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is normally ignored. This report examines this issue. Using trace driven
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are equally likely to be to any module, is not valid. The duality of memory
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l.Introduction

Overlapped, pipelined processors and multiprocessor systems have the

capability to make multiple requests simultaneously. The use of a

monolithic memory, which can process only one request at a time, would

result in serious performance degradation, especially if the memory

cycle time were large in comparison to the processor cycle time. A

solution commonly employed is to partition the memory into a number of

modules, each of which is capable of processing a request. Low-order

interleaving is the most frequently used strategy, wherein all addresses

with the same low-order bits are placed in the same module. Such an

organization offers the potential for increased bandwidth by virtue of

the parallelism present. In practice, however, not all of this

parallelism is observed. The modules do not constitute a set of

"identical servers" since each one contains a distinct set of memory

locations. Accordingly, the situation can arise where all the requests

are concentrated on a subset of the modules, causing these modules to be

overworked while the remaining modules lie idle. The frequency and

severity of such an occurrence will depend upon the properties of the

program generating the requests. Our purpose is to investigate this

aspect of program behavior and its impact upon the performance of an

interleaved memory.
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A complete analysis of the performance of an interleaved memory

system must be based on a model which incorporates, at least, the

following three factors:

1. the processor structure,

2. the memory structure, and

3. program behavior.

A description of the processor structure would include details of the

number of processors and for each processor the speed of the processor,

the rate at which it is capable of issuing requests and the number of

pending requests that it is capable of buffering. The second factor

accounts for the number of modules in the memory, the cycle time of each

module and the width of each module (i.e., the number of bits made

available on each module access). The third factor is the primary focus

of interest here and once again includes at least three important

points. Firstly, we must consider the timing behavior of the requests,

i.e., the instants at which requests are made. This is influenced by

the fraction of instructions which require operands and by whether

certain instructions require multiple operands. A second aspect of

program behavior is the order in which the modules are referenced, which

we shall term the sequencing behavior. Lastly, one must consider the

logical dependencies that exist between memory requests which might

prevent one request being generated if a previous one is pending.

Most of the literature on interleaved memories has modelled the

memory structure in a reasonable manner, The approach to the modelling
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of the processor structure partitions the literature into two groups.

The work by Skinner and Asher [SKIN69], Strecker [STRE70], Bhandarkar

[BHAN73], Baskett and Smith [BASK76], and Rau [RAU76], considers

multiprocessor structures in which each processor is permitted to have a

maximum of one outstanding request. Such a model describes, more or

less accurately, the situation that exists in a multi-miniprocessor

system such as C.mmp [WULF72]. The remaining work in the field is

devoted to the overlapped, uniprocessor which is capable of having more

than one outstanding request. The assumption here, generally, is that

the processor is capable of having a limitless number of requests

outstanding. The work exemplifying this line of thought is by Flores

[FLOR64], Hellerman [HELL73], and Burnett and Coffman [BURN75]. In

reality, the number of requests that a processor is capable of is finite

and greater than one. This number is limited both by the logical

dependencies that exist between requests (e.g., we cannot generate an

operand request before the corresponding base register has been loaded)

and by the amount of buffering and the degree of overlap in the

processor.

2.Program Behavior.

An examination of the literature reveals very few attempts at

modelling the behavior of the request stream. Chang, KM751,

recognizes the existence of dependencies between requests. But he does

not make any attempt to model this. Rather, he uses the standard
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assumption of independent, equi-probable requests to analyze several

different processor-memory configurations. Flores assumes that the

instants at which requests are made constitute a Poisson process. The

alternative seems to be to assume that a request is made every cycle

unless the processor is blocked. This is the assumption used by

Hellerman and by Burnett and Coffman. It shall be used by us as well.

The results obtained may be interpreted, therefore, as constituting an

upper bound to the bandwidth that would have actually been observed.

Both the dependency structure and the timing behavior are irrelevant in

models where the processor can make only one request at a time.

