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ABSTRACT

The Stanford Enulation Laboratory is designed to
support general research in the area of emulation.
Central to the laboratory is a universal host
machine, the EMW, whi ch has been desi gned
specifically to be an unbi ased, yet efficient ost
for a wde range of target machine architectures.

M crostore In the EMWY IS dynami cal | y
m croprogranmmable and thus is used as the primary
data storage resource of the enulator. Q her

| aboratory equi pment includes a reconfigurable main
menory systemand an independent control processor
to nonitor emul ation experiments. Labor at ory
software, including two nicroassenblers, is briefly
descri bed.

Three laboratory applications are descri bed: (1) A
conventional target machine enulation (a system
360), (2) ‘'mcroscopic’ exam nation of enulated
target machine I|-streans, and (3) Direct execution
of a high level |anguage (Fortran I1).

Keywords: Enulation, Universal Host Machine, Dynamic
Microprogramming, Directly Execut ed Languages,
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1. Introduction

In recent years attention in microprogramming has been on the
production environment. Machine designers have viewed
microprogramming as a means of easing implementation problems and
providing a limited amount of flexibility to accomodate
compatability requirements among various machines in a
manufacturer” line. Microprogrammable machines designed for this
environment are thus fairly specific to their task and usually
exhibit little flexibility with respect to the full range of
machine architectures.

In this paper microprogramming is examined in a different
environment, that of research and education. Central to this is a
‘universal host machine” that is, a machine which is capable of
efficiently emulating a wide variety of “target” machine
organizations. By taking advantage of fast read write memory, the
host machine provides the user with an architectrually <“soft”
system which he may structure via microprogramming to his specific
requirements. In the following we discuss the Stanford host
machine, EMMY, its software tools, and the current status of
several typical emulation experiments.

1.1 The Research and Educational Environment

The principal environment is an experimental one, emphasizing
studies on:

1) Emulation of novel, obsolete and ‘paper” machines for the
purpose of exposition,

2) Analysis of architectures via emulation and dynamic
acquisition of performance data, and

3) Development of soft architectures which efficiently reflect
artifacts of higher level languages in their use of hardware
resources.

With respect to the first area, the laboratory will make available
a wide variety of machines. In addition to presenting real but
outdated machines (e.qg. IBM 1401) the emulation laboratory
provides an effective realization of “paper” machines, such as
MIX, or the users” own creations. Aside from economic
considerations, the laboratory standardizes access to these
machines and thus allows the user to be more concerned with basic
architectural Eeatures of the target machine rather than
bookkeeping details. In this environment the ease with which
laboratory hardware and software can be used is a more important
consideration than speed.
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Architectural analysis implies direct insight into the
instruction characteristics of target machine architectures.
Initially, the experimenter constructs an emulator for a target
machine of interest. This emulator is then be modified to collect
statistics relating to the target machine™ performance during
emulated target machine execution. We expect this mode of
instruction stream examination to be more effective and less
costly than current software (i.e. trace tape evaluations) or
hardware monitoring techniques. For this application we are
particularaly interested in affording the experimenter efficient
emulator representation and respectable target machine
performance.

Another experimental situation is that of developing “soft”
machine architectures. In particular it has been demonstrated
that many computational situations proceed more efficiently when
executed at a relatively high interpretive level rather than via
the usual compilation and machine language interpretation
procedure [1]. This direct execution is accomplished by designing
an intermediate or “Directly Executed Language (DEL) ' to stand
between the microlanguage associated with the hardware resources
and the high-level language associated with the problem
envircnment.

1.2 Discussion of Laboratory Characteristics

Central to the emulation laboratory is the use of a
‘universal” host machine. Such a machine should be capable of
efficiently emulating a wide range of conventionally structured
‘target” machines. With the recent introduction of high speed
read-wr i te LSl memories (both bipolar and fast MOS), the
possibility of such a host machine with flexibly programmed state
transistions has become a reality. Correspondinaly, two new
architectural concepts have been developed: the “oft” computer
organization and <dynamic microprogramming’

Soft architectures, such as the Nanaodata ¢(M-11[2] and the
Burroughs R1700 [3], are machine organizations which allow the
user to structure the primitive computational and storage
resources available in a way best suited to a particular target
machine» requirements. In particular we may identify the
following desirable characteristics of such soft machines*

1) Bit field handling and selection,

2) Flexible, high speed shift and rotate capability,

3) Extensive bit testing, and

4) Flexible data path specification (usually via residual

control).

Our previous investigations of host machine architecture [4,5]
have shown these features to be useful in both emulation and
interpretive computation situations.



Soft architectures can be enhanced through the use of
'dynamic microprogramming' [7] in which the read-write control
store is used, not only for microprogram storaqe, but also as the
primary data storage resource of the system. This technique is a
natural technological extension of previous control store
applications. Briefly we may classify the use of microproaramminag
in current target machine architectures as beina either
implementation or extension oriented. Implementation oriented
systems, such as the 361) series, make use of ROM control stores
for the purpose of structuring the machine design. ROM memory by
nature is not very flexible and changes, while clearly less costly
than in corresponding hardwired implementations, must still be
infrequent. The HP2100 [9] series of microprogramable machine
typifies the extension oriented use of microprogrammed
organizations. RAN control store in these machines is easily
written via an external 1I/O bus but is not conveniently accessible
to the microprogram in real time, thus preventing its effective
use as a data storage medium.

In a dynamically microprogrammed machine the control store is
directly accessible by the microprogrammer for data storaqge in
much the same sense that main memory is accessible to the assembly
lanquage programmer in conventional machines. In addition, we
have assumed that this store is accessible to external devices on
a shared basis via the processor bus system. Thus, we term this
storage level 'microstore' since its function goes well beyond
control. The combination of these accessing capabilities provides
several advantages:

1) Microstore now becomes the primary storage medium
(with respect to access time) for data as well as
microprogram. This allows the microprogrammer a continuum
of trade-offs between microprogram and data storage.

2) Since the microstore may be externally loaded via the
system bus it is possible to quickly load and replace
different emulators.

3) The two level random access memory structure (i.e. main
memory and microstore) allows the microstore to
function as an “explicit cache” Access to target machine
data and instructions can be shortened by explicitly
maintaining locally used memory storage contents in
control store. In a later section we discuss the efficient
use of this capability under an interpretive computation
discipline.

Our notion of the emulation laboratory is that it should
provide the user with a system which he can structure to a
particular emulation task. To complement this capability the user
must be able to observe the operation of the target machine
emulator at a fairly detailed level. Therefore, the laboratory
should include both software and hardware tools to support user



access to, 2and control of, the host machine. Specifically, he
should be able to access all system storage locations such as main
memory and microstore. The Stanfcrd laboratory supports access by
makina use of a separate laboratory control processor which is
independent of the host machine. This arrangement affords the
experimenter a flexible observation tool with the added advantage

of allowing the host machine to ke used exclusively for the
erulation task.



2. Tools

In the following section we discuss the hardware and software
tools available to the experimenter in the Stanford Emulation
Laboratory.

2.1 Hardware

The laboratory host processor, the EMMY [26], is based on a
32 bit wide microstore word which serves both as the data and
microinstruction word width. The microstore itself contains 4096
words and has a basic access time of 60 nsec and a cycle time of
180 nsec. Within the CPU are eight general purpose registers, one
of which contains the machine state word. External access is via
a 32 bit data bus which supports direct access to 16M locations.
All address and data arithmetic in the CPU is two's complement.

2.1.1 The Laboratory System

Figure 2.1 schematically illustrates the laboratory and the
interconnection of the various units. Essentially, there are
three sub-systems each organized about one of the bus systems:

1) Host bus system,
2) Auxiliary bus system, and
3) Control processor system.

