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ABSTRACT

Only a small part of all Boolean functions of n-variables can be

realized by one threshold element (T.E.). For all other functions the

net must be built with at least two T.E.'s. * The problem of construct-

ing a fault-tolerant two-level network from T.E. is investigated. The

notion of limiting function is introduced. It
-' .

. _ these limiting functions induces a reduction in

candidates during the process of finding a real

function by threshold functions. The method is

is shown that the use of

the number of possible

ization of an arbitrary

based on the two-asumm-

ability property of threshold functions and therefore is applicable to

completely specified Boolean functions with less than nine variables.
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I. INTRODUCTION

The fraction of switching functions of n variables which are

realizable by one threshold element (T.E.) - threshold functions [1] -
1m-u

decreases rapidly with n: 14 out of a total of 24 Boolean functions of

two variables are threshold functions, but only 3% of the four variable

functions and only 2.4 x 10 -27% of the total number of seven variable

switching functions are linearly separable (i.e. realizable by 0neT.E.).

For all other functions, the net must be built with at least two T.E.

Two-level nets of T.E. by virtue of their regularity and high switching

speed are preferable, for technological reasons, to circuits of arbi-

trary configuration. Two kinds of two-level networks are shown in

ti.gs. 1 and 2. If such a circuit is nonredundant, then the failure of

the first-level element in general automatically implies errors at the

output of the net. We shall suppose that the otitput element of the

circuit is failure-free and all input signals are correct. Therefore,

the net can be made fault-tolerant by adding some additional elements

in the first level. The number of additional elements depends on the

number of possible failures in the first stage. We shall say that the

circuit is one-, two-, etc. fault-tolerant if its output signal is cor-

rect when one, two, etc. elements of the first level fail.
e

In this paper we shall discuss the methods of synthesis of fault-

tolerant two-level circuits with the minimum number of threshold ele-

ments. We use the well known property of threshold functions discov-

ered by Paul1 and McCluskey [2] and extensively studied and named

~~m/dtie man&uticiky by Winder [3]. Our intention is to develop a
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Fig. 2. Two level circuit with the input variables available at each level.



systematic approach to computer-aided synthesis of two-level networks

from threshold elements, which can also be extended for synthesis of

fault-tolerant circuits.

1--a In section II we shall introduce the basic notations, formulate

the problem and discuss some properties of fault-tolerant circuits.

The notion of limiting functions and their properties are studied in

section III. The algorithm for constructing limiting functions is

also presented and illustrated. The next two sections, section IV and

section V, give the methods of synthesis for two types of realization,

Fig. 1 and Fig. 2.

” .
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II. BASIC NOTATIONS AND PROPERTIES

Let Q be the set (O,l) and let Q" be the set of n bit wide vectors

over Q. Boolean function of n-variables F(x1,x2,...,xn)  = F(X) can be

described as a mapping F:Q" j Q.

We shall assume that a Boolean function F(X) is given by the list

of the sets:

M1 = F-'(l) = {~1,~2,...,~m},  ;Ei = (nil ,a.yj,...,ci, in), (i = l,...,m)L

By definition, F(X) is a threshold function if and only if there

exists a solution with respect to the unknowns aO,ali-, an of the sys-

&em of linear inequalities:

alaml+a2am2+"' +a an mnlP0

(1 >a

1
) i

(1 1C

(lb)
1a .1 ~k l+a 2~k 2+�  l l +a nBk ,+a o -

Rearanging, we have,

-ao+al~ll+a2a12+...+an~l~0
. . . . . . . . . . . . . . . . . . . . . . . . . .

-aO+a1~m1+a2~m2+...+anam~0
ao-alBll-a2B12-~~.-anBl~  1

/

(Id)

. . . . . . . . . . . . . . . . . . . . . . . . . .

a o -a l~k l-a 26k 2-.  l .-a n�k nzl

From the coefficient of system (Id) we form the 2" by (n+l)-matrix

A, by defining the elements as follows:



-1 for i=l,Z,...,m
ail'

1 for i=m+ l,...,m+k,

a =
t

c”i(j-1) for i=l,...,m
ij

- 'i(j-1) for i=m+I,.. .,m+k=2n,j=2,...,  (n+l).

