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1 Introduction.

Program behavior impacts performance in numerous ways. Of particular

interest to us here will be those aspects of program behavior which

reflect upon the performance and the operation of multi-level memory

hierarchies. Every replacement algorithm has the common feature that

when a page is fetched to a particular level of the hierarchy, it is

kept resident for a certain length of time before being discarded (or

destaged to a lower level). The residency time is a function of,

amongst other factors, the replacement algorithm. The larger the

fraction of references to a page that occur during the page's residency

period, the greater the success of the algorithm. Correspondingly, the

program property which results in references to a particular page being

clustered closely in time, contributes to the effectiveness of a memory

hierarchy irrespective of the replacement algorithm that is employed.

This clustering of references does in fact exist in most programs to

some extent and is termed temporal locality. Locality, as defined by

Denning is the tendency of programs to concentrate their references over

a significant interval to a relatively small subset of their address

space, and for this favored subset to gradually change [DENN68, DENN72].

It should be evident that the definition is equivalent to that of

temporal locality. The favored subset is the collection of pages that

are currently in the midst of a cluster of references.



Properties and Applications of the LRU Stack Model

The study of temporal locality may be approached either empirically

or analytically. The analytic studies center around a model for

temporal locality. Two conflicting demands are made on these models of

program behavior; they must be analytically tractable to permit

derivation of useful results and they must also portray, accurately, the

properties of the program's reference string. The latter requirement is

necessary if the derived results are to have any value since an elegant

analysis based upon a faulty model is meaningless. However, an increase

in the accuracy of the model generally involves a corresponding increase

in its complexity, which eventually results in total intractability.

Clearly, a compromise is needed to permit fairly accurate results by

coupling a reasonably realistic model with a tractable analysis.

2 The Modelling of Temporal Locality

A survey of the literature reveals very few analytically tractable

models of program behavior. The Independent Reference Model, (IRM), is,

perhaps, the model which has been investigated and analyzed most

thoroughly, [FRAN74, KING71, RAO75]. Its major drawback has been in

its inability to capture the dynamic, short-term referencing behavior of

programs which is closely tied to temporal locality. The IRM, which is

based on the long term average reference probability of each page, is

quite' inadequate in this respect. The AO-Inversion model, based on the

IRM, rectifies this situation [RAFI76]. The Working Set Model, (WSPZ) ,

and the Least-Recently-Used Stack Model, (LRUSM), are both able to model

temporal locality successfully [DENM68, DENN72, COFF73, MATT70, SHEM661.
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The former has the advantage of being the more natural model since it is

based on the inter-reference interval statistics and, so, measures the

clustering more directly. It also is able to predict the performance of

the Working Set replacement algorithm exactly. The latter is more

compact in the number of statistics, can be used for simulation purposes

to generate a string of memory references which is consistent with the

model and it predicts the performance of the LRU replacement algorithm

exactly. The WSM consists of the probability function, F(t), where F(t)

is the probability (averaged over all pages) that a reference to a page

occurs exactly t references after the previous reference to that page.

This model flows quite naturally from the definition of temporal

locality. However, since the range of the inter-reference interval, t,

is unbounded, we need, in principle, to measure and retain an infinite

number of statistics. The LRUSM is obtained by maintaining the pages in

a stack in increasing order of time since last reference. The

statistics gathered are the average probability, P(d), of referencing

the page which is in position d for all possible values of d. Since d

cannot exceed the number of pages 9 the number of statistics to be

gathered is limited by the size of the program. It is in this sense

that the LRUSM is a compact model. P(d) may also be interpreted as the

probability of referencing d distinct pages between two successive

references to the same page, and though this would seem to be a somewhat

artificial model of temporal locality it, nevertheless, captures most of

the flavor of the WSM.
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The LRUSM has the advantage in that it is possible to generate a

reference string using the model. This is because the LRUSM, at each

instant, defines a distribution over the pages describing their

probability of reference. Having generated a reference string, we can

perform any measurements we choose upon it to obtain results we could

not have arrived at analytically. The WSM does not have t h i s

capability. Using this technique Rafii has shown that the LRUSM

predicts the performance under the MIN replacement algorithm ([BELA66])

accurately and that it does a fair job of predicting the Working Set

size and fault rate under the Working Set replacement algorithm

[RAFL76]. These properties make the LRUSM very attractive. Yet, little

analysis of the LRUSM has been performed and documented. In the

subsequent sections we shall list some properties and applications of

the LRUSM. Before that, we shall state the assumptions behind the

LRUSM. Also, since extensive use is made of generating functions, a few

of the more important properties of generating functions will be listed

here.

3 The Least-Recently-Used Stack Model.

Let us assume that we are modelling a program which makes references

to N distinct pages, The LRUSM orders these pages in a stack by the

time since the last reference to them, with the most recently referenced

page at the top of the stack. Let the stack positions be numbered so

that the top of the stack is position 1 and the bottom of the stack is

position N. Then, associated with position i is the probability p(i)

4
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that the next reference will be to the page which is currently in

position i. It is assumed that

1. The probability of referencing the page in position i is

independent of the identity of the page, and

2. The probability p(i) is time-invariant, and

3. The probability p(i) is independent of the past reference

activity. (However, since the state of the stack is definitely

dependent on the past reference behavior, the probability of

referencing a particular page is also dependent on the past

references).

The next reference is obtained by sampling from the distribution {p(i)},

and picking the page in that position. To maintain the LRU ordering,

this page is moved to the top of the stack. The position i in which the

page was found is termed the stack distance of that reference. The

stack distance string is generated by a zero-th order Markov chain.