Primary communication between laboratory units takes place
over the host bus system which interconnects the EMMY CPU and its
immediate peripherals [29]. This bus system is a 32 bit wide,
bidirectional communication path which makes use of a fully
interlocked asynchronous control discipline. Under this
discipline the bus appears as a resource, and any electrically and
logically capable bus unit may seize the bus for the purposes of
transferring data. Thirty-two bits of address information
consisting of an eight bit command, an eight bit unit address and
a 16 bit internal address may be sent simultaneously to all bus
units. Thus 16M locations are directly accessible to the
mlicroprogramnmer.

The host bus system consists of the following units:

1) EMMY CPU and 4K microstore,

2) 64K byte main memory system,

3) Auxiliary bus interface,

4) Maintenance console,

5) Control processor interface, and
6) Block access controller.



in addition to acting as a master device and activelv
accessing the host bus, the EMMY CPU and its associated microstore
may act as a 'slave' unit and be accessed by other bus units.
Specifically, all microstore locations and the eight CPU general
purpose registers may be read or written by the control processor,
thus facilitating the loading of microprograms and the control cf
experiments.

¥ain memory may be configured to represent the main memory
system of the target machine [30]. One, two, three and four byte
access options are available. Data reformatting includes left or
riaht justification and sign extension. Since the main memory is
able to handle these elementary, repetitive operations in parallel
with EMMY processing, emulator performance is enhanced.

A block access controller allows transfer of data blocks
between any two bus system units. This device supports explicit
cagina of data between microstore and main memory.

The host bus system will communicate with conventional
terigheral units situated on the auxiliary bus system via a bus
translation device. Auxiliary bus peripherals will include disk
and maanetic tape storage units which will stand in the place cf
similar target machine units. Currently, we are nlannino to
desiagn a bus translator to interface the host bus-with the PDE-11
Unibus (P) system [39], since the host bus is electrically and
logically similar. This interface will allow us to use relatively
low cost, mass produced peripheral units in our system. In using
the laboratory the experimenter will access these peripheral units
through microprogrammed subroutines which will make these units
appear to be functionallv equivalent to those of the particular
target machine being emulated.

An important user feature of the laboratory, particularaly in
the interactive educational research environment, is the

independent control processor. In our current system the control
processor is a Datapoint 2200 (R), which is a character oriented
‘intelligent’ terminal. This processor has its own internal

memory and communicates with relatively low speed peripherals via
its own byte width bus system. Since the control processor has
direct access to the host bus storage locations, particularly main
memory and microstore, the experimenter has a convenient means of
initializing, controlling and analyzing the results of an
experimental run. Ry using this independent access capability an
experiment can be partitioned so that the EMMY CPU deals mainly
with its emulation aspects and the Datapoint 2200 is used for
control purposes.

2.1.2 The EMMY CPU

The EMMY CPU was designed, within relatively severe cost
constraints, to be an efficient, yet unbiased, host machine.



Flexibility is achieved through the use of microprogramming and
low cost has been maintained by relying heavily on LSI in both the
memory and processor design.

2.1.2.1 General Principles

Figure 2.2 illustrates schematically the funtional aspects of
the host machine organization. In order to make efficient use of
the rather short microinstruction word (32 bits) we have
introduced a degree of parallelism internal to each
microinstruction. This is accomplished by partitioning the
primitive host machine resources into three classes and
controlling each class of resources with a separate finite state
machine. Each finite state machine receives control information
from the current microinstruction word and is responsible for
controlling resources associated with one instruction class.
Resources are partitioned in a manner which roughly reflects the
requirements of conventional target machines [6]:

1) T-machine - controls functional resources,
2) A-machine - controls storage resources, and
3) I-machine - controls microinstruction sequencing.

In addition, there is a fourth machine which is responsible for
bus oriented transactions and operates independently of the other
three.

The eight general purpose registers are the primary state
storage mechanism of the host machine. The T-machine, in
particular, is only capable of manipulating register data, while
the A-machine (which is able to access registers, microstore and
the system bus) is used to move data between the registers and
other storage resources. State information to explictly direct
the microinstruction sequencing is maintained in register 0 of the
general purpose register file and is accessible to the I-machine.

Microinstructions in the host machine are divided
approximately in half so that one half (the T control field or
TCF) controls the T-machine and the other half (the A control
field or ACF) controls the A-machine. The TCF is 14 bits in width
and the ACF is 18 bits in width. Either half may be used
optionally to modify the normal implicit sequential
microinstruction fetching of the I-machine. Additionally, the aCF
half may be used as immediate data by the T-machine resources on
certain instructions. Thus, we have what amounts to five general
types of microinstruction formats:



TCF Half ACF Half

1) T-control Immediate data
2) T-control A-control
3) T-control I-control
4) I-control A-control
5) I-control I-control

By structuring the microinstruction set in this manner we have
obtained two objectives: explicit and independent control of the
nrimitive resources and low level parallelism reflecting
concurrence in conventionally structured tarcet machines.

2.1.2.2 T-machine Instructions

T-machine instructions provide the microproarammer with the
basic functional operations necessary to emulate the
transformational and control aspects of a target machine.
Instructions for the T-machine may be divided into five classes as
follows:

Logical,

Arithmetic,

Shift and Rotate,

Extended Arithmetic, and

Field Insertion and Extraction.

U W o
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Figure 2.3 outlines the opcode format for T-machine instructions.
Functionally, these instructions require two (or sometimes three)
operands and produce a single result which is returned to the
register file. One of these operands is from the register file
and the other may be either a register or immediate data from the
ACF half cf the microinstruction. For the first four instruction
classes a four bit opcode further defines the operation.

Insert/Extract instructions are designed specifically for
field handling and reguire two register operands and immediate
data from the ACF half word. In these operations a source operand
is rotated by a specified amount and combined under maskina.
designated by the ACF half word with the destination operand. On
Extract instructions the destination operand register is cleared
before the operation takes place, with the effect that the masked
field from the first operand is isolated for further processing.

Extended Arithmetic operations are single step fragments of
frequently used arithmetic operations such as multiply, divide and
decimal-binary conversion. Using these microinstructions
iteratively the microprogrammer can build complex target machine
operations efficiently.



2.1.2.3 A-machine Instructions

A-machine instructions are used by the microprogrammer to
access microstore, manipulate address pointers and communicate
with external devices. Four classes of A-machine instructions are
defined:

Move data between registers and microstore,
Load a register with immediate data,

Access memory indirectly, and

Manipulate pointers (and test results).

> W N

Figure 2.4 illustrates the way in which the ACF half of the
microinstruction word is used to specify the A-machine
instruction. For the first two classes of A-machine instruction
two fields are used to specify the register and a microstore
address (or immediate data). For the remaining instruction
classes two register operands, an opcode and an immediate data
value are specified.

Indirect memory operations control the movement of data
between the register file, microstore and the host bus system.
When external memory operations are initiated by the A-machine
they are completed independently by the host bus access machine.
This is an important source of parallelism since it allows the
host machine to continue processing of microinstructions. Pointer
manipulation instructions perform arithmetic on the reagisters for
address calculation.

2.1.2.4 I-machine Instructions

Fetching of the next microinstruction is controlled by the
I-machine. Normally microinstructions are fetched from the next
sequential microstore location. The actual location of the fetch
is maintained in register 0 of the general purpose register file
and thus may be modified explictly by both T- and A-machine
instructions.

There are three classes of I-machine instructions determining
the sequence of microinstruction fetching:

1) Conditional,
2) Branching, and
3) Looping.

The formats for these instructions are cutlined in figqure 2.5.

