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ABSTRACT

The Least-Recently-Used Stack Mdel (LRUSM is known to be a good nodel
of tenmporal locality. Yet,little analysis of this mdel has been performnmed
and docunented. Certain properties of the LRUSM are devel oped here. In
particular, the concept of the Stack Wrking Set is introduced and expressions
are derived for the forward recurrence tinme to the next reference to a page,
for the time that a page spends in a cache of a given size and for the tine
fromlast reference to the page being replaced. The fault stream out of a
cache menory i s modelled and it is shown how this can be used to partially
analyze a multilevel menory hierarchy. In addition, the Set Associative Buffer
is analyzed and a necessary and sufficient condition for the optimality of
the LRU replacenent algorithmis advanced.
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1 Introduction.

Program behavi or inpacts performance in numerous ways. O particular
interest to us here will be those aspects of program behavi or which
reflect upon the performance and the operation of multi-level nenory
hierarchies. Every replacenment algorithm has the common feature that
when a page is fetched to a particular level of the hierarchy, it is
kept resident for a certain length of tine before being discarded (or
destaged to a |ower |evel). The residency time is a function of,
amongst other factors, the replacement algorithm The larger the
fraction of references to a page that occur during the page's residency
period, the greater the success of the algorithm  Correspondingly, the
program property which results in references to a particular page being
clustered closely in tine, contributes to the effectiveness of a nenory
hierarchy irrespective of the replacenent algorithm that is enployed.
This clustering of references does in fact exist in nost prograns to
some extent and is terned tenporal locality. Locality, as defined by
Denning is the tendency of progranms to concentrate their references over
a significant interval to a relatively snmall subset of their address
space, and for this favored subset to gradually change [DENN68, DENN72].
It should be evident that the definition is equivalent to that of
temporal locality. The favored subset is the collection of pages that

are currently in the nmidst of a cluster of references.
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The study of tenporal locality may be approached either enpirically
or analytically. The analytic studies center around a nodel for
temporal locality. Two conflicting demands are nade on these nodel s of
program behavior; they nust be analytically tractable to permt
derivation of useful results and they nust also portray, accurately, the
properties of the programis reference string. The latter requirement is
necessary if the derived results are to have any value since an el egant
anal ysis based upon a faulty nodel is meaningless. However, an increase
in the accuracy of the nodel generally involves a corresponding increase
in its conplexity, which eventually results in total intractability.
Clearly, a conpronise is needed to permt fairly accurate results by

coupling a reasonably realistic nodel with a tractable analysis.

2 The Mdelling of Tenporal Locality

A survey of the literature reveals very few analytically tractable
nmodel s of program behavior. The Independent Reference Mdel, (IRM, is,
perhaps, the nodel which has been investigated and anal yzed nost
thoroughly, [FRAN74, KING71, RA075]. Its mmjor drawback has been in
its inability to capture the dynamc, short-term referencing behavior of
programs which is closely tied to tenporal locality. The IRM which is
based on the long term average reference probability of each page, is
quite' inadequate in this respect. The AG-Inversion nmodel, based on the
IRM rectifies this situation [RAFI76]. The Working Set Mbdel, (WSM),
and the Least-Recently-Used Stack Mdel, (LRUSM, are both able to nodel

tenporal locality successfully [DENN68, DENN72, COFF73, MATT70, SHEM66].



Properties and Applications of the LRU Stack Model

The former has the advantage of being the nore natural nodel since it is
based on the inter-reference interval statistics and, so, neasures the
clustering more directly. It also is able to predict the performance of
the Working Set replacenent algorithm exactly. The latter is nore
conpact in the nunber of statistics, can be used for sinulation purposes
to generate a string of menory references which is consistent with the
model and it predicts the performance of the LRU replacenent algorithm
exactly. The WBM consists of the probability function, F(t), where F(t)
is the probability (averaged over all pages) that a reference to a page
occurs exactly t references after the previous reference to that page.
This nodel flows quite naturally from the definition of tenporal
locality. However, since the range of the inter-reference interval, t,
is unbounded, we need, in principle, to neasure and retain an infinite
number of statistics. The LRUSM is obtained by maintaining the pages in
a stack in increasing order of tine since last reference. The
statistics gathered are the average probability, P(d), of referencing
the page which is in position d for all possible values of d. Since d
cannot exceed the number of pages, the nunber of statistics to be
gathered is limted by the size of the program It is in this sense
that the LRUSMis a compact nmodel. P(d) may also be interpreted as the
probability of referencing d distinct pages between two successive
references to the sane page, and though this would seemto be a sonewhat
artificial nodel of tenporal locality it, nevertheless, captures nost of

