PIGITAL SYSTEMS LABORATORY

STANFORD ELECTRONICS LABORATORIES
DEPARTMENT OF ELECTRICAL ENGINEERING

STANFORD UNIVERSITY - STANFORD. CA 94305

A SIMULATOR FOR THE EVALUATION
OF DIGITAL SYSTEM RELIABILITY

Peter Alan Thompson

Technical Report No. 119

August 1977

This work was supported in part by

NASA Grant NGR-05-020-699, Sup. 1,

National Science Foundation Grant NSF MCS 76-05327, and
Air Force Office of Scientific Research Grant 77-3325.

Acknowledgment: Acknowledgment is made to the
NASA Ames Research Center, Moffett Field, California
for the use of their CDC-7600 computing facility.

SEL-77-039

enter for SEL-77-039
eliable

omputing

A SI MILATOR FOR THE EVALUATION OF
DG TAL SYSTEM RELIABILITY

Peter Al an Thonpson

Technical Report No. 119

August 1977

DI G TAL SYSTEMS LABORATORY
Departments of Electrical Engineering and Conputer Science
Stanford University
Stanford, California

This work was supported in part by NASA Gant NGR-05-020-699, Sup. 1,
National Science Foundation Gant NSF MCS 76-05327, and Air Force Ofice
of Scientific Research Gant 77-3325.

Acknow edgnent: Acknow edgnent is made to the NASA Ames Research Center,
Mifett Field, California for the use of their CDC- 7600 conputing facility.

A SI MULATOR FOR THE EVALUATION OF

DIG TAL SYSTEM RELIABILITY

Peter Al an Thonpson
Technical Report No. 119
August 1977
Digital Systens Laboratory
Departnments of Electrical Engineering and Conputer Science

Stanford University
Stanford, California

ABSTRACT

This report describes a simulation package designed to evaluate
the reliability of digital systems. The sinulator can be used to
nodel many different types of systens, at varying levels of detail.
The user is given nmuch freedomto use the elenents of the nodel in the
way best suited to simulating the operation of a systemin the presence
of faults. The sinulation package then generates random faults in the
nmodel, and uses a Mnte Carlo analysis to obtain curves of reliability.
Three exanples are given of simulations of digital systems which have
redundancy. The difference between this type of simulation and ot her

sinmulation techniques is discussed

| NDEX TERMS: Sinulation, Reliability, Computer, Digital, Faults,

Monte Carlo, Event.

Section

_(A.)

B WN R

el
w N

ADSETACE . . . v e e e e e e e e e e e e e e e e e
CoNtentsS . . . v v e e e e e e e e e e e e e e e e
[TTUStrationsS v v v v v v v v v e e v v o o e e e

SPECI FI CATI ONS FOR MODEL BUI LDI NG .

Model Partitions

Li nks
Faul ts

Similated WNits
THE SIMULATION PROCESS . . .+« o v ottt

THREEEXAMPLES
Exanple a - A CGeneral Dual Conputer System
Example b -A TMR Network
Exanple ¢ - A Dual Conputer System for Navigation .

COVPARI SON WTH OTHER SIMULATORS
CONCLUSION AND FUTURE WORK
APPENDI X A - SIMJLLATION EXAMPLES

APPENDI X B - RELIABILITY ANALYSIS

REFERENCES

Fi gure

— e e e

Al
A2.
A3.
A,
A5,
A6.
AT.
A8.
A9.
Al0.
Al.

| LLUSTRATI ONS

Model of a Dual Conputer Systemwth Arbiter .
Definition of a Conputer Unit (TYPE 1) .

Definition of an Arbiter Unit (TYPE 2) .

Simulation of One Mssion o

One Monte Carlo Sinulation Run .

A Dual Conputer System. . .
Reliability Curves for Si nple Dual Conputer System .
Reliability Curves for Conplex Dual Conputer System
Triple Mdul ar Redundant (TMR) NAND Gate System . .
Reliability Curves for Sinple TMR NAND-Gate System .
Reliability Curves for Conplex TMR NAND- Gate System
A Dual Computer Systemfor Navigation . . :
Unreliability Curve Using Honeywell-316 Conput ers .
Unreliability Curve Using MSI Computers
Unreliability Curves Using Different Repair Rates .

Convention of Labelling Mdel Diagrans
Mdel of a Dual Conputer Systemwith Arbiter
Definition of Conputer Unit (TYPE 1)
Definition of an Arbiter Unit (TYPE 2)

Definition of a Mnitor Unit (TYPE 3)

Data- Storage Subroutine

Formatted Data-Deck for Complex Dual Conputer Exanple.

Mdel Paraneters
Sample Sinulation Qutput
Model for Study of a TMR NAND-Gate Gircuit
Mdel of a Dual Conputer System for Navigation

jv

Page

10
21
26
30
32
34

39
40
42
45
46

59
60
61
62
63
64
65
66
67
68
69

L. | NTRODUCTI ON

Any digital systemis subject to physical failures, either in
the electronic conponents thenselves or in the connections between
conponents. Such faults can cause parts of the systemto act in an
incorrect manner, and the ability of the entire systemto performits
required function is inpaired. Redundancy techniques have been de-
vised to allow digital systens to tolerate some failures. However
the evaluation of the efficiency is a difficult problem For such
systems, accurate determnation of their reliability function, that
Is to say, the probability of correct operation as a function of the
length of the mssion, is difficult to obtain by analytic nethods
alone. The intricacies of the mechanisms for fault detection and
repair along with the diversity of the failure nodes and their effects
on the overall system do not lend thenselves to analytical nodeling
Simulation techniques are far better suited to this task. This
report will describe a sinmulator witten especially for the evaluation,
with respect to reliability, of redundant digital systens.

The use of sinulation can be a very powerful technique to
evaluate the reliability of conputer systems. Analytical reliability
model ing usually requires numerous sinplifying assunptions ta be
made in order to nake the mathematics tractable. Simulation allows
many of these assunptions to be renmoved, resulting in a more accurate
nodel of the system behavior. The effects of random faults on the

system can be studied nmore easily and a variety of statistical measures

can be conputed from the results of simulator runs, to characterize
the systemreliability.

A very general purpose sinulator has been devel oped at the
Center for Reliable Conputing (CRC) at Stanford University. The
simulator is general enough to allow any type of hardware configura-
tion to be studied. The actual system configuration is specified
by the user, as is the level of detail at which sinulation should be
performed. The user can select a portion of the system sinulate it
in great detail, and then incorporate the results in a higher |eve
simulation of the total system where the subsystem studied in detai
Is represented as a single conponent. In this way, the conputer tine
needed for the total sinulation can be reduced

The simulator consists of two basic parts: the utility package
which handles all the details and bookkeeping required in any sinu-
lation, and the user-supplied functions which define the nodel for
the systemto be simulated. The utility package is the sanme regard-
|l ess of the system being sinulated, and is witten in standard ANS
FORTRAN 1V (not extended) so that it can be used on any conputer
supporting high-level languages. In order to sinulate a system the
user nust supply to the utility package a description of the systems
structure and behavior. The level of detail at which the systemis
described is completely arbitrary. For each basic conponent of the
system as partitioned by the user, it is necessary to supply to the
utility progranms a FORTRAN subroutine which describes the behavior of

that conponent in terms of the relation between inputs, outputs, and

the set of faults that the element can suffer. Thus, one conponent
of the nodel could be anything froma gate to a conputer. Then the
user specifies how the conponents are interconnected and what the
fault distribution and simulation paraneters are, so that the utility
package can construct a nodel of the conplete system conposed of the
predefined components. \Wen the entire nodel is built, the utility
package sinulates the nodel's behavior in response to random faults
in such a way as to obtain reliability and performance data for the
system The follow ng sections describe first how a user can use
the sinulator and secondly the method used by the utility prograns
to sinulate a systemfor reliability analysis

A separate report [Thonpson, 1977B] supplies all the details
necessary to define a model for the sinulator. It also discusses
various aspects of the simulation process nore explicitly than is
done here, and includes a conplete listing of the FORTRAN source
programs of the utility package. Another report [Thonpson, 1977A]
describes in detail how a conplex dual redundant conputer system (the
sane as Exanmple ¢ - section 4.3 of this report) was studied with the

sinul ator.

2. SPECI FI CATIONS FOR MODEL BUI LDI NG
2.1 Mbdel Partitions

The systemto be simulated is partitioned by the user into
subsystems, called units. The way to partition is left conpletely
to the user's choice. For a digital circuit, one unit may represent
a single gate or register, while for a multiconputer system one unit
woul d be a whole conputer or bus switch. Al the units in the node
are further grouped into different types, such that all units of the
same type woul d be considered physically interchangeable in the rea
system For exanple, all units representing a NAND gate can be
grouped into one type, but units representing NOR gates nust be
grouped as a different type because they are not functionally identi-
cal to NAND gates. The reason for this grouping is that the user
will supply to the simulator a description of the behavior, not of
each individual unit, but rather of each type of unit. The sane
behavi or description will be used during simulation for each unit of
the sanme type

This is illustrated in Figure 1, which gives one of the
many possible nodels for a dual conmputer systemw th an arbiter. It
has four units (two conputers, an arbiter, and a nonitor) but only
three unit types (conputer, arbiter, and monitor). This systemis
described in greater detail in the first exanple of Section 4, and a
conplete definition of the model is included in Appendix A The
units representing the conputers and the arbiter will be used to

explain the way in which basic elements such as links and faults can

1t L1 !
COMPUTER 1
2 L2
TYPE 1 1 MONITOR
L5
ARBITER 1 >~ 3
2
TYPE 2
COMPUTER 2 d r £4 7| ¢
' TYPE 3
2 L3
TYPE 1

Figure 1. Model of a Dual Computer System with Arbiter.

be used to construct a model. Each conputer has two types of outputs,
one for conputed data and the other to indicate whether or not a
physical fault has been detected in that conputer. The function of
the arbiter is to look at the detection signals from both conputers
and form an opinion as to which conputer has correct data outputs
The selection is characterized by a nunber (i.e. 1 or 2, the nunber
of the "good" conputer unit) and sent to the nmonitor (which is a unit
that does not have any hardware equivalent. It exists only for sinu-
| ati on purposes). For example, suppose the error detection input
from conputer 1 indicates a fault in conputer 1 and the error detec-
tion input from conputer 2 indicates a no-fault condition in conputer
2. Then the arbiter will decide that conputer 2 is the correct choice
and wi |l send the nunber "2" to the nonitor
2.2 Links

In the sinulation nodels, all communication between units
is done by links. Each link carries one or several nunerical values.
The set of these values will be referred to as the vector associated
with the link. The model of Figure 1 has five links, I|abeled L1
through L5, each representing a vector of length one. Wen defining
the nodel, the user specifies the vector length of each link, and
assigns links to the input and output ports of each unit. In
general, a link may have any nunber of sources and destinations.
Each unit may have any nunber of input and output links. As shown
in Figure 1, the arbiter has two input |inks and one output |ink
Links L2 and L4 are connected to input ports 1 and 2, respectively,

and link L5 is connected to output port 1

b

The numbers carried on a link do not necessarily correspond to
actual signals in the real system For exanple, the arbiter output,
carried on link L5 is either the nunber 1 or the nunber 2 (referring
to the decision of the arbiter). The value does not relate to the
nmethod used in the actual hardware to encode and transmt this
informtion. The same is true of all the other links in the nodel
Links L2 and L4 could indicate the detected/ not-detected conditions
with any two unequal nunmbers, as long as the computer units and the
arbiter unit agree on what each nunber means. This is even nore
clearly illustrated for links L1 and L3, which carry the conputed
data output fromthe conputer units to the nonitor. The nonitor
| ooks for a system failure by testing if the arbiter has selected a
computer which has incorrect data output. Since the nmonitor nust
only know whet her the selected data is correct or incorrect, there
is no reason for the conputer units to actually produce the exact
binary or analog signals which would come from the real physica
conputers. During the sinulation process, links L1 and L3 have the
value 1 if the corresponding physical signal is correct, and val ue
0 if it is incorrect. \When the user specifies the behavior which
takes place inside each unit (described later), the conputers,
arbiter and nonitor are defined so as to agree on the neaning of
each possible value on each link. In this way, only the infornation
necessary for reliability evaluation is transferred between units

