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Sequential Prefetch of Instructions and Data

l.Introduction.

A number of operations need to be performed in the course of1-w
executing an instruction; the instruction must be fetched and then

decoded, the addresses of the operands must be generated, the operands

must then be fetched and, lastly, the operation specified by the opcode

must be carried out. The instruction decode, address generation and the

final execution are generally accomplished in one processor cycle. As

the speed of the processor is increased, the time spent in fetching the

instructions and operands rapidly dominates the total instruction

processing time and limits the performance of the processor.
z .

. - Overlapping and pipelining can mask the memory access time only

partially and on the occurrence of conditional branches the access time

makes itself felt once again.

Consequently, a good deal of effort has been spent in developing

techniques for minimizing the memory access time. The use of a faster

technology is the most direct approach, but is limited by the economics

of the situatiop. A more cost-effective  solution lies in the use of a

e memory hierarchy wherein the information which is most Likely to be

referenced is held in a small and fast buffer. Ideally, the fastest

level would present an access time similar to that of a register. This

would permit the operands to be accessed, operated upon and the results

stored, all in one cycle. Such a buffer would present an access time of

zero cycles.
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A buffer that is required to operate this fast would necessarily have

to be quite small. The performance of a buffer managed by a demand

policy, (i.e., information is moved up to this buffer only if it is
1--m

referenced and it is not already present),  depends on the tendency for

programs to re-reference information while still present in the buffer.

With a buffer of very small capacity, we would find that by and large,

the information would be displaced by the time it was re-referenced,

resulting in rather poor performance. In such a situation, the use of

anticipatory policies can be quite effective.

Perhaps the simplest anticipatory policy is that of sequential

prefetch. Based on the assumption that instructions follow one another
. -

sequentially, one might prefetch the word that sequentially follows the

one being decoded currently. This will result in part of the access

time being masked by the decoding of the previous word and reduces the

effective access time. In general, one could prefetch the d words

following the one being decoded. This is the conventional prefetch of

degree d.

All measurements reported in this paper were made on one or more of. .
five trace tapes which represent a sample of the workload that might be

found at a general purpose computer center. The tapes were created by

an instruction-by-instruction trace of programs executing in the user

mode on a 360 compatible architecture. The results should be applicable

at the qualitative level to similar register oriented architectures.
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The trace tapes are:

043 - Fortran execution

049 - Cobol execution

050 - Cobol compilation

051 - Fortran compilation

052 - Cnhol  Sort execution

.z .
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2.Instruction Prefetch

The obvious presence of sequentiality in the instruction stream has
'1-w

resulted in sequential prefetch being widely employed in medium and high

speed processors. Given a sufficiently high degree of prefetch, all

sequential instruction fetches appear to have zero access time and the

full memory latency is seen only on requests which are non-sequential to

their preceeding requests. On the other hand, an increase in the degree

of prefetch is accompanied by an increase in the total number of

requests made to the memory. This increased traffic will, eventually,

cause memory interference and effectively a longer access time.

.z .

Estimates of both the average access time (neglecting any memory

interference) and the traffic can be derived from the run length

statistics. A run is defined to be the series of requests starting with

a non-sequential request and terminated by (but not including)  the next

non-sequential  request. The number of runs will be exactly equal to the

number of non-sequentialities  in the request stream. Let the frequency

of non-sequential  requests be n (per request). Then the average number

of instruction words decoded in a run is given by l/n. If the degree of

prefetch is d then the number of requests during each run will be

increased by the d prefetched words which are not used. The average

number of requests made per run is (l/n + d). The average number of

requests made per instruction word that is actually decoded is given by

n(l/n + d) = (1 + nd). (1)

The memory traffic is a linear function of the degree of prefetch.
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An approximate figure for the average access time is arrived at from

the run length distribution  (Fig.1). The first request of a run always

experiences the full latency of the memory. If the degree of prefetch

is d, then the next d requests see zero latency since their access time

is masked by the access time of the first request. Subsequent requests

see the access time of the memory less the time that it takes to decode

the d previous requests. Let the average time to decode an instruction

word be r cycles (this allows for the presence of multiple instructions

in a word) and let the memory access time be T cycles. All runs of

length 1 through d+l have a total access time of T per run. Each

. a increment to the run length beyond d+l increases the total access time

for the run by (T-rd)+ = max(O,T-rd). Thus if p(i) is the probability

that a run is of length i, the average access time is given

bY

d+l a3
n xTp(i) + c T + (i-d-l)(T-rd)+

i=l i=d+2

The assumptions which have been made implicitly are that:

l.The memory is interleaved and can service requests at the

sustained rate of one every (decode) cycle.

