
SEL-76-043

THE OPTIMAL PLACEMENT OF DYNAMIC
RECOVERY CHECKPOINTS IN
RECOVERABLE COMPUTER SYSTEMS

bY

Wayne Alan Warren-Angelucci

December 1976

Technical Report #126

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either express or implied, of the Defense Advanced
Research Projects Agency or the United States Government.

.

This research was supported by the Defense Advanced Research Projects
Agency under ARPA Order No. 2494, Contract No. MDA903-76C-0093, by the
National Science Foundation under research grant MC573-07973-Al, 2, and
by Joint Services Electronics Program: U.S. Army, U.S. Navy, and U.S. Air
Force under Contract N-000 14-67-A-O 112-060 1.

Reproduction in whole or in part is permitted for any purpose of the
U.S. Government.

5TlllFORP ElECTROlIIC5 lRBoRATORlEs
STanFORD UnIuERsITV . STIIFORB, CnlIFORnIR

SEL-76-043

THE OPTIMAL PLACEMENT OF
DYNAMIC RECOVERY CHECKPOINTS

IN RECOVERABLE COMPUTER SYSTEMS

bY
Wayne Alan Warren-Angelucci

December 1976
Technical Report #126

DIGITAL SYSTEMS LABORATORY
Department of Electrical Engineering

Stanford University
Stanford, California

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
official policies, either express or implied, of the Defense Advanced
Research Projects Agency or the United States Goverment.

This research was supported by the Defense Advanced Research Projects
Agency under ARPA Order No. 2494, Contract No. MDA903-76C-0093, by the
National Science Foundation under research grant MC573-07973-A1,2, and
by Joint Services Electronics Program: U.S. Army, U.S. Navy, and U.S.
Air Force under Contract N-00014.-67-A-0112-0601.

Reproduction in whole or in part is permitted for any purpose of the
U.S. Government.

ABSTRACT

Reliability is an important concern of any computer system. No matter how

carefully designed and constructed, computer systems fail. The rapid and systematic

restoration of service after an error or malfunction is always a major design and

operational goal. In order to overcome the effects of a failure, recovery must be

performed to go from the failed state to an operational state. This thesis describes

a recovery method which guarantees that a computer system, its associated data

bases and communication transactions will be restored to an operational and

consistent state within a given time and cost bound after the occurrence of a system

failure.

This thesis considers the optimization of a specific software strategy - the rollback

and recovery strategy, within the framework of a graph model of program flow

which encompasses communication interfaces and data base transactions.

Algorithms are developed which optimize the placement of dynamic recovery

checkpoints. Presented is a method for statically pre-computing a set of optimal

decision parameters for the associated program model, and a run-time technique for

dynamically determining the optimal placement of program recovery checkpoints.

. . .
111

ACKNOWLEDGEMENTS

Many people have been helpful during my years at Stanford and especially during the

research and preparation of this thesis.

My advisor, Professor Vinton Cerf, deserves a great deal of thanks for his constant

support and encouragement. He always had helpful suggestions when the going was

slow and showed a great deal of patience with the numerous false starts and

mistakes. I appreciate his suggestion of the general area of research that is

investigated in this thesis.

I am grateful to Carol Hankins and C. Peter McCullough for their aid and assistance

in producing the hardcopy of this manuscript.

I owe thanks to several organizations for their support during my studies and

research at Stanford: the Joint Services Electronics Program: U.S. Army, U.S. Navy,

and U.S. Air Force under Contract N-00014067-A-0112-0601, the Defense Advanced

Research Projects Agency under ARPA Order No. 2494, Contract No.

MDA903-76C-0093, and the National Science Foundation under research grant

MC573-079730A1,2.

Finally, 1 want to thank my wonderful wife, Danielle. She has been a boundless

source of encouragement for me. Her enthusiasm was highest when mine was lowest,

and she was always patient with my occasional preoccupied periods. For all of this I

TABLE OF CONTENTS

TABLE OF CONTENTS .

ABSTRACT

ACKNOWLEDGEMENTS .

. . .
111

iv

V

LIST OF ILLUSTRATIONS .
Vlll

CHAPTER 1,
INTRODUCTION
1.1 Reliability and Recoverability . 1
1.2 Hardware Reliability . 4

1.2.1 Reliable Hardware Systems - TMR 5

1.3 Hybrid Reliabitity . 5
1.3.1 Hybrid Systems - JPL STAR 5
1.3.2 Hybrid Systems - Pluribus 6

1.4 Software Reliability . 6
1.4.1 Reliable Software Systems - Randell 7
1.4.2 Software Reliability - Russell 8
1.4.3 Software Reliability - Chandy 9

1.5 Hardware - Software Tradeoffs . 9

1.6 Summary . 10
1.7 Organization of Thesis . 11

CHAPTER 2,
A MODEL OF PROGRAM STRUCTURE FOR
ROLLBACK AND RECOVERY
2.1 Optimal Placement of Rollback Points 12
2.2 Program Graph Model . 14

Page

2.2.1 Program Graph 1

2.2.2 Program Running Time

2.2.3 Program State .

2.2.4 Branching Probabilities .

2.2.5 Acyclic Program Graph

2.2.6 Error Latency and Detection

2.3 Data Set Interactions .
2.3.1 Data Sets .
2.3.2 Transaction Journals .

2.3.2.1 Backup Journals
2.3.2.2 Revoke Journals
2.3.2.3 Replay Journals

2.3.3 Virtual Data Sets .
2.3.3.1 Virtual Data Set Interface Processes . .
2.3.3.2 Recovery Commands to the

Interface Process
2.3.3.3 Classes of Data Sets

2.3.4 Processing and Storage Overhead
2.3.5 Save and Load Time . :

2.4 Recovery Interval .
2.5 Optimal Decision Parameter .

14
14
15
15
16
16
17
17
18
18
18
19
19
19

19
20
23
24
25
27

CHAPTER 3,
ALGORITHM WHICH OPTIMIZES THE INSERTION
OF RECOVERY CHECKPOINTS
3.1 Purpose of MERT Algorithm . 28
3.2 Estimates of Program Behavior . 28

3.2.1 Probability of Occurrence of
Task Error . c 28

3.2.2 Expected Time Until Detection
of a Task Error . 29

3.2.3 Summary of Program Behavior Estimates 29

3.3 Definition: Expected Task Execution Time 30

3.4 MERT Algorithm . 31

3.4.1 The Auxiliary f(r) and g(r) Functions 31

3.4.2 The MERT Algorithm . 32

vi

3.5 Lemma: Termination of Algorithm . 34
3.6 Lemma: Bounds on Termination . 34
3.7 Proof that the MERT Algorithm Minimizes the

Expected Run Time . 34
3.7.1 Case K = 1.. 34
3.7.2 Induction Step . 36

CHAPTER 4, ,
EXAMPLES ILLUSTRATING THE DYNAMIC INSERTION OF
RECOVERY CHECKPOINTS
4.1 Graph Model of a Typical Program . 40
4.2 Computation of the Optimal Decision Parameter Set 41
4.3 Example Execution of Sample Program 48

4.3.1 Example 1 . 48
4.3.2 Example 2 . 50
4.3.3 Example 3 -. 51

4.4 Summary . 52

BIBLIOGRAPHY

APPENDIX A
The MERT Analysis Program

APPENDIX B

...... 53

. 56

Sample Input Data for MERT Analysis Program 68

APPENDIX C
Output Data from MERT Analysis Program 70

vii

LIST OF ILLUSTRATIONS

Figure

Chapter 1,

Page

1.1 TMR Block Diagram . 5a

1.2 JPL STAR Hybrid Computer Block Diagram 5b

1.3 BBN Pluribus Block Diagram 6a

1.4 Randell’s Recovery Block Scheme 7a

1.5 Russell’s Process Cache and Messagelist Scheme 8a

1.6 Chandy’s Graph Model of Program Behavior 9a

Chapter 2,

2.1 Graph Model of Program Behavior 14a

2.2 Virtual Data Set Interface Process 19a

2.3 Program Save and Load Time 24a

2.4 Sample Calculation of Restore Cost 24b

2.5 Occurrence of Undiagnosed Error 25a

2.6 Runtime Insertion of Recovery Checkpoints 27a

Chapter 3,

3.1 The Auxiliary f(r) and g(r) Functions 32a

3.2 Computation of the MERT Algorithm 32b

3.3 MERT Algorithm, Case k=l 34a

3.4 MERT Algorithm, fnduction Step 37a

Chapter 4,

4.1 Graph Model of Sample Program 40a

4.2 Calculation of f3(r) for Sample Program . . . , 46a

4.3 Table of MERT Computed Optimal Decision Parameters . . . 48a

. . .
VIII

Chapter 1

INTRODUCTION

1.1 Reliability and Recoverability

The concept of reliable computing has existed for a long time, but it has remained

almost exclusively the preserve of the hardware designer. Hardware structures have

been developed which can continue to provide the required facilities despite

occasional failures, either transient or permanent outages of internal components and

modules [1,2 3.

Since the term reliable system can have many different meanings, it is important to

clearly establish just what is desired. One does not try to build a completely

non-failing device. Instead, one introduces redundancy into systems of intrinsically

unreliable components. This redundancy may be in hardware - additional hardware

modules, or it may be in time - additional software, or a combination of both.

Given this redundancy, the attempt is to build a system which will recover

automatically within a given time period. Recovery is defined as the continuation of

system functions, after the incidence of an error, with data integrity. In a total

system environment, it is a problem requiring both hardware and software aids. The

fault must be diagnosed and if a broken hardware module is at fault, then it needs

to be removed from the system. For both transient and solid failures, data must be

reconstructed to a consistent state before restarting.

In many applications it is not necessary to operate continuously and perfectly. The

needed reliability of a computer system is a function of the task which is being

performed. A computer failure while running a numerical analysis program is

annoying at worst. However, in such areas as real-time process control, spacecraft

guidance, and air traffic control a computer failure can be catastrophic. When

human lives are at stake it is imperative that systems perform reliably. For these

1

situations it is sufficient to operate correctly most of the time, so long as outages are

infrequent, fixed with minimal human intervention, and most importantly that the

system recover within a maximum time limit.

How one copes with infrequent brief outages depends on what one is trying to do.

For tasks which are tightly coupled to real time requirements, such as a real time

process control application, a method is to choose checkpoints at which to record the

state of the system, so that one can always recover by restarting from the checkpoint

just preceeding an outage [33. Other applications with tighter real-time constraints

may only tolerate outages of several seconds, or milliseconds before the system

suffers catastrophic, unrecoverable failure. Thus an aircraft guidance system might at

times, tolerate only the briefest downtime, whereas an airline reservation system

could adapt to downtimes of a considerably longer duration, before the network’s

general operation would be jeopardized.

Occasionally, despite all efforts, a system will break so catastrophically that it will be

unable to recover. Given that there is sufficient redundancy in a system, a goal is to

reduce the probability of such a system failure to the probability of failure of all

redundant components. The presence of operable system components, however, isnot

sufficient to guarantee that operation will be resumed. In addition, the software

must be able to survive the transients accompanying the failure, re-configure, adapt

to the remaining hardware, restore all faulty data to a consistent state, and continue

processing.

In certain applications one is also concerned with maintaining privacy and security

along with reliability. Security is concerned with protecting a system from an active

external agent who seeks to defeat system objectives. Reliability means the ability of

a system to overcome or recover from random errors. Security and reliability are

related, and often the techniques for providing reliability will interfere with the

maintenance of a secure system. These interdependencies will be elaborated later

when the system model is described.

2

The major approach to computer reliability proposes a redundant system design and

studies the interaction of the various redundancy techniques. The redundancy may

exist in the form of extra modules, such as triple modulo redundancy [TMR]

techniques [4,5,6,7], redundant software, such as Randell’s method of acceptance tests

with alternate recovery blocks [a], or the use of extra time to perform the function

of maintaining system integrity.

The technology of reliable computing encompasses theory and techniques of fault

detection and correction, modelling, analysis, synthesis, and the architecture of

fault-tolerant systems and their evaluation [9]. Reliability and recoverability cannot

be added on to a computer system. An iterative process must be used in design.

The final implementation of the recovery process will be the result of evaluation of

the best possible data integrity assurance at the minimum cost in both hardware and

software.

