e

DIGITAL SYSTEMS LABORATORY

|

STANFORD ELECTRONICS LABORATORIES
DEPARTMENT OF ELECTRICAL ENGINEERING

STANFORD UNIVERSITY - STANFORD, CA 94305

SU-326-P.39-27
SEL-77-048

THE STRUCTURE OF DIRECTLY EXECUTED

LANGUAGES: A NEW THEORY OF
INTERPRETIVE SYSTEM DESIGN

by

_:Lee W. Hoevel
and

Michael J. Flynn

Technical Report No. 130

March 1977

The work described herein was supported in part by the
Department of Energy under contract no. EY-76-S-03-0326-PA 39
and the Army Research Office-Durham under

contract no. DAAG-29-76-G-000 1.

SEL - 77- 048 SU-326-P.39-27

-2 THE STRUCTURE OF DI RECTLY EXECUTED LANGUAGES:
A NEW THEORY OF | NTERPRETIVE SYSTEM DESI GN

by

Lee W Hoevel
and
M chael J. Flynn

]

Technical Report No. 130

March 1977

Digital Systens Laboratory
Departments of Electrical Engineering and Computer Science
Stanford University
St anford, CA 94305

The work described herein was supported in part by the Department of Energy
under contract no. N-76-S-03-0326-PA 39 and the Arny Research O fice-Durham
under contract no. DAAG 29-76- G 0001.

SEL-77-048 SU-326-P.39-27

Digital Systens Laboratory
Departnents of Electrical Engineering and Conputer Science
Stanford University
St anford, CA 94305

3 Techni cal Report No. 130

March 1977

THE STRUCTURE OF DI RECTLY EXECUTED LANGUAGES:
A NEW THEORY OF | NTERPRETIVE SYSTEM DESI GN

by

Lee W Hoeve
and
M chael J. Flynn

ABSTRACT

This paper concerns two inportant issues in the design of optimal |anguages
for direct execution in an interpretive system binding the operand identifiers
in an executable instruction unit to the arguments of the routine inplenenting
the operator defined by that instruction; and binding operand identifiers to
execution variables. These issues are central to the performance of a system
both in space and tine.

Hi storically, some form of "machine |anguage" is used as the directly
executabl e medium for a conputing system These |anguages traditionally are
constrained to a single "n-address” instruction format; this leads to an excessive
nunber of "overhead" instrudtions that do nothing but nmove values from one storage
resource to another being inbedded in the executable instruction stream We
propose to reduce this overhead by increasing the nunber of instruction fornmats
available at the directly executed |anguage |evel

Machi ne |anguages are also constricted with respect to the manner in which
operands can be "addressed" within an instruction. Usual Iy, some form of indexed
base-regi ster scheme is available, along with a direct addressing nmechanism for
a few, "special" storage cells (i.e., registers, and perhaps the zeroth page of
main store). W propose a different identification mechani sm-based on the Contour
Model of Johnston. Using our scheme, only N bits are needed to encode any
identifier in a scope containing less than 2%%N distinct identifiers

Together, these two results lead to directly executed |anguage designs which
are optimal in the sense that: (1) k executable instructions are required to

i mpl ement a source statement containing k functional operators; (2) the space
required to represent the executable formof a source statement contining k

di stinct functional operators and v distinct variables approaches F¥k + N*v --
where there are |less than 2**F distinct functional operators in the scope of
definition for the source statement, and |ess than 2*#*N distinct variables in
this scope. (3) the time needed to execute the representation of a source
statement containing k functional operators, d distinct variables in its donain
and"? distinct variables in its range approaches d + r + k; where time is
measured in nenmory references

The work described herein was supported in part by the Departnent of Energy
under contract no. EY-76-03-0326-PA 39 and the Arny Research O fice-Durham

under contract no. DAAG 29-76-G 0001.

e

1. I NTRODUCTI ON

This report addresses the probl em of representing prograns for
direct machine interpretation. The obvious inadequacies of present
machine architectures, in terms of program size and execution tine,
are well knownl. Less obvi ous secondary effects have led to compli-
cated, even Byzantine system structures and inplenent ationsz. W con-
tend that this is due to the fact that traditional systens are based
on the premise that the executable machine architecture nust be a
fixed and hence universal |anguage. The central thesis of this
research is that having to represent programs in a |anguage that is
fixed, a priori with respect to system design, forces interpretation
to occur at too low a |evel , places too great a burden on the transla-
tion, and limts the potential efficiency of a system

It is assumed that programs are initially expressed in a higher

level source |anguage (HLL), which caters to both the user and the

problens that nust be solved; but nust ultimately be evaluated by a

nmuch lower |evel processor -- the systems host machine. (Once the

source |anguage and host machine for a system have been selected, the

issue becones one of determining the nbst suitable internediate

1C.f., Flynn [6], Geen [11], Lawson [19], Lunde [20], Weber [29], and
Wort man [32].

2E.g. » contenporary conpilers, linkage editors, and nechanisns for
recognizing and exploiting parallelism-- Sethi [25], and W chnan
[30].

Abstract Al gorithm
[User]
Source Program (in HLL)
[Cb&%ileﬂ
Intermediate Surrogate (in DEL)

[Interpreter]

I ndi vi dual DEL Instruction

[Execut i on’ Semant i cs]

Host Staté'Transitions

Figure 1. Eval uati on- Process

| anguage (or instruction set) for the system-- which we call its

directly executed | anguage (DEL). It is inportant that this inter-

nmedi ate | anguage preserve as nuch information concerning the user
environment and original source program structure as is useful in

realizing concise representation and expeditious interpretation (fFig-

ure 1).

1.1. A Herarchial Mdel

Modelling the evaluation process is conplicated by the fact that
a conputation is actually a hierarchy of interpretations, each |evel
of which nmay be far nore conplex than first apparent. Consi der the
sent ence: "An algorithmis defined by a collection of tasks (pro-
grans) conposed of higher |evel |anguage statenents that are conpil ed

into sequences of lower level instructions, which eventually cause the

host nachine to undergo a series of state transitions". This
describes the five level hierarchy illustrated below

Algorithm -- specifies

Tasks -- conposed of

HLL Statements -- expanded into

DEL Instructions -- causing

State Transitions in the Host

H erarchial Structure of a Problem

Each level represents the program (algorithm) in a different way;
i.e., defines the same process, even though the coding of individual
commands is different. The problem of representing prograns in an
-(e"'fnfici ent manner begins at the upper nost level, and is affected by
each of the processes involved in an evaluation. Unfortunately, it is
difficult (if not inpossible) to recover from faulty program represen-
tations at higher levels through sophistocated interpretation tech-
niques at lower levels. This is troublesome, since we would like to
mninze both the space needed to represent a program and the tine
needed to interpret it. Hence, while the significance of uniform for-
mal techniques for defining ideal programrepresentation and interpre-

tatiom. should not be underestimated, this report focuses only on the

three lower levels of the hierarchy? it is sinply assuned that

algorithns are expressed efficiently at higher |evels.

1.2. Programs, Instructions, and Conputations

At any level of the hierarchy, a program may be defined as a fin-

ite set of labelled instructions {lI}. Each instruction specifies a

pair of rules: an action rule A and a sequencing rule S. The compu-

tation produced by executing a program is defined in terns of a
sequence of states where each state denotes a specific assignnent of
values to program objects. Each action rule defines a function (or
operator) f, which takes sone nunber of argunments (dependent on its

order) and nmaps theminto (usually) a single result -- argunents and

Y

results are, collectively, called operands.

The nunmber of operands in an instruction |k is fixed and deter-

mned by fk. Action rules are often expressed algebraically -- e.g.:

(x censy X)

N R L ,k,n

(where n, called the order of f is the nunmber of argunments required

kl
by fk)' The nunber of different functions that can be specified by an

instruction set is its vocabulary, or operator set. |n general pur-

pose conputers, the order of these functions rarely exceeds two, with

at most one result being produced.

- Each sequencing rule Sk defines the successor to the kth instruc-
tion whenever it is executed. In nmost familiar computer organiza-
tions, sequencing is a sinple operation -- each instruction having
only a single successor. However, specific instructions may require
inspection of several argunents before it can be determned which of

several possible successors is correct -- e.g., as in the famliar

condi tional branch instruction.

1.3. Identifiers and Name Spaces

An additional aspect of conputation concerns the neans by which

program objects -- the argunents or result of action rules -- are
identified. In general, names are used as surrogates for objects --

which are associated with specific values by the current state of a

conputation. It is useful to distinguish between the |ogical name of
an object, and the specific encoding of that nane appearing in a given

instruction -- commonly called an identifier.

R

When an action rule is applied, the encoded names wthin its
instruction nust be associated, or bound, to the appropriate program
objects. This process is called referencing. The set of names for

all objects referenced during a conputation is called the process nane

space;, the set of all identifiers appearing in a programis called the

program nane space. It is inmportant to distinguish between these two

concepts: the name space of a process is generally data dependent,
and dynamc in nature; the name space of a programis defined by its
: encoditﬁg, and is fully static. Users relate the observable but |ow
level results of executing a program (i.e., the sequence of host
machine states produced) to source level semantics through a nental

association established between the source |evel nane space and the

host name space. The conplexity -- and accuracy -- of this mapping

ne

I

determines the ultimate transparency of a system

2. TOMRDS | DEAL PROGRAM REPRESENTATI ONS [8]

By what criteria should program representations be judged?
Clearly, an efficiency measure should lie in sone sort of space-tine
product involving both the space needed to represent an executable
program and the time needed to interpret it; although other factors --
such as the space and tine needed to create executable representa-
tions, or the space needed to hold the interpreter -- nmay also be
i nportant. This report considers only the space and tine needed to

represent and execute a program

-

2.1. Canonic Interpretive Forns

Characterizing "ideal" program representations can be either
trivial or extremely conplicated, depending on one's point of view.
Neither extreme offers significant insight into the problenms at hand,
however . It is therefore inperative to develop constructive space-
time measures that can be wused to explore practical alternatives.
Al though these measures need not be achievable, they should be satis-
fied only by clearly superior representations, easy to define, easy to
use, and in clear agreement with both a progranmer's intuition and

pragmatic observations. W propose the followi ng canonic interpretive

form or CIF, as a neasure of statement representation in a high |evel

programm ng | anguage.

1:1 Property

~~Instructions -- one CIF instruction is pernitted for each non-
assignment type operation in a HLL statenent.

Name Space -- one CIF name is permtted for each uni que3 HLL name in
a HLL statement.

Eog—z—)gerty

Instructions -- each CIF instruction consists of:

A single operation identifier of size [logz(Fﬁ : and oge Or nore
operand identifiers, each of which is of siZze [1og2 1.

Ref erencing Property

_Inst¥uctions -- each HLL procedural (program control) statenent
causes one canonic reference.

Name Space -- one reference is allowed for each unique variable or
constant in the HLL statenent.

Space is measured by the nunber of bits needed to represent the
static definition of a program tine by the number of instructions and
nane space references needed to interpret the program Source pro-
grans to which these nmeasures are applied should thensel ves be

3T.e., distinct name in the HLL statenent; "A = A+1" contains two
uni que names -- the variable "A' and the constant "1".

4F is the number of distinct HLL operators in the scope of definition
for the given HLL statenent.

5V is the nunber of distinct HLL program objects -- variables, |abels,
constants, etc. -- in the relevant scope of definition

efficient expressions of an optinmal abstract algorithm-- so as to
elimnate the possible effects of algorithm optinization during trans-

lation -- such as changing "X = X/X" to "X = 1."

Generating canonic program representations should be straight
forward because of the 1:1 property. Traditional three address archi-
tectures6 also satisfy the first part of this criteria, but do not

have the unique nam ng property.

For exanple, the statenment "X = X + X" contains only one unique
variable, and hence can be represented by a single CIF instruction
consisting of only one operation identifier and one operand identif-
ier. The three address representation of this statenent also requires
only a single instruction, but it would consist of four identifiers

rather than the two required by the CIF.

There may be sone confusion as to what is nmeant by an "opera-
tion". Functional operators (+, -, *, /, SQRT, etc.) are clear
enough; however, allowance nust also be made for selection operators
that mani pulate structured data. For instance, we view the array
specification "A(I,J)" as a source |evel expression involving one

operator (two dinensional qualification) and at |east three operands

6I.e., instruction sets of the form.OP. X.Y_.Z -- where OP is an iden-
tifier for a (binary) operation; X the left argunent; Y the right
argument; and Z the result.