It should be enphasized here that the neaning of the nunbers

carried on each link is conpletely specified by the person designing

the nodel. The second and third exanpl es of Section 4 use nodels in
which sonme links actually do carry binary digits corresponding to
physical logic levels in the circuit. Some links in the third exanple
are vectors of length 5 of which three conponents are binary digits,
one conponent signifies the program state of a conputer, and the fifth
conponent indicates one of several degrees of correctness/incorrect-
ness for that conputer's output bus. Clearly, the nethod of specifi-
cation is general enough to sinulate the transfer of both real signals
and abstract information between units

2.3 Faults

Figures 2 and 3 show the basic specifications for unit

types 1 and 2. Notice the input and output definitions correspond
to the conventions discussed in the preceding paragraphs. Also, notice
that each type has several fault-equival ence classes (FECs); unit-type 1
has two FECs and unit-type 2 has one FEC. Each FEC corresponds to
those faults in the physical system which would all cause the same
effect. For exanple, all the faults represented by FEC 1 of unit-type 2
(Figure 3) will cause the arbiter selection to be random Since this
is the only FEC for the arbiter, the nodel assumes that only this kind
of fault can occur in an arbiter circuit. Unit-type 1 has two kinds
of faults, those which can be detected with special fault-detection
hardware, and those which cannot. Faults from either FEC will cause

the conputer data output (port 1) to be incorrect.

OUTPUT 1

—— O

QUTPUT 2

FEC 1

v on

— O

FEC 2

v I

STATE-VARIABLE 1

Figure

— O

)

2.

COMPUTER

TYPE 1

data output 1is incorrect.
data output is correct.

a fault is detected in this computer.
no fault is detected in this computer.

no undetectable fault is active in this computer.
at least one undetectable fault is active in this
computer.

no detectable fault is active in this computer.
at least one detectable fault is active in this
computer.

computer memory has been contaminated by a fault.
computer memory is not contaminated.

Definition of a Computer Unit (TYPE 1).

INPUT 1

INPUT 2

OUTPUT 1

FEC 1

STATE-VARIABLE 1

v Il I n

ARBITER 1 t+—>

TYPE 2

0 a fault is detected in computer 1.
1 no fault is detected in computer 1.

0 a fault is detected in computer 2.
1 no fault is detected in computer 2.

1 arbiter selects computer 1.
2 arbiter selects computer 2.

0 no arbiter fault is active.

1 a fault is active which causes the arbiter to
always select the same computer, regardless of
the values on the input links.

0 no fault was active the last time the arbiter
function was evaluated.

1 a fault was active last time, and the output was
forced to select computer 1.

2 a fault was active last time, and the output was
forced to select computer 2.
(State-variable 1 is concerned with faults occurring

in the arbiter, not faults in the computers.)

Figure 3. Definition of an Arbiter Unit (TYPE 2).

10

An FEC can be active or inactive. An active FEC neans that

at least one of its faults is active in the physical system The sinu-
lation of one mssion will usually begin with all faults in the inac-
tive state, which in the real system would nean that it was thoroughly
pretested before the start of the mission. The sinulator automatically
changes the fault states as the simulated m ssion "progresses” through
time, according to various user specifications concerning the occurrence
and duration of faults within each FEC. For each FEC, the sinulated
time interval spent in each active or inactive state is generated ran-
domy according to a probability distribution supplied by the user

This requires selecting the law of distribution, then setting the
parameters used in that kind of distribution. The various types now
avail abl e include exponential distributions (constant rate), Weibul
(ageing), nornmal, constant, uniform Pascal, etc. The current ver-
sion of the sinulator allows the user to specify (for each FEC) sepa-
rate distributions for the active and inactive tine intervals. A
future version will offer two nmore distributions to nmore accurately
simulate faults which have a burst-node characteristic; for exanple
faults due to |oose connectors or transmssion-line noise. During
simulation, the utility package automatically generates the random
tinme intervals and changes the fault states accordingly. In order to
allow conmplete generality in the nmodel, the user may specify the state
(activelinactive) to which each FEC is initialized at the beginning of
every simulated mssion. This provides a way to nmodel systems which

are not thoroughly pretested

11

For the exanples shown in Figures 2 and 3, when we refer to
one FEC, it is inplicitly assunmed that there could be many different
faults in the FEC. Since the term "single fault" has many meanings in

the literature, this report will use single fault to inply division of

the FEC into the greatest number of parts such that any single part

al one can cause the effect related to that FEC. A single fault is then
that part of the FEC (even though in the hardware such a single fault
may be a nultiple point failure). For digital circuits a single fault
m ght be an integrated-circuit pin stuck-at-l or stuck-at-O and an FEC
woul d include all such pin failures having the same effect on the
circuit's operation. On the other hand, an FEC mght consist of only
one single fault, such as the failure of a power-supply connector.

The nunber of single faults in an FEC is the nultiplicity

of that FEC. If an FEC has a multiplicity greater than one, each
single fault nust have a constant failure and repair rate, to allow
efficient generation of state transitions for the FEC. The FEC
then has a nunber of active states equal to its multiplicity; and
its state is determned by the total nunmber of single faults assuned
to be present at that time in the real system In this way, the
program accurately simulates the sinultaneous occurrence of a large
nunber of physical faults.

Returning to the exanple of Figure 1, suppose conputer 1 has

500 integrated circuit pins whose failures can be detected by the

12

fault-detection hardware, and 50 pins whose failures cannot be

detected. A failure of any one of the 550 pins wll cause incor-

rect conmputer data output. The user just specifies nultiplicities

of 50 and 500 for FEC 1 and 2, respectively, and assigns Poisson

distributions for failure and repair rates of a single pin to each

FEC. Each FEC will be inactive only when none of its faults are active.
The various paraneters discussed above are specified by the

user just before the start of simulation. The length of link vectors,

initial link values, connections of links to units, and the fault

generation paranmeters nust be supplied to the simulation package in

a deck of punched cards, which has a standardized format for all the

required information. A sanple deck for the nmodel of Figure 1 is

shown in Appendix A Figure A7.

2.4 Sinmul at ed Hnits

As discussed in the exanple of Figure 1, each sinulated unit
nust perform a specific operation. A conputer, for instance, nust test
the state of its FECs and change the values of its data and fault-detection
outputs accordingly. The user defines these operations by supplying a

short FORTRAN subroutine for each type of unit. These type subroutines

are called fromthe main simulator program during the sinulation process,
when there are changes in any of the paraneters which mght affect the
output of the units. Each subroutine has access during the sinulation
(through a predefined COMON area) to the values on the links at its

input ports, to the states of its FECs (whether active or inactive),

13

and to other paraneters. The form of the COWON statenent is
standardi zed, so that access will be simlar for every type subroutine
It should be noted that the subroutines do not require any information
about unit interconnections or link nunbers, because the utility pack-
age takes care of updating the COWON area for all the values present
on the links. As far as the user is concerned, there are two arrays
with preassigned names, acting as the input and output ports. The sub-
routine is also given a preassigned index pointer to test the entries
in an array for information about fault-states in the unit. By nmeans
of this preassigned pointer, the subroutine for one type of unit can
di stinguish between the array entries for all the units of the sane type
The subroutines for each type of unit in Figure 1 are listed in Appendix
A, Figures A3, A4, and AS.

The specifications of the conputer and arbiter units, Figures

2 and 3, include sonme state-variables for each unit. State-variables

and FEC states are different: the former is only for the convenience
of the user in the programming of type subroutines, while the latter
carries all the information concerning the faults. The state-variables
are only tested and assigned values by the type subroutines which the
user supplies, and are used to save information between successive
calls to the subroutine for each unit. Access by each type subroutine
to its state-variables is achieved by the same pointer as for the FEC

array.

14

A good illustration of how a state-variable is used is
shown in the definition of the arbiter, Figure 3. \hen an FEC first
becones active in the arbiter, its subroutine determ nes whether the
fault forced the decision of the arbiter towards conputer 1 or com
puter 2. The arbiter output should indicate the same selection as
long as the FEC remains active. The arbiter subroutine uses a state-
variable to indicate whether or not the FEC was active during the pre-
vious call and its effect, so that the subroutine will not repeat
the analysis of the fault. It should be noted that the "states" of
the sinulated arbiter do not necessarily correspond to the states of the
physical arbiter, even though the user has that option. A sinulation
state-variable may hold the value stored in a physical register or flip-
flop, for instance, or it may indicate the overall condition of a soft-
ware process for a conputer. The value stored in each state-variable
at the beginning of a sinmulation is specified by the user in the specially-
formatted card deck. A though the exanples only have one state-variable
each, in general any unit can have any number of state-variables

Wien a unit's fault state or input link value changes, the main
simulation program sets the index pointer for that unit and calls the sub-
routine for that type. The subroutine tests the input values, fault en-
tries, and old state of that unit to derive the new state val ues, which
are stored in the state-variable array. Al inputs, faults, and new state
values are then tested to determne the final values for the unit outputs,
and these are stored in the pre-defined output buffer array. Its task
conpl eted, the subroutine then does a RETURN to the main program which

called it.

15

The nodel sinulates the time required for information to
propagate through a unit to its output, and considers the transnission
delay of all links to be zero. Each output port of each unit is
assigned its owmtmedel ay probability distribution by the user.
Before the utility package calls the subroutine for a particular
unit, the sinmulated time delay for each output is randomy generated
according to its distribution, and the time delays are stored in a
COWON array which can be assessed and changed by the type subroutine
The subroutine then has the option of deciding whether to use these
values or to change them The conputer unit defined in Figure 2
illustrates the use of this feature. An active fault may cause an
“error' signal to appear as the value at output port 1 after a time
interval described by the Pascal distribution (to take care of the
| atency problen), but when the fault changes back to the inactive
state, the corresponding value on the output link should imrediately
revert to 'no error'. The user would then assign the Pascal distri-
bution to that output. The utility program generates a value T for
the delay every time it is required. Wen the type subroutine finds
the fault active, then the tinme-delay will be left set, but when the
fault is inactive. the subroutine replaces that value with 0.0 to
make the output change immediately. This nethod allows conplete gen-
erality in specifying time delays through each conmponent of the
net wor K.

It is possible that a variable such as a tine delay would al ways

have a constant value during any one nission, but that the value would

16

be randomy distributed between mssions. The sinulation package
allows the user to choose, separately for each unit output in the
model , whether the tinme delay is of this type. The proper val ues
are conputed automatically by the simulation program

As mentioned above, the utility programs nust occasionally
generate a random nunber from various probability distributions
This sane facility is nmade available tthe user asaspcialutility
program which can be called from any of the type subroutines. This
programis called with a variable that selects the type of distribu-
tion, followed by the numerical paraneters required by that distribu-
tion. Successive calls to the program return independent random
variables. The type subroutines can thus obtain random time delays
for the unit outputs, or can test the random values for probabilistic
branching in the program \Were it is not efficient ordesirable to
simulate exactly the behavior of conplex systens, the user may choose
to nodel the statistical properties of some conponents with appropriate
random vari abl es.