Furthermore, let 2 = (ao,al,...,an) and T = (O,... ,o,l,...,l)T
- -. m k

(T as upper index means the transformation operation). In this nota-

tion system (1) may be written compactly in vector form [4,5]:

AagT>:- (2)

The solution (ao,al,..., an) of system (2) constitutes the reali-

zation of the given function and we shall write F(X):[al,...,an,ao].

If system (2) is incompatible, then the original Boolean function is
" .

. - not realizable by a single threshold element. In this case we shall

.

seek a realization of this function by a two-stage circuit as shown

in Fig. 1.

Definition: The faults in two-level networks are defined as ap-

pearances of an incorrect signal at the output of one element of the

first stage. We shall distinguish two kinds of faults:

a) a "1" appears at the output of an element instead of "0"

(O/l fault);

.w b) a "0" appears at the output of an element instead of "1"

(l/O fault).

If the network in Fig. 1 is to operate correctly even in the pre-

sence of faults, one needs to introduce some redundant elements into

the circuit at the first level. The problem may be formulated in the

following way:
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It is neccessary  to find a minimal number r > 0 and a mapping $ of

the vector of space X= {x1,..., XJ onto vectors of space Y= (yl,-..,y,}

(not necessarily one-to-one)

$('i)= 'i= (il,ci2'.'*,Cir)  i= l,Z,...,m
(3)

$(zj)= ~j= (cjl,cj2,...,cjr)  j= m+l,...,k

satisfying the following conditions:

1) the sequence of values c lq,C2q,*.**,c(m+k)q =? (i.e. the column

number q in the matrix C formed by z z1' 2'"' Y'm+k) forms the

threshold function y
9'

2) among the Boolean functions of r variables a threshold function

(4)

2
. -

can be found such that ~(~i)=l, $(Zj)= 0.

3) the net must be fault-tolerant with reference to l/O faults, or

O/l faults, or both.

From the formal viewpoint the fault of the type (a) or (b) in one

element means replacement of one of the rows of the matrix C by another

row which differs from it by the value of one element. This, in turn,

is equivalent to replacing one input array v of function $ by another -

8. If $(e)=@(v), then the malfunction does not lead to an error at

the output, since we assume that the output element is absolutely re-
e

liable.

Let 1-1 be a set of different arrays in the sequence z,,...,zm, i.e.

p={Gl,...,ct)  where cl=Zi ,c =Z. ,...,~t=~i , let X be a set of dif-
k ' '1 V

ferent arrays in the sequence ~m+l,...,~m+k in (3), A= {$,...@. We
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duse vi to denote the set of all arrays for which the Hamming distance

from array ui (i=l 2 dt d
,*-*, t) is less or equal to d, let u = U (ui}.

i=l
Similarly one can introduce Xjd and Ad (j=1,2,...,s).

Theorem 1: In order to construct a two-level network which is h-

fault-tolerant with respect to onlyO/l faults or only l/O faults, it is

necessary for the Hamming distance between any pi (i=l,Z,...,t) and .
any xj (j=l,Z,..., s) to be no less than h+l.

This theorem is analogous to Theorem 2 in [6] and we omit its

proof.

The proofs of the next two theorems are simple and are obtained

from the same reasoning as above.

Theorem 2: For the construction of the two-level h-fault-tolerant

network from threshold elements with l/O faults it is necessary andz .
. -

sufficient for the Boolean function $ defined by the partitioning

. to be a threshold function.

Theorem 3: For the construction of a two-level h-fault-tolerant

network from threshold elements with O/l faults it is necessary and

sufficient for the Boolean function 4 defined by the partitioning

$-‘(l)=MT3u”ph,  M@, MTnM;=@

to be a threshold function.

In general, we can have simultaneously both types of faults:

(1

5)

6)

O-l and 1-O. To tolerate this double fault, it is necessary to have a

double Hamming distance between input arrays. From Theorems l-3 we

have the next statement.



