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ABSTRACT

Testing for intermittent faults in digital circuits has been given

significant attention in the past few years. However, very little theo-

retical work was done regarding their detection in sequential circuits.

This paper shows that the testing properties of intermittent faults

in sequential circuits can be studied by means of a probabilistic automa-

ton. The evaluation and derivation of optimal intermittent fault detec-

tion experiments in sequential circuits is done by creating a product

state table from the faulty and fault-free versions of the circuit under

test. Both deterministic and random test procedures are discussed. The

underlying optimality criterion maximizes the probability of fault de-

tection.

INDEX TERMS: Sequential circuit, state table, intermittent fault, error
latency, Markov chain, deterministic and random testing,
input probability.





1. INTRODUCTION

The problem of testing for intermittent faults (I.F.'s) in digital

circuits has been given considerable attention in recent years. It has

long been known that the major portion of the down-time in several com-

puters and other digital systems is due to the lack of efficient testing

and diagnosis techniques which can handle IF/s. [Ball and Hardie, 19691

reported that approximately 90% of field failures in several computer sys-

tems are intermittent in nature. Several computer and digital systems

manufacturers still believe this figure to be true today.

Most of the literature dealing with I.F.‘s concern their testing in

combinational circuits. [Breuer, 19731 proposed a two state Markov model

to account for the effects of the I.F. The Markov process could have

changed from one state to the other with given probabilities. [Kamal and

Page, 19741 used a special case of Breuer's model to treat the problem of

deterministic testing of single I.F.‘s in combinational circuits. [Savir,

1977 and 19781 discussed the random testing properties of I.F.‘s in com-

binational circuits and proposed an algorithm for their detection. How-

ever, little attempt was made to deal with the problem of testing for I.F.‘s

in sequential circuits, which is an important problem because all digital

systems have sequential circuits built into them. This is the task of this

paper.

Only stationary I.F.‘s are considered in this paper, namely faults

which produce the same symptom each time they appear. An I.F. due to loose

connections is an example of a stationary fault, while a transient fault

due to electromagnetic interferences is not considered stationary because,

in general, different portions of the circuit may be affected by such an

interference at different times. This paper discusses both deterministic
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and random test procedures for detecting I.F.'s in sequential circuits.

When discussing random testing it is useful to distinguish between time

variant random testing and time invariant random testing. Time invariant

random testing refers to a situation where the input vectors are applied

with a constant probability distribution during the entire test procedure,

while time variant random testing refers to a strategy which allows the

probability distribution to change as-the test proceeds. Unless otherwise

stated, only time invariant random testing will be considered in this

paper.

The sequential circuits considered in this paper are those that can

be represented by a state table with transition-assigned outputs. The - '

circuits are assumed to be strongly connected, namely a path(not neces-

sarily of length 1)exists from any state to any other state. It is also

assumed that the circuit has an asynchronous preset or clear inputs which

will henceforth be called a reset input. Most practical sequential circuits

meet these assumptions. The following additional assumptions are used

throughout the paper:

Assumption 1: The I.F.'s do not affect the reset line; thus it is possible

to synchronize the circuit to a known state before the test procedure is

initiated.

Assumption 2: The I.F.'s are well behaved [Breuer, 19731 namely, during

an application of an input vector the circuit behaves either as being

fault-free or else some I.F. is qctive.

Assumption 3: The applied input vectors are independent of the activity

periods of the I.F.'s.

Assumption 1 enables us to derive exact expressions for the test
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efficiency (i.e. the probability of fault detection) of any proposed

test procedure. The assumption is not essential, in the sense that if we

allow the I.F.'s to affect the reset input the calculated test efficiency

will be only a lower bound to the actual value. Assumption 2 is quite

well approximated since the input vectors are usually applied by a fast

machine. Assumption 3 is certainly justified since the activity periods

of an I.F. can not be predicted.