The function of each element in the sinulation is conpletely
left to the user who is building the nodel for a real system This
provides a great degree of both generality and freedom while allow ng
the model to be very specific at selected points. The value on a
data link may signify exact binary digits, a strobe signal, or an
i ndication of correctness/incorrectness, etc. At the gate level, a
link may be three-valued to signify high, low, and undefined |ogic

levels; and at a conputer level, a link may be many-valued to signify

17

various nodes of incorrectness. Simlarly, the specifics about state
variables and fault states are left to the wish of the user. Because
the utility package does all the fault generation and transfer of

link values, the amount of effort required to accurately nodel system
conponents is reduced. Al the work put forth by the user is strictly
concentrated on nodel building @nd not nodel running). The level of
specification is conpletely arbitrary and need not be homogeneous

so that the sane nodel may focus on some parts of the systemin great
detail while treating less interesting parts of the systemin nore
general terms. The user is not forced to exactly define parts of the
system he is not interested in at the time, and the sinulator does not
waste tine and noney sinulating those parts in detail. Wen one
section of the system has been thoroughly studied, that partof the
nmodel can be replaced by nore sinple units which accurately reflect
the reliability aspects of that section.

To use the sinulator, the user supplies two card decks to the
utility package. One deck includes the subroutines which perform the
functions of each type of conponent. The second deck is punched in
a special format, and sets the link vector lengths, link initia
val ues, types of each unit, and which links are connected to which
input and output ports for each unit. For each unit, it sets the
initial state variables, initial fault states, fault multiplicities,
fault probability distributions, and output time-delay distributions.
The second deck also provides some special paraneters such as the

initial state of the system (described in the next section)

18

Since all units of the same type have the sane type subroutine,
extensive use of the simulator would lead to the formation of a library
of subroutines which would represent all the various types of conpo-
nents used to design the real system This way, the nost time con-
sunming part of defining the nodel, witing the subroutines, would be
done only once for each different kind of conponent. Also, the de-
signer can change the specification of all units of the same type in

one step by altering or replacing the subroutine for that type.

19

3. THE SI MULATI ON PROCESS

The sinulation package uses a standard Monte Carlo analysis to
determine the reliability characteristics of the nodel. This neans
that it sinulates a large nunmber of missions to find the probability
that the mssion does not 'fail' before a certain tine has el apsed.
The events which occur are likely to be different for different
m ssions, because they are randomly generated by the sinulation
program according to probability distributions specified by the user

The sinulation of one mssion is event-driven and asynchronous.
An event is a change of some element in the nodel, usually either a
change of fault state or a change of a link value. Al events occur
at a specific sinmulated time which is conpletely deternined when the
event is generated. Throughout a mission there will always be events
in the system which are waiting to take effect because the sinulation
has not yet progressed to the sinulated times at which those changes

occur. These are called future events. Wen a future event is gen-

erated, it is inserted into a next-event list, which is ordered from

top to bottom according to the tinme at which each event will occur.
A tyicalentry of the list would consist of a tine, link nunber,
vector of new values for that link, and a nunber identifying this
entry as a link-change type of event. A fault-change type of event
woul d include a unit nunber, FEC nunber, and new fault state instead
of the link parameters

Refer to Figure 4 for a flowchart description of the sinulation

process. The sinulation of one mssion begins by initializing al

20

YES

BEGIN ONRMISSION

INITIALIZE
all fault-sets,link
values, states, etc.

Y

GENERATE EVENTS
for firet ctate changd
of each FEC.

GET NEXT EVENT

from ton of
from top o1

next-event-list.

v

CHANGE
link value.

NEW

77 1ink value ,,~

same as
oLb

v

CHANGE
fault state.

GENERATE EVENT

NO

for next state change
of this fault.

other
types of
events

RE-EVALUATC
i(call subroutine for) all
units affectctl by event.

v

GENERATE EVENT
for future link-value change
for each output of units.

~

YES MISSION NO

data-store

T CALL
subroutine.

?? forced to ?7?
STOP
|

¥

END OF ONE MISSION

Figure 4. Simulation of One Mission.

21

fault states, link values, and unit state-variables to the values
specified by the user. The utility package then generates one event
for each FEC in the nodel, using the probability distributions assigned
to them These events, which typically are the first transitions to
the active state for each FEC, are stored in the next-event list. The
process then continually goes through a cycle which always begins by
getting the next-event off the top of the list. The "current sinulated
time" always junps to the time of this next-event, and the event action
is processed immediately. \Wen the event is conpleted, the sinulator
returns to the beginning of the cycle for the next event

Usual Iy, the processing of one event will cause other cvents
to be generated and inserted into the next-event list. \en a link
val ue changes, all the units which have that link as an input are
re-evaluated. For a unit to be re-evaluated neans that the main
program sets up the input buffer and calls the subroutine for that
unit. \Wen the type subroutine returns to the utility program
each output link fromthat unit is stored in the next-event |ist
(this, because of the tinme delay) for a future change of the link
value. The times of these future events are conputed by adding the
current sinulated time to the output time delays, and the future
link values are those left in the output buffer by the type sub-
routine. \Wen a fault-change event is processed, it causes the
re-evaluation only of the unit in which that fault-set is located

Al'so, the utility program will automatically generate another (future)

22

to know when to load all the new input data into its state variables
This feature facilitates the nodeling of synchronous digital circuits

It is possible that a generated event such as the change of a
l'ink value coul d make obsolete a future event waiting in the next-
event list (for exanple another change in the sane link). This is
due to the randommess of the output time delays for each unit. The
utility program automatically solves this problem by searching the
next-event list for link-change events which are superceded by a
nore recently generated event. If an old event of this type is
found, it is deleted fromthe |ist without being processed. A
typical situation where this is required occurs when an FEC be-
cones inactive in a unit while the output of that unit is schedul ed
to becone erroneous at sone later time. Then the future event, the
transition from correct to erroneous value, wll be renmoved from the
next-event list. This process allows a correct sinulation of a sys-
temin which future events and tinme delays are randomy generated

At some point during the simulation of a mssion, one of the
type subroutines supplied by the user must decide that the mission
has failed, using some predefined failure criterion. A utility pro-
gram is available which can be called by any type subroutine; when
called, it forces the mssion to stop at the beginning of the next
event cycle

As the mission progresses, the type subroutines nust be able to
store data pertaining to reliability (such as the sinulated tine

before mission failure) for the purpose of statistical evaluation

23

faul t-change event which will cause the next change of state for that
FEC. When an event is processed, it causes a re-evaluation of units
only if the event actually induces a real change in the system For
instance, if the new values for a link are identical to the old val ues,
then the connected units will not be re-evaluated. Thus, a single
change anywhere in the nodel will only propagate where it causes other
changes to occur, and when the nodel reaches a "steady-state", no nore
events will be generated. This neans that the entire nodel doesn't have
to be sinulated in response to one change sonewhere in the system

Sone units will have input links which, when their values change,
should not force a re-evaluation of the unit. This usually occurs -
when there is a synchronizing link which acts like a clock signal in
a digital circuit; that is, the circuit does not respond to changes
on the other input lines until the clock Iines change. Wen speci-

fying the link interconnections, the user can distinguish, separately

for each input, whether or not a link value change on that input will
force a reevaluation of that unit. The usefulness of this feature is
illustrated by a unit representing a clocked register, which stores the
binary digits present at its data inputs only when the clock input makes
a lowto-high level transition. The nodel is defined such that only
the input link carrying the clock signal will force a reevaluation

of the unit. The subroutine nust only test for the clock to be high

24

of the system after a |arge nunber of missions have been sinulated
The sinulator package has a standardized nmethod to achieve this
It is done by allowing the user to supply one subroutine which will
record the data from each nission, then evaluate the stored data at
the end of the sinulation run. This subroutine will be called by the
the utility package before the first mission and imediately after
each mssion so the user can initialize tables and save vital data
It is also possible to call this subroutine fromany of the type
subroutines to record relevant data during simulation of any mssion
This is shown in Figures 4 and 5. An index value is sent to the
subroutine each time it is called to indicate the specific purpose
of that call. \Wen any subroutine determnes that enough nissions
have been simulated for the desired accuracy of the results, it calls
another auxiliary routine supplied in the utility package;, this other
routine forces the sinmulator to stop after the end of the current
mssion. After the last mssion, the data gathering subroutine is
called one nore time with an index value which tells it to evaluate
the accumul ated nunbers and plot a reliability curve for the system
Most applications of the sinulator will require the same type
of data storage and reliability analysis. A general purpose ver-
sion of this subroutine has been devel oped which will record the
times-to-failure for each mssion and print out a listing of reliability
vs. tine for the system including the boundaries of the 80% and 90%
confidence intervals on reliability at each time coordinate. This
service facilitates the basic purpose of the sinulator, nanely,

reliability evaluation, but still allows the user to collect and

25

BEGIN ONE SIE/LULATION RUN

READ
formatted data-deck
for all parameters.

|

SET

initial random seed.
1

v

CALL
data-store subroutine
to initialize tables.

SIMULATE
ONE MISSION

(see Figure 4).

ENOUGH
missions for
desired accuracy
of results

27

NO

)
CALL
data-store subroutine
to print and
compile results.

)

END ONE SIMULATION RUN

Figure 5. One Monte Carlo Simulation Run.

26

conpile any kind of statistics relating to the system behavior
In the previous section we nentioned the specially formatted
data deck in which the user specified nunerous paraneters for the
nodel. Also included in this deck are various paraneters relating
to the entire simulation process, such as the starting and maxi num
simulated times for each mssion, the maxi num nunber of mssions to
simulate, the random seed for the pseudorandom nunber generator, and
selection of different output operations. The utility prograns have
options to automatically print a conplete trace of all events and
event-list changes for each mission as an aid to help the user debug
the nodel. Also, by allowing the user to specify the random seed for
the random nunber generator (rather than using the time of day, for
instance), the results of any simulation can be repetitively obtained
so that debugging or validation of the nodel is made easier
The formatted data deck may also specify any events the user
wishes to insert into the next-event list at the beginning of each
mssion. These may be any one of the four types of events which may
occur in the nodel, and nust include exact values for each paraneter of
the event. This feature is useful when investigating the behavior of
the nodel in specific situations. The user may force FECs to change
state in a particular sequence, fur exanple, or could test the re-
sponse of the nodel to changes of link values which represent prinmary
inputs to the system This ability, coupled with the option to print
listings of all events, forms a powerful debugging tool for the person

who designs the nodel

27

4, THREE EXAMPLES

This section describes three exanples in which the sinulator
was used to evaluate the reliability of a redundant system Exanples
aand b include a simulation of a systemwth sinple enoughf eatures
to enable it to be evaluated analytically, thus demonstrating
the validity of the sinulation package. Exanple c conpares sinu-
lation results with the results of an analysis in which it was
necessary to nmake sinplifying assunptions. Al three exanples also
include the sinulation of a nontrivial system which would be too com
plex to handle mathematically, denonstrating the ability of the
simulator to obtain results not easily derivable with current
anal ytic techniques.

Exanples a and b show plots with a range of reliability from
0.0 to 1.0. Mst digital systens, however, are designed to have a
reliability of no less than 0.95 during their entire period of use
The sinulator can produce useful results in the higher ranges of
reliability, as demonstrated in exanple c, for which the reliability
never falls below 0.9999980. For very high reliabilities, the sim
ul ator programrequires a slight nmodification (described in another
report[Thonpson, 1977A]) of its fault generation section in order
to be cost-effective for the required accuracy. The range used for
exanples a and b denonstrate that the sinulator results are verified

analytically over all values of reliability.