Corollary: TO construct a two-level net from threshold elements

tolerant of both O-l and 1-O faults in h elements it is necessary and

sufficient if the Hamming distance between any $(i=1,2,...,t)  and any

Xj(j=1,2,..., s) is at least 2h+l and the function 4 defined by parti-

tioning

(7)

is realizable by one threshold element.
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III. LIMITING FUNCTIONS

The basic idea of the synthesis procedure is to construct matrix

C with the minimal number of columns. There are several restrictions

1--a on this matrix, and the first of them is that every column of this ma-
--A e2trix c ,c ,... ,zr must be a threshold function y1,y2,...,yr of

Xl y..  l �Xn.

Let F(X) be a given arbitrary Boolean function and let

F-1 (l)= i~,,~,,..., ",I, F-l(O)= {~l,~2,...,~k},  k+m= 2".

Definition 1: We shall say that the function f(X) exceeds the

function g(Y) with respect to the function F(X)

f(X) ~s(xL _

if the following conditions are satisfied:*-

f(~i) >g(Zi), i 5(1,2,...,m)-
(8)

and either there is a value i= s such that f(&)>g(zs) or there is a

value j =p for which we have f(zp)< g(b,).

Definition 2: Call the threshold function f(X) limiting with re-

spect to F(X) if there does not exist a threshold function h(X) such

that

F
h(X)> f(X).

Theorem 4: Let mapping matrix C satisfy the conditions (1) and (2)

(see Formula 4). Then all threshold functions y1,y2,...,yrin C can be

replaced by threshold functions y;,y;,... ,ypexceeding them and the new

matrix C1 will also satisfy conditions (1) and (2).
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Proof: It is obvious that condition (1) is satisfied for C .

Condition (2) must be proved. We shall assume that the function 4 in

. (4) is positive in y,,y2,... ,y, since this can always be arranged, tak-

ing the inverses of those variables in which cp is negative [l]. By

'1 definition--*

T(bl,b2,...,br) l cilaO0 (i=1,2,...,m) (9)

T(b,,b2,...,br) l cj(aOO-1 (j =1,2,...,k) (10)

F
In the transition from the functions y,,y2,...,yr to the functions

F
YilY1 9**  l ,Y{LYr ,

the vectors ~i,~j are replaced by zC,zj where Zizci

(i.e. the value of each component of vector $ is greater than or equal

to the value of the corresponding component of vector zi), while cj&.- 3
By virtue of the positiveness of the quantities b,,b2,...,br none of

&nequalities  (9), (10) is violated. Consequently, matrix CM, formed by
I . -

c

.

-t,rows cMi"j' '' =1,2,...,m,  j = 1,2,... ,k is a mapping satisfying conditions

UM2). Q.E.D.

Corollary: In the synthesis of a two-level network, realizing the

function F(X) every column of matrix C may be a limiting function with

respect to F(X).

The number of limiting functions with respect to F(X) is substan-

tially less than the number of threshold functions of n variables. Its

mean value for four-variable functions is 37. It is easier to choose
e

the functions y,,y2,..., y, from the limiting functions of F than from

.

all threshold functions. The major remaining problem is to find these

limiting functions. The next theorem will be very useful for that pur-

pose. Before we formulate it we can notice that according to Theorem

4.3.2.4 in book [l] there exists at least one equality in each of the
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two subsystems (la) and (lb). We call extreme points the input arrays

which correspond to these equalities. It can be shown that if the sys-

tem (la,lb) is consistent, then consistency will also hold for the sys-

1-* tem which is derived from it by transforming the extreme points from

(la) into (lb) and vice versa. It means that for any threshold func-

tion f we can transform all extreme points from f -1 (1) into f -1 (0) and

the new function, which we will call transformed function f*, will be

the threshold. The next lemma establishes a stronger result.

Lemma: If g(X) is a threshold function, then the function of gl(X)

received from g(X) by changing the meaning of exactly one extreme point

is also a threshold function.

Proof: If g(X) is a threshold function, g(X):[a,T], then ad-

. - fording to the 2-assumability condition [l-5], which is necessary for

a function to be threshold, it is impossible to find two pairs of ver-
-1tices ~i,~j Eg (1) and ;S,,iS,Eg -1 (0) such that ~i+~j=~k+~,.  Here

the + sign means ordinary componentwise addition of vectors. Assume

now that the function g,(X) obtained from g(X) by changing the value
-1of the extreme point 6 belonging to g (1) is not a threshold function.