The test procedure goes as follows: both the circuit under test

(C.U.T.) and a reference unit are first synchronized to their reset state

by the reset signal. The reference unit is either a "gold unit" meaning

a very reliable copy of the C.U.T. or a logic simulator which calculates

the correct response for every applied input vector. After the initiali-

zation step, input vectors are applied in parallel to both the C.U.T.

and the reference unit and then the outputs are compared. If a discrep-

ancy is observed the C.U.T. is declared faulty and the experiment is

stopped. Otherwise the test procedure is continued until a certain con-

fidence that the circuit is fault-free is achieved. In this case the

C.U.T. is declared as being fault-free. The input vectors are either

deterministically applied or randomly selected, depending on which test

strategy is being used.

Section 2 provides a statistical background to the rest of the

paper. Section 3 derives the error latency of an I.F. in a sequential

circuit. Section 4 discusses the problem of deterministic testing of one

I.F. Section 5 repeats this discussion for random testing of one I.F.

Section 6 generalizes sections 4 and 5 for the case of testing for a

fault set, and section 7 concludes with a brief summary.
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2. STATISTICAL BACKGROUND

A probabilistic machine is a system described by the five-tuple

sP = < I,Q,Lp~@ >
where

I = { O,l,... ,J-1 ) is the set of inputs

Q = ( ql,q2,...,qs} is the set of states

Z = { O,l,... ,K-1 } is the set of outputs

is a set of all initial state probability distributions

associated with the state set Q.

P= [ Ww’ lLq> 1 is a matrix whose elements are the condi-

tional probabilities of going from state q under input i to

state q' and producing the output z.

Clearly the dimension of p is JsXKs. Note that the state set Q can be

embedded in 0 by identifying qi with the probability vector which has

1 in the i-th place and 0 elsewhere. The conditional probabilities are

subject to the constraints

and

0 1. Pr(z,q'li,q) 5 1 for all i,q,z,q'

2.1 RESPONSE OF A PROBABILISTIC MACHINE TO DETERMINISTIC INPUTS

(1)

(2)

It is useful to arrange the matrix pin standard form, namely
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Each matrix y(z) is of dimension SXS and describes the probabilities

that the output symbol will be z given that the input symbol is i. The

(j,k) element of the matrix q(z) is the probability that the current

output symbol will be z and the next state will be qk given that the

current state is q.J and the current input i.

Let

zi = (0,0,...,0,1,0,...,0)
-f

i-th component

and let z = (l,l,...,l)

According to this notation, the probability of an output sequence z,,z2,

. . . . zn given an input sequence i,,i2,...,i, is given by

Pr(zl,z2,...,znlil,i2,..., in)=6 q!Z,) s(Z I*** f?iCzn) ztr
22 n

(3)

(4)

(5)

(6)
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where u+tr denotes the vector G transposed. Denote now

pi = c qc4
ztz

The (j,k) element of pi corresponds to the probability that the next

state will be qk given that the present state is q* and present input is i.
J

Thus, the probability of being in state qk when the input sequence i,,i2,

. . . , i n is applied is given by

Pr(qJi,,i2,..='i,)  = ( $ 4 I? . . . 4 )
1 ‘2 n k

where (*)k denotes the k-th component of the vector. Note that both pand

Pi , i=1,2,.. . ,J-1 are Markov matrices.

2.2 RESPONSE OF A PROBABILISTIC MACHINE TO RANDOM INPUTS

When analyzing the response of a probabilistic machine to random

inputs it is useful to use the matrix R= [ Pr(z,q'Iq)  ] instead of the

matrix p . Clearly there is a relation between Rand p. In order to see

this, let TT be the set of all possible probability assignments to the

input set, namely

J - l

then for a given input probability assignment

Wz,q’ lq) = C njPr(Z,q’ Ii ,q)
01

(7)

(8)

(10)

it is convenient to present R in standard form also, namely
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(o,ql)(o.q2)*..(o,q,)

!

(z,ql)(z,q2)*..(z,q,) (K-1 a, )(K-1 sq2)+. -(K-l ,q,)
41 I I I I

42 I I I I

R = l

R(O)
I I I I
I***  I. RW I.. . I R&-l)

4

I I I I 1 (11)
I I I I
I I I I

According to this notation, the probability that an output sequence

Z,'Z2'""Zn is the response to n randomly applied inputs is given by

Pr(z,,z2,.me, znln random inputs) = $Rtz,)R(z,L..  Rb,) ;ftr (12)

Let R* = CR(z) (13)
zez

The matrix R* is a SXS matrix whose (j,k) element is the probability of

going from state qj to state qk under randomly applied inputs. The prob-

ability that the machine will end up in state qk after n randomly applied

input vectors is given, therefore by

Pr(qkln random inputs) = ( 4 ( R* )" )k 04)

Note that both R and R* are Markov matrices.

