
DIGITAL SYSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

DEPARTMENT OF ELECTRICAL ENGINEERING

STANFORD UNIVERSITY - STANFORD, CA 94305 SEL-77-039

A SIMULATOR FOR THE EVALUATION
OF DIGITAL SYSTEM RELIABILITY

Peter Alan Thompson

Technical Report No. 119

August 1977

This work was supported in part by
NASA Grant NGR-05-020-699, Sup. 1,
National Science Foundation Grant NSF MCS 76-05327, and
Air Force Office of Scientific Research Grant 77-3325.

Acknowledgment: Acknowledgment is made to the
NASA Ames Research Center, Moffett Field, California
for the use of their CDC-7600 computing facility.

A SIMULATOR FOR THE EVALUATION OF

DIGITAL SYSTEM RELIABILITY

SEL-77-039

Peter Alan Thompson

Technical Report No. 119

August 1977

DIGITAL SYSTEMS LABORATORY
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California

This work was supported in part by NASA Grant NGR-05-020-699, Sup. 1,
National Science Foundation Grant NSF MCS 76-05327, and Air Force Office
of Scientific Research Grant 77-3325.

Acknowledgment: Acknowledgment is made to the NASA Ames Research Center,
Moffett Field, California for the use of their CDC-7600 computing facility.

A SIMULATOR FOR THE EVALUATION OF-

DIGITAL SYSTEM RELIABILITY

Peter Alan Thompson

Technical Report No. 119

August 1977

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California

ABSTRACT

This report describes a simulation package designed to evaluate

the reliability of digital systems. The simulator can be used to

model many different types of systems, at varying levels of detail.

The user is given much freedom to use the elements of the model in the

way best suited to simulating the operation of a system in the presence

of faults. The simulation package then generates random faults in the

model, and uses a Monte Carlo analysis to obtain curves of reliability.

Three examples are given of simulations of digital systems which have

redundancy. The difference between this type of simulation and other

simulation techniques is discussed.

INDEX TERMS: Simulation, Reliability, Computer, Digital, Faults,

Monte Carlo, Event.

CONTENTS

Section

1. INTRODUCTION .

2.
2.1
2.2
2.3
2.4

SPECIFICATIONS FOR MODEL BUILDING
Model Partitions
Links .
Faults .
Simulated Units

3.

4.
4.1
4.2
4.3

5.

6.

7.

8.

9.

THE SIMULATION PROCESS 20

THREEEXAMPLES . 28

Example a - A General Dual Computer System 29
Example b -A TMRNetwork 35
Example c - A Dual Computer System for Navigation . . 38

COMPARISON WITH OTHER SIMULATORS 49

CONCLUSION AND FUTURE WORK 54

APPENDIX A - SIMULATION EXAMPLES 57

APPENDIX B - RELIABILITY ANALYSIS 70

REFERENCES . 73

Abstract
Contents
Illustrations

Page

i
ii

iii

Page

1

4
4
6
8

13

iii

Figure

ILLUSTRATIONS

Page

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12
13.
14.
15.

Al. Convention of Labelling Model Diagrams 59
AZ. Model of a Dual Computer System with Arbiter 60
A3. Definition of Computer Unit (TYPE 1) 61
A4. Definition of an Arbiter Unit (TYPE 2) 62
A5. Definition of a Monitor Unit (TYPE 3) 63
A6. Data-Storage Subroutine 64
A7. Formatted Data-Deck for Complex Dual Computer Example. 65
A8. Model Parameters 66
A9. Sample Simulation Output 67
AlO. Model for Study of a TMR NAND-Gate Circuit 68
All. Model of a Dual Computer System for Navigation 69

Model of a Dual Computer System with Arbiter
Definition of a Computer Unit (TYPE 1)
Definition of an Arbiter Unit (TYPE 2)
Simulation of One Mission
One Monte Carlo Simulation Run
A Dual Computer System
Reliability Curves for Simple Dual Computer System .
Reliability Curves for Complex Dual Computer System
Triple Modular Redundant (TMR) NAND-Gate System . .
Reliability Curves for Simple TMR NAND-Gate System .
Reliability Curves for Complex TMR NAND-Gate System
A Dual Computer System for Navigation
Unreliability Curve Using Honeywell-316 Computers .
Unreliability Curve Using MS1 Computers
Unreliability Curves Using Different Repair Rates .

. 5

. 9

. 10

. 21

. 26

. 30

. 32

. 34

. 36

. 39

. 40

. 42

. 45

. 46

. 47

iv

1 . INTRODUCTION

Any digital system is subject to physical failures, either in

the electronic components themselves or in the connections between

components. Such faults can cause parts of the system to act in an

incorrect manner, and the ability of the entire system to perform its

required function is impaired. Redundancy techniques have been de-

vised to allow digital systems to tolerate some failures. However,

the evaluation of the efficiency is a difficult problem. For such

systems, accurate determination of their reliability function, that

is to say, the probability of correct operation as a function of the

length of the mission, is difficult to obtain by analytic methods

alone. The intricacies of the mechanisms for fault detection and

repair along with the diversity of the failure modes and their effects

on the overall system do not lend themselves to analytical modeling.

Simulation techniques are far better suited to this task. This

report will describe a simulator written especially for the evaluation,

with respect to reliability, of redundant digital systems.

The use of simulation can be a very powerful technique to

evaluate the reliability of computer systems. Analytical reliability

modeling usually requires numerous simplifying assumptions ta be

made in order to make the mathematics tractable. Simulation allows

many of these assumptions to be removed, resulting in a more accurate

model of the system behavior. The effects of random faults on the

system can be studied more easily and a variety of statistical measures

1

can be computed from the results of simulator runs, to characterize

the system reliability.

A very general purpose simulator has been developed at the

Center for Reliable Computing (CRC) at Stanford University. The

simulator is general enough to allow any type of hardware configura-

tion to be studied. The actual system configuration is specified

by the user, as is the level of detail at which simulation should be

performed. The user can select a portion of the system, simulate it

in great detail, and then incorporate the results in a higher level

simulation of the total system, where the subsystem studied in detail

is represented as a single component. In this way, the computer time

needed for the total simulation can be reduced.

The simulator consists of two basic parts: the utility package

which handles all the details and bookkeeping required in any simu-

lation, and the user-supplied functions which define the model for

the system to be simulated. The utility package is the same regard-

less of the system being simulated, and is written in standard ANSI

FORTRAN IV (not extended) so that it can be used on any computer

supporting high-level languages. In order to simulate a system, the

user must supply to the utility package a description of the system's

structure and behavior. The level of detail at which the system is

described is completely arbitrary. For each basic component of the

system as partitioned by the user, it is necessary to supply to the

utility programs a FORTRAN subroutine which describes the behavior of

that component in terms of the relation between inputs, outputs, and

the set of faults that the element can suffer. Thus, one component

of the model could be anything from a gate to a computer. Then the

user specifies how the components are interconnected and what the

fault distribution and simulation parameters are, so that the utility

package can construct a model of the complete system composed of the

predefined components. When the entire model is built, the utility

package simulates the model's behavior in response to random faults

in such a way as to obtain reliability and performance data for the

system. The following sections describe first how a user can use

the simulator and secondly the method used by the utility programs

to simulate a system for reliability analysis.

A separate report [Thompson, 1977B] supplies all the details

necessary to define a model for the simulator. It also discusses

various aspects of the simulation process more explicitly than is

done here, and includes a complete listing of the FORTRAN source

programs of the utility package. Another report [Thompson, 1977A]

describes in detail how a complex dual redundant computer system (the

same as Example c - section 4.3 of this report) was studied with the

simulator.

2 . SPECIFICATIONS FOR MODEL BUILDING

2.1 Model Partitions

The system to be simulated is partitioned by the user into

subsystems, called units. The way to partition is left completely

to the user's choice. For a digital circuit, one unit may represent

a single gate or register, while for a multicomputer system, one unit

would be a whole computer or bus switch. All the units in the model

are further grouped into different types, such that all units of the

same type would be considered physically interchangeable in the real

system. For example, all units representing a NAND gate can be

grouped into one type, but units representing NOR gates must be

grouped as a different type because they are not functionally identi-

cal to NAND gates. The reason for this grouping is that the user

will supply to the simulator a description of the behavior, not of

each individual unit, but rather of each type of unit. The same

behavior description will be used during simulation for each unit of

the same type.

This is illustrated in Figure 1, which gives one of the

many possible models for a dual computer system with an arbiter. It

has four units (two computers, an arbiter, and a monitor) but only

three unit types (computer, arbiter, and monitor). This system is

described in greater detail in the first example of Section 4, and a

complete definition of the model is included in Appendix A. The

units representing the computers and the arbiter will be used to

explain the way in which basic elements such as links and faults can

4

-I

Ll1 - \c
COMPUTER 1

2 L2c ?
TYPE 1 & 21

L5
ARBITER 1 r N

T 32
TYPE 2

I
A

1 ’
COMPUTER 2

2p . L3
TYPE 1

1

MON I TO R

3

2
TYPE 3

Figuke 1. Model of a Dual Computer System with Arbiter,

bc used to construct a model. Each computer has two types of outputs,

one for computed data and the other to indicate whether or not a

physical fault has been detected in that computer. The function of

the arbiter is to look at the detection signals from both computers

and form an opinion as to which computer has correct data outputs.

The selection is characterized by a number (i.e. 1 or 2, the number

of the "good" computer unit) and sent to the monitor (which is a unit

that does not have any hardware equivalent. It exists only for simu-

lation purposes). For example, suppose the error detection input

from computer 1 indicates a fault in computer 1 and the error detec-

tion input from computer 2 indicates a no-fault condition in computer

2. Then the arbiter will decide that computer 2 is the correct choice,

and will send the number "2" to the monitor.

2.2 Links

In the simulation models, all communication between units

is done by links. Each link carries one or several numerical values.

The set of these values will be referred to as the vector associated

with the link. The model of Figure 1 has five links, labeled Ll

through L5, each representing a vector of length one. When defining

the model, the user specifies the vector length of each link, and

assigns links to the input and output ports of each unit. In

general, a link may have any number of sources and destinations.

Each unit may have any number of input and output links. As shown

in Figure 1, the arbiter has two input links and one output link.

Links L2 and L4 are connected to input ports 1 and 2, respectively,

and link L5 is connected to output port 1.

6

The numbers carried on a link do not necesearilg correspond to

actual signals in the real system. For example, the arbiter output,

carried on link L5, is either the number 1 or the number 2 (referring

to the decision of the arbiter). The value does not relate to the

method used in the actual hardware to encode and transmit this

information. The same is true of all the other links in the model.