28

4,1 Exanple a - A CGeneral Dual Conputer System

Figure 6 shows a dual conputer systemwth an arbiter
This exanple is defined in great detail in Appendix A so in
the following, only the basic sinulation nodel is described

In this dual system two identical conputers run concurrently,
executing the sane programs. In the sinmulation, each conputer has two
output links, one indicating whether the data output is correct or
incorrect, and the other indicating whether a fault has been detected
or not. The fault-detection outputs both go to the arbiter unit, which
uses that information to make a selection of which of the two conputers
has correct data output. The arbiter always chooses one or the other
and the mssion is assuned to be failed as soon as the arbiter selects
a data output which is incorrect. Referring to Figure A2 in Appen-
dix A the arbiter selection link and both data output links are
inputs to a fourth unit which acts as a nonitor for the mission. The
monitor stores tines-to-failure in the data-storage subroutine and
deci des when the mssion should stop

The conplete nodel includes faults in the arbiter, and
both detectable and undetectable faults in each conputer. Different
random del ays may be assigned to the conputer outputs to sinulate
the tine interval between the change of state of fault-sets (from
inactive to active) and the first corresponding change which appears
at the unit's output. The time delays for the data and detection
outputs are called, respectively, the error-latency and detection-

latency. Thus, if the error-latency of a conputer fault is less

29

"w93SAS ud3ndwo] geng v "9 aanbi4

LN4LNO
NOILJ313a
L70V4 2
¥3LNdWOD
~< 7z Inawno TNdLN0 VLva
< s11n¥4
-~ 431194y
IWIYd <
1NdLN0
NOI1120313d
shnb 17nv4)
A d31NdN0D
T 1Nndlno 1Nd1lN0 vivd

iy

30

than the detection-latency, the data output wll becone erroneous
before the existence of this fault is indicated to the arbiter. In
the sinple case (Figure 7), both latencies are constant 0.0, but in
the conplex case (Figure 8), they are randomy generated from a Pasca
probability distribution. The arbiter randomy selects one conputer
when the fault detection inputs are anbiguous, or when a fault is
active within the arbiter unit itself

The sinple case of the dual systemwll consider the arbiter
to be perfect, i.e. have a zero failure rate. The nondetectable
faults within the conputers also have zero failure rates. The
arrival times for detectable faults in each conputer have an expo-
nential distribution to sinulate a constant failure rate A. For the
sake of the experinent, A was assigned the value 10'4 failures per
time unit, but the meaning of one tinme unit in terms of hours, days,
mnutes, etc. is left to the interpretation of the user, as long as
all paranmeters are interpreted consistently. Al faults are permanent
faults and the latency times are zero. The system with these parane-
ters is nodeled analytically in Appendix B. Figure 7 shows plots of
the reliability as a function of time for both the analytical analysis,
as well as the results determined by the sinulator. The analytically
computed curves are shown as a solid line. W see that the dual con-
figuration shows a significantly higher reliability than a single com
puter for this set of parameter values. It can also be seen that the

anal ytical curves correspond very closely with the sinulation plots

31

*S404UD puB UOL}I933p 3|NBJ JO0J SILOUSLER| BUWL] 04I7

"(4tedad J0 d3ed oudz) Jusurwuadd s3|ned [LY

"3Lun awrj/saJnypLes p-0L = X “painqLa3stp A||eLjusuodxa S|eALJJR :S3|Nes 3[qe12933Q

*S3|ne} 493LQUe U0 S3|ney J433Indwod 3| qe3I933puUn ON

"wa3sAS 4d3ndwo) teng 3|dwiS 40} S3AUNY AyL|LqeL|dy ‘7 a4nbij

(Y/ol) (Y/1) (YoL/1) (Yoo11)
ol oL ol]
S 14 (3 No.c
__ LN
ooo e S3|Nnsad dl3feue N
° S3|LNsa4 uoLje|nwLs
wd3sAs Lenp o 1.
e)}

S3|NSdJ4 uoLje|nuLs
493ndwod abuts .

<

Reliability"

32

The differences between the plots arise because of the |oss of
accuracy resulting fromthe fact that only a finite nunber of ms-
sions have been simulated (500 in this case). Increasing the num
ber of missions will inprove the accuracy.

A second more conplex characteristic of the system has its
reliability plots indicated in Figure 8. This sytem has both un-
detectabl e and detectable faults possible in the conputers. There
are 500 detectable and 50 undetectable faults possible in each com
puter. The arrival times of the faults are exponentially distributed
as before, but they are different for the two classes of failures
The duration of the faults is also exponentially distributed; they
have error and detection |atencies which are Pascal distributions
The arbiter, in addition, is not perfect but has a single fault which
is Weibull distributed. This systemis obviously too conplex to be
able to be nodeled analytically. The sinulator results are shown in
Figure 8. In this case, we see that the dual systemis actually |ess
reliable than a single conputer. This can be attributed to the facts
that the arbiter was not a fault-free unit, that undetectable faults
could occur in the conputers, and that the detection latency (i.e.
the tinme between the occurrence of a fault and the time that it is
detected) was usually larger than the error latency for the faults in
the conputers. By varying these paranmeters, one could see how each con-
tributes to the system unreliability, and for what values the dual sys-

tem becomes less reliable than the single conputer

33

“s3aun awl3 00T Yyoea €070 SL uoiloalap JO A3l|igeqoud ‘pedsed aae Salduale] UOI3D91dP ned
“s3run awil} 9'Ql yoes 403 GO0 SL 40449 JO A3l|Lqeqoud “|edsSed aJe saldusle] Joauj
*1'| 40308y Burabe “3run auwry/sdjedsd ro~u4< “11ng1ap uorjeanp
‘J1un awil/saanjiey v-o_mw.ouo< ‘Jeryusuodxs jeAraae :(ajburs) 3pnesy aa31qay

31un awry/sare a1, ol=9¢
‘31UN BWIl/saintiey «-o—uo&
*31Un awrl/saredau 9 ol=Y

‘31UN BwWil/saingiey M”o—un«

‘Je13usauodxa uorjeanp

‘Je11usuodxa JeAldde :s3pnej ajge1d919pun
‘Je13uauodxa uoryeanp

‘Je11uauodxa JeAldde :s1pne) a]Qe12913Q

-193ndwod yoes ul S1pNej 9]ge10919p 00S pue 9]qe1d913puUn QS

“WalsAs 483ndwo) peng xapdwo) a0) sanan) Ayrjigerjay g aanbi4

s3IuUn Bwl .
0L 01 oL N SEL T 01 oL oL
e 9 G- 4 € A
I ESE o
[] (-]
. =]
L) 9\
Te [=]
-u q
. > S1INsad uoIYRINWIS 2
.) walsAs (enp o
‘e 3 S1INsad UoIIRINULS
m : a93ndwod o (fuls e
L] 0“
[]
[] J .
A P 4
AN 3
¢ (-]
! % =
. . a
. ° —
14 -] —
., i 9 g
.')
N .. ‘o
. [] - -2 wc
oo.o 0:
\ nUDOOC °
., .. lnow ¢
_ [ol alo1

34

4.2 Exanple b = A TMR Network

A triple-nmodul ar redundant (TMR) systemis shown in Figure
9. Three identical modules' outputs are fed to a voter unit which
outputs a value based on the majority of the input values. The
nodul es will be assumed to be NAND gates with two inputs. The faults
that can occur are stuck-at-one (s-a-1) faults or stuck-at-zero
(s-a-0 faults both on the inputs to the NAND gates and the out-
puts. The voter unit is assuned to be fault-free. An exponentia
probability distribution characterizes the occurrence of the faults,
and a Weibull distribution describes the duration of transient
faults. The latency tines of the faults are again described by a
Pascal distribution. The parameters of the gate input faults can
be nade to be different fromthe gate output faults. In addition,
the frequency of occurrence of s-a-1 faults can be made to differ
fromthat of s-a-0 faults

Four different reliability measures were obtained from
each simulation of this system the probability that a specific
pin on a gate would fail, the probability that a NAND nodul e woul d
have at |east one failed pin, the probability that at |east two
out of three nodules have failed, and the probability that the voter
output is incorrect. Standard analysis of TMR systens assunes that
when at least two nodules are failed, the system has failed. This
is not always correct in a system such as TMR NAND gates, because
if one nodule's output is stuck-at-1 and another nodul e's output

is stuck-at-O they will conpensate for each other at the voter

35

MODULE 1

FArLES

BINARY BINARY
INPUTS OUTPUT
= o

1 »-

MODULE 2

Figure 9, Triple Modular Redundant (TMR) NAND-Gate System.

36

Thus, when conpensating failures are taken into account, the circuit
may still perform the correct function even though two nodul es have
failed. The first three reliability nmeasures are easily derived from
anal ytical techniques in Appendix B, but the actual circuit reliability
is very difficult to obtain analytically due to the problem of conpensa-
ting failures [Siew orek, 1971].

Al'though this circuit could have been sinulated with only
four units, it was decided to use many units, each of which performed
a very sinple function. The final model is shown in Appendix A Fig-
ure A10, and consists of twenty units and thirty links. There were
five unit types: NAND gates, threshold gates, conmparators, negative-
edge detectors, and stuck-at-X units. Faults only occurred in the
stuck-at-X units, which were linked in series with each NAND gate in-
put and output. The subroutine describing each unit type was very
sinple to wite, and denonstrates the way in which a library for
standard conponents can be formed for nodeling a large digital system
The relatively large nunber of units and l[inks had no noticeable effect
on the efficiency of the sinulation, because the simulation process
only deals with the parts of the system which are caused to change
by the occurrence of a fault.

As before, we will consider a sinple case of the system
whi ch can be nodel ed analytically, and conparison will be nmade with
the results obtained using the sinulator. The sinple system considers
only permanent faults with exponential distribution for their occur-

rence. The latency time of the faults is zero, and s-a-1 faults are

37

as equally likely to occur as s-a-0 faults. The reliability curves
obtained through both analytical and simulation nethods are shown
in Figure 10.

The solid lines indicate the analytically conputed results.
Once again, there is a close correspondence between the analytic and
sinulation results. The nodul ar TMR (2-out-of-3) curve shows an i m
provenent in reliability over a single nmodule only when the reliability
of both is greater than 0.5. The actual functional reliability,
which takes into account all conpensating failures, shows that the
standard TMR analysis is very pessimstic. In fact, the TMR circuit
Is better than a single gate over the entire range of reliability.

The nore conplex exanple considers all faults to be transient
faults with occurrence exponentially distributed, and duration Wi bul
distributed. The probability distributions of s-a-I faults differ
fromthose of s-a-0 faults and the error-latency tines are nonzero.
Figure 11 shows the reliability of the ™R systemw th no conpensating
failures considered and when conpensating failures are considered
These curves are very easy to obtain using the sinulator, because
changing a paraneter value only requires repunching a card in the
formatted data deck.

4.3 Exanple ¢ - A Dual Conputer System for Navigation

The sinulation package was used to evaluate a dual conputer
system which was designed and built at the Charles Stark Draper
Laboratories at MI.T. [Ressler, 1973]. The system was intended to

provide reliable navigation conputing for airborne applications

38

"s3pnej jpe Joj Aousjej 40443 0487
“(93e4 Jredoa o0u4d9z) juauewdad aae sypney |1v
m-opuox ¢ po3INnqLa3sSLp Ajer13usuodxa

aJe sindino pue sjndul J0j S3jne) [-1e-XON1S pue Q-31e-xonms |Iv
"WeISAS 931e9-ONVYN YWL S1dwis Ja0) saauny Ayrjrger|ay QT a4nbid

"31Un awiy/sainjiey

oL 90l g0l s3iun dutl 01 <0l 501
‘Rﬂf V- : v v T y T “90°0
i ¥ _ ‘ _
s1pnsald o13Ajeue 2
Wwoay SaAund pajoadxa _
X s1pnsad uonjepnuis
“194 aanjprej-buryesuadwod o
s1pnsad uoljejnuis .
“194 S9|npow £-}J0-3IN0-7 e 14
i s1pnsad uoljejnuis
“194 (@3eb)anpow ajburs x 1
Ss3pnsad uorjejnuis
Anjigerjaa peaj ajburs + 9°
g
&
P e =37 " O._.

