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ABSTRACT

Networks of queues are important models of multiprogrammed  time-
shared computer systems and computer communication networks. Althouqh
equilibrium state probabilities of a broad class of network models have
beenderived in the past, analytic or approximate solutions for response
timedistributions  or more general passage time distributions are still
open problems. In this paper we formulate the passage time problem as a
"hitting time" or"first passage time" problem in a Markov system and
derive the analytic solution to passage time distributions of closed
queueing networks. Efficient numerical approximation is also proposed.
The result for closed queueing networks is further extended to obtain
approximate passage time distributions for open queueing networks. Finally,
we employ the techniques  derivedin this paper to study the interfault time
and response time distribution and density functions of multiprogrammed

c computer systems. The effects of program behavior, degree of multiprogramming,
size of main memory, service time of paging devices and rate of file I/O
requests on the shape of distribution functions and density functions have
been examined.

The work described herein was supported in part by the Ballistic Missile
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1. INTRODUCTION

Queueing network models have important applications in computer system

and computer communication  network modeling. Work on this application in the

last several years has produced a variety of models to capture important

aspects of computer systems and computer communication  networks. A broad class

of queueing network models has been put together under a uniform framework by

Baskett, Chandy, Muntz and Palacios [2] and further extended by Kobayashi  and

Reiser [18] [26]. Obtainable from such analyses are stationary queue length

distributions and measures of system performance derivable from them, such as

mean response time of each user and throughput of the system. Although the

average response time or waiting time can be obtained easily from the mean

queue length based on Little's formula, "L = XW" , the analytic or approximate

solution for response time or waiting time distribution is still an open problem.

Clearly, the distribution function is much more informative than the mean

because it can provide us with higher moments, quantiles, percentiles,  etc.,

i.e. fluctuations around the mean.

Using simulations via regenerative  techniques to obtain interval estimations

of passage time distributions  has been studied by Iglehart and Shedler [14] for

closed queueing networks, where passage time is defined to be the time for a

job to traverse a portion of the network [14], hence, a more general term than

+ response time or waiting time.

In section 2, we briefly survey the history on the development  of the

theory of queueing network models. In section 3, we summarize the queueing

network models where analytic results are available and the results on steady

state probabilities of the queueing networks. In section 4, we derive the



passage time distributions of the closed queueing networks specified in
.

section 3 using the concept of "hitting time" or "first passage time" of

Markov processes. In section 5, we use a multiprogrammed  computer system

model which is a two stage cyclic queueing network as an example to go through

all-&he details involved in calculating  a passage time distribution. In

section 6,an efficient numerical technique to obtain approximate passage time

distributions of the closed queueing networks is proposed. The approximate solutions

are very satisfactory. In section 7, we examine the open queueing networks specified

in section 3 and extend the results on the closed queueing networks to obtain

approximate passage time distributions for the open networks. The major

difficulty encountered  in handling the open queueing networks is the infiniteness

of its state space as we shall see later. In section 8, we employ the derived

techniques  to study interfault time distributions and response time distributions

of-mult-iiprogrammed  computer Systems. Finally, in section 9 we draw the

conclusion.

.
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2. SURVEY

A good survey on the development  of the theory of queueing network

models up to 1972 is contained in Muntz and Baskett [22]. Here, we excerpt

y% the contents from [22] and fill in the development  thereafter. For some ten

years, the most general class of queueing networks for which an analytic

solution was known is treated by Jackson [15]. Jackson develops the equilibrium

distributions  of the states of the following class of networks:

(1) All the service time distributions  are exponential

(2) All the customers are identical

(3) A customer leaving a service center can choose the next service

center according to a fixed set of branching probabilities for

the service center being left

(4) External arrivals and departures are allowed. The external

arrival process is assumed to be Poisson.

Gordon and Newell [13] treat the similar kind of queueing networks and make

clear the product form of the solution of the balance equations describing the

steady state of the model. Properties (1) and (2) of this class of networks

are clearly limitations of its applications. In the past few years, applications

of such queueing networks to the modeling of computer systems have been drawing

increasing attention, and the extensions of the above results to more general

e queueing networks have been attempted by various authors. We summarize their

results in the following:

Ferdinand [12] analyzed a particular  queueing model called the finite

source model or the machine repairman model. The system was a cyclic model

with two service centers and consists of a fixed number of customers. One

3



. service center which can be viewed as the CPU is shared by all waiting customers

sjmultaneously  at a service rate inversely proportional to the number of customer-

being served. The other service center which can be viewed as the terminals

consists of a sufficient number of servers so that no queueing occurs. These

Tzo types of service centers will be referred to as processor sharing and infinite

server stations, respectively. Different classes of customers are allowed, i.e.

each customer has its own pair of exponentially distributed service times, one

for each service center. Posner and Bernholz [14] consider the more general

network model of Gordon and Newell where each customer has its own set of

branching probabilities, and exponentially distributed service times.

The network is closed and two kinds of service models are allowed: FCFS (first-

come first-served) and processor sharing. Only under the processor sharing

discipline, different customers may have different service time distributions.
2 *

. - Sakata, Noguchi, and Oizumi [ir7] discovered that when processor sharing

scheduling was applied to the classical infinite source queueing model (M/G/l),

the equilibrium distribution of queue sizes for the model was the same as that
.

for a similar model with exponentially distributed service times with the same

mean as the original general distribution. Baskett [l] derived a similar result

for a finite source model in which the service time distribution at both

service centers have rational Laplace transforms and Baskett and Palacios [41

extended that result to the central server network model which Buzen [5] has

studied. The equilibrium solutions have the product form. The model includes
. .
FCFS, processor sharing and infinite server types of service centers and the

service time distributions can be any distributions with rational Laplace trans-

forms for the two latter types of service centers. But the queueing system is

closed and only a single class of customers is allowed.

4



Whittle [28] [29] showed that the balance equations describing the under-

lying birth and death processes could be replaced by sets of "independent"

balance equations. Chandy [8] extended this technique to more complex models

and extended the range of networks for which product form solutions can be

found.-a Chandy developed the solution for networks in which the service center

is of FCFS, processor sharing or LCFS type and in which all customers are the

same. Palacios [23] independently  developed solutions for a particular network

with "types" of customers. In [9], Chandy, Keller and Browne further extended

the concept of customer "type" and added the concept of customer "mode" for

general networks.

The recent most noteworthy progress in extending the class of analytically

solvable queueing networks has been done by Baskett, Chandy, Muntz and Palacios

[2]. These authors have succeeded in casting into a unified theory of previously

_ kn&n but unconnected results such as queue size distributions  for M/M/l with

FCFS discipline, general service time distribution  for processor sharing, infinite

server discipline and pre-emptive --resume LCFS discipline and queueing systems

with various classes of customers. Reiser and Kobayashi [26] generalize the

result of [2] to the case in which customer transitions are characterized  by

more than one closed Markov chain. The technique of generating function has

been applied to obtain closed form solutions. Kobayashi and Reiser [18] further

extend the job routing behavior to high order Markov chain, i.e. the transition

probability of a job from one station to the other can depend on, at least,.*
the last two stations it has visited and not just the last one. In Lam [20],

the class of queueing networks with a product form solution is extended to include

state dependent lost arrivals and trigger arrivals. Such queueing network models

can be used to model store and forward packet switching nodes and multiprogramming

/ L computer systems with storage constraint.





3. EQUILIBRIUM STATE PROBABILITIES OF QUEUEING NETWORKS

In this section, we examine the class of queueing network models whose

equilibrium  state probabilities have been obtained by Baskett, Chandy, Muntz

and Palacios [2] under a uniform framework. Their results will serve as the1"-w
basic foundation for our subsequent analysis of passage time distributions.