This accounts for the tractability of the LRUSM. The page reference

process, on the other hand, is far more complicated. In fact, it cannot

be described by any finite order Markov chain. The individual page

reference processes are renewal processes, but they are not independent.

In particular, two pages cannot be referenced simultaneously.

The stack distance probability distribution is estimated by driving

the LRU stack with the reference string of the program being modelled.

For each reference , the stack is scanned to determine the position of

the referenced page. A count associated with that position is

incremented and the LRU stack is updated. These counts are normalized

5
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with respect to the total number of references to obtain the fraction of

the references which

estimate of {p(i)}.

were to each position. These fractions are the

The hit ratio, h(n), for a memory with a capacity of n pages under

the LRU policy is given by

n
h(n) = x p(i)

i=l

The miss ratio, i.e., the probability that the referenced page is not in

the memory is given by m(n) = l-h(n). In the LRUSIZ, both m(n) and h(n)

are time-invariant and independent of the identity of the pages in the

memory. Consequently, the instants of page fault occurrence form a

series of Bernoulli trials and the interval between two successive

faults is geometrically distributed with a mean of l/m(n). Furthermore,

each such interval is independent of all other such intervals. Figure 1

displays the Markov chain for the path of a page through the LRU stack.

It will be helpful to refer to it in the subsequent discussion.

4 Probability Generating Functions.

Consider a sequence of numbers,

function for this sequence is given by

r={rO,rl,...}. The generating

a0

G(z) = L ri2 i
i=O

6
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The mapping to and from the generating function iS unique. If the

sequence were a probability distribution, p=(p0,p1,p2,.~g}  where pi is

the probability of some integer valued random variable X assuming the

value i, the corresponding generating function is termed the probability

generating . function (p.g.f. >. Perhaps the most important feature of a

p.g.f. iS that it permits convolution to be represented as a

multiplication. Therefore, if G(z) and H(z) are the p.g.f.'s for two

independent integer valued random variables X and Y respectively, then

the p.g.f. for the sum X+Y is given by G(z)H(z). In addition the

p.g.f. has the following properties:

I 00
G(z) t = G(1) = E Pi = 1 if the distribution is honest,

lz=l i=O

I a I m
G’(z) 1 = ) iPiZiwl  1

lz=l i=o
= x  ipi = mean  (x)

lz=l i=O

I m
G”(z) 1 = E i(i-l)pizi-2 (&i)p, = Var(X)+[Mean(X)12-Mean(X)

(z=l i=o

Also, let S be the sum of N independent, identically distributed random

variables X1,X2,...,XN hw ere N itself is a random variable, then if G(z)

is the p.g.f. for Xj and H(z) is the p.g.f. for N, the p.g.f. for S

is given by H(G(z)). The reader interested in the derivations of these

properties and in a further discussion of probability generating

functions is referred to Feller's book [FELL68].
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5 Properties of the LRUSM

One of the few properties of the LRUSM that has been documented is

that every ordering of the pages in the LRU stack is equally probable.

This follows directly from the fact that the probability transition

matrix for the Markov chain describing the LRUSM is doubly stochastic.

As a result, each page spends, on the average, an equal amount of time

in each stack position and each page has an equal long-term probability

of being referenced. We shall concentrate here on deriving the p.g.f.

and/or the moments of the lengths of various intervals which are of

interest.

5.1 The Stack Working Set

We shall often find it helpful to use the concept of the Stack

Working Set. Let us imagine an LRU stack which is initially empty. The

first reference will be a fault and the corresponding page is placed at

the top of the empty stack. Each subsequent fault will cause the number

of pages in the stack to be increased by 1. After some time, t, the

number of pages in the stack will be some value w. w is the size of the

Working Set with a window size of t [DENN68]. The average working set

size for a window of size t will be given by W(t)* Alternatively, we

might be interested in the average time T(w) that it takes to build up a

working set of size w. T(w) is a function that is defined only for

integral values of w. Let us assume that it is extended by

interpolation so as to be defined for all positive values and in a

manner that ensures that it is continuous. Then it is possible to

8
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define the inverse function D(t) such that D(T(w)) = w* The function

D(t) is analogous to the function W(t) but is not, in general,

identical. D(t) is of interest since it is easily obtained from the LRU

stack model. Hence it is named the Stack Working Set (SWS). W(t) on

the other hand, cannot be derived easily from the LRUSM.

THEOREM 1. The probability generating function (p.g.f.) for and the

mean of the time required to build up a Stack Working Set of d pages are

given by

d-l
T(z;d) = rm(i).z/(l-h(i)z)

i=O
and

d-l
T(d) = E l/m(i)

i=O
respectively.

PROOF. Consider a SWS that has just attained the size d-l. Under the

assumptions of the LRUSM, the time to the next fault is independent of

the time taken to build up the SWS of size d-l. Then, since the p.g.f.

of the time to the next fault is given by

m(d-l)(h(d-l)j-'zj = m(d-l)z/(l-h(d-l)z),
j-l

we have

T(z;d) =y(z;d-l).m(d-l)z/(l-h(d-1)z)

Noting thaty(z;l) = z, by induction we have that

d-l
T&d) = ~m(i>z/(l-h(i)z)

i=O
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Differentiating and putting z=l, we also have that

d-
T(d) =??(l;d) = t 1 /m(i)

i=O
Q.E.D.