Re iability

39

“S1IUN BWIl 0°000T Yoea 40y G0 SI 40443 Jo -qoad “Jedsed sarousle] Jodus sinding
“S1IUN BWIl 0°000T Yyoea 40y Z°0 SI 40443 Jo -qoad ‘Jedsed sarousle] J0448 siyndul

"1°T J4032e) Burabe “3run swilysaredau m-o—nQK ‘LLhgISp uorjeuanp
“}IUN Bwil/saanjie} m-o_xm._uox ‘letjusuodxa [eAldde:|[-3e-32Nn3S s3ndlinQ

-1°T 4030ey Bursbe ‘3run auwslssayedss ,_01=9¢ “LLnqIam uoryeanp

‘31Un Bwrl/saanjiey o-o—xm.ouoK ¢ LeL3jusuodxa jeAraae:Q-3e-3onis sinding
"T°T 4010e) Burebe ‘yrun awpdysapedas , 0l="*Y “LLngIam uoryeanp

‘31Un Bwrl/saianjiel m-o_xm.ouox ‘leLjudauodxa jenarauae I|-3e-)onls sinduj

“1-T 4030e) Burabe “3run awslssayedss ,_01=%Y ‘LLhgIS) uol3EUND
“3IUn BWIl/Saanjie} o-o_xm.Puox ‘leLjuauodxa jeAtaae 0-3e->oni3s sinduj

"WaISAS 931e9-ANVYN YNL X3]dwo) 40) saaun)y A3rjoer|ay 1T a4nbid

oL mo— s3tun swil ¢o— 0
P —0)
s e,
] []
QO o.
%0 *a0 S}Insal uorlenuIsS
. Wa3SAs Jenjoe o
v % S1INSa4 UOIIRINUIS
e (4WL) wa3sAs aepnpou °
N A _
J ®
J *
® °
¢ 4.
J L 4
oo _
‘w []
..
© L
] []
]
J [
0\ L]
-
- ’.
Hoo pE [
of
°°°°° .
O—Ooo o =«

* pu—

Reliability

0°1

40

The architecture, shown in Figure 12, uses two Honeywell-316 mni-
conputers to do concurrent calculations fromthe raw sensor data
The updated navigational position is sent through channel transnmit
and receive circuits to a display at the pilot's console. An ex-
tensive variety of hardware and software fault-detection mechanisns
continually test all parts of each half of the system and all the
test and opinion outputs are gathered at the arbiter circuit for a
final decision regarding which data display is correct. The two
conputers can comunicate with each other to conmpare output data
or to transfer status words during the recovery of one conputer from
atransient fault. As in exanple a, the mssion is assuned to fai
when the arbiter selects an output which displays incorrect data

The actual link/unit nodel of this systemis shown in
Appendi x A, Figure All. The conputers were divided into functiona
s&systens so as to accurately sinulate the effect of a fault within
that part of the conputer. By studying the structure of the Honeywell-
316 conputer, a conplex representation of its behavior in the presence
of faults was derived. The nodel included abnormal program execution,
| oss of navigational status words, |oss of recovery or diagnostic
software, physical failures in the timng generator, absorbing and
non-absorhing failed states for the program counter, etc. |n sone
cases, the system chooses froma variety of possible effects with-
a probability distribution adjusted for the fault states, and in other
cases the fault state conpletely deternines the effect. Due to the

way in which the conputer was divided, it was possible to later

41

"uotleblAeN 40j we3sAS 4a3ndwo)y eng y *21 2unbL4

g
¥IINdROD [

AVIdSIA |
q | T

Xoe-4 g Iy xog-1 |
_ g _ a |
AV1dSIQ & “ J
SOIVLS) _
WALSAS v _ N\ LAMTIIINT <
| ,
X0g-4
v <o f—o] X08-1
1 Vv <
!
. i
AV1dSIQ | ! R
’ |
FTOSNOD 10T11d v
0L TANNVHO ,
NOISSIWSNVYL 4ALNIROD VIVQ YOSNAS

replace the Honeywell-316 with a nodel for a nore state-of-the-art
MSI m ni conputer sinply by changing various parameters in the for-
matted data deck. It should be enphasized that the meaning of the
link values dealt with the state of correctness/incorrectness trans-
ferred in the real system between one:circuit and another. The
simulation did not execute a navigation program on the nodel, and
no navigational data was transferred on any link, rather the system
as a whole propagated between its parts the effects of particular
faults.

The interface, channel transmssion, and fault-detection
hardware was modeled to the extent that the effects of faults could
be accurately sinulated. Faults were nodeled which affected only
the data and not certain test signals, or only the test signals
and the cross-comunication, etc. The sinulator differentiated
between faults which would make a fault-detector be stuck-at-good
from those which would make it stuck-at-bad, and took into account
the masking of one such fault by another fault

The final rmodel is conposed of twenty-seven units,
representing fifteen unit types. These are connected by fifty-
seven links, most of which are actually vectors of length up to
six. The entire nodel used sixty FECs, representing approxinmately
24,600 single integrated circuit pin faults for the system using
Honeywel | -316 conputers. Since the maximum nmission time was ten
hours at a very high reliability, the desired accuracy inplied a

very large number of sinulated nmissions. So as to reduce the

43

conmputer timeneeded to do the simulation, the fault-event generator
was extended to take advantage of the nenoryless property of the
exponential fault distribution. This option, coupled with the ability
to pre-test the initial fault events to find only those nissions

which have potential to fail, allowed an effective simulation of a

| arge nunber of missions at a very reasonable cost. For exanple,

an effective simulation of 1.1 billion ten-hour mssions required
about twenty minutes of execution time on a CDC 7600 computer

obtaining unreliability measures on the order of 10'7,

Figure 13 conpares the anal ytic curve®for unreliability
with that obtained using sinulation for a systemwhich has Honeywell-
316 conputers. The val ues of Ao and AD are the rates of failure and
repair for each integrated-circuit pin in the system The analytic
results are seen to be pessimstic (have a higher unreliability) due
to the inability of the mathematical nodel to accurately handle
arbiter and fault-detector failures. In Figure 14, the Honeywells
are replaced by a state-of-the-art MSI m ni conputer, which |owers
the overall pin count from 24,600 to 5,800, so the arbiter and
faul t-detector failures contribute a larger proportion to the overal
reliability. This increases the discrepancy between the analytic
and simulation results, as seen in the figure. The sinulation runs
al so found that about 10 per cent of the mission failures for the
MSI version occurred when one of the two sets of data output was
still correct, as opposed to only 2 per cent for the Honeywell-316
version. Again, this is due to failures occurring in the fault-

detectors and the arbiter. Figure 15 denonstrates a study made of

*[Thonpson, 1977AT contains nore information on the anal ysis used.

44

//// Analytic results.

A

1.6 EE Simulation results, 90% confidence interval.
. /
o 1.5 —
o
N
X
o ¢
T 1.3 >
(8]
v
" 1.2 T
2 o
]
Q
E 1.1 -
- o
0
O 1 /
o 0.9
o ®
< 0.8 .
[
2 }
g o7
£
» 0.6 ;
T
N =
s}
> 0.5 1
s
= 0.4
(5]
i
o 03_ /

0.1 %/%

0.0 5

0 L 2 3 kL 5 6. 7. 8 9. 10. ame

Mission Time -- Hours

Figure 13. Unreliability Curve Using Honeywell-316 Computers.
All single faults have arrival exponential,)\‘,=10'8 failures/hour,
and duration exponential, A3=0.5 repairs/hour. The simulation run

effectively included 1.4x108 ten-hour missions, of which 194 failed
before the end of ten hours. The vertical axis measures Unreliability,
which is defined to be 1.0-(Reliability).

45

,// Analytic results.

/k %% Simulation results, 90% confidence interval.

8.0

5.0

4.0

3.0

v

Probability that mission fails before Time=t , Scale x 10-8.

1.0

0.0‘T/. ¥ v v T v) 1 h %"

o. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Time

Mission Time -- Hours

Figure 14. Unreliability Curve Using MSI Computers.. -8
All single faults have arrival exponential, A,=10 = failures/hoyr

and duration exponential, »,=0.5 repairs/hour. The simulation run

effectively included 1.1x10° ten-hour missions, of which 69 failed
before the end of ten hours.

46

o
]
o
» 8.0
[}]
o
(8]
W
~ 7.0 | _
7]
|
3
O
- ~
o) P
S 6.0 \\
\
b c'r \
E \
In \
o
: 5.0 \
2 \
n - A
ot ~. \
o b L
b 40 K\ \
& N v
a \ \
" s J \
‘E \ f \\
2 3.0 N \
\ \
4 \ \
3 SN
\ \
s 2.0 \ \
© \
° \ b
[, \
o \
. \
\
1.0 N
N
0.0 \ /) ,
¥ ——p _.+... —— —
0. ‘7 06.5 0.5. 5.0. 50.0Q —

Single Fault Repair Rate -- Repairs/Hour

Figure 15. Unreliability Curves Using Different Repair Rates.

All single faults have arrival exponential,)°=10-8 failures/hour,
and repair rates as shown on the horizontal axis. The vertical |
axis measures unreliability of the system at the end of one

ten-hour mission. Each simulation run effectively included about 1.2x10
ten-hour missions; the 90% confidence intervals are drawn for each
point.

9

47

the repair rate (AD) for pin faults. The sinulator was also used to
test specific changes in the circuit relating to the use of conputer
sel f-diagnosis for recovery. The ability to test incremental design
changes was very useful, because it was used to validate or invalidate
conjectures regarding inprovenents in the system design from the
standpoint of reliability. The conplete definition of the nmodel used

for this exanple is provided in another report [Thonpson, 1977A].

48

5. COWARI SON WTH OTHER SI MJLATORS

There are four basic types of general sinulators geared to
the study of conputer systems. The first, typified by GPSS and
SIMSCRI PT [Fi shman, 19731, sinulates process control networks with
transactions flowing between processes. This level of nodeling is
not particularly suited to the evaluation of reliability for a
physical system and the lack of certain features, such as floating
poi nt nunbers for GPSS, inpose restrictions on the person defining
the model. The other three types of simulation can be nore easily
used to study reliability.

.The method of simulation used by CAST [Conn, 1974]is typica
of the second type. The systemis nodeled as a set of connected
nodul es, where each nodule is one of several kinds of predefined
functional subsystens. Each represents a basic part, such as a. CPU
Memory, Input, etc. The function performed by each module is defined
in the simulator itself; the user can assign values to the paranmeters
of each nodule for the type of error detection, fault distributions,
nodul ar fault recovery, number of spares, and other paranmeters relating
to the nodule as a whole. During sinulation, each nodule passes
through states such as operational, detected failure, undetected
failure, recovered, etc. One sinulator [Masreliez and Bjurman, 1976]
uses Markov nodels to deternine the state behavior of nodules, and
uses dependency trees to group nodules. The effect of one nodule's
state on the behavior of the systemis conpletely determned by the

nodul e's position in a fixed configuration. The system configuration

49

is limted to nodules in either series or parallel conbinations wth
possi bl e spares. Sone simulators of this type, and specifically CAST,
are only used to supply coverage and other parameters to an analytic
nodel, rather than obtain the systemreliability directly.

