables in the most direct manner
possible: consistent with the requirements of FORTRAN-II (e.g.,
COMMON and EQUIVALENCE specifications, and the “by-reference;’
calling convention), and the inherent limitations and capabilities
of the chosen host.

The interface between binary templates and deferred operators
consists of three host registers designated “p”, “q”, and “r”.
” P ” contains the value of the first operand, “q” the value of the
second operand, and “r” the location of the result.
” r ‘I

Only “p” and
have meaning for unary templates, and the interface for the

null template is empty (i.e., no requirements on “p”, “q”, or
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Deferred operators are categorized as being "binary" (two
operands, one result) or "unary" (one operand, one result). The
algebraic type (integer or floating point) of an operand is not
checked dynamically due to the time penalty for doing so, and
because FORTRAN is such a strongly typed language in its own
right. Hence, there are seperate operators for integer and
floating arithmetic functions. However, the main memory control
unit for EMMY manipulates values so that the same semantic
routines (and hence operator codes) can be used for byte,
halfword, or fullword operations.

3.4.4 Preliminary Results

The prototype EMMY, operating at an internal clock rate of 50
ns., executes DELtran code at 60-80 thousand instruction units per
second. For a FORTRAN version of the 8-Queens problem [40], this
is equivalent to 50-65 thousand lines of source code per second.
Static comparisons with 360 code (as generated by the FORTRAN-IV
compiler with OPT=O2, excluding the standard epilogue/prologue and
address constant space) indicate program space compression factors
on the order of 4-10. Higher static compression factors are
possible for short subroutines with several arguments, or which
are rich in program control or multi-dimensional array operators.
Examination of code generated for arithmetic expressions appears
to justify only a compression factor of 2-5. Although in some
cases the system 360 optimizing compiler generates extra in-line
code in order to reduce execution time, further study is required
to account for the high compression factors observed thus far. An
average of 3.5-4.5 360 instructions (median = 4) are required to
duplicate the function of a single DELtran instruction unit.

In comparison to Bashkow's code, DELtran programs occupy an
average of 4-6 times less space. There are some significant
differences between the source language specifications assumed in
the designs of these two DELs, however. No procedure CALL-RETURN
operators are implemented in the Bashkow machine, and not all of
the built-in functions permitted in DELtran are accepted in his
machine. Further, Bashkow's machine operates only on 16 bit
entities (all floating point internally), while DELtran captures a
far wider range of numeric types. Hence, our comparison is
limited to the examples presented in [21].

We have also compared DELtran to a stack machine for FORTRAN
(based on a 16 bit uniform syllable length) designed by McClure in
1968 [24]. Space compression factors of 2.5-10 occur for sample
code fragments, the average being 5.5 (median 5). This DEL
implements the full FORTRAN language and is intended for
production applications. However, its design is highly
constrained by the architecture of the 16 bit minicomputer
selected as a host; part of the space compression observed here is
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probably due to the greater flexibility of the host for DI.Ltran.

Clearly, we cannot properly compare execution times for the
above DELs with DELtran, since the host technology is an
overriding consideration in this question. However, we can
compare execution times for DELtran and 360 machine code DELs when
both are being emulated on EMMY: register-to-register 360
instructions require about 20% less time than the equivalent
CELtran instruction units; reqister-to-memory instructions require
almost the same time: program control instructions take 20 to-500%
longer; and references to built-in functions may take several
thousand per cent longer in 360 code than in DELtran. Preliminary
data indicate a speed-up factor of 4-12 for simple programs --
perhaps 30 (or more) to 1 for programs invoking more complex
functions such as logarithms, cxponentiation, etc. Again,
additional experimentation is required to verify this result. A
production version of EMMY, incorporating some of the
implementation enhancements discussed in the next section, would
execute DELtran at 150 to 200 thousand instruction units per
second. The percentage improvement in DELtran execution that
would be realized on an enhanced machine is higher than that for
360 code because greater use can be made of the increased
parallelism and overlapped operation.

A cross-compiler for translating FORTRAN into DELtran is
under development. It is expected that this compiler will take 2G
to 100 times less time than the system 360 optimizing compiler.
The next block of experiments will involve about 50C lines of
FORTRAN code, selected from a library of standard benchmarks, and
about 1000 lines of FORTRAN code extracted from the data base used
by Knuth in deriving his statistics [26].
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3.5 Laboratory Enhancements

Use of the laboratory hardware has indicated several areas
where the EMMY system might be enhanced technologicaly and
structurally [37]. From a technological point of view, there are
two possibilities. First, it appears feasible to reduce the
current 35 nsec internal cycle time to 30 nsec by using a printed
circuit interconnection rather than wire wrap. Second a static,
bipolar control store may be substituted for the current
psuedo-static implementation. Although both control stores have
approximately the same access time (70 nsec) the current control
store has a 130 nsec recovery time. In situations where control
store is accessed explicitly for data this recovery period delays
the start of the following microinstruction fetch. Taken
together, these two changes would increase the effective
microinstruction execution rate by 40 percent.

Structurally, we are examining several schemes to improve the
field handling and decoding capabilities of the machine.
Currently the shift/rotate unit executes a single shift step every
machine cycle (35 nsec). Doubling the shift rate would increase
performance by about 10 percent. If a barrel shift capability of
one to eight bits was included performance enhancement in critical
decode operations would be enhanced by about 40 percent.

We are continuing to study the ways in which host machines
might be structured with the objective of attaining real time or
hyper-real time emulation of third generation machines [38].
Execution rates of one to five MIPS seem possible in a highly
overlapped system.
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4.0 Conclusions

A universal host machine and its laboratory environment has
been described. The experiments conducted so far indicate that a
universal host machine, particularly the Emmy, can be a useful
realization of both hard and soft target machines. Experience
gained with both hardware and software tools shows that direct
user microprogramming can be used effectively in the experimental
environment.
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