3. THE ERROR LATENCY OF AN INTERMITTENT FAULT

When a certain malfunction occurs in the circuit we say that a

certain fault is present in it. When the present fault is intermittent,

it can be active sometimes and inactive at other times. We say that an

I.F. is active at a certain time if it changes the function of any portion
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of the circuit at that time. In this paper we use the model of the ac-

tivity period of an I .F. described in [ Savir 1977 and 1978 1. This model

assumes that during an application of an input vector the fault is active

with a constant probability, p, called the probability of activity.

pi = Pr(fault fi is aCtiVelfi is present)

In any digital circuit there is a delay between the time a fault

becomes present and the first output error, called the error latency.

It is convenient to measure the error latency by a discrete quantity

rather than by time, as described in the following definition.

Definition 1:

The error latency [ Shedletsky and McCluskey, 1976 1, ELi, of

fault fi is the number of input vectors applied to the circuit while fi

is present until the first incorrect output due to fi is observed.

The error latency depends on the circuit, the fault and the applied

input sequence. Since the error latency of an I.F. is a random variable

even for deterministic inputs, it is possible to quantify it only sta-

tistically. For testing purposes, it is useful to describe its statis-

tical behavior by its cumulative distribution function ( c.d.f. ). The

c.d.f. of the error latency of fault fk under the input sequence i,,i2,

. . . ) i n is defined as

FELk(i,,i2,-,i,) = Pr(ELk 5 nli,,i2,...,in)

(15)

(16)

namely, the c.d.f. of the error latency is the probability that the fault
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will be detected at or before the application of the last input symbol

of the sequence. Similarly, when the input vectors are randomly applied,

the c.d.f. of the error latency is defined as

FEL
k
(n) = Pr(ELk 5 nln random inputs)

Although not explicitly written, it is implicit that (16) and (17) are

alS0 conditioned on the event "fault fk is present."

There is a major difference between the testing properties of

I.F.'s in sequential circuits and combinational circuits. In combina-

tional circuits an output error can be observed only when the fault is

active. In sequential circuits, on the other hand, the first occurrence

of an active fault may cause the circuit to enter an incorrect state

without producing an immediate output error, and this change in state

may cause an output error at a later time, even when the fault has al-

ready become inactive. This is the reason [Ball and Hardie, 19691 ob-

served that it is easier to detect I.F.'s in sequential circuits than

in combinational circuits, when simulating I.F.'s in the Saturn V Launch

Vehicle Aerospace Computer.

Figure 1 describes the notions of presence, activity and error

latency.

Definition 2:

A deterministic I.F. detection experiment (deterministic I.F.D.E.)

is a string of n symbols over the input vector space. A random I.F.

detection experiment (random I .F.D.E.) generates the deterministic

1.F.D.E.k with a given probability distribution. The number n is called

(17)
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Activity Periods lSt
output

Input Error
Vectors

+

Fault Present

b
k- - - - i -Error Latency

time

FIGURE 1: The error latency of an I.F. in a sequential circuit.

the length of the experiment.

Clearly, there are J” deterministic 1.F.D.E.k of length n.

Since every I.F.D.E. must have finite length, there is no guarantee

that at the end of any experiment a definite conclusion regarding the

state of the circuit ( faulty or fault-free ) could be drawn. Once enough

consecutive correct outputs are observed it is necessary to

stop and decide with a certain confidence that the C.U.T. is fault-free.

Such a stopping decision rule should be based on the confidence that the

C.U.T. possesses no I.F.3, which is a non-decreasing function of the

number of consecutive correct outputs that are observed. We use, there-

fore, the escape probability as the criterion by which the experiment

should be stopped.

Definition 3:

The escape probability [ Savir 1977 and 1978 1, ci, of an I.F. fi

is the conditional probability that the fault will go undetected during
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an application of a sequence of n input vectors ( deterministically or

randomly selected ), given that fi is present.