The SWS concept comes in handy in many places. We shall use it to

give an informal proof for Theorem 2. It is the basis for

characterizing the spatial locality of a reference string [RAU75]. W e

shall also suggest a procedure to determine the amount of memory that

gets allocated to each of a number of concurrent reference streams in a

shared memory which is managed by a global LRU replacement algorithm.

5.2 Analysis of Multilevel Memory Hierarchies.

A problem of increasing importance is the evaluation of a multilevel

memory hierarchy. The emergence of technologies such as CCD and bubble

memories makes multilevel hierarchies attractive. The analysis of such

a structure is confronted by at least two significant obstacles:

1. The request stream that a particular level sees is the fault

stream from the level immediately above it in the hierarchy. The model

for the request stream to the highest level does not describe the

request stream to any of the lower levels. A procedure is needed to

characterize the fault stream in terms of the model for the request

stream and the parameters that describe the structure of the level under

consideration.

2. The unit of transfer (page size) between each pair of adjacent

levels will, generally, be different. The fault stream out of one level

10
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will be in terms of one page size, but the request stream to the lower

level must be in terms of another (larger) page size. A method for

transforming the page size of the model for a request stream is needed.

This is shown by Rau to be related to the problem of suitably modelling

the spatial locality of the request stream [RAU75]. The desired

transformation is obtained there. We shall not consider this problem

any further.,

Theorem 4 is a first attempt at tackling the question of modelling

the fault stream. Theorems 2 and 3 prepare the ground by proving

certain results needed in Theorem 4. We wish first to derive an

expression for the mean replacement time, i.e., the time that it takes

for a page to be replaced from a memory of capacity d pages measured

from the time of last reference to that page.

THEOREM 2. In a memory of capacity d pages, under the LRU replacement

algorithm, the p.g.f. for and the mean of the time to replace a

particular page, measured from the time that it was last referenced are

given by

d-l
flz;d) = ~m(i)z/(l-h(i)z)

i=O
and

d-l
VW = z l/m(i) = T(d) respectively (1)

i=O

INFORMAL PROOF. Under the LRU replacement algorithm, the page is

replaced when it reaches position d+l in the LRU stack. This means that

11
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a SWS of size d (and not including the page in question) must be built

up from the time that the page was last referenced and at the top of the

LRU stack. Then, by Theorem 1, we have the desired results. gowever,

the requirement that the page under consideration not be included in the

SWS raises,some doubts regarding the applicability of Theorem 1 in this

situation. Accordingly, a more rigorous proof is advanced.

PROOF. Firstly, under the assumptions of the LRUSM, the time spent in

each position is independent of the times spent at other positions.

Accordingly,

?hwO = ;f%iz;i)
i=l

wherefl(z;i) is the p.g.f. for the time that a page spends in position

i given that the next distinct position is i+l (and not 1). Now the

probability that a page spends time j in position i given that the next

position visited is i+l

= P[spends time j in position i and next position is i+l]
-------------------------------------------------------

P[next position is i+l]

Mi-1)) j-l.,(i)
= -----------------------

PInext position is i+l]

Therefore,

U(z;i) = e m(i) (h(i-l))j-'zj/P[next position is i+l]
j=l

m(i)z 1
.

1-h(i-1)z P[next position is i+l]

1 2
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00
But P[next position is i-l] = t m(i).(h(i-l))j-'  = m(i)/m(i-1)

w

sol&z;i) = m(i-l)z/(l-h(i-1)z)

v
d-l

and so (z;d) = rm(i)z/(l-h(i)z)
i=O

Differentiating and putting z-1 we have

V(d) = '2 l/m(i)
i=O

Q.E.D.

The second result needed to prove Theorem 4 relates to the residency

time of a page in a memory level of capacity d pages.

THEOREM 3. The mean residency time of a page in a memory level of

capacity d pages under the LRU replacement algorithm, measured from the

time that the page was staged up to that level to the time that it iS

next replaced is given by

W(d) = d/m(d) (2)

PROOF. The proof is facilitated by the use of probability generating

functions to obtain a recurrence relation. Let G(z;d) be the p.g.f.

for the residency time in a memory of capacity d pages, i.e.,

00

>
_

G(z;d) = a(i;d)zi
i=O

13
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where a(i;d) is the probability of the page residing exactly i time

units in the memory of capacity d. Then clearly

G(z;d) Izzl = z a(i;d) = 1 and
i=O

-b, G(z;d)  Izzl = f i,a(i;d) = W(d)
&Z i=O

Consider, now, the path of a page from the time that it is placed at the

top of the stack to the time that it first enters position d+l in the

stack. We can divide this interval into a number of sub-intervals X(i).

The random variable X(1) is the time that it takes the page to first

drop to position d plus the time that it spends in position d. The page

can exit position d either by moving to the top of the stack with

probability p(d) or by dropping to position d+l with probability m(d).

If it moves to the top of the stack it goes through another sub-interval

of length X(2). The p.g.f. N(y) for the number of sub-intervals

corresponding to a residency period is given by

m(d) pWm(d)
WY) = ------ Y + ----------- y2 + . . .

m(d-1) Md-W2

m(d) i
= ---m-w ------
m(d-1) i=O

m(d)y= ------------
m(d-1 I-p(d)y

since m(d-1) = m(d) + p(d). The residency period is the sum of a random

number of independent identically distributed random variables X(i).

14
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Therefore, if H(z;d) is the p.g.f.for X

m(d) H(z;d)
Wz;d) = N(H(z;d)) = -----------------

m(d-l)-p(d)H(z;d)

Now, under the LRUSM assumptions, X is the sum of two independent random

variables -- the residency period in the top d-l positions of the stack

plus the time spent in position d. Therefore,

m(d-1)z
J-Uz;d) = G(z;d-1) . ---------

1-h(d-1)z

where the second term is the p.g.f. for the time spent in position d.