2.The width of a memory module is one word, or conversely, a word

is defined to be the number of bits available from one access of
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a memory module. This is also the width of each register in the

prefetch buffer.

1-w

3.The degree of interleaving is at least as large as the degree of

prefetch plus one (d+l).

4.Interleaved memory interference is ignored. (The interference

can be approximately accounted for by a suitable adjustment in

the access time, T).

5.0n the occurrence of a non-sequentiality,  the entire prefetch
,' .

. - buffer is invalidated.

Computationally, a more convenient formula for the average access time

is given by

d+l d+l
nT + n(T-rd)+ (l/n - lip - (d+lHl  - up) (2)

i=l i=l

where use is made of the fact that

5 0pi =l
i=l

gip(i) = l/n
i=l

Fig.2 is a plot of the average access time and traffic as functions  of

the degree of prefetch where for the sake of illustration we have
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assumed that T=lO cycles. This assumption is maintained throughout. We

see that the average access time is limited below by the fact that

'1-‘-m non-sequentialities  must necessarily see the full memory access time.

This being the case, any attempt to further reduce the average access

time should focus on the non-sequential requests. One strategy is to

retain the targets of previous non-sequentialities  in a fast buffer

referred to as a target instruction buffer [RAU77]. In view of the

looping that exists in programs, there is a good chance that the target

of a non-sequentiality  will be found in the target instruction buffer.

In fact, to completely eliminate the penalty of a non-sequentiality  it
,' .

is necessary to buffer, in addition to the target word, the d succeeding
l

words, where d is the degree of prefetch,  so that the entire prefetch

buffer is filled with zero latency. It was found that buffering a

couple of the most recent targets produced a significant improvement but

that additional buffering was of negligible value. Fig.3 compares the

conventional prefetch strategy with the strategy which couples prefetch

with a target instruction buffer which retains the two most recent

targets. To allow a basis for comparison, the traffic to main memory is

plotted against the average access time with the degree of prefetch as a

parameter. The use of a target instruction buffer can be seen to

provide a lower access time with relatively little additional traffic

as the degree of prefetch is increased. In comparison, the conventional

prefetch causes a substantial increase in traffic and is unable to

reduce the access time as much as the use of a target instruction buffer
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can. If we let h be the fraction of non-sequentialities  for which the

target is found in the target instruction buffer, then we have

Traffic = 1 + nd(l-h), (3)

d+l
Avg. Act. Time = n(l-h)T + n(T-rd)+ l/n - zip(i)

i=l

d+l \
- (d+l)(l - &(i)) (4)

i=l

since h of the non-sequentialities  which would have seen an access time

of T now see zero access time.

The target instruction buffer proves superior to a c:onventional
; .

instruction cache of the same capacity if both are constrained to be

small in size. This constraint is necessary if we wish to have an

effective access time of zero cycles since the addressing for a large

cache tends to be more time-consuming. The reason that the target

instruction buffer proves superior is that it buffers only the target

which is the most crucial section of a sequential run. The conventional

cache, on the other hand, replaces the target with subsequent requests

if the run is long enough. In the event of a large enough loop, the

target is not present when the program branches back to the beginning of

the loop. In fact, it can happen that each word is displ,qccDrl from the

buffer just before it is requested. Every request would then go to

memory and the buffer would effectively be non-existent.
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3.Data Prefetch

The prefetch of operands is easily effected in machines with vector
1--w

instructions. With the knowledge that a vector operation is underway,

it is simple and advantageous to prefetch the vector operands. In

architectures such as the 360, the PDP-11, etc., which have no vector

instructions (although multiple character instructions may be thought of

as such) the identification  of vector operations,  which have been coded

in the form of a loop, is difficult. Accordingly, data prefetch is not

employed in such architectures. Our interest is to ascertain the extent

to which sequentiality exists in the data streams of such architectures.

Secondly, assuming that it does, in fact, exist, we need to outline a

procedure for observing it.

