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ABSTRACT

Starting with single server queueing systems, we find a different
way to estimate the diffusion parameters. The boundary condition is
handled using the Feller's elementary return process. Extensive comparisons
by asymptotic, simulation and numerical techniques have been conducted to
establish the superiority of the proposed method compared with conventional
methods. The limitation of the diffusion approximation is also investigated.
When the coefficient of variation of interarrival time is larger than one,
the mean queue length may vary over a wide range even if the mean and variance
of interarrival time are kept unchanged. The diffusion approximation is
applicable under the condition that the high variation of interarrival time
is due to a large number of short interarrival times. Case studies are
conducted on 2-stage hyperexponential distributions. A similar anomaly is
observed in two server closed queueing networks when the service time of
-any server has a large coefficient of variation. Again, a similar regularity
condition on the service time distribution is required in order for the
diffusion approximation to be applicable. For general queueing networks,
the problems become more complicated. A simple way to estimate the coefficient
of variation of interarrival time (when the network is decomposable) is
proposed. Besides the anomalies cited before, networks under certain topologies,
such as networks with feedback loops, especially self loops, can not be
decomposed into separate single servers when the coefficient of variation

.



of service time distributions become large, even if the large variations
are due to a large number of short service times. Nevertheless, the
decomposability of a network can be improved by replacing each server
with a self loop by an equivalent server without a self loop. Finally,
we consider the service center with a queue dependent service rate or
arrival rate. Generalization to two server closed queueing networks
where each server may have a self loop is also considered.
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1. INTRODUCI'ION

Recently, considerable effort has been made for obtaining approximate

solutions to non-Markovian queueing models using the diffusion approxima-

tion when the traffic intensity of the queueing system is high. The ad-

vantage of diffusion approximation lies in the fact that explicit results

can be obtained for relatively complex situations where the only possible

alternatives are numerical methods or simulation experiments. This

greatly extends our capability in modelling practical problems. In the

past, over simplified models have often been used for the sake of mathe-

matical tractability, and the predicted performance may sometimes be quite

different from the actual measured performance.

In order to alleviate the difficulty involved with general service

time distribution, the diffusion approximation replaces the discrete jump

process such as the queue size process by a diffusion process which is a

continuous path stochastic process. The probability distribution of the

diffusion process which satisfies a partial differential equation is quite

o&ten more amenable to mathematical analysis than that of the jump process.

However, the approximation by diffusion process requires the heavy traffic

assumption, as we shall see in Section 2.

Based on central limit theorem, Kingman [Bl has shown in his treat-

ment of heavy traffic theory that the waiting time distribution is as an

approximation exponentially distributed, where the parameter depends only

on the mean and variance of the interarrival time and service time dis-

tribution, i.e., it is insensitive to the detailed form of the distribu-

tion, as the traffic intensity approaches 1. The diffusion approximation

based on the same idea attempts to overcome the limitation of the expo-
nential model by considering both the mean and variance of the service

time and interarrival time distributions. Newell Cl11 gives an extensive

treatment of queues with time dependent arrival rate through use of the

diffusion approximation in his monograph. Gaver applies the diffusion

approximation method to waiting time in a M/G/l queue c41. Gaver and

Shedler [2,31 apply this technique to the analysis of a multiprogrammed

computer system modelled as a two stage cyclic network. Kobayashi Cl01

considers the multi-dimensional diffusion approximation as a technique
for treating general queueing networks. Reiser and Kobayashi cl21
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study the accuracy of diffusion approximation techniques and propose a

way to treat each server in the queueing networks separately. Gelenbe

[5,7] suggests a different way to handle the boundary condition of the
diffusion process, namely using the Feller's elementary return process

Cll. In L-61, G 1 be en e also investigates the idea of decomposing a queue-

ing network into separate single servers. An application of the diffu-

-don approximation to analyze the performance of an ALDHA-like system
can be found in the paper by Kobayashi, Onozato, Huynch cl71. Kleinrock

c91 also has a tutorial chapter on diffusion approximation.

Since the diffusion approximation to single server queueing systems

serve as the foundationtothe approximation of more complicated queueing

networks, we will start with single server systems, then advance to two

server closed queueing networks where each server may have a self loop,

and finally examine the problem in general queueing networks.
In Section 2, we propose a new way to estimate the diffusion param-

eters. Using the Feller's elementary return process Cl] as proposed by

Gelenbe c51 to handle the boundary condition, the approximate mean queue
length- obtained by this method is more accuratethanthat by conventional

-methods in most cases, especially when the coefficient of variation of

the service time is large. In Section 3, we analyze the asymptotic error

in mean queue length by our method and two other widely used diffusion

1 approximation techniques proposed by Kobayashi cl01 and Gelenbe [5] for

the M/G/l and E2/M/1 queueing systems, where analytic results on mean

queue length are available in closed forms. The advantage of the asymp-

totic analysis is that the absolute or relative errors are expressed in
terms of the traffic intensity or the coefficients of variation of the

service time and interarrival time distributions. This provides better

insight in understanding the accuracy of various approximation techniques.

Kingman Cl81 has found a tight upper bound for the mean queue length. We

also analyze this upper bound for reference. It is interesting to see

that, in the M/G/l system, the mean queue lengths obtained by the other

two methods are larger than the Kingman's upper bound when the service

time has a large coefficient of variation. In both E2/M/1 and M/G/l sys-

tems, our method yields more accurate approximations. In fact, in the

M/G/l system, the mean queue length obtained by our method is exact, and

those obtained by the other two methods have an error term on the order

2



of Cs/2 or (Cs -1)/2, where C
S

is the squared coefficient of vari-

ation of the service time. For readers who are not familiar with asymp-

totic analysis, this section can be skipped over. In Section 4, simula-
tions have been conducted to test the relative performance of our method

and the two conventional methods for more general queueing systems which

a include the Er/En/l and Er/H2/1 systems. Numerical techniques have also
been employed to study the relative performance of various diffusion ap-

proximations for the E3/M/1 and D/M/l systems. Cur method yields more
accurate approximations, except in the Er/En/l system. In the Er/En/l
system, the method in [41 proposed by Kobayashi has better performance
than ours. These comprehensive and systematic comparisons not only es-

tablish the robustness of the proposed method, but also provide valuable
information in selecting the best approximation technique for the spe-

cific problem at hand. In Section 5, we use the HZ/M/1 system to illu-

strate the fact that, when the coefficient of variation of the arrival

process is larger than 1, the mean queue length may vary over a wide

range even if the mean and variance of the interarrival time are kept
,* -

. - unchanged. This is simply because the coefficient of variation of the

distribution function may become large due to different reasons. We

give a reasonable interpretation to this phenomenon. Since two-stage
hyperexponential distribution function is widely used in computer system
modelling, we try to identify the range of the parameters of the hyper-

exponential distribution where the diffusion approximation can be ap-

plied to obtain a fairly accurate estimation of the mean queue length

under various traffic intensities. The data included in that section

should be helpful in checking the applicability of diffusion approxima-

tion to the problem at hand. The H2/Er/l and H2/H2/1 systems are also

examined. In those cases where the parameters are not in the applicable

range, the diffusion approximation may be used to estimate a lower bound

of the system performance.

After examining the single server queueing system, in Section 6 we

consider a more complicated queueing system, the closed two server sys-
tem which is often used to model the computer system under fixed degree

of multiprogramming, referred to as the CPU and DTU model c2,31. The

approximate utilization and mean queue length of the CPU are very close

3



to the simulation or exact result when the coefficients of variation of

the service time distributions are small [2,51. When this condition

does not hold, the diffusion approximation techniques can provide a close

approximation to mean queue length and utilization only under restricted

ranges of the parameters of the distribution functions and in other cas-

es 9 it may still be used to estimate a lower bound of the performance of'1-Q
the system. Then, in Section 7, the decomposition problem of the network

of queues is considered. From the data provided in Sections 3 and 4, the

accuracy of diffusion approximation to a single server system is undoubt-

edly very good. The problem on decomposition of a queueing network into

separate single server systems seems to be how to estimatethecoefficient
of variation of the interarrival time at each server, so we can take the

interactions among interconnected servers into account. Two different

methods have been proposed to estimate the coefficient of variation of

the interarrival time at each server by Reiser and Kobayashi [I21 and

Gelenbe c61, respectively. Both methods lead to fairly accurate approx-

imations. The second method which tries to incorporate the effect of

. idle &riods on the coefficient of variation seems to be better but is

more complicated. Here, we propose a method to estimate the coefficient

of variation of the interarrival time which leads to similar results as

the second method by taking the effect of idle periods into consideration

but is much simpler in computation. All the examples given by the pre-

vious authors to demonstrate the accuracy on decomposing queueing net-

works into separate single servers under diffusion approximations are

concentrated on the situation where the coefficients of variation of

- service time and external interarrival time distributions are not large,

mainly less than or equal to two. Actually, the decomposition technique

is not always feasible when the coefficients of variation of the service

lime or external interarrival time distributions become large. An exam-

ple has been given to illustrate this anomaly which has been overlooked

in the past. Hence, we must be careful on the decomposability of a queue-

ing network. Although decomposability is an inherent property of the

network topology, its effect magnifies as the coefficients of variation

of service time distributions deviate largely from one. Nevertheless,

decomposability of a network can be improved by replacing each server

4



with a self loop by an equivalent server without a self loop. Finally,

in Section 8, we consider the service center with a queue dependent ser-

vice rate or arrival rate. Generalization to the closed two server

queueing network is also considered.

3 -
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2. THE DIFFUSION APPROXIMATION FOR THE G/G/l QUEUE

Consider a single server queueing system.
th

IJet ti be the arrival

time of the i job to the queueing system and ti be the departure time

of the ith job, where 0 < tl < t2 < . . . . 0 < ti < tH < . . . . and t' >i
tl, i.e., the queueing discipline of the system is first come first

m-u3
served (FCFS). Let A(t) and D(t) represent the cumulative number of
arrivals and departures, respectively, up to time t. Denote the number

of jobs in the queue (including the job in service) at time t by Q(t),
then

Q(t) = A(t) - D(t)

Assume the interarrival time Ui's (= ti-ti-1) and service time Vi's

are independent and identically distributed, respectively. Furthermore,
we assume

2 .

. -

Var{V] = ~73

and
A

P =-
I-1

where p is the traffic intensity of the queueing system.

The following central limit theorem for renewal processes cl41 will

be used in later discussion.

Theorem. If T = (T,] is a renewal process (i.e., TnBTn-l are inde-

pendent and identically distributed) for which

6



and
20 = E

Let

N(t) = n=O lCO,tl(Tn’c

where

1 if XEA
IA(X) =

0 if X&A

i.e., N(t) is the number of Tn such that Tn <t. Then-

lim p N(t) - t’M < X = O,(X)
t-+m t dG7iF t

where

E ^
a(x) = & j-1 exp(- ; u2) du

is the normal integral.

A Now let us introduce the definition and property of a diffusion

process.

Definitions. A diffusion process (x(t),t > 0) is a strong Markov pro--
cess such that

(1) p(X,t) = lim E(X(t + At) - X(t) IX(t) = X) exists
At+ 0 At

. .

(2) a(X,t) = lim E{(X(t + At) - X(w2 lx(t) = x) exists
At-+ 0 At

(3) the sample path is continuous

where the diffusion parameters p(X,t) and a(X,t) are called the

infinitesimal mean and variance coefficients, respectively.

7



Iet P(XO,X;t)  be the probability density function of the diffusion

process X(t), i.e.,

P(XO,X;t) dX

I--a then P(XO,X;t) will satisfy the following differential equation:

aat P(Xo,X;t) ;3 a= $ & a(x,t) ax P(X,,X;t) - ax p(x,t) P(xo,X;t)

which is called the Kolmogorov diffusion equation or Fokker-Plank equa-

tion C141.

Clearly, as t becomes large, the renewal counting process N(t)

is approaching a diffusion process with

and
f-

2
a(x,t) = z

M3

which is usually referred to as the Wiener process with drift.

By assumption, the arrival process is a renewal process, hence A(t)

will converge to a Wiener process with infinitesimal mean A and infin-
2 3itesimal variance aah , as t becomes large. The problem is that the

interdeparture time is not independent and identically distributed, since

the interdeparture time can eitherbe a servicetime or the sum of a ser-

vice time and an idle period of the server. Hence, the departure pro-

cess is not a renewal process. But, under heavy traffic conditions, i.e.,

as P-+1, it is close to a renewal process. During the busy period,

D(t) will come close to a Wiener process with infinitesimal mean ~1 and

variance coefficient 0:1.~ as t increases, provided that the busy pe-
riod is not interrupted. Still another problem is that A(t) and D(t)

is not independent since Q(t) = A(t) -D(t) > 0. But, when Q(t) is

larger than zero, we have a departure process independent of the arrival

process. In this case, Q(t) behaves like a Wiener process which is a

8



diffusion process with no boundary restriction at zero. That is to say,

we should approximate Q(t) by a diffusion process with appropriate

boundary condition at zero to reflect the fact that Q(t) can never

become negative and there is an idle period after Q(t) drops to zero.

To be more precise, Q(t) will converge to a diffusion process

with parameters

-4% p(x,t) =  A  - p

The parameters are obtained from those of A(t) and D(t) based on the

fact that Q(t) = A(t) -D(t). An extra factor p appeared in the second

term of a(X,t) is used to reflect the fact that D(t) has a coefficient
2 3of variation asp only p of the time.

Since both p(X,t) and a(X,t) are constant, we will abbreviate

them as /3 and a, respectively. The probability density function

P(XO,X;t) of Q(t) will satisfy the equation
3 ^

. - n
aat p(x, At) a a” a= - - p(x,,x,t) - p ax P(X,,X,t)

2 ax2

let P(X) be the stationary density function of Q(t), i.e.,

P(X) d(X) = P{Xz Q(t) <X +dX) as t-+m

For the stationary case, the time derivative in the Fokker-Plank

equation is set to zero. So

a a2- - P(X) -
2 ax2

p -g P(X) = 0 (2.1)

Two different approaches have been suggested to handle the boundary

condition. The first approach is to treat the boundary X = 0 as a re-

flecting boundary, i.e., whenever the queue becomes empty, it is reflected

to positive immediately. Though the queue size will never become nega-

tive, still no probability mass can collect at X = 0. Gaver and Shedler

9



[2,31 and Kobayashi CIOI, who generalized this approach to queueing net-

work, have managed to choose the appropriate integration constants in the
solution to (2.1) under reflecting boundary, so that the model correctly

predicts the stationary probability of empty queue. The second approach

proposed by Gelenbe [5,6,71 uses Feller's elementary return process Cl1

instead of the diffusion process with reflecting boundary to approximate

9--u the queueing system. This is a diffusion process with boundary to which

the process adheres for epochs whenever the process attains a boundary;

at the end of the epoch the process is reinitialized according to a fixed

probability density function. Gelenbe c51 first solves the equation when

the holding time on the boundary has exponential distribution and later

on c71 generalizes it to any probability density function whose Laplace-

Stieltjes transform is a rational function to account for the fact that
the holding time in the boundary in general is not exponentially distrib-

uted. Fortunately, the solution under the general distribution depends
only on the first moment of the holding time distribution. Thus, the

stationary solution is identical to the corresponding solution when the

htiding time is exponentially distributed with the same mean.. -

.

