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ABSTRACT

Starting with single server queueing systens, we find a different
way to estimate the diffusion parameters. The boundary condition is
handl ed using the Feller's elementary return process. Extensive conparisons
by asynptotic, sinmulation and numerical techniques have been conducted to
establish the superiority of the proposed nmethod conpared with conventiona
methods. The limtation of the diffusion approximation is also investigated
When the coefficient of variation of interarrival tmeis larger than one
the mean queue length nmay vary over a wide range even if the mean and variance
of interarrival time are kept unchanged. The diffusion approxinmtion is
applicable under the condition that the high variation of interarrival tine
is due to a large nunber of short interarrival tines. Case studies are
conducted on 2-stage hyperexponential distributions. A simlar anonmaly is
observed in two server closed queueing networks when the service tine of
-any server has a large coefficient of variation. Again, a simlar regularity
condition on the service time distribution is required in order for the
di ffusion approximation to be applicable. For general queueing networKks,
the problenms beconme nmore conplicated. A sinple way to estimate the coefficient
of variation of interarrival time (when the network is deconposable) is
proposed. Besi des the anomalies cited before, networks under certain topol ogies
such as networks with feedback |oops, especially self |oops, can not be
deconposed into separate single servers when the coefficient of variation



of service tine distributions become large, even if the large variations
are due to a large nunber of short service times. Nevertheless, the
deconposability of a network can be inproved by replacing each server
with a self loop by an equivalent server without a self loop. Finally,
we consider the service center with a queue dependent service rate or
arrival rate. Ceneralization to two server closed queueing networks
where each server may have a self loop is also considered.
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1. INTRODUCTION

Recently, considerable effort has been nmde for obtaining approxinate
solutions to non-Markovian queueing nodels using the diffusion approxima-
tion when the traffic intensity of the queueing systemis high. The ad-
vantage of diffusion approximation lies in the fact that explicit results
can be obtained for relatively conplex situations where the only possible
alternatives are nunerical nethods or sinulation experinments. Thi's
greatly extends our capability in nodelling practical problems. In the
past, over sinplified nodels have often been used for the sake of nathe-
matical tractability, and the predicted performance may sonetimes be quite
different from the actual neasured performance

In order to alleviate the difficulty involved with general service
time distribution, the diffusion approximation replaces the discrete junp
process such as the queue size process by a diffusion process which is a
continuous path stochastic process. The probability distribution of the
di ffusion process which satisfies a partial differential equation is quite
o& en nore anenable to mathenmatical analysis than that of the junp process
However, the approximation by diffusion process requires the heavy traffic
assunption, as we shall see in Section 2

Based on central limt theorem XKingman [8] has shown in his treat-
ment of heavy traffic theory that the waiting time distribution is as an
approxi mati on exponentially distributed, where the paraneter depends only
on the nean and variance of the interarrival tine and service time dis-
tribution, i.e., it is insensitive to the detailed form of the distribu-
tion, as the traffic intensity approaches 1. The diffusion approximation
based on the sane idea attenpts to overconme the limtation of the expo-
nential nodel by considering both the nmean and variance of the service
time and interarrival tine distributions. Newell [11] gives an extensive
treatnent of queues with tine dependent arrival rate through use of the
di ffusion approximtion in his nonograph. Gaver applies the diffusion
approximation method to waiting tine in a MG queue [4]1. Gaver and
Shedl er [2,3] apply this technique to the analysis of a nultiprogramred
conputer systemmodelled as a two stage cyclic network. Kobayashi [10]
considers the nulti-dinensional diffusion approximtion as a technique
for treating general queueing networks. Rei ser and Kobayashi [12]



study the accuracy of diffusion approximtion techniques and propose a
way to treat each server in the queueing networks separately. Cel enbe
[5,7] suggests a different way to handl e the boundary condition of the
diffusion process, nanely using the Feller's elementary return process
[(1]1. In [6], G lnbe also investigates the idea of deconposing a queue-
ing network into separate single servers. An application of the diffu-
.giion approxinmation to analyze the performance of an AILOHA-like System
can be found in the paper by Kobayashi, Onozato, Huynch [17]. Kl ei nrock
[9] al so has a tutorial chapter on diffusion approximtion
Since the diffusion approximtion to single server queueing systens
serve as the foundationtothe approxi mati on of nore conplicated queueing
networks, we wll start with single server systems, then advance to two
server closed queueing networks where each server may have a self |oop
and finally examne the problem in general queueing networks
In Section 2, we propose a new way to estimate the diffusion param

eters. Using the Feller's elenmentary return process [1] as proposed by
Cel enbe [5] to handl e the boundary condition, the approximte nmean queue
1eng€§_obtained by this nmethod is nore accuratethanthat by conventiona
methods i n nmst cases, especially when the coefficient of variation of
the service tine is large. In Section 3, we analyze the asynptotic error
in nmean queue |length by our nmethod and two other w dely used diffusion
appr oxi mati on techni ques proposed by Kobayashi [10]1 and Cel enbe [57 for
the MGEI| and E2/M/1 gueuei ng systems, where analytic results on nean
queue length are available in closed forms. The advantage of the asynp-
totic analysis is that the absolute or relative errors are expressed in
ternms of the traffic intensity or the coefficients of variation of the
service time and interarrival time distributions. This provides better
insight in understanding the accuracy of various approximation techniques
Kingman [18] has found a tight upper bound for the mean queue | ength. W
al so analyze this upper bound for reference. It is interesting to see
that, in the MGEI system the nean queue |engths obtained by the other
two nmethods are larger than the Kingnan's upper bound when the service
time has a large coefficient of variation. In both EZ/M/l and MG I sys-
tems, our method yields nore accurate approxinmations. In fact, in the
M G| system the nean queue length obtained by our nethod is exact, and
those obtained by the other two nethods have an error term on the order



of CS/Z or (Cs -1)/2, where CS is the squared coefficient of vari-
ation of the service time. For readers who are not faniliar with asynp-
totic analysis, this section can be skipped over. In Section 4, simla-
tions have been conducted to test the relative performance of our method
and the two conventional nethods for nore general queueing systens which
ncl ude the Er/En/l and Er/Hz/l systems. Nunerical techniques have also
been enployed to study the relative performance of various diffusion ap-
proxi mations for the E3/M/1 and DM | systens. Cur nethod yields nore
accurate approximations, except in the Er/En/l system In the Er/En/l
system the nethod in [4] proposed by Kobayashi has better perfornance
than ours. These conprehensive and systenmatic conparisons not only es-
tablish the robustness of the proposed nethod, but also provide valuable
information in selecting the best approximation technique for the spe-
cific problemat hand. In Section 5, we use the HZ/M/l systemto illu-
strate the fact that, when the coefficient of variation of the arriva
process is larger than 1, the nmean queue length may vary over a w de
range even if the mean and variance of the interarrival tine are kept
uﬁéhanged. This is simly because the coefficient of variation of the
di stribution function may becone large due to different reasons. W
give a reasonable interpretation to this phenonenon. Since two-stage
hyper exponential distribution function is widely used in conputer system
modelling, we try to identify the range of the parameters of the hyper-
exponential distribution where the diffusion approxinmation can be ap-
plied to obtain a fairly accurate estimation of the mean queue |ength
under various traffic intensities. The data included in that section
should be helpful in checking the applicability of diffusion approxina-
tion to the problemat hand. The H2/Er/1 and Hz/Hz/l systens are al so
exam ned. In those cases where the paraneters are not in the applicable
range, the diffusion approximation may be used to estinate a |ower bound
of the system performance

After examining the single server queueing system in Section 6 we
consider a nore conplicated queueing system the closed two server sys-
tem which is often used to nodel the conputer system under fixed degree
of nultiprogramming, referred to as the cpu and DTU nodel [2,3]. The
approxi mate utilization and nean queue length of the CPU are very close



to the simulation or exact result when the coefficients of variation of
the service time distributions are small [2,5]. When this condition

does not hold, the diffusion approximation techniques can provide a close
approxi mation to nean queue length and utilization only under restricted
ranges of the parameters of the distribution functions and in other cas-
&5 it my still be used to estinmate a |lower bound of the performance of
the system Then, in Section 7, the deconposition problem of the network
of queues is considered. Fromthe data provided in Sections 3 and 4, the
accuracy of diffusion approximtion to a single server systemis undoubt-
edly very good. The problem on deconposition of a queueing network into
separate single server systenms seens to be how to estinatethecoefficient
of variation of the interarrival time at each server, so we can take the
interactions anong interconnected servers into account. Two different
nmet hods have been proposed to estimate the coefficient of variation of
the interarrival time at each server by Reiser and Kobayashi [12] and
CGel enbe [61, respectively. Both nethods lead to fairly accurate approx-
imations. The second nethod which tries to incorporate the effect of
idle ?ériods on the coefficient of variation seens to be better but is
nmore conplicated. Here, we propose a method to estimate the coefficient
of variation of the interarrival time which leads to simlar results as
the second nethod by taking the effect of idle periods into consideration
but is much sinpler in conputation. Al the exanples given by the pre-
vious authors to denonstrate the accuracy on deconposing queueing net-
works into separate single servers under diffusion approximtions are
concentrated on the situation where the coefficients of variation of
service time and external interarrival time distributions are not |arge
mainly less than or equal to two. Actually, the decomposition technique
is not always feasible when the coefficients of variation of the service
time or external interarrival tine distributions beconme |arge. An exam
ple has been given to illustrate this anomaly which has been overl ooked
in the past. Hence, we must be careful on the deconposability of a queue-
ing network. Although deconposability is an inherent property of the
network topology, its effect magnifies as the coefficients of variation
of service tine distributions deviate largely from one. Nevertheless
deconposability of a network can be inproved by replacing each server
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with a self loop by an equivalent server without a self loop. Finally

in Section 8, we consider the service center with a queue dependent ser-

vice rate or arrival rate. Generalization to the closed two server

queueing network is also considered
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2. THE DI FFUSI ON APPROXI MATION FOR THE G G| QUEUE

Consi der a single server queueing system Let ti be the arrival

time of the ith job to the queueing system and ti be the departure tine
of the ith job, where 0 < ty < t, <....0< ti < té <. . . . and tw >
tl, i.e., the queueing discipline of the systemis first conme first

served (FCFS). Let A(t) and D(t) represent the cunul ative nunber of
arrivals and departures, respectively, up to time t. Denote the nunber
of jobs in the queue (including the job in service) at time t by Q(t),

t hen

Q(t) = A(t) - D(t)

Assume the interarrival time U ,'s (= ¢, -t, ;) and service tine v, 's

1
are independent and identically distributed, respectively. Furthernore,

w¥e assune
1
2
Var[Ui} =0,
1
E{Vi} = a’
2
Var{Vi} =

and

A
S

where p is the traffic intensity of the queueing system
The following central limt theoremfor renewal processes [14] will
be used in later discussion

Theorem If T = (Tn] is a renewal process (i.e., T ~-T are inde-

n n- 1
pendent and identically distributed) for which

M = E{Tl} <



and

02 = E{‘Tl - M)z} < o

Let
N(t) = 1 (T)
n=0 [0,t1 ' n
wher e
{1 if XxXea
I.(X) =
A 0 if XXA

i.e., N(t) is the nunber of T, such t hat T < t. Then

lim p{M < )} = d(X)

t— oo NtoZ /M3
wher e
X
1 1 2
- CI>(X)=-2—ﬂJ‘ exp<—§u>du
—00

is the normal integral.

Now | et us introduce the definition and property of a diffusion

process.

Definitions. A diffusion process {X(t),t >0} is a strong Markov pro-

cess such that

E{X(t + At) - X(t) |[X(t) = X}

1) pX,t) = lim exists
JAYA
Ot 0
- 2
(2) a,t) = lim E{(X(t + At) -A‘)c((t)) Rt = X} oo
Nt— 0

(3) the sanple path is continuous

where the diffusion paraneters gX,t) and o(X,t) are called the
infinitesimal mean and variance coefficients, respectively.



Let P(xo,x;t) be the probability density function of the diffusion

process X(t), i.e.,

P(X,,X;t) dX = p{x < X(t) < X + dX[X(0) = xo}
t hen P(Xo,x;t) will satisfy the following differential equation:

0 0
5 @&, 53 PX,X50) = 5% B(X, 1) P(X),X;t)

TR

% P(X,,X;t) =

which is called the Kol mogorov diffusion equation or Fokker-Plank equa-
tion [14].

Cearly, as t becones large, the renewal counting process N(t)
is approaching a diffusion process wth

1
and
cr2
aX,t) = —=
M3

which is usually referred to as the Wener process with drift.

By assunption, the arrival process is a renewal process, hence A(t)
will converge to a Wener process with infinitesimal mean A and infin-
itesimal variance 027\3, as t beconmes large. The problemis that the
interdeparture tine is not independent and identically distributed, since
the interdeparture tine can either be a servicetine or the sumof a ser-
vice tine and an idle period of the server. Hence, the departure pro-
cess is not a renewal process. But, under heavy traffic conditions, i.e.,
as p—->1, it is close to a renewal process. During the busy period,
D(t) will cone close to a Wener process with infinitesinmal nean p and
vari ance coefficient aius as t increases, provided that the busy pe-
riod is not interrupted. Still another problemis that A(t) and D(t)
is not independent since QQt) = A(t) -D(t) > 0. But, when Qt) is
| arger than zero, we have a departure process independent of the arrival
process. In this case, Qt) behaves like a Wener process which is a



diffusion process with no boundary restriction at zero. That is to say,
we should approximate Qt) by a diffusion process with appropriate
boundary condition at zero to reflect the fact that Qt) can never
becone negative and there is an idle period after Q(t) drops to zero.

To be nore precise, Q(t) wll converge to a diffusion process
with paraneters

-~ B(X,t) = A =-up

2.3 2 3
alX,t) = 0a7\ + oM P

The paraneters are obtained from those of A(t) and D(t) based on the
fact that Qt) = A(t) -D(t). An extra factor p appeared in the second
termof a(X,t) is used to reflect the fact that D(t) has a coefficient
o 23 .
of variation g M only p of the tine.
Since both pB(X,t) and «(X,t) are constant, we will abbreviate
them as B8 and «, respectively. The probability density function

P(XO,X;t) of Qt) will satisfy the equation
3.