This second point is clarified by an example. Let us assume that the

two operands are arrays which are being operated upon by an instruction

loop. Let these two arrays be stored in memory in two areas starting at

locations 100 and 200 respectively. Then, although the individual

arrays are accessed in a purely sequential fashion, the resulting stream

of requests might be of the form 100, 200, 101, 201, . . . as a result of

the interleaving of requests for the two operands. Generally, the

sequentiality of a request stream is determined by measuring the

fraction of requests that are sequential to the preceeding request.

Such a measurement would indicate no sequentiality whatsoever in our

example. And yet, we know that the request stream has been obtained by



Sequential Prefetch of Instructions and Data 10

merging two perfectly sequential request streams. We can observe this

hidden sequentiality by generalizing our measurements. If a request is

not1 sequential to the preceeding one, we check whether it is sequential-=u
to the one preceeding that. In this manner, we accumulate statistics

which indicate how far we need to go back in the request stream to find

the sequential predecessor of the current request. Put another way, we

obtain the distribution of the interval (measured in requests) between

sequential requests. If the probability of short intervals is high, then

we may conclude that the request stream is the result of merging two or

more fairly sequential streams. In our example, we would measure unit

probability of sequential requests being two requests apart. If, on the
; .

other hand, the request stream were truely random, we would expect to

observe only a very small probability of sequential requests being

separated by small intervals.

Using this generalized measure of sequentiality, measurements were

conducted upon three of the trace tapes. The ones selected were the

traces of Fortran execution, Cobol execution and Cobol compilation. The

interval distributions for these three are shown in Figs.4,5,6. In all

c three we notice a significant probability of sequential requests being

that

data

separated by short intervals, leading us to the conclusion

generalized sequentiality is prevalent to a great extent in the

stream of such architectures. In addition, it was found that a

number of requests were to the same word as the previous request.

would not show up in the measurements we have outlined but can be

to decrease the average access time.

large

This

used
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4.Implementation  of Generalized Prefetch

The generalized sequentiality of the data stream can be exploited to

permit data prefetch. One method of implementing data prefetch is to

take m conventional prefetch buffers and order them in a Least Recently

Used (LRU) stack. Thus in Fig.7, the prefetch buffer with degree of

prefetch 2, which is in the third position in the stack will be "used"

if the next request is to either C or to C+l, and that buffer would then

be moved to the top of the stack. In addition, if the request had been

to C+l, then C would be discarded and a prefetch request for C+3 would

bg'initiated. This algorithm is formalized below.

Let the Generalized Prefetch Buffer consist of m conventional

prefetch buffers, each of degree d (Fig.8). Let these prefetch buffer

arrays be ordered by recency of use in an LRU stack, and let the buffer

that is in the i-th position in the stack, (lSism), contain the words

with addresses Ai, Ai+',*g.*,Ai+d* Then for each request R:

l.Look for the first match between R and Al, A+, A2,

A2+l ,...., Am, Am+1 in that order.

2,If a match is found with Aj for lsjgrn, then move the buffer in

position j to the top of the stack.
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3.If a match is found with Aj+l for lgjsrn, then set Aj=Aj+l,

initiate a request to memory for Aj+d and move the buffer in

position j to the top of the stack.

4.If no match is found, then invalidate the buffer in position m

(the least recently used buffer), set Am=R, initiate requests for

A,+l, A,+2,...., A,+d and move the buffer in position m to the

top of the stack.

An unanticipated  request occurs each time a match is not found. Let

us term such a request a "miss". It is of interest to measure the

prcbability of a miss as a function of m, the number of. a prefetch

buffers. Since when looking for a match, we only look at Ai and Ai+l

for each prefetch buffer array, the degree of prefetch is irrelevant in
. dtermining the miss ratio. It will, of course, affect the performance

of the generalized prefetch buffer array in practice since the degree of

prefetch determines how much in advance a request is made. However, the

miss ratio can be thought of as an upper bound on the performance

obtainable if we assume that all anticipated requests have zero access

time. Measurements  of the miss ratio were made on all five of the trace*

tapes and are displayed in Figs.9 through 13. It is seen, in general,

that m=2 reduces the miss ratio substantially but that there is little

to be gained by increasing m beyond 3. With m=3, we find that on the

average about 75% of all data requests are anticipated.
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As with instructions, the run length statistics can provide us with

an estimate of the average access time and the traffic to memory as a

function of the degree of prefetch d. The previous formulae1 (Equations'4
1 and 2) remain valid but the notion of a run needs to be redefined

slightly. A run begins with a miss. Associated with each prefetch

buffer array is a counter. The counter of the buffer array that is

lowest in the stack is initialized to 1 on the occurrence of a miss.