Pn this paper, we will adopt Gelenbe's approach to handle the bound-

ary condition and assume exponential holding time on the boundary, since

this assumption will simplify the problem and lead to the same solution

as that under general holding time distribution c71. The advantage of

this approach is that it can be extended very easilytohandletwo server
closed queueing networks or finite capacity queues. Bothofthem have im-

portant applications in computer modelling. The only problem we are fac-

ing is that the mean holding time, h, at the boundary X = 0 is not

known. The holding time at the boundary x=0 is, in fact, the idle
L period of the queueing system. From queueing theory c231, we know that

h = E{idle period)

=. P(l - P) E{n)

where E{n) is the expected number of jobs being served in each busy

period, and furthermore

10



E(n) = exp
k=l

; P{Sk > 0)

where
so = 0

sn =

n

c
i=l

('i-1 - Vi)

Recall Vi is the service time of the i customer and U is the in-

terarrival time between the ith and i-lt'
i

customer. The expression for

E{n) can be simplified to 1/(1-p) when the interarrival time, Ui, has

exponential distribution, i.e., the system is M/G/l. In general, it can

not be simplified. We will use the conditions that the integration of

probability density function over the range X > 0 should equal to one-
to obtain an estimation of the holding time, h. To account for the fact

that, after an arrival to the empty queue occurs the number of customers

in thg&queue jumps instantaneously to one, we need to add an extra term,
. -
41 - p)/h 8(X - 11, to the right hand side of (2.1) and an extra boundary

equation (2.3), as explained below.

Now we have the following equations

a a2- - P(X) -
2 ax2

(3 -& P(X) = - (I ; o) 6(X - 1)

and

lim a a

x+0 [
2 z P(X) - @P(X)

I = (l ; p,

(2 -2)

(2.3)

where S(X -1) is a Dirac density function concentrated at X = 1 and

represents the probability density function of the point from which the

diffusion process starts once again immediately after a jump. Notice

Cl- pm is the product of the probability at the boundary and the rate

of jumping back from the boundary, i.e., (1 - pm represents the mean

rate of jumping back to (Op ) l <~/2><~/~X> P(X)-@P(X) has the phys-

ical interpretation as the rate of flow of the probability mass from the

region (O,oo) to the boundary 0. This explains the boundary equation.

,

11



Similar arguments can be given to the correction term in (2.2). For a
more detailed argument, see c5,71.

I& us denote

r 28s-z -q-L - A) -2(1 - p)
a ofA3 + 2p3p = P(C, + cs>

'a and C
S

are called the squared coefficient of variations of the in-

terarrival time and service time, respectively.

Solving the differential equation (2) with boundary condition (3)

and lim P(X) = 0, we get
x--+0

,rr -
. - !

(1 - P) (erx _ 1)
w O<X<l

P(X) =

t
(1. - ‘) [I - emr] erxw X>l

To compute h, we use the fact that

I
a3

(1 - P) + P(X) dX = 1
0

and yield, when r l: 0 (i.e., P < 11,

1h=l
- P

As we can see, the estimation of the length of idle period by diffusion

approximation is only exact for the M/G/l system.

Finally, we face the problem of discretization of the probability

density function in the neighborhood of integer valued points X = i in

order to approximate 5' the stationary probability of finding i cus-
tomers in the queueing system. Usually there are three choices for fli:

12



(1) fel P(X) dX, (2) j-;+l P(X) dX, (3) .f-?;;; P(X) dX. Here, we

choose the first alternate, since it leads to more accurate approxima-

tion than the others under our method.

Let

7to = 1-P

Tt =
i P(X) dX for i > O

We get

i

flo = 1-P

P2(Cs + Cal r
fil= 2(1-p) (e - 1 - r )

P2(Cs + Cal
n' i = 2(1-p) eir(l - e-')2 i>2_

. - The mean queue length under stationary distributions is

co
E ( Q ) =  i.Si=pc

P(Cs + ca>
i=l 20 - P) 1

13
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3. ACCURACY ANALYSIS OF DIFFUSION APPROXIMATION BY ASYMPTOTIC TECHNIQUE

In this section, we analyze the asymptotic errors of the mean queue

lengths obtained by various diffusion approximation techniques for the

M/G/l system and the E2/M/l system where analytic solution of the mean

3 queue length is available as p+l. Clearly, it is an important require--w
ment for an approximation technique which are designed to handle general

distributions for service time or interarrival time to give accurate ap-

proximation on those cases for which solutions are known. These error

analyses certainly have important implications on the accuracy of the
approximation for queueing systems whose service time and interarrival

time distributions do not deviate too far from those of the M/G/l or

E2/M/l system. The advantage of asymptotic analysis is that we can ob-

tain a closed form expression for the error term, and the order of the

error can be clearly expressed in terms of the power of (l-p) which

gives us a clear picture of the dependency on heavy traffic assumption.

Various diffusion approximation techniques have been proposed to handle
,zT ̂

. - the single server systems. The two most noteworthy methods are proposed

by Reiser and Kobayashi Cl01 and Gelenbe c61, respectively. Since there

is not any comprehensive study of the relative accuracy of the two meth-
ods, we will analyze not only the proposed method but also the two meth-

ods mentioned above. Our method improves the accuracy in both cases.

The mean queue length obtained under Kingman heavy traffic approximation

II81 has been proved to provide an upper bound on mean queue length CISI.

The result holds for 0 < p < 1 and improves to be a tight upper bound-
as p-1. The upper bound will also be analyzed for comparison. And we

shall see this upper bound is quite tight in both cases. From then on,

we will denote

(1) Method P: the proposed method

(2) Method A: the diffusion approximation technique proposed
by Kobayashi Cl01

In this approximation method, we have

14



The boundary at X = 0 is treated as a reflection boundary.
By setting the probability mass at the origin to be l-p
and solving the F'okker-Plank  equation (2.l), the following
stationary queue length distribution and mean queue length
is obtained.

1--u (a) Stationary queue length distribution

flo = 1-P

hi-17-t i = p(1 - C) P for i>l-

where

2 (1-p)
$=e

cs +w,

(b) Stationary mean queue length

LT.
. -

EIQA? = Ai-
l - c

(3.1)

(3.2)

(3) Method B: the diffusion approximation technique proposed
by Gelenbe c51

As noted earlier, method P follows the argument in method
B to handle the boundary condition, but the diffusion pa-
rameters in the two methods are different. The diffusion
parameters in method B are

Hence, the stationary queue length distribution is

1J-co= -P

(3.3)
P(Pc, + cs) r

"l= 2(1-p> (e - 1 - r )

15
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P(PC, + cs)
-IIi = 2(1 - p)

eir(l - ewrj2 i>2_

where

(3 -3)
Cont.

and the mean queue length is

Notice the Kingman's upper bound on mean queue length Cl81 is

ca + CsP2
Ele,3 = 2(1 - p) + ’

(3 -4)

( 3 . 5 )

,rr *
. - As we shall see, in the M/G/l system the mean queue length obtained

by method P is exact and those obtained by methods A and B have an abso-

lute error around p(Cs -I)/2 and PCs/2 9 respectively. Hence, the
performance of methods A and B will degrade as the coefficient of varia-

tion of the service time increases, e.g., when C
S

equals 64 and p
equals 0.8, the relative errors of both methods are around 25%. In fact,

under heavy traffic condition the mean queue lengths obtained by methods
A and B are larger than the Kigman's upper bound on mean queue length

when C
S

is larger than 3. In the E2/M/1 system, again, the mean queue

length obtained by method P is more accurate. The result from method A
is very close to that from method P. Examining the asymptotic expres-
sions for the mean queue lengths of both methods, we find their differ-

ence is proportional to (1 - p) . The mean queue length obtained by
method B is less accurate and is quite close to the Kingman's upper

bound on mean queue length.

We will first prove the following lemma, which is the foundation of

the analysis on method A.

16



Lemma 1. The asymptotic mean queue length obtained under method A will

satisfy

ECQ~I = P
l- ;;

P(Cs + PC,)
= 2 (I- p)--l + g + 6(c ) a- P> + 0 Cl- PI2

S

",,,
a ( )

(3.6)
where

2 0-p)
i;=e

cs +wa

Proof.

(3.7)

Using the Taylor series expansion for ex, i.e.,

2 3
- Xe = 1 - x + 5 - $- + 0(X4) a s  X-+0

. .,rr.
. -

we obtain, as P--A from (3.7)

_ 20-p)

l-z=l-e
cs +w,

= I -  l-( 2(1-p) + 2(1 -PI2
cs + PCs (cs + PCa12

+ 4u - PI3
3 + 0 a- PI4

3(cs +pc,) ( 1

2(1-p) ( 1 -
1

P
+

20 - p) 2

= cs +pca
_

cs +wa
2 + 0 (1 -

( !I

PI
3

3(cs +Pca)

Using the Taylor series expansion of

1-=
1 - X 1 + x + x2 + 0(x3) as x-3 0

17
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we obtain, as P-J, from (3.8)

I .

I

I l

P P(Cs +wa) I
-= 2(11-i; - P)

( (

1. 1-p - 2a - PI2 3

cs +wa
2+o l-p

1--m 3(cs +pca) (( ,,))

P(Cs + PC,)
= 2(1 - p)

(

l + ;1 ;,;I _ ; (1 - P)22 + (1 - P)22 + 0 (l-p)3
S a (cs + PC,) ws + PC,) ( 0

P(Cs +ca)
= 2 (1-p)'l + p + 6(c ) (1-P) + 0 (1 -P)2

S
,",,

a ( )

3.1 Mean Queue Length for M/G/l System

27 * The mean queue length of the M/G/l system is given by the well known
. - Pollaczek-Khintchine formula

E(Q) (
p (1 + cs)=Pl+z 1-p )

The mean queue length obtained by the proposed method is given by

(2.5). Setting Ca equal to one, since the arrival process is Poisson,

we find that the mean queue length given in (2.5) is exactly the Pollac-

zek-Khintchine formula. That is to say, we predict the mean queue length

exactly for the M/G/l system. Let us examine the asymptotic performance

of method A and method B in this case. From Lemma 1, we get the meana
queue length under method A, by setting Ca = 1,

P(Cs + P)
E(QAl = 2 (1 - P) -I +g +6(c p+p) (1 - p) +o (1 - Pj2

S ( )

and the absolute error is

18



ElQ,l - E{Q) = ; (C - 1) + 6(c o+ o) (1 - P) + 0
S

S

From equation (3.4), we get the mean queue length under method B,

by setting Ca = 1,

and the absolute error is

ECQBl
PCS- ~021 = 2

Since

E(Q~) - EtQA3 = g - 6(c ‘+ p) Cl
S

- PI + 0 ((1 - d)

L‘ .
. -

method A and method B have similar performance when C
S

is large.

From equation (3.5), we get the Kingman's upper bound on mean queue
. length, by setting Ca = 1,

1+cp2

- and the absolute error is

E(Qk 1 - E(Q) = $ (1 + P)
. .

As we can see, the Kingman's upper bound is quite acceptible under

the M/G/l case and differs from the mean queue length by mo + pL

Although the absolute errors under both method A and method B become

large as the coefficient of variation of the service time increases, the

absolute error in the Kingman's upper bound is fixed. For cs > 3, the

mean queue length obtained by method A and method B is, in fact,

19



3

larger than the Kingman's upper bound when the traffic is high. Let us
examine the relative errors in both methods A and B as Cs becomes large.

The relative error for method A is

ECQA? -EW p ccSI--w
E tQ 1

=

20= - P )
- 1) + P

P2(1 + cs)
S 6(Cs +  P )

(1

( 20 - P )
p(1 + cs) + O (l - p,

2. l-
( ))

(
= p;;s-+:) Cl- p) +2p:;;  y-~~~~;~~~c~ ) (1 -vd2 +o (l-p)3

( )
S

and similarly the relative error for method B is

EIQB 1 - E(Q)
NQ? = ptCCs+ 1) (l - o) - p2(12;c )2 (1 - PI2 + ,(,I - J)S

S

As Cs becomes large, the relative errors for both methods A and B
approach (l-p)/p. Hence, for p equals 0.8, the relative errors are 25%

as mentioned earlier (see Table 3.1). In Tables 3.la and 3.lb, some nu-
merical comparisons of methods P, A, and B are presented for C = 0,

S
l/5, l/4, l/3, l/2, 1, 2, 4, 8, 16, 32, 64, and 128, when p=O.gand
0.8, respectively. This can be used as a check for the correctness of
the asymptotic analysis.

20



Table 3.la

MEAN QUEUE LENGTH FOR M/G/l SYSTEM WHEN p = 0.9

128
64
32
16
8
4
2
1

l/2
l/3
l/4
l/5

0

1 (Ex::h;:s:lt)

523.35
264.15
134.55
69.75
37.35
21.15
13.05
9.00
6.97
6.30
5.96
5.76
4.95

Method B Method A

580.95 580.50
292.95 292.50
148.95 148.50
76.95 76.50
40.95 40.50
22.95 22.50
13.95 13.51
9.45 9 .Ol
7.20 6.76
6.45 6.01
6.07 5.64
5.85 5.41
4.95 4.52

Table 3.lb

MEAN QUEUE LENGTH FOR M/G/l SYSTEM WHEN P = 0.8

Method P
(Exact Result)

128 207.20 258.40 258.00
64 104.80 130.40 130.00
32 53.60 66.40 66.00
16 28.00 34.40 34.00
8 15.20 18.40 18.00
4 8.80 10.40 10.00
2 5.60 6.40 6.00
1 4.00 4.40 4.01

l/2 3.20 3.40 3.02
l/3 2.93 3.07 2.69
l/4 2.80 2.90 2.53
l/5 2.72 2.80 2.43

0 2.40 2.40 2.03

Method B Method A
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3.2 Mean Queue Iength for E2/M/l System

In the G/M/l queueing system, the stationary distribution of number

of customers in the system is given by 191:

IflO = (1 - a)

k-l
*k = p(1 - a) d k>l

(3.9)

where 0 is the unique root of

cl = A*(p - ~0) (3.10)

and A*(s) is the Laplace Stieltjes transform of the interarrival time

distribution. Furthermore, the mean queue length is given by

E{Q? = +-0 (3.11)

When the interarrival time distribution is the a-stage Erlang dis-

tribution, we can get a closed form solution for O, i.e.,

CT = 4p+l-&KY2 (3.12)

Before we proceed to compare the asymptotic behavior of various

diffusion approximation techniques, we will first prove the following

lemma.

lemma. The steady state mean queue length of E2/M/l system will satisfy

ECQI =*g ~(1 -p)-l + $ + &j (1-p) + 0 (l-p)2
( )

as P+ 1

Proof.