10

(the array A and its subscripts | and J). Therefore, unlike the pre-
vious case, the canonic equivalent of "A(I,J) = A(1,J) + A(L,J)"
requires two instructions -- the first to select the proper array ele-

A

ment, and the second to conpute the sum Thus:

Example 1: X=X+X + X
[
Exanple 2: A(I,J) = AQ1,J) + A(IiJ) @ A I J AIJ
+ AIJ

The operator "@" conputes the address of the doubly indexed elenent
"A(1,J)", and dynamically conpletes the definition of the |ocal iden-
tifieEH"AIJ". This identifier is then used in the same manner as the

identifier "X" is used in the first exanple

We count each source level procedural operator, such as IF or DO
as a single operator. The predicate expression of an |IF nust, of

course, be evaluated independently if it is not a sinple variable

ref erence. Distinct |labels are treated as distinct operands , so
that:
Exanple 3: IF (X-Y) 10,20,30 - X Y

IF 10 { 20| 30

Two accesses to the process name space (references) are required

to execute the first exanple: one to fetch the value of X as an argu-

11

ment, and one to update its value as a result of executing the state-
ment . In example two, four references are required: one each to
fetch the values of | and J for the subscripting operation; one to
fetch the val ue of AIJ as an argunent; and one to update the val ue of
this array element after execution. Note that no references are
required to access the array A even though it appears as an operand
of the @ function -- in general, no single identifier in a CF
instruction can cause nore than one reference unless it is bound to
both an argunent and a result, and then it will initiate only two
references. No references are needed for either exanple just to nain-
tain the instruction stream since the order of execution is entirely
l:i:qear7. The 1:1 property neasures both space and time, while the
log, property neasures space alone, and the referencing property neas-
ures time alone. These neasures may be applied either statically or
dynamcally -- although static reference counts are strictly conpara-

tive, and hence of linmted val ue.

The 1:1 property defines, in part, a notion of transfornmational

conpl eteness -- a term which we use to describe any internediate

| anguage satisfying the first canonic nmeasure. Translation of source
progranms into a transformationally conplete |anguage should require
neither the introduction of synthetic variables, nor the insertion of

7The assunmption here is that such reference activity can be fully
overl apped since it is so predictable.

12

non-functional nmenory oriented instructions 8. However, since the
canoni ¢ neasures described above make no allowance for distinguishing
between different associations of identifiers to argunents and
-rﬁ.é\sults, it is wunlikely that any practical language will be able to

fully satisfy the CIF space requirenments.

2.2. Conparison of CIF to Traditional Machine Architectures

Consider the following three line excerpt from a FORTRAN

subrouti ne:
| | =1 +1
- 2 J = d-1)*
3 K= (J-1)*(K1I)
Assume that |, J, and K are fullword (32 bit) integers whose initial

values are stored in menory prior to entering the excerpt, and whose
final values must be stored in nenory for later use before leaving the

excerpt. The canonic measures for this exanple are:

8E.g., to hold the results of internediate conputations, or nove data
about within the storage hierarchy nerely to make it accessable to
functional operators.

CANNONI C MEASURE OF THE FORTRAN FRAGVENT

| nstructions

Statement 1 -- 1 instruction (1 operator)
Statement 2 -- 2 instructions (2 operators)
Statement 3 -- 3 instructions (3 operators)
Tot al 6 instructions (6 operators)

Instruction Size

Identifier Size
Operation identifier mze-]’lga 4] = 2 bits
(operations are: +, -, =)

Operand identifier size = flog2 41 = 2 bits
(operands are: 1, 1, J,”K)

= Nunber of ldentifiers

Statement | -- 3 identifiers (2 operand, ! operator)
Statement 2 -- 5 identifiers (3 operand, 2 operator)
Statenent 3 -- 7 identifiers (4 operand, 3 operator)
Tot al 15 identifiers (9 operand, 6 operator)

Program Si ze

6 operator identifiers x 2 bits = 12 bits
9 operand identifiers x 2 bits = 18 bhits
Tot al 30 bits

Ref er ences

Instruction Stream-- | reference (nomnal)
Qperand Loads -- 9 references
Qperand Stores -- 3 references

Tot al 13 references

13

14

The following listing was produced on an |IBM System 370 using an

optim zing conpiler9:

e}

1 L 10,112 (0,13)
L 11,80(0,13)
LR 3,11
A 3,0(0, 10)
ST 3,0(10)

2 L 7,4(0,10)
SR 7,11
MR 6,3

ST 7,4(0,10)

3 LR 497

SR 493
LCR 393
A 3,8(0,10)
MR 2,4
.. ST 3,8(0,10)

A total of 368 bits are required to contain this program body (we have
excluded some 2000 bhits of prol ogue/epil ogue code required by the 370
Qperating System and FORTRAN |inkage conventions) -- over 12 times the
space indicated by the canonic neasure. Conputing reference activity
in the same way as before, we find 48 accesses to the process name
space are required to evaluate the 370 representation of the FORTRAN
excerpt. If allowance is made for the fact that register accesses
consune alnost no tine in conparison to accesses to the execution
store, this count drops to 20 references -- allowing one access for

SFORTRAN 1V | evel H OPT = 2, run in a 500K partition on a Mdel 168,
June 1977.

..\

15

each 32 bit word in the instruction stream

The increase in program size, number of instructions, and number
of menory references is a direct result of the-partitioned nane space,
indirect operand identification, and restricted instruction formats of
the 370 architecture. In order to facilitate the discussion at this
point, it is useful to define [6] three general classes of instruc-
tions:

Minstructions, which sinply nove data itenms within the storage
hierarchy (e.g., the famliar LOAD and STORE operators);

P-instructions, which nodify the default sequencing between instruc-
tions during execution (e.g., JUW, BRANCH and LINK operators);

and

F-instructions, Which actually perform functional conputations by
assigning new values to result operands after transformng the
current values of argunent operands (e.g., all arithnetic, logi-
cal, and shifting operators).

Instructions that merely rearrange data accross partitions of a
menory name space, or that alter the normal order of instruction
sequencing, are "overhead" in the sense that they do not directly con-
tribute to a conputation. The ratio of these overhead instructions
(i.e., M and P- type instructions in our termnology) to functional
instructions (F-instructions) is indicative of the use of an architec-
ture. Overhead instructions nust be inserted into the desired
sequence of F-instructions to match the conputational requirenents of
the original programto the capabilities of the machine architecture.

Statically, Minstructions are by far the npbst comobn overhead

16

instructions -- indeed, they are the nost common type of instruction
in alnmost all existing machines. Dynamically, however, P-instructions

becone equal ly significant.

PR §

The table below illustrates the use of ratios for the foregoing

exanpl e.

COVPARI SON FOR THE EXAMPLE

370 FORTRAN-1V

(l'evel H extended) CF
optimzed non optim zed
No. of Instructions 15 19 6
Mtype Instructions 9 13 0
F- ti}pe I nstructions 6 6 6
Mratio 1.5 2.7 0
Program Si ze 368 bhits 604 bits 30bits

Menory References 20 36 13

et

17

3. DEL SYNTHESIS

This section addresses the problem of designing high performance
DEL’s. W focus on three particul ar areas:
Sequencing, Which has two aspects --
a. Sequencing between actions (program control).

b. Sequencing within an action (context).

Action Rules, which also have two aspects --

a. The format or transformation used by the rule.
bh. The operation invoked.

Name Space, which addresses two issues --

a. Nane structure -- the syntax and semantics of identifiers.
N b. Nanme environment -- referencing of variables and opera-
tors.

Each of these areas will be reviewed following a statement of

term definition and assunptions.

3.1, Terms and Assunptions

In order to synthesize sinple "quasi-ideal" DELs, |et us make

some obvious assignnents and assunptions.

* The DEL programrepresentation lies in the main storage of the
host machi ne

* The interpreter for the DEL lies in a sonewhat faster, smal | er
interpretive storage. The interpreter includes the actual inter-
pretive subroutines as well as certain parameters associated with
interpretation.

18

* Only a small nunber of registers exist in the host machine that
- can be used to contain local and environmental infornation associ-
ated with the interpretation of the current DEL instruction.
Further, it is assumed that communications between interpretive
strorage and this register set can be overlapped (Figure 2(a)).

DEL DEL DEL
I NSTRUCTI ON INTERPRETER PROGRAM
ENVI RONMENT
PROCESS DEL
= EN VIRONMENT VARI ABLE
REG STERS
SPACE
M CRO STORE
MAI N MEMORY
I NSTRUCTI ON FUNCTI ON & PROGRAM
ENVI RONMENT SCOPE ENVI RONMENT

Figure 2(a): DEL/ Host Storage Assi gnnent

e

19

An instruction is a binary string partitioned into identifiers
under action of the interpretive program An identifier is an elenent
of the vector bit string specifying one of the foll ow ng:

1. format and (inmplicitly) the number of operands

ii. t he operands

iii. operations to be performed (of at nost binary order) on the
i dentified operands

iv. sequencing information, if required.
A format is a rule defining:

1. the instruction partition (i.e. nunber and neaning of iden-
tifiers).

ii. the order of the operation (i.e., whether the operation is
in nullary, unary or binary).

iii. precedence anobng operands (i.e., binding of operand identif-
iers to functional operands).

-~

In this report, it is assuned that DEL instructions are use
ordered -- i.e., that the internal sequence of identifiers within an
instruction is the same as the sequence in which these identifiers
will be required during interpretation. The 370 architecture is not
use ordered, since the format/operation code appears before operand
identifier information. This forces the interpreter to "save" the
operation code during conputation of effective addresses -- wasting,

at least tenporarily, a scarce host register.

The size of an identifier is the width of the field it occupies

within an instruction. It is determi ned by the number of elenents

20

required in a locality, the structure of a typical DEL instruction is

illustrated in Figure 2(b).

OPERATI ON | DENTI FI ER —I

FORMAT A B C oP

OPERAND | DENTI FI ERS

| NTERFACE | DENTI FI ER

Figure 2(b): Layout of a Typical DEL Instruction

-

3.2, Sequencing Rule

Usual Iy, a program consists of a sequence of action rules. The
sequecing rule provides the ordering relation anmong the action rules
i.e., it defines the sequence of the action. While it is possible

to conceive of DEL's with unordered action rules (no sequence rule),

this formis of little val ue.

3.2.1. Sequencing Between Actions

In practice only a few sequencing rules have been used with any

degree of success. W consider the following three rules:

oo}

A

21

Linear: individual instructions are stored in a one dinensional array
within the min store. Execution order is the sane as the array
ordering unless nodified by a branch instruction.

Bimare e : instructions are mapped into the nodes of a tree struc-
tur maintained in nmain store. Leaf nodes normally correspond to
data references; ancestor nodes to semantic functions. A standard
traversal algorithm defines the default order of execution, which
can be nodified by visiting a branch node.

Linked List: instructions are stored at the links in a chain structure
mai ntained in main store. The default execution order is again
specified by a traversal algorithm and can be nodified by the
semantics associated with the nost recently visited link.

These three fornms are abstracted from well known progranm ng
structures. Most traditional machine |anguage DELs are based on a
linear form Tree formare widely used as internediate data struc-
tures by conpilers. Linked lists are the fundanental program and data

structures for LISP and PPL (MCarthy [21], and Standish [26]). Tree

and list data structures are widely used in the algorithnms enployed in

artificial intelligence and information retrieval applications. Fi g-
ure 3 illustrates program representations in the linear, tree, and
list forns.

The particular DEL organization used in these exanples s arbi-
trary, for purposes of illustration only, and is not necessarily
optimal . Simlarly, neither the operators nor data structures are
completely specified; they should be assuned to have the sane general
interpretation for all three DEL forms. These fragnents are con-
structed so that the order of execution will be identical (i.e., the

sequence of functional operations and storage accesses Wl be the

22

sane).
Fi gure 3: Three Representations of "1 =J % (K+ L); "
(a) -- Linear push @
A push J
push K
push L
+ (add)
* (multiply)
= (assign)
(b) -- Tree { =1
/ \
| I
v v
{1} {*3}
/ \
l I
v v
{J7} {+1
= / \
l [
v v
{K} {L}
(c) Li st
Fom e e e —+
| = ¢ w==>] -—>| 0 |
Fomm +- |- += | +
/
+-y————- + teym———- e e e S S —+
fT:0] | * , : I
Fom——- A +- == e +-| +- |
| / |
+-y——m——t +-v—————t H-y—————t
| J: 0| | K: 0] | L ¢« 0|

Fom———— + oo - M -+ e +

A

23

3.2.1. 1. Li near Forms:

The sequencing rule for a DEL governs the way in which control is
passed from one instruction to another. If a linear formis used, for
exanpl e, the normal sequence of execution is inplied by the placenment
of DEL instructions within the main store. A program counter is usu-
ally maintained within the interpreter, as part of the DEL program
status vector, which points to the word containing the next DEL
instruction to be executed. \When the contents of the current instruc-
tion word are interpreted, the word pointed to by the program counter
is fetched, the counter incremented appropriately, and execution con-

tinues. Interpreting a branch instruction causes the DEL program

-

counter to be loaded with a new address that points to the next

instruction to be executed. The set of branching instructions in a
DEL is not confined to the sinple GOTO, but may also include more com
pl ex program control operators such as CALL, RETURN, DO, and IF-THEN-

ELSE.