The escape probability depends on the circuit, the fault, the

I.F.D.E. and is related to the error latency through

Ei(*) = 1 - FEL (0)
i

The c.d.f. of the error latency has the property of being a non-

decreasing function of the experiment length, n, and of having a non-

constant value. Thus, the escape probability is a non-increasing func-

tion of n. The I.F.D.E. can be stopped, therefore, when n is large enough

such that Ei is below a preassigned positive threshold, determined by

the test designer.

Since testing for I.F.'s usually takes a long time, it is extremely

important to try to optimize the test procedure so that the testing time

will be as small as possible. The optimality criterion we use in this

paper is maximizing the probability of fault detection, or equivalently

minimizing the escape probability. This goal is achieved by finding the

optimal deterministic I.F.D.E. in the case of deterministic testing, and

the optimal random I.F.D.E. in the case of random testing.

In the following analysis we assume that the sequential circuit

is described by a state tab1e.A state table has J columns one for each

input symbol, and s rows one for each present state. For each combina-

tion of present state and input symbol, the corresponding entry in the

table specifies the next state to which the machine will go and the out-

put that will be produced by the transition.

(18)
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A potentially detectable I.F. transforms the state table of the

fault-free machine, during the activity period of the fault, to one

which differs from it by at least one entry. I.F.'s on redundant lines

are not detectable and therefore are excluded from this discussion. Let

MA denote the state table of the fault-free machine ( or the state ta-

ble of the faulty machine during the inactivity periods of the fault ),

and MA the state table of the faulty machine during the activity periods.

States in MA with the same internal state variable assignments as those

in MA are given the same labels. The State table MA must have a row for

every state in MA. If the internal state variables are not all used in

MA, MA may have additional rows. Well known techniques [ McCluskey, 1965 ]

may be used to reduce the number of states in MA' Note that the faulty

machine undergoes transitions according to state tables MA and MA with

probabilities p and l-p respectively.

Example 1: State tables MA and MA are shown with the sequential cir-

cuit of Figure 2. The I.F. being considered is line L intermittently

stuck-at-one (L/l).

i
ck

MA

I Z
‘J

A >
7

I
L R MA

PS NS, ) z PS NS,Z
Y i=O i=l Y i=O i=l

0-41 91 8 9po 0-q 91 30 qpo

I-'42 9*'0 9131 1-2 p-jy, 41'1

FIGURE 2: Example of obtaining state tables MTi and MA in a synchronous

sequential circuit subject to the I.F. L/l. PS=Present State

NS=Next State.
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In order to determine the error latency of an I.F. it is conve-

nient to construct a product state table, Mp, [ Poage and McCluskey,

1964 ] from the state tables MA and MA. The product state table provides

a tool which allows simultaneous observation of the behavior of the

faulty and fault-free machines. The states of the product machine cor-

respond actually to pairs of states. The state q.. indicates that the
1J

fault-free circuit should be in state qi while the faulty machine is

actually in state qj. The product state table is divided into two sub-

tables by a vertical line. The left subtable corresponds to the joint

behavior of the fault-free machine and the faulty machine during the

inactivity periods of the fault. The right subtable corresponds to the

joint behavior of the fault-free machine and faulty machine during the

activity periods of the fault. Each subtable lists the input set as col-

umn headings, thus there are 2J columns in the product state table. The

set {qiili=1,2,..., s} is called the set of initial states. Since, the

fault-free machine behaves according to the state table MA, it is suf-

ficient to know MA and MA in order to construct Mp. To do this, start

by listing all the initial states as row headings and filling out the

corresponding entries by assisting tables MA and MA. The output is de-

fined as 1, if the corresponding output vectors of the faulty and fault-

free machines differ. The next state entries with a corresponding 1 out-

put are denoted by q,b. Add new rows to the product state table listing

all those new states which appeared as next states and which are not

initial states. The next state entries of q,b are all q,b with a 0 output,

making this state a sink state. A product state table is said to be in

standard form if the reset initial state is listed as the first row, and
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the sink state in the last row. In the rest of this paper we assume that

the product state table is presented in standard form.

Example 2: Let ql be the reset state of the sequential machine of Figure

2. The standard form of the product state table is derived from tables

MA and MA and appears in Table 1.