the flavor of the WSM.
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The LRUSM has the advantage in that it is possible to generate a
reference string wusing the nodel. This is because the LRUSM at each
instant, defines a distribution over the pages describing their
probability of reference. Having generated a reference string, we can
perform any neasurenents we choose upon it to obtain results we could
not have arrived at anal ytically. The WSM does not have this
capability. Using this technique Rafii has shown that the LRUSM
predicts the perfornmance under the MN replacement al gorithm ([BELA66])
accurately and that it does a fair job of predicting the Wrking Set
size and fault rate under the Wrking Set replacenent algorithm
[RAF176]. These properties make the LRUSM very attractive. Yet, little
analysis of the LRUSM has been performed and docunent ed. In the
subsequent sections we shall |ist some properties and applications of
t he LRUSM Before that, we shall state the assunptions behind the
LRUSM  Also, since extensive use is made of generating functions, a few
of the more inportant properties of generating functions will be |isted

here.

3 The Least-Recently-Used Stack Model.

Let us assune that we are nodelling a program whi ch nakes references
to N distinct pages, The LRUSM orders these pages in a stack by the
time since the last reference to them wth the nmost recently referenced
page at the top of the stack. Let the stack positions be nunmbered so
that the top of the stack is position 1 and the bottom of the stack is

position N.  Then, associated with position i is the probability p(i)
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that the next reference wll be to the page which is currently in
positioni. It is assumed that
1. The probability of referencing the page in position i is

i ndependent of the identity of the page, and
2. The probability p(i) is time-invariant, and
3. The probability p(i) is independent of the past reference
activity. (However, since the state of the stack is definitely
dependent on the past reference behavior, the probability of
referencing a particular page is also dependent on the past
references).
The next reference is obtained by sampling from the distribution {p(i)},
and picking the page in that position. To maintain the LRU ordering,
this page is noved to the top of the stack. The position i in which the
page was found is termed the stack distance of that reference. The
stack distance string is generated by a zero-th order Markov chain.
This accounts for the tractability of the LRUSM. The page reference
process, on the other hand, is far nore conplicated. In fact, it cannot
be described by any finite order Markov chain. The individual page
reference processes are renewal processes, but they are not independent.

In particular, two pages cannot be referenced simultaneously.

The stack distance probability distribution is estimated by driving
the LRU stack with the reference string of the program being nodel | ed.
For each reference , the stack is scanned to determine the position of
the referenced page. A count associated wth that position is

incremented and the LRU stack is updated. These counts are normalized

5
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with respect to the total number of references to obtain the fraction of
the references which were to each position. These fractions are the

estimate of {p(i)}.

The hit ratio, h(n), for a memory with a capacity of n pages under

the LRU policy is given by
n
h(n) = Z| p(1)
| =

The niss ratio, i.e., the probability that the referenced page is not in
the menory is given by m(n) = 1-h(n). In the LRUSM, both nm(n) and h(n)
are tinme-invariant and independent of the identity of the pages in the
menmory.  Consequently, the instants of page fault occurrence form a
series of Bernoulli trials and the interval between two successive
faults is geonetrically distributed with a mean of I/nm(n). Furthernore,
each such interval is independent of all other such intervals. Figure 1
di spl ays the Markov chain for the path of a page through the LRU stack.

It will be helpful to refer to it in the subsequent discussion.
4 Probability Generating Functions.