Now,

W(d) = G’(z;d) Izzl
H(z;d) p(d)H'(z;d)+H'(z;d)(m(d-l)-p(d)H(z;d))  I

= m(d). --------------------------------------------- I
Md-1) - p(dW(z;d) I2 lz=l

m(d)m(d-l)H'(z;d)  I m(d-l).H'(z;d) I
= ----------------- I = --m--w

(m(d) j2
I

lz=l m(d) Iz=l

And,
m(d-1) m(d-1)z

H'(z;d) = G(z;d-1).-----------2 + G'(z;d-I).---------
(1-h(d-1)z) 1-h(d-1)z

therefore,

H’(z;d)  I,+ = l/m(d-1) + W(d-1)

(3)

(4)

15
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From Eqns. 3 and 4

1 m(d-1)
W(d) = ----- + ---w-- W(d-1)

m(d) m(d)

Since W(1) = l/m(l), it is easily shown that d/m(d) satisfies the

recurrence relation.

Q.E.D.

We can now return to the issue of modelling the fault stream out of a

particular level in a memory hierarchy. Let the request stream to the

k-th level in the hierarchy be characterized by the miss ratio function,

mk(dl), which gives the fault rate out of level k under the LRU

replacement policy, if the capacity of that level is dl pages and where

the fault rate is measured in units of faults out of level k per request

to level k. For any given value of dl, we wish to similarly

characterize the fault stream (the request stream to level k+l) by a

miss ratio function, mk+l(d2), which gives us the fault rate out of

level k+l as a function of the capacity of level k+l. We assume that

the page size at levels k and k+l are the same.

THEOREM 4. Under the assumption that all pages have identical behavior,

and if Wk(n> and v,(n) are treated as exact rather than as average

residency and replacement times, then if the request stream to level k

is characterized by mk(d), and the size of the level is n pages, and if

16
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the fault stream is characterized by the function mk+l(d) which gives

the miss rate from level k+l (measured in faults at levei k+l per

request to level k) as a function of the capacity, d, of level k+l, then

mk+l(d) = zkihi for dg n
k for d > n

PROOF: Let,
>DW

Q ( t )  = -w--m and
3 t

bQ<t)
F(t) = - --w-w

a t

where D(t) is the mean size of the Stack Working Set built up in time t.

By analogy with the Working Set Model, F(t) is the the probability

that the length of the interval between two successive references to any

given page is t [DENN72]. Q(t) is the fault rate corresponding to the

size of the Stack Working Set built up over a period t. Note that by

the definition of D(t) and T(n)

Q(t) = m@(t)) and (5)

m(n) = Q(Th)) (6)

where T(.) is the inverse of the function D(.).

Let Fk(t) and Qk(t) correspond to the request stream to level k, and

Fk+l(t) and Qk+l(t) correspond to the fault stream. For notational

convenience, Wk(n) and vk(n) will often be referred to as Wk and vk,

without introducing any ambiguity.

17
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A page cannot be referenced at level k+l if a copy is present at

level k, for the reference will be intercepted by level k. 'The period

of residency at level k measured from the time it was last referenced at

level k+l (and staged up to level k) is Wk(n). Therefore, neglecting

the variance of the residency time, for t,< w,(n),

Fk+l(t) = 0

Tf t > wk(n) then the page is no longer present in level k. By

Theorem 2, the page was referenced Vk(n) time units before the time that

it was displaced from level k (Fig.2) if the variance of the replacement

time is neglected. Therefore, for t > Wk(n),

Fk+l(t) =  Fk(t -  lJk +  vk)

Therefore, we have

Fk+l(t) = 0 for tb wk

Fk(t - wk + $) for t > wk

Since, by definition, Fk+l(t) = -)Qk+l(t)/i)t, we have

Qk+lW = &+1(o) - jFkfl (x> dx
0

Qk+l(o) - [o dx = Qk+l(") for t < wk,

=

Qk+lcwk) - jFk(x -wk +vk) dx for t > wk
'k

(7)

18
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By the first part of this equation, Qk +l($ > = ( & +1 (o ) l If the

working set size at level k+l is 0, then every fault at level k is also

a fault at level k+l, and so,

Qk+l(") = $(")

But by Eqn.6,

13k (d = Qk(Tkb))
And since, by Eqn.1,

Vk(d = Tkh)
we have

Qk+l(o)  = Qk+l($) = Qk(vk)

Substituting y = x - \Jk + vk in Eqn.7 and using Eqn.8 we get,

Qk+l(t) for t<, wk,

dY for t > wk.
'k

Therefore,

Qk+l(t)  = Qk(Vk) t < wk,

Qk (t -$ +vk) t > wk.

Next, since by definition Q(t) = aD(t)/at we have

Dk+l(t) = jQk+# dx
0

-wk +vk) dx t > wk

(9)

19
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And, since Dk+l(0) = 0,

Dk+l(t) = Qk(Vk)*t

I

t< wk,

Qk(vk)*wk +Dk(t -$ +vk) -Dk(vk) t > wk

But since by Eqns.1,2,6,

"k(vk) = Dk(Tk(n)) = n, and

ldk (n> = n/mk(n), and

%('k) = Qk(T+)) = M+),

we have,

Dk+l(t) = mk(n)*t

I

t <, wk

Dk(t -wk +$) t > wk.