In a typical recoverable computer system, there are four major tasks to perform. The

first is fault or error detection. The second is the identification of the fault. in

hardware, a data transaction error, or possibly identifying the fault as transient and

non-recurring. The third is the modification of the system to eliminate the cause of

the fault, and fourth is the system restart after reconfiguration.

Hardware checking and diagnostics can be used for assumed failure modes, but they

must be supplemented. In addition, program errors must be discovered. This can be

done by audit programs interleaved with operational programs. If software

information is to be audited, it must be redundant and be able to satisfy consistency

relations.

One use of audit programs is to check hardware by its proper execution of

operational programs. A second use is to check for data integrity, for example, the

consistency of data base information. A third is to check the validity of the

information necessary for the supervisory program: the queues, tasks, system

directories, buffers and other system resources allocated by software.

3

Recovery programs are the software equivalent of hardware retry. Similarly, audit

algorithms are analogous to hardware checking. The better these algorithms are, the

greater the information integrity and the more valid is the recovery information.

Also, without accurate diagnosis of the cause of the fault, system reconfiguration will

be inaccurate and much potential fault tolerance will be wasted. Audit routines are

extremely useful, but are environment dependent. They perform hardware checking of

the components and data transaction consistency. They are principally responsible

for information integrity of the system. Recovery routines are activated by the audit

routines. They reconfigure the system, and then restore it to a consistent state via

checkpoint and rollback techniques.

1.2 Hardware Reliability

Reliability enhancement is achieved through better components and by adding

functional redundancy to the hardware modules. There are two types of functional

redundancy: fault masking redundancy and standby redundancy. Masking

redundancy is achieved by implementing a function or module so that it is inherently

error correcting, for example TMR techniques. With standby redundancy, spare

modules are switched into the system when working modules break down. The

process of applying tests and determining whether the computer is fault free or not

is generally known as fault detection or checkout. Fault location and isolation is the

process of identifying the failures within the smallest possible set of components.

In order to avoid complete systems failures, a failed component must be repaired or

replaced before its backup also breaks. The system must therefore report all

failures. It must be possible to remove and replace any component while the system

continues to run. The system should absorb repaired or newly introduced modules

gracefully.

1.2.1 Reliable Hardware Systems - TMR

Triple Modulo Redundancy [4,7] was one of the earliest methods suggested for

obtaining a reliable system from less reliable components. The system output of Fig.

1.1 is the majority of three identical components.

If only one of the components is in error, the system output will not be in error,

since the majority of components will not be in error. Thus, the system can tolerate

errors in any one component. These errors may be transient or permanent.

1.3 Hybrid Reliability

Software recovery after fault detection with hardware self-repair is a hybrid

utilization of reliability techniques. Various strategies are used to reduce the impact

of interruptions or malfunctions both to the system and to the user. Operating

System 360 as used in Model 65 [3] is equipped with a set of programs called the

recovery management support which embodies a number of methods. The recovery

methods depend on the nature of the malfunction. In the input/output area,

rereading of input data with parity errors is common. If errors persist even after

repeated retries, the system could consider reconstruction of damaged data (error

correction) if possible. In the case of processor error, the instruction may be retried

if feasible (if the operands were not modified by the instruction). The most

important technique OS 360165 provides is checkpoints in all programs so that

programs can be rolled back to a previous state and computation resumed.

1.3.1 Hybrid Systems - JPL STAR

The JPL STAR (Self Testing And Repair) computer system, as seen in Fig. 1.2

5

I’ - - -----------c------------

1

i

MAJORITY I SYSTEM OUTPUT
Mnnrll c I\,ATl-r\

I
I \

i I
1 I- -

Figure 1.1 - TMR BLOCK DIAGRAM

5a

-----c------------ - - - - - - - -
I I
I I
I I
I 1
I e COMPUTER I
I I
I I
I I
I 1
I

iNv,/j C O M P U T E R /-

iI I
I I III Y COMPUTER
I Y

COMPUTER SPARE UNITS

1

OUTPg

Figure 1.2 - JPL STAR HYBRID COMPUTER BLOCK DIAGRAM

5b

obtains reliability by using TMR and spares [4].

The n spares are inactive and not powered on. If at any point in processing, one of

the three active modules disagrees with the majority, the disagreeing module in the

minority is switched out and replaced by a spare. The spare must be powered up

and loaded. One method of loading is to use rollback and load the component with

the last saved error free state, and resume computation from that point [lo]. If at

most, one component (module) fails during a rollback cycle, and if the vote taker is

error free, the system is fail safe until all the spares are used up.

1.3.2 Hybrid Systems - PLURIBUS

BBN has constructed a multiprocessor computer system, Fig. 1.3, which achieves both

increased operating power and gains increased system reliability through parallelism

and redundancy [l,ll]. Their system architecture is known as Pluribus. The system

consists of processor units, memory units and input/output units. Each unit is in

itself a communication buss providing a physical housing, power and cooling, and a

communication discipline provided by a buss arbiter. All processor busses are

coupled to all memory busses and all input/output busses, likewise all memory busses

are coupled to all input/output busses.

The Pluribus system provides extra copies of every vital hardware resource, and

isolation between copies so that any single component failure will impair only one

copy, leaving a potentially runnable machine. It also provides software facilities

necessary to survive transients stemming from failure and to adapt to running on the

new hardware configuration.

1.4 Software Reliability

Methods have been developed to improve reliability primarily by means of software

6

PROCESSOR
BUSES

I Processor

I Processor 1

MEMORY
BUSES

1
I/O

BUSES

Figure 1.3 - BBN PLURIBUS BLOCK DIAGRAM

[8,12,13-j. The cost associated with software methods is generally the additional time

and storage required for processing.

In many real time systems it is necessary to recover rapidly from an error. One way

of achieving quick recovery is to fix the cause of the error (assuming that it was not

transient), and then rollback and restart the program at a previously saved error free

state. If an error is detected while a program is being processed and if the error

cannot be corrected immediately, it may be necessary to run the entire program

again. The time lost in running the program may be substantial and in some real

time applications, critical. Software methods for enhancing reliability assume that

the systems programs are written correctly. Software techniques utilizing incorrect

programs will not improve system reliability.

Since software is an expensive item, and software errors have become very costly, a

need arises to validate and verify the correct operation of a software package before

it is committed to regular use. Several approaches to the formal validation of

programs have been studied [16,17,18]. These methods either put considerable

burden of the validation on the programmer or require that the input/output

assertions provided in the program be verified by a sophisticated theorem proving

mechanism. An abstract model of computations in a program and a method of

proving that a specific program will always run properly is provided by King [19].

The complexity of most of the program verifying techniques indicates the need for

much simpler methods which could provide partial validation of large programs.

1.4.1 Reliable Software Systems - Randell

Randell [S] has developed a method for structuring programs by the use of recovery

blocks. This is illustrated in Fig. 1.4. His aim is to provide the dependable error

detection and recovery facilities which can cope with errors caused by software

design inadequacies, particularly in the system software, rather than the

malfunctioning of hardware components.

7

RECOVERY
BLOCK

ENSURE i Logical Acceptance Test j

BY Primary Alternative

Else By Secondary Alternative

Else By Secondary Alternative

Else ERROR

Figure 1.4 = RANDELL'S RECOVERY BLOCK SCHEME

.7a

Randell’s scheme is software analogous to hardware standby sparing. As the system

operates, tests are made on the acceptability of the results generated by each software

module. Should one of these checks fail, a spare software module is switched in to

take the place of the erroneous module. The spare software module is not a copy of

the main software component, but one utilizing an alternate and independent design,

so that it, hopefully, can cope with the circumstances which caused the main

component to fail. The technique uses recovery blocks, in which acceptance tests of

task functions are ensured by primary or else by a number of secondary alternatives.

His recovery block scheme incorporates a solution to the problem of switching to the

use of the spare component and of repairing damage done to non-local data via a

recursive cache structure. If the backed up program has modified global variables,

these variables must be restored to their previous values, or the program could

operate on incorrect data when the it is restarted. If the variables that a program

has modified were used by another program, then the program that used the

modified variables must also be backed up.

Randell’s model, though, does limit concurrent processing, all data transactions with a

data base, and communications with other external processes.

1.4.2 Software Reliability - Russell’s Extensions

Russell [12] has extended Randell’s work on recovery blocks and recursive cache by

presenting a system design that supports the restoration of system state in a system

of asynchronous communicating parallel processes. He provides send/receive

primitives which implement interprocess communications through messagelists,

illustrated in Fig. 1.5. Also provided are recovery primitives which perform the

consistent state restoration of the system.

The complexity of state restoration is analyzed, and is shown to be dependent upon

8

PROCESS MESSAGE
CACHE LIST

Resive l

-I STACK MARK

a
Send

Message 3

0
Send

Message 4
(un-received)

0
Send

Message 1

Message 2

PROCESS
CACHE

Receive

0
Send

Receive

Figure 1.5 - RUSSELL'S PROCESS CACHE AND MESSAGELIST SCHEME

STACK MARK

8 a

the structure of the messagelist and on its intercon’nection with the processes. More

efficient recovery is possible if the system is constrained to insert sfackrnarks into

the process cache before executing the send/receive operations. Russell finds bounds

for the amount of state restoration which must be performed to restore the system to

a previously consistent recovery point after the occurrence of an error.

1.4.3 Software Reliability - Chandy’s Work

Chandy [13,141 has presented a model of computation for process control systems.

Each job run by the system is partitioned into several tasks, Fig. 1.6, by the

programmer. The programmer must construct a task graph which represents the

program control flow. Associated with each vertex of the graph is the maximum

execution time for the corresponding task.

His graph models the synchronous program execution in which multiple edges leading

away from a node represent possible control flow points of which only one may be

taken at run time. Chandy’s model arrives at a means of optimally inserting

checkpoints along edges of program flow. His model includes neither concurrent

processing nor transactions with an external data base or communications with

external processes. It also requires a priori knowledge of node execution times.

1.5 Hardware - Software Tradeoffs

Consider an aerospace system such as an air-traffic control system. The system has a

specific goal which must be accomplished within a certain specified amount of time.

A large penalty is incurred if the system does not accomplish its mission. A lateness

penalty is incurred if the time taken to accomplish the goal exceeds this limit. The

longer the time taken the larger the penalty.

Figure 1.6 - CHANDY'S GRAPH MODEL OF PROGRAM BEHAVIOR

9a

Several models have been constructed for designing reliable machines from

intrinsically less reliable components by using redundancy. These are hardware

methods. The cost of a hardware method is the cost required to build and maintain

the redundant hardware. The cost associated with software methods of achieving

reliability is generally the additional time and space required for processing, and

possibly the actual manpower cost associated with providing this software.

In some systems, ‘software methods have to be ruled out since the amount of time

available to complete a task is too short to permit methods which require additional

time. In other cases, the longer the system takes, the more expensive are the

consequences.

Studies have been done by Ramamoorthy, Chandy and Cowan [15] which attempt to

construct a fJanieWOJk in which hardware and software methods can be compared for

cost effectiveness. In essence, their method compares the costs of delays introduced

by time redundancy techniques with the costs of hardware in hardware redundancy

schemes. They analyze TMR, hybrid, and TMR with standby spares (self-purging),

obtaining techniques for computing a set of indices for comparison of reliability

methods. However, the problem of selecting the optimal mix of redundancy

strategies for a system is very difficult because of the numerous cost-effectiveness

parameters which can be adjusted.

1.6 Summary

A computer system for error recovery must provide four capabilities:

1. a means for detecting that an error occurred,

2. a means for locating and diagnosing the error,

3. a means for correcting any adverse affects the error has caused, and

10

4. a means for reconfiguring the system so that the error does not reoccur.

Retrying a failed operation will succeed if the error was a transient error.

In the remainder of this thesis, detection, location, diagnosis, and reconfiguration are

not considered. The optimal restoration of the correct system state is studied.

The algorithms and programs used for the recovery scheme are assumed to be error

free and to function properly.

1.7 Organization of Thesis

In Chapter 2, “A Model of Program Structure for Rollback and Recovery,” the

particular characteristics of a highly available computer system are presented, along

with a model of program behavior which includes communication interfaces and data

base transactions. The concept of the statically pre-computed decision parameter set

which minimizes the expected program execution time is introduced, and an

algorithm for its use at run-time is presented.

In Chapter 3, “Algorithm Which Optimizes the Insertion of Recovery Checkpoints,”

the MERT algorithm is presented and proven to minimize the total expected run

time of the program.