Links L2 and I,4 could indicate the detected/not-detected conditions

with any two unequal numbers, as long as the computer units and the

arbiter unit agree on what each number means. This is even more

clearly illustrated for links Ll and L3, which carry the computed

data output from the computer units to the monitor. The monitor

looks for a system failure by testing if the arbiter has selected a

computer which has incorrect data output. Since the monitor must

only know whether the selected data is correct or incorrect, there

is no reason for the computer units to actually produce the exact

binary or analog signals which would come from the real physical

computers. During the simulation process, links Ll and L3 have the

value 1 if the corresponding physical signal is correct, and value

0 if it is incorrect. When the user specifies the behavior which

takes place inside each unit (described later), the computers,

arbiter and monitor are defined so as to agree on the meaning of

each possible value on each link. In this way, only the information

necessary for reliability evaluation is transferred between units.

It should be emphasized here that the meaning of the numbers

carried on each link is completely specified by the person designing

the model. The second and thtrd examples of Section 4 use models in

which some links actually do carry binary digits corresponding to

physical logic levels in the circuit. Some links in the third example

are vectors of length 5, of which three components are binary digits,

one component signifies the program state of a computer, and the fifth

component indicates one of several degrees of correctness/incorrect-

ness for that computer's output bus. Clearly, the method of specifi-

cation is general enough to simulate the transfer of both real signals

and abstract information between units.

2.3 Faults

Figures 2 and 3 show the basic specifications for unit

types 1 and 2. Notice the input and output definitions correspond

to the conventions discussed in the preceding paragraphs. Also, notice

that each type has several fault-equivalence classes (FECS); unit-type 1

has two FECs and unit-type 2 has one FEC. Each FEC corresponds to

those faults in the physical system which would all cause the same

effect. For example, all the faults represented by FEC-1 of unit-type 2

(Figure 3) will cause the arbiter selection to be random. Since this

is the only FEC for the arbiter, the model assumes that only this kind

of fault can occur in an arbiter circuit. Unit-type 1 has two kinds

of faults, those which can be detected with special fault-detection

hardware, and those which cannot. Faults from either FEC will cause

the computer data output (port I) to be incorrect.

1
COMPUTER

2- c
TYPE 1 c

OUTPUT 1 = 0 data output is incorrect.
= 1 data output is correct.

OUTPUT 2 = 0 a fault is detected in this computer.
= 1 no fault is detected in this computer.

FEC 1 = 0 no undetectable fault is active in this computer.
2 1 at least one undetectable fault is active in this

computer.

FEC 2 = 0 no detectable fault is active in this computer.
z 1 at least one detectable fault is active in this

computer.

STATE-VARIABLE 1 = 0 computer memory has been contaminated by a fault.
= 1 computer memory is not contaminated.

Figure 2. Definition of a Computer Unit (TYPE 1).

9

\
I 1

ARBITER I '

,‘. 2
TYPE 2

INPUT 1 = 0 a fault is detected in computer 1.
= 1 no fault is detected in computer 1.

INPUT 2 = 0 a fault is detected in computer 2.
= 1 no fault is detected in computer 2.

OUTPUT 1 = 1 arbiter selects computer 1.
= 2 arbiter selects computer 2.

FEC 1 = 0 no arbiter fault is active.
2 1 a fault is active which causes the arbiter to

always select the same computer, regardless of
the values on the input links.

STATE-VARIABLE 1 = 0 no fault was active the last time the arbiter
function was evaluated.

= 1 a fault was active last time, and the output was
forced to select computer 1.

= 2 a fault was active last time, and the output was
forced to select computer 2.
(State-variable 1 is concerned with faults occurring
in the arbiter, not faults in the computers.)

Figure 3. Definition of an Arbiter Unit (TYPE 2).

1 0

An FEC can be active or inactive. An active FEC means that

at least one of its faults is active in the physical system. The simu-

lation of one mission will usually begin with all faults in the inac-

tive state, which in the real system would mean that it was thoroughly

pretested before the start of the mission. The simulator automatically

changes the fault states as the simulated mission "progresses" through

time, according to various user specifications concerning the occurrence

and duration of faults within each FEC. For each FEC, the simulated

time interval spent in each active or inactive state is generated ran-

domly according to a probability distribution supplied by the user.

This requires selecting the law of distribution, then setting the

parameters used in that kind of distribution. The various types now

available include exponential distributions (constant rate), Weibull

(ageing), normal, constant, uniform, Pascal, etc. The current ver-

sion of the simulator allows the user to specify (for each FEC) sepa-

rate distributions for the active and inactive time intervals. A

future version will offer two more distributions to more accurately

simulate faults which have a burst-mode characteristic; for example

faults due to loose connectors or transmission-line noise. During

simulation, the utility package automatically generates the random

time intervals and changes the fault states accordingly. In order to

allow complete generality in the model, the user may specify the state

(active/inactive) to which each FEC is initialized at the beginning of

every simulated mission. This provides a way to model systems which

are not thoroughly pretested.

11

For the examples shown in Figures 2 and 3, when we refer to

one FEC, it is implicitly assumed that there could be many different

faults in the FEC. Since the term "single fault" has many meanings in

the literature, this report will use single fault to imply division of

the FEC into the greatest number of parts such that any single part

alone can cause the effect related to that FEC. A single fault is then

that part of the FEC (even though in the hardware such a single fault

may be a multiple point failure). For digital circuits a single fault

might be an integrated-circuit pin stuck-at-l or stuck-at-O, and an FEC

would include all such pin failures having the same effect on the

circuit's operation. On the other hand, an FEC might consist of only

one single fault, such as the failure of a power-supply connector.

The number of single faults in an FEC is the multiplicity

of that FEC. If an FEC has a multiplicity greater than one, each

single fault must have a constant failure and repair rate, to allow

efficient generation of state transitions for the FEC. The FEC

then has a number of active states equal to its multiplicity; and

its state is determined by the total number of single faults assumed

to be present at that time in the real system. In this way, the

program accurately simulates the simultaneous occurrence of a large

number of physical faults.

Returning to the example of Figure 1, suppose computer 1 has

500 integrated circuit pins whose failures can be detected by the

12

fault-detection hardware, and 50 pins whose failures cannot be

detected. A failure of any one of the 550 pins will cause incor-

rect computer data output. The user just specifies multiplicities

of 50 and 500 for FEC 1 and 2, respectively, and assigns Poisson

distributions for failure and repair rates of a single pin to each

FEC. Each FEC will be inactive only when none of its fauI-ts are active.

The various parameters discussed above are specified by the

user just before the start of stmulation. The length of link vectors,

initial link values, connections of links to units, and the fault

generation parameters must be supplied to the simulation package in

a deck of punched cards, which has a standardized format for all the

required information. A sample deck for the model of Figure 1 is

shown in Appendix A, Figure A7.

2.4 Simulated Units

As discussed in the example of Figure 1, each simulated unit

must perform a specific operation. A computer, for instance, must test

the state of its FECs and change the values of its data and fault-detection

outputs accordingly. The user defines these operations by supplying a

short FORTRAN subroutine for each type of unit. These type subroutines

are called from the main simulator program during the simulation process,

when there are changes in any of the parameters which might affect the

output of the units. Each subroutine has access during the simulation

(through a predefined COMMON area) to the values on the links at its

input ports, to the states of its FECs (whether active or inactive),

13

and to other parameters. The form of the COMMON statement is

standardized, so that access will be similar for every type subroutine.

It should be noted that the subroutines do not require any information

about unit interconnections or link numbers, because the utility pack-

age takes care of updating the COMMON area for all the values present

on the links. As far as the user is concerned, there are two arrays,

with preassigned names, acting as the input and output ports. The sub-

routine is also given a preassigned index pointer to test the entries

in an array for information about fault-states in the unit. By means

of this preassigned pointer, the subroutine for one type of unit can

distinguish between the array entries for all the units of the same type.

The subroutines for each type of unit in Figure 1 are listed in Appendix

A, Figures A3, A4, and A5.

The specifications of the computer and arbiter units, Figures

2 and 3, include some state-variables for each unit. State-variables

and FEC states are different: the former is only for the convenience

of the user in the programming of type subroutines, while the latter

carries all the information concerning the faults. The state-variables

are only tested and assigned values by the type subroutines which the

user supplies, and are used to save information between successive

calls to the subroutine for each unit. Access by each type subroutine

to its state-variables is achieved by the same pointer as for the FEC

array.

14

A good illustration of how a state-variable is used is

shown in the definition of the arbiter, Figure 3. When an FEC first

becomes active in the arbiter, its subroutine determines whether the

fault forced the decision of the arbiter towards computer 1 or com-

puter 2. The arbiter output should indicate the same selection as

long as the FEC remains active. The arbiter subroutine uses a state-

variable to indicate whether or not the FEC was active during the pre-

vious call and its effect, so that the subroutine will not repeat

the analysis of the fault. It should be noted that the "states" of

the simulated arbiter do not necessarily correspond to the states of the

physical arbiter, even though the user has that option. A simulation

state-variable may hold the value stored in a physical register or flip-

flop, for instance, or it may indicate the overall condition of a soft-

ware process for a computer. The value stored in each state-variable

at the beginning of a simulation is specified by the user in the specially-

formatted card deck. Although the examples only have one state-variable

each, in general any unit can have any number of state-variables.

When a unit's fault state or input link value changes, the main

simulation program sets the index pointer for that unit and calls the sub-

routine for that type. The subroutine tests the input values, fault en-

tries, and old state of that unit to derive the new state values, which

are stored in the state-variable array. All inputs, faults, and new state

values are then tested to determine the final values for the unit outputs,

and these are stored in the pre-defined output buffer array. Its task

completed, the subroutine then does a RETURN to the main program which

called it.

15

1

The model simulates the time required for information to

propagate through a unit to its output, and considers the transmission

delay of all links to be zero. Each output port of each unit is

assigned its own time delay probability distribution by the user.

Before the utility package calls the subroutine for a particular

unit, the simulated time delay for each output is randomly generated

according to its distribution, and the time delays are stored in a

COMMON array which can be assessed and changed by the type subroutine.

The subroutine then has the option of deciding whether to use these

values or to change them. The computer unit defined in Figure 2

illustrates the use of this feature. An active fault may cause an

'error' signal to appear as the value at output port 1 after a time

interval described by the Pascal distribution (to take care of the

latency problem), but when the fault changes back to the inactive

state, the corresponding value on the output link should immediately

revert to 'no error'. The user would then assign the Pascal distri-

bution to that output. The utility program generates a value T for

the delay every time it is required. When the type subroutine finds

the fault active, then the time-delay will be left set, but when the

fault is inactive. the subroutine replaces that value with 0.0 to

make the output change immediately. This method allows complete gen-

erality in specifying time delays through each component of the

network.