Conditional instructions are specified in the TCF half word
and consist of two fields: a conditional mask field and a test
specification. Within the state word (register 0) are eight bits
which record various aspects of the previous microinstruction



cycle. The mask field specifies which of these hits are to ke
examined, and the test specification field describes whether the
test is valid if any or all masked bits are set and the sense of
the result. 1If the test is valid then the A-machine instruction
defined by the ACF half word is executed, otherwice, it is
skipped. Thus, the microprogrammer has the capability of
srecifying conditional jumps, memory access, external operations
and so forth.

Branching operations are defined in the ACF half word and, as
indicated by their format, are similar to the conditional
instructions. The result of a valid test in the case of a kranch
instruction is modification of the microaddress register bv the
armount given in the value field.

Looping is another aspect of the pointer modification
instruction. In addition to the pointer modification the
rrogrammer may test the result for one of the common arithmetic
condition (e.qg. less than zero) and, if valid, modify the
microaddress register as in the branch instruction. Thus, the
ricroprogrammer has the capability of defining short counting
loops. In fact, the emulation of a target machine multiply
instruction usually requires only one microinstruction since the
TCF half word may specify a single bit multiply and the ACF wav
specify repetition for a particular word length.

Figure 2.6 illustrates the 32 bit machine state word which is
maintained in register 0. These are four fields of importance:

1) Condition codes (8 bits)
2) Indicator codes (8 bits)
3) State (4 bits)
4) Micro Address Reg (12 bits)

Condition codes reflect the results of previous processor
operations and are directly testable via the conditional and
branch instructions. 1Indicator codes are testable in the same
ranner but are set by the programmer and remain undisturbed by
changing processor conditions. Indicator codes have proven useful
fcr storing intermediate information about target machine
conditions (such as current word alignment). Two state bits are
specified in the state field which define the condition of
interrupts and whether the machine is running or halted. Lastly,
12 bits are set asside as the Micro Address Register and define
the next loactaion from which the I-machine will fetch a
microinstruction.

2.1.2.5 Host Bus Machine
Implicit in the design of the CPU is a fourth machine, the
host bus machine. This machine handles the transactions which

occur between the CPU and the external devices located on the host
hus. Tasks which this mechine performs include:

10



1) CPU access (read and write) to external devices,

2) Access to CPU registers and microstore by external
devices, and

3) Interrupts generated by external devices.

CPU generated accesses are handled in an overlapped fashion by
this machine, that is, once a bus access is initiated, the CPU may
proceed with microexecution while awaiting results. External
access to CPU storage resources by other bus devices, particularly
the console and control processor interface, are processed by the
host bus machine on a shared basis with CPU requests.

Although many micromachines do not make allowances for direct
interrupts from external sources, we felt it was necesary in the
laboratory environment to provide prompt service to dynamic
peripherals such as disk and drum. The interrupt mechanism is
guite simple: a device requiring service gains control of the bus
system as it would for a normal data transfer. It then sends an
interrupt command and a CPU microstore address. In processing the
interrupt the CPU stores the current contents of register 0 (the
state word) in the given location and loads register 0 with the
contents of the associated even-odd microstore location. This
procedure thus preserves the o0ld machine state and initiates a new
state immediately.

2.1.3 Hardware Technology

The EMMY CPU, including register file and ALU, is implemented
using MECL 10K (R) series ECL logic. required in electrical and
mechanical design was more than offset by the speed and functional
simplicity which ECL affords. The current micromemory is fast
n-channel MOS structured around 1K by 1 bit chips (AMS 7001). BRus
logic is open collector TTL.

Physically, the CPU is contained on one 15" x 15" wire
wrapped board. The microstore requires one additional board while
the bus interface cards for specific units are built on
conventional 7" x 10" wire wrap cards.

2.2 Software

Software is designed to be primarily user oriented. In
figure 2.7 the software environment of the initial system is
illustrated. At the outset, user effort will center on the
development of specific target machine emulators and target
machine programs, a task which can be supported most efficiently
by a remotely located interactive system. The experimenter uses
the laboratory control processor to load programs from the remote
data base and to monitor the experiment. If desired, results of
the experiment can be returned to the remote system for 'off line'
examination and analysis. 1In effect, the laboratory system

11



consists of three computational devices:

1) F.emote System -- Interactive data base development
2) Control Processor =-- User oriented control functions
3) EMMY CPU -- Target machine emulation

2.2.1 Microassemblers

Since EMMY is to be a research oriented tool available to a
larger number of users, it is important to provide users with a
relatively easy to use microassembler. Thus, we developed a
register transfer language similar in many respects to PL360 [10].
Although this prevents a programmer from exercising explicit
control over the microinstruction content at the bit level, it
substantially simplifies programming. Using this language, which
is called EMMYPL [31,40], it is only necessary for the
microprogrammer to be aware of the general resource and memory
structure of EMMY. The EMMYPL compiler then undertakes the
construction of programmer specifiied functions in an efficient
manner. Although this is done only on a local basis in the
microcode, the results to date have been good enough to justify
its wuse in situations where implementation ease is more important
than performance.

In situations where performance is very important another
microassembler, EMMYXL, is available [32,41]. While basically
using a register transfer format, EMMYXL requires the user to
state explicitly the form and function of each microinstruction.
Since each 'half' of an EMMY microinstruction may be explicitly
defined, the high packing density necessary for efficient code
results.

Figure 2.8 shows a short example of EMMYXL and EMMYPL taken
from two separate 360 series emulators. 1In both examples the
microprogrammer deals directly with EMMY resources through the
register transfer notation. 1In the EMMYXL example the hybrid
format of the microinstruction is explict since each line of code
represents one and only one microinstruction. 1In EMMYPL the exact
nature of the microinstruction is unimportant and the
microprogrammer specifies only the function desired. Thus, one
line of code may represent more or less than one EMMY
microinstruction.

Both microassemblers currently run on the campus computer
center's 370 system.
2.2.2 Laboratory Control Frogram

The system also includes a control program, called EMMYCS

[33], which assists the user in establishing and monitoring an
experiment. The program is resident in the Datapoint 2200 and is

12



primarily concerned with supporting communications between the
user, the EMMY system hardware and external facilities, such as
the university computer center. Since the control processor has
direct access to the registers, microstore and memory resources of
the EMMY system set up and initialization of a experiment requires
no active cooperation of the EMMY.

EMMYOS makes available simple debugging aids to allow the
user to examine and modify microstore and to extablish breakpoints
in the microprogram. 1In addition, the Datapoint 2200 may be
configured as a collection of low speed peripheral units for use
by target machine I/O programs.

13
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LOAD AND STORE INSTRUCTIONS
OP10: .LOAD POSITIVE

XR,IR << 4 ; P=M(XR) .R2 VALUE

PC:=PC+2 ; IRX(PC) .NEXT INSTR

P:=P ; (NEGATIVE => PCOMP )} .TEST FOR NEGATIVE
; M(R) = P .STORE RESULT

MAR :=DECODE .DECODE NEXT INSTR

PCOMP: .COMPLEMENT NEGATIVE NUMBER

XR:=-1 5 S=S-S

s:=s-P ; M(CC)=MAR .2"S COMPLEMENT AND SET COND CODE
; M(R)=S .STORE RESULT

(+OVERFLOW => ; MAR=DECODE)
; MAR=ARITHOFL .HANDLE ARITHMETIC OVERFLOW

6P]2: .LOAD AnD TEST (RR)

XR,IR << 4 ; P=M(XR) .R2 VALUE
PC:=PC+2  ;IR=X(PC) .FETCH NEXT INSTR
P:=P - M(CC)=MAR .TEST AND SET CC
XR:=-1 - M(R)=P .REPLACE R1 VALUE
MAR : =DECODE
EMMYXL
#10: ** LPR;
DO

R2:=X(R1); R5:=M(R7);
IF R5<0 THEN R5:=2R5+1;
SET CC: AGAINOPWAIT:

END;

#11: ** NR;

DO
R2:=X(R1); R5:=M(R7);
IF R5>=0 THEN R5:=-R5+1;
SET_CC; AGAIN OPWAIT:
END;

#12: ** LTR;

DO
R2:=X(R1); R5:-M(R5)+0; SET_CC; AGAIN OPWAIT;
END;

EMMYPL

Note: Both samples of code are from the same section of two different
System 360 emulators. They are nominally (but not exactly)
equivalent from a functional standpoint.