Therefore, for t s wk we have

Dk+l(t) < n, by Eqn.10 and

mk+l (Dk+l (t)) = Qk+l (t> by Eqn.5, and

Qk+l (0 = Qk(vk), by Eqn.9, and

%('k) = Qk($(")), by Eqn.1, and

Qk(Tk(n)) = mkh) by Eqn.6.

Therefore,

mk+l cDk+l h)) = mk(“)
i.e. mk+l(d) = m&d for d 5 n

For t > wk we have

Dk+l(t) > n, and

Qk+lW = mk+l(Dk+l(t)) by Eqn.5, and since

Qk+l W = Qk(t -\Jk +vk) by Eqn.9, and

Dk+l(t) = Dk(t -wk +vk) by Eqn.10.

Therefore, by Eqn.5,

(10)

(11)

t(t -wk +vk) = mk+l (Dk ( t +k +vk) )
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But, by Eqn.5,

Qk(t -wk +vk) = %(Dk(t -wk +v,))
Therefore,

mk+l(d) = nj$U for d > n

From Eqns.11 and 12 we obtain the theorem in its final form:

mk+l(d) d6 n,
1 > n,

Q.E.D.

W)

Theorem 4 states that, for a constant page size, the top n pages in

the LRU stack for level k+l will be in the higher level (of size n

paged0 Conversely, it also states that a page which is at a position

lower than n in the LRU stack for level k+l will not be in level k.

This is, admittedly, a rather simplistic analysis since it uses only the

average residency and replacement times and does not take into account

the variance. Consequently, validation of the analysis was sought

through the use of trace driven simulation. The trace tapes used were

043 - Fortran execution,

049 - Cobol execution,

050 - Cobol compilation.

The fault rate function predicted by Theorem 4 is compared with the

measured fault rate function in Figs.3-5. The correspondence is quite

good for the page sizes normally used in cache memories, but is poor for

page sizes of about 1K bytes when the value of d is close to n,
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5.3 Moments of the Inter-Reference Interval

In the LRUSM, the sequence of references to a page forms a renewal

process. This is obvious, since a reference to a page moves it to the

top of the stack and resets its state. Its future behavior and path

through the LRU stack is independent of the past and statistically

identical each time it is referenced and brought to the top of the

stack. We now seek a description of this renewal process. We shall do

so by deriving the probability generating function for the

inter-reference interval in a recursive form. This permits us to obtain

closed form expressions for the first two central moments of the

inter-reference interval. In fact, we can simultaneously obtain the

first two central moments for the forward recurrence time of a page

which is in any position in the LRU stack.

THEOREM 5. In the LRUSM, the mean, Ml(i), and the variance, M2(i), of

the forward recurrence time (to next reference) of the page in position

i of the LRU stack are given by

Ml (i> = (N-i+l)/m(i-1) and

N-l
M2(i) = 2j-Fl(N-j)/m(i) - (N-i+l) - (N-i+l)2/m(i-1)  /m(i-1)

- - 1
respectively, where N is the total number of pages. In particular, the

mean and the variance of the inter-reference time to a page are given by

Ml(l) = N and

N-l
M2W = 2 F. (N-j)/m(j) - N - N2 respectively.

=
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PROOF. Consider a page which has just reached position i in the LRU

stack. Let the p.g.f. for the time to next reference be Ti(z). One of

two things can happen to the page; it spends a certain period of time at

position i and is then either referenced with unconditional probability

p(i) or displaced to position i+l with unconditional probability m(i).

However, given that the page leaves position i, the probabilities of

these two outcomes are p(i)/m(i-1) and m(i)/m(i-1) respectively, since

p(i)+m(i) = m(i-1). If the page moves to position i+l, the remaining

time to reference is independent of the time spent in position i. Then,

noting that the p.g.f. for the time spent in position i is given by

m(i-l)z/(l-h(i-l)z),  we have that

m(i-1)z p(i) m(i-1)z m(i)
Q(z) = --------- . ------ + --------- .

1-h(i-1)z m(i-1) l-h(i-l)z
T,+l (~1 . -;-;;.

Z
= --------- p(i) + m(i)

1-h(i-1)z
Ti+l(z)

I

Noting that TN(Z) = m($'-l)z/(l-h(N-l)z),  we can obtain the p.g.f. for

the forward recurrence time, Ti(Z), and the p.g.f. for the

inter-reference time, Tl(z), from the recurrence relation.

Using the recurrence relation, we can also obtain the mean and the

variance of the forward recurrence time in closed form. We have that

= [p(i)+m(i)Ti+l(z)]  ?- -,__“_----  + ----“_____  .
bz l-h(i-1)z 1-h(i-1)z

m(i)Ti+l’CZ)
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Using the fact that Ti+l(l)=l, we have that

1 *
Ml (i9 = Ti'(l) = ---- + -"'- . Ti+l'(l)

"i-1 mi-l

Since TN'(l) = l/m(N-1), it can be shown by induction that

Ml(l) = (N-i+l)/m(i-1)

Similarly,

a2Ti” (Z ) = [p(i)+m(i)Ti+l(z)]  . --? ----E----
bZ l-h(i-1)z

2 z
+ 2am(i)Ti+l'(z) . -- o--0-0-o.

bz l-h(i-1)z

Z
+ - - - - - - - - -  .

l-h(i-l)z
m(i)Ti+l”(z)

from which, noting that Ti+l(l) = 1 and Ti+l'(l)=(N-i)/m(i)  we get that

Ti'(l)=2(h(i-1)+N-i)/m(i-1)2  + m(i)Ti+l"(l)/m(i-1)

Then, since TN"(l)=2h(N-l)/m(N-l)2, it can be shown by induction that

Tit'(l) = - 2(N-i+l) /m(i-1)
I

But M2(i) = T11i(l)+Ml-Ml(i)2. Therefore,

M2(i)= 1 /m(i-1)

and, in particular, the variance of the inter-reference time is given by

N-l
M2U9 = 2 F. Wj9/m(j9 - N - M2

Q.E.D.
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The forward recurrence time was measured from the time that a page

entered position i of the LRU stack. By the memoryless property of the

geonetrically distributed residence of the page in position i, the

forward recurrence time measured from some arbitrary time given that the

page is in position i will have the same distribution.