It is possible that a variable such as a time delay would always

have a constant value during any one mission, but that the value would

16

be randomly distributed between missions. The simulation package

allows the user to choose, separately for each unit output in the

model, whether the time delay is of this type. The proper values

are computed automatically by the simulation program.

As mentioned above, the utility programs must occasionally

generate a random number from various probability distributions.

This same facility is made available to the user as a special utility

program which can be called from any of the type subroutines. This

program is called with a variable that selects the type of distribu-

tion, followed by the numerical parameters required by that distribu-

tion. Successive calls to the program return independent random

variables. The type subroutines can thus obtain random time delays

for the unit outputs, or can test the random values for probabilistic

branching in the program. Where it is not efficient or desirable to

simulate exactly the behavior of complex systems, the user may choose

to model the statistical properties of some components with appropriate

random variables.

The function of each element in the simulation is completely

left to the user who is building the model for a real system. This

provides a great degree of both generality and freedom while allowing

the model to be very specific at selected points. The value on a

data link may signify exact binary digits, a strobe signal, or an

indication of correctness/incorrectness, etc. At the gate level, a

link may be three-valued to signify high, low, and undefined logic

levels; and at a computer level, a link may be many-valued to signify

17

various modes of incorrectness. Similarly, the specifics about state

variables and fault states are left to the wish of the user. Because

the utility package does all the fault generation and transfer of

link values, the amount of effort required to accurately model system

components is reduced. All the work put forth by the user is strictly

concentrated on model building bnd not model running). The level of

specification is completely arbitrary and need not be homogeneous

so that the same model may focus on some parts of the system in great

detail while treating less interesting parts of the system in more

general terms. The user is not forced to exactly define parts of the

system he is not interested in at the time, and the simulator does not

waste time and money simulating those parts in detail. When one

section of the system has been thoroughly studied, that part of the

model can be replaced by more simple units which accurately reflect

the reliability aspects of that section.

To use the simulator, the user supplies two card decks to the

utility package. One deck includes the subroutines which perform the

functions of each type of component. The second deck is punched in

a special format, and sets the link vector lengths, link initial

values, types of each unit, and which links are connected to which

input and output ports for each unit. For each unit, it sets the \

initial state variables, initial fault states, fault multiplicities,

fault probability distributions, and output time-delay distributions.

The second deck also provides some special parameters such as the

initial state of the system (described in the next section).

18

Since all units of the same type have the same type subroutine,

extensive use of the simulator would lead to the formation of a library

of subroutines which would represent all the various types of compo-

nents used to design the real system. This way, the most time con-

suming part of defining the model, writing the subroutines, would be

done only once for each different kind of component. Also, the de-

signer can change the specification of all units of the same type in

one step by altering or replacing the subroutine for that type.

19

3. THE SIMULATION PROCESS

The simulation package uses a standard Monte Carlo analysis to

determine the reliability characteristics of the model. This means

that it simulates a large number of missions to find the probability

that the mission does not 'fail' before a certain time has elapsed.

The events which occur are likely to be different for different

missions, because they are randomly generated by the simulation

program according to probability distributions specified by the user.

The simulation of one mission is event-driven and asynchronous.

An event is a change of some element in the model, usually either a

change of fault state or a change of a link value. All events occur

at a specific simulated time which is completely determined when the

event is generated. Throughout a mission there will always be events

in the system which are waiting to take effect because the simulation

has not yet progressed to the simulated times at which those changes

occur. These are called future events. When a future event is gen-

erated, it is inserted into a next-event list, which is ordered from

top to bottom according to the time at which each event will occur.

A typical entry of the list would consist of a time, link number,

vector of new values for that link, and a number identifying this

entry as a link-change type of event. A fault-change type of event

would include a unit number, FEC number, and new fault state instead

of the link parameters.

Refer to Figure 4 for a flow-chart description of the simulation

process. The simulation of one mission begins by initializing all

20

--

t
CHANGE

link value.
JJ otherother

types oftypes of
eventsevents

GENERATE EVENTGENERATE EVENT
for next state changefor next state change

of this fault.of this fault.

cc

\I \(\I \(

RE-EVALUATCRE-EVALUATC
(call subroutine for) all(call subroutine for) all 11
unitsunits affectctl by event.affectctl by event.

T' ----.-'---T' ----.-'--- JJ

.
GENERATE EVENT

for future link-value change
for each output of units.

L I

I data-store
subroutine.

+
-

END OF @4E MISSION

Figure 4. Simulation of One Mission.

2 1

a
I

fault states, link values, and unit state-variables to the values

specified by the user. The utility package then generates one event

for each FEC in the model, using the probability distributions assigned

to them. These events, which typically are the first transitions to

the active state for each FEC, are stored in the next-event list. The

process then continually goes through a cycle which always begins by

getting the next-event off the top of the list. The "current simulated

time" always jumps to the time of this next-event, and the event action

is processed immediately. When the event is completed, the simulator

returns to the beginning of the cycle for the next event.

Usually, the processing of one event will cause other events

to be generated and inserted into the next-event list. When a link

value changes, all the units which have that link as an input are

re-evaluated. For a unit to be re-evaluated means that the main

program sets up the input buffer and calls the subroutine for that

unit. When the type subroutine returns to the utility program,

each output link from that unit is stored in the next-event list

(this, because of the time delay) for a future change of the link

value. The times of these future events are computed by adding the

current simulated time to the output time delays, and the future

link values are those left in the output buffer by the type sub-.

routine. When a fault-change event is processed, it causes the

re-evaluation only of the unit in which that fault-set is located.

Also, the utility program will automatically generate another (future)

22

to know when to load all the new input data into its state variables.

This feature facilitates the modeling of synchronous digital circuits.

It is possible that a generated event such as the change of a

link value could make obsolete a future event waiting in the next-

event list (for example another change in the same link). This is

due to the randomness of the output time delays for each unit. The

utility program automatically solves this problem by searching the

next-event list for link-change events which are superceded by a

more recently generated event. If an old event of this type is

found, it is deleted from the list without being processed. A

typical situation where this is required occurs when an FEC be-

comes inactive in a unit while the output of that unit is scheduled

to become erroneous at some later time. Then the future event, the

transition from correct to erroneous value, will be removed from the

next-event list. This process allows a correct simulation of a sys-

tem in which future events and time delays are randomly generated.

At some point during the simulation of a mission, one of the

type subroutines supplied by the user must decide that the mission

has failed, using some predefined failure criterion. A utility pro-

gram is available which can be called by any type subroutine; when

called, it forces the mission to stop at the beginning of the next

event cycle.

As the mission progresses, the type subroutines must be able to

store data pertaining to reliability (such as the simulated time

before mission failure) for the purpose of statistical evaluation

23

fault-change event which will cause the next change of state for that

FEC. When an event is processed, it causes a re-evaluation of units

only if the event actually induces a real change in the system. For

instance, if the new values for a link are identical to the old values,

then the connected units will not be re-evaluated. Thus, a single

change anywhere in the model will only propagate where it causes other

changes to occur, and when the model reaches a "steady-state", no more

events will be generated. This means that the entire model doesn't have

to be simulated in response to one change somewhere in the system.

Some units will have input links which, when their values change,

should not force a re-evaluation of the unit. This usually occurs '

when there is a synchronizing link which acts like a clock signal in

a digital circuit; that is, the circuit does not respond to changes

on the other input lines until the clock lines change. When speci-

fying the link interconnections, the user can distinguish, separately

for each input, whether or not a link value change on that input will

force a reevaluation of that unit. The usefulness of this feature is

illustrated by a unit representing a clocked register, which stores the

binary digits present at its data inputs only when the clock input makes

a low-to-high level transition. The model is defined such that only

the input link carrying the clock signal will force a reevaluation

of the unit. The subroutine must only test for the clock to be high

24

of the system after a large number of missions have been simulated.

The simulator package has a standardized method to achieve this.

It is done by allowing the user to supply one subroutine which will

record the data from each mission, then evaluate the stored data at

the end of the simulation run. This subroutine will be called by the

the utility package before the first mission and immediately after

each mission so the user can initialize tables and save vital data.

It is also possible to call this subroutine from any of the type

subroutines to record relevant data during simulation of any mission.

This is shown in Figures 4 and 5. An index value is sent to the

subroutine each time it is called to indicate the specific purpose

of that call. When any subroutine determines that enough missions

have been simulated for the desired accuracy of the results, it calls

another auxiliary routine supplied in the utility package; this other

routine forces the simulator to stop after the end of the current

mission. After the last mission, the data gathering subroutine is

called one more time with an index value which tells it to evaluate

the accumulated numbers and plot a reliability curve for the system.

Most applications of the simulator will require the same type

of data storage and reliability analysis. A general purpose ver-

sion of this subroutine has been developed which will record the

times-to-failure for each mission and print out a listing of reliability

vs. time for the system, including the boundaries of the 80% and 90%

confidence intervals on reliability at each time coordinate. This

service facilitates the basic purpose of the simulator, namely,

reliability evaluation, but still allows the user to collect and

25

BEGIN ONE SIMULATION KlJN
\1

READ
formatted data-deck
for all parameters.

1initial :6idorn seed. 1

v

SIMULATE
ONE MISSION

(see Figure 4).
t <

data-store subrout.itle

compile results.

END ONE SIMULATION RUN

Figure 5. One Monte Carlo Simulation Run.

26

compile any kind of statistics relating to the system behavior.

In the previous section we mentioned the specially formatted

data deck in which the user specified numerous parameters for the

model. Also included in this deck are various parameters relating

to the entire simulation process, such as the starting and maximum

simulated times for each mission, the maximum number of missions to

simulate, the random seed for the pseudorandom number generator, and

selection of different output operations. The utility programs have

options to automatically print a complete trace of all events and

event-list changes for each mission as an aid to help the user debug

the model. Also, by allowing the user to specify the random seed for

the random number generator (rather than using the time of day, for

instance), the results of any simulation can be repetitively obtained

so that debugging or validation of the model is made easier.

The formatted data deck may also specify any events the user

wishes to insert into the next-event list at the beginning of each

mission. These may be any one of the four types of events which may

occur in the model, and must include exact values for each parameter of

the event. This feature is useful when investigating the behavior of

the model in specific situations. The user may force FECs to change

state in a particular sequence, fur example, or could test the re-

sponse of the model to changes of link values which represent primary

inputs to the system. This ability, coupled with the option to print

listings of all events, forms a powerful debugging tool for the person

who designs the model.