Micro-assembler Examples
Figure 2.6
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3.0 Laboratory Experiments
3.1 'Hard' Processor Emulation

A primary objective of the emulation laboratory is to provide
researchers with access to various architectures. Initially we
are building a repetoire of emulators whose target architectures
are conventionally structure, register oriented machines. We are
interested in this class of machines first because they are in
wide use and, second because one of them, the 360 series, is
likely to become a primary target machine for the laboratory
system. In the following section we describe our experience with
two emulators, the 360 and the INTEL 8080.

3.1.1 360 Emulator

The 360 series emulator currently under development in the
laboratory is intended to be 'class B'[35,42]. That is, valid
360 programs will produce corresponding results on the laboratory
system, while invalid programs may fail in a manner which differs
from that of the actual 360 target machine. Our long term
objective is to emulate all aspects of the 360 system which
directly influence the execution of problem state code and the
most important of the features required by supervisor state code.
Thus, object code directly from user sources, such as the Fortran
compiler, may be processed without intermediate checking or

translation.

For the short term the 360 emulator will only be required to
handle the basic target instruction set (i.e. no floating point or
decimal operations). Of this basic set seventeen instructions
represent about 70% of the instructions encountered in actual
practice and have been given priority in optimization. The
emulator described below is capable of supporting a PL360
submonitor system which will eventually form the basis of the
laboratory operating system. Consideration has been given to
extending the 360 emulator to include virtual addressing [41].

As a 'class B' emulator not all target machine features are
supported. Some of the differences are:

1) No dynamic address translation (360/67)
2) No address exception

3) No protection

4) No boundary restrictions

3.1.1.1 Structure
The 360 emulator is representative of the structure used in

other register oriented, third generation machines we have
examined. Architecturally, the 360 is well suited to emulation in

14



aeneral because the instruction formats are few and regular, and
the opcodes are organized in an orderly, non-overlapping manner.
Furthermore, the information reflecting the current state of the
machine (basically the PSW) may only be accessed explicitly by the
instruction stream, thus enabling the emulator to represent this
information in encoded form for efficiency. Since implicit
referencing (perhaps via addressing) is not allowed, recurring
penalties for checking and reformatting are not necessary.

Figure 3.1 illustrates the basic approach used in structuring
the 360 emulator on the EMMY host machine. The basic stage of
microexecution are:

1) Handling of external interrupts

2) Operation decode

3) Effective address formation

4) Operation execution and instruction prefetch

Although the EMMY CPU accepts direct interrupts from the
external world, it is advantageous in most cases to handle these
interrupts using microcode. In the 360 emulator direct interrupts
are accepted by the CPU during the operation decode and address
formation stages of the basic-emulator loop. Any interrupts
occuring during this time period are mapped into a corresponding
interrupt of the target machine, but no actual processing of the
interrupt will be undertaken until the current target instruction
execution completes. These mapped interrupts are examined by the
emulator at the first stage of each target instruction loop and
are then processed (subject to masking) according to 360
requirements.

Decoding of the target machine instruction proceeds in two
stages:

1) 1 out of 4 decode to determine format
2) 1 out of 256 decode to determine operation

The initial format decode is used to determine which of four
routines will be used to parse the instructions, calculate
addresses and update the target machine program counter. Before
entering the selected routine however, the entire op-code field
(eight bits) is decoded to determine the specific operation
routine which will ultimately be performed. For operation decode
a table of 256 entries is indexed directly from the op-code and
the semantic information retrieved is used to drive the execution
process. This information includes a pointer to the semantic
routine itself, bus control information for the laboratory main
memory system and various indicators which steer the semantic
routine.

Following the decode stage one of four routines is entered to
parse the remainder of the target machine instructions. During
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this process the actual memory system addresses (if required) of
the operands are calculated and saved for the execution routine.

Execution of the semantic routines corresponding to the
op-code is straight forward and relies upon information assembled
in the register file during the previous stages. Exceptional
conditions arising from this execution are handled by the same
machinery which sets up the external interrupts.

During the execution of the routine a fetch is made of the
next target machine instruction. This is done to anticipate the
normal (sequential) flow of the I-stream. In the case of a
conditional branch both potential target instructions are fetched
and the semantic routine selects between them after evaluating the
branch conditions. It is advantageous to fetch from the most
likely target address first, since a penalty is incurred in
awaiting the completion of the second fetch. For operations such
as as BXLE and BCTR this means fetching the branch target first
and the sequential target second.

In figure 3.2 the assignment of EMMY microstore to the
emulation process is shown. Current 360 state information (i.e.
the registers and PSW) occupies 27 locations. Decoding routines,
including the semantic pointers consumes about 300 words, and
finally, 1.5K words are consumed by the semantic routines
themselves. 2K control store words are unused at present and will
be assigned to I/O functions.

We have chosen not to implement the 1/0O structure of the 360
directly, that is, by emulation of such instructions as SIO and
HIO. Rather, the approach has been to handle 1/0O through the
usual convention of a system supervisor call (SVC) which starts
execution of 360 code tailored to the particular 1/0O task and
equipment in the laboratory. The basic 360 instruction set has
been augmented with special I/O op-codes to allow the supervisor
code to initiate and test the status of external actions. The
distributed nature of the laboratory bus allows the main memory
system to operate in a manner functionally equivalent to main
memory in a 360 target system.

3.1.1.2 Emulator Performance

Perforance estimations of the 360 emulator on EMMY [35] are
based on weighted instruction usage measurements. This approach
normalizes the speed differences between the emulator and the hard
machine when processing an actual instruction stream.

Furthermore, under this measure overall emulator performance may
be improved by more efficient emulation of frequently used target
instructions at the expense of those which are less frequently
encountered.
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Figure 3.3 tabulates the instruction execution rates for the
360 emulator and the model 360/50 processor. Qccurrances of these
instructions in actual instruction streams are shown as
percentages of the total stream. In all, these seventeen
instructions comprise 63.4% of the overall I-stream [3]. For
variable length instructions the times have been calculated based
on statistics concerning expected length [14]. This, of course,
is to the benefit of the emulator performance estimate since
instructions such as MVC are able to amortize the overhead of
decude and address calculation over the entire execution cycle.

Based on the instruction stream characteristics given in
figure 3.3 the emulator has an execution rate of 96.9 KIPS and the
360/50 has a corresponding execution rate of 141KIPS. Roughly
speaking then, the emulator has 70% of the computational power of
the target machine. With improvements to the architecture, which
are discussed in the final section, this gap will be closed so
that the emulator has equivalent or slightly greater performance
tnan the hard 360/50.

3.1.1.3 Critique of Emulation Code

Heavily used segments of the 360 emulator have been highly
optimized using EMMYXL to allow explicit definition of each
microinstruction. Thus, this emulator represents a benchmark in
efficient microprogramming of the EMMY CPU.

Since EMMY uses an assymetrical, split microinstruction
format, coding inefficiencies occur when an available
microinstruction 'half' will not serve the required purpose.
Static code analysis shows the following:

1) TCF half unused - - 13 percent
2) ACF half unused -- 4 percent

This implies that about nine percent of the microcode contains
null operations although this actual represents only a 2 percent
time inefficiency, since most null operations consume no execution
time.