2
% P(X0 X,t) = % 6_2_ P(XO,X,t) - B % P(XO,X,t)
)¢
Let P(X) be the stationary density function of Qt), i.e.,
P(X) d(X) :P{qut) SX+dX} as t-o o«

For the stationary case, the tinme derivative in the Fokker-Plank
equation is set to zero. So

32
o2

%)
P(X) - B 5 P(X) =0 (2.1)
oX X

nf

Two different approaches have been suggested to handle the boundary
condition. The first approach is to treat the boundary X = 0 as a re-
flecting boundary, i.e., whenever the queue becones enpty, it is reflected
to positive imediately. Though the queue size will never becone nega-
tive, still no probability mass can collect at X = 0. Gaver and Shedl er

9



[2,3] and Kobayashi [10], who generalized this approach to queueing net-
work, have managed to choose the appropriate integration constants in the
solution to (2.1) under reflecting boundary, so that the mobdel correctly
predicts the stationary probability of enpty queue. The second approach
proposed by Gel enbe [5,6,7] uses Feller's elementary return process [1]
instead of the diffusion process with reflecting boundary to approxinate
the queueing system This is a diffusion process with boundary to which
the process adheres for epochs whenever the process attains a boundary;

at the end of the epoch the process is reinitialized according to a fixed
probability density function. GCelenbe [5] first solves the equation when
the holding tine on the boundary has exponential distribution and |ater
on [7] generalizes it to any probability density function whose Laplace-
Stieltjes transformis a rational function to account for the fact that
the holding time in the boundary in general is not exponentially distrib-
uted. Fortunately, the solution under the general distribution depends
only on the first moment of the holding time distribution. Thus, the
stationary solution is identical to the corresponding solution when the

hedding time is exponentially distributed with the sane mean

In this paper, we will adopt Gelenbe's approach to handle the bound-
ary condition and assune exponential holding time on the boundary, since
this assumption will sinplify the problem and lead to the sanme solution
as that under general holding time distribution [7]. The advantage of
this approach is that it can be extended very easilytohandl etwo server
cl osed queueing networks or finite capacity queues. Bothofthem have im
portant applications in conputer modelling. The only problem we are fac-
ing is that the nmean holding time, h, at the boundary X = 0 is not
known. The holding tinme at the boundary X =0 s, in fact, the idle

period of the queueing system From queueing theory [23]1, we know t hat

=>
1l

E{idle peri od)

A - o) Efm)

where E{n} is the expected nunber of jobs being served in each busy

period, and furthernore

10



wher e

S
n

(v - U

& i-1

Recal | \A is the service ti ?ﬁ of the i;h customer and Ui is t.he in-
terarrival tinme between the i and i-1 customer. The expression for
E{n} can be sinplified to 1/(1-p) when the interarrival tineg, Uy has
exponential distribution, i.e., the systemis MGI. In general, it can
not be sinmplified. W wll use the conditions that the integration of
probability density function over the range X > 0 should equal to one
to obtain an estimation of the holding time, h. To account for the fact
that, after an arrival to the enpty queue occurs the nunmber of custoners
in thg queue junps instantaneously to one, We need to add an extra term
-(1L-p)/hd(X=-1), to the right hand side of (2.1) and an extra boundary
equation (2.3), as explained bel ow.

Now we have the followi ng equations

a o 3 a - o)
3 y P(X) - B '5}—(' P(X) = - h 5(X - l) (2.2)
and
, a a _QaQ -0
[im [-2- X P(X) - BP(X)I = (2.3)

X->0

where 8(X -1) is a Dirac density function concentrated at X = 1 and
represents the probability density function of the point from which the
diffusion process starts once again inmediately after a junp. Notice

(1-p)/h is the product of the probability at the boundary and the rate
of jumping back from the boundary, i.e., (1-p)/h represents the nean

rate of jumping back to (0,0). (a/2)(3/3X) P(X)-@(X) has the phys-
ical interpretation as the rate of flow of the probability mass from the
region (0,o0) to the boundary 0. This explains the boundary equation.

11



Simlar arguments can be given to the correction termin (2.2). For a
more detailed argument, see [5,7].
Let us denote

r = _2_6 =2(u = N) -2(1 - p)
a 027\3+023_°(C + C)
a
where
2
C =g¢ 7\2
a a
2 2
CS = Gsu

c, and CS are called the squared coefficient of variations of the in-
terarrival tine and service time, respectively.
Solving the differential equation (2) with boundary condition (3)

and  limP(X) = 0, we get
X-0
1 - p) , rX _
-, ;T (e 1) 0<Xx<K1
P(X) =
L(lh;ﬁp) [1 - e 7] erX X>1

To conpute h, we use the fact that

(1—p)+f P(X) dX =1
0

and yield, when r <0 (i.e., p<1),

As we can see, the estimation of the length of idle period by diffusion
approximation is only exact for the MGEI system

Finally, we face the problem of discretization of the probability
density function in the neighborhood of integer valued points X =i in
order to approximate T the stationary probability of finding i cus-
tomers in the queueing system Usually there are three choices for T

12



i i+l i+l/2
(1) fi_l P(X) dX, (2) fi P(X) dX, (3) fi—1/2 P(X) dX. Here, we
choose the first alternate, since it leads to nore accurate approxim-

tion than the others under our nethod.

Let
110=1—p
i
ﬂ|=f P(X) dX for i >0
i-1
V& get
(JTO=1-'D
DZ(CS+Ca)r
<T[1=W(e '1'r) (24)
ofc v ) L2
ﬂizwe 1 -e ) 122

-

The nean queue |ength under stationary distributions is

% [ o(C_+ C)
E(Q)Z in, =p 1+ —o——— (2.5)
i=1 1 L 2@ P)

13



3. ACCURACY ANALYSIS OF DI FFUSI ON APPROXI MATI ON BY ASYMPTOTI C TECHNI QUE

In this section, we analyze the asynptotic errors of the mean queue
I engt hs obtai ned by various diffusion approximation techniques for the
M G| system and the E2/M/1 system where analytic solution of the mean
queue length is available as p—-1. Cdearly, it is an inportant require-
ment for an approximation technique which are designed to handl e general
distributions for service tine or interarrival time to give accurate ap-
proximation on those cases for which solutions are known. These error
anal yses certainly have inmportant inplications on the accuracy of the
approxi mation for queueing systems whose service time and interarrival
time distributions do not deviate too far from those of the MGI or
E2/M/1 system The advantage of asynptotic analysis is that we can ob-
tain a closed form expression for the error term and the order of the
error can be clearly expressed in terms of the power of (I-p) which
gives us a clear picture of the dependency on heavy traffic assunption.
Various diffusion approximtion techniques have been proposed to handle
tﬁé single server systens. The two nopst noteworthy methods are proposed
by Reiser and Kobayashi [10] and Cel enbe [6]1, respectively. Since there
is not any conprehensive study of the relative accuracy of the two meth-
ods, we will analyze not only the proposed nmethod but also the two meth-
ods mentioned above. Qur method inproves the accuracy in both cases.
The mean queue | ength obtai ned under Kingman heavy traffic approxination
[81has been proved to provide an upper bound on nmean queue |ength [18].
The result holds for 0 < p <1 and inproves to be a tight upper bound
as p-1. The upper bound will also be analyzed for conparison. And we
shall see this upper bound is quite tight in both cases. Fromthen on,

we will denote

(1) Method P: the proposed method

(2) Method A: the diffusion approximation technique proposed
by Kobayashi [10]

In this approximtion nmethod, we have
2.3 2 3
Q= 0N +0p
a ]

14



B=p-=A

The boundary at X = 0 is treated as a reflection boundary.
By setting the probability nass at the origin to be I-p
and sol ving the Fokker-Plank equation (2.1), the foll ow ng

stationary queue length distribution and nmean queue |ength
i s obtained.

(a) Stationary queue length distribution

ﬂo =1-p
(3.1)
no= ol - B pi-t for 1i>1
wher e
2(1-p)
A CS+pCa
p=e
(b) Stationary nean queue length
. P
E(Q,} = (3.2)

©>

(3) Method B: the diffusion approximtion technique proposed
by Gel enbe [5]

As noted earlier, method P follows the argunent in method
B to handle the boundary condition, but the diffusion pa-
ranmeters in the two methods are different. The diffusion
parameters in nethod B are

2.3 23
=0 N +0 U

a S
B=p-A

Hence, the stationary queue length distribution is

p(pca + CS)

r
1= 2@ - & -1-71)

15



<}

ir -r
T _ e (1 ~¢e ) i>2 3 .3)
=20 - P - Cont .
wher e
r=28_ 20 =N
e 2.3 2 3
oON +0 1
a
and the nean queue length is
pC, + C_
E(QB}=p1+2—(1_—p)- (3.4)
Notice the Kingman's upper bound on nean queue |ength [18] is
c, + csp2
E{QK] = ZW'F p (3.5)

i

As we shall see, in the MGI system the nmean queue |ength obtained
by nmethod P is exact and those obtained by methods A and B have an abso-
|ute error around p(cS -1)/2 and pCS/Z, respectively. Hence, the
performance of methods A and B will degrade as the coefficient of varia-
tion of the service time increases, e.g., when CS equals 64 and p
equals 0.8, the relative errors of both nethods are around 25% In fact,
under heavy traffic condition the nean queue |engths obtained by nethods
A and B are larger than the Kigman's upper bound on nean queue |ength
when Cg is larger than 3. In the E2/M/1 system again, the nmean queue
| ength obtained by nethod P is nore accurate. The result from nmethod A
is very close to that from method P. Examining the asynptotic expres-
sions for the nmean queue lengths of both methods, we find their differ-
ence is proportional to (1-p). The nean queue length obtained by
method B is less accurate and is quite close to the Kingnman's upper
bound on nean queue |ength.

We will first prove the following |emma, which is the foundation of
the analysis on nmethod A

16



Lerma 1. The asynptotic nean queue |length obtained under nethod A will

satisfy
E{Q,} = —L£
A 1 - 8
p(C_ +pC.)
s -1 . p o) 1 32
= , (1-p) "+ 5+ GTEZ'17§2;} 1-p)+ ()61 P) )
(3.6)
wher e
2(1-p)
n cs+pca
p=e (3.7)

Pr oof .

Usi ng the Taylor series expansion for eX, i.e.,

e_=1-X+5-$-+0(X4) as X-0

h

we obtain, as p—1, from(3.7)

_ 2Q1-p)
C +0C
1-p=1-e a

2 3
[, 2@-o + 20 -7 4+ 4@ - o) +061_p)4>

C +pC 2
s a (Cs + pCa) 3(Cs +pCa)
2(1-p) 1-p . 2(1 - p)2 3
— m 1 - C +oC + 0((1 - p) ) (3.8)
S a S a

3(Cs-+DCa)

Using the Taylor series expansion of

2
1—}7=1+x+x + o) as X-0

17



[ 2

we obtain, as p-1, from(3.8)

p(cS + pCa)
2(1 - p)

s (e o 2a-0% Y
"\t 7oc ~ 7 PO P
s a 3(Cs +pCa)

ALY (P ST PP
21 - p) G +pG. 3(cs+-pca52 (c, +pC))

1

p(Cs+Ca) 1 0 0 5
=7 (-0t 3YEE e (1P *0('1"”)

3.1 Mean Queue Length for MGl System

The mean queue length of the MGI| systemis given by the well known

Pol | aczek- Khi ntchine fornula

The nean queue |ength obtained by the proposed nmethod is given by
(2.5). Setting c, equal to one, since the arrival process is Poisson,
we find that the mean queue length given in (2.5) is exactly the Pollac-
zek-Khintchine formula. That is to say, we predict the mean queue |ength
exactly for the MGI| system Let us examne the asynptotic performance
of nethod A and nmethod B in this case. FromLema 1, we get the nean
queue |l ength under nethod A by setting c, =1

p(C_ + o)

-1 2
EQQ, ] =52—(1-p) +%+6—(—CS_DT—53(1_D)+O((1'D))

and the absolute error is

18



2
E{QA}_E{Q}=%(C5-1)+6(Cp—+p)(1-p)+0<(l—p)>
s

From equation (3.4), we get the nmean queue |ength under method B,

by setting c, = 1,

2 (p +C)
Blogl =Pl * 3@y

and the absolute error is

PC
B(Q,) - E{Q) = >

Si nce
b ___ 0 - - )2
E{QB} - E{QA} =3 6(% - p)(1 P) + O Gl 0) )

met hod A and nethod B have sinmilar performance when CS is large.
From equation (3.5), we get the Kingnman's upper bound on mean queue

I ength, by setting ca =1,

-and the absolute error is

B ) - EQ =5 A+ P

As we can see, the Kingman's upper bound is quite acceptible under
the MG case and differs fromthe mean queue length by 1/2(1 + p).
Al'though the absolute errors under both method A and nethod B becone
large as the coefficient of variation of the service time increases, the
absolute error in the Kingman's upper bound is fixed. For € >3, the

mean queue |ength obtained by nethod A and nethod B is, in fact,

19



| arger than the Kingman's upper bound when the traffic is high. | s
examine the relative errors in both methods A and B as C, beconmes | arge.

The relative error for method A is

[ - 0 _ °
BlQ)-8@Q) z G "Vt ey @70 0((1 - 0 )
E B T+ C
Q} A S) L 2a - o)
2 1-p p(1 +CS)

200y b gy (o - o)
5 - = (@1 - p) + 0@ - p)
02(1 + CS) <2 ° 6(Cs * P) °

2(1—p o 2
G"HTT7i7+OQ1 p’»

21 - p) [p P ¢ 1 < 3
R =" F {E( -1)+ - A-p))+0((1-p
- 2a e 2 ‘s <6(Cs+p) c +1 P ©
c 1 / 2
s 2k7p- (50 -6)C -6C ) 9 3
IS R T (-0 +O((1-p) )
s p (1 +CS) (p+C&)

and sinmilarly the relative error for method B is

BlQ,) - @)  c 2,

= - i J— 2 3
E{Q) p(C +1 a P) — 1 - p) +O((1— )
s ) 02(1 +C )2 °)

As CS becones large, the relative errors for both nethods A and B
approach (1-p)/p.Hence, for pequals 0.8, the relative errors are 25%
as nentioned earlier (see Table 3.1). |n Tables 3.1a and 3.1b, sone nu-
merical conparisons of methods P, A and B are presented for C = 0,
1/5,1/4,1/3,1/2, 1, 2, 4, 8, 16, 32, 64, and 128, when o :0,9 and
0.8, respectively. This can be used as a check for the correctness of

the asynptotic analysis.
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Table 3.1a

MEAN QUEUE LENGTH FOR M G| SYSTEM WHEN p=0.9

Method P
Cs (Exact Result) Met hod B Met hod A
128 523. 35 580. 95 580. 50
64 264. 15 292.95 292.50
32 134.55 148. 95 148. 50
16 69. 75 76. 95 76.50
8 37.35 40. 95 40. 50
4 21.15 22.95 22.50
2 13. 05 13.95 13.51
1 9.00 9.45 9.01
1/2 6. 97 7.20 6.76
1/3 6.30 6. 45 6.01
1/4 5.96 6.07 5. 64
1/5 5.76 5.85 5.41
0 4,95 4. 95 4,52
Table 3.1b

MEAN QUEUE LENGTH FOR M G| SYSTEM WHEN p = 0.8

Met hod P
cs (Exact Result) Met hod B Met hod A
128 207. 20 258. 40 258. 00
64 104. 80 130. 40 130. 00
32 53. 60 66. 40 66. 00
16 28.00 34. 40 34.00
8 15. 20 18. 40 18. 00
4 8. 80 10. 40 10. 00
2 5.60 6. 40 6.00
1 4.00 4.40 4.01
1/2 3.20 3.40 3.02
1/3 2.93 3. 07 2.69
1/4 2.80 2.90 2.53
1/5 2.72 2. 80 2. 43
0 2.40 2.40 2.03
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3.2 Mean Queue Length for EZ/M/l Syst em

In the GMI queueing system the stationary distribution of nunber

of customers in the systemis given by [9]:

1y = (1 - a)
(3.9)
n, = e -2a) ! k> 1
where o is the unique root of
o = A¥(p - po) (3.10)

and A*(s) is the Laplace Stieltjes transform of the interarrival tinme

distribution. Furthernore, the nmean queue length is given by

E(Q) = 2— (3.11)

]

When the interarrival time distributionis the 2-stage Erlang dis-

tribution, we can get a closed form solution for o, i.e.,

U=4p+1-2'\]8p+1 (3.12)

Before we proceed to conpare the asynptotic behavior of various
di ffusion approxinmation techniques, we wll first prove the follow ng

| emma.

lemma. The steady state nean queue | ength of EZ/M/l systemw || satisfy

. - 5
E{Q}‘: p(l—p)1+_Q.+1—08-(1—p)+0((1-p)2) as p-o1

12

FNER

Pr oof .
From (3.12),

1-0:%(1-4p+~18p+1)
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Setting Z = |-p, after sinplification, we get

1 ( 8
1-0’—-2-<4Z 3 +3 /1 §-Z)

Using the Taylor's series expansion of N1-x, We get

e
1 4 8 2 32 3 4
l—o’=-§<4Z—3+3(1—-9-Z-§1-Z -72—92 +0(Z)>>
4 1 4 2 3
=§z(1—§z——8-i-Z+0(z)) (3.13)

Combi ning (3.12) and (3.13) together, we get

o
4 1 4 2 3
§Z(1“'§Z'8—1Z +0(Z))

E{Q} =

: . -1
Using- the Tayl or series expansion of (1-X) —, Wwe get

2
BlQ) = 32 Q + (%,— 7 4 gg T+ 0(z3)) : @—z R 0(23)) ; 0(Z3)>

=§-E <1 +?1)-Z +—§-Zz+0(zs))

47 81
_3% ,8 ., 5 2
=2z *13 *To8 P2 + 0@
Finally, substituting I-p for Z,  we get

3 -1 5 2
E{Q}=Zp(1-p) +-192-+-f(')—8p(1-p)+0((1-p))
From equation (2.5), we get the mean queue length under the proposed
method P, by setting c, = 1/2, CS = 1,
3 2 -1
E{QP}=D+ZO a-p
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and the absolute error is
1 5 2
E{Qp}-E{Q]=§D-mp(l-p)+O((l-p))

Furthernore, the relative error is

B(Q,)-EQ) 7

EQQ]}

p--l%o(l-p)+0((1-o)2)

%(l-p)—1+1%+0((1-p)>

(I

5 2
p—Tp(l-p)+0 1-0
= 108 ( i > (1-; (l-p)+0((1-p)2)>
3 -1
Zp(l - P

I
N

(l-p)-gl-(l-p)2+ 0((1-0)3>

]

From Lemma 1, we get the mean queue length under nethod A, by set-
ting C, = 1/2, c = 1,

1
p(l 32 p) 1
= -1 0 p(1 - p) 2
E{QA}-—Zi (1 - p) +§+6—1-——i—'+06(1—p))
(t+ze)

and the absolute error is

=

B(Q,) - E@Q) =5 o + [ - 7= m1—m+oﬁl-mﬂ
6(1 +-2—p)

Furthernore, the relative error is

E{Q,} - E{Q}
A _ 2 2 7 2 3
E{Q} = g (1 - p) + — - -ST (1 - p) + 0 <(1 - p) )
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Prom equation (3.4), we get the mean queue |ength under nethod B,
by setting c,6 = 1/2, c, = 1,

2 -
E{QB}z(%p +—;—o)(1-p)1+p

.}

and the absolute error is

Efey) - E(@Q) = 3 0 - 705 0(1 - 0)

Furthernore, the relative error is

E{Q) - E{Q])
E{(Q}

©| oo

(1 -p)- %% (1 - 0)2 +0 Ql - p)3)

Prom equation (3.5), we get the Kingman upper bound on nean queue
I ength, by setting c, = 1/2, C, = 1,

E{Q.) = (% + % pz)(l -l

and the absolute error is
- {1 5 5 2
E{Qk]‘E[Q}—(Z'i'l—zp)'mp(l-p)'i'o((l'p))

From the above analysis, it is clear that the mean queue |ength
obtai ned by method P has mninum absolute error. The nean queue |ength

obtai ned by nethod A is very close to that by nethod P, since the dif-
ference is only a first order term The nean queue length obtained by

method B is less accurate. In fact, it is very close to the Kingman's upper
bound on the mean queue length under heavy traffic condition. The rela-

2
tive error under method P will approximately be 2/9(1-p) = 7/81(1-p)
i.e., 2.1% for p = 0.9 and 4.1% for p = 0.8, as can be checked with

Table 3.2. Method A has simlar performance. The relative error of
2 .
method B will be approximately 8/9(1-p) - 14/81(1-p)”, i.e., 8.7%
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for p = 0.9 and 17.1% for p = 0.8, as can be checked with Table 3.2.
Some nunerical comparisons of methods P, A and B are presented in Table
3.2 to check the correctness of the asymptotic analysis on mean queue
lengths and their errors under various diffusion techniques for the Ez/
M/1 system

b
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Table 3.2

MEAN QUEUE LENGTH FOR E2/M/1 SYSTEM

o Exact Result Met hod P Met hod B Met hod A
0.95 14. 331 14. 487 14. 962 14. 492
0.90 6. 829 6.974 7.425 6. 985
0.85 4.327 4.463 4. 887 4. 477

0. 80 3.075 3.200 3. 600 3.219
0.75 2.323 2.438 2.813 2. 460
0.70 1. 820 1.925 2.275 1.95
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~* length is available.

4. ACCURACY ANALYSIS OF DI FFUSI ON APPROXI MATI ON
BY SI MULATION AND NUMERI CAL TECHNI QUES

In the previous section, we analyze the accuracy of mean queue
| engths obtained by various diffusion approximation techniques for the
M G| systemand the EZ/M/l system where anal ytic sol ution of nean queue
Now we continue the accuracy analysis on mean queue
l engths obtained by various diffusion approximtion techniques for those
queuei ng systens where closed form expression for mean queue length is
not available. Either sinulation or numerical technique is enployed to
obtain an estinmation of the mean queue |ength, depending upon which way
is more convenient. Since simulation is only a statistical experinment
and its convergence is slow under heavy traffic condition, not only the
point estimation but also the 95% interval estimations are included to
give a better feeling on the accuracy or convergence of the sinulation.

In this section, we will concentrate on the cases where the coeffi-
cient of variation of the arrival process is less than 1. \Wen the co-
efficient of variation of the arrival process exceeds 1, certain anoma-
lies mght happen, as we shall see in the next section. W wll choose
Erlang distribution to represent the interarrival arrival time distribu-
tion since its coefficient of variation is less than one. To be nore
specific, the squared coefficient of variation of an n stage Erlang dis-
tribution is equal to I/n [9]. And we will use Erlang distribution and
hyper exponential distribution to represent the service time distribution
with coefficient of variation less than and greater than 1, respectively.
A two stage hyperexponential density function has the followi ng form

- X . X
w Ml (1 - w M2
u © M e
1 2
wher e
0<w<1

Apparently, it is the conbination of two exponential distributions with
mean M, and M,,, respectively. The probability of taking the first
branch is w, and that of taking the second branch is |-w.  Let us
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assunme M, <M1. After sinple manipulation, we can express and My
in terms of M,, M and C, where Mand C are the mean and squared

coefficient of variation of the distribution function, respectively.

o - mp?
w = 5 4.1)
- W - o + 2 (c o+ 1)
2 2 2
M= (@ - w M
M, = - (4.2)
Furthernmore, for any Mand C larger than 1, we can choose M,
arbitrarily except that it nust be in between 0 and M  The latter con-
straint will guarantee that the w obtained from (4.1) will lie in be-
tween 0 and 1, and the My obtained from (4.2) will be positive. Al -
t hough various conbinations of w, M, and M, will lead to the sane

mean and variance, the higher noments of the distributions can be quite
: differ:ént. Since ¢ can be chosen arbitrarily, we can get any value

of coefficient of variation larger than one by using two stage hyperex-
ponential distribution functions.

As pointed out earlier, all the results fromsinulations are ex-
pressed in terns of 95% confident interval estimations. For the En/Er/l
system the widths of the confident interval are less than 4% of the
point estimations. For the En/Hz/l system the width of the confidence
interval grows as the coefficient of variation and the traffic intensity
increases. Nevertheless, even in the worst situation, when o =128 and
o =0.80in Table 4.5 of the E2/H2/1 system the interval estination
of mean queue length is 203.7 * 21 and the nean queue |engths obtained
by nmethods P, B, and A are 206.4, 257.6, and 257.2, respectively. The
superiority of method P is apparent in this case. That is to say, in
all the cases where simulations are used, the sinulation results are ac-
curate enough to distinguish the relative performance of various diffu-
sion approximations. Qherwise, nunerical technique will be used.

W first examne the En/Er/l system Table 4.1 conpares the results
when p = 0. 85, CS = 0.5 and Ca =1/2, 1/3, 1/4 and 1/5. Method A
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| eads to the nost accurate result within 3% relative error. Method B is
inferior to the other techniques and can have a relative error at |east
up to 17% Method P always has an error |ess than one half of the error
in nethod B. Table 4.2 contains the results when p = 0.8, CS = 0.5,
and ca =1/2, 1/3, 1/4, 1/5. Simlar patterns are again observed. As
we shall see, the case where both coefficients of variation of interar-
rival time distribution and service time distribution are small, i.e.

t he En/Er/l system where both coefficients of variation are |less than or
equal to 0.5, is the only case where nethod P does not yield the best

approxi mation

Let us now exanmine the Er/Hz/l system This is one of the cases
where nmethod P is nuch supreior to nethods A and B. Table 4.3 contains
the results when p = 0. 85, Ca = 0.5, CS =2, 4, 8, 16, 32, and 64
The relative error of approxi mate nean queue |ength under method P is
always very small in all the test cases. Methods A and B have very sim-
ilar performance, and their relative errors can be at |least up to 20%
when p = 0.85. If we look at the table more carefully, we nmight find
that the absolute errors in the approximte mean queue |ength under meth-
ods A and B are very close to (p/Z)CS. These are exactly the asynptotic
absolute errors of approximate nean queue |engths under nmethods A and B
inthe MGE! system Again, we observe the robustness of nethod P when
the coefficient of variation of service time distribution is |arge. Ta-
ble 4.4 conpares the results for p = 0. 85, c,6 = 1/3, cS = 2, 4, 8,16,
32, and 64, and Tables 4.5 and 4.6 conpare the results for c, = 0.5,

Cs =2, 4, 8, 16, 64, and 128 when p = 0.80 and p = 0. 75, respec-
tively. Simlar pattern is again observed

Finally, we use nunerical techniques to study the GI/M/1 system
nanely the ES/M/l systemand the D)M1| system The E2/M/1 syst em has
already been analyzed in Section 3, and we pointed out in (3.11) that
the nmean queue |length of the GI/M/1 systemis p/(1-0c) where o is
the solution of the equation A*(u=- po) = 0. For the Ez/M/l system
this equation is a second order equation, and we have a closed form for
the root. But, for the ES/M/l and DM | systens, the equations are
third order and transcendental equations, respectively; so we have to
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Table 4.1

MEAN QUEUE LENGTH FOR En/Er/l SYSTEM WHEN o = 0. 85
ca Cs Si mul ati on Met hod P Met hod B Met hod A
1/2 1/2 |[331240 + @.039 3.2588 3.411 B.069
1/3 1/2 2.694 + 0.033 2. 857 3.069 2.672
1/4 1/2 2.478 + 0.024 2. 656 2. 869 2.473
1/5 1/2 2.347 = 0.024 2.536 2.748 2. 355

Table 4.2

MEAN QUEUIE LLEEEﬂ(E‘FHFEB?EEn/Er/lsSSSBEEIEM\MEN o = 0.80
ca CS Si mul ati on Met hod P Met hod B Met hod A
1/2 1/2 2.295 + 0.022 2. 400 2. 600 2.230
1/3 1/2 1.986 £ 0.016 2.133 2.333 1. 968
1/4 1/2 1.840 % 0.013 2. 000 2. 200 1. 838
1/5 1/2 1.750 £ 0.013 1,920 2.120 1. 760
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Table 4.3

MEAN QUEUE LENGTH FCR E2/H2/1 SYSTEMWHEN p = 0.85
CS M/M Si mul ati on Met hod P Met hod B Met hod A
2 2 6.74 + 0.19 6. 87 7.72 7.3
4 3 11.52 + 0.43 11.69 13. 39 12. 97
8 5 20.77 * 0.87 21.32 24.72 24. 30
16 9 40.63 * 2.54 40. 59 47. 39 46. 46
32 17 79.63 * 6.46 79.12 92.72 92. 30
64 33 152.3 + 14 156. 2 183. 4 183.0
Table 4.4
MEAN QUEUE LENGTH FOR ES/H2/1 SYSTEMWHEN p = 0.85
CS M/M Si mul ati on Met hod P Met hod B Met hod A
2 2 6.26 *+ 0.14 6. 47 7.32 6.90
4 3 10.97 + 0.35 11.29 12.99 12. 57
8 5 20.25 + 0.97 20. 92 24.32 23.90
16 9 40.20 * 3.02 40. 19 46. 99 46. 56
32 17 78.8 + 6.9 78.72 92.32 91. 89
64 33 152.0 + 14 155.8 183.0 182.6
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Table 4.5

MEAN QUEUE LENGTH FOR E2/H2/1 SYSTEM WHEN p = 0.80
cS M/M2 Si mul ation Met hod P Met hod B Met hod A
Y2 2 4.67 %+ 0.09 4. 80 5.60 5.21
4 3 7.83 + 0.22 8.00 9.60 9.21
8 5 14.11 + 0.53 14. 40 17. 60 17. 20
16 9 27.24 + 1.39 27. 20 33.60 33.20
32 17 52.95 + 3.02 52.8 65.6 65. 2
64 33 102.4 + 8 104.0 129.6 129.2
128 65 203.7 + 21 206. 4 257.6 257.2
Table 4.6
MEAN QUEUE LENGTH FOR Ez/Hz/l SYSTEMWHEN p = 0.75
cS M/M Si mul ati on Met hod P Met hod B Met hod A
2 2 3.44 + 0.05 3.56 4,31 3.95
4 3 5.67 + 0.12 5.81 7.31 6. 94
8 5 10.08 * 0.32 10. 31 13.31 12.94
16 9 19.27 + 0.83 19. 31 25. 31 24.94
32 17 37.39 + 1.92 37.31 49, 31 48. 94
64 33 73.02 + 4.73 73.31 97.31 96. 94
128 65 146 = 14 145.3 193.3 192.9
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use nunerical techniques to find the root. After sinple nanipulations,

we get the followi ng equations:

03 - (2 +9p) 02 + (1 +9p +27p2) o - 27p3 =0 for the E3/M/1 system

and

e _ Lo for the D'M| system

In Tables 4.7 and 4.8, we conpare the nean queue |engths obtained
by nunerical technique with those by various diffusion approximtions
for the E3/M/1 and DM systens, respectively. Again, nethod P is the
nore accurate approxinmation nethod. The mean queue |ength obtained by
method A is very close to that by nethod P. The relative error in neth-
od B can exceed those in methods A and B by 25% in some cases. Recall
sim | ar phenonmenon appeared in our analysis on the E2/M/1 systemin Sec-
t &n 3.
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MEAN QUEUE LENGTH FOR E3/M/1 SYSTEM

Table 4.7

0 Exact Result Met hod P | Method B | Method A
0.95 12.775 12.983 13. 458 12.989
0.90 6. 106 6. 300 6. 750 6.312
0.85 3.881 4. 061 4. 486 4.078
0.80 2.768 2.933 3.333 2.954
0.75 2.098 2. 250 2.625 2.275
0.70 1. 650 1.789 2.139 1.817

Table 4.8
MEAN QUEUE LENGTH FOR DM | SYSTEM

o Exact Result Met hod P Met hod B Met hod A
0.95 9.664 9.975 10. 450 9.983
0.90 4. 661 4. 950 5. 400 4. 965
0.85 2.991 3.258 3.683 3.280
0.80 2.154 2. 400 2. 800 2. 427
0.75 1. 651 1. 875 2.250 1.906
0.70 1.313 1.517 1.867 1.551
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5. ANOVALY WHEN THE COEFFI CI ENT OF VARI ATION OF
| NTERARRI VAL TIME IS URGER THAN ONE

In this section, we investigate the nean queue length of the queue-
ing system where the coefficient of variation of the interarrival tine
m:\is larger than 1. W will use the H2/M/1 system as an exanple to denon-
strate the anomaly since this is the case where analytic result is avail-
abl e. In the MG system the mean queue length is given by the Pollac-
zek-Khinchin formula (3.7), and it depends only on the nean and vari ance
of the service time distribution and the nean of the interarrival tine
distribution. This seems to be a support of the robustness of the dif-
fusion approximation which only utilize the nmeans and variances of the
interarrival time and service tine distributions to fit the parameters
@ and B of the Fokker-Plank equation and neglects the effect of higher
moments of the distributions. However, after examining the H2/M/1 sys-
tem we will find that higher noments of the interarrival tine distribu-
tion do have a drastic effect on the mean queue length as the traffic
int:e"nsity, p, deviates from 1l. Since the two-stage hyperexponenti al
distribution function is usually used when the distribution function is
required to have high coefficient of variation, and is often encountered
in conputer system nodelling, we wll further analyze the regularity
conditions on hyperexponential distributions for the diffusion approxi-
mation to be applicable. That is to say, we are interested in identify-
ing the ranges of the paraneters of the two-stage hyperexponential dis-
tribution when being used as the interarrival time distribution such
that the performance of the queueing system e.g., the mean queue |ength,
can be estimated by the diffusion approximtion accurately. It should
not be too surprising that the ranges will shrink as p decreases or C,
increases. Recall the form of a two-stage hyperexponential distribution
is (W) e XM, (1 - w)/M,) e—x/Mz, where M, < M ., The relations
among the parameters are given in (4.1) and (4.2) with M= 1/A.

From Tabl e 5.1d, we observe that by choosing different w, Ml, and
M,, the nean queue |length varies over a wide range from624.62 to 23.48

when p = 0. 95, Ca = 64. Let us take a closer look at w, M and M2

1)
at two extrenme cases:
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32. 818 M 0.01 w = 3.018 x 10

Case 1: M
6

0.99 w = 3.175 x 10"

Case 2: M 3151.0 M

In both cases, the nean of interarrival time is 1, and the variance or
the square coefficient of variation is 64. For the interarrival tine
“distribution in Case 2, as we can see, M, is so close ;F the mean in-
terarrival tine, the first exponential density, uJ./Ml e M , has
almost no effects on the nean interarrival time and only affects the va-
riance. This is the reason why the nmean queue |ength under the interar-
rival tine distribution in Case 2 is alnost equal to the mean queue
length in MMI| which is equal to 19 when p = 0.95. That is to say,
al t hough havi ng Ca equal to 64, the H2/M/1 systemin Case 2 behaves
very much like an MMI| system The interarrival tinme is generated ac-
cording to the first exponential density w/Ml e_X/Ml so infre-
quently that we nmay ignore it when evaluating the performance of the
queueing system But in Case 1, M, is so close to zero, the first
exporential density not only affects the variance of the interarrival
time but also its nean. This is the reason why the mean queue length
becomes so high, 624.62. The inportant fact to realize is that a large
coefficient of variation does not necessarily mean that we have a |ot
of short interarrival times, and the fluctuation is quite high, as in
Case 1; it may also mean there is few very long interarrival tinme which
makes the coefficient of variation |arge wthout having serious effect
on the fluctuation of the system

Let us take a look at the nean queue length predicted by the diffu-
sion approximations. It is around 587 by all three methods. This is
quite close to the result under the interarrival time distribution in
Case 1. This is not a surprise since mean queue length calcul ated by
di ffusion approximation is fairly close to the Kingman's upper bound on
mean queue length as pointed out in Section 3. Wat we are interested
inis, can we decide the applicability of diffusion approximtion to the
queuei ng system by just examning the paraneters of the distribution
Surely, the applicable range will be affected by p and C,_. I'n Tabl es
5.1a through 5.1d, the nean queue | engths of the HZ/M/l systens are tab-
ulated for various conbinations of M/M M2/M, w which lead to the
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Tabl e 5.1a

MEAN QUEUE LENGTH WHEN C, = 2

Mean Queue Length
Ml/M MZ/M w

6=095 | o=085
1.5051 | 0.01 | 6.622 x 10°t 28.53 8. 50
1.5263 | 0.05 | 6.435 x 107+ 28. 48 8. 48
1.5556 | 0.1 6.183 x 10-1 1 95 45 8. 45
1.6250 | 0.2 5.614 x 10T 28. 39 8. 39
1.7143 | 0.3 | 4949 x10-1 28.33 8. 34
1.8333 0.4 4.186 x 1071 28. 26 8.27
2.0000 | 0.5 | 3.333x10°% | 2817 8. 19
2.2500 | 0.6 2.424 % 1071 28. 06 8. 10
2.6667 | 0.7 1.525 x 107* 27.90 7.96
3.0000 | 0.75 | 1.111 x 10°* 27.79 7.87
3.5000 | 0.8 7.407 x 1072 27.63 7.47
6. 0000 0.9 1.961 x 1072 26.91 7.29
11. 000 0.95 4.975 x 10°° 25.76 6.78
50. 998 0.99 | 2.000 x 107 21.87 5. 97

38




v Y

Tabl e 5.1b

MEAN QUEUE LENGTH WHEN % = 8

Mean Queue Length

M, /M M2/M
pP=0.95 | p=0.85

4.5354 | 0.01 .188 x 10 - 85. 55 25. 47
4.6842 0. 05 . 050 x 10 - 85. 35 25. 32
4.8889 | 0.1 .880 x 10- 85. 12 25.12
5. 3750 0.2 546 x 10 84. 67 24. 67
6.0000 | 0.3 .228 x 10 - 84. 11 24.12
6. 8333 0.4 .326 x 10 83. 39 23.43
8.0000 | 0.5 667 x 10 82. 42 22.51
9.7500 | 0.6 372 x 10 81. 02 21.21
12. 667 0.7 .507 x 10 - 78.79 19.25
15. 000 0.75 754 x 10 - 77.03 17.83
18. 500 0.8 .130 x 10 - 74. 49 15.96
36. 000 0.9 .850 x 10 62. 89 10.53
71. 000 0.95 .138 x 10- 45. 94 7.70
351. 00 0. 99 .857 X 10 - 23.16 6. 00
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Tabl e 5.1c

MEAN QUEUE LENGTH VHEN Ca = 32

Mean Queue Length
Ml/M M, /M w

o = 0.95 o = 0.85
16. 6565 0.01 5.947 x 10_2 313. 65 93. 37
17. 3158 0.05 5.502 x 10-2 312.76 92.70
18. 2222 0.1 4.966 X 10_2 311.81 91.79
20. 3750 0.2 3.965 x 10_2 309. 69 89. 68
) 23. 1429 0.3 3.064 x 10-2 306. 98 87.01
26. 8333 0.4 2.270 x 10_2 303. 47 83.51
32. 0000 0.5 1.587 x 10 -2 298. 61 78. 65
39. 7500 0.6 1.022 x 10-2 291.18 71.55
52. 6667 0.7 5.773 x 10 ° 279.13 60.11
63. 0000 0.75 4.016 x 10_3 269. 58 51. 45
78. 5000 0.8 2.574 x 10-3 255. 36 39. 67
156. 000 0.9 6. 447 x 10_4 187. 90 13. 23
311. 000 0.95 1.613 x 10_4 84. 62 7.98
1551. 00 0.99 6.452 X 10-6 23.43 6.01
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MEAN QUEUE LENGTH WHEN C,

Tabl e 5.1d

64

Mean Queue Length

Ml/M M2/M
6=095 | p=0.85
32.818 | 0.01 | 3.018 x 1072 | 624.62 184. 27
34.158 | 0.05 785 X 10 -2 616. 40 182. 61
36.000 | 0.1 507 x 1072 | 614.69 180. 73
40.375 | 0.2 991 x 1072 | 610.10 176. 40
46.000 | 0.3 532 x 1072 | 604,62 170. 85
53.500 | 0.4 113 x 1072 596. 79 163. 54
64.000 | 0.5 874 x 10°° 586. 57 153. 35
79.750 | 0.6 .054 x 10°° 571. 47 138. 28
106.00 | 0.7 850 x 1073 545. 90 113. 66
127.00 | 0.75 .980 x 1070 | 525.69 94. 63
158.50 | 0.8 1269 x 107> | 497.30 67. 99
316.00 | 0.9 T4 X104 347 83 14.10
631.00 | 0.95 | 7.936 x 107° 116. 30 8. 02
3151. 0 0. 99 175 x 10-6 23. 48 6. 01
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same nmeans and squared coefficients of variation, which are 2, 8, 32

and 64, respectively, when p = 0.95 and 0.85. M/M and M2/M can be
ewed as the normalized nmeans of the first exponential and second expo-
nential branches, respectively. As we can observe fromTable 5.1, as M2/M
increases, the mean queue length decreases. The nean queue |ength drops
sharply as MZ/M approaches 1. The larger the coefficient of variation
of the interarrival time is, the larger the variation of mean queue
length can be. Nevertheless, the mean queue |ength does not vary too
much over a substantial range of the value of MZ/M‘ This gives us sone
hope that diffusion approximtion nmay be applied in this case. In Tables
5.2a and 5.2b, the nmean queue | engths of the Hz/M/l systens when c =
2, 4, 8, 16, 32, and 64 are tabulated for p = 0.95 and 0.85, respec-
tively. The exactnmean queuel engths for M2/M = 0.2, 0.5, and 0.7 are
also included in Table 5.2a. Simlarly, those for M2/M = 0.1, 0.4, and
0.6 are also included in Table 5.2b. As we can see, various diffusion
approximations lead to simlar results and they provide reasonable ap-
proximations to the analytic results under those MZ/M rati os. Combin-
ing the results from Tables 5.1 and 5.2, we can conclude that, for p=
0.95, the range of M2/M where diffusion approximtion can be applied

is

'ﬁ< 0.75

wi thin 15% accuracy for c, < 64. This is a very conserved bound. \Wen
c, is close to 1, the applicable range is actually larger than the spec-
ified range. As we can see from Table 5.1a, for the case C,6 = 2 and
p=0.95, even when M2/M increases to 0.95, the variation of mean queue
length is not substantial, and the nean queue |ength fromdiffusion ap-
proxi mation (see Table 5.2a) is acceptable. As the traffic intensity,

o, decreases, the applicable range shrinks very quickly, as can also be

observed from Table 5.1. In the case p =085 the applicable range
i s around

M

5 < 06 to 0.65

with 15% accuracy for C <64,
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Tabl e 5.2a

VEAN QUEUE LENGTH FORLH,,/M/I SYSTEM VWHEN p =0.95

Anal ytic
C | Method P | Met 10d B | Method A
- My/M = 0.2 | My/M = 0.5|M,/M = 0.7
2 28.0 28.5 28.0 28. 4 28.2 27.9
4 46.1 46.5 46.1 47.2 46. 3 45.1
8 82.2 82.6 82.2 85.1 82.4 78.8
16 154. 4 154.8 154. 4 160. 7 154.5 145.7
32 298. 8 299.2 298. 8 309.7 298. 6 279.1
64 587.6 588 587.6 610.1 586. 8 544.9
Tabl e 5.2b
MEAN QUEUE LENGTH FOR H2/M/1 SYSTEM WHEN p = 0. 85
Anal ytic
C_ | Method P | Method B | Met hod
a My/M = 0.1 |M,/M =0.4 M/M=0.6
2 8.08 8.50 8.08 8.45 8. 27 8.10
.4 12.9 13.3 12.9 14.0 13.4 12.6
8 22.5 23.0 22.5 25.1 23.4 21.2
16 41.8 42.1 41.8 47.4 43.5 38.1
32 80.3 80.8 80.3 91.8 83.5 71.5
64 157. 4 157.8 157. 4 180. 7 163.5 138.3
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The mean queue lengths for nmore general service time distributions

under H, input are not available analytically. It is hard to do a thor-

ough investigation of the applicable range of diffusion approximation in

this case since the exact nean queue length can only be estimted through
l ong sinulations under heavy traffic condition or tedious nunerical tech-
niques. Nevertheless, we select certain conbinations of M, M,, wwhi ch
fall inside the applicable range of diffusion approximtion to H2/M/1
systens and simulate the mean queue | engths for several H2/H2/1 and H2/
Er/l systems. In Table 5.3, the mean queue |engths obtained by various

di ffusion approximations are conpared with that obtained by sinulations
for the Hz/Ez/l system when p= 0.85 and c, = 64, 32, 16, 8, and 4.
The second col um sz specifies the extra degree of freedomin the
interarrival time distribution and also is the criterion we use to test
the applicability of diffusion approximtion in the H2/M/1 system  The
simulation results seemto be quite close to the results obtained by
various diffusion approximations. Al three diffusion approximtion
techniques yield very sinmlar results. In Table 5.4, the mean queue
Iéﬁgths obtai ned by various diffusion approximtions are conpared wth
those obtained by sinulations for the Hz/Hz/l system when p=0.85 under
various conbinations of C  and C:§ The interarrival tine distribution

a

is assuned to have the same form as before. The service tine distribu-
. . o -X/M

tion is also assuned to have a simlar form as (w/Msl) e /M1 + ((1 -

e XMs2 yith nean 1/pu. The second colum is the same as that

w)/M_,)
in Table 5.3. The fourth colum is only used to specify the extra degree
of freedomin the service time distribution. The results under various
di ffusion approximations are again quite acceptable. Furthernore, neth-
ods B and A yield very sinmilar results, and the result from method P is
somewhat smaller. Recalling the asynptotic expressions for mean queue
lengths in Section 2, we know that the mean queue |ength obtained by
nmethod P is smaller than those obtained by methods A and B by (p/2) c .
This is indeed the case as can be checked from Table 5.4. Since the re-
sults obtained by methods A and B are closer to the Kingnman's upper

bound, the mean queue length obtained by method P seens to cover a w der
range of the paraneters of the distribution within £15% accuracy. That
is to say, method P seens to be preferable unless Mzk is very close to
0 for the Hz/Hz/l syst em
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Table 5.3