The queueing network can have any kind of topologies and any number of

service centers. The customers may have different classes. We will assume

that the queueing network consists of M service centers and R classes of

customers. At any time, each job can only be in one job class, but it may

change class as it traverses through the network. Upon completing service at

center i, a job of class j is routed to center k and changes to class l with
Rprobability  Pij kle' Furthermore, the routing matrix PR R

3 = IPij ,,;l~k~M,l~j,&(R33
_ car&e considered as defining a Markov chain whose state space is

((i,j),l<i<M, l<j CR} and transition matrix is PR .- - - -

The most general service time distribution  considered is the one which

has a rational Laplace transform.  All exponential, hyperexponential and hypo-

exponential distributions  have rational Laplace transforms. Cox [lo] has shown

that any distribution with a rational Laplace transform  can be represented by

a network of exponential stages of the form shown in Fig 3.1.

. .

Fig 3.1 Representation  of service time distributions by the method
of stages
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In Fig 3.1, l-ai is the probability that the customer leaves the service

center after the i-th state and ai is the probability that the customer goes

to the next stage. The service time at stage i has an exponential  distribution
1with mean - .
"i

.--a- The service centers of the network can be any of the following four types.

Type 1: The service discipline is first-come first-served (FCFS). All

ion regardlesscustomers must have the same service time distribut

of its job class.

Type 2: There is a single server at the service center, the service discipline

is processor sharing. The processing rate is reduced to l/n if n is

the number of customers sharing the service. Each class of customers

may have a distinct service time distribution. The service time can

have any distribution with a rational Laplace transform.

Type 3: The number of servers in the service center is greater than or equal

to the maximum number of customers that can be queued at this center.

This is call the infinite server model. Each class of customers may

have a distinct service time distribution.  The service time can have

any distribution with a rational Laplace transform.

Type 4: The station contains a single server, the queueing discipline is pre-

emptive-resume last-come first-served (LCFS). Each class of customers

may have a distinct service time distribution. The service time can

e have any distribution with a rational Laplace transform.

Notice a type 2 service center is, in many cases, a reasonable representation

of the central processing unit allocating small quanta to jobs requiring service

in round robin. Actually, it is the imiting case of round robin scheduling



where the size of the quanta goes to zero and no overhead is associated with

.job switching. A type 3 center is often used to represent the terminals  in a

time sharing system. Type 1 service centers are most commonly encountered, e.g.

in modeling secondary storage I/O devices, channels in point to point computer
-2%communication networks, etc. A type 4 service center may also be used to model

CPU since it is an efficient preemptive scheduling algorithm.

We now proceed to examine the state of the network model. The state can

be represented by a vector
'L
S = (;', . . . , ?M)

where pi represents the state at service center i. The exact form of pi

depends on the type of service center i. We summarize the forms of ~i's below:

Type 1 service center:
z ’ %x. =1 (x

il� l **' i'in )
X ij is the class of the j-th customer at station i in FCFS order and ni is the

number of customers at station i.

Type 2 or 3 service center:

'L 'L 'L
Xi = (Vi', vi2, . . . . 'iR)

'L
V ir is a vector (mirl, mir2, . . . . mirU

ir
) and the &th component of vir is

the number of customers of class r in center i and in the C-th stage of service.

* 'ir is the number of stages of the service time for a class r customer at

service center i.

Type 4 service center:
%x. = (( r

1
m ),(ril' il i2' mi2) l **V ( r in

i
) min )>

i

r ij is the class of the j-th customer in LCFS order and m.. is its stage of1J



service.

Let S(t) be the stochastic process describing the state of the network

model and E be the collection of all permissible  state ?s described above.

Propositon

-% ?;(t )

space E = {

time t.

3.1

= (;1 (t), . . . ,
'L

CL
SM(t))forms a continuous time Markov chain with state

?I, where Si(t) describes the state of the i-th service center at

Before presenting the solution to the class of networks described Aove,

we need to define a set of terms that appear in the solution. Recall

PR = {PRir js~ is the routing matrix and defines a Markov chain. Thi:- Harkov9
chain is assumed to be decomposable  into m ergodic subchains. Let El, E2, . . . . &

be the sets of states in each of these subchains.  For each ergodic subchain

Ek' we dsfine the following set of equations

e.
(iC,r)E Ek lr

PRir,js + qjs = ejs (j ,s) E Ek

.
The value of qjs is determined

s customer to service center j. Not

is closed with respect to Ek. In  th

by the rate of exogenous arrivals of class

ice if q.JS = 0 w (j,s) E Eky

is case, e ir can only be determined to

within a multiplicative  constant and interpreted as the relative arrival rate

of class r customer to service center i. If not all qjs = 0 for (j,s)&Ek,

then we assume a unique solution for eir. In this case, eir is the absolute

arrival rate of class r customers to service center i.

One further definition is required. If at the i-th service center the

customers of class r have a service time distribution  that is represented as a

network of stages, then it will be represented as shown in Fig 3.2.

9



a irl air2 air3
Virl ~ir2 + Pi,r3

+oyzj q
'--"jr~u
r>\. i,r.-

lwajrl lmajr2 lmaj r3 l-a irU =( 1)
ir

Note:

(1) the first subscript denotes the service center

(2) the second subscript denotes the class of the customer

(3) the third subscript denotes the stage of service

Fig 3.2 Representation of the service time distribution of a class

r customer at service center i

Let Airl= j=l airj, i.e. AirRl-f is the probability that a class r

. - customer at station i will reach its j-th stage of service. Finally, we

state the equilibrium state probabilities in the following theorem which can

be proved by checking that the independent balance equat ions are satisfied.

Theorem 3.1:

For a network of service stations which is open, c losed or mixed in which

each service center is of type 1, 2, 3 or 4, the equilibrium  state probabilities

are given by

P (2,' 1,, . . . . ?M) = cd (?) f, (%,)f2(?2) . . . f,&$,,)

where c is a normalizing constant chosen to make the equilibrium  probabilities

sume to 1 ,

2 is an abbr. of (?,, P,, . . . . ?M),

d(2) is a function of the number of customers in the system,

10



and each fi is a function that depends on the type of the service

center i.

To be more specific, for

Type 1 service center:

fiQ = ($ )ni II?, eix
i ij

Type 2 service center:

Type 3 service center:

Type 4 service center:
e. Air.. ir..m..

2 * fi(~i) = nil, [ ulJ ‘J ‘J ]
ir..m..1J 1J

If the arrivals to the system depend on the total number of customers

in the system, denoted by M(?), and the arrivals of class r customers to center
Ai follow fixed probability Pir, then

d(?j = ny!$)-' A (iI

where A(i) is the arrival rate when the total number of customers is equal to i.

Another case of interest will be the case where the arrival process consists

of m Poisson arrival streams corresponding  to the m ergodic subchains mentioned

before. Let hj(i) be the instantaneous mean arrival rate for the j-th stream

when the total number of customers in the j-th subchain is equal to i and M(~/Ej)

denote the number of customers in the j-th subchain when the state of the system

11



.

is 5, then

If the network is closed, then

d(2) = 1

Now let us consider the marginal distribution of queue lengths. Define

an aggregate system state as the number of customers of each class in each

center. More formally, an aggregate state 8 of the system is given by
‘L

2' l *' YM) where pi = (nil, ni2, . . . . niR) with nir denoting the number
1

of customers of class r in service center i. Let +- be the mean service
ir

time of a class r customer at service center i.

Theorem 3.2

,". The equilibrium distribution of the aggregate state W = (>,. . . . 9 YM)

is given by

where

for Type 1 service center: gi(5i, = ni! {II !=I & (eirlnir 1 (l Jni
' ir' "'i

Type2 or4 service
center:

Type 3 service center: gi(Gi) = II R 1 eir )"ir- -(r=l nir! 'lir

The most obvious implication of this theorem is that the equilibrium
'L

distribution of the aggregate state W depends only on the means of the service

time distributions.