Consider a sequence of numbers, r={rp,rqsee.}e The generating

function for this sequence is given by

- -}

G(z) = Z rizi

i =0
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The nmapping to and fromthe generating function is unique. [f the
sequence were a probability distribution, p={pgspPjsPgs+-+} Where pj is
the probability of some integer valued random variable X assumng the
value i, the corresponding generating function is termed the probability
generating . function (p.g.f.). Perhaps the nost inportant feature of a
p.g.f. is that it pernmits convolution to be represented as a
mul tiplication. Therefore, if G(z) and H(z) are the p.g.f.'s for two
i ndependent integer valued random variables X and Y respectively, then
the p.g.f. for the sum X+Y is given by G(z)H(z). In addition the

p.g.f. has the followi ng properties:

|
G(z)| = Q1) ZZpi=l if the distribution is honest,
|z=1 i =0
| [ | 0
¢'(z)| =2 ipgziTl| = X ip; = mean (X)
|z=1 =0 |z=1 i=0
! = i-2 I 2 2
G(z) | = Z: 1(1-1)pyz | (1°-1)p; = Var(X)+[Mean(X)]“-Mean(X)
lz=1 =0 |z=1 i=0

Also, let S be the sumof N independent, identically distributed random
vari abl es Xl,XZ,...,XNV\here N itself is a random variable, then if 2z)
is the p.g.f. for Xj and H(z) is the p.g.f. for N, the p.g.f. for S
is given by H(G(z)). The reader interested in the derivations of these
properties and in a further discussion of probability generating

functions is referred to Feller's book {FELL68].
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5 Properties of the LRUSM

One of the few properties of the LRUSM that has been docunented is
that every ordering of the pages in the LRU stack is equally probable.
This follows directly fromthe fact that the probability transition
matrix for the Markov chain describing the LRUSM is doubly stochastic.
As a result, each page spends, on the average, an equal amount of tinme
in each stack position and each page has an equal long-term probability
of being referenced. W shall concentrate here on deriving the p.g.f.
and/or the nmonents of the lengths of various intervals which are of

interest.

5.1 The Stack Working Set

We shall often find it helpful to use the concept of the Stack
Working Set. Let us imagine an LRU stack which is initially enpty. The
first reference will be a fault and the corresponding page is placed at
the top of the enpty stack. Each subsequent fault wll cause the nunber
of pages in the stack to be increased by 1. After sonme tine, t, the
nunber of pages in the stack will be some value we wis the size of the
Wrking Set with a window size of t [DENN68]. The average working set
size for a window of size t will be given by wW(t). Alternatively, we
mght be interested in the average tine T(w) that it takes to build up a
working set of size w T(w) is a function that is defined only for
integral values of w. Let us assunme that it is ext ended by
interpolation so as to be defined for all positive values and in a

manner that ensures that it is continuous. Then it is possible to
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define the inverse function D(t) such that D(T(w)) = w. The function

D(t) is analogous to the function Wt) but is not, in general,
identical. D(t) is of interest since it is easily obtained fromthe LRU
stack nodel . Hence it is named the Stack Wirking Set (SW5). Wt) on

the other hand, cannot be derived easily from the LRUSM

THEOREM 1.  The probability generating function (p.g.f.) for and the

mean of the time required to build up a Stack Wrking Set of d pages are

gi ven by

d-1
Uiz;d) = I n(i).z/(1=-h(i)z) and
i =0

o
1

T(d) = 1/m(1) respectivel y.

[y
]
o

PROOF.  Consider a SWS that has just attained the size d-1. Under the
assumptions of the LRUSM the time to the next fault is independent of
the time taken to build up the SWs of size d-I. Then, since the p.g.f.
of the tinme to the next fault is given by

£ m(d-l)(h(d-l)j—lzj = m(d-1)z/(1-h(d-1)z),

j-1
we have

% (z;d) = Tz;d-1).m(d-1)z/ (1-h(d-1)z)
Noting that ®z;1) = z, by induction we have that

d- 1
% (z3d) = T m(i)z/(1-h(1i)z)
1=0
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Differentiating and putting z=1, we al so have that

d-
T(d) =T’(1;d) = 2".L 1/m()
i =0
QED.

The SWS concept cones in handy in nmany places. W shall use it to
give an i nf ormal proof for Theorem 2. It is the basis for
characterizing the spatial locality of a reference string [RAU75]. We
shall also suggest a procedure to determine the anpunt of nenory that
gets allocated to each of a nunber of concurrent reference streams in a

shared nemory which is managed by a global LRU replacement algorithm

5.2 Analysis of Miltilevel Menory Hierarchies.

A problem of increasing inportance is the evaluation of a multilevel
menory hierarchy. The energence of technol ogies such as CCD and bubble
nmenories mekes nmultilevel hierarchies attractive. The analysis of such
a structure is confronted by at |east two significant obstacles:

1. The request streamthat a particular level sees is the fault
stream fromthe level inmediately above it in the hierarchy. The nodel
for the request streamto the highest |evel does not describe the
request streamto any of the lower levels. A procedure is needed to
characterize the fault streamin ternms of the nodel for the request
stream and the paraneters that describe the structure of the |evel under
consi der ati on.