From (3.12),

1 -+(l- 4p+&YY)

22



Setting Z = l-p, after simplification, we get

1 - CT =; 42
(
-3+3JT)

Using the Taylor's series expansion of G, we get

=$Zl-( $Z- & z2 + O(Z3)
)

(3.13)

Combining (3.12) and (3.13) together, we get

021 = P
fZ1-$z-&( z2 + O(Z3))

Usinethe Taylor series expansion of (l-X)-l, we get
. -

EW =g 1+c ($z +jg z2 + O(Z3)) ( 2
+ $z +& z2 + O(Z3)) )+ O(Z3)

3P=z 1+g
(

lz + 2 z2 + O(Z3)
1

3P p+=42+12 gg pz + O(Z2)

Finally, substituting l-p for Z, we get

~021 = $ ~(1 - P) -1 P+iz f y&3 PC1 - PI + 0 (1 - PI2( 1

From equation (2.5), we get the mean queue length under the proposed

method P, by setting Ca = l/2, Cs = 1,

EtQpl 3 p2(1 -1
=P+4 - P)

23



and the absolute error is

EIQpl - ~021 = $ P - & ~(1 - PI + 0 (1 - PI2
( )

Furthermore, the relative error is

~lQ,l -E(Q) $P- & PC1 - PI + 0 (0 - PI2 1
E tQ 1

=
p (1 - P) -IL + & e O((1 - p,)

-L PC1 - p) + 0 ((1 - p)2)108=
- PI

-1 ; (1 -p) + 0

= ; (1 - PI - & (1 - PI2 + 0 (1 - PI3
( )

From Lemma 1, we get the mean queue length under method A, by set-

ting Ca = l/2, c = 1,
S

E{Q ) 4 + f 4 (1 _ g P=A 2 + 5 + q+-;;) + 0 (1 - PI2
( )

and the absolute error is

EIQA1 - ECQ? ++ (+ :+ -&+a- PI +O((l- p12)

Furthermore, the relative error is

ECQ~I - ECQ?
E CQ > = ; (1 - PI +

24



Prom equation (3.4), we get the mean queue length under method B,

by setting Ca = I/2, Cs = 1,

E{QB] = (; p2 + ; p)(l - p)-' + p

‘1

a;d the absolute error is

EIQBl - E(Q) = $ P - & ~(1 - P)

Furthermore, the relative error is

EIQB? - ECQI
~62 I

9" (1 - p) - $$ (1 - o)2 + 0 (1 - P)3=-
( )

Prom equation (3.5), we get the Kingman upper bound on mean queue

length, by setting Ca = l/2, Cs = 1,
. -

~1~~1 = (i + $ p2)(1 - P? + P

. and the absolute error is

ECQ,I - ~1~1 = ($ + & P) - 6 pa - P) + o(c1 - 2)

From the above analysis, it is clear that the mean queue length

obtained by method P has minimum absolute error. The mean queue length

obtained by method A is very close to that by method P, since the dif-
ference is only a first order term. The mean queue length obtained by

method B is less accurate. In fact, it is very close to the Kingman's upper

bound on the mean queue length under heavy traffic condition. The rela-
2

tive error under method P will approximately be 2/9(1-p) - 7/81(1-p) ,

i.e., 2.1$for p= 0.9 and 4.1% for p = 0.8, as can be checked with

Table 3.2. Method A has similar performance. The relative error of

method B will be approximately wgo - p) - 14/81(1-P)~, i.e., 8.7%

25



.

P

t

for p = 0.9 and 17.1% for p = 0.8, as can be checked with Table 3.2.

Some numerical comparisons of methods P, A, and B are presented in Table

3.2 to check the correctness of the asymptotic analysis on mean queue

lengths and their errors under various diffusion techniques for the E2/

M/l system.
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Table 3.2

MEAN QUEUE LENGTH F0R E2/M/1 SYSTEM

P Exact Result Method P Method B Method A

0.95

0.90

0.85r.
0.80
0.75

0.70

14.331 14.487 14.962 14.492

6.829 6.974 7.425 6.985

4.327 4.463 4.887 4.477

3.075 3.200 3.600 3.219
2.323 2.438 2.813 2.460

1.820 1.925 2.275 1.95
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4. ACCURACY ANALYSIS OF DIFFUSION APPROXIMATION
BY SIMULATION AND NUMERICAL TECHNIQUES

In the previous section, we analyze the accuracy of mean queue

lengths obtained by various diffusion approximation techniques for the

M/G/l system and the E2/M/1 system where analytic solution of mean queue

m*1 length is available. Now we continue the accuracy analysis on mean queue

lengths obtained by various diffusion approximation techniques for those

queueing systems where closed form expression for mean queue length is

not available. Either simulation or numerical technique is employed to

obtain an estimation of the mean queue length, depending upon which way

is more convenient. Since simulation is only a statistical experiment

and its convergence is slow under heavy traffic condition, not only the

point estimation but also the 95% interval estimations are included to
give a better feeling on the accuracy or convergence of the simulation.

In this section, we will concentrate on the cases where the coeffi-

cient of variation of the arrival process is less than 1. When the co-

eflicient of variation of the arrival process exceeds 1, certain anoma-. -
lies might happen, as we shall see in the next section. We will choose

Erlang distribution to represent the interarrival arrival time distribu-

tion since its coefficient of variation is less than one. To be more

specific, the squared coefficient of variation of an n stage Erlang dis-

tribution is equal to l/n c91. And we will use Erlang distribution and

hyperexponential distribution to represent the service time distribution

with coefficient of variation less than and greater than 1, respectively.
A two stage hyperexponential density function has the following form:

X X- - - -
w- e
M1

M1 (1 - w) e M2+
M2

where

O<w<l

Apparently, it is the combination of two exponential distributions with

mean M1 and M2' respectively. The probability of taking the first

branch is W, and that of taking the second branch is l-w. Let us
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assume M2<M.1 After simple manipulation, we can express and M1
in terms of M2j M, and C, where M and C are the mean and squared

coefficient of variation of the distribution function, respectively.

(M - M2)
2

W = (4.1)
'1 2"-w 2

M2 - 2M2M + 2ii- (c + 1)

M - (1 - W) M2Ml =
W

(4.2)

Furthermore, for any M and C larger than 1, we can choose M2

arbitrarily except that it must be in between 0 and M. The latter con-

straint will guarantee that the w obtained from (4.1) will lie in be-

tween 0 and 1, and the Ml obtained from (4.2) will be positive. Al-

though various combinations of w, My and M2 will lead to the same

mean and variance, the higher moments of the distributions can be quite
LT.

+ different. Since C can be chosen arbitrarily, we can get any value

of coefficient of variation larger than one by using two stage hyperex-

ponential distribution functions.

As pointed out earlier, all the results from simulations are ex-.
pressed in terms of 95% confident interval estimations. For the En/Er/l

system, the widths of the confident interval are less than 4% of the

point estimations. For the En/H2/1 system, the width of the confidence

interval grows as the coefficient of variation and the traffic intensity

increases. Nevertheless, even in the worst situation, when C =128 and
S

P= 0.80 in Table 4.5 of the E2/H2/1 system, the interval estimation

of mean queue length is 203.7 f 21 and the mean queue lengths obtained

by methods P, B, and A are 206.4, 257.6, and 257.2, respectively. The

superiority of method P is apparent in this case. That is to say, in

all the cases where simulations are used, the simulation results are ac-

curate enough to distinguish the relative performance of various diffu-
sion approximations. Otherwise, numerical technique will be used.

We first examine the En/Er/l system. Table 4.1 compares the results

when p = 0.85, C and C Method A
S

= 0.5, a = l/2, l/3, l/4 and l/5.
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leads to the most accurate result within 3% relative error. Method B is

inferior to the other techniques and can have a relative error at least

up to 17%. Method P always has an error less than one half of the error

in method B. Table 4.2 contains the results when p = 0.8, Cs = 0.5,

and Ca = l/2, l/3, l/4, l/5. Similar patterns are again observed. As
1--u we shall see, the case where both coefficients of variation of interar-

rival time distribution and service time distribution are small, i.e.,

the En/Er/l system where both coefficients of variation are less than or

equal to 0.5, is the only case where method P does not yield the best

approximation.

I& us now examine the Er/H2/1 system. This is one of the cases

where method P is much supreior to methods A and B. Table 4.3 contains

the results when p = 0.85, Ca = 0.5, C
S

= 2, 4, 8, 16, 32, and 64.

The relative error of approximate mean queue length under method P is

always very small in all the test cases. Methods A and B have very sim-

i&r performance, and their relative errors can be at least up to 20%
when p = 0.85. If we look at the table more carefully, we might find

that the absolute errors in the approximate mean queue length under meth-

ods A and B are very close to (p/2)c  l

S
These are exactly the asymptotic

absolute errors of approximate mean queue lengths under methods A and B

in the M/G/l system. Again, we observe the robustness of method P when

the coefficient of variation of service time distribution is large. Ta-

ble 4.4 compares the results for p = 0.85, Ca = l/3, Cs = 2, 4, 8,16,

32, and 64, and Tables 4.5 and 4.6 compare the results for Ca = 0.5,

cS
= 2, 4, 8, 16, 64, and 128 when p = 0.80 and p = 0.75, respec-

tively. Similar pattern is again observed.

Finally, we use numerical techniques to study the GI/M/l system,
namely the E3/M/1 system and the D/M/l system. The E2/M/1 system has

already been analyzed in Section 3, and we pointed out in (3.11) that

the mean queue length of the GI/M/l system is p/(1-0) where 0 is

the solution of the equation A*(p- pa) = 0. For the E2/M/1 system,

this equation is a second order equation, and we have a closed form for

the root. But, for the E3/M/1 and D/M/l systems, the equations are

third order and transcendental equations, respectively; so we have to
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Table 4.1

1"Q MEAN QUEUE LENGTH FOR En/Er/l SYSTEM WHEN P = 0.85

/,,-/ l/2 1 3.140 k 0.039 / 3.258 1 3.471 / 3.069 /

rr

'a'a CC SimulationSimulation Method PMethod P Method BMethod B Method AMethod A
SS

l/2 l/2 3.140 It 0.039 3.258 3.471 3 .069

l/3l/3 l/2l/2 2.6942.694 icic 0.0330.033 2.8572.857 3.0693.069 2.6722.672

l/4l/4 l/2l/2 2.4782.478 z!zz!z 0.0240.024 2.6562.656 2.8692.869 2.4732.473

l/5l/5 l/2l/2 2.3472.347 + 0.024+ 0.024 2.5362.536 2.7482.748 2.3552.355

TableTable 4.24.2

MEAN QUEUE LENGTH FOR En/Er/l SYSTEMMEAN QUEUE LENGTH FOR En/Er/l SYSTEM WHEN p = 0.80WHEN p = 0.80

'a'a CC SimulationSimulation Method PMethod P Method BMethod B
SS I Method AMethod A

l/2l/2 l/2l/2 2.2952.295 ff 0.0220.022 2.4002.400 2.6002.600 2.2302.230

l/3l/3 l/2l/2 1.9861.986 rf:rf: 0.0160.016 2.1332.133 2.3332.333 1.9681.968

l/4l/4 l/2l/2 1.8401.840 ++ 0.0130.013 2.0002.000 2.2002.200 1.8381.838

l/5l/5 l/2l/2 1.7501.750 ++ 0.0130.013 1.9201.920 2.1202.120 1.7601.760
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Table 4.3

MEAN QUEUE LENGTH FOR E2/H2/1 SYSTEM WHEN p = 0.85

I-

cS
M/M2

2 2

4 3

Simulation Method P Method B Method A

6.74 I!Z 0.19 6.87 7.72 7.3

11.52 f: 0.43 11.69 13.39 12.97

8 5 20.77 + 0.87 21.32 24.72 24.30

16 9 40.63 * 2.54 40.59 47.39 46.46

32 17 79.63 * 6.46 79.12 92.72 92.30

64 33 152.3 rF: 14 156.2 183.4 183.0

Table 4.4

MEAN QUEUE LENGTH FOR E,/H,/l SYSTEM WHEN p = 0.85

cS
M/M2

2 2

4 3

8 5

16 9

32 17

64 33

Simulation

6.26 31 0.14

10.97 f 0.35

20.25 + 0.97

40.20 + 3.02

78.8 * 6.9

152.0 + 14

Method P Method B

6.47

11.29

20.92

40.19

78.72

155.8

7.32

12.99

24.32

46.99

92.32

183.0

Method A

6.90

12.57

23.90

46.56

91.89

182.6
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cS

4 2 2

4 3

8 5

16 9

32 17

64 33

128 65

cS

2

4

8

16

32

64

128

Table 4.5

MEAN QUEUE LENGTH FOR E2/H2/1 SYSTEM WHEN p = 0.80

M/M2

2 4.31

3 7.31

5 13.31

M/M2 Simulation Method P Method B

3.44 rf: 0.05 3.56

5.67 + 0.12 5.81

10.08 t 0.32 10.31

19.27 + 0.83 19.31

37.39 + 1.92 37.31

73.02 + 4.73 73.31

146 t 14 145.3

9 25.31

17

33

65

49.31

97.31

193.3

Simulation Method P Method B Method A

4.67 + 0.09

7.83 + 0.22

14.11 + 0.53

27.24 + 1.39

52.95 + 3.02

102.4 f 8

203.7 + 21

4.80 5.60 5.21

8.00 9.60 9.21

14.40 17.60 17.20

27.20 33.60 33.20

52.8 65.6 65.2

104.0 129.6 129.2

206.4 257.6 257.2

Method A

Table 4.6

MEAN QUEUE LENGTH FOR E2/H2/1 SYSTEM WHEN p = 0.75

3.95

6.94

12.94

24.94

48.94

96.94

192.9
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use numerical techniques to find the root. After simple manipulations,

we get the following equations:

o3 - (2 +9p) a2 + (1+9p +27p2) CT - 27p3 = 0 for the E3/M/1 system

1--u and

e-(l-ah _ ~ = 0 for the D/M/l system

In Tables 4.7 and 4.8, we compare the mean queue lengths obtained

by numerical technique with those by various diffusion approximations

for the E3/M/1 and D/M/l systems, respectively. Again, method P is the

more accurate approximation method. The mean queue length obtained by

method A is very close to that by method P. The relative error in meth-

od B can exceed those in methods A and B by 25% in some cases. Recall

similar phenomenon appeared in our analysis on the E2/M/1 system in Sec-

t&on 3.
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Table 4.7

MEAN QUEUE LENGTH FOR E3/M/1 SYSTEM

P Exact Result / Method P 1 Method B 1 Method A

0.95 12.775 12.983 13.458 12.989

0.90 6.106 6.300 6.750 6.312

0.85 3.881 4.061 4.486 4.078

0.80 2.768 2.933 3.333 2.954

0.75 2.098 2.250 2.625 2.275

0.70 1.650 1.789 2.139 1.817

Table 4.8

MEAN QUEUE LENGTH FOR D/M/l SYSTEM

P Exact Result Method P Method B Method A

0.95 9.664 9.975 10.450 9.983

0.90 4.661 4.950 5.400 4.965

0.85 2.991 3.258 3.683 3.280

0.80 2.154 2.400 2.800 2.427

0.75 1.651 1.875 2.250 1.906

0.70 1.313 1.517 1.867 1.551
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5. ANOMALY WHEN THE COEFFICIENT OF VARIATION OF
INTERARRIVAL TIME IS URGER THAN ONE