Chapter 4, “Examples Illustrating the Dynamic Insertion of Recovery Checkpoints,”

presents a (typical) program graph which is analyzed by the MERT algorithm. This

analysis determines the optimal decision parameter set, which is then used to

illustrate the run-time program behavior for several different runs of this same

program.

11

Chapter 2

A MODEL OF PROGRAM STRUCTURE FOR ROLLBACK

AND RECOVERY

Program checkpointing and rollback is a method of enhancing computer system

reliability. Program checkpointing is the process of making a copy of program state

in secondary storage. Rollback is the re-loading of this state upon the occurrence of

an error, and the restart of the system.

The objective and constraints may vary considerably from system to system. The

system being considered is assumed to have high availability. However, if an error

does occur, it must recover very rapidly since a delay in performing system functions

may have catastrophic results. The objective is to assure that every recovery be

rapid. For our system, an explicit constraint is assumed: the interval of time taken

to recover must not exceed a given quantity, M time units. In actual practice M will

depend on the system, may vary from job to job in a given system, and may depend

upon the actual stage in processing for a particular job. Our system is assumed to

have sufficient processing power to perform its primary task and to support the

overhead which is associated with rollback and recovery. The objective of our

analysis is to minimize this associated rollback and recovery overhead, with the

constraint that recovery never exceed M time units.

2.1 Optimal Placement of Rollback Points

The checkpointing strategy may be static or dynamic. Static checkpointing requires

carrying out checkpointing at fixed intervals regardless of their immediate necessity.

In a dynamic checkpointing environment, the placement of checkpoints will vary

from one run of a program to the next. This variation will depend upon the

dynamic runtime characteristics of the program. Dynamic checkpointing yields

higher system availability than static checkpointing because it takes into account the

12

actual rollback and recovery requirements.

The optimal placement of recovery checkpoints necessitates that the programmer

analyze the program flow and make estimates on certain branching parameters, task

execution times, etc. The more often a program is run, the more cost-effective and

beneficial is the optimal placement of recovery checkpoints. Programs whose total

processing time is shorter than a maximal crucial recovery time do not need recovery

checkpoints. A program which is worth analyzing for the optimal placement of

rollback points will have a combination of these attributes:

* It must be crucial to the application of the program that error recovery be

accomplished quickly and systematically.

* It is necessary to maintain correct operation, imperative that errors be

detected and corrected.

* The same program must be run a number of times, a

production program.

* The program will require a substantial amount of processing time.

There are many application areas which possess these attributes:

* Real time process control of expensive or dangerous components.

* Applications where human lives are endangered by extended system
downtime, such as air traffic control.

* Applications in which many people are dependent upon the continuous
service of an essential or expensive commodity, such as electronic funds
transfer (EFT) in banking or an airline reservation system.

* Spacecraft guidance, navigation, and life support systems.

13

There are several different parameters to consider when deciding the optimal
placement of recovery checkpoints. The choice and placement to insert a checkpoint
depends upon the importance of speedy error recovery. In certain real time
applications it is crucial that a program reliably run to completion bounded by a
fixed maximal time limit. In other applications, the loss incurred due to a system
failure is only the computer time wasted.

2.2 Program Graph Model

2.2.1 Program Graph

Our algorithm for the optimal placement of recovery checkpoints uses a sequential
graph model to describe a program. Similar graph models have been used for the
analysis of program structure and behavior [20,21,22,23]. We require that a
programmer analyze his program and represent it as a sequence of tasks. This
analysis could be done manually from a flow chart, or could be accomplished
automatically with the aid of an analysis program. A task will consist of a number
of machine instructions, and will involve an amount of processing time which is
bounded by the maximal recovery time M.

Let a program be represented by a directed graph, as in Fig. 2.1, where each node i
in the graph corresponds to a task i in the program, and edge (ij) exists if task j
may directly succeed task i with probability pij.

2.2.2 Program Running Time

The analysis makes use of estimates made by the programmer on the expected
amount of processing time, ti, required by a task i. It is impossible to design an
algorithm, which, given any program, determines the time that may be required to
process each task in the program. However, it is possible for a programmer to
obtain estimates of average or worst case bounds for the tasks of his particular
program. These times could be obtained through a measurement system. In many
computer installations, programmers submit estimates of the maximum time required
to process their jobs. It is important to note that in installations where a

14

robability: pij

TASK k

Figure 2.1 - GRAPH MODEL OF PROGRAM BEHAVIOR

programmer is allowed to specify recovery checkpoints, he must make estimates of
this sort, and then make intuitive decisions based on these estimates. Our objective
is to clarify and formalize this decision making process. The accuracy of the
decisions clearly depends on the accuracy of the estimates. The decision to insert
recovery checkpoints depends on the importance of speedy error recovery: the
penalty incurred if a program does not run to completion in a prescribed amount of
time.

Obtaining a program graph from a program is not inexpensive. The program must
be analyzed and estimates made of several parameters. In many cases, the advantage
gained in having tailor made recovery checkpoints is not worth the time spent to
obtain a program graph. In these cases static checkpoints at fixed intervals are
sufficient. However, in those cases where the costs of slow efror recovery are- high,
the advantage of dynamic recovery checkpoints outweighs the time spent to construct
the program graph. We are concerned with cases (Section 2.1) of this latter type.

2.2.3 Program State

At any stage in the processing of a program, certain information is required by the
program for computation to proceed successfully. A state at any stage in the
processing of a program will be defined as the information (program variables, state
of the input/output devices, secondary storage) which may be subsequently used by
the program.

At each edge (ij), one may dynamically choose to insert a recovery checkpoint. If a
checkpoint is inserted on edge (ij), then after task i is completed and before task j is
begun, the state of the system is saved in secondary storage. Any state saved prior to
this (ij) rollback point is accumulated, allowing subsequent recovery attempts to
make use of multiple recovery checkpoints (Section 2.4). Thus, when an error occurs,
an attempt is made to restart the program from the most recently saved state.

2.2.4 Branching Probabilities

Associated with each program branch is the probability, pij, that branch (ij) will be
followed. For each node i, it follows that

c Pij = 1

15

Furthermore, the probabilities pij, are assumed to be fixed and independent of the
way the program reached the particular branch (i,j). This will be recognized as a
Markov model assumption. Although this is not always valid, it is a simplifying
assumption to aid the analysis. If we do not assume a Markov model, the resulting
analysis is overly complex 123).

2.2.5 Acyclic Program Graph

The sequencing of tasks may change from one run to the next due to the conditional
branching probabilities pij. In the graph model, it is assumed that no task is
repeated. The program graph G is an acyclic directed graph. If there is a loop in
the program, then each iteration may be modeled as a distinct task, or the iterations
may be combined into a sequence of one or more tasks. Beizer [23] presents a
method for transforming a cyclic program graph into one which is acyclic.

2.2.6 Error Latency and Detection

An error which is not detected as soon as it occurs may propagate. For example, if
an erroneous input is used to update a data element, the updated item will also be in
error. When an error is detected, it is not generally possible to ascertain when the
error occurred, nor the amount of error propogation. The error latency is the period
of time between the occurrence of an error and its detection. The distribution of
error latency depends upon the method used for error detection. If error detection
occurs intermittently at a fixed interval T, then the error latency is not likely to
exceed T. The error latency distribution influences the amount of error
propagation. If an error has a short lifetime, it is less likely to be used to update
other data items, and therefore less likely to propagate.

Error detection may be performed continuously or intermittently. Parity checking is
one example of continuous error detection since it can proceed as long as the system
is available. O&her techniques may perform integrity/consistency checking only at
discrete intervals. The ability to localize the extent of error has a beneficial impact
on the recovery process.

Suppose an error occurs while a task is being processed, and suppose it is not
diagnosed (Fig 2.5). If a checkpoint occurs immediately after the task is complete,

16

then the information that is saved at the checkpoint will be erroneous. Subsequently,
if an error is diagnosed, this erroneous information will be loaded, and the system
will continue processing from the recovery checkpoint. Eventually the same error
will be diagnosed again. If the same error is detected after rolling back, we can
conclude that an undiagnosed error occurred before the last recovery checkpoint, or
that there exists a permanent malfunction which the system reconfiguration has not
corrected. If an undiagnosed error has occurred, we have the potential of rolling
back again, to a previously saved recovery checkpoint, in an attempt to reload a
correct copy of the program state.

2.3 Data Set Interactions

The total state of the system which must be saved at rollback recovery checkpoints
consists of both program state (memory, registers, etc.) and the complete state of all
peripheral devices which interact and exchange information with the program. Let us
refer to all interacting external devices as data sets.

2.3.1 Data Sets

,Data sets include all input and output devices, such as user terminals, measuring
transducers, system data bases, etc. If a system failure occurs, and operation returns
to a previously established rollback recovery point, it must be possible to insure that
all data sets are returned to consistency with the program state at this rollback point.

Rolling back data sets implies that:

1. input devices must be able to furnish again the identical sequence of data,

2. output results, some of which may be erroneous, must be revoked,

3. additions, deletions and updates to data bases must be undone, and

4. dialogue with users at remote terminals must be duplicable.

11

2.3.2 Transaction Journals

In order to provide for this backup capability, the system must continuously
maintain a record of pertinent transactions which occur with each data set. In its
simplest form, the transaction journal is a record of input and output transactions
performed by the program. Each item is written onto secondary storage before it is
processed. For an update action, a typical journal entry might consist of the item
name which is being updated, its old value, and its new value. The content and use
of these journals is dependent upon the characteristics of the individual data set.

Three types of transaction journal need to be generated by the system so that data set
rollback may take place:

2.3.2.1 Backup Journals

The backup journal is used to restore the data set to the earlier state which existed
at the last rollback point. Backup journals provide a record of those input and
output transactions between the program and data set which modify the state of the
data set. The backup journal need only record those transactions which result in an
update being made to the data set. Individual entries in the backup journal include
that information necessary to undo state modifications, such as additions and
deletions to a data base.

2.3.2.2 Revoke Journals

The revoke journal provides the ability to either revoke any erroneous output which
was issued by the real data set since the last recovery checkpoint, or to indicate the
extent of this erroneous data so that an (external) agent might take appropriate
actions to recall or undo the effects of this output data. Entries in the revoke
journal would indicate that output which might be potentially erroneous due to the
occurrence of a system error.

18

2.3.2.3 Replay Journals

The replay journal provides the ability to simulate the replay of a non-repeatable
input data set, such as a reader, measuring transducer, etc. Entries into the replay
journal would include all those input data transactions which the data set could not
again furnish to the program.

2.3.3 Virtual Data Sets

To facilitate rollback and restart, it is desirable to treat all classes of data sets in a
similar and general manner. For our model this is accomplished by providing an
interface process between the real (physical) data set and the program. This
interface process creates a virtual data set as seen by the program. A virtual data
set is one which possesses the same attributes as the real data set, but in addition, is
capable of being backed up to a previously defined state upon the detection of a
system error. This capability is independent of the actual physical attributes and
limitations of the real data set. This is shown in Fig. 2.2.

2.3.3.1 Virtual Data Set Interface Processes

The virtual data set capability is provided by the data set interface process, whose
structure and actions are tailored to the characteristics of the real data set. The
interface process and its attendant transaction journal supplement the real data set,
creating those capabilities necessary for the correct execution simulating a virtual
data set. Both the interface process and the transaction journal are tailored
specifically to create a virtual data set interface for the associated real data set.

Depending upon the characteristics of the real data set, the interface process makes
use of the transaction journal to provide this virtual capability.

2.3.3.2 Recovery Commands to the Interface Process- - -

In order to ensure data set consistency during the rollback and recovery procedure,

19

TASK i

i
I VIRTUAL DATA SETII ?II
I data PHYSICAL

I DATA SET
I

data transactions
I
,

NUIX

i
INTERFACE

PROCESS A

(MARK/RESTORE) I
I
I

1
I
I
1
1
1
I
I

TRANSACTION
JOURNAL

LL---I----------- - ____

Figure 2.2 - Virtual Data Set Interface Process

19a

all virtual data sets must recognize and act upon control commands from the
program. These commands are:

1. MARK (data set name)

2. RESTORE (data set name)

.