2. The unit of transfer (page size) between each pair of adjacent

levels will, generally, be different. The fault stream out of one Ievel

10
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will be in terns of one page size, but the request streamto the |ower
level nust be in terns of another (larger) page size. A nmethod for
transformng the page size of the nodel for a request stream is needed.
This is shown by Rau to be related to the problem of suitably nodelling
the spatial locality of the request stream [RAU75]. The desired
transformation is obtained there. W shall not consider this problem

any further.,

Theorem 4 is a first attenpt at tackling the question of nodelling

the fault stream Theorens 2 and 3 prepare the ground by proving
certain results needed in Theorem 4. W wish first to derive an
expression for the nean replacenent tine, i.e., the tinme that it takes

for a page to be replaced froma menory of capacity d pages neasured

fromthe time of last reference to that page.

THEOREM 2.  In a nenory of capacity d pages, under the LRU replacenent
algorithm the p.g.f. for and the nean of the tine to replace a

particul ar page, measured fromthe time that it was last referenced are

gi ven by
d-|
Y'iz;d) = T m(i)z/(1-h(1)z) and
i =0
d- |
vd) =2 l/mi) = T(d) respectivel y (1)
i =0

| NFORMAL PROOF. Under the LRU replacenent algorithm the page is

repl aced when it reaches position d+l in the LRU stack. This neans that

11
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a SW5 of size d (and not including the page in question) must be built
up fromthe time that the page was last referenced and at the top of the
LRU stack. Then, by Theorem 1, we have the desired results. However,
the requirenent that the page under consideration not be included in the
SW5 raises some doubts regarding the applicability of Theorem 1 in this

situation. Accordingly, a nore rigorous proof is advanced.

PROOF.  Firstly, under the assunptions of the LRUSM the time spent in
each position is independent of the tinmes spent at other positions.
Accordi ngly,
d
Viz;d) = TWzsi)
i=1
whereq(z;i) is the p.g.f. for the time that a page spends in position
i given that the next distinct position is i+l (and not 1). Now the
probability that a page spends time j in position i given that the next
position visited is i+l
= P[spends tine j in position i and next position is i+l]
Pnext position is i+l]
(h(i-1))3"tm(i)
P[next position is i+l]
Therefore,
W(z;i) = :' m(i) (h(i-l))j'lzj/P [next position is i+l]
j=

i)z 1

1-h(i-1)z P[next position is i+l]
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00
But P[next position is i-1] = ¥_ m(1).(h(i-1)3"1 = m(1) /m(1-1)

=1
so(z;1) = m(i-1)z/(1-h(i-1)z)
d-1
and so'V(z;d) = T m(i)z/(1-h(1)z)

=0

Differentiating and putting z=1 we have

d-1
V(d) = 2_ 1/m(1)
i =0
QED.

The second result needed to prove Theorem 4 relates to the residency

time of a page in a nenory level of capacity d pages

THEOREM 3. The nean residency time of a page in a nenory |evel of
capacity d pages under the LRU replacenent algorithm measured from the
time that the page was staged up to that level to the time that it is

next replaced is given by
W(d) = d/n(d) (2)

PROOF. The proof is facilitated by the use of probability generating

functions to obtain a recurrence relation. Let G(z;d) be the p.g.f.

for the residency time in a menory of capacity d pages, i.e.
00
Az;d) = @ a(i;d)zi
i=0

13
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where a(iz;d) is the probability of the page residing exactly i tine
units in the menory of capacity d. Then clearly
[

G(z3d) |,y = 2 a(i;d) =1  and

2 G(z3d) l,=q = Z i.a(iz;d) = Wd)

P i =0
Consi der, now, the path of a page fromthe tine that it is placed at the
top of the stack to the tine that it first enters position d+l in the
stack. W can divide this interval into a number of sub-intervals X(i).
The random variable X(1) is the tine that it takes the page to first
drop to position d plus the tine that it spends in position d. The page
can exit position d either by noving to the top of the stack wth
probability p(d) or by dropping to position d+l with probability n{d).
If it noves to the top of the stack it goes through another sub-interval
of length X(2). The p.g.f. N(y) for the nunber of sub-intervals
corresponding to a residency period is given by

m(d) p(d)m(d)

N(y) = ==--—- LR LT v+,
n(d-1) (m(d-1))?
m(d) % p(d) i
B )
m(d)y

m(d-1)-p(d)y

since m(d=-1) = n(d) + p(d). The residency period is the sum of a random

nunber of independent identically distributed random variables X(i).