Since the default sequencing rule for a linear DEL is to sinmply
process the instruction stored "inmediately after" the one just exe-
cuted, there is a good match between this form and cyclically address-
able main stores. This can be exploited by carefully packing DEL
instructions so that the essential fetch and sequence steps within the
basic cycle of interpretation can be inplemented efficiently. This

can alnost always be achieved with mniml execution tinme overhead

24

using only elementary shift and increment capabilities.

The natural ordering of addressable storage cells can be used to
induce a default order of interpretation, thus elinminating the need
%“8} explicit sequencing of pointers in linear segments of DEL code.
As individual instructions are nore highly conpressed, fewer main
store accesses are required to maintain a given DEL instruction
stream For exanple, suppose that each instruction in a linear DEL
contains the address of its successor as an explicit subfield. An
interpreter would sequence through instructions by fetching the suc-
cessor address from the instruction just executed, and then obtai ning
the next instruction to be executed from that address in main store.

No internal program counter need be maintained unless relative branch-

ing is required.

This DEL could be made nore efficient by elimnating explicit
successor addresses within instructions that do not cause a branch out
of the normal linear order. An interpreter for this new DEL nust
maintain an internal program counter that is updated by the length of
the current instruction during each cycle of interpretation. However,
program representations will be smaller -- and should be faster --
than those of the previous DEL, assuming that main store is suffi-

ciently slower than micro store.

A

25

3.2.1.2. Tree Forns:

Tree structures are used by nmany conpilers as an internediate
form from which the final, executable code is generated. Intuitively,
ancestor nodes refer to operators (non-termnals in the source
| anguage syntax), while leaf nodes refer to variables (syntactic ter-
mnals). The operation code associated with a node is conbined with
two or tree pointers to forma unit of fixed, uniformsize. These
units constitute the phywical realization of a tree structure within
the main store of the host machine. The units for a binary tree DEL
need contain only two pointers in a niniml realization: (1) the
address of the wunit for the left descendent of a node; and (2) the

address of the unit for its right descendent.

Unit Address -->
Left Descendent Address ----- > {unit)

Ri ght Descendent Address ----- > (unit}

DEL Qperation Code

Figure 4: Typi cal Binary Tree Unit

The left and right descendents of an ancestor node which is associ ated
with a binary operator correspond to its left and right operands,

respectively. Usually, the operators in a DEL are binary if a tree

26

structure formis selected -- unary operators are treated as degen-
erate binary operators, wth null right descendent pointers. Sone

auxiliary pointers (usually to the ancestor of a node) may be included

-« facilitate tree traversal, however.

Perhaps the nost widely used traversal strategy is 'depth first,
left to right postorder"” -- neaning that a node is executed only after
both its left and right descendents have been eval uated. Under this
rule, successive left descendents are visited until a "left value" is
conputed, then the right descendent is visited (Knuth [18]). Only
after both the left and right values of a node are known will the node
itself be visited. Finding the unit for a successor node is a sinple
matte'?; at |east when traversing downward. Only a prinmtive |oad
operation is required at the micro level to extract the address of the
proper descendent unit, so DELs based on a tree formare easily inter-

preted by a w de range of mcroprogramable hosts.

There is a significant problem with the obvious inplementation of
this algorithm however: the interpreter must maintain a stack of
pointers to nodes that have been visited, but not yet executed.
Entries in this stack are the addresses of units associated with non-
terminal nodes that nust be reexanined after conputing the wvalues of
| oner | evel nodes. Maintaining this stack enlarges the interpreter
state and conplexity. The need for this stack can be elininated, at

the expense of DEL program space, by including a "back pointer" in

27
each unit that is the address of inmediate ancestor.

One potential advantage of tree DELs is that they are easy to
modi fy incrementally -- i.e., a surrogate can be made to reflect snall
changes at the source level without a full reconpilation. The new
subtree produced by reconpiling only the affected portion of the
source program This usually requires that program control transfer
points and DEL variables be identified by node rather than address,
and may al so necessitate a run time "garbage collector" to reclaimthe

holes left by excised DEL code.

Anot her potential advantage is that the interpretation of a sub-
tree can be bypassed during an execution if either: (1) the value
C%Frputed the last time its root node was visited is retained in the
root's wunit; and (2) none of the values associated with the |eaves of
t he subtree has been nodified since the root was last visited. In
order to obtain this advantage, though, a conplex tagging scheme to
mark the validity of the values stored in ancestor wunits nmay be
needed. Unfortunately, the overhead of such a tagging schene
(incurred each tine a node is visited), together wth the tine
required to store the last conputed values, may be greater than the
time saved by escaping the evaluation of sone subtrees. It is not
easy to evaluate the tradeoffs involved, though, since adequate
statistics are not easily obtained. This strategy at least offers the

possibility that tree DELs can be devel oped which are effectively nore

28

conpact and nore efficient to interpret than |inear DELs.

3.2.1. 3. Li st Forms:

A
The sinmpl est exanples of linked lists ook nuch Iike unary or

binary trees; in fact, nost of the above tree related coments are
equal |y applicable to linked |ist DELs. However, the links within a
list (its nodes) may be their own ancestors -- i.e., cycles are
allowed. Again, instructions are associated with the links in a [list
representation. They contain a pointer to a successor link, and
either an atomic value or a pointer to a value Iink. A uni que
pointer, NIL ("0" in Figure 3(c)), is used as the successor pointer in

such term nal 1inks.

This classic definition is easily extended to cover lists in
which links nay reference multiple successor or value cells, thus
reducing the nunber of links needed to represent conplicated control

and data structures. Traversal usually proceeds by value first, then

successor -- analogous to depth first, left to right postorder tree
traversal .

Because of their generality, linked lists are not easily address
encoded. Wiile the relative spatial cost of link pointers depends on

the average size of a DEL instruction; a linked |list DEL al nost always
requires nore space than an equivalent linear form DEL, barring exten-

sive factorine of common sublists. However, the marginal cost of

.

29

i ncorporating additional address references is low for a linked Iist
DEL representation, and hence it is conparatively easy to inplenment

conpl ex operators that do not easily fit in the binary operator order

For exanple, the target of any branch can be directly encoded as
one of the successor pointers in its link unit, and need not be
treated as an indirect operand. This is not always possible in a tree
DEL, since cycles are not allowed. The flexibility of a linked |ist
formcan also be exploited by linking units in precisely the order in
which they should be interpreted during execution. By converting the
linked list in Figure 3(c) into a polish suffix form for exanple,
backtracking during interpretation could be elimnated. This reduces
both the internal state size and conplexity of the interpreter, but is

not conpatible with the factoring technique described above

In nost cases, the pointers required by tree and list structures
makes them |l ess desirable than the linear array as a potential DEL
form both because of the space these pointers occupy, and because of
the extra main store access needed to deternmne the location of suc-
cessor instructions. It is usually far faster to increment a DEL pro-
gram counter (normally maintained in a host register) than to fetch an
address from main store. Unless the flexibility of tree and Iist
forms can be exploited in an innovative manner, the spatial and tem-
poral overhead associated with this single negative aspect may be of

overriding inmportance in selecting the formfor a DEL

30

3.2.2. Sequencing Wthin an Action: Context

Defining a sequence rule within an action is primarily a problem
of exploiting execution context during an action rule interpretation.
A
Context information may be used to significantly inprove action rule
representation at the expense of some additional conplexity in the

interpretation process. W consider five distinct types of context.

3.2.2.1. No Dependencies

The sinplest program representations involve no dependencies, and
an exanple of such DELs is "threaded code" -- in which each field
occupies a full word of storage, and is itself a direct pointer to
‘either ~Ia cell in the DEL data store (operand references) or to a
semantic routine in mcro store (operator references). This straight
forward encoding may in fact be optinmal if the host has little or no

field extraction capability, since each syllable starts on a word

boundary and need not be processed before use during interpretation.

Threaded code prograns are simlar to highly subroutinized host
prograns in which there is one subroutine for each semantic routine
within the threaded code interpreter. However, CALL and RETURN opera-
tors are omitted in the threaded code, which reduces its program store
requirements; the interpreter performs the function of the deleted
operat ors. Operands are wusually passed as in-line vectors of

addresses, and operations indicated by explicit micro store addresses,

~—tA

31

t hough, just as argunents are inbedded in the calling sequences of a

host machi ne.

The tine needed to fetch a threaded code instruction, in nain
menory accesses, 1S k+l; where k is the average nunber of operands per
instruction. If we let b denote the nunber of bits per word of
storage, then the space required to represent a threaded code instruc-

tionis b * (k+l).

3.2.2.2. Menory Dependencies

Gven a word oriented host, we view instructions as fixed length
"records" containing a fixed nunber of subfields at known boundari es.
:ri this case, use ordering is of miniml inportance, since the syll-
able positions are always known. Selecting an optimal instruction |ay-
out is basically an alignment problem instructions should be stored
on bit addresses that minimize the nunber of main store accesses
required to extract critical fields. This problemis exam ned from
the perspective of the conmputer architect in Flynn and Henderson [7].

Their analysis can be applied directly to the DEL synthesis prob-
lem although there are fewer free variables in this case since the
host machine is an assumed given. The relevant result is an analytic
expression for the average nunber of accesses required to retrieve a

group of F characters with character address | into a record of length

L.

32

(mmmmm e Record 1 =====mmem—- > Cmmmm— Record 2 ======—w—- >
..«.’«\{K,n} . l
boundaries |<- F bits ->| |<- F bits =>
I |
R e K= m——— T K———— e X=————
! | !
KEY field KEY field
Starting

Address | -~

Physical Menory Wrd

Figure 5: Accessing KEY Fields in DEL Instructions

The group of F characters can be thought of either as an entire

DEL instruction -- in which case the notion of a record also
corresponds to an instruction -- or as a critical syllable (e.g., the
KEY code) within an instruction. In the latter case, the instruction

isitself the L character record. |f each main store access retrieves
n characters of data, the number of accesses needed to fetch the crit-

ical portion of an instruction is

33

F i+f
Accesses = [-——-—" + "] -1
n {£,n}

n/{L,n}

where: f =F Md n (least positive residue; i.e., x Md x = x), £
=L Md n (least positive residue); i =1 Md {£,n}(least resi-
due, including 0), and {£,n}= greatest comon divisor of £ and n.
Al though fornidable in appearance, this equation is not difficult
tointerpret. dearly, the number of accesses required to fetch a DEL
instruction of length F froma unit of length L will be either [F/n’,!
or [F/rl + 1, depending on the number of word boundaries crossed.

This is determned by the starting address of the instruction. The

second term is an analytical representation of the average effect of

-

this placenent, assumng that fields occupy integral multiples of the
basi c storage quantum (e.g., eight bit bytes for a 360/370 environ-
ment). Wiile this is a reasonable assunption for a machi ne designer,
character size is often a free variable to the DEL designer (Hoevel

and Wallach [13]).

If the host is strongly biased toward a particular character
size, then it is probably best to use this as the basic storage quan-
tum for DEL encodings. |If the host is unbiased, however, the size of
a character should be selected to ninimze F/n. The Flynn-Henderson
equation shows that it is best to start instructions on character
addresses that are integer nmultiples of {£,n}. In this case, the tine

needed to fetch a typical DEL instruction, in main storage accesses,

34

f = {K,n}

Access Time = [th‘} +
-~y

while the space needed to represent it is:
Program Size = £ * b/n = w * (k+1) bits

As above, k is the nunber of syllables that nust be fetched and
decoded to execute the entire instruction, and b is the nunber of bits

per word; W is the average number of bits per syllable.