5.4 Optimality of the LRU replacement policy

The criterion for the optimality of a realizable demand paging policy

is that it replace the page with the longest expected time to next

reference. Therefore, if the LRU policy is to be optimal, we must have

that

Ml(i) G Ml(i+19

N-i+1 N-i
<------ , -0-0

m(i-1) m(i)

for l<i<N, i.e., that

which reduces to
N

p(i) 2 mW/(N-i9 = [1/(N-i91.) p(i)
j=i+l

i.e., each stack distance probability must be at least as large as the

average of the probabilities of the greater stack distances. Coffman

and Denning have stated that a sufficient condition for the LRU policy

to be optimal for all buffer sizes is that p(i) 3 p(i+l) for l<,i<N

[COFF73]. We have found a necessary and sufficient condition for

optimality. That their condition implies ours is clear, for if p(i)>

p(i+l) for l<i<N, then

p(i) 3 V/Wi91. $ p(j) = m(i)/(N-i)
j=i+l
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On the other hand, the converse is not always true. This is best

demonstrated by an example. Let N = 5 and let the stack distance

probabilities be (0.6, 0.1, 0.2, 0.05, 0.05). The expected forward

recurrence times for each stack position are (5, 10, 10, 20, 20). The

LRU policy is optimal in this case despite the fact that the stack

distance probabilities are not monotonically non-increasing.

6 Applications of the LRUSM.

The preceeding Theorems have described some of the properties of the

LRUSM. We shall now demonstrate a few applications of the LRUSM in

analyzing memory management strategies. In particular, we shall analyze

the performance of a set associative LRU policy and an optimal demand

pre-paging algorithm. In addition, we shall consider a memory shared by

a number of concurrently active programs and managed by the global LRU

policy. We shall suggest a procedure for calculating the manner in

which the memory is allocated amongst the active programs.

6.1 The Set Associative Buffer.

The set associative buffer is almost invariably used at the cache

level to effect a compromise between the performance of the cache and

the complexity of managing it [KAPL73]. Each block (page) in the main

memory is mapped into a quotient class based on the lower order bits of

the block address. In a set associative buffer of degree of

associativity = a, each quotient class is associated with a unique set

of a block frames in the buffer. Any block from a particular quotient
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class may only be placed in one of the frames in the corresponding set.

The decision as to which of the a frames is to be chosen is based on the

LRU policy. We have, therefore, a fully associative buffer of a blocks

per quotient class. When a=1 we have what is termed the direct mapping

buffer, and when a is the number of frames in the buffer, we have the

fully associative buffer. Our analysis is based upon the following

assumptions:

1. The standard LRUSM assumptions hold.

2. The address of the block in position i in the LRU stack is

independent of the address of the block in position j for all i,j

and i#j.

3. The block in position i of the LRU stack is equally likely to

belong to any of the a quotient classes, for all i.

Let the set associative buffer have q quotient classes (columns) and a

degree of associativity of a (i.e. a rows). l/q is the probability

that the block in position i of the LRU stack is in any particular one

of the q quotient classes.

Define m,(q,a) to be the miss rate in the set associative buffer

described above. Also, define p,(q,a) to be the probability that the

referenced block is found at position a in the LRU stack corresponding

to some quotient class. Then

m&w9 = 1 - X p&j)
j=l
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Now, p,(q,j) is the probability that exactly j-l of the blocks, which

are above the referenced block in the fully associative LRU stack, fall

into the same quotient class as the referenced block. Civen that the

referenced block is in position i of the fully associative LRU stack,

the probability of there being j-l such blocks is given by

C(i-l,j-l).(l/q)j-l.(l-l/q)i-j, where C(i-l,j-1) is the binomial

coefficient (i-l>!/[(j-l)!(i-j)!]. Therefore, the probability of

referencing a block and finding it at position j in the quotient class

LRU stack is given by

P&J9 = 2 p(i) C(i-l,j-l)(l/q)j-1  (l-l/q)i-j and
i=l

a N
m&a9 = 1 - X Z p(i9Ui-Lj-l9Wq9 j-l(l-,/,)i-j

j=l i=l

= 1 - EY p(i) 2 C(i-l,j-l)(l/q)j-l(l-l/q)i-j
i=l j=l

= 1 - g p(i) B,(i)
i=l

where B,(i) = 2 C(i-l,j-l)(l/q)j-1 (l-l/q)i-j
j=l

and is a function of i, which is equal to 1 for i%a and then

monotonically decreases. The rate at which B,(i) decreases for i>a is

greater for larger values of a, assuming that the product is kept

constant, i.e. the total capacity of the buffer is kept constant

(Fig.6). Thus, the hit rate to a set associative buffer with a high

of associativity gives heavier weighting to the p(i)'s for small
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i and lower weighting to the p(i)'s for large i than does a set

associative buffer of identical capacity but with a smaller degree of

associativity. Letting c=aq, the extreme cases are:

the Direct Mapping Buffer

N
ms(c,l> = 1 - z PO-9 (l-l/c9 i-l

i=l

and the Fully Associative Buffer

C

msU,d = 1 - t p(i)
i=l

When the p(i) is monotonically decreasing, the miss ratio is minimized

by weighting as heavily as possible the p(i)'s for small i. The fully

associative buffer does just this. However, the fully associative

buffer places no weight at all for i>c. Thus, if p(i) is of the form

shown in Fig.7, the direct mapping buffer would perform better. In

fact, just such an anomalous result was obtained when studying the trace

tape 050. Subsequent measurement and examination of p(i) for the tape

revealed a bell shaped function as in Fig.7.