14
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Therefore, if H(z;d) is the p.g.f.for X
m(d) H(z;d)
G(z3;d) = N(H(z;d)) = """ 7mmmmmmmmmes
m(d-1)-p(d)H(z;d)
Now, under the LRUSM assunptions, X is the sum of two independent random

variables -- the residency period in the top d-1 positions of the stack

plus the tine spent in position d. Therefore

where the second termis the p.g.f. for the time spent in position d.

Now,
W(d) = G’ (z3d) |,
H(z;d) p(d)H"(z;d)+H’ (z;d) (m(d-1)-p(d)H(z;d)) !
= (). Tttt
(m(d-1) = p(d)H(z3d))? |z=1
m(d)m(d=1)H" (z;d) | m(d-1).H" (z;d) |
oA = e | (3)
(m(d)) |z=1 m(d) [z=1
And,
m(d- 1) m(d-1)z
H(z3d) = G(z3d=1)e=mmmmmmmmeaees t G (z3d-1)e=——mmmmmm
(1-h(d=1y2) *2 1-h(d-1)z
therefore
H'(z3d) |,y = I/n(d-1) + Wd-1) (4)

15
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From Egns. 3 and 4

| m d- 1)
Wd) = ----- tommme—— W(d-1)
m(d) m(d)
Since W1) = 1/ml), it is easily shown that d/md) satisfies the

recurrence relation.

QE D.

We can now return to the issue of nodelling the fault stream out of a
particular level in a nmenory hierarchy. Let the request streamto the
k-th level in the hierarchy be characterized by the miss ratio function,
m (d;), which gives the fault rate out of level k under the LRU
replacenent policy, if the capacity of that level is d; pages and where
the fault rate is neasured in units of faults out of level k per request
to level Kk. For any given value of d;, we wish to sinilarly
characterize the fault stream (the request streamto Ilevel k+l) by a
mss ratio function, mk+1(d2),which gives us the fault rate out of
level k+l as a function of the capacity of |evel k+l, We assune that

the page size at levels k and k+l are the sane.

THEOREM 4. Under the assunption that all pages have identical behavior,
and if Wk(n) and Vk(n) are treated as exact rather than as average
residency and replacenent tines, then if the request streamto |level %

is characterized by m (d), and the size of the level is n pages, and if

16
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the fault stream is characterized by the function m ., (d) which gives
the miss rate fromlevel k+l (neasured in faults at 1level k+l per

request to level k) as a function of the capacity, d, of level k+l, then

m,,q(d) = m (n) for d€n
ktl mi(d) for d >n
PROOF: Let,
9D (t)
Q(t) = cme—- and
ot
Q(t)
F(t) = _é_-_-
1

where D(t) is the nean size of the Stack Working Set built up in tine t.

By analogy with the Wrking Set Mdel, F(t) is the the probability
that the length of the interval between two successive references to any
given page is t [DENN72]. Qt) is the fault rate corresponding to the
size of the Stack Wrking Set built up over a period t. Note that by

the definition of D(t) and T(n)

Q(t) = m(D(t)) and (5)

Q(T(n)) (6)

m(n)

where T(.) is the inverse of the function D(.).
Let F,(t) and Q. (t) correspond to the request streamto level k, and
Fr41(t) and Q4 (t) correspond to the fault stream For notational

conveni ence, W (n) and Vi (n) will often be referred to as W and Vies

without introducing any anbiguity.