When a recovery checkpoint is inserted in the program, say at edge (i,j), the program
state is saved in secondary storage, and all virtual data sets are notified of this
insertion by the MARK control command. Upon receipt of the MARK command,
the virtual data set interface process takes the appropriate action necessary to ensure
that the real data set, at a later point in time, may be restored to a state of
consistency with this recovery checkpoint so that succeeding transactions may be
again duplicated. Typical actions taken at the receipt of the MARK command might
include clearing the previous journal entries, noting the current system clock time,
etc. Succeeding interactions between the program and the virtual data set produce
journal entries, the content of which is determined by the characteristics of the real
data set.

Upon the occurrence of system error, the program state is reloaded from the latest
rollback checkpoint, and the virtual data sets are notified of the error by the
RESTART command. Upon reciept of the RESTART, the virtual data set takes the
necessary action to restore its real data set, enabling subsequent input/output
transactions with the program to be duplicated and replayed.

2.3.3.3 Classes of Data Sets

Let us divide the various types of data sets into equivalence classes, each of which
possesses common characteristics as seen by the virtual data set interface process.
The goal of this classification scheme is to systematically provide a virtual data set
which:

1. exhibits the same operational characteristics as the real data set, during
error-free system operation,

20

2. may be notified of the insertion of a program recovery checkpoint via a
MARK command,

3. upon the receipt of a RESTORE command (at the occurrence of a system
error) restores its real data set to the state consistent with the last rollback
checkpoint, and

4. will furnish the identical sequence of input and output actions while the
program is being rerun during the recovery process.

Data Sets Requiring No Transaction Journal

The simplest type of peripheral device to provide a virtual data set interface for is
one which possesses internal state which is not modified by data transactions, and
which is fully repeatable. This type of device will be read-only, and no rollback
state restoration need be performed, nor transaction journals generated. A read only
random access disk file, or a table lookup ROM are examples of this type of data
set. The MARK and RESTORE commands are null operations for these devices.

Data Sets Requiring Backup Journals

Input/output transactions to a data set with internal state will be non-repeatable if
the transaction modifies the internal state of the device. This state modification may
be the result of an update or write action, such as updating a record in a random
access disk file; or it may the result of physical movement, such as a read operation
which repositions the input pointer of a magnetic tape unit.

A backup journal needs to be generated for this class of data set. The MARK
command causes the current state of the device to be entered onto the journal so that
subsequent state modifications may be undone. Each data transaction which updates
this state must generate a journal entry which can later be used to undo the
modification. Systems exist which make use of sophisticated backup mechanisms

cw.

21

Data Sets Requiring Revoke Journals

This class of data set includes output devices which interact with and output
information to an external destination, such as a lineprinter, display, etc. A revoke
journal needs to be produced for this type of device so that upon the occurrence of a
system error, that output which was issued since the last MARK command may be
marked as erroneous. A revoke journal might also be used to take appropriate action
to revoke those items which were issued in error.

The revoke journal entries must include all those output results which may be
potentially erroneous upon the occurrence of a system error. For a particular device,
if it is sufficient to note only the extent of the erroneous output which was issued
since the last rollback recovery checkpoint, then a revoke journal does not need to be
generated, and the interface process need only indicate which output will be re-issued.

Data Sets Requiring Replay Journals

Input devices which possess no internal state and which are not repeatable, require
the generation of a replay journal. Such devices include keyboards, input samplers,
card readers, and remote terminals. Individual entries into the replay journal include
that information which is produced by the device and which is not repeatable. Upon
the occurrence of a system error, the replay journal is used to furnish the same
sequence of input data to the program.

If the data set is used interactively for both input and output, such as a remote user
terminal, and the input received from the device is functionally dependent upon the
output transactions issued to the device then the interface process should notify the
terminal user, telling him to retransmit all messages sent after the message with such
and such a serial number, which was the last correct transaction preceding the last
rollback checkpoint. By using serial numbers, it could check carefully that it is not
causing a file to be updated twice.

When the user’s dialogue is interrupted, it is sometimes advantageous that he should
be able to start it again where he left off. If it is a lengthy dialogue, for example
the reordering of complex machinery, it is certainly desirable that he should not have
to go back to the beginning. For this reason, checkpoints may be built into a
dialogue structure. At intervals the decisions made up to that point in the dialogue

22

will be reviewed, and possibly changed.
correct, they will be recorded.

When the terminal user agrees that it is

In most terminal conversations, there are certain stages at which the set of decisions
recorded up to that point can be agreed upon as correct. This can be regarded as a
closure in the decision-making process. Sometimes it is merely an arbitrary stage in
data entry. Periodically, at a natural closure the user should be given a recap of
what has been established up to that point and asked to check it. When the user has
agreed that this is correct, the system will process these transactions.

2.3.4 Processing and Storage Overhead

Furnishing these virtual capabilities will incur an overhead cost
processing and secondary storage requirements. These overhead

due to additional
costs are:

Ccreate - the additional processing time required by the
interface for the creation and recording of the

virtual data set
transaction journals.

Cstorage - the additional secondary memory required for storage of the data
set transaction journals.

Cmemory - the additional system mcrnory required for the storage of the
virtual data set interface process code and internal buffering.

When a system error occurs (RESTORE), the additional processing costs are:

‘backup - the additional processing time required to backup the data set to the
point of the previous MARK command, undoing all state
modifications.

Crevo kc - the time and processing cost of revoking the erroneous output issued.

Creplay - the time and pI(xc’ssing cost necessary to replay those input
transactions which are not repeatable.

23

For the subsequent calculation of recovery load time (Section 2.3.5), let us define a
processing time cost Ci which is the sum of the backup, revoke and replay times
which are incurred during the execution of task i. Ci is the total per recovery
RESTORE time for data sets due to interactions with task i of the program:

ci = Cbackup + Crevoke + ‘replay*

2.3.5 Save and Load Time

The quantity of program state (memory in use, etc.) which must be saved when a
recovery checkpoint is inserted may vary widely from one point in the program to
the next. Assume that a sufficient amount of secondary storage exists, so that it will
always be possible to save the entire program state. The secondary storage used may
be disk, drum, magnetic tape, or other, more advanced media [e.g. laser photostore].
The media used will, of course, affect the save time.

Associated with each edge (i,j) of the program graph, as seen in Fig. 2.3, are two
numbers: S and L .

ij ij
If the execution of task j follows task i, then the state of the

system after task i is completed and before task j is begun is the collection of the
registers, program status and condition words, primary memory, and the state of all
of the external data sets. The time taken to save the state at this point in the
program secondary storage, create a recovery checkpoint, and reset the virtual data set
interface process (via the MARK command) is S .

ij
The save ti.me S,. may vary over

other edges (ij) of the program graph.
U

Given that a recovery checkpoint was established on edge (i,j) of the program graph,
and that an error occurs during the execution of some succeeding task, say task k, the
time taken to reload the program state from this established checkpoint is reloadij.

The time taken for the data set interface to process this rollback (via the RESTORE
command) is Trestore. This time, Trestore, includes any special action which the
data set interface process must take for handling backing up, revoking and replay.
Trestore is the sum of the RESTORE time Ci, over all nodes i, which were processed
since the last recovery checkpoint. For example, if a checkpoint were established at
edge (:I!>) of the program graph in Fig. 2.4., and recovery is to be performed during
the execution of task f, then:

24

EDGE (i,j)
L ij = Load Time

S ij = Save Time

Figure 2.3 - PROGRAM SAVE AND LOAD TIME

24a

CHECKPOINT (a,b)

Figure 2.4 - SAMPLE CALCULATION OF RESTORE COST

24b

‘Lstorc = 2 ci
i E (b , d , f)

The total time taken to restore this particular system to consistency is the load lime,
L(j f:

%f = reloaddf + ‘l’re,tore,

2.3 Recovery T i m e- -

is diagnosed) in the program
t any point (in particular, at a point P, when the error

to be the inlervul of time taken to:

1. reconfigure the system if the error was caused tly a faulty hardware moduile,

2. restore the system to the consistent state of the most recent recovery
checkpoint which contains the correct program state, and

3. rerun the program, from this state to point P.

Thus, if an error is detected at point P, the recovery time r is the umounf of time

lost due to the error. If the error was caused by a transient hardware fault, then the

reconfiguration time is zero. If an error occsurs while task i is being processed, and

the error is detected before task i is completed, then the most recent recovery

checkpoint will contain the correct system state. If this is not so, the system needs

to be rolled back to a more previous checkpoint (I+‘ig 2.5, and Section 2.2.6).

The recovery time r can be quIc*kly determined during program execution. Define

SysClock to be the value of the system ~-lock at point P (when the error is

diqnosed). I f there are 11 previously saved recovery checkpoints on secondary

storage, then the expected recovery time r at point P is:

25

SE
CO

ND
AR

Y
ST

OR
AG

E
CH

EC
KP

OI
NT

1

m
L

I
I

-w
-w

-

CH
EC

KP
OI

NT
CH

EC
KP

OI
NT

0
c

0
0

0
(n

-1
)

(4
(c

or
re

ct
)

(e
rr

on
eo

us
)

-
L
-
-

re
co

ve
ry

PR
OG

RA
M

FL
OW 0

TI
ME
+

f
Po

in
t

at
 w

hi
ch

un
di

ag
no

se
d

er
ro

r
oc

cu
rr

ed

f
Po

in
t

at
 w

hi
ch

er
ro

r
is

 d
et

ec
te

d

Fi
gu

re
 2

.5
-
OC

CU
RR

EN
CE

 O
F

UN
DI

AG
NO

SE
D

ER
RO

R

25
a

n

r = R + 2 (SysClock - CPClocki + Loadi) * I’ri

i=l

R - is the expected time to reconfigure the system hardware, perhaps

amputating a faulty module. If the error was caused by a transient

fault then R = 0.

CI’ClOcki .th- is the system clock time of the I recovery checkpoint. If no

Iloadi

Pri

recovery checkpoints were previously placed, then Cl’Clockl is the

value of the system clock at the very start of the program run.

0this the time taken to reload the program state from the I recovery

checkpoint, and restore data sets to consistency with this rollback

checkpoint (Section 2.3.5).

+th- is the probability of the I recovery checkpoint containing the

correct state information.

If a reliable method of error detection (Section 2.2.6) is performed bej‘ore program

tasks complete, then it is possible to partition our system so that errors are not likely

to propagate across task boundaries. If a reliable method of error/consistency

detection is employed, then there will be a high probability that the most recently

established recovery checkpoint will contain the correct state informa’tion, and I’q +

192 + . . . + I’m- 1 Z 0, and 1%” Z 1, so:

r = SysClock - CWock,, + Loadn + R

2.5 Optimal Decision Parameter - B
ij

It is not generally possible to predict the precise amount of time that a given

program task will require. Thus, it is desirable to make the insertion of rollback

points a dynamic procedure. On certain runs of a program, one may want a rollback

point inserted on a particular edge (ij), while on another run of the same program,

with different data, it would not be optimal to place a rollback point on that same

edge. The decision to insert rollback points should be quite simple so that it can be

done in real time with little or no overhead.

Suppose that at some point P in the program flow, that task i was just completed,

and task j is to be executed next. Thus we lie on edge (i,j) of the program graph.

Let r be the recovery time at this point P. Define the optimal decision parameter to

be B
ij’

Then, if r > M - B.. a recovery checkpoint should be inserted. If r < M -

B.. choose not to insert a ct&kpoint.
‘1

Bij is a constant, and the set of all B.. are

computed before the program is run. Then, dynamically at runtime, after ta?k i is

completed and before task j is processed, the recovery time r is interrogated (Section

2.4) and a recovery checkpoint is inserted only if r > M - B .

this procedure.
ij

Figure 2.6 illustrates

In general r will vary from one run of the program to the next,

because the time taken to execute a particular task will depend on the input data to

the program. Thus, the insertion of rollback points also varies from run to run,

since the optimal decision is a function of r.

The analysis which follows in Chapter 3 determines the optimal placement of

recovery checkpoints to:

1) minimize the total expected program running time, and

2) minimize the recovery overhead cost.