A further simplification is possible if the network is open and the

arrival process does not depend on the state of the model. Let % = (n, ,n2,.'.,nM)

12



be the aggregate state which represents the total number of customers in each

service station. Let Ri = {r: class r customers may require service at

service center i). Furthermore, let

= c rER
i

if service center i is type 1

pi = CrER
i if service center i is type 2,3 or 4.

Theorem 3.3

The equilibrium distribution of the aggregate state t = (n,,...+&

of an open network with state independent arrival rate is given by

M
P (% = (n,,=..,nM))  = fl Pi(ni)

i=l
where

2 .
. - Pi(ni) = (1- pi) pli if service center is type 1, 2, or 4

Pi(ni) = e
-pi pini

(-)ni ! if service center is type 3

Furthermore, various forms of state dependent service rates can easily

be incorporated into the network models. We examine the following three cases:

Case 1: The service rate at a service center depends on the total number of

customers at that service center. Let Vi (ni) be the rate of service

at the i-th service center when there are ni customers at that

service center relative to the service rate when ni=l. Then fi(xi)

in theorem 3.1 becomes fi(xi) (l/~~vi(a)) . This form of state
a=1

dependent service rate is very useful. Consider the case when the

i-th service center contains ki multiple servers, we can let

13



Cases where Vi(IIi)  is a general function of ni can be found in

Kobayashi [19].
"-4~
Case 2: The service rate of a class r customer at service center i depends

on the number n ir Of class r customers at service center i. This

form of state dependent service rate can not be modeled for type 1

service centers. Let yir(nir) be the service rate of class r

customers at service center i relative to the service rate when there

is only one class r customer at service center i. In this case,

fi(xi) is replaced by fi(xi) II II
ir

(a) 1

Case 3.: The state dependent service rate involves the number of customers

in several service centers. Let I = {ii,i2,...,im3

be a subset of the service centers. Let nI = C ni and
i d

let Z+nI) be the relative service rate to customers in the subset I of

service centers relative to the service rates when nI is one.
nT

In this case II fi(xi) becomes
i d

Finally, we note that these various forms of state dependent service

rates can be combined.

14



a 3



4. ANALYTIC SOLUTION ON PASSAGE TIME DISTRIBUTIONS FOR THE CLOSED QUEUEING
NETWORKS

In this section, we obtain the distribution functions of passage times

for the closed queueing networks specified in the previous section. That is

to say the closed queueing networks can have any of the four types of service

centers and different classes of customers whose transitions  follow some routing

chain. The passage time considered is the time required for a job to reach a

specified destination from a given start where certain restrictions  may be put on

the passage. A formal definition will be given later. Response time is taken

to be the time measured between the arrival instant of a customer and its

departure instant for open queueing networks and the time required for a job

to go through a complete circuit or a loop for closed queueing networks. As we

shall see that response time is actually a special kind of passage time. The
,".
reason why we restrict ourselves  to closed networks in this section is simply

because the state space of a closed queueing network is finite. The advantage

of the finite state space will be aparent later on.

We will first introduce  the concept of a tag job. Concentrating on the

behavior of the tag job as it traverses  through the network provides us a means

to evaluate the passage time distribution. Each job is assumed to have equal

probability of being tagged. In order to keep track on the position of the

tag job, we need to augment the state variable described in section 3 by an

extra component which describes the position of the tag job in the network.

Examining the state variable, we see that in the FCFS and LCFS service station,

there is a one to one correspondence between the state components  and the jobs

in the system. This component specifies  both the position (implicitly) and

the class of the corresponding job. It also specifies the stage of service

if the center is LCFS. By letting K(t) denote the index of the state component

15



describing the tag job at time t, we can identify the tag job position and

status unambiguously. But, for the processor sharing and infinite server

service centers, a one to one correspondence between state components and jobs

does not exist. All jobs in the same job class and stage of service will

be described by a single state component,"-43 i.e. they are indistinguishable

under the state description. Since we are only interested in the stochastic

behavior of the tag job, this ambiguity really doesn't matter. This ambiguity

only elaborates a little bit the specification of the transition matrix as

we shall see. We will still let K(t) indicate the index of the corresponding
'L

state component in the state variable. Let S(t) be the stochastic process

defined in proposition 3.1 and &),K(t)) be the new stochastic process just

described,  and let E and E' be the corresponding state spaces, respectively.
'L

Recall ES(t)) forms a continuous time Markov chain. Let (T,) be the jump

times o_f.the Markov chain, with 0 = To<T1 < . . . .

'to S(Tk ,) through the transition matrix, P"

Clearly ;(Tk) is related

= {P9j}, of I. If the tag

job is a FCFS or LCFS station, at the service completion instant, i.e. the

jump time of the underlying Markov chain,.
by the ;(Tk) and (S(T _

K(Tk) will be uniquely determined

k ,), K(Tk ,)). That is to say there is a one to one_
2/

correspondence between the possible next states of &Tk-1) and (S(Tk-T), K(Tk-,))

under the same transition probabilities. If the tag job is in a processor

sharing or infinite server station, this is no more true. For example, assume q

jobs of the same class are in the same stage of a processor sharing or infinite

server station and one of them is the tag job. At the next service completion

instant of this stage of the service center, one of the q jobs changes its

status, either moving to a different station or a different stage of the current

service center. K(Tk) Will depend upon not  Only the value of S(Tk) and

(S(Tk-,), K(Tk ,)) but also the fact whether the tag job is the job just

16



completing its service. Nevertheless, the service completion of the tag job

can be determined stochastically. Since the probability that the tag job completes

its service at this instant is known which is equal to l/q,we can incorporate

the uncertainty on K(Tk) into the transition probabilities of the stochastic
'L

process (S(t), K(t)), and these transition probabilities  only depend upon the
1"+N

current state &T _k ,), K(Tk ,)). Therefore, we conclude:

Proposition 4.1
% 2,

Z(t) = (S(t), K(t)) forms a continuous  time Markov chain

In order to define the passage time considered formally, we need to intro-

duce four subsets of E', (A, +B,,E$) which will tell us in effect the start time

and stop time of a particular passage time of the tag job as we observe the sample

path of the stochastic process. A2 and B2 are the sets of state where passage

times may start or stop, respectively. Knowing that the state of the stochastic
z -. - process is in A2 or B2 is not sufficient to conclude that a passage time starts

or stops in general under path restrictions. Path restrictions  will be allowed

if appropriate Al and Bl can be defined such that the start or stop of a

passage time can be determined from the additional fact that the

process has also passed through some state in A, or B,, resPectiveTY.  In the

case where A2 and B2 are disjoint and the passage time terminates  at .

the first time the stochastic process hits some state in B2, the set B, will

be redundant. Similar remark holds for A, We next define two sequences of.
random times, {S. : j?O} and (I'. : j,l>, where Sj-, is the start time of.* J 3
the j-th passage time and 'j is the termination time of the j-th passage time.

Assume that the initial state of the Markov chain t&t) ; t>O) is such that_

a passage time for the tag job begins at t=O. Formally,

sO =0
2,

3 =inf {Tn : ;(Tn) E A*, Z(Tk) E A, for

SOme  Tk'Sj_l and k < n) , j>l-

17



CL

t.= inf <Tn3
: ;(T,) E B2, z(Tk)  -c B,

for some Tk > Sj-, and k<n), j>l-

Then the j-th passage time is simply PSj = rj-Sj,,, jll. In the

case of response times, we will have A, = B,, A2 = B2 and consequently

S+= lYj for all j >l.J This formal definition of passage time is similar to but-
somewhat more restrictive than that in Iglehart and Shedler L14].