17
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A page cannot be referenced at level k+l if a copy is present at
level k, for the reference will be intercepted by |level k. ' The period
of residency at level k nmeasured fromthe tinme it was last referenced at
level k+l (and staged up to level k) is W (n). Therefore, neglecting

the variance of the residency tinme, for t £ wk(n),

Fiep (€) = 0

If t > W, (n) then the page is no longer present in level k. By
Theorem 2, the page was referenced V, (n) tine units before the tine that
it was displaced fromlevel k (Fig.2) if the variance of the replacenent
time is neglected. Therefore, for t > Wk(n),

Fk+l(t) = Fk(t - Wk + Vk)

Therefore, we have
Frgpp(e) =10 for < W
{Fk(t - wk + Vk) for t > wk

Since, by definition, F j(t) = -3Q.(t)/dt, we have

4
Qk+1(t) = Qk+l (0) = {Fk.}.l (X) dx

t
Q1 (0) = S0 dx = Qg (0) for t €W,
0

1}
—

~
=

t
k

18
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By the first part of this equation, Q. (W) Q41 (0)
working set size at level k+l is 0, then every fault at level k is
a fault at |evel k+1, and so,

Qk+1(0) = Mk(n)

But by Eqn. 6,

M (n) = Q (T, (n))
And since, by Eqn.l,

Vk(n) = Tk(n)
we have

Q+1(0) = Qg (W) = Q (V)

Substituting y = x = W + V. in Eqn.7 and using Eqn. 8 we get,
Qk+l(t) = Qk(vk) for t € Wy s
t-W +-Vk
Q (Vi) - {Fkl?y) dy for t > W.
k

Therefore,

Q1 ()

Qk(vk) t < wk’
Qk (t -wk +Vk) t > wk.

Next, since by definition t) = 9dD(t)/dt we have

t
Dit1 (8) = S Qe (0 dx

rt
0ka(vk) dx t < W,

t
Dy 4q (W) +‘{Qk(x S A dx ot > W
- k
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And, since Dk+1(0) = 0,

Dy 4p (E) :{Qk(Vk)*t £< W,

Qk(vk)*wk +Dk(t -Wk +Vk) -Dk(Vk) t > Wk

But since by Eqns.1,2,6,
Dk(vk) = Dk(Tk(n)) =n, and
Wk(n) = n/mk(n), and
Qk(vk) = Qk(Tk(n)) = Mk(n),
we have
Dk+1(t) = mk(n)*t t < Wk
Therefore, for t < W, we have
Dpyp () < m, by Eqn. 10 and

My 41 (Dk+l (£)) = Qk+1 (t) by Egn.5, and

Qi1 (B) = Qe (V) by Egn.9, and

Q (Vi) = Q (T (), by Eqn.1, and

Q (T (n)) = my (n) by Eqn. 6.
Therefore,

Mgl Py (£)) = m (n)
i.e. mk+1(d) = mk(n) for d £n
For t > W, we have

Dk+l(t) > n, and

Qe (©)

Q1 (1)

M1 Dy (€)) by Eqn.5, and since

Qg (t =W, +V,) by Egn. 9, and

Therefore, by Egn.5,

20
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But, by Egn.5,
Therefore,
mk+1(d) = mk(d) for d >n (12)

From Eqns. 11 and 12 we obtain the theoremin its final form

my (d) 1>n.

QED.

Theorem 4 states that, for a constant page size, the top n pages in
the LRU stack for level k+l will be in the higher level (of size n
pages). Conversely, it also states that a page which is at a position
lower than n in the LRU stack for level k+l will not be in |level k.
This is, admttedly, a rather sinplistic analysis since it uses only the
average residency and replacenment times and does not take jnto account
the variance. Consequently, validation of the analysis was sought
through the use of trace driven sinulation. The trace tapes used were

043 - Fortran execution,

049 Cobol execution,

050 - Cobol conpilation.

The fault rate function predicted by Theorem 4 is conpared with {pe
measured fault rate function in Figs.3-5. The correspondence is quite
good for the page sizes normally used in cache nemories, but is poor for

page sizes of about 1K bytes when the value of d is close to n.
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5.3 Mnents of the Inter-Reference Interva
In the LRUSM the sequence of references to a page forns a renewa

process. This is obvious, since a reference to a page noves it to the
top of the stack and resets its state. Its future behavior and path
through the LRU stack is independent of the past and statistically
identical each tine it is referenced and brought to the top of the
st ack. W now seek a description of this renewal process. W shall do
so by deriving t he probability generating function for the
inter-reference interval in a recursive form This permts us to obtain
cl osed form expressions for the first two central nonents of the
inter-reference interval. In fact, we can sinultaneously obtain the
first two central nmonents for the forward recurrence tine of a page