These algorithms statically compute the set of optimal decision parameters B .
ij

27

1

Task i Just Completec
and Task j is to be
Processed Next

Interrogate Recovery Time r:

,

n
r=R+C{

SysClock - CPClocki + Loadi * Pr.
1

i=l

Create Recovery Checkpoint:
Save State of System on
Secondary Storage

I Process Task j

Figure 2.6 - RUNTIME INSERTION OF RECOVERY CHECKPOINTS

Chapter 3
ALGORITHM WHICH OPTIMIZES THE INSERTION

OF RECOVERY CHECKPOINTS

3.1 Purpose of the MERT Algorithm - Minimization of the Expected Run Time

The purpose of this algorithm is to minimize the expected run time of the modeled
system under the constraint that the expected recovery time must not exceed a bound

of M time units. The interval M is assumed to be a constant, system defined

bound. From our graph model of program flow, we will need to determine the task
branching probabilities pij, and the expected execution time for task i, tis

3.2 Estimates of Program Behavior

3.2.1 Probability of Occurrence of Task Error

Other estimates of program behavior are needed for this analysis. Associated with

each task is qi, the probability that at least one error will occur during the processing
of task i.

This probability, QL, is primarily a function of the hardware which is supporting the
execution of this task i. If the hardware support cannot be estimated, then qi might
be approximated by:

qi=Q/n

where Q is the total probability of a system error occurring and n is the number of

runnable tasks in the program.

If one can reasonably estimate the amount of time ti,a that task i is spending on
hardware module a, and the probability of failure Qa on module a, then a more

reasonable estimate for qi is:

28

Qi = cc ti a
a E H i ’

/ ti) * Qa

where Hi is the set of all hardware modules supporting the execution of task i.

3.2.2 Expected Time Until Detection of a Task Error-

Given that an error does occur during the interval in which task i is processing, let
the random variable yi be the expected trnre between the initiation of task i, and the

detection of the error. The parameter yi could be accurately estimated only by a
substantial amount of program analysis and measurement. If a reliable method of

error detection (Section 3.2.0) is performed r’~~jbrc program tasks complete, then it is
possible to partition our system so that errors are not likely to propogate across task

boundaries. If this is so, yi is bounded from above by the expected task execution
time:

3.2.3 Summary of Program Behavior Estimates

Before proceeding with the minimization algorithm, let us briefly recap those

estimates of program flow behavior which we will be using in the following analysis:

9

Pij

Qi

Expected time to execute task i correctly, given that no errors occur. A
random variable (Section 2.2.2).

The probability (fixed, independent) that task j will follow task i - i.e., that

edge (i,j) of the program graph will be taken (Section 2.2.4).

The probability of encountering at least one error during the execution of

task i.

l-qi - The probability of executing task i successfully.

29

Yj - The expected time between the initiation of task i and the detection of an

error, if one occurs.

sij - The time taken to establish a recovery checkpoint on edge (ij) (Section

2.3.5).

Di - The expected recovery time if task i fails. This variable includes:

1. R, the system re-configuration time.

2. Ci, the sum of the backup, revoke and replay processing times

which are incurred during the execution of task i (Section 2.3.4).

M- The maximum bound on the expected recovery time.

3.3 Definition: Expected Task Execution Time

Let us establish E[ti], the expected execution time for task i, given the probability

of task error Qi.

Let E[ti] be characterized, by a geometric distribution, as:

00

E[tiJ = C (I-qi) qik (ti + k(R + Yi))
k=O

noting that:

tl-qi) qik - is the probability of k failures followed by a successful execution of

task i.

ti + k(R + yi) - is the recovery time for k failures plus the expected time to

successfully execute task i without errors.

30

Then:

co 00
E[ti] = 2 (l-qi)qik ti + 2 (l-qi)4ik k(R + Yi)

k=O k=O

00 00
= tl-qi) ti 2 qik + (l-qi) tR + Yi) 2 k clik

k=O k=O

= ti + (Pi (l-qi) (R + Yi)l d/dq (2 qik)

= ti + (qi (I-qi) (R + Yi)l / t l-qi I2

so:

E[tiJ = ti + { Qi (R + Yi) 1 / (1sqi)

3.4 MERT Algorithm

3.4.1 The Auxiliary f(r) and g(r) Functions

For each node i of the program graph G, Ict us define a function fi(r). which is the

mitlimutn totul expected execution titne of the program from thu point ctfter task i

completes until the termination of the program. This minimum expected execution

time includes:

1. the expected program task execution time, and

31

2. the time required to establish all required recovery checkpoints.

Note that f is a function of the expected recovery time r.

For each edge (i,j) of the program graph G, define a function gij(r), which is also a

function of the recovery time r. The gij(r) function is the minimum expected total
execution time of the program after task i completes until the termination of the

program, if task j follows lask i. Thus in the computation of gij(r) it is implicit

that the (ij) program branch is being taken. The fi(r) and gij(r) functions are

illustrated in Fig. 3.1.

3.4.2 The MERT Algorithm

Define fi(r) = 00 for all nodes i in the program graph, whenever r is greater than

the maximum expected recovery interval, M.

Step 0

Define fi(r) = 0, when r < M, for all exit nodes i of the program graph G.-
A node with no successors is an exit node. After the function fi(r) has been
determined for node i, consider node i to be labeled, else unlabeled. Thus,

at this point, all exit nodes of the program graph are labeled.

j@ Step- (k = 1,2,.)

If no unlabeled nodes remain on this kth step then terminate the algorithm,

having computed the set of optimal decision parameters, IRij}. If there exists

an unlubeled node i, which has all of its successor nodes labeled (Fig 3.2),

then label node i by computing the function ii(r) as follows:

32

Ti
me

0

Co
mp

le
ti

on
of

 P
ro

gr
am

‘ I

Fi
gu

re
 3

.1
 -

TH
E

AU
XI

LI
AR

Y
f(

r)
 A

ND
 g

(r
)

FU
NC

TI
ON

S

7 7
3

JL

1. First, for each lab&d node j which succeeds node i (i.e., for each edge

(i,j) emanating from node i) define the function gij(r) to.be:

Sijt') = Sij + iC[tj J + fj(E[tjl + Lij) i f r+ECtjl > M

= E[tjl + min { Sij + fj(E[tjl + Idij),
. fj(r + ECtjI) 1 i f r+lt;[tjl 5 M.

equation (1)

2. Second, compute the optimal decision p:~rameter Bij for this edge (i,j). Rij
is defined to be the maximum value of the expected recovery time r, for

which:

gij(r) = fj(r + Ectjl) + E[tjI. equation (2)

3. Third, after gij(r) has been computed for all edges (i,j), compute fi(r):

fi(r) = 2 Pij l Sijtr)9
j E (A.0 equation (3)

and label node i, indicating that the function fi(r) has been determined for

this node.

Note th;lt if fi(r) = 00 for all r > 0, then we are not able to meet the-
constraint of bounding the expected recovery time by the maximum value of
M time units for this chosen graph formulation of the program, G.

Repeat the next (k + lst) step of the algorithm.

33

3.5 Lemma: Termination of Algorithm

The MERT algorithm terminates only after all nodes have been labeled.

Proof (by contradiction)

Assume that the algorithm has terminated, leaving an unlabeled node P. If the
algorithm terminated with an unlabeled node P, then there must exist a subgraph of

successors to node P, all of whose nodes are unlabeled. Since all subgraphs of

acyclic directed graphs are also acyclic, we can follow this path to an exit node. But
all of the exit nodes were labeled on the Oth step of the algorithm. Therefore, by

contradiction, the algorithm could not have terminated.

3.6 Lemma: Bounds on Termination

The MERT algorithm terminates within n steps if there are n nodes in the program
g r a p h C .

Proof

Each step if the algorithm will remove at least one unlabeled node from the program
graph G. By Lemma 3.5, the algorithm terminates when all nodes have been

labeled. Therefore it terminates within n steps.

3.7 Proof that the MERT Algorithm Minimizes the Expected Run Time

Proof by induction, that on the kth step of the algorithm, the value determined for

Bij is the optimal decision parameter described previously in Section 2.5.

3.7.1 Case k=l- -

For each node i which is labeled on the first step, we have the following situation of
Fig. 3.3, in which all nodes j, such that the edge (ij) exists, are exit nodes.

34

t.
J
fj(r) = 0

Figure 3.3 - MERT ALGORITHM, CASE k=l

34a

Since fj(r) = 0 for all of these exit nodes j, equation (1) reduces to:

gij(r) = Sij + ECtjl if r+FI[tjl > M

= E[tjJ i f r+E[tjJ ,< M

Subcase: r + Er til > M

If r + ECtjJ > M, a recovery checkpoint must be inserted on edge (i,j), otherwise the

recovery time after task j completes, r + E[t-1, may possibly exceed the maximum

bound of M time units. If a rollback point kust be inserted on edge (i,j), the

minimum expected execution time gij(r) at this point, after the completion of task i,

until the end of the program, is the sum of:

1. The expected task execution time for task j, established previously in Section

3.1.2: E[tjle

2. The time taken to insert the rollback point on edge (i,j): Sij. This includes
saving the program state and those action which the data set interface processes

takes upon receipt of the MARK command.

Thus,

gij(r) = E[tjl + Sij.

Su bcase: r + Ertj] < M

If r + E[tjl < M, a recovery checkpoint need not be inserted on edge (i,j). Since
node j is an exit node, the minimum expected execution time gij(r) is the expected

execution time for task j:

35

The optimal decision, Bij, for this case (k=l) when node j is an exit node is to not
insert a rollback point on edge (ij) as long as:

r + E[tjl < M

.

Thus, Bij for this particular edge (ij) is:

Bij = E[tjl

Note also that Bij is the maximum value of r for which:

gij(r) = fj(r + E[tjl) + E[tjl.

Computation of f$rJ

The minimum expected time spent in program execution, after task i completes until
the termination of the program, is then the weighted sum of the gij(r) averaged over

all program branches (i,j) emanating from this node i:

fit’) = 2 Pij ’ gij(‘)
j E (id

Thus, the MERT algorithm is true for the case k q 1.

3.7.2 Induction Step

Assume that the algorithm is true for k = 1,2, . . . x-l. Prove it to be true for the

case k = x.

36

At this point we are at an arbitrary edge (ij) of the program graph G, as illustrated

in Fig. 3.4.

If a recovery checkpoint

task j, then the expected

is inserted

recovery ti

on edge (ij)

me after task

immediately

j corn pletes

before the

is:

execution of

E[tjl + Lijm

If the expected recovery time after task j terminates is E[tjl + Lij, then by the

induction hypothesis, the minimum expected execution time after task j completes,

until the end of the program is:

fj(E[tjl + Lij)

Thus the total minimum expected

executed next, is the sum of:

run time, after task i completes and if task j is

1. the time taken to establish the recovery checkpoint, Sij, plus

2. the expected time to execute task j, Ectjl plus

3. the minimum expected execution time after task j completes, fj(ECtjl +

Lij)-

so:

gij(r) = Sij + E[tjl + fj(ECtjl + Lij)

If a recovery checkpoint is not inserted on edge (i,j), the expected recovery time

immediately after task j terminates is:

r + E[tjl

If the expected recovery time is r + F:CtjlB then by the induction hypothesis, the

minimum expected execution time after the completion of task j is:

fj<r + ECtjl),

37

(1r = r i. . . .

Figure 3.4 - MERT ALGORITHM, INDUCTION STEP

37a

The total minimum expected run time after task i ‘completes, if task j is executed

next, is the expected time taken to execute task j plus the minimum expected

execution time after task j completes:

gij(r) = E[tjJ + fj(r + ECtjl)e

Subcase: r + ErtiJ > M

If r + ECtjl > M, a rollback point must be inserted on edge (ij) if the expected
recovery time after task j is constrained not to exceed our bound of M time units.

Thus:

gij(r) = Sij + E[tjJ + fj(E[tjJ + Lij)

Subcase: r + Ertjl<M

If r + E[tjl < M, then the option exists of not inserting a rollback point on edge
(ij). If it is not inserted, the minimum expected run time of the program is:

E[tj J + fj(r + E[tjl)

If a rollback point is inserted, the minimum expected run time is:

Sij + ECtjl + fj(E[tjl + Lij)

So, picking the method which minimizes the expected execution time:

gij(r) = E[tjJ + m i n (S i j + fj(ECtjl + Lij),

fjCr + ECtjl) I

38

The optimal decision for the edge (ij) is to not insert the recovery checkpoint as

long as the minimum expected execution time after processing task j until the end of

the program:

plus the expected execution time for task j:

ECtjl

equals the minimum expected execution time after the processing of task i, along the

(i,j) program branch:

gijtr)

Bij then is that maximum value of r, below which:

gij(r) = fj(r + E[tjl) + E[tjle

This is the value of Bij which minimizes the expected execution time.