Now we'll try to convert the above passage time problem into the hitting
%*

time or first passage time problem of another stochastic process, Z (t). The
%*
Z (t) should have the following properties

(1) The set of possible initial states, AZ*, should be isomorphic

to the set A2 which may start a passage time of%(t). Furthermore,  the initial

distribution at each state in A** should equal to the stationary probability

that Z(t) may start the passage time from its corresponding state in A*.
,c * %*

'(2) The process Z (t) has an absorbing state. When the passage of i(t)
CL*

terminates,  Z (t) should hit the absorbing state simultaneously.

. First of all, let us add an extra component,  I(t), to the state variable

(S(t), K(t)). That is to say the new state variable will be the vector
f-b
Y(t) = &t), K(t), I(t)), t>O-

where I(t) is used to indicate whether during the previous state transitions,
*

any state in B, has been passed through. Here we let B,* be the direct

extensions  of B, with the extra component setting to zero, i.e.
Jc

B1 = {(;,O) : &B$. We will further assume the process T(t) starts with

some state &O) at t=O where &AZ.

by b _

Since I(Tk) can be completely determined

k ,), we conclude that

Proposition  4.2

Y(t) is a continuous  time Markov chain with the following properties:

18



(1) ";(O)cA2*

where A2* = 1 (LO, : ;~A21

(*I p(?l,l)('42,i) = i Vz2 for i=l
0 for i=O

bQ
p(~,,o)(~2,0)  = { zl'z2 for ?i, b 8,

0 for 1, E: B,

P'L 'L
P(1,,0)(?2,1)  = { z1'z2

0

for ?, EB,

for 2, 4 B,

where

( P'L(z,,ilh~2~ 2i )} is the transition matrix of T(t)
z ’ and

??l,?2} is the transition of matrix of g(t)

From properties  (1) and (2), it is apparent

&t) 90) 9
y(t) = { 'L

if ;(Tk) $ B,* for all O<Tk<Tn-, < t:T,

(m 9' I¶ if ;(Tk) C B,* for some O<Tk<Tn-,<t~Tn

If B2 and B, are disjoint,  the number of states reachable from A2* may be

reduced if we modify the definition of the transition matrix on the state

$,,O) to be

pz,Q
P(;,,o)(;*,l)  = { z1'z2 for 5 E. Bl' ‘4,v,

0 otherwise

and

p’l, 30) c?*,o)
for 1, #B, or '4, and 12 E B,

0 otherwise

for every ;, c E.
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The difference between the two definitions is that the component I(t) will
'L

not be set to one until the process Z(t) leaves the set B,* for the first

time-under the modified definitions.

Let us define B;to be the direct augmentation of B2 by setting the

exm component to 1, i.e. Bl = &l):& B2)e We further modify the state
2,

space of the stochastic process Y(t) by lumping all the states in B2* into a

single absorbing state ;. Clearly the new stochastic process satisfies
%*

property (2) of Z (t) and for each state ;, in A2 of g(t). there is a state

(
fbz 3
%'

0) in A** corresponding to it. That is to say the passage time of

Z(t) will have the same distribution as that of the hitting time to state ?

of this new stochastic process under an appropriate initial distribution. We
%*

will call the new stochastic process Z (t) and the corresponding state space

E*.
2 *. -

As pointed out earlier, if A2 and B2 are disjoint and the passage time

terminates at the first time that the stochastic process hits some state in

. B2’ the set B, is redundant. In this case, the extra component I(t) is also

redundant. Lumping the states in B2 into an absrobing state, we get the
%*

desired stochastic process Z (t). Even if A2 and B2 are not disjoint, we
%*

may sometimes still be able to uniquely identify each state of Z (t) after

dropping the last component I(t). In this case, I(t) is a conceptual tool to
%*

help us define Z (t). For example, if the last stage of the passage contains

a critical service center which can not be reached by the tag job until the

end of the passage time, I(t) can be dropped at the final step even if the

passage is a loop. Nevertheless, in the general case, I(t) is required.

Eruthermore,  the definition of passage time can be generalized in the

following way. We can modify the definition of I(t) so that it will not be

20



set to 1 until the underlying process Z(t) not only passes through some state

in B 1 but also transits to appropriate next states when it departs from

that state in B,. The setting of I(t) can also be nondeterministic. The rule
'L

can be that when the underlying process Z(t) jumping from state b in B, to

state d, I(t) will be set to 1 with probability g. That is to say P(b,O),(d,l)=
"-43

gPbd and '(b,O),(d,O)  = (1-g) 'bd ' An example of this type will be that a

passage time terminates at the time it transits from server i to server j with

probability g. In this case, we can choose B, to be the set of all states

corresponding to the tag job being served at station i. At the next state
%*

transition of Z (t), the component I(t) will be set to 1 with probability g if

the state transition is due to the transition of the tag job to station j.

Similar generalization holds for A, and A*.

We now proceed to evaluate the appropriate initial distribution for
%*

- z w . First we need to find the steady state distribution of G(t) = (S(t), K(t)).
'L

The steady state distribution of S(t) is given in the previous section. Let

{P(2)] be the steady state distribution of G(t) and (P(:,k))be  that of i(t).

Assume the total number of jobs in the network is N. Clearly, each job has

probability 1 N/ being taged. If the tag job is in a FCFS or LCFS service

center, the steady state distribution at state (?,k) will be

P&k) = ; P(2) (4.1)

and if the tag job is in a processor sharing on infinite server center, the

.* steady distribution at state (?',k) will be

P&k) = Nl("k) p(2) (4.2)
N

where N (2,k) is the number of jobs in the same class and stage of service
1

as the tag job.
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To evaluate the initial distribution of Z (t), we first consider the *

common case where each state (i,i) in A, can transit directly to some

states in A2 to start a new passage time+. The infinitesimal transition

rate of the continuous time Markov chain i(t) from state (&i) to

state (?,k) is denoted .by q,(;,i)(;,k)' For each state

(&r(->" in A;, we will let H(;,k) denote the set of states in A,* which can

transit directly to the state (?,k). The appropriate initial distribution

will be

@,k,O) =

,' *
. -

n(:,k,l) = 0

for (?,k,O)EA,*

&i)c H&h)
(ILW,h) &A2

0 otherwise

P&i) q s(u,iHkh)
L

(4.3)

. For the general case, we need to calculate the taboo probability

A1,A2f*(i,i)(%k)' which is defined to be the probability that starting from

state ($,i) we can reach state (:,k) without passing through any states

in A, and A2 during the intermediate steps, from the transition maxtrix of

the imbedded Markov chain of; (t). Furthermore, we define A, ,A2f*(';i,i > ,(b)

to be ' &i)(?,k) when both ($,i) and (;,k) are in A2. Let
. .

?(%,k)'= ) P&j) qts j)(% i)
&j ) E A1 V, 9

Cki > t Al-A2

A1,A2 f*(z,i)(&k)

for (:,k)cA2

The appropriate initial distribution will be

'Consider the case where the passage time terminates upon the tag job
transiting from server x to server y.
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r&k,O)=

I

‘Lz,c(s,k) 'LCLz c(u,i)
(z,i)cA2

0

for (?,k,O)eA**

(4.4)
otherwise

-43
rr(?,k,l) = 0

After obtaining the appropriate initial distribution of Z (t), let us

start to solve for the distribution of the hitting time to the absorbing
%*

state ; for each state of Z (t). Let

F;(t) be the holding time distribution function at state G, and

Q(t) be the distribution function of the hitting time to absorbing

state ? when starting from state G. Then decomposing over the holding time

and possible next states of z, we get

where ):
Yt+:

means summation over all states in the state space of the Markov

chain except ;,the absorbing state.

Assume
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i.e. F:(S) and d(S) are the Laplace-Stieltjes transforms of F;(t) and
W W

s(t), respectively.