TABLE 1: Product state table of the sequential circuit of Figure 2 with

I.F. L/l.

PS NS,?
Fault inactive
i=O i=l

911 911 ,O

922 922'O---------.

Fault active
i=O i j=l

921 921 ,O

'ab qab' 0

922'O

ql1'O--w-w-
'ab' 1

qab' 0

911 ,O 922'O

921'O 911 PO-----.I-----
921 SO qab' 1

qab' 0 qab' 0

It is possible now to define a probabilistic machine, based on the

information contained in the product state table, which will enable the

testing properties of I.F.‘s in sequential circuits to be eva

Q = {Sij /qij is a state in Mp, i,j=1,2,...)U(qab},

where IQ1 is the cardinality of the set Q, and

uated. Let

14



Let also I, @ and pbe as defined in section 2. Then, < I,Q,Z,@, p >

defines a probabilistic machine. Well known techniques [ Booth, 1967 ]

can be used to reduce the number of states in Q. To ease the expla-

nation we assume that the probabilistic machine is already in its reduced

form, and that the matrix pis expressed in standard form, namely

(o,ql~ >
(0422)

coil 1ab

(id411  1
(i ,922)

.
P = .

ti Yqab)

(J-1 q 1 1
(J-1 sq22)

(J-1 ,qab)

p,(o)
I
I

-e-------m--------------

.
I

.

. .

.

I

.

------------------------

I

P(o)i I Pm
I i

------------------------. I .. .. I .-------------------e--e-

Example 3: The matrix Pof the circuit of Figure 2 subject to the 1.F

L/l is given by
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to+1 )(“+&oYq21  )(OYq,b)  c1 ,911 )(’ Yq22)t1 ,921 >tl Yqab)
+

1 0 0 0 ; 0 0 0 0 -

P
=

(‘,q,b)

(1 ‘911)
(1 ,922)
(1 ‘921)
c1 ,qab)

0 1-P P 0 ; 0 0 0 0
0 0 1 0 I 0 0 0 0
0 0 0 1 ; 0 0 0 0

--------_-_-_ -I----------------
0 1 0 0 1 0 0 0 0

I
1 0 0 0 I 0 0 0 0
0 0 0 0 ; 0 0 0 1
0 0 0 1 ' 0 0 0 0II-

where p is the probability of activity of the fault.

The product machine describes the behavior of the sequential cir-

cuit from the time the fault becomes present. The state qab is entered

and a 1 output is produced when the first output error is observed. When

the product machine enters q,b it can never leave. Thus, the state q,b

is an absorbing state, and the error latency is the time to absorption.

The c.d.f. of the error latency is therefore the probability that the

product machine will be absorbed in q,b at or before time n, namely

FE&‘) = Pr(product machine in state q,b at time r+)

where the period represents "n random inputs" in the case of random

testing, and il,i2,...,in in the case of deterministic testing.

In order to evaluate the test quality of any proposed test proce-

dure it is sufficient to know the matrices 5, i=O,l,...,J-1  since the

probability of fault detection is the probability that the product ma-

chine will be absorbed in state qab. Therefore, the output z does not

provide any further information beyond that already given by the matrices

16



p. . This reduces,to 50%,the number of matrices that have to be consid-
1

ered in the evaluation process.

4. DETERMINISTIC TESTING OF AN INTERMITTENT FAULT

Since, according to our assumption, an I.F. can not affect the

reset line, the initial state probabilities of the product machine at

the time the test begins is

3 = g1 = (l,O,...,O)

As previously stated, the probability that the sequence il,i2,...,in

will detect the I.F, is the c.d.f. of the error latency. Thus, the prob-

ability of fault detection is given by

FEL(il,i2,...,in) =

Example 4: The probability that the I.F. L/l,in the circuit of Figure

2, will be detected by the sequence 1001 is

FEL(1001) = ( $ P, PO2 P, 14

where

[

1
0

Po= 0
0

0
0
0
1 1 r0 10 0

P
10 0 0=

10 0 01

L0 0 01

(21 1

Hence FEL(lOO1) = p&p)