In this section, we investigate the mean queue length of the queue-

ing system where the coefficient of variation of the interarrival time

is larger than 1.1--m We will use the H2/M/1 system as an example to demon-

strate the anomaly since this is the case where analytic result is avail-

able. In the M/G/l system, the mean queue length is given by the Pollac-

zek-Khinchin formula (3.7), and it depends only on the mean and variance

of the service time distribution and the mean of the interarrival time

distribution. This seems to be a support of the robustness of the dif-

fusion approximation which only utilize the means and variances of the

interarrival time and service time distributions to fit the parameters

a and p of the Fokker-Plank equation and neglects the effect of higher

moments of the distributions. However, after examining the H2/M/1 sys-

tem, we will find that higher moments of the interarrival time distribu-

tion do have a drastic effect on the mean queue length as the traffic
,rr-

. - intensity, p, deviates from 1. Since the two-stage hyperexponential

distribution function is usually used when the distribution function is

required to have high coefficient of variation, and is often encountered

in computer system modelling, we will further analyze the regularity

conditions on hyperexponential distributions for the diffusion approxi-

mation to be applicable. That is to say, we are interested in identify-

ing the ranges of the parameters of the two-stage hyperexponential dis-
tribution when being used as the interarrival time distribution such

that the performance of the queueing system, e.g., the mean queue length,

can be estimated by the diffusion approximation accurately. It should

not be too surprising that the ranges will shrink as p decreases or Ca
c

increases. Recall the form of a two-stage hyperexponential distribution

is (u/Ml) e-X/Ml + ((1-w)/M2) e -X/M2
? where M2 < Ml, The relations

among the parameters are given in (4.1) and (4.2) with M = l/A.

From Table 5.ld, we observe that by choosing different w, My and

M2' the mean queue length varies over a wide range from 624.62 to 23.48

when p = 0.95, Ca = 64. Let us take a closer look at w, Ml, and M2
at two extreme cases:
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Case 1: Ml = 32.818 M2 = 0.01 = 3.018 x 10-2w

-6
Case 2: Ml = 3151.0 M2 = 0.99 w = 3.175 x 10

In both cases, the mean of interarrival time is 1, and the variance or

the square coefficient of variation is 64. For the interarrival time

Yl&stribution in Case 2, as we can see, M2 is so close to the mean in-

terarrival time, the first exponential density, Q/Ml e
-X/Ml , has

almost no effects on the mean interarrival time and only affects the va-
riance. This is the reason why the mean queue length under the interar-

rival time distribution in Case 2 is almost equal to the mean queue

length in M/M/l which is equal to 19 when p = 0.95. That is to say,

although having Ca equal to 64, the HZ/M/l system in Case 2 behaves

very much like an M/M/l system. The interarrival time is generated ac-

cording to the first exponential density o/M1 e-X/M1 so infre-

quently that we may ignore it when evaluating the performance of the

queueing system. But in Case 1, M2 is so close to zero, the first

expo-tial density not only affects the variance of the interarrival
. -

time but also its mean. This is the reason why the mean queue length

becomes so high, 624.62. The important fact to realize is that a large

coefficient of variation does not necessarily mean that we have a lot
a of short interarrival times, and the fluctuation is quite high, as in

Case 1; it may also mean there is few very long interarrival time which

makes the coefficient of variation large without having serious effect

on the fluctuation of the system.

Iet us take a look at the mean queue length predicted by the diffu-

sion approximations. It is around 587 by all three methods. This is

quite close to the result under the interarrival time distribution in

Case 1. This is not a surprise since mean queue length calculated by

diffusion approximation is fairly close to the Kingman's upper bound on

mean queue length as pointed out in Section 3. What we are interested

in is, can we decide the applicability of diffusion approximation to the

queueing system by just examining the parameters of the distribution.

Surely, the applicable range will be affected by p and Ca. In Tables

5.la through 5.ld, the mean queue lengths of the H2/M/l systems are tab-

ulated for various combinations of Ml/M, M2/M, w which lead to the
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Ml/M M2/M W

1.5051 6.622 x lo-'

1.5263

1.5556

1.6250

1.7143

1.8333

0.01

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.75

0.8

0.9

0.95

0.99

6.435 x 10-l

6.183 x 10 -1

5.614 x 10 -1

4.949 x 10 -1

4.186 x 10-1 28.26 8.27

2.0000 3.333 x 10-1

2.2500

2.6667

2.424 x 10-l

3.0000

3.5000

6.0000

11.000

50.998

1.525 x 10-l

1.111 x 10-1

7.407 x 10-2

1.961 x 10-2

4.975 x IO-3

2.000 x 10-4

Table 5.la

MEAN QUEUE LENGTH WHEN Ca = 2

4

Mean Queue Length

P = 0.95

28.53

28.48

28.45

P = 0.85

8.50

8.48

8.45

28.39 8.39

28.33 8.34

28.17 8.19

28.06 8.10

27.90 7.96

27.79 7.87

27.63 7.47

26.91 7.29

25.76

21.87

6.78

5.97

1
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Table 5.lb

MEAN QUEUE LENGTH WHEN C = 8a

Mean Queue length
Ml/M M2/M W

P = 0.95 p = 0.85

4.5354 0 .Ol 2.188 x 10 -1 85.55 25.47

4.6842 0.05 2.050 x 10 -1 85.35 25.32

4.8889 0.1 1.880 x IO -1 85.12 25.12

5.3750 0.2 1.546 10
-1

x 84.67 24.67

6.0000 0.3 1.228 x 10 -1 84.11 24.12

6.8333 0.4 9.326 -2x 10 83.39 23.43

8.0000 0.5 6.667
-2

x 10 82.42 22.51

9.7500 0.6 4.372 10
-2

x 81.02 21.21

12.667 0.7 2.507 x 10 -2 78.79 19.25

15.000 0.75 1.754 x 10 -2 77.03 17.83

18.500 0.8 1.130 x 10 -2 74.49 15.96

36.000 0.9 2.850 -3
x 10 62.89 10.53

71.000 0.95 7.138 x 10 -4 45.94 7.70

351.00 0.99 2.857 X 10 -5 23.16 6.00
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Table 5.1~

MEAN QUEUE LEiNGTH WHEN C = 32

M/M M2/M W

16.6565 0.01

17.3158 0.05

18.2222

20.3750

23.1429

26.8333

32.0000

39.7500

5.947 x 10-2

5.502 -2x 10

4.966 x IO-2

3.965 -2x 10

3.064 x 10-2

2.270 -2x 10

1.587 x 10 -2

1.022 x 10-2

52.6667

63.0000

78.5000

156.000

311.000

1551.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.75

0.8

0.9

0.95

0.99

5.773 x 10-j

4.016 x 10-3

2.574 x IO-3

6.447 x 10-4

1.613 x 10-4

6.452 x lO+j

1 Mean Queue length 1
P = 0.95 P = 0.85

313.65 93.37

312.76 92.70

311.81 91.79

309.69 89.68

306.98 87.01

303.47 83.51

298.61 78.65

291.18 71.55

279.13 60.11

269.58 51.45

255.36 39.67

187.90 13.23

84.62 7.98

23.43 6.01

40



Table 5.ld

MEAN QUEUE LENGTH WHEN Ca = 64

M/M M2/M W

32.818

34.158

36.000

40.375

46.000

53.500

64.000

79.750

106.00

127.00

158.50

316.00

631.00

3151.0

0.01

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.75

0.8

0.9

0.95

0.99

3.018 x 10-2

2.785 x 10 -2

2.507 10-2x

1.991 x 10-2

1.532 x 10-2

1.113 x 10-2

7.874 -3x 10

5.054 -3x 10

2.850 x 10-3

1.980 x lo-'

1.269 x lo-'
3.174 x 10 -4

7.936 x 10-5

3.175 x IO -6

Mean Queue Length
I

PP = 0.95= 0.95

624.62624.62 184.27184.27

616.40616.40 182.61182.61

614.69614.69 180.73180.73

610 .lO610 .lO 176.40176.40

604.62604.62 170.85170.85

596.79596.79 163.54163.54

586.57586.57 153.35153.35

571.47571.47 138.28138.28

545.90545.90 113.66113.66

525.69525.69 94.6394.63

497.30497.30 67.9967.99

347.83347.83 14.1014.10

PP = 0.85= 0.85

116.30 8.02

23.48 6.01
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same means and squared coefficients of variation, which are 2, 8, 32,

and 64, respectively, when p = 0.95 and 0.85. Ml/M and M2/M can be
viewed as the normalized means of the first exponential and second expo-

nential branches, respectively. As we can observe fromTable 5.1, as MB/M

increases, the mean queue length decreases. The mean queue length drops
sharply as1 M2/M approaches 1. The larger the coefficient of variation--u
of the interarrival time is, the larger the variation of mean queue

length can be. Nevertheless, the mean queue length does not vary too

much over a substantial range of the value of M z/ M  l This gives us some

hope that diffusion approximation may be applied in this case. In Tables

5.2a and 5.2b, the mean queue lengths of the HZ/M/1 systems when Ca =

2, 4, 8, 16, 32, and 64 are tabulated for p = 0.95 and 0.85, respec-
tively. The exactmean queuelengths for M2/M = 0.2, 0.5, and 0.7 are

also included in Table 5.2a. Similarly, those for M2/M = 0.1, 0.4, and

0.6 are also included in Table 5.2b. As we can see, various diffusion

approximations lead to similar results and they provide reasonable ap-
proximations to

,* *
. - ing the results

0.95, the range

is

the analytic results under those M2/M ratios. Combin-

from Tables 5.1 and 5.2, we can conclude that, for p =

of M2/M where diffusion approximation can be applied

M2y < 0.75

within 15% accuracy for Ca < 64. This is a very conserved bound. When

'a is close to 1, the applicable range is actually larger than the spec-

ified range. As we can see from Table 5.la, for the case Ca = 2 and

P =  0 . 9 5 , even when M2/M increases to 0.95, the variation of mean queue
length is not substantial, and the mean queue length from diffusion ap-c
proximation (see Table 5.2a) is acceptable. As the traffic intensity,

P9 decreases, the applicable range shrinks very quickly, as can also be
observed from Table 5.1. In the case p = 0.85, the applicable range
is around

M2
w < 0.6 to 0.65

with 15s accuracy for Ca < 6 4 .
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Table 5.2a

MEAN QUEUE LENGTH F'OR H,/M/l SYSTEM WHEN p = 0.95

'a Method P
--at1

2 28.0

4 46.1

8 82.2

16 154.4

32 298.8

64 587.6

Met zod B Method A

28.5 28.0 28.4

46.5 46.1 47.2

82.6 82.2 85.1

154.8 154.4 160.7

299.2 298.8 309.7

588 587.6 610.1

M2/M = 0.2 M2/M = 0.5 M2/M = 0.7

Analytic

28.2 27.9

46.3 45.1

82.4 78.8

154.5 145.7

298.6 279.1

586.8 544.9

Table 5.2b

MEAN QUEUE IXNGTH FOR H2/M/1 SYSTEM WHEN p = 0.85

‘a Method P Method B

2 8.08 8.50

.4

8

12.9 13.3

22.5 23.0

16 41.8 42.1

32 80.3 80.8

64 157.4 157.8

Method A
M2/M = 0.1

Analytic

MS/M ~~0.4 M2/M=0.6
I

8.08 8.45 8.27 8.10

12.9 14.0 13.4 12.6

22.5 25.1 23.4 21.2

41.8 47.4 43.5 38.1

80.3 91.8 83.5 71.5

157.4 180.7 163.5 138.3
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The mean queue lengths for more general service time distributions

under H2 input are not available analytically. It is hard to do a thor-

ough investigation of the applicable range of diffusion approximation in
this case since the exact mean queue length can only be estimated through

long simulations under heavy traffic condition or tedious numerical tech-

1 niques. Nevertheless,--u- we select certain combinations of Ml, Ma, w which

fall inside the applicable range of diffusion approximation to H2/M/1

systems and simulate the mean queue lengths for several H2/H2/1 and HZ/

E,/l systems. In Table 5.3, the mean queue lengths obtained by various

diffusion approximations are compared with that obtained by simulations

for the H2/E2/1 system when p = 0.85 and Ca = 64, 32, 16, 8, and 4.

The second column M2A specifies the extra degree of freedom in the

interarrival time distribution and also is the criterion we use to test

the applicability of diffusion approximation in the HZ/M/1 system. The

simulation results seem to be quite close to the results obtained by

various diffusion approximations. All three diffusion approximation

techniques yield very similar results. In Table 5.4, the mean queue
LT.