The only reason for its unrealizability by one threshold element is

due to the change of value for -6. Therefore two points zl,z2 belong-
-1ing to g;'(l) and 8 belonging to g, (0) can be found such that G,+z =* 2

;+x. Let us multiply both sides of this equality by a: d.G,+a*z2=

s+x. Then from a*$ >T, aez,>T and a&T-l we obtain 2T<T-l+- - - -

;f*6 and a&T+l. Hence d is not an extreme point of g. Similarly,-

a contradiction will be obtained if we assume that the extreme point 8

belongs to g-'(O). So g,(X) is also a threshold function. Q.E.D.
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Theorem 5: A threshold function g(X) is limiting with respect to

F(X) if, on the set of extreme points of g(X), both of the functions

g(X) and F(X) have the same values.

Proof: Assume that there is a limiting function g(X) with
'1.-w

respect to F(X) and that there are some extreme points, b,,d,,...&

such that F(xp)#g(xp) for p=1,2,...,r. Take one of these points,

xv, and transform g(X) into g,(X) in the following way: if F(xv)=l,

then g-i(l)= g-'(l)@,, g;'(O)= g-'(O)$, if F(8,,)= 0, then g;'(O)=
-1

g (o)u~,, a d -'n 9, (1) = g-'UM$. According to the previous lemma,

gl(X) is a threshold function and it can easily be seen that

g,(x) F,9u). Hence g(X) is not a limiting function. This is the con-

tradiction, and so the theorem is proved. Q.E.D.

z . The algorithm for finding all limiting functions with respect to. -
given F(X) may be represented in the following way:

1) From the table of threshold functions of n-variables sequen-

tially pick up the extreme points of every threshold function.

2) Compare the values of F(X) with those of the threshold func-

tion on their extreme points.

3) If all values are coincident, then f(X) is limiting; if not,

choose the next threshold function from the table.

e
Example: Table I gives all the limiting functions, fl,...,f12,

with respect to the parity function of three variables:

S(Xl ,X2,X3) = Xli2X3 V XlX2X3V Xli2X3 V X1X2X3 (“1

Note that this function has the greatest number of limiting func-

tions among all functions of three variables.
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The main advantage of this method is its programming simplicity.

However, its drawbacks are severe, especially when the number of vari-

ables is large. It works well for functions up to six variables. For

1 functions with more than six variables, more sophisticated methods not-=u
directly related to the tables of threshold functions must be invented.

TABLE I

“.

. -

'3 '2 '1 ' fl f2 f3 f4 f5 f6 f7 f8 f9 f10 fll f12
I / I

0
0
1
1

0
0
1
1

i

0 1 1 0 0 0 1 0 1 1 1 1 1 1 1
1 0 1 0 0 1 0 1 0 1 1 1 1 1 1
1 1 1 0 1 0 0 1 1 0 1 1 1 1 1
0 0 1 1 0 0 0 1 1 1 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 0 0 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 0 1 1
0 1 0 0 0 0 0 0 1 0 0 1 1 0 1
1 0 0 0 0 0 0 1 0 0 0 1 1 1 0
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IV. SYNTHESIS METHOD

A fault-tolerant realization with threshold gates will be found

if we construct a matrix C that satisifes conditions (1) and (2) (be-

1-w low Formula (3))and Theorem 1.4. If we try the limiting functions

for the columns of the matrix C, then the condition (1) will be

satisfied. Therefore, the next problem is to find a minimal number of

limiting functions (the columns of C) with the desired distance be-

tween its rows.

For every limiting function fl,f2,... with respect to a given F(X),

we build mx k matrices, W 1 2,W ,..., which we call difference matrices.
LThe element Wij equals 1, if fl(Gi) # f,(zj) for iG {1,2,...,m!,

jEL2,...,kL
,' *

Example: Table II represents all 12 difference matrices for the

limiting functions in Table I.

Let Z, be the mx k matrix for which each element is exactly s.