17



4.1 THE OPTIMAL DETERMINISTIC I.F.D.E.

The optimal deterministic I.F.D.E. is that sequence il,i2,...,in

which maximizes (21). One way of deriving this sequence is to evaluate

the c.d.f. of the error latency for all possible J" deterministic

I.F.D.E.'s and then to choose one which attains the maximum value. Clearly,

this is not a practical method because of the amount of computation in-

volved. The amount of computation, however, can be greatly reduced since

there are, in general, a considerable number of sequences which do not end

up in state qab and therefore have zero probability of detection. A more

practical method can be derived by utilizing a testing graph. A testing

graph of order n is a directed graph having n+l levels where each level

( except for the first few ) has as vertices all the states of the prod-

uct machine. There is a directed edge from state q. in level R to
Jlkl

state qj k in level ~+l if there exists an input vector i which when
2 2

applied to the product machine currently in state q. will transfer it
Jlkl

to state q. with a non-zero probability. This edge is labeled by
J2k2

i/Pr(q. li,q. ) to indicate that the corresponding transition occurs
J2k2 Jlkl

with probability Pr(q. li,q. ) when the input i is applied. These
J2k2 Jlkl

probabilities are the corresponding entries of the pi matrix. In level

0 there is only one vertex, namely qll. The next few levels may be also

degenerate depending on the possible successors of qll in the product

machine. The edge leaving q,b is labeled -/l meaning that once you enter

state qab you can never leave. The testing graph of order 4 of the prod-

uct machine of Table 1 is illustrated in Figure 3.
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level-3 level-4
FIGURE 3: Testing graph of order 4 for I.F. L/l in the circuit of

Figure 2.

The problem of determining the optimal deterministic I.F.D.E. is

therefore converted to the problem of tracing all the paths originating

in qll at level 0 and ending up in q,b at level n, and then choosing

that sequence which has the largest probability of detection. The prob-

ability of detection along a given path is the multiplication of all the

probabilities labeled on its edges. It is important to note that differ-

ent paths in the graph do not necessarily correspond to different input

sequences. It is possible to have an input sequence which will have a

non-zero probability of detecting the fault for more than one activity

19



pattern. This possibility corresponds to different paths originating in

qll at level 0 and ending up in q,b at level n. Note also that the opti-

mal deterministic I.F.D.E. is not unique, since there might be more than

one sequence which attains the maximum value for FEL(*). The use of the

testing graph enables us to trace only the sequences which have a non-

zero probability of detection and not spend time calculating those which

will end up anyway with a zero value. Theselatter sequences are those

which end up at level n in a vertex different from q,b. Thus, only a

subset of the testing graph has to be searched for any value of n. The

procedure is described in the following algorithm.

Alaorithm 1:

Step 1: Find the product state table of the given sequential circuit and

the prescribed fault.

Step 2: Derive the testing graph which corresponds to the product state

table.

Step 3: Use the testing graph to obtain all the input sequences which

have a non-zero probability of detecting the fault.

Step 4: Choose one input sequence which has a maximum value of detection

probability. This is an optimal deterministic I.F.D.E.

Example 5: The optimal deterministic I.F.D.E.‘s of length 3 and 4 for

the circuit of Figure 2 and I.F. L/l with their associated test qualities

are respectively

n=3 , x=101 , FE&x) = P

n = 4 , x = 1001 , FEL(x) = p(2-p)
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where x denotes the optimal input sequence.

In example 5 the optimal deterministic I.F.D.E. was independent

of the value of p. This is not always true as seen in the following

example.

Example 6: Consider a sequential circuit and an I.F. whose state tables

MA and MA are

MA

” - i=O Ns’Zi=J .

91 91 30 92’0

92 92’0 91 J

MA
7 PS NS,Z-,

i=O i=l

91 92'0 92'0

92 q 30 91 J

The optimal deterministic 1.F.D.E.k of length 3 are (001) for p < .5-

and (010,011,101) for p > .5 since-

FEL(ool  > = P(l-P) and FEL(x) = p for xc (010,011,101}

5. RANDOM TESTING OF AN INTERMITTENT FAULT

As described in section 2, the matrices Rand R* are used in order

to evaluate the test quality of the random test procedure. The matrix R

can be found by using the matrix P and relation (10).