MEAN QUEUE LENGTH FCR H2/E2/1 SYSTEM WHEN p=0.85

ca %Mz Si mul ati on Met hod P Met hod B Met hod A
64 0.2 163 + 16 156. 2 156. 4 156. 0
32 0.2 83.5 £+ 5.5 79.1 79.3 78.9
32 0.5 71.9 + 6.3 79.1 79.3 78.9
16 0.15 43.5 + 3.1 40. 6 40. 8 40. 4
16 0.5 39.5 £ 2.6 40.6 40. 8 40. 4
8 0.3 22.6 £ 1.1 21.3 21.5 21.1
8 0.45 21.5 £ 0.8 21.3 21.5 21.1
4 0.3 12.2 + 0.4 11.7 11.9 11.5
4 0.5 11.5 £ 0.4 11.7 11.9 11.5
Table 5.4
VMEAN QUEUE LENGTH FOR H2/H2/1 SYSTEM VWHEN p =0.85
Ca NV, C, | WM, Sinul ati on|Method P|{Method B [Method A
64 | 0.2 64 (0.2 312 + 33 309 336 336
64 | 0.2 32 | 0.5 237 = 19 232 246 245
32 10.2 64 | 0.6 230 = 20 232 259 259
16 [ 0.3 16 | 0.3 74.8 £ 5.0 77.9 84.7 84.3
8 10.75 4 10.75]125.0 £ 1.4 29.8 31.5 31.0
410.6 410.6 18.4 + 1.0 20.1 21.8 21. 4
4 10.75 410.75|18.5 £ 0.6 20.1 21.8 21. 4
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Fromthen on, we will use the term"type A" hyperexponential dis-
tribution to denote the hyperexponential distribution having the property
t hat M2/M is not "close" to 1. W will be vague on the exact range of
the paraneters that type A hyperexponential distributions nust satisfy,
i.e., we only define it in a qualitative way, not in a quantitative way.
For nore conplicated queueing systens, the exact range of the paraneters
of type A hyperexponential distributions such that the diffusion approx-
imation can be applied to obtain a reasonable estimte of nean queue
length, utilization, etc. may be different, depending on the network
topology and traffic intensity at the server. But, as long as Mz/Mis
not far from zero, the approximtion should be applicable. Furthernore,
we will use the term"type B" hyperexponential distribution to represent
the other extrene, i.e., MZ/M is close to 1.

Al 't hough hyperexponential distributions have been used throughout
the section as interarrival tine distributions, we expect the results
should hold for other general distributions. That is to say, as long as
the high variation of interarrival tinme is due to a large number of short
interarrival times instead of a few very long interarrival times, diffu-
sion approximation should be applicable. Simlarly, the terms type A and
type B distributions are used to denote the two types of distributions
with high coefficients of variation, respectively.
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6. CLOSED TWO SERVER SYSTEMS (CPU/DTU MODEL)

After completing the discussion on diffusion approximtion to single
server systens, we now consider applying diffusion approxination to closed
two server systems, as shown in Fig. 6.1. In computer system nodelling
the closed two server systemis often used to represent the CPU (centra
processing unit) and DTU (data transfer unit) operating under fixed de-
gree of nultiprogramming. Fromthen on, we will call the tw servers CPU
and DTU, respectively. This nodel has been analyzed by Gaver and Shedl er
[2] using diffusion approximation with reflecting boundaries and usua
way to estimate o and B when the CPU service time which is the time
between page faults under this particular interpretation has exponential
distribution, i.e., when its coefficient of variation is equal to 1.
Later on, Gaver and Shedler [3] use wald's identity to fit the ratio of
2p/a  and anal yze the sane system when the CPU service tinme has hyper-
exponential distribution, i.e., when its coefficient of variation is
larger than 1. Gelenbe [5] al so anal yzed this systemusing the Feller's
elementary return process and the usual way to estimate diffusion param-
eters.

._______[]III:}—————;— ch‘—————-ﬁ [ | F————a— DTU

Fig. 6.1. CLOSED TWO SERVER SYSTEM (CPU-DTU SYSTEM.

The anomalies in Section 5 lead us to suspect the sanme kind of prob-
lenms may exist in the two server closed queueing networks if one or nore
servers have hyperexponential service time distributions. This is sinply
because the departure process of any server is the arrival process of the
other server. Before we proceed to investigate the anomalies, let us
first examine the various diffusion approximtion techniques on the two
server closed queueing network just nentioned in sonme detail. Ve will
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concentrate on the CPU system and try to estimate the utilization or the
mean queue |length of the CPU system This measure is of practical im
portance since it can be used as an indicator of the stationary system
performance. Assume the fixed degree of nmultiprogramming is M Let
P(X) be the stationary probability density function for the diffusion
process in (0,M), where X is the nunber of prograns in the CPU queue
And M X is the number of programs in the DTU queue. Furthernore, | et
us assune the mean service tinme of the CPU and DTU are 1/u and 1/A,
and the variance of the CPU and DTU are ci and 0;- respectively.

The first diffusion approximtion technique which we are going to
exam ne is the method proposed by Gaver and Shedler [2]. In this nethod ,

we have

02
+ SIJ

Q
I

o
>

o= A

w
I

as usual. Let F(X) be the stationary distribution function of the
‘queue length at CPU. Inposing a reflection boundary at X = 0 and nor-
mal i zing the probability mass between 0 and Mto one, we get

1 -pe™X
A = —
1 - Ae
wher e
Co 28 2 -N)
“a ~ 2.3 23

Ga7\ T OgH

by solving the Fokker-Plank equation (2.1). The unknown constant A is

chosen such t hat

limF0) =1 -p

M— o

After sinple nmanipulation, we get



Hence,

:1_perX

F(X) rM

l-pe

W will refer to this method as nethod G1 later on.

The second diffusion approxinmation technique is again due to Gaver
and Shedler [3] to handle the case where the coefficient of variation of
the CPU service time is larger than one. Let QS) be the laplace-
Stieltjes transform of the CPU service time distribution and H(S) be
the laplace-Stieltjes transform of the DTU service time distribution.
Furthernore, let S* be the positive solution of

G(-s) H(S) =1
By wald's identity, we get

= 2B _ *
r—a—lnG(S)

H

Following the same argunent as the previous nethod, we get

rX
KX = 1-Ae .
1 - Aef
Now, using the fact that the long run input rate to the CPU  AF(M-
1), nust equal to the long run output rate fromthe CPU  p(1 -F(0)),
we get

_ P
A =
1 +p e-r(M-l) - e ™

W will refer to this method as nethod G |ater on.

Finally, we consider the method proposed in Gelenbe [51 with a
slightly different argunent from [5] naking it coherent with Section 2.
Again, we refer to this nethod as method B.
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Now there are two boundaries: O and M  \en the nunber of pro-
grams in the CPU queue is M the DIUis idle and no new arrival will
occur. It is assunmed that the CPU queue length will jump to MI after
an exponential holding time with nean hM' This is simlar to the way
the boundary at X = 0 is handled in Section 2. The boundary at X=0
is still handled in the same way as in Section 2, where the nean hol ding
~fime i S assuned to be h,. As noted earlier, restricting the holding
time distribution on the boundaries to be exponentially distributed does
not nmean to inpose any restriction on the service time distribution of
the CPU or DTU. It is just a conceptual help for us to handle the bound-
ary conditions. Now we are facing a nore serious problemthan we en-
countered in the GI/G/1 system Here, not only the two nmean hol ding
times at the boundary X = 0 and X = M are unknown, but also the
probabilities of having enpty queue and full queue are unknown. As we
shal | see, the boundary equations can only be used to solve two unknowns,
i.e., we must find approxinmate values for two of the four unknown param
eters. Since the probability of empty queue is directly related to the
CPUutilization, a quantity of mmjor concern, we will try to find reas-
bnabl e estimations for h1 and hM the nean holding tines at the bound-
aries, and hope that the errors in these estimations will have mnor in-
fluence on other quantities of interest. Recall the GI/G/1 systemin
Section 2 where the approximate holding time at X = 0 obtained by the
di ffusion approximation is equal to 1/\, which is the nean interarrival
time. Hence, we wll set h0 equal to 1/A, the nean service time of
the DTU since, when the DTU is busy, the nean interarrival time to the
CPU is equal to the nean service tine of the DIU. By simlar argunent,
we will set h, equal to 1/u, the nean service tinme of the CPU.

M
At steady state, we have the follow ng equations:

2
/1 5 3 _
Eozgz-p(x) -B&.p(x)_—7\M16(X—1)-pM25(X—M+1)

=

o = P(X) - BP(X) = A

[im
X-0

]

Wil

N =

lim —a§x P(X) - BP(X)
X—- M
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where d(-) is the Dirac density function and 8(X-1) and 6(X- M+l )
represent the probability density function of the point from which the
di f fusion process starts once again imediately after a junp fromthe
boundaries 0 and M respectively; M and M, are the probability
masses concentrated on the | ower boundary and upper boundary, respec-
ot ively.
Furthernore, we have the follow ng boundary conditions:

limP(X) =1imP(X) =0
X0 X->M

Solving the above equations, we get

— (1 -e ™ 0<XxX<1
N P(X) = ( =2 (¥ - 1) &% | < X<M- 1 (6.1)
@ EM g M=-1<X<M
wher e
AM
W, = L [(M1)
2 U
and
r=2—6-
a

Al so, using

M
fP()QdX+M+M:1
o 2

we get

-1
M, =(1-p)1- pz(er(M‘1)> (6.2)
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A nore detailed derivation of the result is given in Gelenbe [5].
We will further consider the problem of discretization of the probabil-
ity density function in the neighborhood of integer valued point x =i
in order to approxinmte T the stationary probability of having i
jobs in the system The following way of discretization is proposed.

pone... }
T~ M
3/2
= J— P(X) dX
0
i+1/2
X = 'f P(X) dx 2<i<M-2
! 1-1/2
M
. = P(X) dX
M=1 7" Im32
ol Ty = My

After sinplification, we get

1
- o (1 |2 er(M—l))

Ty =
3
JTOp 1 - Er _ . r -r _ 1
o T - r + e + le e e
T,P (i+—;-)r -r2
T == ————e 1 -e for 2<i<M~-2 (6.3)
) | 1-p0)r -7 =
.0 - -
_ 0 r(M-1) (e r/2 e3r/2 -
"M 1 (L -p)r
r(M-1)
ﬂM_prrOe
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Inthe GG system we find that the accuracy of diffusion approx-
i mati on can be inproved by defining the diffusion paraneter g as 7\Ca+
HeC, where g is set to p, the traffic intensity or the utilization
of the server. For the closed two server system the utilizationofeach
server is not apparent. From experinental results, it seems to be that
setting g equal to AN/u for CS > 1 and 1 otherwi se nay inprove
the accuracy. W will denote this method as method P.

After examning the various diffusion approximtion methods, now
l et us consider the case where the coefficient of variation of the ser-
vice time distribution at the CPU is large, as is often the case. If the
service time distribution at the DTU is exponentially distributed, the
systemis analytically tractable since it can be viewed as a M G| queue-
ing systemwith finite waiting room[19]. W summarize the result for
stationary nean queue length as foll ows.

. =K =« for 1 < i <M

1 - KM(l - p)

M
th..l - 5
and
1
Ky = M-1
1 - p(l -‘E: ﬂi
i=0
wher e
Ttl\i,l is the stationary probability that the queue length is equal to
i when the capacity of the waiting roomis M
T, is the stationary queue length distribution of the MGI system

Hence, we will assune the service tinme at DTU has exponential distribu-
tion and use the analytic result to analyze the accuracy and applicabil-
ity of diffusion approximtion. The answer to the following three ques-
tions are of major interest: (1) Does the nean queue length or the
utilization of the CPU vary if type B hyperexponential distribution in-
stead of type A hyperexponential distribution is used for the service
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time distribution of CPU, (2) Does the diffusion approxinmation give a
reasonabl e approxinmation to the nean queue length and utilization when
type A hyperexponential distribution is used for service tine distribu-
tion of CPU, (3) Does the service tine of the CPU often have type A
hyperexponential distribution, i.e., we are nore interested in the ap-
plicability to conputer system nodelling
- The hyperexponential distribution of the CPU service time is as-
sumed to have to form (w/M,) XMy ((1 - w)/M,) e XM vith mean 1/u
wher e M, < M. Prom Tables 6.1 and 6.2, we see that the nean queue
length and utilization change as the paraneters of the hyperexponentia
distribution change. Simlar phenonenon on CPU utilization in the M@
/N systemis observed by Price [24]. As M, decrease, i.e., the num
ber of requests having short CPU interval increases, the analytic re-
sults becone very close to the results obtained by both diffusion ap-
proxi mati on nethods

Again, we see the diffusion approxinmation gives a good approximation
of the performance under type A hyperexponential service time distribu-
tion?- W also expect the results can be generalized to nore general dis-
tributions. That is to say, diffusion approximation wll be applicable
if the large variation of service tine is due to a lot of short service
times. If it is due to a few long service tines, diffusion approximtion
can only be used to obtain a |ower bound of the perfornance

The third question is hard to answer in general. In 3 1,three
sets of data on the CPU utilization and the mean and variance of the
CPU service tine, which is the time between page faults, are given. The
mean and variance of the CPU service tine are gathered from actual pro-
gram data. The results on CPU utilization are obtained by trace driven
simul ations of that queueing system The DTU service tine is assumed
to be constant to account for the average access tinme along with the
time to transfer a page of information. |In Tables 6.3, 6.4, and 6.5
we conpare the results obtained by three different diffusion approxina-
tion techniques, i.e., methods P, G and B, with the analytic result

obt ai ned by sem -Markov analysis [22]1. The paraneter M_,'s of the hy-

2
per exponential distributions taken in [3] are all less than four tenths
of their means, respectively, so they should be type A hyperexponentia

di stributions.
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Table 6.3

CPU UTI LI ZATI ON
1/u = 17026, o'z = 0.39780 x 1010, M, = 3682, 1/A = 20,000

punoer %;ngzf Semi - Markov | Method P | Method G | Method B
2 0.5316 0.4934 | 0.5093 | 0.4887
3 0.5548 0.5223 | 0.6667 | 0.5141
4 0.5752 0.5475 | 0.7064 | 0.5367
5 0.5935 0.5696 | 0.7326 | 0.5568
6 0. 6098 0.5802 | 0.7511 | 0.5749
7 0. 6245 0.6067 | 0.7650 | 0.5912
8 0.6379 0.6223 | 0.7757 | 0.6060
9 0. 6500 0.6364 | 0.7842 | 0.6195