Taking Laplace-Stieltjes transform on both sides of (4.5) we get

-3 %
*(S) = F;(S) (C'Lz, (4.6)

vfr
I';; G; 6) + p;; )

c 'P;; $61 - b/,, 1 <CS, = -Pw Fj(S) (4.7)2,s
v+r WV V wr

where 6,, = 1
WV f ifZi='t!

0 otherwise

Equation (4.7) represents a system of linear equations with finite dimension.

After solving for G* (S), we can get G$t) by taking the inverser Laplace-
5

Stieltjes transform.

Finglly, we get the passage time distribution function
. -

G(t) = Z
8 E A;

fl 6, G,,,(t)
W

.
Before closing the section, we would like to point out the fact that

if we only tag the job from a specific class, we can obtain the passage time

distribtuion for a specific class of jobs directly by following the same

procedure.
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5. ILLUSTRATIVE EXAMPLE

Consider the simple queueing network model shown in Fig. 5.1. This

model is often encountered in modeling multiprogrammed computer systems.

Under this interpretation the two service stations will be referred to as

'?he CPU and I/O unit and the implication of a closed queueing network is that

the degree of multiprogramming is fixed. Upon completion of service at the

CPU, the job rejoins the tail of the queue in the CPU with probability VJ

and that in the I/O unit with probability 1-@. Neither the CPU nor the

I/O unit is subject to preemption and both follows the first-come first-

served discipline. The passage time of interest will be the passage  time

denoted by T which is measured from entrance into the CPU queue until

completion of the service at the I/O unit and rejoining the queue at the

CPU,. Also possible of interest in the model will be the passage time denoted

byT*defined as the time measured from entrance to the queue at the CPU after

I/O completion until entrance to the queue at the I/O unit.

For ease of illustration, we will assume there is only one class of jobs
%*

in the system. The state variable Z (t) can now be simplified into

where

;*(t) = (QO(t), Q, N>, K(t), I(t) >

Qo(t) = the number of jobs waiting or being served at the CPU

Q,(t) = the number of jobs waiting or being served at the I/O unit

K(t) = position of the tag job in the network counting from the
tail of the CPU queue toward the head of the I/O queue

1(t) = indication of whether the system ever passing though the
states in 9; as defined below
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We can further simplify the state variable using the fact that the

total number of jobs are fixed. After simplification, the state variable
%*
Z (t) will be defined as

%jc
z (t) = (Qo(t)s K(t), I(t))

with state space E* and forms a continuous time Markov chain. For this

model'fie state space E* is given by

E*={(j, k, i) : O<j<N; l<k<N;O<i<l)- - - - - -

where N is the number of jobs in the network.

Recall the sequence of refinements needed to obtain Z (t) described in

section 4. The sets A,, A2, B,, B2 defining the start point and end point of the

passage time T of the tag job in the stochastic process z(t) = (Q,(t),  K(t))

are given by

Al = 9, = {(i,N):O<i<N)-
2 .

. - = I(W) 9 Pm

*2 = B2 = {(i,l) : O<i<N}
= I(l,l) ) (25

and the corresponding At , B; and 9;
%*

in Z (t) are

*

A2 = {(i,l,O) :O<i<NI-

= {(l,l,O) 9 (2,130))

9; = ((i,I,l) : O<i<NI-

= {(l,l,l), (2&l))
. . *

Bl = {(i,2,0) : Oji<N)

= m,m  3 (‘,2,0)~

The absorbing state is formed by lumping the states in 9; , i.e. (l,l,l) and

(2,1,1), together.
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t
T

i
*

\/ Q
I I I I I I I I} I/OOl

Fig. 5.1: A Closed Two Server Queueing Model

__------- - - -----!A,=B,

A2 = B2

Fig. 5.2: State transition diagram of x(t) = (QO(t), K(t))
and subsets Ai's and Bi's for passage time T
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Now we go through the refinement procedure step by step using a very

simple case where N= 2 jobs. In Fig. 5.2, we show the state transition
'L

diagram of Z(t) = (Q,(t), K(t)). There are six states in total. After

adding the component I(t) to the state variable, the state transition

dizgrarn is shown in Fig. 5.3. There are 12 states in total. Only the 11

states reachable from the permissible initial states which are the states in Al

are shown. Finally after merging the states in Bi into an absorbing state
'L
r 9 the transition diagram of the Markov chain is shown in Fig. 5.4. The

corresponding Ai 's and Bjls or A; 's and B1 's are also indicated in each

figure. For comparison, in Fig. 5.5 and 5.6, we indicate the A,'s and B,'s
f-b %*

I I

of Z(t) and ATIs and B;’ s of the corresponding Z (t) on their transition

diagrams for passage time T*, respectively.
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*
---------------

we---

Fig. 5.3: State transition diagram of (Q&t),K(t),I(t))  before B; is

into "r and subsets Al, B; and B2* for passage time T

*
B,;~--~~----

Fig. 5.4: State transition diagram of Z (t) and subsets A; and B,*

lumped

for passage time T
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B-m -

/

/

L----- - - - - -\---I/ .
\ /

Al \ 1' k/
'I

Fig. 5.5: State transition diagram of g(t) = (Qo(t), K(t))
and subsets Ai and Bi for passage time T*

\ ’ *\ 1’ B\ 1

Fig. 5.6: %*
State transition diagram of Z (t) and subsets
A; and B,* for passage time T*
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To simplify the notation we will relabel the states as shown in

Table 5.1

I Relabelled state Original state

‘Lr

~l,l,W

(2 ,190)

PA01

NLl,O)

(12 90)

uL2J 1

Table 5.1: Relabelling Table

Assume the means of the exponential service time distributions at the

CPU and I/O unit are 1 1x and -)P respectively. We get the following
%*

infinitesimal generator [11], Q, for the continuous time Markov chain Z (t).

Q=cS,jI=

0 0 0 0
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and the transition matrix, P, of the imbedded Markov chain can be obtained

. from Q as [ll].

-4-3

PecPij] =

1

0

0

0

0

Fib
1

0

0

W)

0

0

0

0

0 4) 0 0
0 I

11, 0 0 b/J) 0

0 0 0 1 0

0 0 0 0

++I

(1- x
p+ 1-Q x

0 0 0 0 0
-

Let Fi(t) be the holding time distribution of state i

Gi(t) be the hitting time distribution to state 0 from state i,
2 *
and Fi*(S) and Gi*(S) be the corresponding Laplace-Stieltjes transforms,

respectively, as before.

. Since the holding time is exponentially distributed,

9.
Fi*(S) = &

i

where q. = -q..1 1 1

Furthermore, let

R = [r ij' lli, jL61

where r.. = P
13 ij Fi*(S) - 6ij
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then clearly

R =

-1

(1-*)x
s+x
0

0

0

0

0

-1

ALL
S+K-
0

0

0

Jlh 0s+x
-1 0

-1

0

0

where t#~ = p+ (l-$)X

From equation (4.7), we get

R

where

and

-.
G;(S Y-
G2*w

G;(s)
G;(s)
G;(s)
G;(s)

0

0

0

0

-91

-92

0

0

0

0

(WA
w 1
-1 1

After simplifications, we get

G;(S) = (r23 r35+r21 r13r35+ r21 r14 r45)(gl+r56 '2)
' - r23 r32 - r21 r13 r32

G;(S) = r13 r32 F2*(S) + (rl3 r35 + r14 r45)tg1 + r56 92)
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Both G;(S) and G;(S) are rational functions of S. After simplification

and taking inverse transform, we can get G,(t) and G2(t).