. - lengths obtained by various diffusion approximations are compared with

those obtained by simulations for the H2/H2/1 system when p=O.85 under

various combinations of C and C . The interarrival time distributiona S

is assumed to have the same form as before. The service time distribu-

tion is also assumed to have a similar form as + (0 -

W)/Ms2)  e
-X/M, 2

(W/MS11 e-X'Ms1

with mean l/p. The second column is the same as that

in Table 5.3. The fourth column is only used to specify the extra degree

of freedom in the service time distribution. The results under various

diffusion approximations are again quite acceptable. Furthermore, meth-

ods B and A yield very similar results, and the result from method P is

somewhat smaller. Recalling the asymptotic expressions for mean queue
._

lengths in Section 2, we know that the mean queue length obtained by

method P is smaller than those obtained by methods A and B by (p/2) c l

S

This is indeed the case as can be checked from Table 5.4. Since the re-

sults obtained by methods A and B are closer to the Kingman's upper
bound, the mean queue length obtained by method P seems to cover a wider

range of the parameters of the distribution within *15$ accuracy. That

is to say, method P seems to be preferable unless M2A is very close to

0 for the H2/H2/1 system.

44



Table 5.3

MEAN QUEUE LENGTH FOR H2/E2/1 SYSTEM WHEN p = 0.85

‘a AM2 Simulation Method P Method B Method A

64 0.2 163 rtr 16 156.2 156.4 156.0

32 0.2 83.5 + 5.5 79.1 79.3 78.9

32 0.5 71.9 + 6.3 79.1 79.3 78.9

16 0.15 43.5 t 3.1 40.6 40.8 40.4

16 0.5 39.5 21 2.6 40.6 40.8 40.4

8 0.3 22.6 t 1.1 21.3 21.5 21.1

8 0.45 21.5 5 0.8 21.3 21.5 21.1

4 0.3 12.2 ?I 0.4 11.7 11.9 11.5

4 0.5 11.5 I!I 0.4 11.7 11.9 11.5

Table 5.4

MEAN QUEUE LENGTH F'OR H2/H2/1 SYSTEM WHEN p = 0.85

a AM2 ‘s ws2
Simulation Method P Method B Method A

44 0.20.2 6464 0.20.2 312312 2121 3333 309309 336336 336336

44 0.20.2 3232 0.50.5 237237 AIAI 1919 232232 246246 245245

22 0.20.2 6464 0.60.6 230230 I!II!I 2020 232232 259259 259259

66 0.30.3 1616 0.30.3 74.874.8 ++ 5.05.0 77.977.9 84.784.7 84.384.3

88 0.750.75 44 0.750.75 25.025.0 Z!IZ!I 1.41.4 29.829.8 31.531.5 31.031.0

44 0.60.6 44 0.60.6 18.418.4 2121 1.01.0 20.120.1 21.821.8 21.421.4

44 0.750.75 44 0.750.75 18.518.5 kk 0.60.6 20.120.1 21.821.8 21.421.4
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From then on, we will use the term "type A" hyperexponential dis-

tribution to denote the hyperexponential distribution having the property

that M/M is not "close" to 1. We will be vague on the exact range of

the parameters that type A hyperexponential distributions must satisfy,

i.e., we only define it in a qualitative way, not in a quantitative way.

~41 For more complicated queueing systems, the exact range of the parameters

of type A hyperexponential distributions such that the diffusion approx-

imation can be applied to obtain a reasonable estimate of mean queue

length, utilization, etc. may be different, depending on the network

topology and traffic intensity at the server. But, as long as M2/M is
not far from zero, the approximation should be applicable. Furthermore,

we will use the term "type B" hyperexponential distribution to represent

the other extreme, i.e., M2/M is close to 1.

Although hyperexponential distributions have been used throughout

the section as interarrival time distributions, we expect the results

should hold for other general distributions. That is to say, as long as

thg high variation of interarrival time is due to a large number of short

interarrival times instead of a few very long interarrival times, diffu-

sion approximation should be applicable. Similarly, the terms type A and
type B distributions are used to denote the two types of distributions

with high coefficients of variation, respectively.
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6. CLOSED TWO SERVER SYSTEMS (CPU/DTU MODEL)

After completing the discussion on diffusion approximation to single

server systems, we now consider applying diffusion approximation to closed

two server systems, as shown in Fig. 6.1. In computer system modelling,

the closed two server system is often used to represent the CPU (central
1--u

processing unit) and DTU (data transfer unit) operating under fixed de-

gree of multiprogramming. From then on, we will call the two servers CPU

and DTU, respectively. This model has been analyzed by Gaver and Shedler
C21 using diffusion approximation with reflecting boundaries and usual

way to estimate a and !3 when the CPU service time which is the time
between page faults under this particular interpretation has exponential

distribution, i.e., when its coefficient of variation is equal to 1.

Later on, Gaver and Shedler c31 use Wald's identity to fit the ratio of

2 p/a and analyze the same system when the CPU service time has hyper-

exponential distribution, i.e., when its coefficient of variation is

larger than 1. Gelenbe c51 also analyzed this system using the Feller's

. - el%nentary  return process and the usual way to estimate diffusion param-

eters.

I n-r+--- DTU
-A

Fig. 6.1. CLOSED TWO SERVER SYSTEM (CPU-DTU SYSTEM).

The anomalies in Section 5 lead us to suspect the same kind of prob-

lems may exist in the two server closed queueing networks if one or more

servers have hyperexponential service time distributions. This is simply

because the departure process of any server is the arrival process of the
other server. Before we proceed to investigate the anomalies, let us
first examine the various diffusion approximation techniques on the two

server closed queueing network just mentioned in some detail. We will
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concentrate on the CPU system and try to estimate the utilization or the

mean queue length of the CPU system. This measure is of practical im-

portance since it can be used as an indicator of the stationary system

performance. Assume the fixed degree of multiprogramming is M. Let

P(X) be the stationary probability density function for the diffusion

process in (O,M), where X is the number of programs in the CPU queue
--w
aid M-X is the number of programs in the DTU queue. Furthermore, let

us assume the mean service time of the CPU and DTU are l/p and l/A,
2

and the variance of the CPU and DTU are 0 2and 0
S a' respectively.

The first diffusion approximation technique which we are going to

examine is the method proposed by Gaver and Shedler [a]. In this method t

we have

as usual. Let F(X) be the stationary distribution function of the
. -

queue length at CPU. Imposing a reflection boundary at X = 0 and nor-

malizing the probability mass between 0 and M to one, we get

1 - A erXF(X) =
1 - A erM

where

r wz-z 2c1.L - A)
a ofA3

2 3
+ OsP

by solving the Fokker-Plank equation (2.1). The unknown constant A is

khosen such that

lim F(0) = 1 - p
M-+a

After simple manipulation, we get

A=p
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Hence,

F(X) = 1 - p erX

1 - p erM

We will refer to this method as method Gl later on.
1--w The second diffusion approximation technique is again due to Gaver

and Shedler [31 to handle the case where the coefficient of variation of

the CPU service time is larger than one. Let G(S) be the Laplace-

Stieltjes transform of the CPU service time distribution and H(S) be
the Iaplace-Stieltjes transform of the DTU service time distribution.

Furthermore, let S* be the positive solution of

G(d) H(S) = 1

By Wald's identity, we get

,rr.
. -

r 2Pz-z
a In G(S*)

Following the same argument as the previous method, we get

F(X) = 1 - A erX

1 - A erM

Now, using the fact that the long run input rate to the CPU, ~F(M-

11, must equal to the long run output rate from the CPU, ~(1 -F(O)),
we get

A = P
l+pe-r(M-I) _ e-rM

We will refer to this method as method G later on.

Finally, we consider the method proposed in Gelenbe c51 with a

slightly different argument from c51 making it coherent with Section 2.

Again, we refer to this method as method B.
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Now there are two boundaries: 0 and M. When the number of pro-

grams in the CPU queue is M, the DTU is idle and no new arrival will

occur. It is assumed that the CPU queue length will jump to M-l after

an exponential holding time with mean h .M This is similar to the way

the boundary at X = 0 is handled in Section 2. The boundary at X=0

is still handled in the same way as in Section 2, where the mean holding

-me is assumed to be hO* As noted earlier, restricting the holding

time distribution on the boundaries to be exponentially distributed does
not mean to impose any restriction on the service time distribution of

the CPU or DTU. It is just a conceptual help for us to handle the bound-
ary conditions. Now we are facing a more serious problem than we en-

countered in the GI/G/l system. Here, not only the two mean holding

times at the boundary X = 0 and X = M are unknown, but also the

probabilities of having empty queue and full queue are unknown. As we

shall see, the boundary equations can only be used to solve two unknowns,

i.e., we must find approximate values for two of the four unknown param-

eters. Since the probability of empty queue is directly related to the

CPU ug-ilization, a quantity of major concern, we will try to find reas-

bnable estimations for h 1 and hM' the mean holding times at the bound-

aries, and hope that the errors in these estimations will have minor in-

fluence on other quantities of interest. Recall the GI/G/l system in

. Section 2 where the approximate holding time at X = 0 obtained by the

diffusion approximation is equal to l/A, which is the mean interarrival

time. Hence, we will set hO equal to l/A, the mean service time of

the DTU since, when the DTU is busy, the mean interarrival time to the

CPU is equal to the mean service time of the DTU. By similar argument,

we will set h equal to l/p, the mean service time of the CPU.M
At steady state, we have the following equations:

aP(X) - 8 ax P(X) = -AM16(X - 1) -

lim a

x-30
ax P(X) - BP(X) = AMI

lim a

X-M
ax P(X) - BP(X) = /JM2

PJ3p -M+l)
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where 6(m) is the Dirac density function and 6(X-l) and 6(X-M+l)

represent the probability density function of the point from which the

diffusion process starts once again immediately after a jump from the

boundaries 0 and M, respectively; Ml and M2 are the probability

masses concentrated on the lower boundary and upper boundary, respec-

1 tively.--w
Furthermore, we have the following boundary conditions:

lim P(X) = lim P(X) = 0
x-3-0 X-+M

Solving the above equations, we get

LT.

. -

O<X<l

l < X < M - 1 (6.1)

where

and

Also, using

we get

hM1 r(M-1)
M2=T-e

r 28=-
a

P(X) dX + Ml + M2 = 1

(6 2)



A more detailed derivation of the result is given in Gelenbe c51.

We will further consider the problem of discretization of the probabil-

ity density function in the neighborhood of integer valued point x = i

in order to approximate fi.,
1

the stationary probability of having i

jobs in the system. The following way of discretization is proposed.

I = Mno 1

l-c1 = I3/2
P(X) dX

0

II =
i P(X) dX

'M-1 = I

M
P(X) dX

M-3/2

2<i<M-2- -

After simplification, we get

I -1

*0 = (1

flOp 2
fl =-
i (1 - p) r e for 2<i<M-2 (6.3)- -

i

flOp -r/2
"M-1 = (1 - p) r

er (M-1) (e _ e-3r/2 - r>

r(M-1)
nM = pxo e
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In the G/G/l system, we find that the accuracy of diffusion approx-
imation can be improved by defining the diffusion parameter ,f3 as hC,+

I-lgCS
where g is set to p, the traffic intensity or the utilization

of the server. For the closed two server system, the utilizationofeach

server is not apparent. From experimental results, it seems to be that

1--u setting g equal to A/p for Cs > 1 and 1 otherwise may improve

the accuracy. We will denote this method as method P.

After examining the various diffusion approximation methods, now

let us consider the case where the coefficient of variation of the ser-

vice time distribution at the CPU is large, as is often the case. If the

service time distribution at the DTU is exponentially distributed, the

system is analytically tractable since it can be viewed as a M/G/l queue-
ing system with finite waiting room c191. We summarize the result for

stationary mean queue length as follows.

MLTC i = KMfii for 1 < i <M

M 1
1 - KM(l - p)

7rM= -
P

and

where

is the stationary probability that the queue length is equal to
when the capacity of the waiting room is M

x i is the stationary queue length distribution of the M/G/l system

Hence, we will assume the service time at DTU has exponential distribu-

tion and use the analytic result to analyze the accuracy and applicabil-

ity of diffusion approximation. The answer to the following three ques-

tions are of major interest: (1) Does the mean queue length or the
utilization of the CPU vary if type B hyperexponential distribution in-

stead of type A hyperexponential distribution is used for the service
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time distribution of CPU, (2) Does the diffusion approximation give a

reasonable approximation to the mean queue length and utilization when

type A hyperexponential distribution is used for service time distribu-

tion of CPU, (3) Does the service time of the CPU often have type A

hyperexponential distribution, i.e., we are more interested in the ap-

plicability to computer system modelling.
'1--w

The hyperexponential distribution of the CPU service time is as-

sumed to have to form (w/Ml) e-x'M1 + (Cl- w)/M2) e -X/M2 with mean l/p

where M2 < Ml. Prom Tables 6.1 and 6.2, we see that the mean queue

length and utilization change as the parameters of the hyperexponential

distribution change. Similar phenomenon on CPU utilization in the M/G/

l/N system is observed by Price c241. As M2p decrease, i.e., the num-

ber of requests having short CPU interval increases, the analytic re-

sults become very close to the results obtained by both diffusion ap-

proximation methods.

Again, we see the diffusion approximation gives a good approximation

of the performance under type A hyperexponential service time distribu-

tion?- We also expect the results can be generalized to more general dis-. -
tributions. That is to say, diffusion approximation will be applicable
if the large variation of service time is due to a lot of short service

times. If it is due to a few long service times, diffusion approximation
A can only be used to obtain a lower bound of the performance.