6.2 Optimal Demand Pre-Paging

The principle of optimality, for a fixed memory allocation policy,

states that the pages, for which references are most imminent, should be

maintained in the buffer. If limited to demand paging policies, the

optimal policy is MIN, which, on the occurrence of a fault, replaces the

page in the buffer with the least imminent reference. If we permit
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pre-paging, then the optimal policy, assuming we have n page frames

available, is to always maintain in the buffer the n pages with the most

imminent references. Such a policy would cause no page faults at all

even for n=l. But such a policy is clearly impractical even if we had

complete future knowledge. A more feasible pre-paging policy is one

which effects page transfers only on the occurrence of a page fault.

Such a policy is termed demand pre-paging [TRIV74]. The optimal demand

pre-paging policy, DPMIN, would, on the occurrence of a fault, update

the contents of the buffer so as to contain the n pages with the most

imminent references. This policy, like MIN, is unrealizable, but serves

as a standard of reference.

The analysis of this algorithm is simplified by the use of the Most

Imminent Reference Stack Model (MIRSM). In the MIRSM, the pages are

ordered by imminence of reference. The page at the top of the MIR stack

is the one which will be referenced next. After a page is referenced,

it is inserted in position i of the MIR stack with probability p(i) and

all the pages which were in positions 2 through i are moved up one

position. p(i) is the probability that the page will next he referenced

after i distinct pages (those above it in the MIR stack) have been

referenced. So, the p(i) of the MIRSM and the p(i) of the LRUSM are

identical. Fig.8 shows the Markov chain corresponding to the path of a

page through the MIR stack.

Returning to the DPMIN policy, let us assume that a page fault has

just occurred. Consequently, the top n pages in the llIR stack are all
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in the buffer. The next fault occurs on the first occasion that a page

in positions n+l through N is referenced. Such a page must necessarily

be in position n+l since this is the page which will be referenced

before any of the other pages which are not in the buffer. We wish to

determine the mean time for a page to travel from position n+l to

position 1 in the MIR stack.

From Fig.8 we see that the mean time spent in position i before

moving on to position i-l is given by l/m(i-1) for l<i<N. Therefore,

the mean time between faults is

P l/m(i)
i=l

The mean fault rate is then given by

l/ 2 l/m(i)
i=l

It is possible to obtain an upper bound on the page traffic too.

With the DPMIN policy, a page is replaced if, on the occurrence of a

fault, it is at a position in the MIR stack lower than position n. This

event takes place if, after a reference, it is inserted at a position

lower than n and it does not rise into the top n positions before the

next fault. If we neglect the second condition, we over estimate the

probability of a page being replaced and, accordingly, overestimate the

traffic.
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Once again, let us assume that a fault has just occurred and that the

top n pages are present in the buffer. Let us also assume that the page

in position n+l is tagged. While the tagged page stays in position n+l,

all referenced pages are, necessarily, being inserted into positions 1

through n. The tagged page rises one position only when the referenced

page is inserted in the position currently occupied by the tagged page

or in a position lower than that. Conversely, a page can be inserted

into positions n+l and lower (and be replaced) only when the tagged page

rises one position.

If the tagged page rises from position i to i-l, (l<i<,n+l), then the

referenced page must have been inserted i n one of the positions i

through N. Conditional on this, the probability that it was inserted

below n is

[p(n+l)+p(n+2)+... +p(N)l/[p(i)+p(i+l)+...+p(N)l  = m(n)/m(i-1).

So, the average number of pages replaced when the tagged page rises from

position i to i-l is m(n)/m(i-1). The average number of pages replaced

per fault using DPHIN is bounded above by

2 m(n) /m(i) = m(n)2 l/m(i)
i=l i=l
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The traffic is given by the mean number of pages replaced per fault

multiplied by the fault rate, and is bounded above by

which is the traffic generated by the LRU policy.

We see then that DPMIN can reduce the fault rate considerably

compared to LRU without increasing the traffic.

6.3 Sharing of Memory using the Global LRU policy

Lastly, we consider a buffer shared bY a number of concurrently

active processes. Such a situation might arise in a multiprocessor

system where all the processors share a common cache or main memory, or

in a multiple instruction stream processor with shared resources

[FLYN68]. In any event it is assumed that the next request will be from

process i with probability rim A multiprogramming system cannot be

included in this framework since only one process is active at any time.

The memory management policy is assumed to be Global LRU. We shall use

the Stack Working Set to determine the manner in which the capacity of

the shared buffer is allocated to the individual processes, i.e., if d

is the capacity of the shared buffer and we have q concurrent processes,

we shall calculate (di}, where di is the mean number of pages of process

i present in the buffer and (dl+d2+...+dq)  = d.
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At time t, the SWS for process i has a size of Di(t>* The total

space occupied by all the SWS's at time t is given by

D(t) = r” Di(t)
i=l

Let tO be the value of t such that D(tC)=d. Then di=Di(tO). to is

easily obtained either graphically or by inverting D(t).