27

4. THREE EXAMPLES

This section describes three examples in which the simulator

was used to evaluate the reliability of a redundant system. Examples

a and b include a simulation of a system with simple enough features

to enable it to be evaluated analytically, thus demonstrating

the validity of the simulation package. Example c compares simu-

lation results with the results of an analysis in which it was

necessary to make simplifying assumptions. All three examples also

include the simulation of a nontrivial system which would be too com-

plex to handle mathematically, demonstrating the ability of the

simulator to obtain results not easily derivable with current

analytic techniques.

Examples a and b show plots with a range of reliability from

0.0 to 1.0. Most digital systems, however, are designed to have a

reliability of no less than 0.95 during their entire period of use.

The simulator can produce useful results in the higher ranges of

reliability, as demonstrated in example c, for which the reliability

never falls below 0.9999980. For very high reliabilities, the sim-

ulator program requires a slight modification (described in another

report [Thompson, 1977A]) of its fault generation section in order

to be cost-effective for the required accuracy. The range used for

examples a and b demonstrate that the simulator results are verified

analytically over all values of reliability.

28

4.1 Example a - A General Dual Computer System

Figure 6 shows a dual computer system with an arbiter.

This example is defined in great detail in Appendix A, so in

the following, only the basic simulation model is described.

In this dual system, two identical computers run concurrently,

executing the same programs. In the simulation, each computer has two

output links, one indicating whether the data output is correct or

incorrect, and the other indicating whether a fault has been detected

or not. The fault-detection outputs both go to the arbiter unit, which

uses that information to make a selection of which of the two computers

has correct data output. The arbiter always chooses one or the other,

and the mission is assumed to be failed as soon as the arbiter selects

a data output which is incorrect. Referring to Figure A2 in Appen-

dix A, the arbiter selection link and both data output links are

inputs to a fourth unit which acts as a monitor for the mission. The

monitor stores times-to-failure in the data-storage subroutine and

decides when the mission should stop.

The complete model includes faults in the arbiter, and

both detectable and undetectable faults in each computer. Different

random delays may be assigned to the computer outputs to simulate

the time interval between the change of state of fault-sets (from

inactive to active) and the first corresponding change which appears

at the unit's output. The time delays for the data and detection

outputs are called, respectively, the error-latency and detection-

latency. Thus, if the error-latency of a computer fault is less

29

DA
TA

 O
UT

PU
T

CO
MP

UT
ER

.
OU
TP
UT

1
\ 0

r

1
,

FA
UL

T
DE

TE
CT

IO
N

OU
TP

UT
1

I 0'
PR

IM
E

AR
BI

TE
R

SE
LE

CT

Fi
gu

re
 6
.
A
Du

al
 C
om

pu
te

r
Sy

st
em

.

than the detection-latency, the data output will become erroneous

before the existence of this fault is indicated to the arbiter. In

the simple case (Figure 7), both latencies are constant 0.0, but in

the complex case (Figure 8), they are randomly generated from a Pascal

probability distribution. The arbiter randomly selects one computer

when the fault detection inputs are ambiguous, or when a fault is

active within the arbiter unit itself.

The simple case of the dual system will consider the arbiter

to be perfect, i.e. have a zero failure rate. The nondetectable

faults within the computers also have zero failure rates. The

arrival times for detectable faults in each computer have an expo-

nential distribution to simulate a constant failure rate A. For the

sake of the experiment, X was assigned the value 10-4 failures per

time unit, but the meaning of one time unit in terms of hours, days,

minutes, etc. is left to the interpretation of the user, as long as

all parameters are interpreted consistently. All faults are permanent

faults and the latency times are zero. The system with these parame-

ters is modeled analytically in Appendix B. Figure 7 shows plots of

the reliability as a function of time for both the analytical analysis,

as well as the results determined by the simulator. The analytically

computed curves are shown as a solid line. We see that the dual con-

figuration shows a significantly higher reliability than a single com-

puter for this set of parameter values. It can also be seen that the

analytical curves correspond very closely with the simulation plots.

31

/ 00 N. . . -
-

Reliability'
d

32

The differences between the plots arise because of the loss of

accuracy resulting from the fact that only a finite number of mis-

sions have been simulated (500 in this case). Increasing the num-

ber of missions will improve the accuracy.

A second more complex characteristic of the system has its

reliability plots indicated in Figure 8. This sytem has both un-

detectable and detectable faults possible in the computers. There

are 500 detectable and 50 undetectable faults possible in each com-

puter. The arrival times of the faults are exponentially distributed

as before, but they are different for the two classes of failures.

The duration of the faults is also exponentially distributed; they

have error and detection latencies which are Pascal distributions.

The arbjfter, in addition, is not perfect but has a single fault which

is Weibull distributed. This system is obviously too complex to be

able to be modeled analytically. The simulator results are shown in

Figure 8. In this case, we see that the dual system is actually less

reliable than a single computer. This can be attributed to the facts

that the arbiter was not a fault-free unit, that undetectable faults

could occur in the computers, and that the detection latency (i.e.,

the time between the occurrence of a fault and the time that it is

detected) was usually larger than the error latency for the faults in

the computers. By varying these parameters, one could see how each con-

tributes to the system unreliability, and for what values the dual sys-

tem becomes less reliable than the single computer.

33

1.
0 .8

0
si

*
0

.

ie
co

mp
ut

er
mu

la
ti

on

re

su
lt

s
sy

st
em

mu
la

ti
on

re

su
lt

s

,

1 . . .
4

l l
J

1
4
l

0
4

0
4

0

i
:
.

:

0
b

0
0

0

0
& l

0
4

0
0

0
0

e
0

0
0

0
Y

0
0

0
0

0
0

0
-
w

l

0
0

0
0 b

0
0

16

o

0
:
;
=
.

,

;
I

1
1

0

K
-

7

lo
5

Ti
me

 U
ni

ts
10

'
10

'

Fi
gu

re
 8

.
Re

li
ab

il
it

y
Cu

rv
es

 f
or

 C
om

pl
ex

 D
ua

l
Co

mp
ut

er
 S

ys
te

m.
50

 u
nd

et
ec

ta
bl

e
an

d
50

0
de

te
ct

ab
le

 f
au

lt
s

in
 e

ac
h

co
mp

ut
er

.
De

te
ct

ab
le

 f
au

lt
s:

 a
rr

iv
al

 e
xp

on
en

ti
al

,
X.

=1
0:

:
fa

il
ur

es
/t

im
e
un

it
,

du
ra

ti
on

 e
xp

on
en

ti
al

,
X,

=1
0B

6
re

pa
ir

s/
ti

me
 u
ni

t.
Un

de
te

ct
ab

le
 f
au

lt
s:

 a
rr

iv
al

 e
xp

on
en

ti
al

,
Xo

=1
0B

4
fa

i;
ur

es
/t

im
e
un

it
,

du
ra

ti
on

 e
xp

on
en

ti
al

,
X,

=1
0

re
Ar

bi
te

r
fa

ul
t
(s

in
gl

e)
:
ar

ri
va

l
ex

po
ne

nt
ia

l,
 h

,=
0.

54
(1

0'
4a

ir
s/

ti
me

 u
ni

t.
fa

il
ur

es
/t

im
e

un
it

,
du

ra
ti

on
 W

ei
bu

ll
,

X0
=1

0'
re

pa
fr

s/
ti

me
 u

ni
t,

 a
ge

in
g

fa
ct

or
 1

.1
,

Er
ro

r
la

te
nc

ie
s

ar
e

Pa
sc

al
,

pr
ob

ab
-i

li
ty

 o
f

er
ro

r
1:s
 0

.0
5

fo
r

ea
ch

 1
0.

0
ti

me
 u

ni
ts

,
Fa

ul
t

de
te

ct
io

n
la

te
nc

ie
s

ar
e

Pa
sc

al
,

pr
ob

ab
il

it
y

of
 d

et
ec

ti
on

 i
s
0.

03
 e

ac
h

10
.0

 t
im

e
un

it
s,

.-

-

4.2 Example b - A TMR Network

A triple-modular redundant (TMR) system is shown in Figure

9. Three identical modules' outputs are fed to a voter unit which

outputs a value based on the majority of the input values. The

modules will be assumed to be NAND gates with two inputs. The faults

that can occur are stuck-at-one (s-a-l) faults or stuck-at-zero

(s-a-O) faults both on the inputs to the NAND gates and the out-

puts. The voter unit is assumed to be fault-free. An exponential

probability distribution characterizes the occurrence of the faults,

and a Weibull distribution describes the duration of transient

faults. The latency times of the faults are again described by a

Pascal distribution. The parameters of the gate input faults can

be made to be different from the gate output faults. In addition,

the frequency of occurrence of s-a-l faults can be made to differ

from that of s-a-0 faults.

Four different reliability measures were obtained from

each simulation of this system; the probability that a specific

pin on a gate would fail, the probability that a NAND module would

have at least one failed pin, the probability that at least two

out of three modules have failed, and the probability that the voter

output is incorrect. Standard analysis of TMR systems assumes that

when at least two modules are failed, the system has failed. This

is not always correct in a system such as TMR NAND gates, because

if one module's output is stuck-at-l and another module's output

is stuck-at-O, they will compensate for each other at the voter.

35

BINARY
INPUTS

BINARY
OUTPUT

MODULE 2 .

Figure 9, Triple Modular Redundant (TMR) NAND-Gate System.

36

Thus, when compensating failures are taken into account, the circuit

may still perform the correct function even though two modules have

failed. The first three reliability measures are easily derived from

analytical techniques in Appendix B, but the actual circuit reliability

is very difficult to obtain analytically due to the problem of compensa-

ting failures [Siewiorek, 19711.

Although this circuit could have been simulated with only

four units, it was decided to use many units, each of which performed

a very simple function. The final model is shown in Appendix A, Fig-

ure A10, and consists of twenty units and thirty links. There were

five unit types: NAND gates, threshold gates, comparators, negative-

edge detectors, and stuck-at-X units. Faults only occurred in the

stuck-at-X units, which were linked in series with each NAND gate in-

put and output. The subroutine describing each unit type was very

simple to write, and demonstrates the way in which a library for

standard components can be formed for modeling a large digital system.

The relatively large number of units and links had no noticeable effect

on the efficiency of the simulation, because the simulation process

only deals with the parts of the system which are caused to change

by the occurrence of a fault.

As before, we will consider a simple case of the system

which can be modeled analytically, and comparison will be made with

the results obtained using the simulator. The simple system considers

only permanent faults with exponential distribution for their occur-

rence. The latency time of the faults is zero, and s-a-l faults are

37

I. I

as equally likely to occur as s-a-0 faults. The reliability curves

obtained through both analytical and simulation methods are shown

in Figure 10.