10 0.6611 0.6491 | 0.7911 | 0.6318
Table 6.4

CPU UTI LI ZATI ON
o 9
1/u = 4871, a; = 0.26492 x 107, M, = 1929, 1/A = 20,000

punoer 2;Sf22f Seni - Markov | Method P | Method G |Method B
2 0. 2216 0.2169 | 0.2216 | 0.2022
3 0. 2286 0.2285 | 0.2313 | 0.2077
4 0. 2333 0.2350 | 0.2361 | 0.2124
5 0. 2366 0.2387 | 0.2388 | 0.2165
6 0. 2388 0.2408 | 0.2404 | 0.2201
7 0. 2403 0.2420 | 0.2415 | 0.2231
8 0. 2413 0.2426 | 0.2422 | 0.2258
9 0. 2420 0.2430 | 0.2426 | 0.2281
10 0. 2425 0.2432 | 0.2429 | 0.2301
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Table 6.5
CPU UTI LI ZATI ON

1/u = 10735, gi = 0.12313 x 1010 1w = 2053, 1) = 20,000

2
punoer 2;Sf22f Seni - Markov [Met hod P | Met hod G|Method B
2 0. 4076 0.3863 | 0.4249 | 0.3704
3 0. 4281 0.4147 | 0.4579 | 0.3887
4 0. 4449 0.4368 | 0.4764 | 0.4045
5 0. 4587 0.4544 | 0.4882 | 0.4183
6 0. 4702 0.4685 | 0.4964 | 0.4304
7 0. 4798 0.4799 | 0.5024 | 0.4410
8 0. 4879 0.4893 | 0.5070 | 0.4505
9 0. 4948 0.4970 | 0.5106 | 0.4588
10 0. 5006 0.5033 | 0.5136 | 0.4663
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As expected, the diffusion approximations are very close to the
analytic result, and nethod P seens to have better overall perfornmance
anong the three diffusion approximations. In Tables 6.6a, 6.6b, and
6.6¢c, we conpare all of themwith the results obtained by trace driven
simulations in [3], and the results are again very close. Hence, we can
say, at least in that conputer environnent, the assunption of having type
A hyperexponential service time distribution is very reasonable. Lews
and Shedl er [20], based on a statistical analysis of actual conputer
program address traces, presented a seni-Mrkov nmodel for the point pro-
cess of page exceptions. Although the detailed stochastic structure of
that nodel is nore conplicated, it does have the property that it con-
sists of a large nunmber of short interfault time simlar to that of type
A hyperexponential distribution.

For the case where the coefficient of variation of CPU is snall
(<1), nethods P and B are equivalent. In [5]1, conparison of methods B
and G1, with results obtained by semi-Mirkov analysis, shows that both
met hods are very accurate, and nethod Bis a little bit better.

The nodel in Fig. 6.1 can also be generalized to include a self |oop
at each server, as shown in Fig. 6.2. To account for the effect of the
self loop, we treat each server, including its self loop, as a single
entity and consider the effect of the self loop as an internal interac-
tion which is transparent to other parts of the system That is to say,
we will replace the server with a self loop by an equival ent* one without
a self loop. The interdeparture time of the equivalent server is, in
fact, the service conpletion time seen by DTU. The mean and variance of
the service time of the equivalent CPU are (1-6)/p and (cz/(l-e) +
e/(uz(l-e)z)), respectively. The two quantities are derived bel ow

m1-e ED:@__l—\!f

Fig. 6.2. CPU-DTU MODEL W TH SELF LOOPS.
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Tabl e 6.6a
CPU UTI LI ZATI ON

1/u = 17026, o° = 0.39780 x 10'°, 1/ = 20,000
-
MM | Trace | Semi-Markov | Method P|Method G|Method B
3 0.538 | 0.5548 0.5223 | 0.6667 | 0.5141
6 0.546 | 0.6098 0.5892 | 0.7511 | 0.5749
Tabl e 6.6b
CPU UTI LI ZATI ON
1/u = 4871, o> = 0.26492 x 10°, 1/\ = 20,000
) ':?n?g[)s ITrace Sem - Mar kov |Met hod P | Met hod G|Met hod B
3 0.227 | 0.2286 0.2285 | 0.2313 | 0.2077
6 0.229 | 0.2388 0.2408 | 0.2404 | 0.2201
Tabl e 6.6c

1/p = 10735, o

CPU UTI LI ZATI ON

2

= 0.12313 x 10°, 1A = 20, 000

Number | 1 oo | Seni-Markov | Method P | Method G | Method B
of Jobs
3 0.419 0.4281 0.4147 0. 4579 0. 3887
6 0.425 0.4702 0. 4685 0. 4964 0.4304
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Let N be the nunber of service conpletions at CPU in between jobs
arriving at the DIU (including the last one). Then, N is a geonetri-
cally distributed randomvariable with nean 1/(1-6) and variance 9/(1 -
9)2. Let X be the random variable which represents the service tine
of CPU and Y be the random variable which represents the service tinmne

o Of the equivalent CPU without self |oop. By assunption,

Bx}) =3 and  var(x) = o
Cearly,
E{Y} = E(E(Y|N})
= E{NE{X})
-1
T u@ -9

Using the identity for conditional variance [14], we get

]

var{Y} = E{Var(Y|N}} + var{E{Y|N}}

E{N var{X}} + var{NE{X})

s} + vaxft]

S + e
- 2 2
1 0 w (1 =-6)

Simlarly, we can derive the nean and variance of the service tinme of
equi val ent DTU without self loop. The nean and variance of the service
tinme are equal to (1-y)/A and (caz/(l—lj;) + w/(uz(l-\u)z)), respec-
tively. After obtaining the neans and variances of equivalent servers
wi thout self |oop, we reduce the nodel to the original closed two-server
queuei ng nodel .

When both stages have exponential service times, the nodel in Fig.
6.2 is equivalent to that in Fig. 6.1 with service rates p(1-6) and
A1 =-vy) at CPU and DTU, respectively. The forms of the service time
distributions do not change in this case.
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7. GENERAL QUEUEI NG NETWORKS

Finally, let us consider applying diffusion approximtion to ana-
lyze the performance of queueing networks. Kobayashi [10] proposed that
queuei ng processes of a general queueing network be approxi mated by a
vector-valued diffusion process. The interactions anong different que-
ueing processes are explicitly considered in the diffusion equations in
terms of the variance-covariance matrix. The joint queue length distri-
bution is expressed in a product form of the marginal queue size distri-
butions. This solution form suggests us to treat each queue separately
by properly taking into account the interaction anmong different queues
[12]. From our analytic and experimental data presented in the previous
section, we know the accuracy of diffusion approximtion is extrenely
good on single server system except for certain pathological cases given
in Section 5. So, the success on deconposing queueing network into sep-
arate single server systems solely relies on whether we can find a good
estimation of the coefficient of variation of the interarrival tine dis-
t¥ibution or the coefficient of variation of the interdeparture time
distribution at each server such that the correlations amng servers are
not ignored after deconposition. Two different nethods to estimte the
coefficient of variation of the interdeparture tine at each server have
been proposed by Reiser and Kobayashi [121 and Gel enbe [6]1, respectively.
The nethod proposed by Gelenbe tries to take into account the effect of
idle period on the coefficient of variation of interdeparture tine which
is neglected by the other method and seens to lead to better results.
Neverthel ess, this nmethod is nore conplicated in the sense that matrix
inversion is involved. In this section, we propose a sinpler way to es-
timate the coefficient of variation of the interdeparture time distribu-
tion than that by Gelenbe, yet the effect of idle period is taken into
account. The values obtained by both nethods are close to each other.
Furthernore, all the denonstrating exanples given by the previous auth-
ors to show the accuracy on deconposing queueing network into separate
queues using diffusion approximtion are under the condition that the
coefficient of variation is not large, mainly less than or equal to 2
We present an anonaly which has been overlooked in the past, i.e., cer-
tain network topology can only be deconposed into separate single servers
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when all the service times and external interarrival times are "nearly"
exponentially distributed. Wen the coefficients of variation of some

of the service time or external interarrival time distributions deviates
further from1l or the traffic intensity decreases, the deconposition of
this kind of queueing network will not be feasible if we still adopt the
conventional way to estimate the coefficients of variation of interde-
paxture tines or diffusion paraneters.

Let us first examine the nethod in [12] proposed by Reiser and Ko-
bayashi to estimate the coefficient of variation of the interarriva
time. In their treatnent, the coefficient of variation of the service
time is taken to be the coefficient of variation of the interdeparture
time as a sinple approxinmation. Furthernore, the departure processes
fromdifferent servers are treated as independent renewal processes
After considering the fact that the departure process of the |~ SEerver
are only active o percent of the tine, where o, is the utilization

of the ith server, they obtain the follow ng expression for C;, the

.th
squared coefficient of variation of the interarrival tinme of the !

Server:o
n
i_ 1 ES - . 1 p (7.1)
=5 . [(Cj TR
i J:O

Furt her nore, cj, the squared coefficient of variation of the interde-

parture tinme of the jth server, IS approximted by

C.=2¢ (7.2)
J S
wher e
. . . th .
xj is the arrival rate to the | server for j>1
xo is the external arrival rate
c? is the squared coefficient of variation of the service tine
® distribution in the jth server
. th
Pii is the routing probability that, after departing from the |

server, the job will join the ith server queue, for 3 =1

Py is the probability that the external arrival will join the
L Ith server queue
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Not i ce {xi} is the solution of the follow ng system of |inear
equat i ons

AN =P . + NP, 7.3
j:]. J Ji ( )

A detailed interpretation of this equation can be found in [13]. For
open queueing networks, (7.3) provides unique solution to {%i}. In
this section, all the queueing networks considered are assuned to be
open queueing networks. Extension to closed queueing networks follows
the treatment in [12].

CGel enbe [6] argued that Reiser and Kobayashi [12] did not put into
consi deration of the effect of idle period on the variance of the inter-
departure tine and assuned that the interdeparture tinme of the it ser-
ver, T., is a service time Si wi th probability p; Or an interar-
rival tine, A plus a service time with probability (1-oi)-

By straightforward manipul ation, we get

2 2 2 .
E{Ti} = E{Si} + Q- pi)<E{Ai} + ZE{Ai} E{Si}) for 1 <i <n
and by definition

E{T?} =22@ + ¢ for 1 <i <n
1 1 1 -
Combi ning the two equations together, we get

C. +1 = p?(ci +1) - (1-p_)(x?E{A?} + 2p_) for 1 <i <n (7.4
1 1 S 1 1 1 1 - -

Finally, making the assunption that the nunber of arrivals forms a
renewal process, we get
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n
2
Z [(c_ -1)P.. + 1] NP, = 7\:,3<E{A?} - (?\Tl) > for 1 <i <n
§ J I J ji i i i > =
j=0
After sinplification, we get the followi ng system of |inear equations:

n
w24 _ -1 z - ] -1
P = oi(cs + 1)+ (1 pl)<2;:>i + 1 4+ 7\i & [(cj 1) Pji + 1 ?«J,Pji>

for 1 <i<nm (7.5)

The assunption that Ty is equal to service tine, 8'1' W th prob-
ability o, or an interarrival time plus a service tineg, Ai +Si’ with
probability (1—pi) is exact only for Markovian queueing networks. In
Mar kovi an queuei ng networ ks, E{Ai} is equal to 2/)\? Hence, a sim-
pler approach is to further approximte E{Ai} by 2/7\?; then, we get
from (7.4) that

= C. = p%(cl - 1) + 1 (7.6)
1 1 S
That is to say, we can now directly express Ci in a closed formexpres-

sion, and the necessity of solving a system of |inear equations has been
elimnated. The value obtained by both nethods are very close, as we
shal | see.

Alternatively, we may consider the problemin the follow ng way.
Let € be the set of service centers whose custonmers after service com
pletion may go to service center A for further service. Since the ar-
rival rate to each service center in the open queueing network is known,
we first unfold the network but retain the connections from those service
centers in ¢ to A If Ais in €@, i.e., there is self loop at A
a duplication of A is used to replace the self loop. Then, we apply a
Poi sson input to each service center in € with the same arrival rate
as before and then calculate its coefficient of variation of interdepar-
ture time. Finally, treating each departure process as an independent
renewal process, we can obtain the coefficient of variations of the in-
terarrival time at service center A in this case. The coefficient of
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variation obtained will be used as an approximation of that of the orig-
inal network and is exactly the same as substituting (7.6) into (7.1).
For exanple, in the network given in Fig. 7.1, the appropriate subnet-
work for evaluating the coefficient of variation of the interarriva
tinme of the service centers 1 and 2 are given in Figs. 7.2a and 7.2b,
respectively.

4]

Fig. 7.1. OPEN TWO SERVER QUEUEI NG MODEL.

We now use the queueing network shown in Fig. 7.1 to conpare the
ci's, the squared coefficients of variation of the interdeparture tinme
at each server, by our straightforward nmethod, Gelenbe's nethod, and
Rei ser and Kobayashi's nmethod. Both authors [6,12] have used this net-
work to denmonstrate the accuracy of their approximations. |In Table 7.1
the colum under nethod P* contains the results of the proposed nethod
and the colum under nethod B* contains the results of the method pro-
posed by Gel enbe [6], and the colum under method A* contains the results
of the nmethod proposed by Reiser and Kobayashi [12]. As we can see, al
three methods yield the same answer when the network is a Mrkovian que-
ueing network. The estimates ofthecoefficientofvariation of the inter-
departure time obtained by our method and Gelenbe's nethodare al waysvery
close, as it should be since both methods try to incorporate the effect
of idle period on the coefficient of variation of the interdeparture
time. However, our method is much sinpler in conputation
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(a) First server

(b) Second server

Fig. 7.2. APPROXIMATE NETWORK CONFI GURATION FOR
ESTI MATI NG THE COEFFI CI ENTS OF VARI ATI ON OF IN-
TERARRI VAL TIMES FOR THE NETWORK IN FIG 7. 1.
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Table 7.1

THE SQUARED CCEFFI CI ENTS OF VARI ATIONS OF | NTERDEPARTURE TIMES (C,,
Cy) OF THE QUEUEING NETWORK IN FIG 7.1 WTH p, = 0.9, Py = 0.84

(a) 91=9 = 0.5

2
X ) Method P* Method B* Method A¢
Cs Cs
C1 C2 C1 C2 C1 C2
0.5 0 | 0.595 | 0.294 | 0.576 | 0.247 | 0.5 | o©

0.5 0.5 0.595 0. 647 0. 585 0.615 0.5 0.5
1.0 0.5 1.0 0. 647 0.991 0.632 | 1.0 0.5

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

() 6.=0.5 6.=0

1 2
9 Met hod P* Met hod B* Met hod A*
% % C c c C c c
1 2 1 2 1 2
1.0 0 1.0 0. 294 0. 965 0. 292 1.0 0
1.0 0.25 1.0 0.471 0.973 0. 469 1.0 0.25
1.0 0.5 1.0 0. 647 0.982 0. 646 1.0 0.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2.0 1.0 1.81 1.0 1.81 1.07 2.0 1.0
2.0 0.5 1.81 0. 647 1.80 0.711 2.0 0.5
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Let us apply the diffusion approximation techniques to analyze the
conputer conmunication network in Fig. 7.3. The network has the same

topol ogy as the communication network, Cl GALE, within CYCLADES [28] which
is a general purpose computer network being installed in France. Al the
terrestrial links are assumed to be full duplex. The numbers on the
terrestrial links represent servers and their queues. Thus, 3 refers to
ti{'g server which transfers messages fromnode C to node A and 2 refers
to the server which transfers nmessages in the opposite direction. Traf-
fic moving in the two opposite directions along the same link is assunmed
to be noninterfering. Each station receives external traffic which forms
a Poisson process. W also assune that each nessage arriving from out-
side to station i has equal probabilities of having any of the other 4
stations as its final destination. The routing algorithm of the networks
is assumed to be fixed and will be described later. Al the above as-
sunptions about the terrestrial network have been adopted by Celenbe [6]
in nmodeling the CYGALE network under packet switching.