Each request which is not a miss causes the counter to be incremented in

the buffer array in which the match was found. Associated with each

buffer array at any instant is a run which is currently in progress.

Finally, a run is terminated if it corresponds to the lowest buffer

. - arr'ay at the time of a miss. The counter value prior to resetting it to

1 is the length of that run.

The run length statistics clearly depend upon the number of prefetch

buffer arrays being used. Fig.14 displays sample run length statistics

of the data stream for the trace of the Fortran execution. The number

of prefetch buffer arrays was set at 3. On comparing the run length

statistics for instructions and data, we notice that the latter are more

_ highly skewed,i.e., for the same average run length in both, data tends

to have a higher probability of very short runs counterbalanced by a

small percentage of runs of very great length. This is characteristic

of the data stream with the runs of length 1 probably corresponding to

random scalar requests and the long runs corresponding to array

operations. The run length statistics may be inserted into the
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expressions for traffic- and average access time (Eqrlntions  1 and 2) to

obtain approximate values for these quantities as functions of the

1 degree of prcfetc-h. The result of doing so is shown i n Fig. 15 and-*

demonstrates that data prtafctch can be quite effective indeed -- almost

as effective as instruction prefetch.

The skewness of the rlt~ 1 run length distribution means that the

average run length of runs greater than 1 in length will be much greater

than the average run length of all the runs. This suggests R strategy

whereby the traffic can be reduced at the expense of inc*reasing the

average access time somewhat. The generalized prefetrh is modified so
2 .

as to activate the prefctch only if the run length i .c: found to be

greater than 1. The prefetch mechanism will not be active on the scalar

requests thereby reducing the traffic. However, the second reqllest on a

run of length 2 or more wiL1 not be prefetched resulting in an increased

access time. Equations 1 and 2 must be altered slightly, but the lint

of reasoning is much the same. We now have:

Traffic = n( l/n + dfp(i) ) = I + nd(l-p(1))
i=2

(5)

d+..’
Avg. Act. Time = 2nT(l-p(1)) + n(T-rd)+ l/n - x ip(i)

i=l

- (d+2)(1 - C p(i)> (6)
i=l

The trade-off is between the traffic generated and the average access
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time. Accordingly, the two prefetch strategies are compared in Fig.16

by plotting the traffic versus the average access time with the degree

1 of prefetch as a parameter. The number of prefetch arrays in both casesaa*

was 3. For the same average access time, the modified prefetch strategy

generates less traffic over the range of access times that it is able to

achieve. However, it is unable to achieve as low an access time as can

the other strategy.

An attempt to use generalized prefetch for the instruction stream

showed that increasing the number of prefetch buffer arrays hflyond 1 was

of no advantage. The conventional form of prefetch is adequate for the
,' .

. - instruction stream. Also), the use of the equivalent of the target

instruction buffer for data was not found to be useful. Presumably,

data is not referenced in loops the way instructions are.
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S.Conclusion

The notion of generalized sequentiality has been introduced to deal

with composite, merged request streams such as those which occur in data

accessing. A set of measurements have been defined with which we can

test the degree to which generalized sequentiality exists in actual

programs. The results of conducting these measurements on representative

programs demonstrated the existenc:e  of a substantial degree 0 f

generalized sequentiality in the data stream. An i mpl emcntation of

generalized data prefetch was olltlined and its performance was

estimated. It was found that on the average about 75% nf al I data

re@uests could be anticipated and prcfetched resulting in a slthstantial

decrease in the average access time. It might be possible to i;eneralize

the loop buffer of the 360/91 in a like manner to flirther improve

performance.

In addition, the use of a target instruction buffer was found to

enhance instruction prefetch. AlSO, a modification of the data prefetch

strategy was investigated which allowed a trade-off in the average

access time and traffic.
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The Generalized Prefetch Buffer

AA A+1A+1 A + 2A + 2

BB B+lB+l B+2B+2

CC C+lC+l c+2c+2

II
I*I lI*I l

� .� .
II

1 .1  l1 .1  l

� .� .
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1 -I l1 -I l

� .� .
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Figure 7

The Generalized Prefetch Buffer

Figure 8
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