The solid lines indicate the analytically computed results.

Once again, there is a close correspondence between the analytic and

simulation results. The modular TMR (2-out-of-3) curve shows an im-

provement in reliability over a single module only when the reliability

of both is greater than 0.5. The actual functional reliability,

which takes into account all compensating failures, shows that the

standard TMR analysis is very pessimistic. In fact, the TMR circuit

is better than a single gate over the entire range of reliability.

The more complex example considers all faults to be transient

faults with occurrence exponentially distributed, and duration Weibull

distributed. The probability distributions of s-a-l faults differ

from those of s-a-0 faults and the error-latency times are nonzero.

Figure 11 shows the reliability of the RIR system with no compensating

failures considered and when compensating failures are considered.

These curves are very easy to obtain using the simulator, because

changing a parameter value only requires repunching a card in the

formatted data deck.

4.3 Example c - A Dual Computer System for Navigation

The simulation package was used to evaluate a dual computer

system which was designed and built at the Charles Stark Draper

Laboratories at M.I.T. [Ressler, 19731. The system was intended to

provide reliable navigation computing for airborne applications.

38

iifiif
.6.6

+
si

ng
le

 l
ea

d
re

li
ab

il
it

y
+

si
ng

le
 l

ea
d

re
li

ab
il

it
y

si
mu

la
ti

on
 r

es
ul

ts
si

mu
la

ti
on

 r
es

ul
ts

-I.-I. mm
EE

ww
cc

XX
si

ng
le

 m
od

ul
e(

ga
te

)
re

l.
si

ng
le

 m
od

ul
e(

ga
te

)
re

l.
a.a. --I--I

si
mu

la
ti

on

re

su
lt

s
si

mu
la

ti
on

re

su
lt

s
--I.--I. c

.4

'
c

.4

'
00

Z-
ou

t-
of

-3
 m

od
ul

es
 r

el
.

Z-
ou

t-
of

-3
 m

od
ul

es
 r

el
.

si
mu

la
ti

on

re

su
lt

s
si

mu
la

ti
on

re

su
lt

s
00

co
mp

en
sa

ti
ng

-f
ai

lu
re

re

l.
co

mp
en

sa
ti

ng
-f

ai
lu

re

re

l.
..

si
mu

la
ti

on

re

su
lt

s
si

mu
la

ti
on

re

su
lt

s

.2.2
\

 e
xp

ec
te

d
cu

rv
es

 f
ro

m
\

 e
xp

ec
te

d
cu

rv
es

 f
ro

m
an

al
yt

ic
 r

es
ul

ts
an

al
yt

ic
 r

es
ul

ts

o.
v,

o.
v, 1010

Fi
gu

re
 1

0.
 R

el
ia

bi
li

ty
 C

ur
ve

s
fo

r
Si

mp
le

 T
MR

 N
AN

D-
Ga

te
 S

ys
te

m.
Al

l
st

uc
k-

at
-0

 a
nd

 s
tu

ck
-a

t-
l

fa
ul

ts
 f

or
 i

np
ut

s
an

d
ou

tp
ut

s
ar

e
ex

po
ne

nt
ia

ll
y
di

st
ri

bu
te

d,
&=

10
B6

fa
il

ur
es

/t
im

e
un

it
.

Al
l

fa
ul

ts
 a

re
 p

er
ma

ne
nt

 (
ze

ro
 r

ep
ai

r
ra

te
).

Ze
ro

 e
rr

or
 l

at
en

cy
 f

or
 a

ll
 f

au
lt

s.

.8

J?
*
O

P
.
0

.

0

.
.

O
o

.
0

0

0

0
0

l
*

0
0

.
0

l
0

0
0

I
0

0
0

0
*
-
(
I

-

l

0
0

0
0

0
b

0
0

0
b

0

l
0

0
0

l
0

e
-
0

l

I

0
l

0
l

0
l

0

6
0

l
0

0
0

6
0

*
0
#

0

l

mo
du
la
r

Ly
st

em
'(

TM
F!

)
'

I

l -
1

0
0

0
0

0

b
0

b
0

si
mu

la
ti

on

re

su
lt

s
b

0
0

0

0
0

0
ac

tu
al

 s
ys

te
m

0

si
mu

la
ti

on
re

su
lt

s
0
0

0
0

0
0

(r
0

l
0

b
0

l
0

l
0

L
.

*

.
o

o
I

-

Ti
me

 U
ni

ts
lo

=

Fi
gu

re
 1

1.
 R

el
ia

bl
it

y
Cu

rv
es

 f
or

 C
om

pl
ex

 T
MR

 N
AN

D-
Ga

te
 S

ys
te

m.
In

pu
ts
 s
tu

ck
-a

t-
O:

 a
rr

iv
al

 e
xp

on
en

ti
al

,&
=l

.5
X1

0w
6

fa
il

ur
es

/t
im

e
un

it
,

du
ra

ti
on

 W
ei

bu
ll

,
X0

=1
0

re
pa

ir
s/

ti
me

 u
ni

t,
 a

ge
in

g
fa

ct
or

 1
.1

.
In

pu
ts
 s

tu
ck

-a
t-

l:
ar

ri
va

l
ex

po
ne

nt
ia

l1
6&

=0
.5

x1
0-

6
fa

il
ur

es
/t

im
e

un
it

,
du

ra
ti

on
 W

ei
bu

ll
,

Xb
=1

0
re

pa
ir

s/
ti

me
 u

ni
t,

 a
ge

in
g

fa
ct

or
 1

.1
.

Ou
tp

ut
s
st

uc
k-

at
-O

:a
rr

iv
al

 e
xp

on
en

ti
al

&,
=0

.5
x1

0w
6

fa
il

ur
es

/t
im

e
un

it
,

du
ra

ti
on

 W
ei

bu
ll

,
AO

=1
0

re
pa

ir
s/

ti
me

 u
ni

t,
 a

ge
in

g
fa

ct
or

 1
.1

.
Ou

tp
ut

s
st

uc
k-

at
-l

za
rr

iv
al

 e
Xp

on
en

ti
al

+,
=1

.5
X1

0-
6

fa
il

ur
es

/t
im

e
un

it
,

du
ra

ti
on

 W
ei

bu
ll

,
AD

=1
0

re
pa

ir
s/

ti
me

 u
ni

t,
 a

ge
in

g
fa

ct
or

 1
.1

.
In

pu
ts

 e
rr

or
 l

at
en

ci
es

 P
as

ca
l,

pr
ob

.
of

 e
rr

or
 i

s
0.

2
fo

r
ea

ch
 1

00
0.

0
ti

me
 u

ni
ts

.
Ou

tp
ut

s
er

ro
r

la
te

nc
ie

s
Pa

sc
al

,
pr

ob
.

of
 e

rr
or

 i
s

0.
5

fo
r

ea
ch

 1
00

0.
0

ti
me

 u
ni

ts
.

The architecture, shown in Figure 12, uses two Honeywell-316 mini-

computers to do concurrent calculations from the raw sensor data.

The updated navigational position is sent through channel transmit

and receive circuits to a display at the pilot's console. An ex-

tensive variety of hardware and software fault-detection mechanisms

continually test all parts of each half of the system, and all the

test and opinion outputs are gathered at the arbiter circuit for a

final decision regarding which data display is correct. The two

computers can communicate with each other to compare output data,

or to transfer status words during the recovery of one computer from

a transient fault. As in example a, the mission is assumed to fail

when the arbiter selects an output which displays incorrect data.

The actual link/unit model of this system is shown in

Appendix A, Figure All. The computers were divided into functional

s&systems so as to accurately simulate the effect of a fault within

that part of the computer. By studying the structure of the Honeywell-

316 computer, a complex representation of its behavior in the presence

of faults was derived. The model included abnormal program execution,

loss of navigational status words, loss of recovery or diagnostic

software, p yh sical failures in the timing generator, absorbing and

non-absorbing failed states for the program counter, etc. In some

cases, the system chooses from a variety of possible effects with-

a probability distribution adjusted for the fault states, and in other

cases the fault state completely determines the effect. Due to the

way in which the computer was divided, it was possible to later

41

----a\

1

----I-\I

T-

- - - - -

L

L
33

42

replace the Honeywell-316 with a model for a more state-of-the-art

MS1 minicomputer simply by changing various parameters in the for-

matted data deck. It should be emphasized that the meaning of the

link values dealt with the state of correctness/incorrectness trans-

ferred in the real system between ona;circuit and another. The

simulation did not execute a navigation program on the model, and

no navigational data was transferred on any link, rather the system

as a whole propagated between its parts the effects of particular

faults.

The interface, channel transmission, and fault-detection

hardware was modeled to the extent that the effects of faults could

be accurately simulated. Faults were modeled which affected only

the data and not certain test signals, or only the test signals

and the cross-communication, etc. The simulator differentiated

between faults which would make a fault-detector be stuck-at-good

from those which would make it stuck-at-bad, and took into account

the masking of one such fault by another fault.

The final model is composed of twenty-seven units,

representing fifteen unit types. These are connected by fifty-

seven links, most of which are actually vectors of length up to

six. The entire model used sixty FECs, representing approximately

24,600 single integrated circuit pin faults for the system using

Honeywell-316 computers. Since the maximum mission time was ten

hours at a very high reliability, the desired accuracy implied a

very large number of simulated missions. So as to reduce the

43

computer time needed to do the simulation, the fault-event generator

was extended to take advantage of the memoryless property of the

exponential fault distribution. This option, coupled with the ability

to pre-test the initial fault events to find only those missions

which have potential to fail, allowed an effective simulation of a

large number of missions at a very reasonable cost. For example,

an effective simulation of 1.1 billion ten-hour missions required

about twenty minutes of execution time on a CDC-7600 computer,

obtaining unreliability measures on the order of 10-7 .

Figure 13 compares the analytic curve"for unreliability

with that obtained using simulation for a system which has Honeywell-

316 computers. The values of Xo and XD are the rates of failure and

repair for each integrated-circuit pin in the system. The analytic

results are seen to be pessimistic (have a higher unreliability) due

to the inability of the mathematical model to accurately handle

arbiter and fault-detector failures. In Figure 14, the Honeywells

are replaced by a state-of-the-art MS1 minicomputer, which lowers

the overall pin count from 24,600 to 5,800, so the arbiter and

fault-detector failures contribute a larger proportion to the overall

reliability. This increases the discrepancy between the analytic

and simulation results, as seen in the figure. The simulation runs

also found that about 10 per cent of the mission failures for the

MS1 version occurred when one of the two sets of data output was

still correct, as opposed to only 2 per cent for the Honeywell-316

version. Again, this is due to failures occurring in the fault-

detectors and the arbiter. Figure 15 demonstrates a study made of

*[Thompson, 1977Al contains more information on the analysis used.