9

3 42@

1

|

Fig. 7.3. COWPUTER COMMUNI CATI ON NETWORK.
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Let cHy be the channel capacity, the nunber of packets that can be
transmtted per second, of link i. The channel capacity of each |ink
is indicated in Table 7.2. The fixed routing algorithmis sunmarized in
Table 7.3. The routes which are not shown in Table 7.3 are the links ,
which directly connect the source stations and destination stations. The
nunber of packets contained in each message is assumed to be geonetri -
cally distributed with mean five. The external arrival rate at each
node is tabulated in Table 7.4.

The performances of the network under both message switching and
packet switching are analyzed. |In Table 7.5a, nean queue |engths at
each server under message switching by various approximtion nethods and
simulation are tabulated. Again, our method is denoted by method P
Gelenbe's nethod is denoted by nmethod B, and Reiser and Kobayashi's
method is denoted by nmethod A.  The sinulation results are presented
with 95% confidence intervals. In Table 7.5b, the correspondi ng squared
coefficients of variation of interdeparture time at each server by vari-
ous nethods are tabulated. Both methods P* and B® lead to sinilar re-
sults on the squared coefficients of variation of interdeparture tines.
The difference in nmean queue by nmethods P and Bin Table 7.5a is nainly
due to different ways being enployed in estinmating diffusion paraneters
The minor difference in estimating squared coefficient of variation of
interdeparture tine has very little effect. As we can see, nethod P
leads to better approximation. |In Table 7.6a, the nmean queue |engths
under packet switching obtained by methods P, B, A and simulation are
tabulated. |In Table 7.6b, the correspondi ng squared coefficient of va-
riation of interdeparture tine at each server by various methods are
tabulated. Not only the squared coefficients of variation of interde-
parture time but also the mean queue | engths obtained by method P and
method B are very close to each other. Furthernore, the mean queue
| engt hs obtained by both methods are very close to the simulation re-
sult. As we can see from Tables 7.5a and 7.6a, nethod P provides very
accurate approximations in both cases, where other nethods can provide
very accurate approxinmations in only one of the two cases

Finally, we consider the deconmposability problem of general queue-
ing networks. From our previous analyses in Sections 5 and 6, we expect
that, if the service time distributions of some of the internediate
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Table 7.2

CHANNEL CAPACI TY OF EACH LINK
IN THE TERRESTRI AL NETWORK

Li nk cHi (Packet/Sec)

1,12 50

2,3 80

4,9 70

5,6 45

7,8 50

10,11 70

Table 7.3

ROUTI NG TABLE
Sour ce Destination

Stations Stations Rout e
A D 2,4
A E 2,5
B c 12,2
B E 11,8
C B 4,10
D A 9,3
E A 6,3
E B 7,10

Table 7.4

EXTERNAL ARRI VAL RATE (PER SECOND)

Message Packet
Node Arrival Arrival
Rate Rate
A 12 60
B 16 80
c 16 80
D 16 80
E 16 80
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Tabl e 7.5a

MEAN QUEUE LENGTH UNDER MESSAGE SW TCHI NG

Server Si mul ation Method P | Method B Met hod A

1 0.416* 0.416 0.536 0. 417

2 3.895 + 0.080 3. 947 4.272 3. 862

- 3 2.732 + 0.092 2.733 3.033 2. 646
4 3.356 + 0.081 3. 367 3.681 3. 300

5 3.225 + 0.076 3.210 3.521 3.141

6 7.289% 7.289 7.644 7.210

7 3.680" 3. 680 4.000 3.617

8 3.606 * 0.165 3. 654 3.974 3.537

9 1.257* 1. 257 1.486 1. 230

10 5.488 + 0.225 5. 392 5.735 5. 265

11 1.257* 1. 257 1.486 1.230

12 3.680* 3. 680 4.000 3.617

Exact .
Table 7.5b

SQUARED CCEFFI CI ENTS OF VARI ATI ON OF INTERDE-
PARTURE TI ME UNDER MESSAGE SW TCHI NG

Server Met hod P* Met hod B* Met hod A*
1 0.982 0.982 0.8
2 0. 868 0. 864 0.8
3 0. 888 0.878 0.8
4 0. 877 0. 875 0.8
5 0.879 0. 876 0.8
6 0. 842 0. 842 0.8
7 0.872 0.872 0.8
8 0.872 0. 869 0.8
9 0.935 0. 935 0.8

10 0.853 0. 848 0.8
11 0.935 0.935 0.8
12 0.872 0.872 0.8
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Table 7.6a

MEAN QUEUE LENGTH UNDER PACKET SW TCHI NG

Server Si nul ati on Met hod P Met hod B Met hod A
1 0.364* 0. 364 0. 364 0.303
2 2.399 + 0.094 2. 400 2. 400 1.933
3 1.621 + 0.051 1. 666 1. 666 1.186
4 2.165 + 0.061 2.166 2. 165 1.781
5 2.027 + 0.063 2. 050 2.048 1. 656
6 4.,444* 4. 444 4. 444 4.018
7 2.400* 2. 400 2.400 2.033
8 2.301 = 0.112 2.269 2.269 1.644
9 0.952* 9.952 0.952 0. 736
10 2.881 * 0.116 2.962 2. 959 2.293
11 0.952% 0. 952 0. 952 0.736
12 2.400%* 2. 400 2.400 2,033
*Exact.
Tabl e 7.6b

SQUARED CCEFFI CI ENTS OF VARI ATI ON OF INTERDE-
PARTURE TI ME UNDER PACKET SW TCHI NG

Server Met hod P* Met hod B* Met hod A*
1 0.91 0.91 0
2 0. 340 0.321 0
3 0.438 0.391 0
4 0.383 0.374 0
5 0. 395 0. 380 0
6 0.210 0.210 0
7 0. 360 0. 360 0
8 0. 360 0.343 0
9 0.673 0.673 0

10 0. 265 0.239 0
11 0.673 0.673 0
12 0. 360 0. 360 0
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servers or the external interarrival time distributions not only have
large coefficients of variation but also are type B hyperexponentia
distributions, the diffusion approximation will not work. This is sim
ply because the arrival processes of the servers receiving jobs from
those servers with high coefficients of variation of service times will
have high coefficients of variation. However, even if the service tine
distributions with high coefficients of variation are type A hyperexpo-
nential distributions, the diffusion approximations under deconposition
techniques still may not be satisfactory for certain network topol ogy.
The nost noteworthy networks of this type are network with feedback
| oops, especially self loops. Let us take a second look at the network
inFig. 7.1. Wen the coefficients of variation of the service tines
in both servers are not large, the deconposability of the network seens
to be acceptable from the results obtained by various diffusion approx-
imations in [6]1 and [12].

Now, let the service time distribution of the first server be hy-
perexponential distribution with the follow ng paraneter:

=

w =0. 029249
My = 30. 000187
M, = 0. 0232795

Recal | the hyperexponential density function has the form (w/Ml) e-X/Ml+
(- wy) e M2

sq. coeff. of variation 64. One of its branches has nmean very close to

This hyperexponential distribution has nean 0.9 and

zero. Let the second server have exponential service time with nean
0.84. Furthernore, |let

91 = 0.5
6, = 0.5
%O = 0.5
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The sinulation result of the mean queue length in the first server
with 95% confidence interval is 165 *#15. The nean queue |engths obtained
by diffusion approximtion are around 294 under nethods A and B and 264
under nmethod P. That is to say, all methods tend to overestimate the
mean queue length. W now try to give a reasonable explanation to this
anomaly. Recall the arrival rate to the first server can be calcul ated
BY solving the systemof linear equations (7.3). After sinple manipul a-
tion, we get xl =1. Notice the external arrival rate is 0.5, so
one-half of the arrivals to the first server is fromthe feedback path
through the second server. Wen the first server encounters a long ser-
vice time, the arrival process fromthe second server will be shut down
after the second queue becones enpty. That is to say, the arrival rate
is effectively 0.5 instead of 1 during the later period of the long ser-
vice time. However, in the diffusion approximtions, the arrival rate
to the first server is always 1. This is the reason why the mean queue
length is overestimated under diffusion approximtion. The correlations
of the service stations becone very serious as the coefficients of vari-
ationrof service time distributions becone large in this type of network,
and using the ordinary way to estimate the diffusion parameters is not
sufficient to account for this sort of correlations. What will happen
if the service time distribution is a type B hyperexponential distribu-~
tion function indicated in Section 5?2 A sinulation has been conducted
when the first server has a two stage hyperexponential distribution with
the follow ng paraneters:

w = 0.000126
My = 500
M, = 0. 843486
The second server still has exponential distribution. The network topol -

ogy and the traffic intensity is the sane as the previous exanple. Hence
the mean queue length predicted by diffusion approximation is still the
sane. But the 95% interval estimation obtained by sinulation is 96 £27,
which is quite small, as expected. The broad width of the confidence

interval is due to the heavy traffic condition and the cl oseness of w
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to 0. The nunber of arrivals in the simulations is around 106, hence
the point estimation should be acceptable.

So, the idea of deconposing a network of queues into separate single
server queueing systens does not seemto be always feasible. In certain
network topol ogies, such as network with feedback |oops, especially self
| oops, there is a dependence of the arrival process of each service cen-
ter in the feedback path on its departure process. If the service center
has a self loop which contributes a large portion of arrivals, the effect
of this dependency becones very serious as the coefficient of variation
of the service time deviates significantly from 1. Using any ofthethree
met hods cited above to estimte the coefficient of variation of the in-
terarrival time, the deconposition technique can not reflect this depen-
dency into the estinated paraneter.

To be nore specific, let us consider method P. This fact can be
observed from Fig. 7.2b where the two service centers with rate H, are
actually the same but are represented as two different service centers.
Clearly, the dependence anong the two is not reflected in the estimted
psrameters. Nevertheless, the self |oop problemcan be solved by treat-
ing the server and its self loop as a single entity as we did in Section
6. That is to say, we first elimnate all self loops in the network by
replacing each server with a self loop by an equivalent server without a
self loop as in Fig. 7.4 and then apply the deconposition technique if
possible. Let B' be the contribution to the diffusion paraneter 8 from
the server and its self loop if any. In Table 7.7, we tabulate the ap-
proxi mate val ues of B' wunder nethods P* and A* when the self loop is
not elimnated and the correct value under the equival ent server wthout
a self loop. The error terns under the two approximation nmethods are
proportional to cs(e2 +6). This explains why direct deconposition does
not work for a strong self loop under a large coefficient of variation
of service tine even if the distribution is type A Besides the anonal-
ies due to type B distributions, the problem still not solved is strong
feedback |oops which are not self |oops under large coefficients of vari-
ation of service times. Although the analysis is greatly sinplified when
deconposition does work, deconposition is not a panacea. W should be
careful about the deconposability of the queueing network and all the
distributions involved
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(a) Server with a self
Vari ance of service tine: O

p(1-6)

| oop

(b) Equivalent server without a szelf | oop
Variance of 2servi ce tinme: ds/(l—e) +
0/(u(1-6))

Fig. 7.4.

SERVER WTH A SELF LOOP AND
| TS EQUI VALENT REPRESENTATI ON W THOUT
A SELF LooP.

Table 7.

7

B' UNDER VARI QUS METHODS

Wthout a
Sel f Loop

Wth a Self Loop

ANC +6 -6C )
S S

Met hod A*

Met hod P*

AN(C +0 +82(C
s s

-1)) | A, +6 +92p2(CS ~1))
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8. THE SERVI CE CENTER W TH A QUEUE DEPENDENT
SERVI CE RATE OR ARRI VAL RATE

In this section, we consider the case where a service center has
queue dependent service rate. The conventional G/M/mqueueing
systemis a special case of this class of service centers. The service
rate of the mserver queueing system can be expressed as

ip for i <m
M, =
+ | my for i >m
where i is the nunber of customers in the queue

In computer system nodeling, a nore general My than the conven-
tional one cited above is often needed. Consider the performance of a
tightly coupled conputer system The total service rate of CPU s does
not increase as a linear function of the nunber of CPUs in the system
due to the nemory interference anong different CpPU's.

=. Wen the service rate is queue dependent, the diffusion paranmeters
al so become queue dependent and the diffusion equation becomes harder to
solve. W first need to determine the values of the diffusion parameters
at those integer points and then propose a reasonable way to interpolate
their values in between integers. The infinite capacity case is first
considered. W further assume that B will keep constant for i >m
as in the conventional nultiserver case with m servers. Simlarly, for
the arrival rate xi. |

The values of the diffusion paraneters at those integer points are

defined as
gBi =N Ty
(8.1)
- C .
lai._ca%i + Sgul
and r., as usual, is defined to be
25i
r = —
i a



wher e Ca and CS are the squared coefficients of variation of the
interarrival tine and service tine distributions, respectively. Wen
the service rate is fixed, we set g equal to the traffic intensity of
the queueing system But, for a server with queue dependent service
rate or arrival rate, the appropriate value of g is not very clear.
From experinental results, it seems to be that, if we set g equal to
"for the case where ¢, < 1/2 and ¢ < 1 and A /u otherwise, the
approximation will be nore accurate in general.

There are at least two different ways to interpolate the val ue of
a(X) and pB(X) in between integers.

Method 1. Interpolation by Step Functions (see Fig. 8.1)

7 3
% X3
1 1
ax) =0 k-5<X<k+; and 2<k<m-1 (8.2)
X>m-l
\am 2

Simlarly for B(X).