Almost equally neglected is the sequencing behavior of the request

stream. By and large, each request is arbitrarily assumed to be equally

likely to reference any module. This we shall term the Random

Independent Reference Model (RIRM). The only exception to this is the

work by Burnett and Coffman where the instruction and data request

streams are separately characterized by their probability of proceeding

sequentially. A non-sequential request is considered to be, with equal

probability, for any of the remaining modules. They do not,

unfortunately, validate their model against real reference strings.

Terman, [TERM76], has tested the validity of Burnett and Coffman's

model of program behavior via trace driven simulations. As might be

expected the model works well for the instruction stream which does, in

fact, generate sequential runs of requests. But it performs very poorly
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in describing the data requests. Whereas, Terman's simulation does not

correspond exactly to Burnett and Coffman's assumptions, there is reason

to believe that the conclusions are valid and that their model is

inadequate. We first note that sequentiality is not the primary issue

by observing that the request sequences 12341234 and 13421342 perform

equally well (where the numbers denote the module referenced).

Furthermore, even if both the instruction stream and the data stream

were extremely sequential, when they get merged as happens in real

systems, the resulting stream would display little, if any 9

sequentiality. Of importance is how soon a module is re-referenced

since this determines the delay that would be experienced in waiting for

the module to free up. We need a model which can "remember" how long

ago each module was referenced.

A Markov model is the most obvious candidate. To be fully effective

it would have to be of an order at least as high as the cycle time of

the module. So, if the cycle time of the module was T cycles, then the

state of the model would have to be defined by the most recent T

references. Such a model has two serious drawbacks. Firstly, the

number of states is extremely large; if the degree of interleaving is M,

then the number of states is MT. This is the case if we are interested

in modelling only the sequencing behavior. If we wish to model the

timing of the requests too, we have (M+l) possible events at each epoch

-- M modules that can be referenced and the possibility of no request at

all. This would increase the state space to (H+l)T. The estimation of
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the parameters of this model and analysis using this model would be

cumbersome. Secondly, the model would depend upon the cycle time of the

modules. Ideally, a model of program behavior should be independent of

the physical parameters of the memory.

The duality of the memory interference problem with the paging

problem suggests a solution. In a paging situation, a reference to a

page guarantees that the page will be retained for a certain period of

time thereafter and so, if the next reference to the page occurs fairly

soon, it will be a hit. In an interleaved memory, a reference to a

module causes it to be unavailable for a certain length of time and if

the next reference to it follows soon it will result in a delay. In

either case, the clustering in time of references to the same page or

module is the relevant property which is beneficial in one situation and

detrimental in the other. Accordingly, it might be expected that the

models of program behavior that have been found to be successful in the

paging studies will be successful in the current context in modelling

the sequencing behavior.

3.Modelling of Program Behavior.

Two models which have been found to be capable of capturing the

clustering effect in paging studies are the Working Set Model (WSM) and

the Least-Recently-Used Stack Model (LRUSM), [COFF73]. By default, the

WSM assumes that the references to each page form a renewal process and
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that the renewal processes corresponding to the various pages are

independent of one another. This leads to problems if we wish to

generate a reference string using the WSM since, in fact, the renewal

processes are not independent -- two modules cannot be referenced in the

same cycle. The WSM requires that a large number of statistics be

gathered. We need f(i), the probability of referencing a page after an

interval i for i ranging from 1 to the maximum observed interval. The

WSM characterizes the clustering behavior explicitly. However, in the

memory interference context it is not as amenable to analysis as is the

LRUSM. The LRUSM has the advantage that it requires fewer statistics

and also that it permits the generation of a reference string unlike the

WSM. This last property is of great value when we wish to estimate the

accuracy of an analytical solution and wish to separate the error due to

the analysis from the error inherent in the model.

Bearing this in mind, the LRUSM was selected as the model of program

behavior to be used in our study of memory interference. The LRUSM

statistics were gathered for degrees of interleaving ranging from 2

through 16 in the manner described by Mattson et al., [MATT70]. The

degree of interleaving plays the same role in our measurements as does

page size in Mattson's paper. The width of the modules was fixed at one

doubleword (8 bytes).