44

1.6

- 1.2c,II
g.- 11
i- l

g 1 . 0

r c

a l

t 0.9

.-

2 0,8

o c

.-

tfl 0.7ln.-
: 0.6
24-J
> 0.5c,

:;; 0.4
2
Ok 0.3

0 . 2

0 . 1

0 . 0

/ Analytic results.i
Simulation results, 90% confidence interval.

Q 1. 2 3. 4. 5. C. 7. 8. y. IO. I ime

M i s s i o n T i m e - - H o u r s

Figure 13. Unreliability Curve Using Honeywell-316 Computers.
All single faults have arrival exponential, h,=lO-8 failures/hour,
and duration exponential, &=0.5 repairs/hour. The simulation run
effectively included 1.4x10 8
before the end of ten hours.

ten-hour missions, of which 194 failed
The vertical axis measures Unreliability,

which is defined to be l.O-(Reliability).

4 5

8.0

,^ 6.0
kE.-t-
a
& 5.0u.-
2
uiC.-
2 4.0
5.-ulIn.-

: 3.0
2c,
>c,.-C

Iii 2.0
2
,oL

1 . 0

/ Analytic results.

Simulation results, 90% confidence interval.

0.0 +--I I , I . 1 . , I 1o. I. 2. 3. 4. 5. 6. 7. 8. g. IO. T i m e

M i s s i o n T i m e - - H o u r s

Figure 14. Unreliability Curve Using MS1 Computers.
All single faults have arrival exponential, ho=10w8 failures/hour
and duration exponential,XD=0.5 repairs/hour. The simulation ru;
effectively included 1.1x10 9
before the end of ten hours.

ten-hour missions, of which 69 failed

4 6

.00I0
r; 8.0
Q)-
zul
- 7.0

lnI
ii-r
0
2 6.0

iz *.-l-

; 5.0
2
ulP.-
p 4.0
5.-ulIn.-

E2 3.0
c1
>+J.-
2 2 . 0
2
f!h

1.0

0.0
0” . 06 .5 Ok . 5;o . 5010 ,

xp
Single Fault Repair Rate -- Repairs/Hour

Figure 15. Unreliability Curves Using Different Repair Rates.
All single faults have arrival exponential,&=10-8 failures/hour,
and repair rates as shown on the horizontal axis. The vertical
axis measures unreliability of the system at the end of one
ten-hour mission. Each simulation run effectively included about 1.2~10~
ten-hour missions; the 90% confidence intervals are drawn for each
point.

4 7

the repair rate (X,) for pin faults. The simulator was also used to

test specific changes in the circuit relating to the use of computer

self-diagnosis for recovery. The ability to test incremental design

changes was very useful, because it was used to validate or invalidate

conjectures regarding improvements in the system design from the

standpoint of reliability. The complete definition of the model used

for this example is provided in another report [Thompson, 1977A].

48

5. COMPARISON WITH OTHER SIMULATORS

There are four basic types of general simulators geared to

the study of computer systems. The first, typified by GPSS and

SIMSCRIPT [Fishman, 19731, simulates process control networks with

transactions flowing between processes. This level of modeling is

not particularly suited to the evaluation of reliability for a

physical system, and the lack of certain features, such as floating

point numbers for GPSS, impose restrictions on the person defining

the model. The other three types of simulation can be more easily

used to study reliability.

.The method of simulation used by CAST [Conn, 19741 is typical

of the second type. The system is modeled as a set of connected

modules, where each module is one of several kinds of predefined

functional subsystems. Each represents a basic part, such as a. CPU,

Memory, Input, etc. The function performed by each module is defined

in the simulator itself; the user can assign values to the parameters

of each module for the type of error detection, fault distributions,

modular fault recovery, number of spares, and other parameters relating

to the module as a whole. During simulation, each module passes

through states such as operational, detected failure, undetected

failure, recovered, etc. One simulator [Masreliez and Bjurman, 19761

uses Markov models to determine the state behavior of modules, and

.uses dependency trees to group modules. The effect of one module's

state on the behavior of the system is completely determined by the

module's position in a fixed configuration. The system configuration

4 9

is limited to modules in either series or parallel combinations with

possible spares. Some simulators of this type, and specifically CAST,

are only used to supply coverage and other parameters to an analytic

model, rather than obtain the system reliability directly.

The third type of simulator could also be called an emulator,

because the actual binary levels in a digital circuit are copied while

faults are injected into the network. A good example is the ELSA

program [Beaufils et al., 19741, which emulates the exact operation

of specific integrated circuits to the extent that the execution of

software on those circuits is identical to that in the physical

system. ELSA can deterministically or randomly inject single and

multiple stuck-at faults into the logic while emulating the execution

of a real program on that logic, then classify the various fault

combinations according to their effect on the network as a whole.

The faults can be permanent or transient. A variety of useful para-

meters are measured, such as the detection-latency, probabilities of

detecting a transient fault, probability that a transient fault

affects the network, etc. The large number of digital components in

a computer system prohibit the use of this type of simulator for the

purpose of obtaining reliability curves directly. Usually each

subsystem is emulated separately in detail, and their measured para-

meters are incorporated into another simulator or analytic model

which considers each subsystem as a black box. Emulation at the

integrated circuit level is almost always very costly in terms of

50

man-hours and computer time. Most circuit emulators reduce the

computer time considerably by writing the emulation program in

assembly language, thus taking advantage of the computer's word

structure to effectively do many emulations in parallel.

The simulator described in this report is a representative of

the fourth basic type. Unlike the other types, it cannot be labeled

as either low-level or high-level, because the person defining the

model always decides the meaning of each element in the system.

Theoretically, this simulator could successfully copy any model

studied on any of the other three simulator types and obtain the

same results. In practice, this could not be done in some cases,

due to the much better efficiency with which the other types can simu-

late certain specific kinds of systems. By limiting their range of

possible models, each type of simulator can predefine various aspects

of the overall specification and make available to the user a set

of facilities which will always be useful (or required) for all the

models within that range. For some models it is more efficient, in

terms of programming hours and computer time, to use one of the

specialized simulation programs. Also, the way in which a user defines

a model for this simulator relates more to a physical system than a

set of abstract processes, and thus would appeal more to a design

engineer than to a computer scientist. A person who is more comfort-

able with program structures would tend to think of hardware systems

in software terms, and would be more inclined to use GPSS or SIMSCRIPT.

The strongest feature about this simulator is its complete

51

generality. As the examples in Section 4 show, it can be used to

simulate at a high 'black-box' level as well as at the more detailed

digital circuit level. The third example simulated the behavior at

the gate level, register level, and complex system level all in the

same model. The functional definition of any unit can be arbitrarily

simple or arbitrarily complex, and the way in which units are inter-

connected has no restriction. Since the simulator is event-driven,

both synchronous and asynchronous networks can be modeled. The mean-

ing of a fault is defined by the user. These characteristics are

not found in the other simulators. The third type of simulator only

has stuck-at faults on package leads, and never gets above the level

of synchronous digital circuits. The second type of simulator cannot

change the function of any module or the basic form of interconnection

without extensively revising the simulator package, and does not

actually simulate circuit-level operations. In some cases, the other

types do<not obtain reliability curves, but simply derive parameters

to use in another simulator or analytic model. Thus, the simulator in

this report is of a very general nature in that it can be used to

obtain the reliability curves of a system as well as be geared to

evaluate coverage factors and their sensitivity to various physical

parameters.

It would be useful to take advantage of the best features of

each type of simulation in the same program package. In particular,

the fourth type of simulator often requires an accurate description

of the faults which would occur in a unit representing a complex

52

digital system. A simulator such as ELSA could provide such data

more efficiently than the general simulator itself; in fact, the way

in which that unit interacts with other units in the general simula-

tor would determine how the ELSA simulator categorizes the FECs for

that unit. Alternatively, a type subroutine might call another sub-

routine which efficiently emulates a digital circuit at the gate

level. The ELSA simulator could also use the general simulator to

handle asynchronous circuit elements, or to provide more complex

units to drive the gate-level network. The generality of the package

described in this report makes possible the efficient coordination

required to simulate several levels of detail simultaneously.

53

i

6 . CONCLUSION AND FUTURE WORK

A very general purpose simulator for the evaluation of digital

system reliability has been developed. The requirements of specifying

a model for a system maximizes the freedom of the user to innovate,

and allows him to simulate a hardware system at any arbitrary level

of detail and complexity. Various facilities are made available to

the user to allow definition of a model with randomly generated

faults, probabilistic branching, and other standard elements. Some

problems which typically arise in accurate simulation models, such as

superceded events and synchronizing unit inputs, are automatically

dealt with by the simulation package. The person specifying the

model has a variety of options from which to choose for fault distri-

butions, time delay distributions, and initialized events. The

printed output options and random seed specification facilitate

debugging the model. The simulation program and completed model are

portable to any computer supporting standard FORTRAN.

The simulator has been successfully used to evaluate the

reliability of three widely different digital circuits, representing

a very wide range of circuit detail and general application. The

computer time required for the simulations was reasonable for the

desired accuracy of results.

When compared with other types of simulators, this simulator .

is found to provide a greater degree of flexibility in specifying

the model. For specific types of models, other types of simulators

54

may be more efficient. The possibility of using a highly efficient

circuit emulator in coordination with the general simulator has been

discussed.

Future development of the simulation package could include

introducing a second level of specification for interconnected units.

The user will be able to define a block-type as a network of units,

then will able to build a larger system using many blocks of various

types. This allows a higher level of nesting similar to the relation-

ship between units and unit-types, and should facilitate the design

of more accurate models.

Future development could also include a more comprehensive

data-gathering/compiling routine, and more standardized choices

regarding the pre-testing of fault events at the beginning of each

mission. A routine which plots reliability curves would also aid

the user of the -package.

The current version allows such a general specification of

any system that there are many different ways in which one system

can be modeled. Different designers will almost never choose the

same unit divisions or link connections even for the same circuit.

This is useful at times because different model designs may study

different aspects of the same hardware, but it is not always clear

which type of model provides the most complete, efficient study of

reliability parameters. Study must be done to formulate rules of

how be&t to partition and simulate a complex system so that the

elements pertaining to reliability accurately reflect those in the

55

physical hardware. These rules could also provide a framework of

standardization leading to a more systematic certification of a

system's reliability.