From theorem 3.1, we obtain the initial distribution

Hence, the distribution of passage time T is

G(t) = mkfkd- G (t> + ~;x G2(t)U’-WV 1
Let us look at the case where X=1, u=O.5, and $=0.75. The values

of the parameters are the same as those used by Iglehart and Shedler [14] where

the regenerative simulation is used to estimate the passage time distributions

of the same system. After simplification, we get2 *

G;(S) = 32S2 + 56s + 15
(64S3 + 176S2 + 124s + 15)(S+l)(2S+l)2

4 G;(S) = (6St5) (4W3)
(64S3+ 176S2 + 124s + 15)(2S+l)2

and
II(l) = 5

-- Finally, by taking the inverse Laplace transform, we get the passage

time distribution.

G(t) = 1.61832(1-e -0.1519139t ) + 0.121284(l-e-"*g186508t)

+ 0.0234787(l-e-1'67g435t)  - 0.0793388(l-e-0'5t)

+ 0.0303030(1-e-0.5t - ; ,-0.5t)

which is a combination of exponential and Gamma distributions.
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6. NUMERICAL APPROXIMATION ON PASSAGE TIME DISTRIBUTIONS FOR THE CLOSED
QUEUEING NETWORKS

From the example in the previous section, we can see as the complexity

of the queueing network increases, the number of states increases rapidly

_,and the manipulations on transfer functions become very tedious. In this

section, a numerical approximation method is proposed. The basic idea is to

estimate the discrete approximation of the passage time distribution instead.

Under the discrete approximation, all the convolution integrals become

recurrence relations, so the enumeration on computers is straightforward.

Recall F;(t) is the holding time distribution function at state w and is
1exponentially distributed. Assume that its mean is ~zl . If we discretize

W

the density function dF$t)/dt into a string of impulses separated by d as

in fig. 6.1 and set the magnitude of each impulse equal to the area under the

density function on its left hand interval, we get a geometric distribution

PF$k), where

PF$k) = { e
-Q(k-1)d

-e
-h;kd

for k>l
0 for k=O

As d decreases, the accuracy increases and the efficiency decreases. In

Fig. 6.la and 6.lb, we display the density function dF;(t)/dt and its discrete

approximation PF$k), respectively. Note the reason why the discretization

-* has a delay or shift cl comes from the fact that no probability mass should

concentrate on the origin for holding time distributions in general.
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(a) density function dFG(t)/dt

4+

d

(b) discrete approximation  P&(k)

Fig. 6.1: Density function dc(t)/dt and its discrete

approximation  P&(k)
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Let PG; (j) be the discrete approximation of the hitting time density

function dG$t)/dt.

The discrete version of (4.5) now becomes

and

P&(o) = ’
1 for "w = '$:

Furthermore, using the fact that the holding time is geometrically

distributed, the above equations for PG;(j) can be further simplified into

” .

(6.2)

and

where

Clearly, the PG$j)'s can now be solved recursively for j >l, starting-

with PG$(G) = 6,,QQ for all 5~ E*.

Hence, P,(i) the discrete approximation of the passage time density

function, dG(t)/dt,  can be expressed as
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(6.3)

where the initial distribution n(G) is given in (4.3) or (4.4).

By linear interpolation, we get

G(t) i
i
1 P,(j) + q P&i+l) for id<t< (i+l)d

j=l
-

Finally, let us apply the approximation technique to estimate the

response time distribution of the multiprogrammed computer system model in

the previous section. In table 6.1, we tabulate not only the approximate

percentile response time distributions under two different d values, 0.05

and 0.1, but also the analytic result obtained in the previous section and

the simulation result obtained by Iglehart and shedler [14]. The approximation

leads to-,-very  satisfactory results especially when the size of d is small.
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7. APPROXIMATE PASSAGE TIME DISTRIBUTIONS FOR THE OPEN QUEUEING NETWORKS

The major problem encountered on tackling open queueing network is

that the state space of the network is infinite. We first use a specific

passage time which is the response time of a job to illustrate the similarities

Md differences encountered in handling open queueing networks and closed

queueing networks. We assume that the network has already been in steady

state at t = 0- and a job arrives at t = 0-. We will use this newly arrival

job as our tag job. The state variable of the network will still take the

form

p(t) = (l;(t), K(t), I(t)) t>O-

as that in the closed queueing network. The set A;, B,*, and B; will also

be defined as before. Actually, the set B; is redundant in this case, but

for more general passage time it is indeed required. The states in A; which

correspond to all possible start points of response times have the form

(;,k,O) where the k-th component of 2 describes a job which may be considered

to be a new arrival to the queueing network. To be more specific, a job

can be considered as the newly arrival job to the queueing network, if it

is the last job in the queue of a FCFS service center, or the job currently

being served in the first stage of a LCFS service center, or any job in its

first stage of service in a PS or IS service center. The set B; which corre-

sponds to all possible end points of response times and will eventually be

lumped into an absorbing state consists of all states which can be the next

states immediately after an exit of the tag job from the queueing network.

The states in B; have the form (:,O,l). Notice we set K(t) equal to zero

to indicate that the tag job has left the network by time t.
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We now proceed to evaluate the initial distributions of the states in
. Al under our previous assumptions. Let us for the moment return to the state

'L
description of S(t) with state space E cited in section 3. Let H&k) be the

state that leads to ? after an external arrival whose class and enterning
service center is described by the k-th component of ? whereboth? and H(:,k)eE.

t@e we implicitly assume that the k-th component of 2 can indeed represent
a new arrival to the network. Notice given 2 and k, the preceding state H&k)

is unique. To be more precise, if the arrival enters from a FCFS or LCFS

service center, H&k) is obtained by deleting the k-th component of 2 and if

the arrival enters from a PS or IS service center, H&k) is obtained by

decreasing the k-th component of 2 by 1 and deleting it if it drops to zero

after decrementation. Let C&k) be the service class of the new arrival

described by the k-th component of ? and T&k) be its entering service center.

Recall that Pt r is defined in section 3 to be the probability that the new¶
arrivaVwil1  be of class r and entering from service center i. Clearly, the. -
transition probability from H(%,k) to 2 conditioning on a new arrival will be
A
'T(:,k),C(;,k)* Finally the probability that conditioning on a new arrival

. with class C&k) and entering service center T&k), the network will be in

state 2 is given by

PO&k) = A
P(H"'k)) 'T(?,k),C(;,k) (7.1)

- where P(H(;,k)) can be evaluated by Theorem 3.1. Furthermore,  the above

probability is in fact the initial probability distribution of the state

(&k,O) in At of the augmented state space E*, i.e. I&k,O)=Po(s,k).

Following the same argument for closed queueing networks,  we can derive

the same equations as in section 4 for G$t) and G(S), the hitting time
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distribution and its LaplaceStieltjes  transform for each state w in E*,

respectively . That is in time domain

y$t) = 1; ,,,C, P;; G$t-S)dF;(S) + Q$ F;(t) (7.2)
v+r

-% in transform domain

,,,z,,, (~,y, t$s) -6;;’ $S) = -p;~ F;(S)
vv (7.3)

But the system of equations appeared in (7.3) now has infinite dimensions.
'L 'L

Clearly, we only need to consider a finite subset,D*={(S,K,i):ScD},in  the state
%*

space of Z (t) where D is the most frequently occurred statesof z(t) such that

the total steady state probability of i(t) in D , which can be derived from

theorem 3.1, is close to 1. By neglecting the other states not in that

subset, the system of equations reduces to a finite set of linear equations.
,' *. - We note that after the state reduction the transition probabi.lities  should be

normalized.