Computation of fi(rJ

Again

fi(r) = 2 Pij a &j(r),
j E (LO

fi(r) is the expected run time of the program after task i completes, averaged over all
branches (ij) emanating from node i.

Q.E.D.

39

Chapter 4

EXAMPLE ILLUSTRATING THE DYNAMIC INSERTION OF

RECOVERY CHECKPOINTS

This chapter will attempt to illustrate the use and implementation of the previously

developed MERT algorithm. A graph model of a typical sample program segment is

analyzed by the MERT algorithm, and the static optimal decision pararneler set

IBij) is computed. Then, using the recovery checkpoint insertion procedure of

Section 2.5, the run-time behavior for this program graph is examined for varying

conditions of execution parameters and error conditions.

4.1 Graph Model of a Typical Program

A graph model of the typical program is shown in Fig. 4.1. There are seven distinct

tasks in the program. For simplicity, the Load and Save time for all branches (Lij,

Sij) are are fixed for this example at Lij = 3, Sij = 4 for all branches (i,j). Any

iterations (i.e., FOR, WHILE, or DO Loops) in the program have been coalesced into

a sequence of statements contained in one task. The other parameters for this

program are:

ti - The expected time to execute task i correctly (Section 2.2.2).

Yi - The expected time between the initiation of task i, and the detection

of an error, if one occurs (Section 3.2.2).

tii - The probability of encountering at least one error during the execution

of task i (Section 3.2.1).

40

Max
Ret

E[t,] = 13

q1 = .06

START

imum Recovery (M) = 30
onfiguration (R) = 2

FINISH

Figure 4.1 - GRAPH MODEL OF SAMPLE PROGRAM

40a

Pij - The probability (fixed and independent) that task j will follow task i

(Section 2.2.4).

Also, assume that task 5 issues output to a lineprinter type data set (the virtual data

set interface process described in Section 2.3.3).

The maximum expected recovery time, M, is 30 time units duration, and the system

reconfiguration time, R, is 2 time units. The values given in Fig. 4.1 for E[ti] (the.
expected task execution time for task i) are computed (Appendix A) from:

E[ti] = ti + {(R + yi) qi} / (l-qi) (Section 3.3)

4.2 Computation of the Optimal Decision Parameter Set

The optimal decision parameter set (Bij} for the program represented by Fig. 4.1 is

now obtained by applicat

3.4.2.

i on of the MERT algorithm which was presented in Section

The MERT algorithm has been coded as a BCPL program in Appendix A. The input

data to this analysis program for our sample program is shown in Appendix B, and

the output results obtained by the MERT analysis (the fi(r), gij(r), and the set {Bij))

are given in Appendix C.

Applying the MERT algorithm (Section 3.4.2) to the sample program graph in Fig.

4.1.

Step 0

On this initial step of the algorithm we define fi(r) = 0, for r < M for all exit

41

nodes of the program graph. In our sample program there is only one exit node,

node 7. So:

f7W =

t

0, for O<r<30,

00, for 30<r.

and mark node 7 as being labeled (i.e., f7(r) has been determined).

Step 1

Node 7 is now labeled, and nodes 2, 4, 5 and 6 are unlabeled, having had all their

successors labeled. Compute g27(r) and B27 from equations (I) and (2).

g27(r) = S27 + E[t7] + f7(E[t7] + L27) if r+E[t7]>M,

= E[t7] + min IS27 + f7(E[t7] + L27),

$0 + ~i371)I if r+E[t7]< M.

substituting into equation (I).

If r+E[t7]>M (i.e., 020) then:

S27 + E[t7] + f7(E[t7] + L27) = 4 + 10 + f7(10+3)

= 14 + f7(13) = 14.

If r+F:[t7]<M (i.e., rs20) then:

E[t7] + min (S27 + f7(E[t7] + L27),

= 10 + min (4 + f7(13), f7(r + 10))

= 10 + min (4,O) = 10

f# + W71H

42

g27w q

i

1 0, for 00220, ’

14, for 20<r<30,

Note that 827(r) = f7(r+E[t7]) + E[t7] = f7(r+10) + 10 for all r<20, so using

equation (2) we find our first optimal decision parameter:

B27 = 20.

Since there is only one edge emanating from node 2, we can compute f2(r) from

equation (3) as:

f2W = P27 627(r) = g27Wg

so:

f2W =

i

10, for O<r_<20,

14, for 20<r_<30,

00, for 30<r.

and label node 2, indicating that f2(r) has been determined.

Steps 2, 3, 4_--

Now compute g47(r), 857(r), &7(r) and 1~47, B57, and B67. Using the same

procedure as above, we determine that:

847(r) = S57(‘) = 667(r) = for O<r<20,-

for 2O<r<30,

43

and:

B47 = B5, = B67 = 20.

Again, since there is only one edge leaving nodes 4, 5 and 6, we can compute f4(r),

fg(r) and f6(r):
.

f4(r) = fg(r) = f6(r) =

1%

14,

00,

for O<r<20,

for 20<r<30,

for 30<r.

and label nodes 4, 5 and 6.

5Step

Now, since node 3 is unlabeled, and all its successor nodes (4, 5 and 6) are labeled,

we can compute g34(r) and B34 from equations (1) and (2):

= s34 + E[t4] + fq(ECtql + L34)

= E[t4] + min IS34 + fq(fi:Ct41 + 1~34h

f& + W41H

i f r+E[t4]>M,

if r+E[t4]< M.

If r+E[t4]>M then:

S34 + E[t4] + f4(K[t4] + 1,34) = 4 + 16 + f4(16+3)

= 20 + f4(19) = 20 + 10 = 30

If r+E[t4]<M (i.e., rL4) then:

f4(r + l(I[t4]) = f4(r+16) = 10 for r<4-

44

834(r) = r 26, for O<r<4,

30, for 4<rl30.

Now note that 634(r) = f4(r+E[t4]) + E[t4] = f4(r+16) + 16 for all t-514, so using

equation (2) we find that:

B34 = 14 .

Now compute 835(r), and I335 . Using the same method as above, we find that:

835(r) = 16,
1 20,

for O<r< 14,-

for 14<r<30,

B35 = 24.

And for @6(r) and 836:

s36(‘) = 17, for O<r< 13,-

24 for 13<r<30,-

B36 = 23.

45

Now, since gij(r) has been computed for all edges leaving node 3 (i.e., 834(r), 835(r)

and 836(r)), we can use equation (3) to compute f,(r):

f3(r) = 2 Pij ’ &j(r)

jC {4,5,6)

equation (3)

where p34 = JO, ~35 = .30 and p36 = .60, and gij(r) are those given above., This

computation yields (See Fig. 4.2 for a pictorial representation of this calculation) :

for 0054,

for 4<r_< 13,

for 13<r_<14,

for 14<r_<30,

for 30<r.

and label node 3, indicating that f3(r) has been computed.

6Step

Now compute glz(r), g13(r), 814(r) and B12, B13, and B14. Using the same

procedures, we find that:

g &) q

1

34, for O<r_< 10,

38, for lO<r_<30,

and:

BJ2 = 10.

46

g&)
261

301

4 p34 = JO

l -0 4 30 b r

20

935(r) lC
0

\

14
p35 = .30

30 wr

g&) 21 '

17' '36 = .60

1
0 13 30

br

f30

17

u u

10 4 13 14 30 hr

Figure 4.2 - CALCULATION OF f3(r) FOR SAMPLE PROGRAM

46a

I

24613(r) = 26,
27,

28,
and:

B13 = 24 .

s14(r) = 26,
1 30,

for O<r<7,

for 7<r<8,

for 8<r<24,

for 24<r_<30,

for O<r_<4,

for 4<&30,

and:

B14 = 14.

Now, since 812(r), gl3(r) and g14(r) have been computed, we can calculate fl(r).

UsiIlg equation (3) we find that:

for O<r<4,-

for 4<r_<7,

for 7<r< IO,

for lO<r<30,

for 30<r.

and label node 1.

47

Step 7

On this final step of the MERT algorithm we find that all of the nodes are labeled.

The algorithm terminates, having computed the complete optimal decision parameter

set {Bij)*

These results are summarized in Fig. 4.3.

4.3 Example Execution of Sample Program

In the following examples, suppose that the given run of the sample program

(represented by Fig. 4.1) executes tasks 1, 3, 5 and 7 sequentially. Also, assume that

the program is initially loaded in time LOO = 1.

From fl(r) (Section 4.2) we find that the minimum total expected execution time for

the program, including the time for placement of any required recovery checkpoints is:

E[tl-J + fl(E[tl] + Loo) = 13 + f1(13 + 1) = 13 + 33 = 46.

The following examples make use of the checkpoint insertion algorithm presented in

Section 2.5 (and Fig. 2.6).

4.3.1 Example 1

Suppose that in this given run of the program that the task execution times are:

48

OPTIMAL DECISION
PARAMETER SET

10

24

14

20

20

20

20

14

24

23

Figure 4.3 - TABLE OF MERT COMPUTED OPTIMAL DECISION

PARAMETERS FOR SAMPLE PROGRAM

9

i

48a

task 1 = 1

task 3 = 2

task 5 = 3

task 7 = 5

After task 1 completes, we interrogate the recovery time, r:

r = R + SysClockl - CITlock 1 + Load1 (=LOO)

= 2 + (I- 0) + l= 4

and r < M - B13 = 30 - 24 = 6, so we do not insert a recovery checkpoint. Process

task 3.

After task 3 completes, again interrogate r:

r q 2 + (1 + 2) + 1 = 6

r < M - B35 = 30 - 24 = 6, so no recovery checkpoint is placed. Process task 5.

After task 5 completes, interrogate r:

r=2+(1+2+3)+1=9

and r ,< M - 857 = 30 - 20 = 10, so go on to process task 7.

Thus, for the execution characteristics of this particular example, it was not necessary

to insert any recovery checkpoints.

49

4.3.2 Example 2

On this run of the program, the task execution times are:

task 1 = 2

task 3 = 5

task 5 = 4

task 7 = 5

After task 1:

r = 2 + (2 - 0) + I= 5

r < M - I)13- = 30 - 24 = 6, so go on to process task 3. After task 3 completes,

again interrogate r:

r = 2 + (2 + 5) + I= 10

r > M - B35 q 30 - 24 = 6, so we insert a recovery checkpoint on edge (3,5) (which

consumes S35 = 4 time units). Now process task 5. After task 5 completes,

interrogate r:

r = R + 4 + L35 = 2 + 4 + 3 = 9

r ,< M - B57 = 30 - 20 = 10, so go on to process task 7.

Thus, in example 2, one dynamic recovery checkpoint was placed between the

execution of task 3 and task 5.

50

3

4.3.3 Example 3

On this run of the program, let the task execution times remain the same as above

(Example 2):

task 1 = 2

task 3 = 5

task 5 = 4

task 7 = 5 ,

But on this run, an error is detected during the processing of task 5.

When the error is detected, we roll back to the previously placed checkpoint which

preceded task 5, (i.e., the one which was placed on edge (3,5), and backup the virtual

data set which interfaces with task 5 (via the RESTORE command which will cause

the output issued by task 5 to be revoked). This reloading process takes:

R + L35 (= rcloadij + Tr,,tore) = 2 + 3 = 5 time units.

Assuming that the system reconfiguration (R) fixed the faulty module which caused

task 5 to fail, and that this reloaded checkpoint contained the correct state

information, we find that task 5 now executes successfully. After task 5 finishes:

r = R + 4 + L35 = 2 + 4 + 3 = 9

and r < M - B57- = 10, so continue on to process task 7.

51

4.4 Summary

In this chapter, the computation of the set (Bij) and its execution time use have

been demonstrated. It has been shown that the optimal insertion of recovery

checkpoints is a dynamic procedure, and is a function of the runtime characteristics

- input parameters, actual task execution times, etc. - of the program. Given that

the set {Bij} has been determined, the insertion of recovery checkpoints requires only

a minimal runtime computational overhead.

This thesis has described a recovery method which guarantees that a computer system

and its asociated data sets will be restored to an operational and consistent state

within a given amount of time, minimizing the total overhead cost of creating

recovery checkpoints.

52

BIBLIOGRAPHY

Cl1

PI

PI

L-41

I31

161

VI

I31

PI

S.M. Ornstein, W.R. Crowther, M.F. Kraley, R.D. Bressler, A.