The statistics were first used to test the RIRM assumption of

randomness and independence between the successive requests made by the



program. If this assumption were true, we should expect an equal

probability of reference to each stack distance. In fact, it was found

that an increased probability of reference existed for the modules at

the top and at the bottom of the stack for all degrees of interleaving,

thereby invalidating the RIRM (Table 1). The increased probability of

referencing the top of the stack may be ascribed to consecutive

references to the same word. For instance, the byte manipulating

instructions in the 360 architecture cause the same word to be

referenced repeatedly to access the individual bytes. The distribution

of the intervals between consecutive references to the same module

generally has a rather long tail. All the probability in this tail

contributes to the probability of accessing the bottom of the stack

causing it to be relatively high.

The next step in the investigation was to see how good the LRUSM was,

both absolutely and relative to the RIRM. This was accomplished by

constructing a simulator of the interleaved memory. The assumptions

built into the simulator were:

1. The processor is capable of making one request every cycle and

does so unless the current request is to a busy module. This

model will provide us with an upper bound on the bandwidth that

would actually be observed.

2. The conflicting request is held until the requested module is free

at which point the processor continues to submit a request every

cycle to the memory.



3. The cycle time of the memory is T cycles.

4. The module width is 8 bytes.

5. The bus is time division multiplexed between the modules, which

operate asynchronously (as opposed to the models of Hellerman and

Burnett and Coffman, where the modules operate in unison).

6. The dependency structure and the timing behavior of the request

stream are neglected. Only the sequencing behavior is considered.

The simulator was driven by three types of request streams -- trace

tapes, reference strings generated by the LRUSM and reference strings

generated under the RIRM. This was repeated for each of five trace

tapes and in each case 100,000 references were processed. The trace

tapes used were:

043 -- Fortran execution

049 -- Cobol execution

050 -- Cobol compilation

051 -- Fortran compilation

052 -- Cobol Sort

Figs.105 display the results obtained. Each one is a plot of the

reciprocal of the bandwidth as a function of the cycle time T. Each

figure corresponds to a particular trace tape and permits comparison,

for various degrees of interleaving, of the measurements obtained from

the trace tape itself to the measurements obtained by generating
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reference strings using the LRUSM and the RIRM. The numbers on the

righthand side indicate the degree of interleaving.

The plots show that, by and large, the LRUSM predicts the memory

bandwidths quite accurately. It is least accurate for the trace tape

043, but even here it does much better than does the RIRM. Almost

invariably, the LRUSM performs well, both absolutely as well as in

comparison to the RIRM. We may conclude that the LRUSM is an adequate

model in this context and that it captures most of the sequencing

structure in the reference string that is relevant.

In general, the RIRM underestimates the bandwidth for low degrees of

interleaving and overestimates it for high degrees of interleaving. It

is conjectured that this is due to the looping structure of programs.

When the degree of interleaving is less than the loop length, the

modules will be referenced in an apparently sequential fashion,

resulting in more bandwidth than if the requests were random. For high

degrees of interleaving, the existence of a loop results in a subset of

the modules being referenced repeatedly. In such a situation, the

observed bandwidth is lower than would be obtained with a random

reference pattern.
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4,Analysis of the LRUSM

Our next objective is to develop an analytic method for predicting

the bandwidth so as to avoid having to simulate the LRUSM. In this

section we shall derive an expression for the bandwidth based on the

LRUSPI and determine its accuracy. It turns out that the LRUSM lends

itself very conveniently to analysis. We shall find it helpful to make

use of the notion of a packet. The reference string can be divided into

packets, which are defined as the maximally long sub-strings such that

no sub-string contains two references to the same module. Thus a packet

is determined by starting with a particular reference and scanning the

reference string until a reference is found which is to the same module

as a previously scanned reference. All the scanned references,

excluding the duplicate reference, are included in one packet. The

duplicate reference terminates the current packet and initiates the next

one. Fig.6 illustrates this procedure.

The significance of defining a packet in this manner is obvious if we

let the memory cycle time, T, assume an extremely large value. We then

find that the processor makes a burst of references until a memory

conflict occurs. At this point the processor stops issuing requests for

an interval of approximately T cycles, after which the modules rapidly

become available. The processor then issues another burst of requests.