To simplify the problem, we can again apply the discretization technique

The recurrence relations are simi

simultaneous recurrence relations

the same principle cited above to

introduced in section 6 to obtain recurrence relations for the discrete

approximation of the density function of the hitting time for each state w.

lar to (6.2 ) except that now we have infinite

due to the infinite state space. Using

reduce the state space to D*, the problem

.* becomes solvabl

response time i

sumnation. By

e. The discrete approximation of the density function of the

s again give by (6.3) except that )
($k,O)cA;

becomes an infinite

considering only the intersection of A; and D*,
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the summation becomes a finite summation. As before, all the probabilities

should be normalized after the state reduction. As long as the traffic in.

the-network is not heavy, all the infinite summations appeared above will

converge very quickly and only a reasonable number of states need to be

considered.
"-43

Alternatively, we can approximate an open system by a closed system

and apply the result in section 6 directly. Since the queue length distribution

of the system is known, we can calculate the quantile of queue length

distribution with no difficulties. Let N be the 95% or 99% quantile of the

distribution of the total number of jobs in the system depending upon the

accuracy desired. That is to say 95% or 99% of the time the number of jobs

in the network is less than or equal to N. So if we consider a queueing

network which is identical to the original network in all respects except

that the arrival process is shut down when the number of customers  in the
2 *

'system is equal to N, the performance difference should be very minor. The

new queueing network can be viewed as a closed queueing network with N

customers as shown in Fig. 7.1. In fact, when N + 00, the performance
.

the two network models becomes identical. As long as the traffic in the network

is not heavy, N will be reasonably small.

Let us consider an example. The example chosen is an open two server

- queueing model. As in the closed two server queueing model, theservers can be

interpreted as CPU and I/O unit, respectively.  Now the total number of jobs being

activated is assumed to be variable. The open queueing model and its approximate

closed queueing model are given in Fig. 7.2a and 7.2b respectively.  The passage

time under interest is the response time which is the time between arrival and

departure of a job to the system. In Fig. 7.2b, the equivalent passage time in

the closed network is the time measured f.rom entrance into the CPU queue from

the source until the,entrance into the source after service completion at the

I/O unit. 43
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queueing
network

(a) open queueing network model

(b) approximate closed queueing network model

Fig. 7.1: An Open Queueing Network Model and Its Approximate
Closed Queueing Network Model

CPU I/O unit

(a) open queueing network model

source

CPU

(b) approximate closed queueing network model

Fig. 7.2: An Open Two Server Queueing Model and Its Approximate
Closed Queueing Network Model
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In Table 7.1, we compare the simulation result and the approximation results

on percentile response time when $ = 0.3, a = 0.1, A= 0.1, p1 = 1 and p2 = 0.5.

The simulation result is obtained via regenerative simulation where not only the

point estimation but also the 95% confidence interval are provided. We evaluate

the approximate percentile response time under two different cut off values, i.e.

N = 3 and 4. Furthermore, the interval of discrete approximation, d, is chosen
1

to be*i.05. As we can see the approximations obtained sunder different N's have

r little difference since the system seldom has more than 3 jobs simultaneously.

The approximation results are also very close to the simulation results. In

Table 7.2, we show the approximation results for N = 3 and 4 when the value of

d is doubled. The results are still very nice. In Table 7.3, we compare the

simulation result and the approximation results on percentile response time

when $ increases to 0.75. The traffic intensity increases in this case, SO does

the appropriate cut off value on the arrival process. We consider two different

approximatfons for N = 7 and 8, respectively. The value of d is chosen to be

0.05. Again, not only the approximate results under different cut off values

have very little difference, but also they are close to the simulation result.

Percentile Simulation
W '1 0.0758 + 0.0059
{R:2} 0.227 + 0.010
{R:3) 0.384 + 0.012
1R:41 0.523 0.013
{R:5}

+
0.640 -1: 0.013

(RY6) 0.729 + 0.012
(R:7) 0.798 2 0.011
(R783 0.847
{R:9) z

0.010
0.884 2 0.009

(R:ll) 0.935 0.007- +

approxin
N=3

0.0736
0.225
0.386
0.528
0.644
0.734
0.802
0.854
0.892
0.941

tion
N=4

0.0723
0.221
0.379
0.520
0.634
0.724
0.793
0.846

' 0.885
0.936

Table 7.1: Percentile Response Time When+= 0.3, a = 0.1, X = 0.1
P' = ,' 9 9 = O&and d = 0.05
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approximation
Percentile N=3 N=4
P{R<l) 0.0695 0.0682
PIRT2) 0.219 0.215
PiRy3) 0.378 0.372
PtRI4) 0.520 0.512-
P{R<5) 0.636 0.627-
PfRz6) 0.727 0.718
P{R< 7) 0.797 0.788
PCRY8J 0.849 0.841-
P{R<9) 0.888 0.881
PIR:ll) 0.939 0.933-

Table 7.2: Percentile Response Time When$= 0.3, a = 0.1
A= 0.1, 11, = 1, p2 = 0.5 and d = 0.1

Percentile

P{RzlI
PiR3Y

P{R23)
PIR15)
PtR<7)
P{Ri9}
P(R<ll)
P{Ril31
P{R<l6)
P{R:201-

Simulation

0.0202 + 0.0026 0.0208
0.0755 + 0.0053 0.0752
0.148 + 0.0076 0.148
0.304 ; 0.011 0.306
0.443 ; 0.013 0.448
0.562 + 0.013 0.564
0.653 + 0.13 0.653
0.723 + 0.013 0.723
0.797 2 0.012 0.799
0.867 + 0.010 0.865

ion

0.0207
0.0749
0.147
0.305
0.447
0.562
0.652
0.721
0.797
0.864

/able 7.3: Percentile Response Time When I/J = 0.75, a = 0.1
X = 0.1, p, = 1, p2 = 0.5, and d = 0.05
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8. A CASE STUDY ON INTERFAULT TIME DISTRIBUTIONS AND RESPONSE TIME
DISTRIBUTIONS OF MULTIPROGRAMMED COMPUTER SYSTEMS

We now proceed to investigate the distribution and density functions of

two important quantities encountered in analyzing the performance of a multi-

programmed computer system, namely interfault time and response time. Both

--quantities are measured in real time. The number of active processes will affect

the interfault time and response time on two folds. It not only explicitly

implies the contention level on the processors but also implicitly implies

the contention level on main memory. The amount of memory allocated will have

a drastic effect on the number of instructions executed between page faults,

i.e. the virtual interfault time. In order to capture the memory effect on

the performance, we will take the approach of hierarchical modeling. In the

first level of modeling hierarchy we only consider the interactions between

the CPU and paging device. The closed two server queueing model in Fig. 8.la
,' *

is used to represent the CPU-PGU subsystem. The interfault time of a process

is defined to be the time between two consecutive epochs that the process

enters the CPU queue after receiving service from the paging device. The

stoppage of CPU processing can either be due to the expiration of allocated

time slice or a page fault. In the first case, the process rejoins the CPU

queue and in the second case, it joins the queue of the paging device. In

the second level of modeling hierarchy, we consider the interaction between

the CPU-PGU subsystem and file I/O device. Another closed two server queueing

model in Fig. 8.lb is used for this case. The response time of a process is defined
to be the time between two consecutive time epochs that the process passes

through the self loop of the CPU-PGU subsystem. That is to say a transfer

through the self loop can be viewed as a termination of a process and entering

of a new process at the same instant.
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bs- interfault time

(page I/

?

c /
\

CPU-PGU model (first level)

response time

(CPU-PGU)
I !

Gxi

0)

(b) Multiprogrammed computer system model
(second level)

Fig. 8.1: Hierarchical Models of a Multiprogrammed
Computer System
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The virtual interfault  time depends on the program behavior. As studied

by Chamberlin, Fuller and Lin [30], the mean virtual interfault  time, q, can be

expressed as
2s

9 =
l+(%)

2

M: main memory size

d: the number of pages that provides the process with half of
its largest possible life time

s: the expected virtual interfault  time when the process is
allocated a memory space d

n: degree of miltiprogramming

We will consider two types of program behavior as considered in [30], [31].