Example 7: For the circuit of Figure 2, let the input probability assign-

ment be

*0 = Pr(i=O) = 1-a

The matrix Ris therefore

Y 71 = 1-7To = a
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R

(‘+I )(“,q22)(o,q21 )(‘,qab)  c1 ‘($1 >tl Yq22)(1 Yq21)(1 ,qab)

(l-P;(l-cr)
0 0 I 0 0 0 0

a p(l-a) 0 0/ 0 0 0
0 1-a 0 I 0 0 0 a

0 0 1;o 0 0 0

and the matrix R* is

411
*

R 922=
921
qab

911 922
-1 -a
a (I-P;(l-u
0 0
0 0

921 'ab
0 0 1

> P(l-a) 0
1 -a a
0 1 1

The c.d.f. of the error latency is the probability of being ab-

sorbed in gab. Hence

FEL(“) = ( $ ( R*)” It (22)

The matrix R* is an absorbing Markov matrix. The stationary dis-

tribution [ Karlin and Taylor, 1975 ] of this stochastic process is et

namely, the process will absorb in q,b with probability 1. From a prac-

tical point of view this means that the escape probability can go below

any positive threshold if enough random inputs are applied. Notice that

the stochastic process described by R*, is always aperiodic because the

period of state gab is 1, and therefore the stationary distribution al-

ways exists. Although (22) involves matrix multiplication there is no

real need for this since we are interested only in the last component of
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zl( R*)“- The following algorithm provides an efficient tool for obtaining

FELh)*

Algorithm 2:

Step 1: Initialization: vo1=1,vo2=.. .=vOt=()

Step 2: For k=1,2,...,t and ill do

t

c
*

Vik = j,lvi-l,jrjk ' where R* = [ r;k 1

Step 3: If i< n go t0 Step 2; otherwise FEL(n) = vnt and Stop.

The idea behind Algorithm 2 is to evaluate FEL(n) by successive

multiplications of a resultant vector by a matrix and not by evaluating

( RX)" first, and then multiplying it from the left by $. In other words,

we evaluate FEL(n) by performing (...(($ R*) R*)R*...)R* . Thus, in

every step we multiply a vector by a matrix which is less complicated

and time consuming than the multiplication of a matrix by itself.

Example 8: The application of Algorithm 2 to the circuit of Figure 2

with I.F. L/l for evaluating FEL(4) yields the following intermediate

results:

Let I = (vi1 ,vi2,". ,Vit) then

$ =
1 badLO)

-f
v2 = (l-2cX+2a2,(2-p)a(l-a),pcL(1-a),O)

-f
v3 = ((1-~)~1-2c~+(4-p)c~],~[1-2~+2,~+(1-p)(2-~)(1~~)~],

FEL(4) = v44 = Pc12(l-cX)[4-p-cX(3-p)]
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Note that in order to derive FEL(4) = v44 it is not necessary to find

?4 entirely, but only to use step 2 of the algorithm for k=t=4, i=n=4.

5.1 THE OPTIMAL RANDOM I.F.D.E.

The optimal random I.F.D.E. is specified by the optimal assignment

of probabilities to the input set as described by the following definition

Definition 4:

The optimal assignment of input probabilities is the input proba-

bility distribution which maximizes the probability of fault detection

with the constraint that no more than n input vectors are applied.

The optimal assignment of input probabilities is, therefore, that

distribution % which maximizes the function Y given by

y = FEL(n) + ~(~~ni
i=O

where JJ is the Lagrange multiplier.

Example 9: The optimal assignment of input probabilities for the circuit

of Figure 2 subject to the I.F. L/l and for experiment of length 4 is

obtained by maximizing the function

FEL(4) = p&1 -0i)[4-p-a(3-p)] , a> 0-

(23)

Notice that in this case the Langrange multiplier is not needed because

FEL(4) is expressed in terms of only one independent variable, namely a.

Maximization of FEL(4) yields
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The optimal assignment and its corresponding probability of detection

is shown in Figure 4.
N
"opt.
+

.580

.575

.570

.565

.560

.555

.550

Max F,, ( 4 )
LL

L

.30

.25

.20

.15

.lO

.05

Z$P
0 .l .2 .3 .4 .5 .6 .7 .8 .9 1.0

FIGURE 4: The optimal assignment and optimal c.d.f. of the error latency

for the circuit of Figure 2 subject to I.F. L/l and experiment

length n=4.