5 6

7. APPENDIX A - SIMULATION EXAMPLES

This appendix includes a complete definition of the model used

for Example a, A General Dual Computer System. Diagrams of the

units and links used for Examples b and c are also provided.

Figure Al shows the convention used by the author to label

various characteristics of a unit when put in a model diagram. It

:;hould be noted that input ports are distinct from output ports.

Figure A2 shows the unit/link model for Example a. Figures

A3, A4, A5 and A6 list the user-supplied subroutines, with a table

of what the various elements mean. The value of UNIT is pre-assigned

by the simulation program before the type subroutines are called.

The other names are:

IEJ(t/) Input buffer area.

OUTT(",@) Output buffer area.

FAULT(*,UNIT) Fault state.

UV(+JNIT) Unit state-variables.

u=(l) Returns a uniform (0,l) random value.

TIME Current simulated time.

MSTOP(TIME) Force simulation of this mission to stop.

UTD(*) Time delay for output port.

Figure A7 shows a sample formatted data deck for the model (the

one used for the graph of Figure 8) and Figure A8 is the computer

listing from that deck. Figure A9 is part of the simulation output

for the graph of Figure 7.

57

Figure A10 shows the link/unit diagram for the model used in

Example b, and Figure All shows the model used in Example c.

58

input
links

unit number
8

LU
ry;

number off iI@ 4
input port I

i
type Af unit

name of
/'00

Lc

unit type

f \
‘\number of
output port

output
links

Fig. Al. Convention of Labelling Model Diagrams.

59

Figure A2. Model of a Dual Computer System with Arbiter.

60

SUBROUTINE TYPE1
C COMPUTER UNIT WITH TWO FAULTS AND IMPERFECT ERROR DETECTION

COMMON/USER/ IN(8,8),OUTT(8,8),UV(8,4O),UTD(8),FAULT(24,40)
1 ,TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(S),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT

C ASSIGN DEFAULT OUTPUTS
OUTT(l,l)=l.O
OUTT(1,2)=1.0

C TEST IF SECOND FAULT IS ACTIVE
IF(FAULT(2,UNIT).EQ.O) GO TO 100
UV(l,UNIT)=O,O
OUTT(l,l)=O.O
OUTT(1,2)=0.0
GO TO 1000

c TEST IF FIRST FAULT IS ACTIVE
100 IF(FAULT(l,UNIT>.EQ.O) GO TO 200

UV(l,UNIT)=O.O
OUTT(l,l)=O.O
GO TO 1000

C TEST IF COMPUTER MEMORY HAS BEEN CONTAMINATED IN THE PAST
200 IF(UV(l,UNIT).EQ.O) OUTT(l,l)=O.O

C IF ERROR ISN'T PROPOGATING TO OUTPUT SET TIME DELAYS TO ZERO
1000 IF(OUTT(l,l).EQ.l.O)UTD(1)=O.O

IF(OUTT(1,2).EQ.l.O)UTD(2)=0.0
C ADJUST ERROR DETECTION OUTPUT FOR DELAY THROUGH ARBITER

UTD(2)=UTD(2)-1.0
RETURN
END

OUTPUT 1 = 0 data output is incorrect.
= 1 data output is correct.

OUTPUT 2 = 0 a fault is detected in this computer.
= 1 no fault is detected in this computer.

FEC 1 = 0 no undetectable fault is active in this computer.
2 1 at least one undetectable fault is active in

this computer.

FEC 2 = 0 no detectable fault is active in this computer.
21 at least one detectable fault is active in

this computer.

STATE-VARIABLE 1 = 0 computer memory has been contaminated by a fault.
*l computer memory is not contaminated.

Figure A3. Definition of Computer Unit (TYPE 1).

61

SUBROUTINE TYPE2
C ARBITER WITH ONE FAULT WHICH CAUSES RANDOM OUTPUT CHOICE

COMMON/USER/ IN(8,8),OUTT(8,8),UV(8,4O),UTD(8),FAULT(24,40)
1 ,TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(5),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT

C MAKE A RANDOM CHOICE
OUTT(l,l)=l.O
IF(UV(l,UNIT).LT.URAND(l)) OUTT(1,1)=2.0

C TEST IF INPUTS DETERMINE OUTPUT, SET OUTPUT ACCORDINGLY
IF((IN(1,1).EQ.l.O).AND.(IN(l,2).EQ.O.O)) OUTT(l,l)=l.O
IF((IN(1,1).EQ,O.O).AND.(IN(l,2).EQ.l~O)) OUTT(1,1)=2.0

C TEST IF FAULT IS CURRENTLY ACTIVE
IF(FAULT(l,UNIT),EQ.O) GO TO 700

C TEST IF ACTIVE FAULT HAS ALREADY BEEN DETECTED
IF(UV(2,UNIT).GT.O.O) GO TO 600

C FLAG ACTIVE FAULT DETECTED, MAKE RANDOM CHOICE FOR OUTPUT
UV(2,UNIT)=l,O
IF(URAND(l).GT.0.5) UV(2,UNIT)=2.0

600 OUTT(l,l)=UV(2,UNIT)
GO TO 1000

C FLAG FAULT IS NOW INACTIVE
700 UV(2,UNIT)=O.O

1 0 0 0 RETURN
END

INPUT 1 = 0 a fault is detected in computer 1.
= 1 no fault is detected in computer 1.

INPUT 2 = 0 a fault is detected in computer 2.
= 1 no fault is detected in computer 2.

OUTPUT 1 = 1 arbiter selects computer 1.
= 2 arbiter selects computer 2.

FEC 1 = 0 no arbiter fault is active.
L 1 a fault is active which causes the arbiter to

always select the same computer, regardless of
the values on the input links.

STATE-VARIABLE 1 = 0 no arbiter fault was active the last time the
arbiter function was evaluated.

= 1 an arbiter fault was active last time, forcing
the output to select computer 1.

= 2 an arbiter fault was active last time, forcing
the output to select computer 2.
(State-variable 1 is affected only by faults
occurring in the arbiter circuit, not by faults
occurring in the computer units.)

Figure A4. Definition of an Arbiter Unit (TYPE 2).

62

SUBROUTINE TYPE3
C MONITOR WHICH STORES TIMES-TO-FAILURE AND STOPS MISSION

COMMON/USER/ IN(8,8),OUTT(8,8),UV(8,4O),UTD(8),FAULT(24,40)
1 ,TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(5),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT

c TEST IF COMPUTER 1 HAS FAILED YET
IF((UV(1,UNIT>.EQ.O.O).OR.(IN(I,1).EQ.1.O)~ GO TO 100
CALL STASH(TIME,l)
UV(l,UNIT)=O.O

C TEST IF COMPUTER 2 HAS FAILED YET
100 IF((UV(2,UNIT>.EQ.O.O).OR.(IN(1,2).EQ.1.O)) GO TO 200

CALL STASH(TIME,2)
UV(2,UNIT)=O.O

C TEST IF MISSION IS FAILED
200 IF(vV(3,UNIT).EQ.O.O) GO TO 300

IF((IN(1,3).EQ.l.O).AND.(IN(l,l).EQ.l.O)) GO TO 300
IF((IN(1,3).EQ.2.O).AND.(IN(1,2).EQ.l.O)) GO TO 300
UV(3,UNIT)=O.O
CALL STASH(TIME,3)

C WHEN EVERYTHING HAS FAILED AT LEAST ONCE, STOP THE MISSION
300 IF(VV(l,UNIT)+UV(2,UNIT)+UV(3,UNIT).EQ.O.O~ CALL MSTOP(TIME)

RETURN
END

INPUT 1 = 0 data output of computer 1 is incorrect.
= 1 data output of computer 1 is correct.

INPUT 2 = 0 data output of computer 2 is incorrect.
= 1 data output of computer 2 is correct.

INPUT 3 = 1 arbiter decides that computer 1 has
correct output.

= 2 arbiter decides that computer 2 has
correct output.

STATE-VARIABLE 1 = 0 data output of computer 1 has been
incorrect previously.

= 1 data output of computer 1 has never
been incorrect.

STATE-VARIABLE 2 = 0 data output of computer 2 has been
incorrect previously.

= 1 data output of computer 2 has never
been incorrect.

STATE-VARIABLE 3 = 0 arbiter has selected incorrect data
previously.

= 1 arbiter has not yet selected incorrect data.

Figure A5. Definition of a Monitor Unit (TYPE 3).

6 3

SUBROUTINE STASH(R,I)
C DATA COLLECTION AND ANALYSIS

COMMON/USER/ IN(8,8),OUTT(8,8),UV(8,4O),UTD(8),FAULT(24,40)
1 ,TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(5),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT
DIMENSION TSAVE(500,6),ITS(6)
DATA IR,IC,ITS,TSAVE/5OO,6,6*O,~OOO*O.O/
IF (I-NE ~1) GO TO 100

C INITIALIZE ARRAY IN WHICH TIMES WILL BE SAVED
DO 1 0 K=l,IC
DO 1 0 J=l,IR

1 0 TSAVE(J,K)=LIMIT
GO TO 1000

100 IF (I.LT.l) GO TO 200
C STORE TIME TO FAILURE AT END OF A MISSION

TSAVE(MSSION,I)=R
ITS(I)=NMSSN
GO TO 1000

200 IF (I.NE.~) GO TO 1000
C CALL OUTPUT ROUTINE TO PLOT AND SORT TIMES TO FAILURE

CALL OUTPUT(TSAVE,ITS,IR,IC)
1 0 0 0 RETURN

END

CALLING PARAMETERS:

R= number to record for later analysis, usually the
time-to-failure for some part of the system.

I = -1 initialize tables to maximum mission time.
= 0 sort and plot reliability vs. time.
= 1 save time at which computer 1 first has

incorrect data.
= 2 save time at which computer 2 first has

incorrect data.
= 3 save time at which arbiter first selects a

computer with incorrect data.

Figure A6. Data-Storage Subroutine.

64

r

1.
GLOBAL SIMULATION PARAMETERS 2.

3.
4.

FOR EACH LINK, 5.
VECTOR LENGTH AND

INITIAL LINK VALUE.
6.
7.

FOR EACH UNIT:
INPUT LINKS,
OUTPUT LINKS,
OUTPUT TIME DELAY

DISTRIBUTIONS,
FAULT-EQ. CLASSES,
STATE-VARIABLES.

FOR EACH FEC:
INITIAL STATE,
MULTIPLICITY,
OCCURRENCE

DISTRIBUTION,
DURATION

DISTRIBUTION.

(EMPTY) LIST
OF PRE-SET EVENTS- 36,

8.
9.

----- 10.
11.
12.

z 13.

i

r; 14.
- 15.