Type 1: S = 25 ms
d= 50 pages

Type2: S=20ms
d= 60 pages

Clearly, Type 1 programs lead to better performance. We will let N denote the

total number of processes being activated,  i.e. the total number of processes in

the CPU, page and file I/O devices. Furthermore,  we assume that processes in the

file I/O queue will be swapped out from memory. Note n denotes the total number

of processes contending  for memory, i.e. the total number of processes in the CPU

and paging device which is usually referred to as the degree of multiprogramming.

.* We begin with the first level model in Fig. 8.la. Let us assume that the

total memory size is 128 pages and the time slice, t,, for each job is 50 msec.

The mean service time, tPg' of the paging device is assumed to be 5 msec. The

mean CPU overheads  for a page fault and a process switching, referred to as 0 P
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and OS, are assumed to be 0.2 and 0.3 msec., respectively. The mean time

between service completions  at CPU is approximately

tSq
kPU = ts+ q- + UJ 0, + (l-mp

where

The numerical approximation technique in section 6 is employed in the following

study. In Fig. 8.2a and Fig. 8.3a, we plot the interfault  time distribution

functions and density functions for type 1 programs when n=2, 4, 6 and 8,

respectively. The time is normalized with respect tomean virtual interfault  time.

In Fig. 8.2b and 8.3b we plot the same curves for type 2 programs. As we can

see when the degree of multiprogramming increases, the changes in the shape of

distribution functions or density functions follow the same pattern for both

types of programs. Nevertheless,  for type 2 programs, the performance deteriorates2 * -I
further as n becomes large. In Table 8.1 and 8.2, we tabulate the CPU utilization

under various values of n for both types of programs. The CPU utilization  for

type 2 programs decrease sharply as n goes to 8. The CPU utilizations  given
.
in Table 8.1 and 8.2 will be used in the next level of the multiprograrruned

computer system model to determine the effective CPU execution time between file

I/O requests or process completions. The effective  CPU execution time is defined

to be the CPU execution  time devided by the true CPU utilization  referred toas

ucPu.
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degree of CPU utilization
multiprogramming (including overhead)

0.898
0.979
0.991
0.992
0.989
0.980
0.956
0.904

CPU utilization
(true), Ucpu

0.882
0.956
0.961
0.952
0.937
0.914
0.876
0.811

Table 8.1: CPU Utilization Under Type 1 Programs

degree of CPU utilization CPU utilization
multiprogramming (including overhead) (true), UCpu

' . 1
2
3
4
5
6
7
8

0.870 0.851
0.959 0.931
0.970 0.929
0.961 0.903
0.929 0.854
0.859 0.768
0.749 0.649
0.629 0.526

Table 8.2: CPU Utilization Under Type 2 Programs
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Now let us consider the second level model in Fig. 8.lb. We further

assume that te, the mean  CPU execution time of a process, is 100 ms and

tf, the meanexecution time between file I/O requests of a process, is 50 ms. The

service time of the file I/O device is assumed to be 50 ms. The CPU overheads  for

a file I/O fault and a process termination and initiation, referred to as Of and"-41
O,, are assumed to be 4 ms and 0.3 ms, respectively. The mean service completion

time of the CPU-PGU subsystem is approximately

tftc
%PU-PGU = (tf+tc)UCpU  + @ 'c + (l- @) Of

where
a= tf

s + tf

In Fig. 8.4a and 8.5a, we plot the response time distribution functions and

density functions for type 1 programs when N = 2, 4, 6 and 8. The response time

is normaHzed with respect to the mean CPU execution time of a process. In. -
Fig. 8.4b and 8.5b, we plot the same curves for type 2 programs. As we can

see as N increases, the changes in the shape of response time distributions or

. densities follow the same pattern for both types of programs, respectively.

In Table 8.3, we tabulate the mean response times for both cases. As we

can see when N is less than 6, the response time distributions or densities

under both types of programs are very close to each other. When N further

increases, the performance  under type 2 programs deteriorates faster than

than under type 1 programs since the paging device is not fast enough to

support paging requests.

Let us change the meanexecution time between file I/O requests to 30 msec.

and plot the same kind of curves in Fig. 8.4% 8.4d and Fig. 8.5c, 8.5d as

before. Now the file I/O request rate increases and the file I/O device becomes

the bottleneck of the system. Comparing Fig. 8.5~ with 8.5a or Fig. 8.5d with 8.5b,
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we can see the forms of density functions change sharply from before. In

Table 8.4, we tabulate the mean response times for both types of programs.

Since processes contending for the file I/ 0 device do not content for memory resource,

the performance difference between type 1 and type 2 programs become smaller

compared with the previous case.

*-a03 To investigate the balancing of a computer system let us keep the degree

of multiprogramming to be 8 and the processing rate of the CPU and paging

device as before. Type 2 programs are used for illustration. In Fig. 8.6a

and 8.6b, we plot the interfault time distribution functions and density

functions under memory sizes of 128, 192, 256 and 320 pages, respectively.

The time is normalized with respect to mean virtual interfault  time. In

Table 8.5, we tabulate the mean virtual interfault  time for each case. Although

the mean virtual interfault  increases steadily according to almost linear rate,

the closeness of the distribution curves after memory size exceeds 192 pages

indic&es that the system attains its balance after the memory size exceeds

192 pages. Further increasing the memory size only makes the paging device

idle most of the time. Notice the crossing of the distribution functions is

due to the time slice control which forces the long interfault  time to be

interrupted  and increases the tail of the interfault time distribution. This

phenomenon becomes more apparent as the memory size or the mean virtual interfault

time further increases. Apparently, when the memory size is 128 pages, the

system is not balanced and the paging device is overloaded. Instead of increasing

memory size to make the system balance, we can increase the speed of the

-paging device. In Fig. 8.7a and 8.7b, we plot the interfault  time distribution

functions and density functions when service rate of the paging device, 1-1, is 0.2,

0.4, 0.6 and 0.8 processes/msec, respectively.  The original service rate of

the paging device is 0.2. After we double its service rate, the system gets close

to balance. Further increasing  the speed of the paging device has marginal effect

on the performance.
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N type 1 program type 2 program
A

2 326 332
4 540 553
6 766 823 '

.8 1028 1318 11

Table 8.3: Mean Response Time When the Mean Time Between
File I/O Requests is 50 msec

N type 1 program type 2 program
..--

2 438 443
4 737 745
6 1048 1070
8 1373 1445L

Table 8.4: Mean Response Time When the Mean Time Between
File I/O Requests is 30 msec

memory size

128

192

256

320

mean virtual interfault time

2.66

5.52

8.86

12.31

Table 8.5: Mean Virtual Interfault Time Under Various
Memory Sizes.
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9. CONCLUSION

Queueing network models have been used extensively in modeling computer

systems and computer communication networks. The situations where we can get

analytic solutions for stationary state probabilitieshave been studies in the

pa& few years. Although their average values can be obtained through Little's

formula, the response time distributions or the more general passage time

distributions have not yet been solved. The distribution function can provide

us with a lot of useful information, such as variance or other higher moments,

percentile, quantile, etc. By transforming passage times into hitting times

of appropriate Markov systems, we derive an analytical solution for passage

time distributions for the same class of closed queueing networks specified

in section 3, where the analytic solution on stationary state probabilities

is available. Avoiding matrix inversion in transform domain required by the
z .

exact analysis, efficient numerical approximation replacing convolutions by

recurrence relations is also proposed using the concept of discretization of

the distribution functions. Then we consider passage time distributions for

the class of open queueing networks specified in section 3. The result for

closed queueing networks is extended to obtain approximate passage time distributions

for open queueing networks. Finally, we employ the techniques derived in this

paper to study the interfault time distributions and response time distributions

of multiprogrammed computer systems. The effects of program behavior, degree

of multiprogramming, size of main memory, service time of paging devices, and

rate of file I/O requests on the shape of distribution functions and density

functions have been examined.
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