The third question is hard to answer in general. In C3 1, three
sets of data on the CPU utilization and the mean and variance of the

CPU service time, which is the time between page faults, are given. The

mean and variance of the CPU service time are gathered from actual pro-

gram data. The results on CPU utilization are obtained by trace driven

simulations of that queueing system. The DTU service time is assumed

to be constant to account for the average access time along with the

time to transfer a page of information. In Tables 6.3, 6.4, and 6.5,
we compare the results obtained by three different diffusion approxima-

tion techniques, i.e., methods P, G, and B, with the analytic result

obtained by semi-Markov analysis [221. The parameter M2's of the hy-

perexponential distributions taken in [31 are all less than four tenths

of their means, respectively, so they should be type A hyperexponential

distributions.
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Table 6.3

CPU UTILIZATION

l/p = 17026, c( = 0.39780 x IO 10 , &I,, = 3682, 1A = 20,000
Y

Number of Jobs
in the System

2 0.5316 0.4934 0.5993 0.4887
3 0.5548 0.5223 0.6667 0.5141
4 0.5752 0.5475 0.7064 0.5367

5 0.5935 0.5696 0.7326 0.5568

6 0.6098 0.5892 0.7511 0.5749
7 0.6245 0.6067 0.7650 0.5912

8 0.6379 0.6223 0.7757 0.6060

9 0.6500 0.6364 0.7842 0.6195

10 0.6611 0.6491 0.7911 0.6318

Semi-Markov Method P Method G Method B

Table 6.4

3
CPU UTILIZATION

9
1/p = 4871, a; = 0.26492 x lo-, M, = 1929, l/A = 20,000

Y

Number of Jobs
in the System Semi-Markov Method P Method G Method B

2 0.2216 0.2169 0.2216 0.2022

3 0.2286 0.2285 0.2313 0.2077

4 0.2333 0.2350 0.2361 0.2124

5 0.2366 0.2387 0.2388 0.2165

6 0.2388 0.2408 0.2404 0.2201

7 0.2403 0.2420 0.2415 0.2231

8 0.2413 0.2426 0.2422 0.2258

9 0.2420 0.2430 0.2426 0.2281

10 0.2425 0.2432 0.2429 0.2301
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Table 6.5

CPU UTILIZATION

l/p 10735, 0.12313 x 10IO= = , M, = 2953, IA = 20,000

f -
. -

Number of Jobs
in the System Semi-Markov Method P Method G Method B

2

3

4
5

6

7

8

9

10

0.4076

0.4281

0.4449
0.4587

0.4702

0.4798

0.4879

0.4948

0.5006

0.3863 0.4249 0.3704

0.4147 0.4579 0.3887

0.4368 0.4764 0.4045
0.4544 0.4882 0.4183

0.4685 0.4964 0.4304

0.4799 0.5024 0.4410

0.4893 0.5070 0.4505

0.4970 0.5106 0.4588

0.5033 0.5136 0.4663
-
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As expected, the diffusion approximations are very close to the

analytic result, and method P seems to have better overall performance

among the three diffusion approximations. In Tables 6.6a, 6.6b, and

6.6c, we compare all of them with the results obtained by trace driven

simulations in [31, and the results are again very close. Hence, we can

say, at least in that computer environment, the assumption of having type

A hyperexponential service time distribution is very reasonable. Lewis

and Shedler c201, based on a statistical analysis of actual computer

program address traces, presented a semi-Markov model for the point pro-

cess of page exceptions. Although the detailed stochastic structure of

that model is more complicated, it does have the property that it con-

sists of a large number of short interfault time similar to that of type

A hyperexponential distribution.

For the case where the coefficient of variation of CPU is small

KU, methods P and B are equivalent. In c51, comparison of methods B

and Gl, with results obtained by semi-Markov analysis, shows that both

. methods are very accurate, and method B is a little bit better.
. -

The model in Fig. 6.1 can also be generalized to include a self loop

at each server, as shown in Fig. 6.2. To account for the effect of the

self loop, we treat each server, including its self loop, as a single

1 entity and consider the effect of the self loop as an internal interac-

tion which is transparent to other parts of the system. That is to say,
*

we will replace the server with a self loop by an equivalent one without

a self loop. The interdeparture time of the equivalent server is, in

fact, the service completion time seen by DTU. The mean and variance of

the service time of the equivalent CPU are

e/(c12(1 - m2)l,

(l-6)/~ and (of/(l-Q) +

respectively. The two quantities are derived below.

Fig. 6.2. CPU-DTU MODEL WITH SELF LxK)PS.

59

* in the sense that queue length distribution and departure rate to the
other server are preserved.



Table 6.6a
CPU UTILIZATION

l/p = 17026, 0; = 0.39780 x 10IO , l/h = 20,000

Number
of Jobs Trace Semi-Markov Method P Method G Method B

3 0.538 0.5548 0.5223 0.6667 0.5141

6 0.546 0.6098 0.5892 0.7511 0.5749

Table 6.6b
CPU UTILIZATION

l/p = 4871, 0; = 0.26492 x IO', l/A = 20,000

Number
of Jobs I I

Trace Semi-Markov Method P

3 0.227 0.2286 0.2285 0.2313 0.2077

6 0.229 0.2388 0.2408 0.2404 0.2201 1

Method G Method B
I I

Table 6.6~
CPU UTILIZATION

l/p = 10735, 0; = 0.12313 x 10IO ) l/A = 20,000

/ ~m~~~s 1 Trace / Semi-Markov 1 Method P / Method G 1 Method B 1

1

3 0.419 0.4281 0.4147 0.4579 0.3887

6 0.425 0.4702 0.4685 0.4964 0.4304
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Let N be the number of service completions at CPU in between jobs

arriving at the DTU (including the last one). Then, N is a geometri-
cally distributed random variable with mean l/(1-0> and variance e/(1-

m2. Let X be the random variable which represents the service time

of CPU and Y be the random variable which represents the service time

4 of the equivalent CPU without self loop. By assumption,

E{X) =; and Var(X) = ~7~

Clearly,

E(Y) = E(EtYIN?~

1=
1-10 - e)

Using the identity for conditional variance [14], we get

25 .

. - Var{Y] = E[Var(YIN)) + Var{E{YIN)]

= E{N Var(X)) +Var(NE{X))

= E{Ncz} + Var{f}

2cl
S e

=-8+1
p2(l - ej2

Similarly, we can derive the mean and variance of the service time of

equivalent DTU without self loop. The mean and variance of the service

time are equal to (l-$)A and respec-c (a@-+) + $/(~2(1-~)2)),
tively. After obtaining the means and variances of equivalent servers

without self loop, we reduce the model to the original closed two-server

queueing model.

When both stages have exponential service times, the model in Fig.
6.2 is equivalent to that in Fig. 6.1 with service rates ~(1-8) and

A(1 - $1 at CPU and DTU, respectively. The forms of the service time

distributions do not change in this case.
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7. GENERAL QUEUEING NETWORKS

I l

.

Finally, let us consider applying diffusion approximation to ana-

lyze the performance of queueing networks. Kobayashi Cl01 proposed that

queueing processes of a general queueing network be approximated by a

vector-valued diffusion process. The interactions among different que-
1--w ueing processes are explicitly considered in the diffusion equations in

terms of the variance-covariance matrix. The joint queue length distri-

bution is expressed in a product form of the marginal queue size distri-

butions. This solution form suggests us to treat each queue separately

by properly taking into account the interaction among different queues

Cl21. From our analytic and experimental data presented in the previous

section, we know the accuracy of diffusion approximation is extremely

good on single server system except for certain pathological cases given

in Section 5. So, the success on decomposing queueing network into sep-

arate single server systems solely relies on whether we can find a good

estimation of the coefficient of variation of the interarrival time dis-

t?ibution or the coefficient of variation of the interdeparture time

distribution at each server such that the correlations among servers are

not ignored after decomposition. Two different methods to estimate the

coefficient of variation of the interdeparture time at each server have

been proposed by Reiser and Kobayashi Cl21 and Gelenbe c61, respectively.

The method proposed by Gelenbe tries to take into account the effect of

idle period on the coefficient of variation of interdeparture time which

is neglected by the other method and seems to lead to better results.

Nevertheless, this method is more complicated in the sense that matrix

inversion is involved. In this section, we propose a simpler way to es-

timate the coefficient of variation of the interdeparture time distribu-

tion than that by Gelenbe, yet the effect of idle period is taken into

account. The values obtained by both methods are close to each other.

Furthermore, all the demonstrating examples given by the previous auth-

ors to show the accuracy on decomposing queueing network into separate

queues using diffusion approximation are under the condition that the

coefficient of variation is not large, mainly less than or equal to 2.

We present an anomaly which has been overlooked in the past, i.e., cer-
tain network topology can only be decomposed into separate single servers
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when all the service times and external interarrival times are "nearly"

exponentially distributed. When the coefficients of variation of some

of the service time or external interarrival time distributions deviates

further from 1 or the traffic intensity decreases, the decomposition of

this kind of queueing network will not be feasible if we still adopt the

conventional way to estimate the coefficients of variation of interde-

pmture times or diffusion parameters.
Let us first examine the method in cl21 proposed by Reiser and Ko-

bayashi to estimate the coefficient of variation of the interarrival

time. In their treatment, the coefficient of variation of the service

time is taken to be the coefficient of variation of the interdeparture

time as a simple approximation. Furthermore, the departure processes

from different servers are treated as independent renewal processes.

After considering the fact that the departure process of the ith server

are only active p percent of the time, where pi is the utilization
i .

of the ith server, they obtain the following expression for Cz, the

squared coefficient of variation of the interarrival time of the ith

server:,* -
. -

n
- 1) Pji +l A.P

I J ji
(7.1)

Furthermore, C., the squared coefficient of variation of the interde-
J

parture time of the jth server, is approximated by

.
C =
j

CJ
S

(7.2)

where
th

'j
is the arrival rate to the j server for jzl

IO is the external arrival rate
.

CJ is the squared coefficient of variation of the service time
S distribution in the jth server

P is the routing probability that, after departing from the jth
ji server, the job will join the ith server queue, for j>l
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Notice I',3 is the solution of the following system of linear

equations

nA i = POi + c A.P..
j=l J J1

(7.3)

A detailed interpretation of this equation can be found in cl31. For

open queueing networks, (7.3) provides unique solution to (Ai]. In

this section, all the queueing networks considered are assumed to be

open queueing networks. Extension to closed queueing networks follows

the treatment in Cl21.

Gelenbe c61 argued that Reiser and Kobayashi cl21 did not put into

consideration of the effect of idle period on the variance of the inter-

departure time and assumed that the interdeparture time of the i
th ser-

ver, T. 9 is a service time S i with probability pi or an interar-
1

rival time, A.,
1

plus a service time with probability (1 - Pi>'

By straightforward manipulation, we get
f-

E{T;} = E{S:) + (1 - pi)(EbT} + 2Ebi} E{si}) for 1 < i < n- _

and by definition

for 1 < i < n- -

Combining the two equations together, we get

for 1 < i < n_ _ (7.4)

Finally, making the assumption that the number of arrivals forms a

renewal process, we get
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U(Cj - 1) P
j=O ji + 1-J AjPji = A$k:) - (Ayl)") for 1 5 i 5 n

After simplification, we get the following system of linear equations:

n
1"-w

C i + 1) + (1 - P.)1 + 1 + Ai1 - I> P -1ji

for l<i<n (7.5)- -

The assumption that zi is equal to service time, S,,
1

with prob-

ability p withi or an interarrival time plus a service time, Ai +%,

probability (1 - PiI is exact only for Markovian queueing networks. In

Markovian queueing networks, E{Af] is equal to 2n2.
l-2

Hence, a sim-

pler approach is to further approximate E@ by W'-?L;
1

then, we get

from (7.4) that

.
'i = Pf c;( 1- 1  +l (7.6)

That is to say, we can now directly express Ci in a closed form expres-

sion, and the necessity of solving a system of linear equations has been1
eliminated. The value obtained by both methods are very close, as we

shall see.

Alternatively, we may consider the problem in the following way.

Let c be the set of service centers whose customers after service com-

pletion may go to service center A for further service. Since the ar-

rival rate to each service center in the open queueing network is known,

we first unfold the network but retain the connections from those service

<enters in c to A. If A is in c, i.e., there is self loop at A,

a duplication of A is used to replace the self loop. Then, we apply a

Poisson input to each service center in c with the same arrival rate

as before and then calculate its coefficient of variation of interdepar-

ture time. Finally, treating each departure process as an independent

renewal process, we can obtain the coefficient of variations of the in-

terarrival time at service center A in this case. The coefficient of
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variation obtained will be used as an approximation of that of the orig-

inal network and is exactly the same as substituting (7.6) into (7.1).

For example, in the network given in Fig. 7.1, the appropriate subnet-
work for evaluating the coefficient of variation of the interarrival

time of the service centers 1 and 2 are given in Figs. 7.2a and 7.2b,

respectively.
4

. - Fig. 7.1. OPEN TWO SERVER QUEUEING MODEL.

We now use the queueing network shown in Fig. 7.1 to compare the

cirs, the squared coefficients of variation of the interdeparture time

at each server, by our straightforward method, Gelenbe's method, and

Reiser and Kobayashi's method. Both authors [6,121 have used this net-

work to demonstrate the accuracy of their approximations. In Table 7.1,

the column under method P* contains the results of the proposed method,

and the column under method B* contains the results of the method pro-

posed by Gelenbe c61, and the column under method A* contains the results

of the method proposed by Reiser and Kobayashi [12]. As we can see, all

three methods yield the same answer when the network is a Markovian que-

ueing network. The estimates ofthecoefficientofvariation of the inter-

departure time obtained by our method and Gelenbe's methodare alwaysvery

close, as it should be since both methods try to incorporate the effect

of idle period on the coefficient of variation of the interdeparture

time. However, our method is much simpler in computation.
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I I

IA

I

I

Ae 2
I I

I I
----------------

(a) First server

Ae 1

----------------

(b) Second server

Fig. 7.2. APPROXIMATE NETWORK CONFIGURATION FOR
ESTIMATING THE COEFFICIENTS OF VARIATION OF IN-
TERARRIVAL TIMES FOR THE NETWORK IN FIG. 7.1.
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Table 7.1

THE SQUARED COEFFICIENTS OF VARIATIONS OF INTERDEPARTURE TIMES (C,,
C,) OF THE QUEUEING NETWORK IN FIG. 7.1 WITH pl = 0.9, p2 = 0.84

(a) 81 = e2 = 0.5

I 6-l I Method P* I Method B* I Method A*

0.5

0.5

1.0

1.0

0 0.595 0.294 0.576

0.5 0.595 0.647 0.585

0.5 1.0 0.647 0.991

1.0 1.0 1.0 1.0

0.247 0.5

0.615 0.5

0.632 1.0

1.0 1.0

f -

(b) 8, = 0.5, 8, = 0

1.0

1.0

1.0

1.0

2.0

2.0

l-

0 1.0 0.294 0.965 0.292

0.25 1.0 0.469

0.5

1.0

1.0

0.5

1.0

0.471 0.973

0.647 0.982

1.0 1.0

1.0 1.81

0.647 1.80

0.646

1.0

1.81

1.81

1.0

1.07

0.711

Method P*

cl c2

Method B*

cl c2

T Method A*

cl

1.0

1.0

1.0

1.0

2.0

2.0

c2

0

0.25

0.5

1.0

1.0

0.5
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Let us apply the diffusion approximation techniques to analyze the
computer communication network in Fig. 7.3. The network has the same

topology as the communication network, CIGALE, within CYCLADES c281 which

is a general purpose computer network being installed in France. All the

terrestrial links are assumed to be full duplex. The numbers on the

terrestrial links represent servers and their queues. Thus, 3 refers to

trz server which transfers messages from node C to node A and 2 refers

to the server which transfers messages in the opposite direction. Traf-

fic moving in the two opposite directions along the same link is assumed

to be noninterfering. Each station receives external traffic which forms

a Poisson process. We also assume that each message arriving from out-

side to station i has equal probabilities of having any of the other 4

stations as its final destination. The routing algorithm of the networks

is assumed to be fixed and will be described later. All the above as-

sumptions about the terrestrial network have been adopted by Gelenbe c61

in modeling the CYGALE network under packet switching.