Method 2. Interpolation by Linear Functions (see Fig. 8.2)
a,X X <1
= - - <X < 1 <m-1
a(X) o + (ak+1 ozk)(x k) k<X<k+1 and 1<k<m
] o X >m (8.3)

or let a(X) = oy

in the diffusion equation easier to handle. Simlarly for B(X).

for X <1 to nmake the inpulse term?d(x-1)

Again, we use Feller's elementary return process to handl e boundary
condi tion. The diffusion equation satisfied by the probability density
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= X

Fig. 8.1. INTERPOLATION OF «(X) USING STEP
FUNCTI ONS.

a(xf‘

Fig. 8.2. |INTERPOLATION OF a(x) USI NG LI NEAR
FUNCTI ONS.
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function P(X) of the approximte queue |ength process has the fol |l ow

ing formunder steady state

2
1 a4 a0 PO - 2 B0 P(X) = A B - 1) (8.4)
dX

with boundary conditions

1imli
X—>02 dx

a(x) P(X) - B(X) P(X) = A M,

and
P(0) =0

wher e My is the probability that the queueing systemis idle
Under the second interpolation nethod, nunerical integration is re-
quired to estimate the queue length distribution. For the conventiona
mul tiserver, the broken line in Fig. 8.2 becomes a straight line and the
conplexity of the problemis sinplified, but nunerical integration is
still ?éeded. Hence, for better mathematical tractability, we adopt the
first interpolation method. Halachm and Franta [26,25] have applied
di ffusion approxinmation to conventional multiserver queueing systems us-
ing the second interpolation method and reflection boundary for both in-
finite and finite population nodels, respectively. The results from both
met hods seemto be quite close in the few cases exam ned

After solving the differential equation, we get

A M Xr
R A ] for 0 < X< 1
81 - =
- (X—l)r1 f - <,£
Mld e or X < 5
P(X) = 1 (8.5)
S H XK +3)r
Mldek—l 2k f or k—%<X§k+—;— and 2<k<m-1

1
for X>m- 5
<
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wher e

1
sk= r,o- 5 for I <k<m-1 (8.6)
i=1

and

7\0 <r1

d = — [e -1
By
The unknown const ant M, can be determined by the fact that total

probability nust sumup to 1, i.e.,

f P(X) dX + M, = 1
0 1

After sinplification, we get

-. 7\0 rl d r1/2
M1=1+Br e -1—r1 +- e -1)
171 1
m—-1 -1
- S r S
d -1 -
+Z;—-ek e¥-1)- L™ (8.7
k=1 "k m

r
| f r is equal to zero, we should replace the term (e k—1)/1-k by 1.
Simlar remark holds for the rest of the section.

Let o be the probability that i jobs are in the system W de-
fine
T =M
3/2
7(1 =f P(X) dXx
0

k+1/2
% f P(X) dXx for k > 2
k
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A M r

.—Or1<e1-1—r1> K =1

B1¥1

M,d S r
n = ._1ek'1<ek_1> 2<k<m-1 (8.8)
k r - -

k

M.d S +(k-m)r r

1 e ml mofe™_ k >m

"m

In Table 8.1, we conpare the nean queue |engths obtained under dif-
fusion approximation with analytic results for the MMm system with
m=2,3,4,5,6,7,and 8, when p £ A/mu = 0.95 and 0.85, respectively.
The approximation is very accurate. Then, we conpare the conditional
mean queue |length of the external queue (given that external queue ex-
ists, i.e., number of jobs in the systemis larger than n) with the an-
alytic result for the G Mm queueing system Both the analytic result
and diffusion approximation on the conditional nean external queue
lengtH of the G M mqueueing systemare independent of m After sinple
mani pul ati on, we can get the conditional mean external queue |ength un-
der diffusion approxi mation which is 1/(1—erm). The exact result is
1/(1 -c) where o is defined in Section 3. In Table 8.2, we conpare
the conditional mean external queue |ength obtained under diffusion ap-
proxi mation with the anal ytic result for EZ/M/m and EB/M/m queuei ng sys-
tems when o = 0.95, 0.90, 0.85, 0.80, and 0.75.

When the arrival process has hyperexponential distribution, again,
the conditional nean external queue length can vary over a w de range.
Neverthel ess, for type A hyperexponential distribution, diffusion ap-
proxi mation can still be applied as before. Tables 8.3 and 8.4 tabulate
the diffusion approximtions and analytic results under different values
of M, for Ca =2, 4, 8, 16, and 32, when p = 0.95 and 0.85, respec-

2
tively. In both cases, N is equal to 1.
In Table 8.6, we consider the case where Ly is an arbitrary func-
tion of i and . is constant. The result is again satisfactory.
|

we now consider the closed two server queueing network in Fig. 8.3a

which can be interpreted as the CPU DTU nodel, as noted earlier.
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Table 8.1

MEAN QUEUE LENGTHS FOR M M m SYSTEM WHEN p=0.85 AND 0. 95

]

p = 0.85 o = 0.95
m . .
Diffusion Di ffusion
Appr oxi mati on Bxact Appr oxi mati on Bxact
2 6. 031 6.126 19. 37 19. 49
3 6. 695 6. 689 20. 07 20. 08
4 7.354 7.306 20. 75 20.74
5 8.028 7.959 21. 46 21. 43
6 8.718 8.636 22.18 22.15
7 9.425 9.333 22.92 22.88
8 10. 14 10. 04 23.68 23. 64
Table 8.2
CONDI TI ONAL MEAN EXTERNAL QUEUE LENGTH
FOR Ez/M/m AND E3/M/m SYSTEM
E3/M/m Eg/M/m
P

Di ffusion Exact Di ffusion Exact

0.95 13. 67 13. 45 15. 26 15. 09

0.90 7.013 6.784 7.761 7.588

0.85 4. 797 4.566 5.268 5.091

0.80 3.693 3. 460 4,023 3. 844

075 . 3.033 2. 797 3.280 3. 097
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Table 8.3

CONDI TI ONAL MEAN EXTERNAL QUEUE LENGTH FOR
Hz/Mﬁm SYSTEM WHEN o = 0. 95

Exact
ca Di ffusion
Vi 0.2 My = 0.7

2 29 29.9 29.4

4 48 49.7 47.5

8 86 89.6 83.0
16 162 169 153

32 314 316 294

]

Table 8.4

CONDI TI ONAL  MEAN EXTERNAL QUEUE LENGTH FOR
HZ/M/m SYSTEM WHEN o = 0.85

Exact

C Di ffusion

2 M =01 | My=0.6
2 9.01 9.94 9.53

4 14.7 16.5 14.8

8 26.0 29.5 24.9
16 48.7 55. 8 44.8
32 94.0 108 84.1
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98

MEAN QUEUE LENGTH FOR SERVER W TH CGENERAL QUEUE DEPENDENT SERVI CE RATE

Table 8.5

m 3 3 3 3 S5 5 5 5 6 6 7 7
A 2.55| 2.85| 2.55| 2.85| 4.25| 4.75| 4.25| 4.75| 595| 6.65| 595 6.65
M 3.0 3.1 1.0 1.0 5.0 5.5 1.0 1.0 6.5 7.2 1.0 1.0
Ho 2.9 2.9 1.8 1.8 4.8 5.4 1.8 1.8 6.4 7.1 1.9 1.9
H3 2.6 2.9 2.6 3.0 | 4.6 5.2 2.6 2.6 6.3 7.0 | 2.8 2.8
My 4.5 5.0 3.5 3.5 6.2 6.9 3.7 3.7
Hs 4.4 4.8 | 4.4 5.0 6.1 6.8 | 4.6 4.6
He 6.0 6.7 5.5 5.5
M7 6.4 7.0
Mean Queue Length
Diffusion | 49.91 | 56.38 | 51.99 | 20.16 | 27.11 | 93.34 | 30.81 | 21.75 | 117.7 | 131.8 | 17.09 | 23. 23
Exact 50.61 | 56.93 | 52.03 | 20.17 | 27.80 | 94.14 | 30.79 | 21.72 | 118.4 | 132.5 | 17.04 | 23.19




(a) Model without a self [oop

(b) Model with a self loop at each server

Fig. 8.3. CPUDITU MODEL WTH K DEGREE OF MJL-
TI PROGRAMM NG
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Generalization to the nodel in Fig. 8.3b follows the same idea cited in
Section 6. That is to say, we first conpute the mean and variance of
the service time of the equivalent server without a self loop. The only
difference from before is that the quantities now are queue dependent.
After replacing each server and its self loop by an equival ent server

..a Without a self loop, the nodel in Fig. 8.3b reduces to that in Fig. 8.3a.
The nunber of jobs in the systemis assumed to be K The queue depen-
dent service rate of CPU and DTU are denoted by p, and A, _. when
there are i jobs in the CPU queue. The diffusion parameters are de-
fined to be

(8.9)
a =CAN + C u, for 1 <i <K

and, as before,

H
H

= ZBi/ozi

Notice the definition is simlar to the previous one with g = 1. Again,
there are at least two different ways to interpolate the value of «(X)
and B(X) in between integers. The only difference is that now we have
two boundaries. W still adopt the interpolation method using step
functions for simplicity. To be nore precise, we define

3
Oél O<X<§
. 1 1
a(X) = oy 1-§<X<i+-§ 2<i<K-2 (8.10)
3
aK-l K-§<X<K

Simlarly for B(X).
The diffusion equation now has the following form
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2

dX

1

14 d B
7 —5 aX) PX) - ax B(X) P(X) = —7\0M15(X -1 - p.KMZS(X - M+ 1)

, d _
IrmE % a(X) P(X) = BX) P(X) = 7\0M1 (8.11)
X—0
“alim 14 4 p) - B(X) P(X) = w M
2 dx Mo
XK
wher e M, is the probability that the CPU queue has K jobs.
After solving the diffusion equation (8.11), we get
M Xr
ﬂ<e1-1> for 0 < X <1
Bl - -
xX-1)r
1 . 3
-Mlde forl«XSE
P(X) = (8.12)
Si-l +(X-1 +—]2'-)ri 1 1
M,d e for|-§<X<max(K—1,|+§)
and 2 <i<m-1
I
Sp ot R T D)
M,d e g ° for X > K = 1
e k-1 -1
wher e
M, dB S +ir
My = o K722 KA (8.13)
”“G K-1 1)
and Si is defined as before in (8.6).

The unknown const ant M, can be determined by the fact that total

probability nus

t sumup to one, i.e.
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fo P( X) dX+M1+M2:1

After simplification, we get

K- 2
S r S r /2
+§iel-1el_1+ d k-2 k-1"7 (8.14)
e
i=2 1 K-1
-1
1 rK_l 3
-1 b
+ . eSK_2-1- 2 Tk-1 (rK—l ) e +1 dﬁK_l SK-2+2rK-1

9

Let T be the probability that i jobs are in the CPU. W define

T =M

3/2
n, = P(X) dx
i,

i+1/2
i f P(X) dx

i-1/2

A
I}

In Table 8.6, we conpare the nmean queue length at the CPU when both
CPU and DTU have exponential service tine distributions, and furthernore
the CPU is nmobdeled as a traditional mserver under fixed degree of nulti-

progranmming K. In Table 8.7, the case where service rate of CPUis an
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Table 8.6

MEAN QUEUE LENGTH WHEN CPU | S
MODELED AS CONVENTI ONAL m SERVER

=
p=0.9 o = 0.85

m K

Di ffusion Exact Di ffusion Exact
2 4 2.28 2.13 2.11 1.94
3 3 2.00 1.92 1.91 1.81
3 5 3.09 2.89 2.88 2.64
4 4 2.81 2.69 2.70 2.55
4 7 4.38 4.14 4.02 3.73
5 5 3.64 3. 49 3.48 3.31
5 8 5.19 4.94 4.78 4.48
6 6 4. 47 4.31 4.27 4.08
6 10 6. 48 6. 22 5.89 5.56
7 7 5.30 5.14 5. 07 4. 87
7 11 7.31 7.05 6. 66 6. 33
8 8 6. 15 5.98 5. 87 5. 66
8 12 8.15 7.89 7. 44 7.11
= N/my
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arbitrary function of queue length and that of DTU is constant is con-
sidered. Both the mean queue length and utilization at the CPU is
tabul ated. Again, the result is quite satisfactory.

-

]
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9.  CONCLUSI ON

Diffusion approximation is an attractive nmeans of approximating the
performance of queueing systems. In this paper, we not only assess the
accuracy of diffusion approxinmation but also its limtation and applica-
ble range. Mbdern conputer systems are so conplicated that oversinpli-
fied nodels may not predict any useful results. Realistic nodels often
are not analytically tractable. Finding approximte solutions or upper
bounds and |ower bounds of the solutions is the only means to handle nore
conplicated problens short of simulation. Under heavy traffic conditions,
simul ation converges very slowy and diffusion approximtion seens to be
the nmpst attractive way to solve the problem Nevertheless, diffusion
approximation is not a panacea, it does have a limtation. This linta-
tion has been overlooked in the past. Substantial effort has been de-
voted in this paper to identify the conditions where diffusion approxi-
mation can obtain accurate estimtes. W nust be careful with these
condi tions when applying diffusion approximation.

- In Table 9.1, we classify the single server queueing systens accord-
ing to their coefficients of variation of service times and interarrival
times, and point out the diffusion approximation technique which seens to
be nost accurate according to our analysis. The superiority of method P,
the proposed nethod, should be very apparent. Wen c, is larger than
one, the nean queue length may vary over a wide range even if the first
two noments of interarrival tine are kept constant. Diffusion approxina-
tion is applicable under the condition that the high variation of inter-
arrival tine is due to a great nunber of short interarrival tines instead
of a few very long interarrival times. Case studies have been conducted
on 2-stage hyperexponential distributions which are widely used in com
puter system nodelling. A simlar anomaly is observed in two server
cl osed queueing networks, often referred to as CPu/DTU nodel s, when the
service tine of any server has a large coefficient of variation. Again,
a simlar regularity condition on service time distributions is required
in order for the diffusion approximtion to be applicable. Al though
met hod B does not yield the best perfornance when applying it to approx-
imate the single server system it is indeed a nice way to approxinate
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A

Table 9.1

RECOVWMENDED DI FFUSI ON APPROXI MATI ON METHOD FOR SINGLE SERVER SYSTEM

C Close to or
1
SLess than 0.5 Cs Gose to 1 cs >
ca1 <1 Met hod A Met hod P Met hod P
Ca ~ 1 Met hod P Met hod P Met hod P
+.
c > 1* Any Met hod Method P
a ?)

*The hi gh coefficient of variation of interarrival tinme must
be due to a large nunber of short interarrival tinmes in-
stead of a few very long interarrival tines.
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the two server closed queueing network. \When the coefficient of varia-
tion of the CPU service time is small, nethod G1 has simlar performance
As the coefficient of variation of the CPU service time increases, nethod
P becomes somewhat better.

For general queueing networks, an efficient way of taking into ac-
gount the effect of idle periods to estimate the coefficient of variation
of the arrival process at each server when the network can be deconposed

into separate single servers is proposed. For certain network topolo-
gies, the arrival processes of some service centers strongly depend upon
their own departure processes. Networks of this type are networks with
strong feedback |oops, especially self |oops. Wen the coefficients of
variation of the service tines at the service centers have a large devi-
ation fromone, this sort of queueing network can not be deconposed into
separate single servers directly. This fact has been neglected in the
past. Nevertheless, the self |oop problem can be solved by replacing
each server with a self loop by an equivalent server without a self [oop
After elimnating all the self loops, we can reconsider the deconposition
of é:hetmork. The problem still not solved seems to be networks with
strong feedback [ oops which are not self |oops when the coefficients of
variation of some service times are large. Surely, the regularity con-'
dition that a large coefficient of variation of external interarriva
time or service time of each internediate server is due to a lot of short
interarrival times or service tines, respectively, nust always hold in
order for diffusion approxination to be applicable

Finally, we consider the service center with queue dependent service
rate or arrival rate. General queue dependent service rate is often en-
countered in conputer system nodeling. Generalization to closed two ser-
ver queuei ng network where each server may have a self loop is also con-

sidered.
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