Approximately 26 percent of the microinstructions make data
references to the microstore. Eight percent are direct
references, and eighteen percent are indirect references. These
references to microstore are due to its use as the primary storage

resource in the emulation environment.

An average microinstruction consumes 12.7 internal clock
cycles, which is equivalent to 445 nsec. Approximately 12 percent
of the CPU execution time is spent in processing shift/rotate
operations.
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3.1.2 Intel 8080 Enul at or

The results of one pr%iect involving the emulation |aboratory
has been the construction of an enulator for the Intel 8080

m croprocessor [36]. This target machine is an eight bit single
package processor finding wi de application where control rather
than conpuataion is required. The instruction set of this
processor is very orderly and as such provides a |ow end benchnark
for the EMW processor. Also, it is an interesting execise in
scaling down the 32 bit resources of EMW to the 8 and 16 bit

requi renents of the 8080.

. Eight bits specify the opcodes of the 8080 instruction
yiel ding 244 executable conbinations consisting of 76 basic
Instructions and their variations. Since 4K of Mcrostore is
avai l abl e, the approach taken in this emulator has been to perform
a one out of 256 decode. This results in a fetch and decode tinme
of 1.5 usec. Execution of the semantic aspects of the instruction
consumes varing anounts of time as illustrated in figure 3.4.
EMW's 650 nsec main nenory falls between the two RAM menory
systems available for the 8080 system EMW has conparable
performance in a absolute sense. In the future we wll to make a
determnation of instruction frequency distribution in 8080 code
in order to optimze the emulator in the sane manner used on the
360 discussed above.

Total control store space requirenents of the 8080 enul ator
are 1.5 words.
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| NSTRUCTI ON

L 16.1
BC 8.7
BCR 6.9
LA 4.8
ST 3.6
MVC *1* 3.5
LR 2.2
AR 2.2
A 2.0
BXLE 2.0
™ 1.8
LH 1.8
CLC *2* 1.7
BALR 1.6
S 1.6
LM *3% 1.5
MVI 1.4
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*1*  Average length

*2*  Average length
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8080 By, 8080 !
INSTRUCTION  (450NSEC) (650NSEC) ( 850NSEC)

ADD B 2.0 3.0 2.5
INR B 2.5 4.7 3.0
MOV B, C 2.5 2.8 3.0
ANL D8 3.5 3.2 4.5
PUSH B 5.5 3.6 7.0
CALL ADR 8.5 8.6 10.0

1 RAM CYCLE TI ME
2 MAXI MUM MAIN MEMORY CYCLE TIME

COVPARI SON oF 8080 AND EMULATOR TI' M NGS

Figure 3.4



j.. Architectural Evaluation

3.2.1 Introduction

The evaluation of specific machine architectures has
traditionally been a qualitative rather than quantitative pursuit.
while the performance of systems has been studied extensively on a
ylobal or “macro” level, the local or “micro” level has received
little attention. One application area for a universal host
machine, such as EMMY, is in the study of machine architectures
through the microscopic examination of target machine instruction
and data streams. Specifically, the emulation aporoach allows the
experimenter to make detailed and quantitative statements about
how a particular architecture dynamically employs its internal
resources. In a larger sense, such an examination will also
reveal the manner in which the user, either directly or indirectly
(via language translators) maps problem resource requirements onto
available machine resources.

3.2.2 Historical Perspective

Instruction stream analyses of an elementary nature have been
carried out on most major machine architectures. Cpcode frequency
data has been derived for several register oriented second and
third generation machines: IBM 7094 [11], 360 series [12}, RCA 70
(13,14} and the PDP-10 [17].

Lunde [17] in his analysis of the PDP-10 has measured a much
broader range of instruction stream statistics. Of particular
importance is the analysis of data flow through registers and its
relationship to register usage. Rossman and Rao [14] have carried
out extensive analysis of the RCA trace library [13] in order to
provide statistics related primarily to instruction stream
segencing. Statistics, such as the distribution of distance
between setting and testing of condition codes, can be very useful
in designing a high performance, pipelined implementation of a
particular processor.

The instruction stream studies referred to above have all
been carried out on the native machine using trace techniques
augmented, in some cases, with special purpose hardware monitors.
Tracing, as carried out in the above studies, involves execution
of the program to be examined on the native machine. After each
inctruction or, in some cases, an unconditional sequence of
instructions, a record of the relevant machine state is made.
This usually includes current address, instruction op-code,
effective addresses of operands and next instruction address.
Data from the trace is captured on a permanent storage medium
where it is then subject to analysis.
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Tracing has the advantage that a permanent record is
preserved that may be referenced later if a different aspect of
the instruction stream needs to be analyzed. Since the same trace
naY be used nany tines, anomalies such as I/0O access and
mul tiprocessing interruptions may be factored out. Conpl ex
anal yses, such as the "register life' statistics of Lunde [17],
may be carried out efficiently on the static data resulting from
the trace step.

There are, however, limtations to the tracing process.
First, the production of the trace tapes can be expensive and nay
i nvol ve conplex trapping nechani sms or external hardware
monitoring systems. Reductions in processing rates can be in the
order of 50 to 1 [13] or higher. Second, production of the trace
data nmust be carried out on the native machine in order to
generate the proper |-sequences reflecting data dependencies in
the execution process. If a general conparison of several
architectures 1s to be made, availability of the actual hardware
i's beyond the capability of nost facilities. Third, the trace
production process nmust, in order to be efficient, produce output
whi ch has less information than the actual execution produces.
Specifically, the data streamis usually lost, as is information
reflecting internal nmachine states. Al though this information nay
be reconstructed fromthe trace it is usually a formdable task

3.2.3 |-stream Analysis via Emul ation

Emul ation presents a unique opportunity to gather data
related to the instruction execution process. Since an enul ator,
b% definition, tracks all external aspects of a target nachine,
the host nmachine has direct access to this information. Wth al
aspects of the target machine state transformation available the
experimenter may examine as much or as little of the enulation
process as desired.

Such techni ques have been enployed in the study of a specific
architecture (the HP 2100) on a well mapped host machine [15,16].
In one case [15] the experinenter was prinmarily interested in
generating a program trace for debuggi ng purposes. This is
acconpl i shed by m crocoded routines which were inserted in to the
host m croprogram follow ng the instruction decode and address
cal cul ati on phases. Target nachine instruction "accounting” [16]
follows essentially the same approach to collect instruction class
frequency data.

The general process of gathering |-stream data via enulation
is depicted in figure 3.5. Enulation of conventional
architectures consists of an |-fetch/Decode Phase foll owed by the
formation of the effective addresss and finally the actua
execution phase. At each stage data may be collected
corresponding to the procedural, menmory and functional resource
usage. Wth little increase in overhead, mcrocoded host routines
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may undertake preprocessing and correlation of this data. At the
termination of an experiment information is dumped for further
processing and evaluation.

Examples of statistics which may be gathered at each phase of
the emulation process include the following:

1) Frocedural phase

a) Machine state and condition code distribution
b) I-stream diversion resulting from state testing
c) Explicit diversion (i.e. calls and branches)

2) Storage phase

a) Resource usage distribution (registers, memory, stacks)
b) Resource activity (e.g. register life)

3) Functional phase

a) Resource usage distribution (adder, shifter etc.)
b) Serial reusage (e.a. average string length)
c) Usage objective (fixed, floating, indexing)

The classifications above are quite microscopic. At a higher
level we are interested in capturing data which would describe the
way in which resources in each of these classifications would work
together in performing target machine tasks. For example, we
would like to examine the connectivity of and the traffic volume
between the various machine resources. Recurring patterns of
resource usage [17] may also be used to measure the effectiveness
of a target machine in a particular problem environment.