The third type of sinmulator could also be called an enulator,
because the actual binary levels in a digital circuit are copied while
faults are injected into the network. A good exanple is the ELSA
program[Beaufils et al., 19741, which enmulates the exact operation
of specific integrated circuits to the extent that the execution of
software on those circuits is identical to that in the physica
system ELSA can determnistically or randomy inject single and
mul tiple stuck-at faults into the logic while enulating the execution
of a real programon that logic, then classify the various fault
conbi nations according to their effect on the network as a whole
The faults can be permanent or transient. A variety of useful para-
neters are measured, such as the detection-latency, probabilities of
detecting a transient fault, probability that a transient fault
affects the network, etc. The large nunber of digital conponents in
a conputer system prohibit the use of this type of simulator for the
purpose of obtaining reliability curves directly. Usually each
subsystem is enulated separately in detail, and their measured para-
meters are incorporated into another simulator or analytic node
whi ch considers each subsystem as a black box. Enulation at the

integrated circuit level is alnost always very costly in terns of

50

man- hours and conputer time. Mst circuit emulators reduce the
conputer time considerably by witing the emulation programin
assenmbly |anguage, thus taking advantage of the conputer's word
structure to effectively do many emulations in parallel

The sinulator described in this report is a representative of
the fourth basic type. Unlike the other types, it cannot be |abeled
as either lowlevel or high-level, because the person defining the
model al ways decides the nmeaning of each elenent in the system
Theoretically, this simulator could successfully copy any node
studied on any of the other three sinulator types and obtain the
same results. In practice, this could not be done in some cases,
due to the much better efficiency with which the other types can sinu-
|ate certain specific kinds of systenms. By limting their range of
possi bl e nodel s, each type of simulator can predefine various aspects
of the overall specification and nmake available to the user a set
of facilities which will always be useful (or required) for all the
nmodel s within that range. For some nodels it is more efficient, in
terms of programmng hours and conputer time, to use one of the
specialized sinmulation progranms. Also, the way in which a user defines
a model for this sinmulator relates nore to a physical systemthan a
set of abstract processes, and thus woul d appeal nore to a design
engineer than to a conputer scientist. A person who is more confort-
able with program structures would tend to think of hardware systens
in software terns, and would be more inclined to use GPSS or SIMSCRIPT.

The strongest feature about this simulator is its conplete

51

generality. As the exanples in Section 4 show, it can be used to
similate at a high 'black-box' level as well as at the nore detailed
digital circuit level. The third exanple sinulated the behavior at
the gate level, register level, and conplex system level all in the
sane nodel. The functional definition of any unit can be arbitrarily
sinple or arbitrarily conplex, and the way in which units are inter-
connected has no restriction. Since the sinulator is event-driven,
both synchronous and asynchronous networks can be nodel ed. The nean-
ing of a fault is defined by the user. These characteristics are
not found in the other sinulators. The third type of sinulator only
has stuck-at faults on package |eads, and never gets above the |eve
of synchronous digital circuits. The second type of sinulator cannot
change the function of any nodule or the basic form of interconnection
without extensively revising the sinulator package, and does not
actually simulate circuit-level operations. In some cases, the other
types do.not obtain reliability curves, but sinply derive parameters
to use in another simulator or analytic model. Thus, the sinulator in
this report is of a very general nature in that it can be used to
obtain the reliability curves of a systemas well as be geared to
eval uate coverage factors and their sensitivity to various physica
par aneters

It would be useful to take advantage of the best features of
each type of simulation in the sane program package. In particular,
the fourth type of simulator often requires an accurate description

of the faults which would occur in a unit representing a conplex

52

digital system A simulator such as ELSA could provide such data
nmore efficiently than the general sinulator itself; in fact, the way
in which that unit interacts with other units in the general simla-
tor woul d determ ne how the ELSA simul ator categorizes the FECs for
that unit. Aternatively, a type subroutine might call another sub-
routine which efficiently emulates a digital circuit at the gate
level. The ELSA simulator could also use the general sinulator to
handl e asynchronous circuit elenents, or to provide nore conplex
units to drive the gate-level network. The generality of the package
described in this report makes possible the efficient coordination

required to sinulate several levels of detail sinultaneously.

53

6. CONCLUSI ON AND FUTURE WORK

A very general purpose simulator for the evaluation of digita
system reliability has been developed. The requirenments of specifying
a nodel for a system maximzes the freedom of the user to innovate,
and allows himto sinulate a hardware system at any arbitrary |eve
of detail and conplexity. Various facilities are made available to
the user to allow definition of a nodel with randomy generated
faults, probabilistic branching, and other standard el ements. Sone
probl ens which typically arise in accurate simulation nodels, such as
superceded events and synchronizing unit inputs, are automatically
dealt with by the simulation package. The person specifying the
model has a variety of options from which to choose for fault distri-
butions, time delay distributions, and initialized events. The
printed output options and random seed specification facilitate
debugging the nodel. The sinulation program and conpleted nodel are
portable to any conputer supporting standard FORTRAN

The sinulator has been successfully used to evaluate the
reliability of three widely different digital circuits, representing
a very wide range of circuit detail and general application. The
conputer time required for the simulations was reasonable for the
desired accuracy of results

When conpared with other types of simulators, this simlator
is found to provide a greater degree of flexibility in specifying

the nodel. For specific types of nodels, other types of sinulators

54

my be more efficient. The possibility of using a highly efficient
circuit enulator in coordination with the general sinulator has been
di scussed

Future devel opment of the sinulation package could include
introducing a second |evel of specification for interconnected units
The user will be able to define a block-type as a network of units,
then will able to build a larger system using many blocks of various
types. This allows a higher level of nesting simlar to the relation-
ship between units and unit-types, and should facilitate the design
of nore accurate nodels.

Future devel opment could also include a more conprehensive
dat a- gat hering/conpiling routine, and nore standardized choices
regarding the pre-testing of fault events at the beginning of each
mssion. A routine which plots reliability curves would also aid
t he user of the package.

The current version allows such a general specification of
any systemthat there are many different ways in which one system
can be nodeled. Different designers will alnmost never choose the
sane unit divisions or link connections even for the same circuit
This is useful at times because different nodel designs may study
different aspects of the same hardware, but it is not always clear
which type of nodel provides the nost conplete, efficient study of
reliability parameters. Study nust be done to formulate rules of
how best to partition and sinmulate a conplex systemso that the

elements pertaining to reliability accurately reflect those in the

55

physical hardware. These rules could also provide a framework of
standardi zation leading to a nore systematic certification of a

system's reliability.

56

T, APPENDI X A - SI MULATI ON EXAMPLES

This appendi x includes a conplete definition of the nodel used

for Exanple a, A Ceneral Dual Conmputer System Di agrans of the

units and links used for Exanples b and ¢ are also provided.

Figure Al shows the convention used by the author to |abel
various characteristics of a unit when put in a nodel diagram It
should be noted that input ports are distinct fromoutput ports.

Figure A2 shows the unit/link nmodel for Exanple a. Figures
A3, A, A5 and A6 list the user-supplied subroutines, with a table
of what the various elenents nean. The value of UNIT is pre-assigned
by the sinulation program before the type subroutines are called.

The other nanes are:

IN(Ce,* I nput buffer area.

OUTT(*,*) Qutput buffer area.

FAULT (e ,UNIT) Fault state.

UV (. ,UNIT) Unit state-variables.

URAND (1) Returns a uniform (0,1) random val ue.

TI ME Current sinulated tinme.

MSTOP(Tl ME) Force sinulation of this mssion to stop.
UTD() Tinme delay for output port.

Figure A7 shows a sanple formatted data deck for the model (the

one used for the graph of Figure 8) and Figure A8 is the conputer

listing fromthat deck. Figure A9 is part of the sinulation output

for the graph of Figure 7.

57

Figure A10 shows the link/unit diagram for the nodel used in

Exanple b, and Figure Al shows the nodel used in Exanple c.

58

input
links

—

/

7/
number of

unit number
[

input port

18,
. .
s
Ve
///]
l-""‘""/-‘\ s
\BEGISTER; (2‘
— e - - ._\I
3\
4
“N
1\31

type éf unit

Pd

ﬂame of unit type

4

P4
Lc
S
-————Lg-—%—' output
le links
N\ Lf |
\
\
\
number of

output port

Fig. Al. Convention of Labelling Model Diagrams.

59

L1 .
1 > 1
COMPUTER 1
) L2
TYPE 1) MONITER
- L5
ARBITER 1 >1 3
> 2
TYPE 2
1 > 2
L4
COMPUTER 2 TYPE 3
L3
TYPE 1

Figure A2. Mdel of a Dual Conmputer System with Arbiter.

60

SUBROUTINE TYPE1
C COMPUTER UNIT WITH TWO FAULTS AND IMPERFECT ERROR DETECTION
COMMON/USER/ IN(8,8),0UTT(8,8),UV(8,40),UTD(8),FAULT(24,40)
1 ,TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(5),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT
C ASSIGN DEFAULT OUTPUTS
OUTT(1,1)=1.0
OUTT(1,2)=1.0
C TEST IF SECOND FAULT IS ACTIVE
IF(FAULT(2,UNIT).EQ.O0) GO TO 100
UV(1,UNIT)=0.0
OUTT(1,1)=0.0
OUTT(1,2)=0.0
GO TO 1000
¢ TEST IF FIRST FAULT IS ACTIVE
100 IF(FAULT(1,UNIT).EQ.O0) GO TO 200
UV(1,UNIT)=0.0
OUTT(1,1)=0.0
GO TO 1000
TEST IF COMPUTER MEMORY HAS BEEN CONTAMINATED IN THE PAST
200 IF(UV(1,UNIT).EQ.O0) OUTT(1,1)=0.0
C IF ERROR ISN'T PROPOGATING TO OUTPUT SET TIME DELAYS TO ZERO
1000 IF(OUTT(1,1).EQ.1.0)UTD(1)=0.0
IF(OUTT(1,2).EQ.1.0)UTD(2)=0.0
C ADJUST ERROR DETECTION OUTPUT FOR DELAY THROUGH ARBITER
UTD(2)=UTD(2)-1.0
RETURN
END

(@]

OUTPUT 1 = 0 data output is incorrect.
= 1 data output is correct.
QUTPUT 2 = 0 a fault is detected in this computer.
= 1 no fault is detected in this computer.
FEC 1 = 0 no undetectable fault is active in this computer.
2] at least one undetectable fault is active in
this computer.
FEC 2 = 0 no detectable fault is active in this computer.

21 at least one detectable fault is active in
this computer.

STATE-VARIABLE 1 0 computer memory has been contaminated by a fault.

1 computer memory is not contaminated.

Figure A3. Definition of Computer Unit (TYPE 1).

61

SUBROUTINE TYPE2
C ARBITER WITH ONE FAULT WHICH CAUSES RANDOM OUTPUT CHOICE
COMMON/USER/ IN(8,8),0UTT(8,8),UV(8,40),UTD(8),FAULT(24,40)
1 , TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(5),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT
C MAKE A RANDOM CHOICE
OUTT(1,1)=1.0
IF(UV(1,UNIT).LT.URAND(1)) OUTT(1,1)=2.0
C TEST IF INPUTS DETERMINE OUTPUT, SET OUTPUT ACCORDING
IF((IN(1,1).EQ.1.0).AND.(IN(1,2).EQ.0.0)) OUTT(1,1
IF((IN(1,1).EQ.0.0).AND.(IN(1,2).EQ.1.0)) OUTT(1,1
C TEST IF FAULT IS CURRENTLY ACTIVE
IF(FAULT(1,UNIT).EQ.O0) GO TO 700
C TEST IF ACTIVE FAULT HAS ALREADY BEEN DETECTED
IF(UV(2,UNIT).GT.0.0) GO TO 600
C FLAG ACTIVE FAULT DETECTED, MAKE RANDOM CHOICE FOR OUTPUT
UvV(2,UNIT)=1.0
IF(URAND(1).GT.0.5) UV(2,UNIT)=2.0
600 OUTT(1,1)=UV(2,UNIT)
GO TO 1000
C FLAG FAULT IS NOW INACTIVE
700 UV(2,UNIT)=0.0
1000 RETURN

~ e ™

1.
2.

END

INPUT 1 = 0 a fault is detected in computer 1.
= 1 no fault is detected in computer 1.
INPUT2 = 0 a fault is detected in computer 2.
= 1 no fault is detected in computer 2.