In nost cases F is less than n, and so the average fetch time is
mnimal -when F is mninmzed -- i.e., when pointers and/or instructions
occupy as few characters as possible. Decoding algorithms for this
type of DEL are usually straight forward. Since instructions are word
aligned, the exact bit offset of each subfield is known, and decoding

is at worst a sinple conbination of mask and shift operations.

In sone cases, special features of the host can be exploited --
such as the transform board capability of the CDC 5600 series, which
allows the contents of a micro register to be "exploded" (i.e., dis-
tributed accross several other micro registers in a single mcro
instruction). This board nust be physically rewired for each such
expl osion desired, however, and cannot be changed dynanically during

an enul ation (Control Data Corporation [4]).

motA

e

L]

35
3.2.2.3. Inter Instruction Dependencies

Both the sequence in which instructions are encountered and their
pl acenent can affect their interpretation for certain DELs. The pri-
mary reason for selecting a formwith inter instruction dependencies
is to mnimze the size of a typical DEL program and thus indirectly
reduce the average fetch overhead. Since a relatively large space
penalty is usually incurred when a tree or |ist sequencing rule is

used, these forms are nost often applied to linearly sequential DELs.

To exploit the simlarity between integer addressable stores and
| ocal | y sequential programstructure, a design permtting nultiple DEL
instructions to be placed in a single word of storage nust be devised.
:/Ihni mzing the size of individual DEL instructions is quite inportant

here, although if an execution time advantage is to be realized the

encoding nust be sinple to recognize and decode.

Usual |y, the DEL program state vector is augmented so that the
interpreter can renmenber unused, but previously fetched portion of the
DEL instruction stream Specifically, a residual control cell called

the current instruction word (IW is needed. This word contains those

bits in the DEL instruction stream that were brought into host storage
registers during the last instruction stream access to main store, but

whi ch have not been decoded.

36

This type of dependency is nost effective for hosts with wide
storage resources and a large ratio between main and mcro store
bandwi dths. To a first approximation, if an average of m instructions
can be packed into a single word, the time needed to fetch a given
instruction stream may be reduced by a factor of m conpared to a fully

i ndependent techni que.

Interpreters for instruction stream dependent DELs nust maintain

at least two elenents of residual control: a DEL program counter

(PC; and current instruction word (IW. If full prefetch is inple-
ment ed, and additional residual control cell is needed -- a successor

instruction word (SW. The interpreter attenpts to maintain the next

word of. instruction streambits in SW(i.e., keep SWequal to the con-
tents of the successor to the word | ast |oaded into the IW). Wen al
of the bits in the |Whave been decoded, its contents are replaced by
the contents of SW the PC is updated, and nost of the tine needed to
transfer instruction words from main store into the internal resources
of the host to be overlapped, but this inplies that the PC, IW and SW
nmust be naintained in the fastest storage resowrce (i.e., host regis-
ters). Use ordering of syllables is inportant in a strongly context
dependent DEL, since such a large fraction of the micro level storage

resources nust be dedicated to maintaining the DEL instruction stream

For exanple, decoding an operator specification prior to the

specifications of its operands (as in the natural sequence of

37

interpretation for the 360/370 architecture) forces the interpreter to
store the operator code across the operand fetch portion of the
interpretation cycle. This both | engthens execution tine and
increases interpreter size. Also, instructions need not be word
aligned. This neans that it may be nore difficult to decode the syll-
ables, since it can no longer be assumed that they are aligned on

specific address boundari es.

If the host has a register pair shift capability, a K bit inter-

nal field extraction nmay be acconplished by register pair shifting K

bits fromthe retained instruction streamword into a previously

cleared index register (IX). If the host has only a single word shift
capability, then both a mask and shift are required. Both of these
techniques are illustrated bel ow
Doubl e Shift Techni que Mask and Shift Technique
I ndex Word Instruction Wrd I ndex Word Instruction Wrd
0000 abecd 0000 abecd
e —— Shift Direction — ——ccmmm——o >
0000 bcdoO After 0000 0Odchb

Figure 6: Before and After Snapshots of a Syllable Extraction

38

In this diagram |ower case letters denote specific codes for indivi-
dual syllable codes, and the "nmask" is zero except at bit positions
occupied by the syllable code being extracted (i.e., "a'). Al t hough
ghift direction 1is critical in the register pair shift technique, it
is easy to develop a mask and shift strategy for hosts posessing only

a single left circular shift.

3.2.2.4. Menory Mapping and Word Boundary Dependencies

For the nmoment, assume that a DEL instruction consists of a
sequence of as yet undifferentiated syllables. These syllables may be
of a single, uniformw dth (often the case for polish DELs), any of a
fi xed =number of different widths, or even of dynamcally varying
wi dths. Consider the following three strategies for coping with these
possibilities:

Dynami cal | y concatenate successive words in the DEL program
store, in effect creating a "bit streant nenory.

ii. Code the fact that the next n syllables lie within the current
instruction word as part of the semantic interpretation of the
first (or last) syllable in the instruction.

iii. Reserve one syllable code (usually all zeroes) to signify "end
of instruction word" -- i.e., that the current instruction
word is exhausted (i.e., has been interpreted), and a new
instruction word fetch is required.

The first technique is used in the Burroughs S-Ianguage inplenen-

tation for the B1700, a defined field host capable of accessing arbi-

trary sized fields at bit addresses. By packing DEL instructions at

1%

39

the bit level means that "every bit is fully utilized", and "appears
to account for half of all the program compaction whi ch has been real -

ized on the B1700" (W /I ner [31]).

There can be a high interpretation tinme penalty associated with
frequency encodi ngs, however, since several sequential |evels of
decoding may be required to correlate a syllable code with the proper
semantics. Wlner outlines an "SDL" encoding that is clainmed to
obtain nost of the conpaction resulting from Huffrman's code [14],
while still pernitting reasonable decode tinmes. The resulting polish
forminstructions are about thirteen bits in length (averaged over
both operator and data instructions), and require a maxi num of three
stages of decode. W ilner estimates that a pure Huffman code woul d be
fourteen per cent slower to decode, but would only reduce the size of

a typical surrogate by one per cent.

These tinme estimates may be unique to the B1700 and the specific
interpretation algorithm used to process the S-languages. Although
Wlner clainms only a 2.6 per cent slow down from a strai ght n-way
bi nary code to a 4-6-10 staged encoding, the manner in which this is
conputed is not clear. It may be that little or no retention is used
by S-language interpreters, or that instruction fetch time is included
in the computation of decode time -- which would certainly tend to
equalize differences between various techniques. Decoding SDL codes

on an EMW [24] based system would require nore than double the time

40

needed by a sinple n-way binary code. This is equivalent to nore than
40 per cent of a typical instruction execution; if a pure Huffman code
were used, this factor could register pair again. At |east sone
direct hardware assistance appears to be necessary for this technique

to achieve high performance.

The second strategy is nothing nore than the famliar fixed field
organi zation used by nobst second and third generation "machine
| anguages". Once the first few bits of such a DEL instruction have
been decoded, the exact length and placement of all the subfields
within that instruction can be determined. 1In this case, the Flynn-
Henderson equation can be used to adjust the overall length of the
various .instruction types so as to mininmize the time needed to fetch a
.given instruction stream-- i.e., nmninmze the tine needed to access

the critical fields that define the transformations to be perforned.

An interesting variation of this schene is used for CRIL [15], in
which the semantics associated wth the operation defined by an
instruction specify whether or not the next instruction to be executed
lies within the sane word of storage as the current instruction. In
general, the successors to arithnetic operations lie in the same word,
while successors to conditional branches lie in the storage word at
the next higher address (assuming the branch is not taken -- see ICL
[151). The 360/370 "fixed format" inner formresults in an average

instruction size of about 24 bits; the ICL approach reduces this to

e

41

about 20 bits, while maintaining the sane relative instruction set

capability.

The | ast techni que was devel oped independently during the syn-
thesis of DELtran (Hoevel {12]). It approximates the bit stream pack-
ing capability of the B1700, but requires only two registers, the
instruction index IX and instruction word IW and is easily inple-
mented on hosts with flexible nmemory arrangenents. Each DEL instruc-
tion is treated as a string of syllables that is fetched and decoded
as fol | ows:

. A syllable is extracted fromthe IWusing either of the two
met hods described above.

B~

I[f the IW is now zero, transfer of the next word in the instruc-
tion streaminto the IW is initiated

3. The appropriate routine is invoked, depending on the contents of
the 1 X, and execution continues with step one.
Using this technique, the all zeros code nust be reserved to indicate
that the ~current instruction word has been exhausted, which is not
true for the SDL bit packing. However, the zero code strategy can be
implenented without increasing the size of the interpreter state
(either the IWor IX registers may be tested for equality with zero
after extracting a syllable), and a nininmal nunmber of host instruc-
tions are involved. In constrast, a seperate bit position counter is
required to properly concatenate successive SDL syllables in hosts

i ke the EMW and CDC 5600, and extra host instructions may be needed

42

if the host is not sufficiently parallel.

The generation algorithm for this is to sinply place successive
syllable codes into a word until the next code does not fit wthin
o ¥

that word. The current word is then filled with zeros, and the pro-

cess is repeated for the next word in the DEL program store.

The following is a sinple technique, hinging on the definition of
"fit" . that can save sone execution phase time and space. Suppose
that there are Mbits in the next syllable code to be packed into a
word that has only N bits remaining, where Mis greater than N. The
first N bits of this syllable can be packed into the current word if
its MN trailing bits are zero -- they will be supplied automatically
by the :él gorithm outlined above. This results in individual syllables
being logically, if not physically, contained wthin individual pro-
gram store words, but permts entire instructions to cross word boun-
daries.

By assigning these codes such that frequently occuring codes have
a greater nunber of trailing zeros, the beneficial effects of this
techni que should be significantly inmproved. The information capacity
of any given syllable is decreased by the mandatory "all zeros" code

only if there are exactly 2¥ other alternatives that nust be dis-

tingui shed by its content, where wis the bit width of the syllable.

e

43

S Physical Storage Wrd ——w—e—eee- >

New I nstruction
Starting Address

previous instruction(s) <= b ->
If identifier = xxx | 0...0 |, .
<=b-> }
then code xxx in field b. :
b= -
identifier
Ot herwise, code 000 in field b -
to indicate a new instruction
“fetch i s required, and code | eading field of
xxx0. ..0 at the beginning of next instruction
the next physical storage word.
Figure 7: "Fitting" Syllables at the End of a Storage Word

Intuitively, this gains sonme of the spatial advantage of Huffman
like codes (at word boundaries) for the sinple straight binary code,
yet permts rapid decode. In theory, it could also be used in con-
junction with nore highly encoded forns (either SDL or pure Huffman):
the relative time gain would be snaller since decode overhead woul d

dom nate the instruction fetch, however; and the space gain wow d be

44

reduced due to the reservation of the all zeros code. Time and space
estimates for this form are:
Access Time = (k+l) * (R*wb + shift(w) + test)

..o Program Space = w * (k+l)

Rk, b, and w are again the sane as for the threaded code and record
oriented code cases; “shift(x)" is the number of host instructions
required to extract an x bit field; and "test" is the number of host
instructions needed to check for the all zero code (which should be

zero in a well designed DEL host).

3.2.2.5. Field Dependencies

SS far, we have discussed only static dependencies. It is also
possible to take advantage of locality by dynamcally changing the
interpretation of specific codes. That is, the semantics associated
with special DEL operators nay be used to change the tables used by
the decode routine wthin the interpreter. While this generally
requires rather sophistocated conpilation techniques (see Foster and
Gonter [9], and Sweet [28]1]), it may be possible to avoid exhorbitant
overhead by applying this stratagem only when DEL control passes from

one nmodul e to another.

This is because of the one-to-one correspondence between DEL
modules and the lexical "scopes" in the source programs from which

they were derived. Fixing the size of an operand reference upon entry

45

to a DEL nodule can result in dramatic conpression of Program size,
and should be considered when synthesizing a DEL for any block struc-
tured source |anguage. Applying this technique to operator references
is nore difficult, since there is no direct semantic correlation

bet ween the set of operators applied in a nodule and the definition

its scope.