3.2.4 Cross Architectural Evaluations

A universal host machine, such as the EMMY, is particularly
well suited to the task to architectural evaluation outlined
above. Because of its flexible character the EMMY system is able
to carry out an efficient emulation and associated I-stream data
capture for a wide range of target machines. This in turn allows
the experimenter to make cross architectural comparisons of
machine characteristics. Such a comparison has been made for
three machines, the 7090, 360 and PDP-10 [6,18]. Although data
for this comparison was gathered via the trace method, it
illustrates the form such an analysis might take. The basis of
comparison is the analysis of instruction code distributions.

Opcode frequency data is divided into three classes
(procedural (P), memory (M) and functional (F)) and ratios are
taken between the various classes as summarized in figure 3.6. In
a broad sense the P and M class instructions represent overhead in
the computation process in that they are primarily concerned with
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decision making and the staging of data for the functional
resources. Taken together the P and M instructions form a class

of non-functional (NF) instructions. Thus, the ratio of NF to F
and NF to floating point may be taken as an indication of how
efficiently a machine performs its primary task, which is F class

processing.

Even from this relatively gross analysis of I-streams
important conclusions have be drawn concerning the three

architectures:

1) Introduction of a base register addressing mechanism has
required extra overhead expenditures when making machine
state transistions (observe the 36C's high V-ratio)

2) Direct testing of operands is more effective than using
condition codes

3) The more complex nature of the program environment
(control and data structures) may contribute to the
high NF ratio observed in more recent machines.

This analysis is unable to distinguish the fine structure of
resource usage. Thus, the M-class statistics include as overhead
memory operations, which in tasks such as sorting would be
considered functional. Also, specific operations such as string
moves and shifting may be used to perform the same external
function, but one is arbitrarily considered overhead and the other
functional. We hope that a more detailed instruction stream
analysis will allow us to resolve these ambiguities and make more
definitive statements about architectural performance.
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7090 [6]
F 25.1%
P 20.4%
M 49_2%
M-Ratio (M/F) 1.96
P-Patio (P/F) 0.81
NF-Ratio (M+P/F) 2.8

360 [6]

15.3%

38.3%

45.1%

2.9

2.5

5.5

DEC 19 [18]

27.7

30.5

41.5

1.5

1.1

2.6

CROSS ARCHITECTURE COMPARISON FOR GENERAL TECHNICAL CODE

Figure 3.6



3.3 "Soft" Versus "Hard" Architectures

Ve have already noted EMW's ability to enulate traditiona
machi ne architectures. Gven optimzed enulator code, EMW drives
the image store of these machines at a significant fraction of the
main store bandw dth. Al gebraically: if Ais the average nunber
of image store accesses reqired per image instruction, Nis the
nunber of inage instructions enulated per unit tine, and B is the
maxi mum nunmber of accesses that can be nade to main store per unit
time; then A*N is at |east 258 of B. Conparing the performance of
an enulation to the technology of the host's nmain store is one way -
to obtain a reasonable efficiency estimate that is, to sonme
degree, technol ogy independent.

I'n %eneral, a "soft" host can emulate many different inage
machines ef ficiently. In contrast, a "hard" host is designed
specifically to interpret only a single "native" architecture (or
smal | set of architectures) wth sinmilar efficiency. Wthin a
given technol ogy, of course, a hard host should be nore cost
effective than a soft host when emulating its native architecture.
The generality of a soft host need not severely limt its cost

ef fectiveness, though, as evidenced b¥ EMW' s perfornmance when
emul ating 360 machine architecture. he significant question is
whet her enough addi ti onal ﬂerfornance can be gained by exploiting
the flexibility of a soft host to offset the inherent specific
advantage of a hard host.

This duality is perhaps nore visible in the context of a
conplete systemin which several source |anguages are to be
eval uat ed. In hard host systens, the native |anguage nust serve
as a "target |anguage" for everg source Ianguage conpi l er, though
only this native |anguage need be enulated directly. In soft host
systenms, the reverse is true. There is one target |anguage for
each source language, but the soft host must be able to interpret
all of these target |anguages efficiently.

System devel opnent cost in either instance will be roughly
equal. A non-trivial and relatively conplex conpiler (or set of
conpi l ers) nust be created for each desired source |anguage in
systems wWith a hard host. Gven a soft host, however, only a
single conparatively sinple conpiler ?and emul ator) is required
for each source |anguage. The cost of the extra component per
source |anguage gthe emul ator) should be offset by a reduction in
the conplexity of the conpiler and attendant run-time support.
Further, if nothing can be expressed in an image architecture that
does not have a direct analogue in the source |anguage, then the
i npetus for re-coding system (and production) programs in
"assenbl er |anguage" is renoved.
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3.4 Directly Executed Languages (DELs)

wWe call an intermediate language that is tailored to a
specific source:host combination a DEL. This notion is similar to
a number of ideas proposed in other contexts. An UNCOL, or
"Universal Compiler Oriented Language", is an intermediate
language designed for maximal machine-independence and
portability. It need not be "tailored” to any specific source
language, however, and efficiency of execution is usually
sacrificed to obtain independence of the host machine [19].

A "Machine Oriented Language”, designed to allow users to
interface with a host at a low level, is really only "half" a DEL.
Although well-tuned to a specific host machine, it may not be a
good target language for any high level, user-oriented source
language. A "High Level Language"” architecture -- also called a
"Language Oriented Machine” -- is closer to our concept of a DEL
[20]. If the High Level Language architecture is realized
directly in hardware (as is Bashkow's FORTRAN machine [21])
however, it may be too inflexible for any but its pre-selected
"native" source language. Our research is directed toward systems
based on flexible, microprogrammable hosts; i.e., unbiased "soft"
hosts like EMMY. EULER, an intermediate language for ALGOL:360/30
systems, and the Burroughs "S-languages"” for FORTRAN and
COBOL:B-1700 systems are noteworthy examples of DELs as the term
is used here [22,23].

The study of DELs includes language design, implementation of
associated processors, and prediction/analysis of performance.
The goal is to develop methods for synthesizing a DEL which
minimizes the space and time required to evaluate a "typical" user
program, given a full specification of the source language and
host machine. Some of the aspects of a system®™s performance that
can be optimized by choosing an "ideal”" DEL are:

1) The size of compiler required.

2) The time needed to compile source,programs.
3) The size of a typical DEL surrogate.

4) The time needed to execute a DEL surrogate.

5) The complexity of analyzing a source program
by observing the behavior of its surrogate.

The first four factors refer to system resources; the fifth refers
to "user" space and time. Although use of a specifically tailored
DEL does not improve a source language itself, it usually leads to
a comparatively simple run-time system, permitting more
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transparent program check-out and debug at the source |evel. Thi s
is particularly inportant in systens where devel opnent and
mai nt enance costs often exceed actual production costs.

3.4.1 Toward a Theory of DELs

Qur results to date, though limted, do provide notivation
for further investigation {1,6,25,34]. An "Existence Theorent for
non-trivial DELs has been devel oped by anal yzi ng several different

nmet hods of eval uating prograns. It shows that neither the high
| evel source |anguage for a soft system nor the primtive
mcro-orders of its host machine is an "ideal" DEL -- under
easily satisfied technol ogical assunptions [I].

Wth respect to the synthesis of "ideal" DELs, we have
established the feasibility of conbining register and stack
oriented instruction streans within a single DEL [25]. Even naive

conpilers can generate code relatively free of Load/ Store

( Push/ Pop) overhead instructions by using the set of 'tenplates’
or generalized instruction formats, resulting from this union
This is pragmatically significant, since trace-tape statistics
show that the nenory-accessing instructions elimnated using this
techni que account for 308 of "traditional" jnstruction streans
[6,14,17].