Each burst of references corresponds exactly to a packet. If T is

reduced by one cycle, the interval between every pair of adjacent

packets is reduced by exactly one cycle too. The total time needed to
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complete a large number of requests, and thus, the average time per

request, are linear functions of T for large values of T (Figs.l-5).

The bandwidth expressed as the average number of requests per cycle is

proportional to the reciprocal of T. As T approaches 1, however, the

packets begin to run into one another. In other words, the bandwidth is

limited by the rate at which the processor can issue requests, which is

one per cycle.

Having discussed qualitatively the manner in which the bandwidth is

affected by the memory cycle time, T, we can now proceed to derive an

expression for the bandwidth. This is given by the average length of a

packet divided by the average duration of a packet. The duration of aw

packet is defined as the interval between the start of that packet to

the start of the next packet. In addition to T, this is affected by the

position in the packet of the critical request, i.e., the request with

which the first request in the next packet conflicts. This is

illustrated in Fig.7.

For a degree of interleaving M, the LRUSM is defined by a set of M

probabilities {p(l),p(2),...,p(M)}  where p(i) is the probability of

referencing the module at depth i in the LRU stack. Define h(k) =

p(l)+. ..+pW and m(k)=l-h(k). In a paging environment these would be

termed the hit ratio and miss ratio respectively. The average packet

length is given by

i.Prob[packet length = i].
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In general,

Prob[packet length = i] = h(i). m(j) 15iSM.

We shall derive this for the case i=3. The general derivation is

obvious thereafter. A packet of length 3 requires three references to

distinct modules followed by a reference to one of these three modules.

The first reference of the packet may be to any module and, so, occurs

with probability 1. The second reference may not be to the same module,

which is now at the top of the LRU stack. The probability of the second

reference being distinct from the first one is m(1). The third

reference which may not be to either of the modules in the top two

positions of the stack occurs with probability m(2). Finally, the

fourth reference (which is not part of the packet) must be to one of the

modules in the top three positions of the stack. The probability of

this is h(3). Therefore, the probability of a packet of length 3 is

m(l).m(2).h(3). This reasoning may be extended for any i, lSi5M.

The duration of a packet is affected by the position of the critical

request. Let the r-th request in the packet be the critical one. Then

for very large T, the duration is given by T+r-1 (Fig.8a). For very

small T, the duration might be the packet length i (Fig.8b). In

general, the duration is given by max(i,T+r-1). Translating this in

terms of the LRU stack, we note that the r-th reference in a packet of
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length i will, at the start of the next packet, be at depth d=i-r+l in

the LRU stack. Therefore, r=i-d+l and the duration of a packet is given

by max(i,T+i-d). Given that the packet length is i, the average

duration is.
P[d=jlpacket length = il.max(i,T+i-j)

= max(i,T+i-j).p(j)/h(i)

Therefore, the average unconditional duration is

M i-l i
c h(i). ~m(W c max(i,T+i-j).p(j)/h(i)
i=l k=l j=l

M i-1
= c c m(k) 2 p(j).max(i,T+i-j)

i=l k=l j=l

Therefore, the bandwidth is given by

f ih(i) k'm(k)
i=l k=l

------------------------------------
M i-l i
c c m(k) c p(j).max(i,T+i-j)
i=l k=l j=l

Our analysis makes one assumption, viz., that once the first request

in the packet has been made, the remaining requests can be made in

consecutive cycles. The example in Fig.9 shows that this is not

necessarily true. We have neglected this effect in our analysis,

thereby introducing some error in our result.
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To test the accuracy of the expression for bandwidth, the bandwidths

predicted analytically from the LRUSM statistics were compared with the

measurements obtained by driving the simulator with the reference string

generated by the LRUSM. The maximum discrepancy was about 1.3%, but, by

and large, the error was well below 1%. The expression itself is very

accurate and any error present when compared to the trace driven result

is inherent in the LRUSM and does not lie in the analysis.