Concei vably, escape codes could be used to reduce the nunber of
bits required to distinguish between individual DEL operators. As far
as the interpreter is concerned, the only cost of such conditiona
operator codes would be the inclusion of distinct operator decode
tables for each escape class. Explicit escape codes may have to be
%gserted at every potential target of an unstructured GOTO, however,

which will increase both the tinme and space required during execution

A simlar problem is encountered when generating register
oriented DEL surrogates, Where the values of individual variables nust
be saved before executing an unstructured GOTO, and restored upon
arrival at each potential target of a GoTo. Discussion of the flow
anal ysi s techniques required to inprove on this naive strategy is
beyond the scope of this work (see Geshke [10], El son and Rake [5],
McKeeman [22) and [23]). Qur concern is with the underlying structure

and form of a DEL.

46

3.3 The Action Rule

As nentioned in the first section, the action rule consists of a
function applied over a domain of argunents that produces one result.
-~

There are two considerations in synthesizing an action rule: format

and operation.

The synthesis objectives for both considerations should be clear
from the earlier discussion of cannonic interpretive form
* Enough formats should be available to provide transfornational
conpl et eness;

* Each HLL operation should have a corresponding interpretation
within the linmts of interpreter size.

3.3. 1. Format s

In order to recognize and interpret DEL instructions, the inter-
preter nmust be able to determine the size and neaning of at |east the
next syllable to be fetched and decoded. The leading syllable in an
instruction wusually specifies its layout and interpretation; i.e.

defines the format of the instruction.

In order to select an optimal format set in an orderly manner, it
is necessary to first construct a universe of formats that at |east
covers the conbinatorial bindings found in traditional zero, one, two,
and three address architectures. For the nonent, we need only distin-

gui sh between two general classes of operand references: explicit

L}

)

47

reference, which appear as distinct syllables within an instruction,
and inplicit references, which are defined by the instruction's format

code.

We use a three letter mmenonic code to describe associations of
inplicit and explicit operands wth at nost two argunents and one
result (binary order). The first letter identifies the operand to be
bound to the left argument of the operator (if any); the second letter
identifies the operand to be bound to the right argunent (if any);
while the third letter identifies the operand to be bound to the
result (if any). Seven letter designations are sufficient to describe

all relevant possibilities:

y—id
. >

"sg", an inplicit specification of the cell just above the top of
the evaluation stack (value denoted by s).

2. "T an inmplicit specification of the cell that was the top of the
eval uation stack (value denoted by t).

3. "d an inplicit specification of the cell just below the top of
the evaluation stack (value denoted by u).

4. "M"A", the first explicit operand specification appearing in an
instruction (value denoted by a).

5. "B the second explicit operand specification appearing 1in an
instruction (value denoted by b).

6. "¢ the third explicit operand specification appearing in an
instruction (value denoted by c¢).

7. " ", for null, meaning "not applicable" -- probably due to |ow
functional order.

48

. A use ordered anal ogue to the typical 360/370 instruction "AR R1
RR" (neaning "add registers Rl and R2, leaving the result in RI")
would be witten "ABAR1 R2 +" in this notation. A zero address DEL
e

expansion for the same operation might appear as: "AS Rl := AS R2 :=;

Uty +; TA R1 :=",

This notation also covers various hybrid formats that use both
implicit and explicit references in a single instruction; for exanple,
the use ordered hybrid instruction "TAB X Y =" nmeans "subtract the
value of X from the value currently on top of the dynamc evaluation
stack, store the result in Y, and decrenent the stack pointer" (top of

stack is always defined with reference to its state before interpret-

“ing the formate in question).

It is easy to identify the characteristic formats for traditional
zero (UTU), one (TAT), two (ABA), and three (ABC) address architec-
tures using this system The restrictive nature of these nono fornat
DELs is clear in conparison to the 343 potential formats designations

suggested by our three letter menonic.

The obvious inplenentation for all of the formats suggested by
this identification scheme, however, would require 7*7*7 distinct
interface routines and 9 bits per instruction (assuming a straight
forward, n-way binary encoding). Even if the spatial cost were
acceptable in the DEL program space the associated interface routines

would occupy too great a fraction of micro store for nobst host

49

machi nes. Consider the following rules for elimnating fornmats that

are redundant with respect to our notion of transformational conplete-

ness cited in the canonic interpretive form discussion.

1. Formats violating standard LI FO stack accessing conventions are
not required (this would elimnate such formats as UAB, STU, ABU,
etc.).

2. Only one ordering of T and U in the first two (argument) positions
is needed--we use the UT ordering, which is consistent with a left
to right, depth first post order taversal of the macro-tree
representation of a program

3. Formats that differ only by a permutation of explicit references
are equivalent (e.g., ABC, ACB, BCA, BAC, CBA and CAB are all
equi val ent; we choose the al phabetized elenent, ABC in this case).

4, Formats differing only by a permutation of the null designator,

" ", in the first two (argunent) positions are equivalent--we use
formats With a | eading null.

Al'l of the above elimnation rules can be applied w thout adversely
affecting either the conpilation or execution phase. Using these
rules, the 343 elenent format universe suggested by our combinatoric
identification rule can be reduced to 30 elenments. The table bel ow
lists all distinct combinations remaining after these rules have been
applied, grouped in order of increasing functional order.

The branches in a macro definition tree [5] may be thought of
either as explicit references (if connected to a |leaf node), or as
implicit references (if connected to an ancestor node). Thi s estab-
lishes a connection between format structure and the context of opera-
tor nodes in a macro definition tree. By inspection, at |east one of
the above formats is directly associated with each possible

configuration of an ancestor node.

Table of Potential Formats

~MNEMONIC TEMPLATE SEMANTI CS STACK
. <0P> call op
S <0P> s 1= 0p +1

A <X> <0P> X .= 0p

-T. <OP> call op(t) -1
A <X> <0P> call op(x)

TT <0P> t = op(t)

-AS <X> <0P> s := op(x) +1
-TA <X> <0P> x = op(t) -1
AA <X> <0P> x 1 ?op(x)

AB <X> <Y> <0P> y = op(x)

ur <0P> call op(u,t) -2
TT_ <0P> call op(t,t) -1
AT <X> <0P> call op(x,t) -1
TA <X> <0P> cal | op(t,x) -1
AA <X> <0P> call op(x,x)

ABT" <> <Y> <OP> call op(x,y)

utu <0P> u = op(u,t) -1
TTT <0P> t = op(t,t)

UTA <X> <0P> x = op(u,t) -2
TTA <X> <0P> x = op(t,t) -1
TAA <X> <0P> x = op(t,x) -1
ATA <X> <0P> X = op(x,t) -1
TAT <X> <0P> t = op(t,x)

AAS <X> <0P> s = op(x,x) +1
TAB <X> <Y> <OP> Y :=op(t,x) -1
ATB <X> <Y> <0P> Yy := op(x,t)

AAB <X> <Y¥> <0P> Y = op(x,Xx)

ABB <X> <Y> <0P> Yy := op(x,y)

ABS <X> <Y¥> <0P> s := op(x,y) +1
ABC <X> <Y> <Z> <0P> z = op(x,y)

51

Wiile we have reduced the spatial requirenments of nulti-format
DEL structures to a practical order of magnitude, inplenenting all 30
formats listed in the table may still be prohibitive for sone hosts.
The following theorens identify some interesting subsets of this for-
mat uni verse.
Theorem 1: The canonic interpretive form requirements can be satis-
fied using only eleven formats, up to the level of diadic opera-

tors, if "reverse" forms for all non-commutative operators are
included in the set of action functions.

Proof: Consider the following DEL restrictions and interpreter coding
conventi ons.

1. Semantic routines for nmonadic operators mast increnent the
pointer to the top of the DEL eval uation stack before perform-
ing their nornmal processing.

]

2. "Reverse" forms for all non-commutative (diadic) operators
must be included in the repertoire of DEL action functions.

G ven these restrictions, we nmay elinmnate all format codes
whose menonic contains the "_" by using the binary format con-
taining a "s", "T", or "U" in the sane position, but which is oth-
erwise identical (interpreter convention). Formats differing only
by a reversal of the left and right argunment binding (e.g., ABA
and ABB) are redundant under the DEL restriction; only one elenent
of each such pair is needed. Finally, no format whose code begins
with "TT" can be generated by a naive conpiler, since this would
require recognition of the use of an internediate value as a
repeated argunent.

The set {UTU, UTA, TAT, TAA, TAB, AAS, ABS, MA, AAB, ABA,

ABC} satisfies the theorem by inspection.
Theorem 1 denonstrates that the individual advantages of both
stack and register oriented architectures can be nerged at a gross

cost of only four bits per instuction, Which conpares favorably with

52

typi cal polish DELs (in which each instruction contains two form pj¢g
to distinguish between "push", "pop", "operate", and "literal"). For
exanple, a single TAB format is equivalent to the polish sequence
m'?IOUSh A, operate, pop B"; the first requires one instruction and four

format bits, the second requires three instructions and six format

bits.

Determining the relative advantage of a format rich DEL over a
mono format, register oriented DEL with a variety of addressing nodes
is nore conplicated. Auto increment and decrement capability can be
used to simulate a stack architecture, while indexing and indirecting
can be used to sinmulate nenory to nmenory oriented architectures.

-

-Addressing mode flexibility does not extend to exploiting multiply

used operands, however, and is nanifestly not as conpact or efficient
as an inplicit stack architecture (it is difficult to perform net
adjustments to the stack pointer, for exanple). Further, as will be
seen in the next section, there are nore direct operand reference
encodi ngs that can be used on npbst dynam c hosts.

Theorem 2: Only four formats are required if the DEL evaluation stack
is elimnated.

-

Proof: The set {AAA, AAB, ABA, ABC} is sufficient, by inspection.

Conpilation is sonewhat nore difficult in this case, however,
since "dummy" variables nust be synthesized in order to evaluate com

pound expressions. Although fewer bits would be needed to indicate

-

53

the format code, it is likely that the space and time required during
execution would increase because of these extra explicit operand syll-
abl es.

Theorem3: Only six formats are needed to satisfy all but the "unique
variable" requirement of the canonic interpretive form

M; The set (UTU, UTA, TAT, TAB, ABS, ABC} is sufficient, again by

i nspection.

It is difficult to determine whether or not execution phase tine
and space would increase or decrease if this reduced format set is
used, however, since the question is sensitive to user behavior. The
smal ler format sets are interesting because of their coding compati-
bility with hosts strongly biased toward 8 bit storage quanta. |If
only two or three bits are needed to define the format of an instruc-
tion, then it is possible to combine both the format and operator code

in a single byte.

Any of the above format sets would be enhanced by the addition of
special formats to handle reverse forms of non commutative operators
(e.g., ATT, ATA, ATB, and ABB), or of auxilary formats to sinplify
interface processing for unary operators (e.g., TT, TA AS, AA and
AB). (One or two "escape" formats might also be added to provide a
mechanism for inplementing higher order formats (for operators wth
greater than binary order), wuser defined operators, or other DEL

ext ensi ons. The critical point is that these format sets are "rich"

54

enough to guarantee that no non functional, menory oriented overhead
instructions need be generate or evaluate arithnetic expressions
i.e., their Mratio is zero by construction

[

3.3.2. Selecting Operators

Suppose that the design of a DEL is conplete except for the

N

selection of its operator set; and further that a finite set F = {fi}' 1
l=

of potential operators is "well known" -- in the sense that there s a

mcro expansion X and a macro expansion Xi for each potential opera-

tor fi (i=1, NF). Intuitively, X, is the body of a host routine
that inplenments the semantics of fi’ while X, is constructed entirely

fronldperators in the set (ifj}j -- and so could be generated in place

#i

of fi should it not be selected as a DEL operator. The problemis to

find a subset G of F that mnimzes the space and tinme requirenents of

the resulting DEL.

Let v, be the nunber of micro store words required by X5 and W
be the total nunber of words of nmicro store that can be used to hold

semantic routines. The difficulty is that wytw, . 4w Ty be

greater than the nunber of available words of micro store, so that it

-

is not possible to sinply set G equal to F. Let:

the dynam c frequency of f,;

the average tinme needed to'execute X
the average tine needed to execute X
the static frequency of f.; 1
the length of the identifier for f.;
the length of X 1

[Kl =
el N N e o
wonon

D

Theorem 4: |If Gis the subset {f

55

and for any subset Z of F, define:

t(2) =dl £, * +dn*tn’

T(Z) =d1*T.l+' .. +dn*T ;

s(2) =Sl*ll + +s *L ;

S(Z2) =s L + .. +5*L

w(Z) = l%e sum of all % % «=uch that_f__is an elenent of G and
E2) = -((A(t(9 + TF6)) + B*(s) + ()).