We have al so experinmented with the inplenentation of D rect
Operand Addressing via a Data Reference Table maintained in
m crostore. El ements of this table are dope vectors in |-|
correspondence with the naned entities in a source program By
establishing a unique Data Reference Table for each scope
activated during execution -- binding only the size and ordering
of this table during conpilation, a mniml nunber of bits are
required to uniquely identify DEL variables (as operands). In
effect, this reduces the "address space" of a DEL surrogate to
the "nanme space" of the original source program  The |-|
correspondence between elenents of the Data Reference Table and
named entities in a source program also elimnates the problem of
register allocation, significantly reducing the conplexity of the
conpiler required to translate source code into DEL code [1,25].

There is, however, a tinme penalty (one microstore cycle per
data access) incurred during execution in order to obtain this
space reduction. Although the tinme needed to access a sinple
vari able would be reduced by having the conpiler map scal ar
variables directly into mcrostore cells, it would also conplicate
the passing of parameters (by reference), and would certainly
i ntroduce sone Load/ Store overhead instruction units into DEL
code. Difficulties with direct mapping of data are conpounded in
partitioned hosts like EMW, in which different mnicro-operators
must be used to access main and micro stores. (perand addresses
must be checked to determine the nodule to which they refer, and a
conditional branch must be executed that is dependent on the
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outcome of this check. The actual data transfer to or from main
store need not inpose a large tinme penalty if it can be overal pped
by ot her decodi ng operations [34,35].

Havi ng conducted these prelimnary investigations, we were
left with a strong conviction that a DEL derived from the above
theoretical studies would result in dramatic inprovenents in
system performance -- as conpared to traditional machine |anguage
DELs. To test this thesis against "real-world" problens, we have
designed and inplenmented a DEL specifically tailored to

FORTRAN-I | . W expect to use "interpretive probes” inbedded
within the enulator for this DEL to gather statistics on salient
characteristics of user behavior -- In nuch the same way that we

intend to nonitor the use of traditional machine architectures.

3.4.2 The DELtran Design

DELtran is an internediate text tailored to FORTRAN-II as a
source | anguage and EMW as a host machi ne. It is designed to
optim ze space and tinme during execution subject to the follow ng
conpilation constraints:

1) At nost, two passes over the source code be required --
the first pass to generate a Synmbol Table; the second pass
to produce the DELtran equivalent for the FORTRAN source.

2) The time needed to generate DELtran code be linear
with respect to the nunber of source program operators.

3) There be a sinple correspondence between FORTRAN-II
and DELtran operators (including built-in functions).

4) There be a sinple correspondence between explicitly
named entities (i.e., variables, labels, constants, etc.)
in a FORTRAM 11 source program and explicitly referenced
items in its DELtran surrogate

Al though all of the features in FORTRAN-I|1 are captured by
DELtran, not all 1/0O and Floating Point operators are inplenmented
at this time. The total program and data space for DELtran is
l[imted to the 64K bytes of existing main store, and no nore than
about 2000 distinct named entities are permtted in a single
source program However, sonme FORTRAN restrictions have been
renoved: any expression nay be used as an array subscript;
procedure nanes may be passed as argunents; subprocedures can be
defined within the body of an enclosing procedure (or MAIN): and
no "run-time" subroutine library is required (built-in functions
are inplemented in mcro-code).
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3.4.3 General Structure
3.4.3.1 Control Structure

DELtran prograns are linear arrays of "instruction units"
stored at the upper end of EMW'S main nenory. COWDON and LOCAL
data is stored at the lower end of nmain nmenory, just above a64
word LIFO evaluation stack. The enulator for DELtran occupies

less than 2K words of mcrostore, including all 1/0 and Floating
Poi nt operators (not all of which are inplenmented in the current
version, which takes |less than 800 words of microstore). The

upper 2K words of mcrostore are reserved for Data Reference

Tabl es. G ven an asynchronous Bl ock-Access Controller that noves
segnents between main and mcro stores using bus access
interleaving (a device anticipated in the design of DELtran, but
not yet inplemented on the Stanford EMW), Data Reference Table
requirements could be reduced to 256 words. In this case, the
entire emulator -- including all /0O and Floating Point operators
-- would fit within 2K words of mcrostore.

I ndi vidual instruction units vary from8 to nore than 32 bits
in length, and maybe packed into one or nore words of physica
st or age. Each instruction unit is conposed of one or nore
sub-fields, called "syllables", each of which mustlie entirely
within a single storage word. Syl lables within a given
instruction unit are use-ordered with respect to the enulation
process to mnimze the size of the enulator's internal state and
make ef f ective use of scarce host resources

A typical flow of control during enulation of an instruction
unit m ght be:

1) Decode a leading "tenplate" syllable, and transfer to a
mcro-routine that: decodes any explicit references,
fetches operand values, calculates the result address
(if any), and establishes a standard interface.

2) Decode deferred operator syllable, and transfer to the
m cro-routine which perforns the required function --
this routine decodes references for, and fetches values
of, deferred operand syll ables.

3) Store the result and check for exceptional conditions,
if required, and start enulating the next instruction
unit at Step 1.

This general sequence would vary in terns of the nunber of
explicit reference syllales decoded, operand values fetched, etc.
depending on the specific codes in the instruction unit being
execut ed. Also, the lead syllable maybe an i medi ate program
control operator (these are encoded along with interface
specifications due to the observed frequency of Branch/ Test
instructions in the instruction streanms for traditional
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architectures).

The nature of DELtran is such that alnost any sensible
DELtran program can be directly expressed in FORTRAN-II (the only
exception here is that an inplicit evaluation stack can be
mani pul ated in DELtran in ways not permtted in FORTRAN-II,
however, this is easily renmedied by a few changes in source
| anguage syntax). Its basic superstructure appears to be suitable
for nost high-level, block-structured source |anguages, although
the existing CALL/ RETURN and data accessing code would have to be
augnented to support recursion and dynam c storage allocation and
recl amati on.

3.3.4.2 Instruction Unit and Data Structure

DELtran instructions always begin with a |eading syllable
that is 5 bits wide. This syllable indicates whether an
instruction is:

1) a programcontrol operation (like "GOTO" or "CALL")

2) a binary tenplate (for operators |like "+" and "*")

3) a unary tenplate (for operators Iike "FI X" and "EXP")
4) a null tenplate (for operators |like "REWND").

There are 10 program control operators (including "MWE', which
performs sinple scalar assignnments), 15 binary tenplates, 5 unary
tenplates, and the null tenplate -- |eaving one unused |eading
syl I abl e code. Program control tenplates directly invoke a unique
semantic routine for each of the 10 possible control operations.
Binary and unary tenplates parse operand reference syllables
appearing explicitly within an instruction unit, decode a four bit
"deferred operator” syllable, and transfer control to the
mcro-routine that inplements this deferred operator. The null
tenplate nmerely decodes a three bit deferred operator and branches
to an appropriate mcro-routine. There is a different
interpretation of deferred operator codes for binary, unary, and
null tenplates -- so that the same code may stand for different
operators in different contexts. Only the zero-code has an
invariant nmeaning -- "fetch the next instruction word".

Explicit operand references are n-bit codes (where n depends
on the size of the current scope -- i.e., the nunber of entries in
the active DRT). An internal host register "s" contains the base
address of the current Data Reference Table and value of n. This
register is saved and restored by the execution semantics for CALL
and RETURN.

The dope vector for a variable with reference code "z" is
located at "s + z - 1" in mcrostore. The upper byte of each dope

28



vector contains a code defining the “shape” of the data to which
it refers, while the lower three bytes contain the address of the
cell in which this data itemis stored. “Shape” refers to the

el enentary size and address units for a DELtran variable. Byt e,
hal fword, and fullword (32 bit) signed integers, and halfword and
fullword floating point nunbers are permtted. Both one and two
di mensional arrays are stored as |inear sequences of data

el ement s.