16.
17.

5 6 6
DUAL COMPUTER WITH FAULTY ARBITER (COMPLEX EXAMPLE)

1
2
3
4
5

1
1
2
1

2

2
1
2
1

2

3
2
1
1

4
1

0.0 1.E9
1 1.0
1 1.0
1 1.0
1 1.0
1 1.0

1 0
1 9
2 9
1 1
1 .E-6
1 1
1 .E-7

1.0
1 0
3 9
4 9
1 1
1 .E-6
1 1
1 .E-7

1.0
2 2
4
5 6
1 5
5-E-5

0.5
3 3
3 5

1.0

2 2 1
-05
-03

0 50
0.0

0 500
0.0

2 2 1
-05
-03

0 50
0.0

0 500
0.0

1 1 2

1.0
0 1

0.0
0.0

0 0 3

1.0

500 0 0 0 1 0

10.
10.

0.0

0.0

10.
10.

0.0

0.0

0.0

0.0

1.0

0.0
0.0

1 .E-4

1 .E-4

0.0
0.0

1 .E-4

1 .E-4

0.0

1 .E-4 1.1 0.0

0.0

0.0

0.0

0.0

12345

0.0

0.0

0.0

0.0

Figure A7. Formatted Data-Deck for Complex Dual Computer Example.

DUAL COMPUTER WITH FAULTY ARBITER (COMPLEX EXAMPLE)

THE LOWER/UPPER TIME LIMITS ARE 0.0 / 0.100000E+10

500 MISSIONS WITH STARTING SEED 12345

LINK 1 IS A VECTOR OF LENGTH
INITIAL VALUES 0.100000E+~l

LINK 2 IS A VECTOR OF LENGTH
INITIAL VALUES 0.100000E+~l

LINK 3 IS A VECTOR OF LENGTH 1
LINK

INITIAL VALUES 0.100000E+~1
4 IS A VECTOR OF LENGTH

LINK
INITIAL VALUES 0.100000E+~1

5 IS A VECTOR OF LENGTH
INITIAL VALUES 0.100000E+01

UNIT 1 IS TYPE
OUTPUT 1 TO LINK' 1 WITH TIME DELAY DISTRIBUTION 9

TM DLY PARAMS 0,500000E-01 0,100000E+02 0.0
OUTPUT 2 TO LINK 2 WITH TIME DELAY DISTRIBUTION 9

TM DLY PARAMS
FAULT 1 INITIAL STATE i?300000E-01

0.100000E+~~ 0.0
MULTIPLICITY

OCCURANC DIST
OCCRNC PARAMS ;.lOOOOOE-05 0.0 0.0
DURATION DIST 1
DURATN PARAMS

Yoooo0E-03MULTIPLIC!?!
0.0

FAULT 2 INITIAL STATE 500
OCCURANC DIST
OCCRNC PARAMS :.100000~-06 0.0 0.0
DURATION DIST
DURATN PARAMS : IOOOOOE-03 0.0 0.0

STVAR 1 HAS VALUE 0.100000E~01
UNIT 2 IS TYPE

OUTPUT 1 TO LINK' 3 WITH TIME DELAY DISTRIBUTION 9
TM DLY PARAMS 0.500000E-01 0.100000E+02 0.0

OUTPUT 2 TO LINK 4 WITH TIME DELAY DISTRIBUTION 9
TM DLY PARAMS 0.300000E-01 0.100000E+02 O-0

FAULT 1 INITIAL STATE 7 - MULTIPLICITY
OCCURANC DIST
OCCRNC PARAMS
DURATION DIST

~.100000E-05 0.0
DURATN PARAMS

FAULT 2 INITIAL STATE k?100000E-03MULTIPLIck!
OCCURANC DIST
OCCRNC PARAMS &100000~-06 0.0
DURATION DIST
DURATN PARAMS :, IOOOOOE-03 0.0

STVAR 1 HAS VALUE 0.100000E;01
UNIT 3 IS TYPE

INPUT 1 IS LINK2 2
INPUT

OUTPUT
IS LINK 42

1 TO LINK 5 WITH
TM DLY PARAMS

FAULT 1 INITIAL STATE
TIME DELAY DIST;I;UTION
0.100000E+01
0 MULTIPLICI'kY

OCCURANC DIST
OCCRNC-PARAMS 4.5OOOOOE-04 0.0

50
o-0

0.0
500

0.0
0.0

6
0.0

1
0.0

DURATION DIST
DURATN PARAMS ; IOOOOOE-03 0,110000E+01 0.0

3Ef
1 HAS VALUE 0.500000E;00
2 HAS VALUE 0.0

UNIT 4 IS TYPE 3
INPUT 1 IS LINK 1
INPUT
INPUT : 2 ZNNZ ;
%Z

1 HAS VALUE 0,100000E+01
2 HAS VALUE 0.100000E+01

STVAR 3 HAS VALUE 0.100000E+01

Figure A8. Model Parameters.

66

s
4
r\J

.
(3
*‘;

AA4
r- u

l �4-l
a ☺*

d
9
.

0 0 0
0 0 0
000
CQQS

. * .

0
0
N

c
ru
u

u
. . l *J

c)

nJ r-4 nJ
ucw-

67

r
c
C

fi--
izm
c f l

II--(I-
&
1In.

I IOI- I

ILJJ
r-lE$
3

68

-----rma2IL---
rv--I

c .

---------t

11 i

I
I - I -

69

8. APPENDIX B - RELIABILITY ANALYSIS

This appendix derives the analytic reliability model

for systems having faults with constant failure rates. The

basic model is then extended to obtain the reliability equa-

tions used in Examples a and b of Section 4. In the follow-

ing discussion, all faults are assumed permanent.

Consider a system with one possible fault, where the

system fails at the same time that fault becomes active. The

time T at which the system fails is a random variable. The

reliability, R(t), of the system is a function of the

random variable T.

R(t) = probability that the system has not

failed before time t, i.e., prob(T>t)+

By convention, we always assume that the system is not failed

at time t=O, therefore R(0) = 1.

Let the fault have a constant rate of occurrence, ex-

pressed as A failures/hours. At time t(hrs.), the failure

rate must equal the probability of a failure at that instant,

given that the failure has not occurred before time t. The

probability of failure at that instant is the negative of the

derivative of R(O) evaluated at t. Using Bayes Theorem, the

conditional requires only division by R(t). Thus:

x -R'(t)=
R(t)

Qt>O.

70

With boundary condition R(O)=l, this differential equation is directly

solved:

R(t) = e-At , t > 0.

A system with a reliability function of this form is said to have an

exponentially distributed fault. All one-fault systems with a constant

failure rate X have this reliability function.

Example a of Section 4 considers a dual computer system, with

faults occurring independently in each computer. For the simple case,

each computer had only one fault with a constant failure rate X, and

the dual system failed only when both failed. Let R*(t) be the dual

system reliability, and RI(~) and Rz(t) be the reliabilities of each

computer alone. Then we have

RI (t> = Rz(t) = e-At , t > 0.

The probability that one computer fails before time t is l-RI(t), and

since they are independent the probability that the dual system fails

before time t is

l-Rs (t> = [1-IQ(t)]'[l-Rn(t)l,

so that Rs (t) = 2Rl(t) - R:(t),

Rs(t) = 2e-Ator - e-2ht, t > 0.

This is the reliability function for the simple case of the dual

computer system.

Consider now the case of the TMR NAND-gate circuit. Each

gate has three leads (two inputs,one output), and each lead has a

71

constant failure rate X. The reliability of one lead is

Rll(t) = eeAt, t > 0.

A gate functions properly only if all three leads function properly.

Since the lead failures are independent, we may multiply their proba-

bilities of being fault-free to get the gate reliability:

Rc(t) = R;(t) = ea3Xt, t > 0.

A lower bound for the system reliability, Rs(t), can be derived by

assuming the final voter output is correct if and only if at least

two gates are fault free. By "correct" is meant the TMR circuit

performs the same logic function as a single fault-free gate for

all input combinations. There are three ways in which two gates can

fail while one is fault-free, and one way for all three gates to fail.

The probability of system failure before time t is

1 - Rs(t> = 3RG(t) [l-RG(t)12 -I- [1-RG(t)13,

so that Rs(t) = 3Ri(t) - 2R$t),

or Rs(t) = 3e-6Xt - 2eegAt, t > 0.

This is only a lower bound for the true reliability function of the

TMR NAND-gate system, because the analysis does not take into account

compensating failures (discussed in Section 4).

72

9. REFERENCES

[Beaufils, et al, 19741 Beaufils, R., J.L. Paul and R. Troy,
"Systems d'Evaluation globale de
Multiprocesseurs autorgparables",
Repport 1 and 2, Contract DRME 73/07O,
LAAS, University of Toulouse, Toulouse,
France, 1974.

[Corm, 19741 Conn, R.B., "Definition and Trade-Off
Study of Reconfigurable Airborne
Digital Computer System Organizations-
Final Report", NASA Contract NASl-12793,
Ultrasystems, Inc., Newport Beach, Ca.,
Nov. 1974.

[Fishman, 19731 Fishman, G.S., "Concepts and Methods in
Discrete Event Digital Simulation",
John Wiley 6 Sons, N.Y., 1973, pp.98-135.

[Masreliez & Bjurman, 19761 Masreliez, C.J., and B.E. Bjurman, "Fault-
Tolerant System Reliability Modeling/
Analysis", Boeing Corp., Seattle, Wn.,
June, 1976.

[Raytheon, 19741

[Ressler, 19731

[Siewiorek, 19711

[Thompson, 1977A]

Raytheon Company, Equipment Development
Laboratory', "Reliability Model Deriva-
tion of a Fault-Tolerant, Dual, Spare-
Switching, Digital Computer System",
Final Report, NASA Contract NASl-12668,
Sudbury, Mass., March, 1974.

Ressler, B.E., 'Design of a Dual Computer
Configuration for Redundant Computation',
M.S. Thesis, M.I.T., June, 1973.

Siewiorek, D.P., "An Improved Reliability
Model for NMR", Technical Report No. 24,
Digital Systems Lab., Stanford University,
Stanford, Ca., December, 1971.

Thompson, P.A., "Using Simulation to
Evaluate the Reliability of a Dual
Computer System," Technical Report
No. 121, Digital Systems Lab., Stanford
University, Stanford, Ca., March 1977.

73

[Thompson, 1977B] Thompson, P.A., "Manual for a General
Purpose Simulator Used to Evaluate
Reliability of Digital Systems," Tech-
nical Report No. 132, Digital Systems
Laboratory, Stanford University, Stanford,
California, March 1977.

74