The intent is to quantify the notion of _efficiency by a linear func-
tion, E -- which inplies that the marginal utility of mcro store is
constant. This is a reasonable approximtion for small changes in the
DEL operator set, since only a snmall fraction of the total space
avail able would be affected. The objective is nowto find a set G
that nmaximizes E, subject to the constraint (G < W. To this end,
define the nerit of selecting operator fi (i.e., the increnental
ag\fantage of placing semantic routine x.lin mcro store) to be:
m, = A*(di*(Ti-ti)) + B*(si*(Li—li))
Further, let the nerit n(Z) of any subset Z of F be the sum of the

i ndi vidual nmerits m, for all i such that fi is an elenent of Z. It

can be assumed without |oss of generality that the elenents of F are

ordered such that i <j inplies either mi/wi > mJ/wj, or m /v, = mJ/wj
andwi < wj. The claimis that this defines a natural |ifeboat order-

ing for F, as reflected by:

1° 2, fn} of F such that
w(G) < W< w(G) + v » then

W H) & w => E(H - E(Q <m*W-w(G))
for any subset H of F. n

Proof: Let H be any subset of F satisfying the hypothesis. If CH

56

denot es t he intersection of G 10and H, t hen w(H-
G < W-wWG + w(G-GH) by definitionn. Now, m./w.<m/w for
all j such that f. is in H-GH since j must be greafer? thai™ by

construction; this means that:
1) MHGH) < (m_/w)*w(H-GH) < (m_/w_)*(W-w(G)+(G-GH))

since w. >0 for all j. But (m /w)*w(G-GH) < m(G-GH), again by
construdtion; this means non

2) MHG - nG&H) < (mn/wn)*(W-W(G))
Since mMZ) = E(Z) + A*T(F) + B*S(F) for any subset Z of F,

3) E(H) - EG) < (mn/wn)*(w~w(G)) ged.

The difference in efficiency between an optinmal DEL and that
resulting from an application of Theorem4 nust be |less than a com-

paratively small factor (mn/wn) times the unused micro store (WwWGQ).

The pvroduct should be quite small in conmparison to the overall effi-
ciency rating of the DEL -- both because WwWG is small in comparison
to (G, and because mn/wn may be no greater than mi/wi for all i <n.

The practical sinplification is that it is no |onger necessary to
fornulate and solve a general |inear programming problemin order to

select an efficient operator set. The question of how F is deter-

m ned, however, remains open. In many cases it is probably sufficient
to set F equal to the set of all functions wused in the semantic
specification of the given source |language. |If the highest perfor-

mance is to be achieved, however; additional operators are likely to

E 10w(X—XY) = WX = w(XY) for any subsets X and Y of F.

PR

57

be needed. The followi ng principles nmay be useful; |et F0 be a prel-
imnary set of operators derived by inspection of the source |anguage
semantics:

1) Set F. equal to the set of primtive functions extracted by

inspegtion of the semantic specification for the given source
| anguage.

2) Form F,, the closure of F0 under n-ary conposition (n =1-3 should
be suf}icient inlight of Knuth's statistics [17]).

3) Form F, by including natural deconpositions for conplex functions
(e.g., extracting "nornalize" and "unnornalized nultiply" opera-
tors froma standard "floating multiply").

4) Form F, by including special operators for frequent bindings of

operators in F_, to literal argunents (e.g., adding a unary '"INC"
operator to repFace " +1"), and again taking closure

.. In general, it is inportant to exploit inplicit specification of
functions or argunents whenever possible -- a typical exanple being
the automatic invocation of a "standard fix-up" after arithnetic over-
flow or underflow. This is especially true of program control and
data conversion/sel ection operators. For exanple, if the source
| anguage is strongly structuredl% then it may be possible to keep a
stack of pertinent variables, addresses, etc., within mcro store to

speed up the execution of |ooping constructs and/or recursive pro-

cedure invocation

— s e e e s . e s e S S S S e

11 . .
I.e., all control structures are strictly one-in one-out

58

As a case in point, consider a generalized ENDO operator that
controls termination of FORTRAN DO-loops. This operator requires four
operands: an iteration count variable (J); an increnent value (I); a
-

maximum count (M ; and a loop transfer l|abel (L). The expansion for a

typical loop, "DO 10 J=N,M,I", night be:

MOVE > <J>
L (body of |oop}

ENDO <J> <I> <M> <&L>

In this inmplementation, the iteration count variable is explicitly

initialized prior to loop entry. The ENDO operator nust bind the
identifiers <J>, <I>, and <M> to the appropriate values; increnent J
by |I; and conpare the result to M performng the appropriate data-

dependent branch for each iteration. There is no way to avoid the
initialization data-dependent branch steps, but if there are no expli-
cit transfers in or out of the loop body, special initialization and

termnation operators could be used:

INITDO N> <I> <I> <M>
L (body of 1oo0p)

ENDX

In this case, the INTDO operator would tenporarily move the values of

J, I, and Minto micro store, initializing J in the process. The

R}

59

| oop-back address would also be automatically initialized at this
poi nt. The ENDX operator need not repeatedly fetch, decode, and bind
the identifiers for J, I, M and L to their respective val ues. Thi s
saves four field extractions and four variable accesses per iteration

(the value of J nust be both |oaded and stored).

3.4, Process Nane Space--General |ssues

A name used by a process is a surrogate for a value. The set of
all names that can be accessed by a process is the nane space for that
process. Source |evel names are usually just al phanumeric strings
i thedded within a programtext; DEL |evel nanes are operand identif-
iers appearing wthin executable instructions (usually in 1I-I
correspondence W th source nanes); and host |evel nanes are sinply
addresses of accessable elements of the host storage' hierarchy.
Values are associated wth names via a "contents map"--at any point
during a conputation, the contents of a nane is its correct value. In
this discussion, we are concerned only with the properties of names
t hensel ves, not with the formof identifiers for these nanmes or the
problem of interpreting identifiers within an executable instruction;
the contents mapping is assumed to be established externally--e.g., by
a | oader.

Some issues related to the concept of a process nane space are:

60

range extension

e reference value

1/0 of named object

resolution:

reference - formation of the name

X
X
x i
X

o
=~
o]
(]
(1]
2]
n
[0}
=

range: number
of objects

(o]
o
Nal
[«
o
»
T

N

-

Figure 8: Process Name Space
1. range and resolution of objects,
2. range extension--1/0 handling and files,
3. honogeneity of the space,
4. reference coding

Range and Resol ution:

Range and resolution refer to the maxi num nunber of objects {hat
can be specified in a process space and the mininum size of an object

in that name space respectively. Traditionally, instructions provide

resolution usually no snaller than an 8 bit byte, and frequently a 16

P

61

bit or larger word, and range defined as large as one can confortably
accomodate W thin the bounds of a reasonable instruction size and
hence program size. Thus, ranges from 216 for mniconputers to 224

for System 360 include nost common arrangenents.

Range Extension:

The range of the nane space directly accessable to a host is

‘bounded, SO it is essential that an extension mechanism be provided to

allow a process to access |arge data bases (e.g., I/Oand file han-
dling). If the directly accessable range were unlimted, then as soon
as objects were entered anywhere in the system the place of entry in
the processor nane space could be regarded as an elenent in the pro-

Cess nane space.

An associated problemis that of attaching records to an esta-
blished process nane space. Usually this attachment nust be done by a
physi cal movement of data fromits present location to an area within
the bounds of the present process name space before it can be operated
on. The progranmmer nust nanage data novenment fromthe I/O space into
the process nane space through I/O commands. This binding or attach-
ment is the responsibility of the programmer and nust be perforned at
the correct sequential interval so as to insure the integrity of the
data and yet not exceed the range linitations of t he name

space--overflow buffers, for exanple. Ability to communicate between

62

an unbounded |/0O media and a bounded processor name space allows the

programer to simulate an open ended nane space.

» It is, however, an unconfortable requirenment placed on the pro-
gramrer, and frequently results in cunbersome and inefficient opera-
tions. O course, the larger the range, the nore precise and variable
the resolution, the easier it is to manage objects in the process name
space; flexibility in this regard both pernits and pronotes concise-
ness during program devel oprent.

OBSERVATI ON: From t he above, the desirability of an unbounded name
space with flexible attachment possibilities is clear.

Homogepeity:

Wil e nane spaces nmay be partitioned in many different ways,
honogeneity refers to partitions distinguished by the action rule of a
process. Action rules or instructions generally cannot treat all
objects in the sane way. Certain classes of objects are established
such as registers, accumulators, and menory objects. Action rules are
~applied in a non-synetric way: one of the arguments for an action
rule nmust be a register whereas the other may be a register or a
menmory object. The premise of this partitioning is performance, i.e.
the assunption that access to registers is faster than access to
menory. Thus, many familiar machines have their name space parti-
tioned into a register space and nmenory space: 360, PDP-11, etc. As

t he partitioning of the name space increases, its honogeneity

N

63

decr eases.

Ref er ences:

Mapping identifiers into their image in the host name
space--i.e., determining the actual |ocation or address of a naned
object --involves a subtle series of design issues. There is a broad
spectrum of potential tradeoffs between interpretation tine and pro-
gram representation size. Traditional issues in identifier construc-
tion include: short vs. long addresses, indexing; indirection;

dynami ¢ tagging; etc.

The reference problem may be broken down into two parts,
réferenci ng operands and referencing operators. Qperand referencing
invol ves extracting or updating the value of an object, while operator
referencing involves the invocation of an action rule (i.e., process

state transformation).

3.4.1. Nane Space Synthesis

Providing a flexible and effective nanme space structure hel ps
mnimze the space and time requirenents of a DEL. Good designs are
characterized by both a sinple correspondence between the source name
space and the DEL name space (to sinmplify conpilation and preserve
transparency), and a sinple correspondence between the DEL nane space

and the host name space (to maintain efficiency during execution).

64

Hi gh | evel |anguage nanme spaces generally involve effectively
unbounded ranges, one dinensional reference structures (view ng sub-
scripted arrays and other qualified references as "expressions" rather
than primtive synbols), and discrete granularity (i.e., reference
structure does not induce a fixed relation between referands in the
memory space). The identifiers used as references at this level are
syntatically honbgeneous, but semantically i nhonogeneous--i . e.
interpretation of the contents map for a referand depends on the con-
text in which its reference appears. In particular the referand asso-
ciated with a particular source nane may be different for different

occurrences of that nane.

Phis i s because the name space of npst source prograns iS parti-
tioned into distinct scopes of definition (or "scope" for short;
intuitively, a scope is simply a natural grouping of references within
which the association between references and referands is fixed,
unless altered explicitly by dynamic allocation or redefinition state-

ment s).

On the other hand, npst host |evel name spaces are structurally
i nhonbgeneous, being partitioned into register sets, storage nodul es
étc. References to elenents in these partitions are rarely inter-
changeable within a host instruction. The association between refer-
ences and referands is usually fixed at this |evel, however, even

though it may be paraneterized in terms of the current contents map

65

(e.g., as in indexed or indirect referencing). Such di screpanci es
between the source and host name spaces account for much of the diffi-

culty in synthesizing an effective DEL name space

DEL organizations may be classified according to the placenent of
different portions of the information needed to bind a reference to a
referand (Chevance [3]). Data is characterized by three distinct
pi eces of information: type, |locator, and value. The type of a
referand defines the range of values it may assune; its |ocator
defines the address to be used when accessing its contents; and its
value is the bit pattern assigned by the current contents map, which

must be interpreted according to its data type

The type and |ocator may be specified either in the operation
code of an instruction or in operand reference codes, either directly
or indirectly (e.g., through a display vector). Four such combina-
tions are:

1. Type in operation code, locator in one dinensional reference (con-
ventional nmachine |anguages)
2. Type and |locator concatenated in tw dinmensional reference (this

formis typical of higher |evel DELs--e.g., Weber [29], W ner
[31), and Wortman [32]).

3. Type and |ocator concatenated in a "descriptor” identified
indirectly through a one dinensional reference (descriptor based
machi nes).

4, Locator is reference indirected individually through a two dinen-
sional reference (theoretical, no known exanple).