The shape of an array is consistent with the size of its
elements: i.e., arrays of halfwords are addressed in halfword
increments, arrays of fullwords in fullword i ncrenments. Al
rapping of shaped addresses and alignnment of values is perforned
asynchronously by EMW’' s main nenory control unit. The interna
representation of integers and floating nunbers is such that all
per m ssabl e shapes can be treated in a uniform manner by execution
routines. Conversion between shapes for Load/ Store operations is
performed entirely within the main nmenory control unit, btased Wi
the information contained in the upper byte of the dope vector for
any given data elenment. The "zeroth"™ word of a two di nensiona
array contains a left-justified multiplier for the higher order
subscript value, which is used by array accessing operators to
l'inearize references to two dinmensional arrays.

Not all operand references appear explicitly within the

DELtran instruction stream however. Bot h binary and unary
tenpl ates may designate one or both operands (and/or the result
| ocation) as “inplicit”. Inmplicit values are kept on a 64 element

LIFO stack in nmain store: the upper 5 bits of environnent vector
"s" point to the top element on this stack. The length of al
internedate results is assunmed to be one word, SO shape-typing of
stack entries is not required.

The eval uation stack is maintained in main store for the same
reason that scalar values are not kept in mcro store: the t ime
needed to distinguish between nmain and mcro store addresses
exceeds the tine required to conplete a main store access, and
substantial space-tinme conpression results from treating all
addresses in a consistent manner. Additionally, we would not be
able to take advantage of the nmapping capabilities of the main
store control unit for data maintained in mcrostore. In general,
we have tried to reference variables in the nost direct manner
possible: consistent with the requirements of FORTRAN-II (e.g.,
COMWON and EQUI VALENCE specifications, and the “by-reference;
calling convention), and the inherent limtations and capabilities
of the chosen host.

The interface between binary tenplates and deferred operators
consists of three host registers designated "p", "g", and "r".
"p" contains the value of the first operand, "g" the value of the
second operand, and "r" the location of the result. Only "p" and
"r" have neaning for unary tenplates, and the interface for the

null tenplate is enpty (i.e., no requirenents on "p", "q", or
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Deferred operators are categorized as being "binary" (two
operands, one result) or "unary" (one operand, one result). The
al gebraic type (integer or floating point) of an operand is not
checked dynamically due to the tinme penalty for doing so, and
because FORTRAN is such a strongly typed language in its own
right. Hence, there are seperate operators for integer and
floating arithmetic functions. However, the main nenory contro
unit for EMW manipul ates values so that the sane semantic
routi nes (and hence operator codes) can be used for byte,
hal fword, or fullword operations.

3.4.4 Prelimnary Results

The prototype EMW, operating at an internal clock rate of 50
ns., executes DELtran code at 60-80 thousand instruction units per
second. For a FORTRAN version of the 8-Queens problem{40], this
is equivalent to 50-65 thousand |ines of source code per second.
Static conparisons with 360 code (as generated by the FORTRAN-1V
conpiler wth OPT=02, excluding the standard epilogue/prol ogue and
address constant space) indicate program space conpression factors
on the order of 4-10. H gher static conpression factors are
possi bl e for short subroutines with several argunments, or which
are rich in program control or multi-dinmensional array operators.
Exam nation of code generated for arithnetic ezfressions appears
to justify only a conpression factor of 2-5. t hough in some
cases the system 360 optim zing conpiler generates extra in-line
code in order to reduce execution tinme, further study is required
to account for the high conpression factors observed thus far. An
average of 3.5-4.5 360 instructions (nedian = 4) are required to
duplicate the function of a single DELtran instruction unit.

In conparison to Bashkow s code, DELtran progranms occupy an
average of 4-6 times less space. There are some Significant
di fferences between the source | anguage specifications assuned in
t he designs of these two DELs, however. No procedure CALL- RETURN
operators are inplenmented in the Bashkow machine, and not all of
the built-in functions permtted in DELtran are accepted in his
machi ne. Further, Bashkow s nachine operates only on 16 bit
entities (all floating point internally), while DELtran captures a
far w der range of nuneric types. Hence, our conparison is
limted to the exanples presented in [21].

We have al so conpared DELtran to a stack machi ne for FORTRAN
(based on a 16 bit uniform syllable length) designed by McCure in
1968 [24]. Space conpression factors of 2.5-10 occur for sanple
code fragments, the average being 5.5 (nmedian 5). This DEL
impl enents the full FORTRAN | anguage and is intended for
production applications. However, its design is highly
constrained by the architecture of the 16 bit m ni conputer
selected as a host; part of the space conpression observed here is
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probably due to the greater flexibility of the host for DLLtran.

Clearly, we cannot properly conpare execution tinmes for the
above DELs with DELtran, since the host technology is an
overriding consideration in this question. However, we can
conpare execution times for DELtran and 360 machi ne code DELs when
both are being enmulated on EMW: register-to-register 360
instructions require about 20% less tine than the equival ent
DELtran instruction units; reqister-to-menory instructions require
al nost the sane time: program control instructions take 20 to-500%
| onger; and references to built-in functions may take several
t housand per cent longer in 360 code than in DELtran. Prelimnary
data indicate a speed-up factor of 4-12 for sinple prograns --
perhaps 30 (or nore) to 1 for prograns invoking nore conplex
functions such as logarithnms, cxponentiation, etc. Again,
addi ti onal experinmentation is required to verify this result. 2
production version of EMW, incorporating some of the
i npl enentati on enhancenments discussed in the next section, would
execute DELtran at 150 to 200 thousand instruction units per
second. The percentage inprovenent in DELtran execution that
woul d be realized on an enhanced nmachine is higher than that for
360 code because greater usecan be nmade of the increased
paral l elism and overl apped operation.

A cross-conpiler for translating FORTRAN into DELtran is

under devel opnent. It is expected that this conpiler wll take 2G
to 100 times less time than the system 360 optimzing conpiler.
The next block of experinents will involve about 50C Iines of

FORTRAN code, selected froma library of standard benchmarks, and
about 1000 |ines of FORTRAN code extracted from the data base used
by Knuth in deriving his statistics [26].

31



3.5 Laboratory Enhancenents

Use of the |aboratory hardware has indicated several areas
where the EMW system m ght be enhanced technologicaly and
structurally [37]. From a technol ogical point of view, there are
two possibilities. First, it appears feasible to reduce the
current 35 nsec internal cycle time to 30 nsec by using a printed
circuit interconnection rather than wire wap. Second a static,
bi pol ar control store may be substituted for the current
psuedo-static inplenentation. Al though both control stores have
approxi mately the same access time (70 nsec) the current control
store has a 130 nsec recovery tine. In situations where contro
store is accessed explicitly for data this recovery period del ays
the start of the following mcroinstruction fetch. Taken
together, these two changes would increase the effective
m croinstruction execution rate by 40 percent.

Structurally, we are exam ning several schenmes to inprove the
field handling and decoding capabilities of the nachine.
Currently the shift/rotate unit executes a single shift step every
machi ne cycle (35 nsec). Doubling the shift rate would increase
performance by about 10 percent. If a barrel shift capability of
one to eight bits was included performance enhancenent in critical
decode operations would be enhanced by about 40 percent.

We are continuing to study the ways in which host nmachines
m ght be structured with the objective of attaining real tinme or
hyper-real tinme emulation of third generation machines [38].
Execution rates of one to five MPS seempossible in a highly
overl apped system
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4.0 Concl usions

A uni versal host machine and its |aboratory environnent has
been descri bed. The experinents conducted so far indicate that a
uni versal host nmachine, particularly the Emmy, can be a useful
realization of both hard and soft target machines. Experi ence
gained with both hardware and software tools shows that direct
user mcroprogranm ng can be used effectively in the experinental
envi ronment .
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