Michel, and F.E. Heart, “Pluribus - A Reliable Multiprocessor,” Natl.
Comp. Conf. 1975, pp. 551-559.

W.C. Carter, D.C. Jessep, W.G. Bouricius, A.B. Wadia, C.E. McCarthy,
and F.G. Milligan, “Design Techniques for Modular Architecture for

Reliable Computer Systems,” IBM Report RA12, March 1970.

IBM Corporation, IBM OS Advanced Checkpoint/Restart, IBM

Manual GC28-6708, 1974.

F.P. Mathur, and A. Avizienis, “Reliability Analysis of a Hybrid

Redundant Digital System - Generalized TMR with Self-Repair,”
Spring Joint Comp. Conf. (AFIPS) 1970.

J. Losq, “A Highly Efficient Redundancy Scheme: Self Purging

Redundancy,” IEEE Trans. on Computers, Vol. C-25, No. 6, June

1976, pp. 569-577

W.C. Carter, and C.E. McCarthy, “Implementation of an
Experimental Fault Tolerant Memory System, IEEE Trans. on

Computers, Vol. C-25, No. 6, June 1976, pp. 557-568.

A. Avizien is, “Design of Fault Tolerant Computers,” Fall Joint
Comp. Conf., AFIPS Press, New Jersey, 1967, pp. 733-743.

B. Randell, “System Structure for Software Fault Tolerance,” IEEE

Trans. on Software Eng., Vol. SE-l, No. 2, June 1975, pp. 220-232.

J. Van Neumann, “Probabilistic Logics and the Synthesis of
Reliable Organisms from Unreliable Components,” Automata

Studies, pp. 43-98, Princeton University Press, Princeton, N.J., 1956.

[lo] J.A. Rohr, “System Software for a Fault-Tolerant Digital Compter,”

Ph.D. Thesis, Computer Science Department, Univ. of Illinois,

1973.

[ll] BBN Inc., Pluribus Document 1: Overview, BBN Report No. 2999,

May 1975.

1121 D.C. Russell, “Error Recovery and Process Communication,” Ph.D.

Thesis, Computer Science Department, Stanford University, April

1976.

[13] K.M. Chandy and C.V. Ramamoorthy, “Rollback and Recovery
Strategies for Computer Programs,” IEEE Trans. on Computers, Vol.

C-21, No. 6, June 1972, pp. 546-556.

[14] K.M. Chandy, “A Survey of Analytic Models of Rollback and
Recovery Strategies,” IEEE Computer Magazine, Vol. 9, No. 4, April

1976, pp. 40-47.

[15] C.V. Ramamoorthy, K.M. Chandy, and A.E. Cowan, “A Framework for

Hardware - Software Tradeoffs in the design of Fault - Tolerant
Corn pu ters,” Proc. Fall Joint Comp. Conf., AFIPS Press, New Jersey,

1972, pp. 55-64.

[16] R.W. Floyd, “Assigning Meanings to Programs,” Proc. Symp. Appl.

Math., American Math. Sot., Vol. 19, pp. 19-32, 1967.

[17] C.A.R. Hoare, “Towards a Theory of Parallel Programming,” In
Operating Systems Techniques, Hoare and Perott, Academic Press,-__
New York, 1972.

[18] H.C. Lauer, “Correctness in Operating Systems,” Ph.D. Thesis,

Carnegie-Mellon University, 1973.

Cl93 J.C. King, “Proving Programs to be Correct,” IEEE Trans. on

Computers, Vol. C-20, No. 11, November 1971, pp. 1331-1336.

[20] C.V. Ramamoorthy, K.M. Chandy, and M.J. Gon/.alez, “Optimal

Scheduling Strategies in a Multiprocessor System,” IEEE Trans.

54

Computers, Vol. C-21, Feb. 1972, pp. 137-146.

[21] E.C. Russell, and G. Estrin, “Measurement Based Automatic
Analysis of Fortran Programs,” Spring Joint Comp. Conf., AFIPS
Press, New Jersey, 196?

[22] P.M. Merlin, “The Time-Petri-Net and the Recoverability of
Processes,” U.C., Irvine, Technical Report 48, May 1974.

[23] B. Beizer, “Analytical Techniques for the Statistical Evaluation of

Program Running Time,” Fall Joint Comp. Conf., AFIPS Press,
New Jersey, 1970, pp. 519-525.

[24] W. Teitelman, “The Interlisp Editor,” In Interlisp Reference- -
Manual, Xerox Palo Alto Research Center, 1975.

55

Appendix A

THE MERT ANALYSIS PROGRAM

// Program for computation of MERT algorithm
// Input parameters stored on file: G.IN

get “STR EAMS.D” // Stream Definitions

external
c // system routines
Gets
keys
Puts
wss
ws
OpenFile
Closes
DeleteFile
3

fest
c
nmax =
emax =
fmax =
inf inity
1

static
C
N
E
F
diskin
diskout
nodes
edges
M
R
fnext
1

100 // max number of nodes
100 // max number of edges
300 // breakpoint storage in function
= #,77777 // our 16-bit infinity

list

// node list
// edge list
// function list
// disk input file
// disk output file
// number of nodes
// number of edges
// max recovery time
// re-conf iguration time
// free pointer into Function list chain

structure string:
C // string template
length byte
char? 1,255 byte

56

1
structure node:

C // each entry corresponds to one node in the graph
indx t 1,nmax:

C
count word // number of successors to this node
plink word // list of predecessors - pointer to

// EDGE list
slink word // 1 ist of successors - pointer to

// EDGE list
ti word // expected running time of this node
Eti word // expected task execution time - computed by DetEti
yi word // expected time until detection of error
qi word // probability of error occurring (per cent)
flink word // pointer to first element of the

// f function in FUNCTION list
labelled word // this vertex is labelled
1

1
structure edge:

C // each entry corresponds to one edge in the graph
indxr 1,emax:

L-
pred word
plink word

succ word
slink word

load word

save word

pij word
glin k word

Bij word
1

// predecessor node
// linked list (in EDGE) of

// predecessors
// successor node
// linked list (in EDGE) of

// successors
// load time for this (pred => WCC)

// edge
// save time for this (pred => succ)

// edge
// probability of taking this program branch
// pointer to first element of the g

// function in FUNCTION list
// decision variable B(i,j)

3
structure function:

c // each entry corresponds to a breakpoint of the
// f or g function

indxt 1,fmax:
C
x word // abscissa of discontinuity
y word // ordinate of discontinuity
xylink word // points to the next breakpoint
3

57

,

let Main () be
[Main

// Create the Node, Edge and Function storage areas
let v = vet (size node)/l6; N=v
let v = vet (size edge)/l6; E=v
let v = vet (size function)/161 F=v

Ws (“*cStaft of ProgramV’) // Initialization on screen

diskin = Open File (“GJN”, ksTypeReadOnly, charltem)
if diskin eq 0 then

C // Input file not on directory
Ws (“*cFile: G.IN not on disk”)
goto FIN
1

DeleteFile (“G.OUT”)
diskout = OpenFile (“G.OUT”, ksTypeReadWrite, charltem)

Filllists (diskin, diskout)
Printlists (diskout)
Mert () // The MERT Algorithm
Printlists (diskout)

FIN: Wrapup ()

]Main

and Mert () be
[Mert

// The MERT Algorithm - Chapter 3

// initialize: for all terminal nodes: F(r) = 0 for r le M

for i = 1 to nodes do
C
if N>>node.indx?i.count ne 0 then loop
N>>node.indxti.flink = fnext
Enterxy (M, infinity, 0) // store breakpoints
N>>node.indxti.labelled = true // label exit node
PrintF (i, 0, N>>node.indxri.flink, diskout)
3

LOOP:
// look for an unlabelled vertex which has all of its successors
// labelled

let found = false
for i = 1 to nodes do

58

L-
if N > >node.indx f i.labelled then loop
let successorlabelled = true
let ptr = N>>node.indxti.slink
while ptr ne 0 do

c
let j = E> >cd~e.indu?ptr.succ
if not N>>node.indxrj.labelled then

C
successorlabelled = false
break
1

ptr = E>>edge.indxtptr.slink

.

1
if not successorlabelled then loop

// at this point we know that all of the successors
// to node i are labelled

found = true
let ijptr = N>>node.indxri.slink
while ijptr ne 0 do

c
// for all edges j (i => j) compute Gijfr)
let j = E>>edge.indxrijptr.succ

Wss (diskout, “*cVertex i is unlabelled and vertex j is
labelled (i,j)= “)

Wds (diskout, i)
Wds (diskout, j)

DetGij (i, j, ijptr)
PrintF (i, j, E>>edge.indx?ijptr.glink, diskout)

// now set Bij
E>>edge.indxrijptr.Bij = DetBij (i, j, ijptr)
// print Bij
Wss (diskout, “*cBij: (1, J, Bij) “)
Wds (diskout, i)
Wds (diskout, j)
Wds (diskout, E>>edge.indxrijptr.Bij)

ijptr = E>>edge.indxfijptr.slink
3

// now compute Fi(r)
let stop = Det Fi (i)

PrintF (i, 0, N>>node.indxri.flink, diskout)

// label node i to show that Fi(I-) has been computed

59

N > >node.indx t i.labelled = true

if stop then
I:
Wss (diskout, “*cFi(r) = infinity for 0 le r le M”)
Wss (diskout, “*cNode = “)
Wds (diskout, i)
return
I

3
// try to find another node whose successors are all labelied

if found then goto LOOP

]Mert

and DetGij (i, j, ijptr) be
[DetGij

// determine Gij(r)
//
// r+E[tj] gr M:
// r+E[tj] le M:
//

Gij(r) = Sij + E[tj] + fj(E[tj] + Lij)
= E[tj] + min (fj(r+E[tj]),

Sij + fj(E[tj] + Lij))

let Etj = N> >node.indx tj.Eti
let bp = M-Etj // breakpoint
let Lij = E>>edge.indxrijptr.load
let Sij = E> >edge.indxt ijptrsave

let Fjptr = N>>node.indxtj.flink
let sl z Sij + Evalfg (Fjptr, Lij+Etj)

// now construct Gij(r)

let ysave = 0
let sp = 0
E>>edge.indxtijptr.glink = fnext

for r = 0 to bp do
C
let yval = Evalfg (Fjptr, r + Etj)
if yvai gr sl then yval = sl
if (yval + Etj) ne ysave then

c
if sp ne 0 then F>>function.indxrsp.xylink = fnext
sp = fnext
Enterxy (r, yval + Etj, 0)
ysave = yval + Etj
1

60

3
// now enter breakpoint value if it Isn’t there
if (sl + Etj) ne ysave then

c
if sp ne 0 then F>>function.indxtsp.xylink = fnext
sp = fnext
Enterxy (bp, sl + Etj, 0)
1

F>>function.indxrsp.xylink = fnext
Enterxy (M, infinity, 0)

]DetGij

and Det Fi (i) = valof
[DetFi

// Determine Fi(r) = SUM over all edges (i,j) of Gij(r)*pij, r le M

let stop = false
let ijptr = N>>node.indxtislink
N>>node.indx?i.flink = fnext

let ysave = 0
let sp = 0
for r = 0 to M do

[rloop
let infinflag = false
let ysum = 0
let flag = false
let ijptr = N>>node.indxri.slink
while ijptr ne 0 do

c // pij * gij(r)
let Gijptr = E>>edgc.indxtijptr.glink
let pij = E>>edge.inclxrijptr.pij
let Gval = Evalfg (Gijptr, r)
if Gval eq infinity then infinflag = true
ysum = ysum + (Gval * pij)
ijptr = E> >edge.indx t ijptr.slink
1

ysum = ysum / 100 // Normalize: pij in per cent

if infinflag then ysurn = infinity
if ysave ne ysum then

c // Enter this breakpoint into the function
list

if sp ne 0 then F>>function.indxrsp.xylink = fnext
sp = fnext
Enterxy (r, ysum, 0)
ysave = ysum
1

61

if ysave eq infinity then
if r Is M then stop = true

]rloop

resul tis stop

]DetFi

and DetBij (i, j, ijptr) = valof
[DetBij

/I Compute Bij such that:
// gij(r) = fj(r + E[tj]) + E[tj] for r le Bij

let Etj = N > >node.indx tj.Eti
let Gijptr = E>>edge.indxtijptr.glink
let Fjptr = N>>node.indxtj.flink

for r = 0 to M do
C // loop while Gij (r) = Fj (r + E[tj]) + E[tj]
if (Evalfg (Fjptr, r + Etj) + Etj) ne