66

The traditional approach is to partition the DEL nane space along the
sane |lines as the host name space, mapping synbolic names into dis-
tinct indexed (two or three dinensional) references; i.e., a type 1,
Zs Or 4 organization. The conpiler nust insure that the proper base
address is loaded into an appropriate index register when the
translated references are evaluated. This increases the Mratio of
the resulting dynanmic instruction stream by requiring significant
| oad/store activity to maintain correct base register values. For

exanple, the statement "I =J - |I" mght expand to:

R1, @I
R2, @J
R2, O(R2)
R2, O(R1)
T R, O(RI)

Y]
nomrrr

using a 360/370 machi ne | anguage DEL. Only the subtract instruction
is functional; the first and second instructions are overhead caused
by the range differential between source and DEL nane space, while the
third and fifth instructions are menory oriented overhead caused by a
conbi nation of the inhonogeneity of the DEL name space (storage and
regi ster references no interchangeable) and conbinatorial restrictions
of the 360 architecture (it has no ABB fornmat). This approach
enphasi zes the inportance of register allocation, and leads to ela-
borate nulti pass algorithns for minimzing |oad/store activity (Sethi

[25] and Stockausen [27]).

»h

67

I ncorporating locator information in the reference itself also
leads to conplications in handling the thorny problens associated with
changes in scope (e.g., storage nmnagenent, passing paraneters, and
accessing externally defined referands); none of the above forns
solves this problem by construction. Perhaps the best known nodel for
describing the effects of scope is the Contour Mdel developed in
Johnson [16]. This nodel is rich enough to describe the address map
transformations required by the allocation, release, and retention
rul es of nbst sowrce | anguages, and captures all practical methods of
binding actual arguments to formal paraneters as well. [|ts guarantee
of conpl et eness suggests the Contour Mddel as a good design base for

DEL nane spaces.

A process is defined to be a tinme invariant algorithmtogether
with a time varying record of execution. Discrete points in an execu-
tion record are identified by an encoded pair, formal paraneters in a
different manner than local variables, however, either by including
explicit operators in the DEL instuction stream (McClure), or always
testing for indirection (Wilner)--Bashkow avoids the problem by res-
tricting his source |anguage to a subset that does not include

subroutine bl ocks or arrays.

68

3.4.2. Envi ronnent and Contours

The notion of environment is fundanmental not only to DELs but
also to traditional nmachine | anguages as evidenced by wi despread adop-
-tﬂiﬁon of cache and virtual menory concepts. What is proposed here is
akin in sone respects to the cache concept and yet quite distinct from
it. W recognize locality as an inportant property of a program nane
space and handle it explicitly under interpreter control. Thus,
locality is transparent to the DEL name space but recogni zed and

managed by the interpreter. Properties of the environnent are:

1. The DEL nane space is honogeneous and uniformwith an a priori
unbounded range and variable resolution.

2. Qperations, involving for exanple the conposition of addresses
which wuse registers, should not be present in the DEL code but
should be part of the interpreter code only. Thus, the register
nane space and the interpreter name space are largely not part of
the DEL nanme space and it is the function of the interpreter to
optimze register allocation.

3. The environnent locality will be defined by the higher I|evel
| anguage for which this representation is created. In FORTRAN,
for exanple, it would correspond to function or subroutine scope.

4, Unique to every environnent is a scope which includes:

i a label contour,

ii. an operand contour,

iii. an operation table.
Following the Johnston nodel, we define a contour to be a vector
(or table) of object descriptors. Wen an environnent is invoked, a

contour of label and variable addresses nust be established (if not

already present) in the interpretive storage. For a sinple static

»a

69

| anguage |ike FORTRAN this creation can be done at load tine. For
| anguages that allow recursion, etc., the creation of the contour
wow d be done before entering a new environnent. An entry in the con-
tour consists of the (main nenmory) address of the variable to be used;
this is the full and conplete DEL name space address. Type informa-
tion and other descriptive details may also be included as part of the

entry.

The environment nust provide a pointer into the current contour,
and nust define the wdth of identifiers for |abels and variables.
Typically, the contour pointer and identifier w dth would be main-
tained in the register of the host machine. W denote identifier
width by Wand the pointer to the base of the current contour by EP;
Figure 9 illustrates the process of referencing a DEL entity using
this termnology. Both |abels and variables may be indexed off the
same environmental pointer. Subfields within DEL instructions, then,
are actually containers for immediate values that define indices in
the current contour; contour entries at the indexed |ocation define
the mapped address of the desired variable or label in the host nane
space. In other words, the operand identifiers within DEL instructions
are sinply contour indices that select a particular description for
the image of a given source |level object in the host nane space.

The Contour Mdel differs from other high level DEL architectures
in that the function of references is separated from that of descrip-

torse. References are one dimensional indices into a current

F and Widentify A

70
A
7
v [7
‘ F A : DEL instruction
envi ronnment
Host Registers 17} EP
7 V.
7 7
—
> \
L EP + A
VS LSS ST
¢ /
4 /]
4 ¢
/ /]
| EP -+
. /
Interpretive Storage %
“ g
“ type ADDR A
[,
V
[, Cont our
2NN — —
77777777 Z77 7]
Target Program Storage [V value A H—
LA LLL
Figure 9: Referencing a DEL Variable
declaration array, which we call the current contour. The current

contour is always nmaintained within the host micro store, and a new
contour is created for each distinct incarnation of a source scope.
This is an extreme case of a type 2 organization, in which only Whits
are used to represent a reference--where Wis the snmallest integer

such that there are less than 2w distinct referands in the current

access environnent.

71

Each contour is uniquely identified by an environnent pointer
that, at least logically, denotes its zeroth element. The environment
poi nter for the current contour is part of the DEL program state vec-
tor, and nmust be saved/restored when entering/leaving a scope of
definition. The address map is conputed by adding the reference code
to the current environment pointer, and then accessing the appropriate

referand descriptor (Figure 10):

descriptor (reference N) = micro store (ep + N)

value (reference N) = main store (descriptor N)

Figure 10: Normal DEL Addressing Structure

This analysis can be extended by noting that the |ogical type of a
referand (integer, floating point, logical, or character) can be
separated fromits physical type (single, double or varying perci-
sion). We refer to the physical type as "shape". El enments of con-
tours are descriptors, each of which is itself a vector that defines
the shape, type, and locator of a particlar DEL entity--or, nore pre-
cisely, the algorithm used to access that entity. Di stingui shing
shape within the descriptor allows us to wuse semantic routines
designed for the general case, rather than having one per type:shape

conbi nat i on.

72

It is inportant that descriptor processing be kept as sinple as
possi bl e. For nost |anguages, this means that the value of the vari-
able will be located in the main store cell whose address is defined
by--the appropriate descriptor--e.g., the value of the n-th DEL vari-
able is located in the menory cell(s), whose initial address is given
by the contents of the n-th word of the contour in micro store. If
this is done, then the effective address of a referand can be cal cu-
lated in two basic host cycles using our nethod (mcro store is
assmed t0o have an access tine conparable with the tine needed to per-
forma primtive arithmetic operation). Essentially, dynanmic contours
are a sinple mechanism for exploiting the witability of nodern micro
stores; in effect we have created a distinct 'base register' for each

"distinct DEL entity rather than for contiguous blocks of entities.

If the source |anguage has the property that two distinct source
names can never denote the sane referand, then the indirection step
my be avoided by maintaining values of (scalar) DEL variables
directly in the contour. This is not usually the case, however; due
either to "overlay" capability (e.g., the EQU VALENCE feature in FOR
TRAN, or pointer references in PASCAL), or to the possibility of bind-
ing the sane actual argunent to two distinct formal parameters using

“call by reference" or "call by nane".

Gven a fully static source language (like BASIC, FORTRAN, or

PASCAL) a uni que contour for each distinct scope of definition may be

D

73

preallocated during conpilation. In this case, only the descriptors
for formal parameters need be nodified during execution. For nopst
source |anguages, however, a new contour W ll have to be created each
time a new scope is entered; particularly if the source |anguage sup-
ports recursive procedure invocation. In this case, a highly encoded
header could be attached to the algorithnmic body of DEL surrogates to
serve as a phantom or "skeletal" contour. Descriptor conponents that
can be fixed at conpilation would appear as literals in this header;
conponents that can not be determined wuntil block entry would be

paranmetrically encoded to sinmplify run time conputation

Since the header entries need be evaluated only once per contour
creation, they can be relatively conplex and difficult to eval uate.
However, this factors out the conmon calculations needed to conpute
effective addresses; there will be a substantial time savings whenever
variables are accessed repeatedly within a contour, and the possibil-
ity of a time |loss when variables are not accessed at all. The
penalty can be avoided by narking descriptors in the current contour
as "unbound" until they are actually referenced. FEach tine a DEL
reference is processed, its descriptor nust be checked for validity;
this wusually neans that some form of hardware support is required for
this stratagemto work efficiently. Lacking a tagged architecture, it
is likely that the tine needed to decide whether a contour elenent is
a value or a descriptor will swanp the time saved by sonetines avoid-

ing a min store access. The "tag" in this case is not a type field

74

concatenated with values in main store, but rather a "presence flag"
concatenated with the descriptor/value in mcro store. This keeps the
nunber of tag bits low, and sinplifies host inplementation. Such an

explicit caching techni que should be evaluated carefully in Iight of

the specific capabilities of the given host.

The contour technique is easily adapted to nost existing parane-
ter passing conventions. Paraneters may be passed "by reference" sim
ply by copying the appropriate descriptors fromthe caller's contour
into the callee’s contour. Parameters are passed "by value" by initi-
alizing a variable created either in the caller's environment (call by
copy value), or in the callee’s environnent (call by value copy), with
the value of the argunent referand in the caller's contour. "By nane"
éaraneter passing involves noving an IP:EP pair into the appropriate
descriptor in the callee contour; the IP:EP, where IP is an instruc-
tion pointer into the tinme invariant algorithm and EP is an environ-
ment pointer identifying a particular access envi ronment . No
transformation identified by the IP can depend upon or alter the con-
tents of a menory cell unless that cell is in the address mapping

i mage of the current access environnent.

* Every access environment contains a declaration array that is,
conceptually, a linear vector of address map definitions. Each entry
in the declaration array is uniquely associated wth a particular

source name, and conpletely specifies all of the information needed to

75

access the referand of that name. |In practice, the Contour Mdel is
usually realized in terns of a two dinensional reference structure of
the form level:offset, where "level" is associated with a | exical
scope of definition and "offset" is associated with the physical loca-
tion of a referand (|l evel codes are also called segment nunbers, block
numbers, page nunbers, etc.; and offset codes are sonmetimes referred

to as occurrence nunbers or placerment indices).

Upon entering a scope, a block of storage is allocated in the
menory space sufficient to contain all of the local variables known to
be referenced within the block. During conpilation, various positions
relative to the beginning of this block are preassigned to specific
source referands--thus determning the offset code for their associ-
ated references. Storage is usually managed by partitioning it into
two distinct classes: a LIFO stack that contains all of the |ocal
referands allocated automatically at scope entry; and a heap that con-
tains all referands that exist independently of the nornmal procedure

entry/exit mechani sm

The obvious space saving aspect of linear contours is that only W
bits are needed to identify an arbitrary DEL variable. Only three or
four bits are needed to encode Wwithin the DEL program status vector
so that it could easily be updated each time the environment pointer
is changed, allowing the inherent locality of well structured source

programs to be exploited in a direct manner. This nethod is at |east

76

as fast as the display vector approach--and may well be nore efficient
since it does not incurr nmultiple decode overhead, since it involves
only a one dinensional index.

A

3.4.3. Qperation Contours

Each verb or operation in the higher |evel |anguage identifies a
corresponding interpretive operator in the DEL program representation
(control actions nmay be treated either as an operation or as a format
type). The routines for interpreting all famliar operations are
expected to lie in interpretive storage. Certain unusual operations,
such as transcendental functions, may not always be contained in the

interpret storage. A pointer to an operator translation table nust be
part of the environment; the actual operations used are indicated by a
smal | index container off this'pointer (Figure 11). The table is also
present in the interpretive storage. For sinple l|anguages, this
latter step is probably unnecessary since the total nunber of opera-
tions may be easily contained in, for exanple, a six bit field and the
saving in DEL program representation may not justify the added inter-
pretive step

In general, ~contours could be established for DEL bl ocks
corresponding to: a single source operator; an individual source
statement; a linear segment of source statenents; a source clause; a
source procedure; or the entire source program Further research is

required to determne which level is space-time optinal. It should be

77

Host Registers F |joperands | OP |

EOP

NP
NN

EOP + OP

S S S S

1H)

¢« EOP

SNONNNN

Interpretive Storage ROUTI NE ADDR <%

to Host
‘Instruction
Regi st er

A

| OP ROUTI NE

Figure 11: Ref erencing a DEL Operator

noted, however, that |oop and procedure bl ocks are reasonable choices
for contour extents: a significant amount of non-trivial sequential
processing must be performed to enter or exit these constructs, which

affords at least the opportunity to overlap contour creation with

other mandatory conputations.