5.Conclusion

We have considered the case of a high speed processor generating

requests to an interleaved memory. Our primary interest was in studying

the effect of program behavior upon the memory bandwidth. It was shown

that the commonly used assumption that requests have an independent and

equal probability of being to any module was invalid and could result in

fairly large errors, We found that the LRUSM is a reasonably accurate

model of the sequencing behavior of reference strings, and, based upon

this model, we developed an accurate analytic expression for the memory

bandwidth.

However, it must be noted that the LRUSM might well be totally

inadequate in a different environment. In particular, if we consider an

interleaved memory structure with a finite sized queueing space per

module, we find that the LRUSM grossly overestimates the bandwidth that

would be observed (Fig.10). One possible explanation for this lies in
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the inability of the LRUSM to accurately reflect the variance of the

time between consecutive references to the same module. Table 2 lists

the measured values of the variance for the trace tape 052 against the

values obtained theoretically from the LRUSM for various degrees of

interleaving. (The theoretical expression for the variance and its

derivation are to be found in [RAU77]). In general, the LRUSM

significantly underestimates the variance, which in turn would lead to

overestimating the bandwidth. When queues are allowed to build up,

references which are widely separated can interfere with one another. A

model which hopes to capture this behavior would need to have a very

long "memory". The LRUSM has an inaccurate memory for very long

inter-reference intervals. However, in the case that we studied, where

queueing on the modules is not permitted, the LRUSM is quite

satisfactory.
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NUMBER TRACE 043 049 050 051 052
OF

MODULES STACK
M DEPTH PROB PROB PROB PROB PROR

d p(d) p(d) p(d) p(d) p(d)

2 1 0.4489 0.3484 0.3508 0.3115 0.3229
2 0.5511 0.6516 0.6492 0.6885 0.6771

4 1 0.3357 0.2218 0.2110 0.2079 0.1860
2 0.1376 0.1236 0.1417 0.1296 0.1760
3 0.1394 0.1397 0.1533 0.1439 0.2329
4 0.3873 0.5149 0.4940 0.5186 0.4050

8 1 0.2760 0.1808 0.1534 0.1427 0.1079
2 0.0901 0.0754 0.0871 0.0836 0.0879
3 0.0662 0.0762 0.0985 0.0837 0.1862
4 0.0666 0.0934 0.0807 0.0784 0.0834
5 0.0680 0.0730 0.0890 0.0737 0.1022
6 0.0592 0.0675 0.0575 0.0643 0.0881
7 0.0538 0.0656 0.0751 0.0830 0.1106
8 0.3201 0.3680 0.3587 0.3905 0.2335

16 1 0.2488 0.1513 0.1196 0.1167 0.0780
2 0.0495 0.0476 0.0612 0.0531 0.0480
3 0.0516 0.0371 0.0609 0.0422 0.1832
4 0.0442 0.0600 0.0444 0.0406 0.0339
5 0.0450 0.0373 0.0469 0.0371 0.0466
6 0.0273 0.0378 0.0640 0.0346 0.0575
7 0.0274 0.0312 0.0399 0.0298 0.0475
8 0.0228 0.0431 0.0288 0.0401 0.0450
9 0.0370 0.0362 0.0367 0.0452 0.0363

10 0.0470 0.0331 0.0316 0.0426 0.0375
11 0.0538 0.0478 0.0268 0.0491 0.0516
12 0.0357 0.0568 0.0331 0.0421 0.0481
13 0.0276 0.0564 0.0476 0.0574 0.0555
14 0.0190 0.0283 0.0569 0.0376 0.0436
15 0.0316 0.0404 0.0619 0.0541 0.0442
16 0.2318 0.2557 0.2396 0.2776 0.1435

- -

TABLE 1 - LRUSM Statistics
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Trace Tape 052

Degree of Variance predicted
Interleaving by the LRUSM

2 0.9538

4 6.5788

8 39.8318

16 224.3838

Variance measured
directly
- -

0.8684

16.0911

115.9912

621.7017

TABLE 2 - Inaccuracy of the LRUSM in predicting the variance of
the inter-reference interval.