Let us apply the diffusion approximation techniques to analyze the
computer communication network in Fig. 7.3. The network has the same

topology as the communication network, CIGALE, within CYCLADES c281 which

is a general purpose computer network being installed in France. All the

terrestrial links are assumed to be full duplex. The numbers on the

terrestrial links represent servers and their queues. Thus, 3 refers to

trz server which transfers messages from node C to node A and 2 refers

to the server which transfers messages in the opposite direction. Traf-

fic moving in the two opposite directions along the same link is assumed

to be noninterfering. Each station receives external traffic which forms

a Poisson process. We also assume that each message arriving from out-

side to station i has equal probabilities of having any of the other 4

stations as its final destination. The routing algorithm of the networks

is assumed to be fixed and will be described later. All the above as-

sumptions about the terrestrial network have been adopted by Gelenbe c61

in modeling the CYGALE network under packet switching.

LT.LT.
. -. -

1

Fig. 7.3. COMPUTER COMMUNICATION NETWORK.
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Let cHi be the channel capacity, the number of packets that can be

transmitted per second, of link i. The channel capacity of each link

is indicated in Table 7.2. The fixed routing algorithm is summarized in

Table 7.3. The routes which are not shown in Table 7.3 are the links ,

which directly connect the source stations and destination stations. The

number of packets contained in each message is assumed to be geometri-

cally distributed with mean five. The external arrival rate at each

node is tabulated in Table 7.4.

The performances of the network under both message switching and

packet switching are analyzed. In Table 7.5a, mean queue lengths at

each server under message switching by various approximation methods and

simulation are tabulated. Again, our method is denoted by method P,

Gelenbe's method is denoted by method B, and Reiser and Kobayashi's

method is denoted by method A. The simulation results are presented

with 95% confidence intervals. In Table 7.5b, the corresponding squared

coefficients of variation of interdeparture time at each server by vari-

ous methods are tabulated. Both methods P* and B" lead to similar re-

&ts on the squared coefficients of variation of interdeparture times.

The difference in mean queue by methods P and B in Table 7.5a is mainly

due to different ways being employed in estimating diffusion parameters.

The minor difference in estimating squared coefficient of variation of

interdeparture time has very little effect. As we can see, method P
leads to better approximation. In Table 7.6a, the mean queue lengths

under packet switching obtained by methods P, B, A and simulation are

tabulated. In Table 7.6b, the corresponding squared coefficient of va-

riation of interdeparture time at each server by various methods are

tabulated. Not only the squared coefficients of variation of interde-

parture time but also the mean queue lengths obtained by method P and

method B are very close to each other. Furthermore, the mean queue

lengths obtained by both methods are very close to the simulation re-

sult. As we can see from Tables 7.5a and 7.6a, method P provides very

accurate approximations in both cases, where other methods can provide

very accurate approximations in only one of the two cases.
Finally, we consider the decomposability problem of general queue-

ing networks. From our previous analyses in Sections 5 and 6, we expect
that, if the service time distributions of some of the intermediate
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Table 7.2

CHANNEL CAPACITY OF EACH LINK
IN THE TERRESTRIAL NETWORK

Link ~H~(Packet/Sec)

I,12 50
2,3 80
419 70
5,6 45
7,8 50

IO,11 70
I

Table 7.3

ROUTING TABLE

Source Destination I I
Stations Stations Route

294
295

12,2
II,8
4,lO
993
693

7,lO

Table 7.4

EXTERNAL ARRIVAL RATE (PER SECOND)

AA 1212 6060
BB 1616 8080
CC 1616 8080
DD 1616 8080
EE 1616 8080
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Table 7.5a

MEAN QUEUE LF,NGTH UNDER MESSAGE SWITCHING

Server Simulation

1 0.416* 0.416 0.536 0.417

2 3.895 zk 0.080 3.947 4.272 3.862

3 2.732 I!I 0.092 2.733 3.033 2.646

4 3.356 + 0.081 3.367 3.681 3.300

5 3.225 5 0.076 3.210 3.521 3.141

6 7.289* 7.289 7.644 7.210

7 3.680* 3.680 4.000 3.617
8 3.606 + 0.165 3.654 3.974 3.537

9 1.257* 1.257 1.486 1.230

10 5.488 t 0.225 5.392 5.735 5.265

11 1.257* 1.257 1.486 1.230

12 3.680* 3.680 4.000 3.617

Method P ' Method B Method A

Exact.

Table 7.5b

SQUARED COEFFICIENTS OF VARIATION OF INTERDE-
PARTURE TIME UNDER MESSAGE SWITCHING

Server Method P* Method B* Method A*

1 0.982 0.982 0.8

2 0.868 0.864 0.8
3 0.888 0.878 0.8
4 0.877 0.875 0.8

5 0.879 0.876 0.8

6 0.842 0.842 0.8

7 0.872 0.872 0.8
8 0.872 0.869 0.8

9 0.935 0.935 0.8
10 0.853 0.848 0.8

11 0.935 0.935 0.8
12 0.872 0.872 0.8
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Server Simulation I Method P Method B Method A

1 0.364* 0.364 0.364 0.303

2 2.399 + 0.094 2.400 2.400 1.933

3 1.621 t 0.051 1.666 1.666 1.186

4 2.165 I!I 0.061 2.166 2.165 1.781

5 2.027 k 0.063 2.050 2.048 1.656

6 4.444* 4.444 4.444 4.018

7 2.400* 2.400 2.400 2.033

8 2.301 I!I 0.112 2.269 2.269 1.644

9 0.952* 9.952 0.952 0.736

10 2.881 + 0.116 2.962 2.959 2.293

11 0.952* 0.952 0.952 0.736

12 2.400* 2.400 2.400 2,033

Exact.
f ̂

Table 7.6a

MEAN QUEUE LENGTH UNDER PACKET SWITCHING

Table 7.6b

SQUARED COEFFICIENTS OF VARIATION OF INTERDE-
PARTURE TIME UNDER PACKET SWITCHING

Server Method P* Method B* Method A*

1 0.91 0.91 0

2 0.340 0.321 0

3 0.438 0.391 0

4 0.383 0.374 0

5 0.395 0.380 0

6 0.210 0.210 0

7 0.360 0.360 0
8 0.360 0.343 0

9 0.673 0.673 0

10 0.265 0.239 0

11 0.673 0.673 0

12 0.360 0.360 0
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servers or the external interarrival time distributions not only have

large coefficients of variation but also are type B hyperexponential

distributions, the diffusion approximation will not work. This is sim-
ply because the arrival processes of the servers receiving jobs from

those servers with high coefficients of variation of service times will

even if the service time1 have high coefficients of variation. However,--w
distributions with high coefficients of variation are type A hyperexpo-

nential distributions, the diffusion approximations under decomposition

techniques still may not be satisfactory for certain network topology.

The most noteworthy networks of this type are network with feedback

loops, especially self loops. Let us take a second look at the network

in Fig. 7.1. When the coefficients of variation of the service times
in both servers are not large, the decomposability of the network seems
to be acceptable from the results obtained by various diffusion approx-

imations in c61 and c121.

Now, let the service time distribution of the first server be hy-
perexponential distribution with the following parameter:
3-

. -

W = 0.029249

Ml = 30.000187

M2 = 0.0232795

Recall the hyperexponential density function has the form (w/Ml) e -X/Ml +

((1 - w)/M2) e -X/M2 . This hyperexponential distribution has mean 0.9 and

sq. coeff. of variation 64. One of its branches has mean very close to
zero. Let the second server have exponential service time with mean

0.84. Furthermore, let

81 = 0.5

e2 = 0.5

AO = 0.5
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The simulation result of the mean queue length in the first server
with 95% confidence interval is 165 +15. The mean queue lengths obtained

by diffusion approximation are around 294 under methods A and B and 264

under method P. That is to say, all methods tend to overestimate the

mean queue length. We now try to give a reasonable explanation to this

anomaly. Recall the arrival rate to the first server can be calculated

IZ$ solving the system of linear equations (7.3). After simple manipula-

tion, we get A,=l. Notice the external arrival rate is 0.5, so

one-half of the arrivals to the first server is from the feedback path

through the second server. When the first server encounters a long ser-

vice time, the arrival process from the second server will be shut down

after the second queue becomes empty. That is to say, the arrival rate

is effectively 0.5 instead of 1 during the later period of the long ser-

vice time. However, in the diffusion approximations, the arrival rate

to the first server is always 1. This is the reason why the mean queue

length is overestimated under diffusion approximation. The correlations

of the service stations become very serious as the coefficients of vari-

ationrof service time distributions become large in this type of network,

and using the ordinary way to estimate the diffusion parameters is not

sufficient to account for this sort of correlations. What will happen

.
if the service time distribution is a type B hyperexponential distribu-

tion function indicated in Section 5? A simulation has been conducted

when the first server has a two stage hyperexponential distribution with

the following parameters:

W= 0.000126

Ml = 500

M2 = 0.843486

The second server still has exponential distribution. The network topol-

ogy and the traffic intensity is the same as the previous example. Hence,

the mean queue length predicted by diffusion approximation is still the

same. But the 95% interval estimation obtained by simulation is 96 t27,

which is quite small, as expected. The broad width of the confidence

interval is due to the heavy traffic condition and the closeness of w
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to 0. The number of arrivals in the simulations is around 106, hence

the point estimation should be acceptable.

So, the idea of decomposing a network of queues into separate single

server queueing systems does not seem to be always feasible. In certain

network topologies, such as network with feedback loops, especially self

loops, there is a dependence of the arrival process of each service cen-

ter in the feedback path on its departure process. If the service center
has a self loop which contributes a large portion of arrivals, the effect
of this dependency becomes very serious as the coefficient of variation

of the service time deviates significantly from 1. Using any ofthethree
methods cited above to estimate the coefficient of variation of the in-

terarrival time, the decomposition technique can not reflect this depen-

dency into the estimated parameter.

To be more specific, let us consider method P. This fact can be
observed from Fig. 7.2b where the two service centers with rate 1-1~ are
actually the same but are represented as two different service centers.

Clearly, the dependence among the two is not reflected in the estimated

pmameters. Nevertheless, the self loop problem can be solved by treat-. -c
ing the server and its self loop as a single entity as we did in Section

6. That is to say, we first eliminate all self loops in the network by

replacing each server with a self loop by an equivalent server without a
A self loop as in Fig. 7.4 and then apply the decomposition technique if

possible. Let p' be the contribution to the diffusion parameter ,6 from

the server and its self loop if any. In Table 7.7, we tabulate the ap-

proximate values of f3' under methods P* and A* when the self loop is

not eliminated and the correct value under the equivalent server without

a self loop. The error terms under the two approximation methods are

proportional to Cs(e2 +0). This explains why direct decomposition does
.* not work for a strong self loop under a large coefficient of variation

of service time even if the distribution is type A. Besides the anomal-
ies due to type B distributions, the problem still not solved is strong

feedback loops which are not self loops under large coefficients of vari-

ation of service times. Although the analysis is greatly simplified when

decomposition does work, decomposition is not a panacea. We should be

careful about the decomposability of the queueing network and all the

distributions involved.
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(a) Server with a self loop
Variance of service time: 0:

(b) Equivalent server without a self loop
Variance of service time:
W(LL(l - 0) I2

op1-e, +

Fig. 7.4. SERVER WITH A SELF LOOP AND
ITS EQUIVALENT REPRESENTATION WITHOUT
A SELF Lxx)P.

Table 7.7

,!3' UNDER VARIOUS METHODS

Without a
Self tiop

With a Self Loop

B' ' Method A* Method P*

A(cs +e -Ocs)
A(cs +e +e2cc -1)) A(cs +e +a2p2w -I>>

S S
,
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8. THE SERVICE CENTER WITH A QUEUE DEPENDENT
SERVICE RATE OR ARRIVAL RATE

In this section, we consider the case where a service center has

queue dependent service rate. The conventional G/M/m queueipg

system is a special case of this class of service centers. The service

1"-w rate of the m-server queueing system can be expressed as

t
iv for i < m

pi =
.w for i > m

where i is the number of customers in the queue.

In computer system modeling, a more general pi than the conven-
tional one cited above is often needed. Consider the performance of a
tightly coupled computer system. The total service rate of CPU's does
not increase as a linear function of the number of CPU's in the system

due to the memory interference among different CPU's.

E- When the service rate is queue dependent, the diffusion parameters. -
also become queue dependent and the diffusion equation becomes harder to

solve. We first need to determine the values of the diffusion parameters
at those integer points and then propose a reasonable way to interpolate

their values in between integers. The infinite capacity case is first
considered. We further assume that 1-1i will keep constant for i > m,-
as in the conventional multiserver case with m servers. Similarly, for.
the arrival rate Ai*

The values of the diffusion parameters at those integer points are

defined as

I
ai

= Cahi + csgcLi

and r.,
1

as usual, is defined to be

vi
r =-i ai
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where C and C are the squared coefficients of variation of thea S

interarrival time and service time distributions, respectively. When

the service rate is fixed, we set g equal to the traffic intensity of

the queueing system. But, for a server with queue dependent service

rate or arrival rate, the appropriate value of g is not very clear.

From experimental results, it seems to be that, if we set g equal to
=-be-
l'for the case where Ca < l/2 and Cs < 1 and Am/pm otherwise, the-
approximation will be more accurate in general.

There are at least two different ways to interpolate the value of

a(X) and p(X) in between integers.

Method 1. Interpolation by Step Functions (see Fig. 8.1)

,* ^
. -

k- +<X<k+$-

X>m-$

and 2<k<m-1- -

Similarly for B(X) l

Method 2. Interpolation by Linear Functions (see Fig. S-2)

(8.2)

X<l-

(a - ak) (X - k) k<X<k+l and l<k<m-1k+l - -

X>m (8.3)

or let a(X) = aI for X < 1 to make the impulse term 6(X-l)-
in the diffusion equation easier to handle. Similarly for fm> l

Again, we use Feller's elementary return process to handle boundary

condition. The diffusion equation satisfied by the probability density
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Fig. 8.1. INTERPOLATION OF a(x) USING STEP
FUNCTIONS.