6. TESTING FOR A FAULT SET

Sections 4 and 5 considered only the case of testing for one I.F.

in a sequential circuit. Clearly, this is not a practical case, since

digital circuits may suffer from a large variety of faults, especially

with the Large Scale Integration (LSI) technology used today.
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In this section we generalize the previous methods to the case of

testing for single’1.F.k  in sequential circuits. In fact, the class of

multiple I .F.'s which can be described by the two state tables MA and

MA are also covered by the following treatment. For example, multiple

I.F.‘s in fanout lines are members of this class. The general case of

testing for multiple I.F.‘s is more involved, because multiple faulty

state tables must be considered to account for the fact that any compo-

nent of a multiple I.F..can change from active to inactive, or vice

versa , regardless of the other components.

Let F={fl,f2,..., fm} be the fault set being considered, i.e. only

one member of F can be present in the circuit when the circuit is faulty.

We assume that F is known to the test designer from experience with

circuits of the same kind. Let the probability of presence [ Savir, 1977

and 1978 ] of fault fi be denoted by wi, i=l,2,...,m then

m
c Y

= 1 3
i=l

where ui = Pr(fi is presentlcircuit  is faulty) (24)

The c.d.f. of the error latency of the fault set F, FEL(*), is

related to the individual c.d.f.'s, FEL (0) j=l,2,...,m , through
j

FEL(') = 2u.Fj=l J ELj (a)

The problem of evaluating the test quality of a given test procedure is

solved, therefore, by evaluating FEL (m), j=l,2,...,m using previous
j

methods and then substituting to (25) to find the overall detection prob-

(25)

ability.
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The problem of proposing an optimal I.F.D.E. ( deterministic or

random ) is solved by similar considerations. In the case of determi-

nistic testing, you list all the input sequences of length n which have

a non-zero probability of detecting at least one member of F by using

the testing graph. After this task has been fulfilled you choose one such

sequence which maximizes (25), and this is an optimal deterministic

I.F.D.E. In the case of random testing, the optimal assignment of input

probabilities is obtained by maximizing the function

m
c

J- l
Y = w.Fj=l J ELj (n) + Ilcc~i - ‘) ) pi LO

i=O
++.

1

where FEL (n), j=l,2,... ,m are calculated from (22).
j

It is important to note that although we showed a method of ob-

taining the optimal time invariant random I.F.D.E., the test quality

achieved by any random test procedure ( time variant or invariant ) is

never better than the one achieved by the optimal deterministic I.F.D.E.

This is described in the following theorem.

Theorem :

There always exists a deterministic I.F.D.E. which has at most the

same escape probability as any proposed random I.F.D.E.

Proof: Similar to the proof described in [ Savir, 1978 ] for combina-

tional circuits.

As a consequence, the random test procedure should be used only

when the decrease in test quality is not substantial and when its engi-

neering implementation is cheap and simple.

(26)
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7. SUMMARY AND CONCLUSIONS

The problem of detecting 1.F.k in sequential circuits is described

in this paper. It is shown that the behavior of a sequential machine

subject to an I.F. can be studied by means of the theory of probabilistic

automata. One way of evaluating the test quality of any proposed test

procedure is by defining a product machine from the faulty and fault-

free versions of the sequential C.U.T., which has an output 1 whenever

the first output error occurs and 0 otherwise. Since, for the purpose

of testing, only the first output error is important, consideration of

later output errors is avoided by sending the product machine to a sink

state ( absorbing state ) after the first output error is observed. The

problem of proposing an optimal deterministic I.F.D.E. is solved by using

a testing graph to list all the input sequences which have a non-zero

probability of detection, and then choosing one such sequence which

attains the maximum value. The problem of proposing an optimal random

I.F.D.E. is solved by finding the optimal assignment of input probabil-

ities.

Although the proposal of any optimal I.F.D.E. is conceptually

simple, its application to real size circuits is sometimes prohibited

because of the amount of computation involved. It is necessary therefore

to find other methods, probably not optimal, which will be easier to

implement. Currently, the efficiency of compact testing of I.F,‘s in

sequential circuits is being studied.
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