The process of forming the matrix C with the desired distance d be-

tween its rows (from the limiting functions) is reduced to choosing a

collection of difference matrices, Wll l2,W ,...,W% such that

'1 l2 e
w +w +...+w r,z, (‘2)

Here the + sign denotes component-wise addition of matrices, and

two matrices Z'= 1 lZijI 1 and Z" = 1 lZ~jl I are coupled by the relation-

ship Z'> Z", if Z:'.> Z1R for any ic {1,2,...,m} and jc (1,2,...,k).- 1J- 1J
It can easily be shown that this process can be reduced to a problem

of integer linear programming. However, it is more convenient to
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solve it by sorting in a manner similar to what is used in searching

for coverings [7].

Now we are able to give the main steps of the method.

1 1) For given function F(X), find all limiting functions and form-w
the difference matrix for each of them.

2) Minimizing the number of columns and, using relation (12),

form the matrix C with the desired distance between ui and Xj, for

i c&2,... ,m) and jc {1,2,...,k).

3) Depending on the fault, form the partitioning (5),(6),(7).

4) If the function $ defined by this partitioning is a threshold

function, the problem has been solved; otherwise go to step 2 and form

the next matrix C.
2 .. - Example: Let us find a network for the function (ll), of the form

shown in Fig. 1, which is tolerant to O/l fault in one element. We

shall proceed according to the steps as defined above.

1) All limiting functions are displayed in Table I, all difference

matrices are represented in Table II.

2) According to Theorem 1, the distance between pi and Xj in C

must be no less than 2. The set of limiting functions f5'f6,f7'f8  is

the minimal one out of all the sets which satisfy condition (12) when

s= 2. Let us form the matrix C from these functions (l-arrays are

above the dotted line).



18

C=

0  1 1 1
1 0  1 1
11 0 1
1 1 1  0
- - - - - - - a

0 0 10
0 0 01
0 10 0
10 0 0

3),4) In Fig. 3a a Weich diagram is displayed for the function @,

in which y, = f5,y2 = f6,y3= f7,y4= f8. Applying the methods for real-

ization of incompletely specified functions by one threshold element

[1,3,8] for the function 4 complemented in accordance with (5), we ob-

tain the threshold function $'(y1,y2,y3,y4) (Fig. 3b) which defines
,‘ .
the output element for a network tolerant to G\l faults of one element.

An analogous complementation inaccordance with (6) yields the threshold

function $"(y1,y2,y3,y4) (Fig. 3c), which defines the output element

for a network tolerant to l\O faults of one element (Fig. 4). Note

that the fault-tolerant realization for this function has only one more

element than the intolerant realization.

For a more complicated example, we shall consider the problem of

constructing a one-digit combinational binary adder, which is stable

relative to malfunctions of the l\O and O‘J types in any element except

the output elements. As it is well known, this problem can be reduced

to finding an implementation for the following two functions: function

(11) and function

o(x,,x2'x3 1 =xxx vxzx v5i.xx1 2 3 1 2 3 1 2 3 (13)
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The last function is a threshold function and at the same time coin-

cides with the inverse of the function f7 inTable I. Therefore, it is

expedient to seek the set of difference matrices which include W 7 . It

‘1-* is not difficult to check that the set of limiting functions f2,fs,f6YT7,

f7,fg9fg satisfies the condition (12) with s= 3. The realization of a

l-fault-tolerant adder is displayed in Fig. 5.

b
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V. GENERAL CASE

In Fig. 2, the general case of two-level network realization is

shown(with the primary input variables x,,x2,...,xn,  also available as

'1-* inputs to the output element of the circuit). Let us introduce and de-

note by J the square matrix of order m+ k in which the diagonal elements

of the first m rows are equal to 1, while the diagonal* elements of the

next k rows are equal to -1. The remaining elements are equal to zero.

For finding a realization of the given function F(X), by a circuit shown

in Fig. 2, the problem is formulated in the following manner.

To obtain the minimal number of elements in the circuit, it is nec-
-+-I -3-7essary to add to the matrix A a minimal number of columns Jc ,Jc-,...,JF,

4 -+2 -+rwhere every column c ,C ,...,c is a threshold function y,,y2,...,yr of
2 .

the input variables, so that the system of inequalities

i*a^T> 1 (14-

is compatible. 4 +2 +2Here A=[A,Jc ,Jc ,...,Jc ],a^= (a,,a,,...,a,b,,...,br)

In other words, we find a representation of F(X) in the form

where @ and y,,y2,..., y, are threshold functions. It can be easily shown

[l] that the number of circuit elements does not change if the function

$ is assumed to be positive in y,,...,y,,  i.e. in both cases b, >O, b2>0,

. . . br> 0.