Evalfg (Gijptr, r) then resultis r
1

resultis M

]DetBij

and DetEti (i) be
[DetEti

// Determine E[ti] for node i:
// E[ti] = ti + ((R+yi)*qi / (1-qi))

let ti = N>>node.indxti.ti
let yi = N>>node.indxti.yi
let qi = N>>node.indxti.qi // note that qi is in %

let Eti = ti + (((R+yi)*qi) / (100 - qi))
N > >node.indx t i.Eti = Eti
]DetEti

and Filllists (strmin, strmout) be
[FiHlists

// create the EDGE and NODE lists from the graph model
// input parameter file (strmin) on file: G.IN

Wss (strmout, “*cEnter the Maximun Recovery Time M: “)

62

M = Getnum (strmin, strmout)
Wss (strmout, “*cEntcr the Re-conf‘iguration Time R: “)
R = Getnum (strmin, strmout)
Wss (strmout, “*cEnter the number of nodes in graph: “)
nodes = Getnum (strmin, strmout)
edges = 1

for i = 1 to nodes do
[iloop
Wss (strmout, “*cEnter (Ti Yi Qi(%) for node “)
Wds (strmout, i)
Wss (strrnout, “: “)
N>>node.indx?i.ti = Getnum (strmin, strmout)
N>>node.indxri.yi = Getnum (strmin, strmout)
N>>node.indxri.qi = Getnum (strmin, strrnout)

// Determine E[ti]
DetEti (i)

Wss (st rmout, “For each successor to node ‘I)
Wds (strmout, i)
Wss (strrnout, ” enter:*c”)
Wss (strmout, ” (Successor Node, Load Time, Save Time, Pij(%)

)*c”)
let cnt = 0
let tpij q 0
while true do

[edgeloop
Wss (strrnout, ” ‘I)
let succ = Getnum (strmin, strmout)
if succ eq 0 then

c
if tpij ne 100 then Wss (strmout,
“*cSuni of pij’s neq 100 ******I’)

break
1

cnt = cnt +l
E>>edge.indxtedges.succ = succ
E>>edgc.indxredges.pred = i
E>>edge.irldxredges.lo~~d = Getnum (strmin, strmout)
E> >edg~.intfxredgss.s~~ve = Getnrrm (strmin, strmout)
E>>edgc.indxredges.pij = Getnum (strmin, strmout)
tpij = tpij + E>>edge.irldxredges.pij
E>>ed~e.inclxreclgcs.glink = 0
E>>edge.irldx7edges.Uij = 0
test (cnt eq 1)

ifso E>>t~d~~tt.indxredgcs.sli~lk = 0
ifnot E>>ed~~.it~dxr~dgcs.slirlk = edges-l

edges = edges + 1
ledgcloop

test (cnt eq 0)
ifso N>>nodc.indxti.slink = 0

63

ifnot N>>node.indx)i.slink = edges - 1
N > >node.indxr i.count = cnt
N>>node.indxti.flink = 0
N>>node.lndxri.lahelled = false
]iloop

edges = edges - 1

// create the predecessor linked list

for i = 1 to nodes do
[iloop
let ptr = 0
for j = 1 to edges do

Mow
if E>>edge.indxtj.succ ne i then loop
test (ptr eq 0)

ifso E>>edge.indxtj.plink = 0
ifnot E>>edge.indxrj.plink = ptr

ptr = j
l.MoP

N>>node.indxti.plink = ptr
]iloop

// initialize Function list by linking the free pointer chain

for i = 1 to fmax do
C
F>>function.indxti.xylink = i+l
3

F>>function.indxtfmax.xylink = 0 // end of chain
fnext = 1

]Filllists

and Printlists (strmout) be
[Printlists

// Print the contents of the Node list

Wss (strmout,“*cNode List:*c”)
Wss (strmout,” Node Count Plink Slink”)
Wss (strmout,” Ti Yi Qi-% E[ti] Flink Label led*c”)
for i = 1 to nodes do

[iloop
Wds (strmout,i)
Wcls (~trrnout,N>>node.indxri.count)
Wds (strmout,N>>node.indxti.plink)
Wss (strniout,” “)
Wds (strmout,N>>node,indxti.slink)

64

Wds (strmout,N > >node.indxti.ti)
Wds (strrnout,N>>rlode.indxti.yi)
Wds (strmout,N>>node.indxti.qi)
Wds (strmout,N > >node.indxti.Eti)
Wds (strmout,N>>node.indxti.flink)
test N>>node.indxti.labelled

ifso Wss (strmout, ”
ifnot Wss (strniout, ”

]iloop

true*c*‘)
false*?‘)

// Print the contents of the Edge list

Wss (strniout,“*c*cEdge List:%“)
Wss (strniout,” Index P r e d P l i n k Succ “)
W s s (strmout,“Slink L o a d S a v e Pij-76 G l i n k Bij*c”)
for j = 1 to edges do

C.i~w
Wds (Ttrrrlout,j)
Wds (~trrl~r,~rt,E>>edge.irl(lxt~.pled)
Wds (,trrlll)~lt,f=_>>~d~c.lrldxrj.plirlk)
Wcis (strrrlc)ut,E>>edge.Itldxrj.sncc)
Wds (strr~~r)~lt,F>>edge.i~ld.u~j.slir~k)
Wds (strrilo~lt,Ei>cd~t3.Inclxtj.load)
Wds (strmout,E>>edge.inds~j.save)
Wds (strn~otlt,E>>edSt‘.lr!dxtj.pij)
Wds (strmout,E>>edge.itltlutj.glink)
Wds (strmout,E>>edge.indxtj.Bij)
Wss (strmout,“*c”)
ljloop

]Printlists

and Evalfg (ptr, x) = valof
[Evalfg

// evaluate the f or g function (whose first elemurlt is pointed
// to by ptr) with argument x

x = x+1
let result = 0
while ptr ne 0 do

C
if x le F>>function.indxrptr.x then break
result = F>>function.indxtptr.y
ptr = F>>l’~lrlctioll.irldxrl)tl,.xylink
1

resultis result
] Evalfg

and Enterxy (x, y, link) be
[Enterxy

65

// make an (x,y) entry on the Function list

let i = fnext
fnext = F>>function.indxti.xylink
F> >f unction.indx t i.x = x
F> >f unction.indxt i.y = y
F>>function.indxti.xylink = link
if fnext eq 0 then

c
// no more space
Wss (diskout, “*cFunction list filled”)
Gets (keys)
1

]Enterxy

and PrintF (i, j, ptr, strmout) be
[PrintF

// Print either Fi(r) or Gij(r)

if j eq 0 then
C
Wss (strmout,“*cFunction - F”)
Wds (strmout, i)
Wss (strmout,“(r) “)
1

if j ne 0 then
I:
Wss (strmout,“*cFunction - G”)
Wds (strmout,i); Wds (strmoutj)
Wss (strmout,“(r) “)
3

while ptr ne 0 do
C
Wss (strmout, “*c “)
Wds (strmout,F> >f unction.indx t ptr.x)
let yval = F>>function.indxtptr.y
test yval eq infinity

ifs0 Wss (strmout, ” inf”)
ifnot Wds (strmout, yval)

ptr = F>>function.indxtptr.xylink
1

Wss (strmout, “*c”)

]PrintF

and Getnum (strmin, strmout) = valof
[Getnum

// return a binary number from the keyboard

66

let c = 0; let n = 0
while true do

C
c = Gets (strmin)
Puts (strmout,c)
if c eq #30 % c eq #15 then resultis n
I1 = II*10 + c-$0
1

]Getnum

and Wds (strm, val) be
[Wds

// Write decimal value: val to stream: strm

let outstr = vet 5
for i =7tol b y - l d o

c
outstr>>string.charti = (val rem 10) + $0
val = val / 10
1

for i = 1 to 6 do
c
if outstr>>string.charti IW $0 then break
outstr>>string.charti = $
3

outstr> >string.length = 7
Wss (strm, outstr)
]Wds

and Wrapup () be
[Wrapup

// Close disk files, etc.

Closes (diskin)
Closes (diskout)
Ws (“*cEnd of Program”)
finish
IWraPuP

67

Appendix B

SAMPLE INPUT DATA FOR MERT ANALYSIS PROGRAM

Enter the Maximun Recovery Time M: 30

Enter the Re-configuration Time R: 2

Enter the number of nodes in graph: 7

Enter (ti yi qi(%) for node 1: 12 10 6
For each successor to node 1 enter:

(Successor Node, Load time, Save time, Pii)

2 3 4 50

3 3 4 25
4 3 4 25

Enter (ti yi qL(%) for node 2: 20 3 3
For each successor to node 2 enter:

(Successor Node, Load time, Save’time, Pii)

7 3 4 100

Enter (ti yi qi(%) for node 3 : 5 2 8
For each successor to node 3 enter:

(Successor Node, Load time, Save time, Pii)

4 3 4 10

5 3 4 30
6 3 4 60

Enter (ti yi qi(%) for node 4: 15 12 5
For each successor to node 4 enter:

(Successor Node, Load time, Save time, Pij(%))

7 3 4 100

68 ’

3

Enter (ti yi qi(%) for node 5 : 6 4 1
For each successor to node 5 enter:

(Successor Node, Load time, Save time, pii)

7 3 4 100

Enter (ti yi <1i(%) for node 6 : 7 0 0
For each successor to node 6 enter:

(Successor Node, Load time, Save time, Pij(%))
7 3 4 100

Enter (ti yi qi(%) for node 7: 10 5 2
For each successor to node 7 enter:

(Successor Node, Load time, Save time, Pii)

< EOF>

69

Appendix C

OUTPUT DATA F R O M M E R T ANALYSIS PROGRAM

(Note: f,{r) and g,$r) are step functions. They are stored by storing their breakpoint
values. i.e., f#r): 3 0 m corresponds to :

f# = 0,
00

f o r r < 3 0 ,
f o r r > 3 0 .)

Function - f,(r)
30 00

Vertex i is unlabelled and vertex j is labelled (ij) = 2
Function - 827(r)

0 10
20 14
30 0

7

Bij: (i, j, Bij) 2 7 20
Function - ft(r)

0 10
20 14
30 0

Vertex i is unlabelled and vertex j is labelled (i,j) = 4
Function - g47(r)

0 10
20 14
30 00

7

Bij: (i, j, Bij) 4 7 20
Function - fd(r)

0 10
20 14
30 00

Vertex i is unlabelled and vertex j is labelled (ij) = 5
Function - 857(r)

0 10
20 14
30 00

7

Iiij: (i, j, Bij) 5 7 20
Function - 15(r)

0 10
20 14

70

Vertex i is unlabelled and vertex j is labelled (ij) = 6
Function - 867(r)

0 10
20 14
30 00

7

Bij: (i, j, Bij) 6 7 20
Function - fg(r)

0 10
20 14 l

30 co

Vertex i is unlabelled and vertex j is labelled (i,j) = 3
Function - 836(r)

0 17
13 21
30 aJ

6

Bij: (i, j, Bij) 3 6 23
Vertex i is unlabelled and vertex j is labelled (i,j) = 3
Function - gJs(r)

0 16
14 20
30 00

5

Bij: (i, j, Bij) 3 5 24
Vertex i is unlabelled and vertex j is labelled (ij) = 3
Function - gjd(r)

0 26
4 30

30 00

4

Bij: (i, j, Bij) 3 4 14
Function - f$r)

0 17
4 18

13 20
14 21
30 00

Vertex i is unlabelled and vertex j is labelled (i,j) = 1
Function - gld(r)

0 26
4 30

30 m

4

Bij: (i, j, Bij) 1 4 14
Vertex i is unlabelled and vertex j is Izbclled (ij) = 1
Function - 813(r)

0 24
7 26
8 27

3

71

24 28
30 CtJ

Bij: (i , j, Bij) 1 3 24
Vertex i is unlabelled and ver tex j is labelled (i j) = 1
Function - 812(r)

0 34
10 38
30 @J

2

Bij: (i, j , Bij) 1 2 10
Function - f&r)

0 29
4 30
7 31

10 33
30 00

72