7 Conclusion

We have derived a number of properties of the LRUSM. Most of these

are exact results. It is worth our while to list the approximations

that we have used and to classify them. In developing and using the

Stack Working Set, we have made the conceptual approximation that it and

Denning's Working Set can be treated identically. We also used a

mathematical approximation in allowing ourselves to treat discrete

functions as continuous ones by interpolation. We used another

conceptual approximation when we related the random variables for the

replacement and residency times by constants equal to the means. This

approximation turned out to be poor for large page sizes.

34



Properties and Applications of the LRU Stack Model

REFERENCES

BELA66 L.A.Belady, "A Study Of Replacement Algorithms For A
Virtual-Storage Computer", IBM Sys. Jour., 5, 2, 78-101, 1966.

COFF73 E.G.Coffman and P.J.Denning, "Operating Systems Theory",
Prentice-Hall, 275-278, 1973

DENN68 P.J.Denning, "The Working Set Model for Program Behavior", CACM
11,5, 323-333, May 1968.

DENN72 P.J.Denning and S.C.Schwartz, "Properties of the Working Set
Model", CACM 15,3, 191-198, Mar.1972.

FELL68 W.Feller, "An Introduction to Probability Theory and Its
Applications", Vol.1, 3rd Edition, John Wiley, 264-301, 1968.

FLYN68 M.J.Flynn, A.Podvin and K.Shimizu, 'A Multiple Instruction
Stream Processor with Shared Resources", Proc. Conf. on
Parallel Processing, Monterey, California, 1968; Pub. Spartan
Press 1970.

FRAN74 P.A.Franaszek and T.J.Wagner, "Some Distribution- Free Aspects
Of Paging Algorithm Performance"JACM  21, 1, 31-39, Jan 1974.

KAPL73 K.R.Kaplan and R.O.Winder, "Cache-Based Computer Systems",
Computer, 6, 3, 30-36, Mar. 1973.

KING71 W.F.King, 'Analysis of Demand Paging Algorithms", Proc. IFIP
Congress 1971, Ljubljana. Amsterdam: North-Holland, TA-3
155-162, 1971.

MATT70 R.L.Mattson, J.Gecsei, D.R.Slutz and I.L.Traiger, "Evaluation
Techniques for Storage Hierarchies', IBM Sys. Jour., 9, 2, 1970

RAF176 A.Rafii, "Empirical and Analytical Studies of Program Reference
Behavior", Stanford Linear Accelerator Tech. Rep. No. 197,
July 1976.

RAo75 G.S.Rao, 'Performance Evaluation of Cache Memories", Stanford
Univ., Dept. Elec. Engg., Ph.D. Thesis, 1975.

RAU75 B.R.Rau, "The Stack Working Set: A Characterization of Spatial
Locality", Tech. Rep. No. 95, Digital Systems Lab., Stanford
Univ., July 1975.

35



Properties and Applications of the LRU Stack Model

SHE1166 J.E.Shemer and G.A.Shippey, "Statistical Analysis of Paged and
Segmented Computer Systems", IEEE-TEC, EC-15,6, 855-863,
Dec.1966.

TRIV74 K.S.Trivedi, "Prepaging and Applications to Structured Array
Problems", Tech.Rep.No. UIUCDCS-R-74-662, Dept. of Comp.
Sci., Univ. of Illinois at Urbana-Champaign, July 1974.

36



h(2)

FIG, 1

TIME BETWEEN SUCCESSIVE REFERENCES AT LEVEL K+l

'k
t

- VI- -

0

t,
Time of Time of Time of Time of
last last kxit from current

reference to reference to level k reference to
level k+l level k level k+l

FIG, 2



PREDICTED AND MEASURED FAULT STREAMS
0 . 1 0
0 . 0 9_
0 . 0 8
0 . 0 7

m 0 . 0 6

d 0 . 0 5
cl
;’ 0 . 0 4
6

R 0 . 0 3
-3
T

D.
P 0 . 0 2

2

K
52

0 . 0 1
0

-----1-----7--~

- - - - - -  M E A S U R E D
. . . . . . . ..PREDICTED

2 0 0 0 4 0 0 0 6 0 0 0
L E V E L  2  C A P A C I T Y  @YTESl

8 0 0 0

PREDICTED AND
- - - - - - - 1

0.100
0.l

id
ziJ 0 . 0 5 0
t-
6

F I G .  3

MEASURED FAULT Sl REAMS

, 0 4 9

- - - - -  M E A S U R E D
m...m.. P R E D I C T E D 1

0 . 0 0 5
0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0

L E V E L  2  C A P A C I T Y  (BYTES1
*

FIG, 4



PREDICTED AND MEASURED FAULT STREAMS

1o-2

10
- 3

1o-4

1o-5
0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0s L E V E L  2  C A P A C I T Y  ( B Y T E S )

F I G .  5

B,(I);:  c  - -  4 0 9 6 ,  a =  1,2,,..,64

2 0 0 0 4 0 0 0 6 0 0 0
D E P T H  I N  S T A C K ,  i

8000 _

F I G ,  6



L R U S M  S T A T I S T I C S  Wti1l.l-i G I V E  ANBMA L!Z?US RESl

0 . 2

 0.0  - 1--L-I-IL- - tJ---L---L--L -. .-.I1 - --L.--.-I-L -A-- -I.--. t- -L--L--L-. I_ _

i
I f‘
” ), /

p m

JLTS

F I G .  8