It is well known [l-5] that the condition of 2-asummability  is nec-

essary for a function to be realizable by a threshold element. This is

also sufficient when the number of variables is less that 9. If a com-

pletely determined nonthreshold Boolean function is given, then there
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always exist at least four vertices for which the condition

-fai+gj=zl+zs,i,j Et1,2,...,m},~,sE{1,2,...,k} (15)

is satisfied. Such vertices are called summable in contradiction to

--rl the asummable vertices, i.e. the l-vertices for which condition (15) is

not satisfied. It is clear that the summability of vertices ~i,;Itj may

be eliminated by the addition of a (n+ljth coordinate to the vectors
+ -f -f -t
a. ,a1 .i,~~,B, in such a way that the sum of the (n+l)th components of the

vectors gi and ~j is differentfromthe sumofthe (n+l)th components of the

vectors JL and &. The basic idea of the synthesis consists oftheaddition

of a minimal number, say r, of supplementary coordinates (columns
-+I -+2
C ,c ,...,c-V to matrix A). We obtain (n+r) - dimensional vectors for

which no two vectors are summable. Accordingly, a summability graph
z .. - is constructed for which the nodes are associated with the l-vertices

-+
a], * * * Gm' and the pair of nodes -6; g. are joined by an edge if thei' J

. condition (15) is satisfied.

Example: Figure 6 contains the summability graph for the function

(11) . The incidence matrix corresponding to this graph has the follow-

ing form (only half of the symmetric matrix is shown)

001 010 171 100
001 1 1 1
010 1 1

""111 1
100 a

By adding a column to matrix A, we eliminate some summable pairs

and the corresponding edges in the summability graph. It is easy to

determine which edges in the summability graph are eliminated by the
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001,’i’, r,’ ‘\, .I1 .
100 \T-•OlO

111

1 ity graph
(11) .

Fig. 6. The summabi
for the function



given limiting function ft. For this, it is sufficient to construct

as an analogy to the difference matrix, the binary matrix VR in

which the element vLij=l if and only if the vertices formed from k,;.
J

-4
1-=u by adding to matrix A the column c are asummable, i.e. fl(%)+ fl(zj)#

fJ8 1 + f,(Q*

In Table III the matrices of V.l are presented for all the limiting

functions in Table I.. . To find the solution of the problem, it is neces-

sary to find the minimal number of matrices Vl covering all the one ele-

ments of matrix U. This problem is similar to the Quine covering prob-

lem and can be reduced to it. Not every coverage of matrix U will give

a solution to the problem. It is necessary that the function

@(X,‘““Xn’Y,“..’y,) be a threshold function. Since the function $

. - 7s incompletely specified, the condition of 2-asummability is not suf-

ficient even when the number of variables is very small. Therefore it

is necessary to verify that the function @ is threshold. If it is,
A

then the problem is solved; otherwise once needs to find another cover-

ing.

Example: Any of the matrices V5 6 7 8,V ,V ,V gives a coverage of the

incidence matrix U. Thus a single additional column to the matrix A is

sufficient. Figure 7 gives a realization of the function (11) with the

e. limiting function f7. It can be verified that functions fg'f6'fg  also

give a realization.

Let us assume now that all input leads are fail-free and that only

the elements of the first-stage can fail. There is no need to calculate

the distances between input arrays of the output elements. The differ-

ence between them is provided by input variables. Theorems similar to

Theorems 2 and 3 and a similar corollary can be formulated for this case
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Fig. 7. Realization of the function (11) with the
limiting function f7.
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also, but we will omit them here. When the realization of a given

function is found, we add successively l,Z,... external limiting func-

tions and we construct a partitioning similar to (5), (6), or (7). If

3"Q the respective Boolean function is threshold, then the problem is

solved; otherwise,one needs to look for some other limiting functions.

Example: Figure 8 shows one-fault-tolerant realization of the

function (11).
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L

- 1
1

Fig. 8. A one-fault-tolerant realization of the function (11).
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