OUTPUT 1 = 1 arbiter selects computer 1.

= 2 arbiter selects computer 2.

FEC 1 = 0 no arbiter fault is active.

2 1 a fault is active which causes the arbiter to
always select the same computer, regardless of
the values on the input links.

STATE-VARIABLE 1

[}
o

no arbiter fault was active the last time the

arbiter function was evaluated.

= 1 an arbiter fault was active last time, forcing
the output to select computer 1.

= 2 an arbiter fault was active last time, forcing

the output to select computer 2.

(State-variable 1 is affected only by faults

occurring in the arbiter circuit, not by faults

occurring in the computer units.)

Figure A4. Definition of an Arbiter Unit (TYPE 2).

62

SUBROUTINE TYPE3
MONITOR WHICH STORES TIMES-TO-FAILURE AND STOPS MISSION
COMMON/USER/ IN(8,8),0UTT(8,8),UV(8,40),UTD(8),FAULT(24,40)
1 , TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(5),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT
TEST IF COMPUTER 1 HAS FAILED YET
IF((UV(1,UNIT).EQ.0.0).0R.(IN(1,1).EQ.1.0)) GO TO 100
CALL STASH(TIME,1)
UV(1,UNIT)=0.0
TEST IF COMPUTER 2 HAS FAILED YET
100 IF((UV(2,UNIT).EQ.0.0).0R.(IN(1,2).EQ.1.0)) GO TO 200
CALL STASH(TIME,2)
UV(2,UNIT)=0.0
TEST IF MISSION IS FAILED
200 IF(UV(3,UNIT).EQ.0.0) GO TO 300
IF((IN(1,3).EQ.1.0).AND.(IN(1,1).EQ.1.0)) GO TO 300
IF((IN(1,3).EQ.2.0).AND.(IN(1,2).EQ.1.0)) GO TO 300
UV(3,UNIT)=0.0
CALL STASH(TIME,3)
WHEN EVERYTHING HAS FAILED AT LEAST ONCE, STOP THE MISSION
300 IF(UV(1,UNIT)+UV(2,UNIT)+UV(3,UNIT).EQ.0.0) CALL MSTOP(TIME)

RETURN
END
INPUT 1 = 0 data output of computer 1 is incorrect.
= 1 data output of computer 1 is correct.
INPUT 2 = 0 data output of computer 2 is incorrect.
= 1 data output of computer 2 is correct.
INPUT 3= 1 arbiter decides that computer 1 has

correct output.
= 2 arbiter decides that computer 2 has
correct output.

I
o

STATE-VARIABLE 1 data output of computer 1 has been
incorrect previously.
= 1 data output of computer 1 has never

been incorrect.

STATE-VARIABLE 2

n
o

data output of computer 2 has been
incorrect previously.

= 1 data output of computer 2 has never
been incorrect.

0 arbiter has selected incorrect data
previously.
= 1 arbiter has not yet selected incorrect data.

STATE-VARIABLE 3

Figure A5. Definition of a Monitor Unit (TYPE 3).

63

SUBROUTINE STASH(R,I)
DATA COLLECTION AND ANALYSIS
COMMON/USER/ IN(8,8),0UTT(8,8),0v(8,40),UTD(8),FAULT(24,40)
! ,TIME,LIMIT,TITLE(20),SYSIN,SYSOUT,DATOUT
2 ,MSSION,NMSSN,ISEED,IPRINT(5),UNIT
REAL IN,OUTT,UV,UTD,TIME,LIMIT,TITLE
INTEGER FAULT,SYSIN,SYSOUT,DATOUT,MSSION,NMSSN,ISEED,IPRINT,UNIT
DIMENSION TSAVE(500,6),ITS(6)
DATA IR,IC,ITS,TSAVE/500,6,6%0,3000%0.0/
IF (I.NE.-1) GO TO 100
INITIALIZE ARRAY IN WHICH TIMES WILL BE SAVED
DO 10 K=1,IC
DO 10 J=1,IR
10 TSAVE(J,K)=LIMIT
GO TO 1000
100 IF (I.LT.1) GO TO 200
STORE TIME TO FAILURE AT END OF A MISSION
TSAVE (MSSION,I)=R
ITS(I)=NMSSN
GO TO 1000
200 IF (I.NE.O) GO TO 1000
CALL OUTPUT ROUTINE TO PLOT AND SORT TIMES TO FAILURE
CALL OUTPUT(TSAVE,ITS,IR,IC)
1000 RETURN
END

CALLING PARAMETERS:

R number to record for later analysis, usually the

time-to-failure for some part of the system.

-1 initialize tables to maximum mission time.

0 sort and plot reliability vs. time.

1 save time at which computer 1 first has
incorrect data.

2 save time at which computer 2 first has
incorrect data.

= 3 save time at which arbiter first selects a

computer with incorrect data.

Figure A6. Data-Storage Subroutine.

64

69

GLOBAL SIMULATION PARAMETERS

1.

(:

3.

y,

FOR EACH LINK, 5.

VECTOR LENGTH AND 6
INITIAL LINK VALUE.

FOR EACH UNIT:
INPUT LINKS,
OUTPUT LINKS,

OUTPUT TIME DELAY 18
DISTRIBUTIONS, 19.
FAULT-EQ. CLASSES, 20.

¢ 1INN

STATE-VARIABLES.
FOR EACH FEC:

INITIAL STATE, 24,
MULTIPLICITY, 25.
OCCURRENCE 26
DISTRIBUTION, = \27.
DURATION =)28,
DISTRIBUTION. =4 29.
“ 130,

< \31.

= (32.

:{33.

& (34,

(EMPTY) LIST TTTTT 35,

OF PRE-SET EVENTS ————> 36,

5

DUAL COMPUTER WITH FAULTY ARBITER (COMPLEX EXAMPLE)
50000010

— N = N — N = - Ul ~WN —

— = N W

6 o

0.0

R ww O

.

=
1

o

el i il =
-

=
[

-
PoOowOo

.

=
1

(o))

PR PR FEWR
-

.
s
N o3

Jt—=U =N

.

om

W W
=
' . [}
OSOUvTLwUUTUI O

—t —d md e
.
[eNeNeoNeNo

2 2
0 50
0 500
2 2
0 50
0 500
1 1
0 1
0 O

1.E9

.05
.03

0.0
0.0
.05
.03
0.0

0.0

10.
10.

0.0

0.0

10.
10.

0.0

0.0

0.0

0.0

1.0

o o
o o

1.E-4

1.E-4

0.0

1.E-4

0.0

0.0

0.0

0.0

1.1

Figure A7. Formatted Data-Deck for Complex Dual Computer Example.

12345

0.0

0.0

0.0

0.0

0.0

DUAL COMPUTER WITH FAULTY ARBITER (COMPLEX EXAMPLE)
THE LOWER/UPPER TIME LIMITS ARE 0.0 / 0.100000E+10
500 MISSIONS WITH STARTING SEED 12345

LINK 1 IS A VECTOR OF LENGTH 1
INITIAL VALUES 0.100000E+01
LINK 2 IS _A VECTOR OF LENGTH 1
INITIAL VALUES 0.100000E+01
LINK 3 IS_A VECTOR OF LENGTH 1
INITIAL VALUES 0.100000E+01
LINK 4 IS A VECTOR OF LENGTH 1
INITIAL VALUES 0.100000E+01
LINK 5 IS A VECTOR OF LENGTH 1
INITIAL VALUES 0.100000E+01

UNIT 1 IS TYPE 1
OUTPUT 1 TO LINK 1 WITH TIME DELAY DISTRIBUTION 9

T S .500000E-01 0.100000E+02 0.0
OUTPUT 2 TO LINK 2 WITH TIME DELAY DISTRIBUTION 9
300000E-01 0.100000E+02 0.0

=<
o
c
=<
o
o
=<}
=
O

TM DLY PARAMS 0.
FAULT 1 INITIAL STATE 0 MULTIPLICITY 50
QCCURANC DIST 1
OCCRNC PARAMS 0.100000E-05 0.0 0.0
DURATION DIST 1 ,
DURATN PARAMS 0.100000E-03 0.0 0.0
FAULT 2 INITIAL STATE 0 MULTIPLICITY 500
OCCURANC DIST 1
OCCRNC PARAMS 0.100000E-06 0.0
DURATION DIST 1

DURATN PARAMS 0..lJ00000E-03 0.0
STVAR 1 HAS VALUE 0. 100000E+01

UNIT 2 IS TYPE 1

OUTPUT 1 TO LINK 3 WITH TIME DELAY DISTRIBUTION 9
TM DLY PARAMS 0.500000E-01 . 100000E+02 0.0
OUTPUT 2 TO LINK 4 WITH TIME DELAY DISTRIBUTION 9
TM DLY PARAMS = 0.300000E-01 0.100000E+02 0.0
FAULT 1 INITIAL STATE O MULTIPLICITY 50
OCCURANC DIST 1
OCCRNC PARAMS 0.100000E-05 0.0 0.0
DURATION DIST 1
DURATN PARAMS 0.100000E-03 0.0 0.0
FAULT 2 INITIAL STATE 0 MULTIPLICITY 500
OCCURANC DIST 1
OCCRNC PARAMS 0.100000E-06 0.0 0.0
DURATION DIST 1
DURATN PARAMS 0.,100000E-03 0.0 0.0

STVAR 1 HAS VALUE 0.100000E+01

UNIT 3 IS TYPE 2
INPUT 1 IS LINK 2
INPUT 2 IS LINK &
OUTPUT 1 TO LINK 5 WITH TIME DELAY DISTRIBUTION 6

TM DLY PARAMS 0.100000E+01 0.0 0.0
FAULT 1 INITIAL STATE 0 MULTIPLICITY 1

OCCURANC DIST 1

OCCRNC PARAMS 0.500000E-04 0.0 0.0

DURATION DIST 5

DURATN PARAMS 0.100000E-03 0.110000E+01 0.0
STVAR 1 HAS VALUE 0.500000E+00
STVAR 2 HAS VALUE 0.0

UNIT 4 IS TYPE 3
INPUT IS L

1 INK 1
INPUT 2 IS LINK 3
INPUT 3 IS LINK 5
STVAR 1 HAS VALUE 0.100000E+01
STVAR % HAS VALUE 0. 100000E+01

STVAR HAS VALUE 0.100000E+01

Figure A8. Model Parameters.