Fig. 8.2. INTERPOLATION OF a(X) USING LINEAR
FUNCTIONS.
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function P(X) of the approximate queue length process has the follow-

ing form under steady state

1 d2- -
2 dX2

(y(x) p(x) - & B(X) P(X) = -AOM1~(X - I)

boundary conditions

(8.4)

.llm $ $ a(X) P(X) - B(X) P(x) = 10"-j-
x+0

and
P(0) = 0

where Ml is the probability that the queueing system is idle.

Under the second interpolation method, numerical integration is re-

quired to estimate the queue length distribution. For the conventional

multiserver, the broken line in Fig. 8.2 becomes a straight line and the

complexity of the problem is simplified, but numerical integration is
25 *

. still needed. Hence, for better mathematical tractability, we adopt the

first interpolation method. Halachmi and Franta [26,25] have applied

diffusion approximation to conventional multiserver queueing systems us-

ing the second interpolation method and reflection boundary for both in-A
finite and finite population models, respectively. The results from both

methods seem to be quite close in the few cases examined.

After solving the differential equation, we get

.c

P(X) =

AO"l Xrl- e
( )

- 1
4

(X-l)rl
Mid e

Mid eskml
+(X-k +$rk

for 0 < X < 1- -

for l<Xi%

(8.5)

for k-i <XCk+; and 2<k<m-1- --

1for X>m---,
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where

kSk = z rl for l < k < m - 1- -
i=l rk - 2 (8.6)

and

d

The unknown constant M1 can be determined by the fact that total

probability must sum up to 1, i.e.,

/

co

0
P(X) dX + Ml = 1

After simplification, we get

f-
Ml= [ +& (?r1-l-rl)+~(~1'2 -1)

(8.7)

If rk is equal to zero, we should replace the term (erk -l)/rk by 1.

Similar remark holds for the rest of the section.

Let fli be the probability that i jobs are in the system. We de-

fine

xO = MO

312
P(X) dX

Ik+1/2

'k = P(X) dX for k > 2
k-l/2
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AO"l rl- e
Blrl (

Mid 'k-1- e
rk

Mid 'm-1- er m

1
)

1
)

(

rm
e -

kl=

2< k < m - 1- -

1
)

k > m-

(8.8)

In Table 8.1, we compare the mean queue lengths obtained under dif-

fusion approximation with analytic results for the M/M/m system with
m= 2,3,4,5,6,7,and 8, when p & Ahp = 0.95 and 0.85, respectively.

The approximation is very accurate. Then, we compare the conditional

mean queue length of the external queue (given that external queue ex-

ists, i.e., number of jobs in the system is larger than m) with the an-

alytic result for the G/M/m queueing system. Both the analytic result

and diffusion approximation on the conditional mean external queue

1engtE'of the G/M/m queueing system are independent of m. After simple. -
manipulation, we can get the conditional mean external queue length un-

der diffusion approximation which is rm1/(1-e >. The exact result is

1/(1-a) where 0 is defined in Section 3. In Table 8.2, we compare
A the conditional mean external queue length obtained under diffusion ap-

proximation withthe analytic result for E2/M/m and E3/M/m queueing sys-

tems when p = 0.95, 0.90, 0.85, 0.80, and 0.75.

When the arrival process has hyperexponential distribution, again,

. the conditional mean external queue length can vary over a wide range.

Nevertheless, for type A hyperexponential distribution, diffusion ap-

proximation can still be applied as before. Tables 8.3 and 8.4 tabulate

the diffusion approximations and analytic results under different values

of M2 for Ca = 2, 4, 8, 16, and 32, when p = 0.95 and 0.85, respec-

tively. In both cases, A is equal to 1.

In Table 8.6, we consider the case where 1-1.1 is an arbitrary func-

tion of i and Ai is constant. The result is again satisfactory.

we now consider the closed two server queueing network in Fig. 8.3a
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which can be interpreted as the CPU/DTU model, as noted earlier.
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Table 8.1

MEAN QUEUE LENGTHS FOR M/M/m SYSTEM WHEN p=O.85 AND 0.95

P = 0.85 P = 0.95

m IDiffusion
Approximation

1
2 I 6.031
3 6.695

4 7.354

5 8.028

6 8.718

7 9.425

8 10.14

Exact Diffusion
Approximation

6.126 19.37 19.49
6.689 20.07 20.08

7.306 20.75 20.74

7.959 21.46 21.43

8.636 22.18 22.15
9.333 22.92 22.88

10.04 23.68 23.64

Table 8.2

CONDITIONAL MEAN EXTERNAL QUEUE LENGTH
FOR E2/M/m AND E3/M/m SYSTEM

Exact

P

0.95 13.67 13.45 15.26 15.09

0.90 7.013 6.784 7.761 7.588
0.85 4.797 4.566 5.268 5.091

1 0.80 3.693 3.460 4.023 3.844

~ 075 . 3.033 2.797 3.280 3.097

I E3/M/m I E2/M/m I
Diffusion Exact Diffusion Exact

1
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Table 8.3

CONDITIONAL MEAN EXTERNAL QUEUE LENGTH FOR
H,/Mh SYSTEM WHEN p = 0.95

'a

2

4

8

16

32

Diffusion T
29

48

86

162

314

Exact

M2 = 0.2

29.9

49.7

89.6

169

316

M2 = 0.7

29.4

47.5

83.0

153

294

Table 8.4

CONDITIONAL MEAN EXTERNAL QUEUE LENGTH FOR
H,/M/m SYSTEM WHEN P = 0.85

'a Diffusion

2 9.01

4 14.7

8 26.0

16 48.7

32 94.0

Exact

M2 = 0.1 M2 = 0.6

9.94 9.53

16.5 14.8

29.5 24.9

55.8 44.8

108 84.1

1
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Table 8.5

MEAN QUEUE LENGTH FOR SERVER WITH GENERAL QUEUE DEPENDENT SERVICE RATE

4.75 1 4.25 1 4.75 1 5.95 1 6.65 1 5.95 1 6.65 1A 2.55 2.85 2.55 2.85 4,

PI 3.0 3.1 1.0 1.0 5.0 5.5 1.0 1.0 6.5 7.2 1.0 1.0

1-12 2.9 2.9 1.8 1.8 4.8 5.4 1.8 1.8 6.4 7.1 1.9 1.9

r"3 2.6 2.9 2.6 3.0 4.6 5.2 2.6 2.6 6.3 7.0 2.8 2.8

p4 4.5 5.0 3.5 3.5 6.2 6.9 3.7 3.7

p5 4.4 4.8 4.4 5.0 6.1 6.8 4.6 4.6

'6 6.0 6.7 5.5 5.5

p7 6.4 7.0

Mean Queue kngth

Diffusion 49.91 56.38 51.99 20.16 27.11 93.34 30.81 21.75 117.7 131.8 17.09 23.23

Exact 50.61 56.93 52.03 20.17 27.80 94.14 30.79 21.72 118.4 132.5 17.04 23.19



(a) Model without a self loop

(b) Model with a self loop at each server

Fig. 8.3. CPU-DTU MODEL WITH K DEGREE OF MUL-
TIPROGRAMMING.
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Generalization to the model in Fig. 8.3b follows the same idea cited in

Section 6. That is to say, we first compute the mean and variance of

the service time of the equivalent server without a self loop. The only

difference from before is that the quantities now are queue dependent.

After replacing each server and its self loop by an equivalent server

1--w without a self loop, the model in Fig. 8.3b reduces to that in Fig. 8.3a.

The number of jobs in the system is assumed to be K. The queue depen-

dent service rate of CPU and DTU are denoted by pi and A,_, when
there are i jobs in the CPU queue. The diffusion parameters are de-

fined to be

I ‘i =A,,v- i

\
ai = ‘ahK-I ’ ‘SCli for 1 < i < K

(8.9)

and, as before,

,rr. r i = 2p,/c5
. -

Notice the definition is similar to the previous one with g = 1. Again,

there are at least two different ways to interpolate the value of a(X)

and /3(X) in between integers. The only difference is that now we have

two boundaries. We still adopt the interpolation method using step

functions for simplicity. To be more precise, we define

Similarly for f3w l
The diffusion equation now has the following form.
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1 d2- - a(x) P(X) -2 dX2
$ f%) P(X) = -AOMIG(X - 1) - %M25(X - M + 1)

.lim $ -& a(X) P(X)
x-0

- B(X) P(X) = hOMl

. Id
,':", 2 dX- - a(X) P(X) - p(X) P(X) = pKM2

where M2 is the probability that the CPU queue has K jobs.

After solving the diffusion equation (8.11), we get

AOMl Xrl

( )
e - 1

4

Mid e
(X-l)rl

S i-l +(X-i+l)rMid e 2 i

Mid
\

rK
esK-2 +2

for 0 < X < 1- -

for 1 < X 5 z

where

M2 =

(8.11)

(8.12)

for i - i < X < max (K - 1, i +$)

and 2<i<m-1-

I for X > K - 1

3
eSK-2+Z'K-l

(8.13)

and S i is defined as before in (8.6).

!l!he unknown constant M1 can be determined by the fact that total

probability must sum up to one, i.e.,
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P(X) dX + Ml + M2 = 1

After simplification, we get

1"-w
Ml = + & (Z1 - 1 - rl) + t (cd2 - 1)

K-2

c
d S

+ rei=2 i

1
+ d esK-2+ ZrK-1

Let fl i be the probability that i jobs are in the CPU. We define,rr .

= Mso 1

3/2
P(X) dX

Ill =
i P(X) dX

‘K-1 = J P(X) dX
K-3/2

\
= M'k 2

In Table 8.6, we compare the mean queue length at the CPU when both

CPU and DTU have exponential service time distributions, and furthermore

the CPU is modeled as a traditional m-server under fixed degree of multi-

programming K. In Table 8.7, the case where service rate of CPU is an
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m K
Diffusion Exact Diffusion Exact

2 4 2.28 2.13 2.11 1.94

3 3 2.00 1.92 1.91 1.81

3

4

4

5 3.09 2.89 2.88 2.64

4 2.81 2.69 2.70 2.55

7 4.38 4.14 4.02 3.73

5 5 3.64 3.49 3.48 3.31

5 8 5.19 4.94 4.78 4.48

6 6 4.47 4.31 4.27 4.08

6 10 6.48 6.22 5.89 5.56

7 7 5.30 5.14 5.07 4.87

7 11 7.31 7.05 6.66 6.33

8 8 6.15 5.98 5.87 5.66

8

7

12 8.15 7.89 7.44 7.11

l-i = n/mp

Table 8.6

MEAN QUEUE LENGTH WHEN CPU IS
MODELED AS CONVENTIONAL m SERVER

T P = 0.95 T P = 0.85 1
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arbitrary function of queue length and that of DTU is constant is con-

sidered. Both the mean queue length and utilization at the CPU is

tabulated. Again, the result is quite satisfactory.
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9. CONCLUSION

Diffusion approximation is an attractive means of approximating the
performance of queueing systems. In this paper, we not only assess the

accuracy of diffusion approximation but also its limitation and applica-

-w3 ble range. Modern computer systems are so complicated that oversimpli-

fied models may not predict any useful results. Realistic models often

are not analytically tractable. Finding approximate solutions or upper

bounds and lower bounds of the solutions is the only means to handle more

complicated problems short of simulation. Under heavy traffic conditions,

simulation converges very slowly and diffusion approximation seems to be

the most attractive way to solve the problem. Nevertheless, diffusion

approximation is not a panacea, it does have a limitation. This limita-

tion has been overlooked in the past. Substantial effort has been de-

voted in this paper to identify the conditions where diffusion approxi-

mation can obtain accurate estimates. We must be careful with these

. -
conditions when applying diffusion approximation.'.

In Table 9.1, we classify the single server queueing systems accord-

ing to their coefficients of variation of service times and interarrival

times, and point out the diffusion approximation technique which seems to

be most accurate according to our analysis. The superiority of method P,

the proposed method, should be very apparent. When Ca is larger than

one, the mean queue length may vary over a wide range even if the first

two moments of interarrival time are kept constant. Diffusion approxima-

tion is applicable under the condition that the high variation of inter-
arrival time is due to a great number of short interarrival times instead

of a few very long interarrival times. Case studies have been conducted

on 2-stage hyperexponential distributions which are widely used in com-

puter system modelling. A similar anomaly is observed in two server

closed queueing networks, often referred to as CPU/DTU models, when the

service time of any server has a large coefficient of variation. Again,

a similar regularity condition on service time distributions is required

in order for the diffusion approximation to be applicable. Although

. method B does not yield the best performance when applying it to approx-

imate the single server system, it is indeed a nice way to approximate
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Table 9.1

RECOMMENDED DIFFUSION APPROXIMATION METHOD FOR SINGLE SERVER SYSTEM

ca < 1
cca = 1
1 ^. - ca > 1*

1
*
The high coefficient of variation of interarrival time must
be due to a large number of short interarrival times in-
stead of a few very long interarrival times.

Cs Close to or
Less than 0.5 cS

Close to 1 cs > 1

Method A Method P Method P

Method P Method P Method P

Any Method Method P
(?)
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the two server closed queueing network. When the coefficient of varia-

tion of the CPU service time is small, method Gl has similar performance.

As the coefficient of variation of the CPU service time increases, method

P becomes somewhat better.

For general queueing networks, an efficient way of taking into ac-

*gaunt the effect of idle periods to estimate the coefficient of variation

of the arrival process at each server when the network can be decomposed
into separate single servers is proposed. For certain network topolo-

gies, the arrival processes of some service centers strongly depend upon

their own departure processes. Networks of this type are networks with

strong feedback loops, especially self loops. When the coefficients of

variation of the service times at the service centers have a large devi-

ation from one, this sort of queueing network can not be decomposed into

separate single servers directly. This fact has been neglected in the

past. Nevertheless, the self loop problem can be solved by replacing

each server with a self loop by an equivalent server without a self loop.

After eliminating all the self loops, we can reconsider the decomposition
3-

of a network. The problem still not solved seems to be networks with

strong feedback loops which are not self loops when the coefficients of
variation of some service times are large. Surely, the regularity con-'

dition that a large coefficient of variation of external interarrival

time or service time of each intermediate server is due to a lot of short

interarrival times or service times, respectively, must always hold in

order for diffusion approximation to be applicable.

Finally, we consider the service center with queue dependent service

rate or arrival rate. General queue dependent service rate is often en-

countered in computer system modeling. Generalization to closed two ser-

ver queueing network where each server may have a self loop is also con-

sid~red.
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