3.4.4. AN EXAMPLE AND SOME RESULTS [8]

A

Again consider the previous exanple

1 1 = 141
2 J = @(3-1)*x
3 = (J-1)*(K-1)
This mght be inplenmented as
St at ement | mpl enent ati on Semanti cs
- 4 2 2 2
| ABA I 1 + | s= I+1
2 ABT J 1 - T :=J-1
TAB I J * J =TI
3 ABT J 1 - T :=J-1
ABT K I - T = K|
TUA K % K :=T*U

78

where T and U are the top and next-to-top (under top) stack el enents,

respectively.

The si ze, in bits, of each identifier

field in the

first instruction appears directly above the correspondi ng mmenonic.

Note that

and the 6th

the stack is "pushed" automatically by the Sth

instruction "pops" the stack for further use

instruction

79

Qur CF rules apply directly to container size--two bits are
allowed to identify the four variables and two bits are used for the
four operations. The canonic nunber of instructions are achieved, as
are the variable and operation container sizes; however, 4 additional
bits per instruction are needed in this inmplementation to identify the
correct format (out of the eleven instruction formats di scussed in

Theorem 1, plus four additional control operators).

There is a difference between the transformational conpleteness
required by the canonic rules, and the achieved transfornmational com
pl eteness. The two agree only for statenments containing at nopst one
functional operator--so that the inplenentation contains an additional
J-identifier in instruciton 3 and an additional K-identifier in
instruction 6. These do not, however, necessitate additional menory
references since separate domain and range references are also
required in the CIF if a single variable is used both as a source and

sink within a given statement. The conparison with the ClF neasures

80

are shown bel ow

ACH EVED vs. THEORETI CAL EFFI Cl ENCY

N
Nunmber of Achi eved CIF
I nstructions 6 6
Qperand ldentifiers 11 9
Qperator ldentifiers 6 6
Menory Ref erences 07 (ieu.) (dalg) 01 (iv) (da)
Total s -— ———
14 total 13 total
=Size of Achi eved CF
Each ldentifier 2 bits 2 bits
Total Program 58 bits 30 bits

W assune that 32 bits are fetched per menory reference during
the instruction fetch portion of the interpretation process. Wile
the program size has grown with respect to CIF nmeasure, it is stjll
substantially less than System 370 representation; other neasures are

comparable to CF.

The exanpl e discussed in the preceding section may be criticized

as being non-typical in its DEL conparisons:

*rs

81
i. The containers are quite small , thus reducing size
size measures for the DEL code.
ii. Program control is not included
iii. The program reduction in space may cone at the
expense of host machine interpretation tinmne.

Wth respect to the first criticism noté that the size of a pro-
gram representation grows as a log function of the number of variables
and operations used in an environnent. If sixteen variables were
used, for exanple, program size would increase by 50% (to 90 bits)
It is even nore interesting, however, to observe what happens to the
same three statenents when they are interspersed in a larger context
with perhaps 16 variables and 20 statenments and conpiled into System
370 code. The size of the object code produced by the conpiler for
either optmzed or unoptimzed versions increases by alnbst exactly
the sane 50%--primarily because the conpiler is unable to optinize

variable and register usage

The absence of program control also has no significant statisti-
cal affect. A typical FORTRAN DO or IF is conpiled into between 3 and
9 System 370 instructions (assuming a sinple |IF predicate) depending
upon the size of the context in which the statenment occurs. Thus, the
i nclusion of programcontrol will not significantly alter the statis-

tics and may even nmake the DEL argunent nore favorable.

82

The third criticismis nore difficult to respond to. We submit
that host interpretation time should not be noticeably increased over
a traditional machine instruction if the same premises are made, since
-~1. 16 DEL formats nmust be contrasted agai nst perhaps 6 or 8 Sys-

tem 370 formats (using the same definition of format)--not a
significant inplenentation difference

ii. Sone features are required by a 370 instruction even if not
required by the instruction--e.g., indexing. Name conpletion
through base registers is a simlar situation since the base
values remain the same over several instructions

iii. Approximtely the same nunber of state transitions are
required for either a DEL instruction or a traditional machine
instruction if each is referred to its own "well napped” host
interpreter. In fact, for an unbiased host designed for
interpretation the interpretation time is approximtely the
same for either a DEL instruction or a System 370 instruction

The | anguage DELtran, upon which the aforementioned exanple was
based, has been devel oped as a FORTRAN DEL. The performance and vita
statistics of DELtran on the host EMW [24] is interesting, especially
when conmpared to the 370 perfornance on the same system The table
bel ow i s constructed using a version of the well-known Whetstone
benchmark and widely accepted and used for FORTRAN machi ne eval uation
- The EMW host system referred to in the table is a very small
system-the processor consists of one board with 305 circuit nodul es
and 4096 32 bit words of interpretive stcrage. It is clear that the

DELtran performance is significantly superior to the 370 in every

measure.

83

DELtran vs. System 370 Comparison for the Wetstone Benchnark

-~ \Whetstone Source -- 80 statements (static)
15,233 statenents (dynamic)
8,624 bits (excluding comrents)

System 370 DELt ran ratio

FORTRAN- 1V opt 2 370 /DELtran
Program Size (static) 12,944 bhits 2,428 hits 5.3:1
Instructions Executed 101, 016 i.u. 21,843 i.u. b.6:1
I nstructions/ St at enent 6.6 1.4 4.6:1
Menory Ref erences 220,561 ref. 46, 939 ref. 4.7:1
EMW Execution Tine 0.70 sec. 0.14 sec. 5:1

(370 emul ati on approxi mates 360 Model 50)

Interpreter Size 2,100 words 800 words 2.6:1
(excludes 1/0

Before concluding, a further conparison is in order, Wlner [31]
conpares the S-language for FORTRAN on the B-1700 as offering a 2:1
space inprovenent over System 360 code. The FORTRAN S-1 anguage
instruction consists of a 3 or 9 bit OP code container followed by
operand containers of (usually) 24 bits--split as descriptor, segnent
and displacement (not wunlike our interpretive storage entry). The
format set used in this work is of limted size, and does not possess
transformational conpleteness. However, even this early effort offers

noticable i nprovenent of static programrepresentation.

<Y

(1]

[2]

(3]

(4]

(5]

Et-

(7]

[8]

(91

(10]

Ref er ences

Bashkow, Theodore R, "System Design of a FORTRAN Machi ne, "
| EEE Transactions on Electronic Conputers, Vol. EC-16, No. 4,
August 1967, pp. 485-99.

Burroughs Corportation, B1700 Systens Reference Manual, Bur-
roughs Corporation, Detroit, M chigan, 1972.

Chevance, R J., "Design of H gh Level Language Oriented Pro-
cessors," SIGPLAN Notices, Vol. 12, No. 1, January 1977,
pp. 40-51.

Control Data Coporation, Control Data 600 Series of
M cr opr ogr ammabl e Prcessors (Reference Manual), Control Data

Corporation, Mnneapolis, Mnnesota, 1972.

Elson, M, and Rake, S. T., 'Code-generation techniques for
| arge- | anguage conpilers,” 1BM Systenms Journal, Vol. 9, No. 3,
1970, pp. 166-88.

Flynn, Mchael J., 'Trends and Problems in Conputer O ganiza-
tions," |FIPS Congress, Stockholm Sweden, August 1974, North
Hol ' and Publishing Company, 195, pp. 2-10.

- , and Henderson, D. S., "Variable Fied-Length Data Mani pul a-
tion in a Fixed Wrd-Length Menory," |EEE Transactions on
El ectronic Conputers, Vol. EC 12, No. 5, Cct ober 1963,

pp. 512-17.

, "The Interpretive Interface: Resources and Program
Representation in Conputer Organization,' Proceedings of the
Synposi um on Hi gh Speed Conputers and Al gorithm O gani zation,

University-of [Illinois, Champaign IIllinois, (Pub. Academ c
Press) April 1977.

Foster, C. C, and Gonter, R H, "Conditional interpretation
of operation codes," | EEE Transactions on Conputers,
Vol. G20, No. 1, January 1971, pp. 108-11.

CGeshke, Charles M, dobal Program Optim zation, Ph.D. Thesis,
Carnegie Melon University, Pittsburg, Pennsylvania, OCctober
1972.

[11]
[12]
~13]
[14]

[15]

[16]

[17]
"[18]

[19]
[20]

[21]

[22]

[23]

Geen J., "Mcroprogrammng, emulators, and progranmng |an-
guages,” Communications of the ACM Vol. 9, No. 3, March 1966,
pp. 230-31.

Hoevel , Lee W, "DELtran Principles of (peration," Digital
Systens Labratory, Technical Note No. 108, Stanford Univer-
sity, Stanford, California, Mrch 1977.

-, Wth Wallach, Wlter A, "A Tale of Three Enulators,"”

Technical Report No. 98, Digital Systens Laboratory, Stanford
University, Stanford, California, October 1975.

Huffman, D. A, "A nmethod for the construction of mininum
redundancy codes," IRE, Vol. 40, No. 9, Septenber 1952,
pp. 1098-101.

International Conputers Limted, CRIL Reference Manual (inter-
nal draft), Kidsgrove, England, 1971.

Johnston, John B., "The Contour Mbdel of Block Structured
Processes," Procedings of the SDSPL (SIGPLAN Notices, Vol. 6),
February 1971, pp. 55-82.

Knuth, D. E., "An Enpirical Study of FORTRAN Prograns,"
Sof t ware--Practice and Experience, Vol. 1, 1971, pp. 105-33.

-, The Art of Conputer Programming, Vol. | (Fundanmental Algo-

rithms), Addison-Wesley, Reading, Mssachusetts, 1968.

Lawson, Harold W, Jr., " Progr ammi ng- Language Oriented
I nstruction Streans, " |EEE Transactions on Conputers,
Vol. G- 17, No. 5, May 1968, pp. 467-85.

Lunde, A., "Enpirical Evaluation of Some Features of Instruc-
tion Set Processor Architectures," Conmunications of the ACM
Vol . 20, No. 3, March 1977, pp. 143-52.

MCarthy, J., et al., LISP 1.5 Programmer's Mnual, MT Press,
Canbri dge, Massachusetts, 1965.

McKeeman, W M, "lLanguage Directed Conput er Desi gn, "
Proceedings of the Fall Joint. Conputer Conference, Vol. 31,
Fall 1967, pp. 413-17.

-, et al., A Conpiler Generator, Prentice Hall, Englewood
Aiffs, New Jersey, 1970.

(24]

[25]
(26]

(27]

(28]
[29]

[30]

(31]

[32]

Neuhauser, Charles J., "An Emulation Oiented, Dynami ¢
M cr opr ogr amabl e Processor (Version 3)," Technical Note
No. 65, Digital Systenms Laboratory, Stanford University, Stan-
ford, California, October 1975.

Sethi, Ravi, and U | nan, Jeffrey D., "The Generation of
Optimal Code for Arithnetic Expressions,” Journal of the ACM
Vol . 17, No. 4, Cctober 1970, pp. 715-28.

Standi sh, T. A., "A Prelimnary Sketch of a Pol ynorphic Pro-
gramm ng Language," Centro de Calculo Electronico, Uni versi dad
Nacional Autonoma de Mexico, July 1968.

St ockhausen, Peter F., "Adapting Optinmal Code Ceneration for
Arithmetic Expressions to the Instruction Sets Available on
Present-Day Conputers," Communications of the ACM Vol. 16,
No. 6, June 1973, pp. 353-54 (short communication).

Sweet, Richard Eric, Enpirical Estimates_of Program Enirnopy,
Ph.D. Dissertation, Departnment of Computer Sci ence, Stanford
Uni versity, Stanford, California, December 1976.

Weber, Helnmut, "A Mcroprogramred |nplenmentation of EULER on
| BM Syst em’ 360 Mbdel 30," Communi cations of the ACM Vol. 10,
No. 9, Septenber 1967, pp 549-58.

W chman, B. A, "Five Al gol Conpilers,"” Conputer Journal,
Vol. 15, No. 1, January 1972,

Wlner, W T., " Bur r oughs B1700 nenory utilization,"
Proceedings of the Fall Joint Conputer Conference, Fall 1972,
pp. 579- 86. - -

VWrtman, Daniel B., A_Study of Language Directed Conputer
Desi gn, Ph.D. Thesis, Stanford University, Stanford, Califor-
nia, 1973.

)