66

*013

.

noeslesyt

TCeIINLLY

700&5 3%
e+
ac.w ¢om.
ro+
Hde

Tuez
noeru2Y
aogwcumn
nQe34
aconnrcﬂ
nos 3¢
[
L RUR
DR T4
nuedunsd
nGeisdyd
tet3LLed
Lye3cend
NlequLnc®
Poegiipl?
PO+ 3dp2e"
PUs3CEec”
n0+3I¥YIL
v0szS
nCe3vLLde
0«39 1"
tus3zol
nGe3znggl®
no+3tgnit
no+3V621°
1o¢momo“.
tUe3IS204®
§0+30ye
tuajbysd®
§0e3xL29"
L0+35509¢
A1l

R i
...‘.fd..."tb

wirt

98

*313

0000°%2s

Qgue*ae

woun'és

Greetle

0coe*es
CH00%Se
05028
vountie
[VEAVE I RN

S 0LUEt e

YoLo®ny
VIR TN
gountre
0009 ne
VLDE RS P
200Gt
0002°%%¢
go0n'ss
0009'Se
govs‘*s
0000%9¢
GC22%9g
g00n*Sy
50037
0003%9s
00060%Ls
0002°%Le
FEVEVE AP '
G009%Ls
0oGe*le
0000"9s
vgoua®es
000N *ge
0009°%ge
0008 4s
c0vC*s
0002%6¢
00untes
00Y9°%6e
000u‘*es
*1dd

LLOILVIAWIS DJI

andang uorjernurg aTdues ‘v 2IN3T4

019 uww 039
L610°'0s §0+3.629° 0000°'26
TIH9ET 06 To¥3.619° 0002%C
e5en'Ce §0+20209' °°op 26
19288 Le TR0 30ne8 Y T o092
26550y $0%3n655° o008 26
189906 T E04325¢5° 00¢0°'fe
2288’ 0s §0%35£416° 0002°'°%e
GERE IS TTUgO*Ieist Qoontse
0914° Vs mo»ua@pa. G6ce'se
855026777 €0 30ent Y 0C0gtE
yneztee §0+374mm" 0000°%nme
2InE*ce "~ g€0%3/02r" 0002°'me
9049°26 §043519€° 000NW°*he
L0626 §0%322.%" 0009°'ne
92858 ¢oratzot! 00608 pe
2335%es T G392 0000°Ss

nigtys §0¢3s292' o0002°
E0E%Es T gUr352L2Y v0entse
£985 " ng §9¢31892% 0009°Ss
90.i3*hs T E0%36162°% 0008°Se
SnLLne §043p502' 0000°'9s
Giestra TTTELUYIInelt 0002%9s
gi%1%cy £o0*tagnst® 000m*9e
§148%C0 7 £0%3veg1* 0009°%3s
£5UE%Ss £0¢39621° 000896
BOI8°Ga T £0+396T01° 0000°%Ls
8LEg* 9 §0+30011° 0002%.e
QSLT®Ls 7 Z0t3C966° 000h%Le
IR nu,‘(cmo. 60096

(ors*le T 24tin206' 0009°le
0isi' e 20*35469" 0000°%gs6
gnis*ls T 20*3Tgen’ 0002°se
6Lz g 20*3z2In' Q000n°ee
EnES®ge 20435900 0009°we
¢150%68 20431068' 0008°'Be
S1535°%%6 20+3990%' 0000'6s
ne=ltse 20*3np92* 0002°%s
n232°%66 " 20%32622% 000n*ee
¥ieZ'ueo SotIngsl® 0009°%e
§avetss 10430129 CO00A‘hmA

“13d ANIL T3y

LATVNY

T

WAISAS "tvi

*J319
.

vouvu” Ac

vooe!

Goun” mo

ToGu9e”

cc;xkno

cccc:
souvelse
ccca.,o
ueuv e
veuB‘s e
voue e
RMTH
doun“ro
vou9”
woue’lrg
vouv?
Goueup
cocagfo
cocc.ro

BT PEMYS

*238 *293s
mpom L6 mo¢1¢>>mg
gin0he TR0+ gL,
L1st®ne mo+ma-m~
G918 e T TO0+3cURY
5555 e mc‘wmoﬁmu
omom.so{;:|mo+wmmoh
TN 7Y mc+wopm>k
0100°Ce — go+ITITL]
nLST S mc*mmnu¢“
B819°Ge T gU432099°°
$989°Se £0+32¢n9;
L088°Se T REFTLAM
6952°96 £0+46¢29°
990896 T gO+ICLIY]
L£20°%Le §0430509"
eLs0'Le T §0+32063]
n0i12°Le §0t3Lcoa’
ivigtle §0¢3144S°
LNsE*Le moowsomw.
SL0Lle mc+ummmmk
1i96"Ls £0+30514]
SLL0"8e T EU*LEIN
£€r9n’ge £0432997)
«mwo.mo‘;.;ncouoccn
L2il've mc.wmwmr\
si1g°ge no+mmw=m\
6506"86 £0+32004°
28n0°ese mc*momoAg
LLs0°%6s £0+4928¢"
L1ol'es £0+30iLe]
650566 §0435m9¢ "
6506° mc‘mcwmﬂu
5885 %66 §£0+3598)"
£Enestee £Ce30sLl]
L019%66 £0431¢8 1)
9€69°%686 mc’mmmhm\
6ltL’66 20+astiL]
PiLL 66 HAELEMLY
L9ng'ee 20+37uec’
SLER kA TUsulecun®

19y ANIL

NOILVIAWIS DILATVYNV

7 ¥4I10dW0D

G000 4

vouetsy
uoun® ¢o
00u9’ss
cocmsxo
vovv?lss
vo0e’is
voun?is
000971y
oove‘Le
cccc\mv

" 134

NOILVINKIS DILATVNY

[0}
Ot
4]

89057106
sdr3”To
¢huc wo

b &LV ce

rmr—“no
ERR Y
aucu.mo
cunt” no
mm:-wn. ~

Giiy” mo
rcaﬁ wc
cno».mo
1¢£o.mc
1¢i0 o
seet’ne

Yewi“neo

amstno

Livd he "

grbr N
csus’no
glva’ré
0ect cp
sPUr g6
AR R BT
cOCMUno
8UCY 98
€19l 96
Oeil L6
cacn_no
Luya- 16
sLyn Lo
clus s
T
1a9y¢ gb
nLw9 go
1051 66
logd b
V913606
VevLltes
gliL=ts

"113Y

T ¥311dICO

*010

AP INONCO O N

{v

£

SR I N

67

"1LNo4L) 93B9Y-ONYN MWL © 30 Apnis 404 [3po "QTY d4nbidg

19130 [e— IENEI) D
0130 < By ONYN | i © SINdNI
, ~—0 JYYNIg
— NI L
HSYHL NI S
o aNYN
w5 :
HSUH. N39 L
< 1¥-$
e
-1] E
H<mm ONYN
50 k
—THSYHL [| N9 L
Y-S
i NI [
3o | 1Y-$
3 ONYN
o1 R 1v-S <
HSYHL [50 =
< HSYHL [] N3
Y-S

68

‘uoLjebLAeN 404 wWe3SAS 42Indwo) [eng e 40 [3POW “TIY aunb L4

L]

10714

1230 1 N39
_HEWE IIL
Amwzu N
‘ ~ 0/1 [
A2y sw| | Jom ~.] X
l* b.l FUR I
-
- b |~ e
[T
—INN0D [D WL [
sv1a . | | {4 WIS oy [
] A* b
gy 4o ONAS) 1399Y o—»—q L0230 [¢ I . N9
< 1SN0D OYAD YLSNI [| 311
| ci
._ .
étsx ~ _
0/1 k |
9v10 L] M
et ; w WYY _A.
e N - |
) " NNOD ——] - |
X . < ndd [
ADY SNHL| | oR ke < » oy [
A= u ~\’

69

8. APPENDI X B - RELIABILITY ANALYSIS

This appendix derives the analytic reliability nodel

for systenms having faults with constant failure rates. The
basic nodel is then extended to obtain the reliability equa-
tions used in Exanmples a and b of Section 4. In the follow

ing discussion, all faults are assuned pernanent.

Consider a system with one possible fault, where the
system fails at the same tinme that fault beconmes active. The
time T at which the system fails is a random variable. The

reliability, R(t), of the system is a function of the

random variable T.

R(t) = probability that the system has not

failed before time t, i.e., prob(T>t).

By convention, we always assune that the system is not failed
at tine t=0, therefore R(0) = 1.

Let the fault have a constant rate of occurrence, ex-
pressed as A failures/hours. At time t(hrs.), the failure
rate nust equal the probability of a failure at that instant,
given that the failure has not occurred before tine t. The

probability of failure at that instant is the negative of the

derivative of R(e) evaluated at t. Usi ng Bayes Theorem the
conditional requires only division by R(t). Thus:
- R
A = R(t) ¥ t>0.

70

Wth boundary condition R(0)=1, this differential equation is directly

sol ved:

R(t) = et t >0

A systemwith a reliability function of this formis said to have an
exponentially distributed fault. Al one-fault systems with a constant
failure rate A have this reliability function

Exanple a of Section 4 considers a dual conputer system with
faults occurring independently in each conputer. For the sinple case,
each conputer had only one fault with a constant failure rate A, and
the dual system failed only when both failed. Let Rg(t) be the dual
system reliability, and R;(t) and R,(t) be the reliabilities of each

computer alone. Then we have

Ry (t) = Rp(t) = e Mt >0,

The probability that one conputer fails before timet is 1-R;(t), and
since they are independent the probability that the dual system fails

before time t is

1-Rs(t) [1-R; (£)] [1-R2(t)],

2R, (t) - R (t),

or R (t) = 26t _ e—zxt,

so that Rs(t)

t >0.

This is the reliability function for the sinple case of the dua
conput er system
Consi der now the case of the TMR NAND-gate circuit. Each

gate has three leads (two inputs,one output), and each lead has a

71

constant failure rate X. The reliability of one lead is

-At
Rg(t) e, t >0

A gate functions properly only if all three |eads function properly
Since the lead failures are independent, we may nmultiply their proba-

bilities of being fault-free to get the gate reliability:

A lower bound for the systemreliability, Rs(t), can be derived by
assumng the final voter output is correct if and only if at |east
two gates are fault free. By "correct” is meant the TMR circuit
performs the sane logic function as a single fault-free gate for

all input combinations. There are three ways in which two gates can
fail while one is fault-free, and one way for all three gates to fail.

The probability of system failure before time t is

1= R (6) = 3R(0) [1-R,(0)] + [1-R ()],
= an2(e\ - o3
so that R (t) = 3R.(t) - 2R (t),

or RS(t) = 370X _ 2e'9xt, t > 0.

This is only a lower bound for the true reliability function of the
TMR NAND-gate system because the analysis does not take into account

conpensating failures (discussed in Section 4).

72

9. REFERENCES

[Beaufils, et al, 1974]

{Conn, 1974]

[Fi shman, 1973]

[Masreliez & Bjurman, 1976]

[Rayt heon, 1974]

[Ressl er, 1973]

[Siew orek, 1971]

[Thonpson, 1977A]

Beaufils, R, J.L. Paul and R Troy,
"Systens d'Evaluation globale de

Mil ti processeurs autoréparables",
Repport 1 and 2, Contract DRVE 73/070,
LAAS, University of Toul ouse, Toul ouse,
France, 1974.

Conn, RB., "Definition and Trade-Of
Study of Reconfigurable Airborne

Digital Conputer SystemoOrganizations-—
Final Report", NASA Contract NAS1-12793,
Utrasystems, Inc., Newport Beach, Ca.,
Nov. 1974,

Fishman, G S., "Concepts and Methods in
Discrete Event Digital Sinulation",
John Wley & Sons, N. Y., 1973, pp. 98-135.

Masreliez, CJ., and B.E. Bjurman, "Fault-
Tol erant System Reliability Modeling/

Anal ysis", Boeing Corp., Seattle, W.,
June, 1976.

Rayt heon Conpany, Equi pment Devel opnent
Laboratory', "Reliability Mdel Deriva-
tion of a Fault-Tolerant, Dual, Spare-
Switching, Digital Conputer Systent,
Final Report, NASA Contract NAS1-12668,
Sudbury, Mass., March, 1974,

Ressler, B.E., 'Design of a Dual Conputer
Configuration for Redundant Conputation',
MS. Thesis, MI.T., June, 1973.

Siewiorek, D.P., "An Inproved Reliability
Mbdel for NWVR', Technical Report No. 24,

Digital Systems Lab., Stanford University,
Stanford, Ca., December, 1971.

Thonpson, P.A, "Using Sinulation to
Evaluate the Reliability of a Dual
Computer System " Technical Report

No. 121, Digital Systens Lab., Stanford
University, Stanford, Ca., March 1977.

73

[Thompson, 1977B]

Thonpson, P.A., "Mnual for a Ceneral
Purpose Simulator Used to Evaluate
Reliability of Digital Systens," Tech-
nical Report No. 132, Digital Systens
Laboratory, Stanford University, Stanford,
California, Mrch 1977.

74