which is in any position in the LRU stack

THEOREM 5. In the LRUSM the mean, M (i), and the variance, M,(i), of
the forward recurrence time (to next reference) of the page in position
i of the LRU stack are given by
My(1) = (Ni+)/n(i-1) and
N
M, (1) = [Zj;i-l(N—j)/m(i) - (Ni+#) = (N—i+1)2/m(i—11 /m(i-1)
respectively, where N is the total nunber of pages. In particular, the

mean and the variance of the inter-reference tine to a page are given by

Ml(l) = N and

z

|
My(l) = 2 O(Nj)/rr(j)-N-Nz respectivel y.

.
1]
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PROOF. Consider a page which has just reached position i in the LRU
stack. Let the p.g.f. for the time to next reference be Ti(z)' One of
two things can happen to the page; it spends a certain period of time at
position i and is then either referenced with unconditional probability
p(i) or displaced to position i+l with unconditional probability n{i).
However, given that the page |leaves position i, the probabilities of

these two outconmes are p(i)/mi-1) and m(i)/m(i-1) respectively, since

p(i)+m(i) = m(i-1). |If the page noves to position i+, the remining
tine to reference is independent of the tine spent in position i. Then
noting that the p.g.f. for the time spent in position i is given by

m(i-1)z/(1-h(i-1)z), we have t hat
mi-1)z p(i) mi-1)z m(i)

T,(z) = ~~~"~""-- ComTmme L . T (z) ., ===~
1 L-h(i-1z  m(i-1) 1-h(i-1)z  *1 m(i-1)

Noting that Ty(z) = m(N-1)z/(1-h(N-1)z), we can obtain the p.g.f. for
t he forward recurrence tine, T;(z), and the p.g.f. for the

inter-reference tine, Tl(z)’ fromthe recurrence rel ation

Using the recurrence relation, we can also obtain the mean and the

variance of the forward recurrence tinme in closed form We have t hat

z
S S —— p(i)+m(i)T (2)]
dz [l-h(i-l)z]{ i

. .b : ’
[P(D)+m(i)T 4 (2)] == —=mmmmmmm + - » m()T44,7(2)
i+l 3 l-h(i-1)z  1-h(i-1)z o

Ti' (z)
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Using the fact that Ti+1(1)=1’ we have that

1 mi
Mp(i) = T30 (1) = --on b mmem T (1)

Di-1 M-

Since TN (1) = 1/m(N-~1), it can be shown by induction that

M(1) = (Nei+)/n(i-1)

Simlarly,
2 z
T,;" @) = [p(D)+m(A)T 4 (2)] . ==z ——mmmmmo
dz2 1-h(i-1)z
b Z
+ 2-m(i)Ti+1'(z) ., m emooeaae-
0z 1-h(i-1)z
z
b Cm()Ty " (2)

1-h(i-1)z

from whi ch, noting that T4 (1) = 1 and Ti+1'(1)=(N-i)/m(i) we get that
T, (1)=2 (h(1-1)4-1) /m(i-1)% + m(1)T ;" (1) /m(i-1)
Then, since TN"(1)=2h(N-1)/m(N-1)2, it can be shown by induction that
N-1
T,"(1) = |2 (N=-3)/m(j) = 2(N-i+l) |/ m(i-1)
j=i-1
But My(i) = T"i(l)+Ml—Ml(i)2. Ther ef ore,
N-1 9 |
My(1)={2 D (=) /m(3)= (N=i+1)=(N-i+1) /m(i-l)l/m(i—l)
j=i-1
and, in particular, the variance of the inter-reference tine is given by
N-I 9
Mp(l) = 2 3 (N=3)/m(§) = N = N

j=0
QED.
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The forward recurrence time was neasured fromthe tinme that a page
entered position i of the LRU stack. By the nenoryless property of the
geometrically distributed residence of the page in position i, the
forward recurrence tine neasured from sone arbitrary time given that the

page is in position i wll have the same distribution.

5.4 Optimality of the LRU replacement policy
The criterion for the optimality of a realizable demand paging policy

is that it replace the page with the |ongest expected tinme to next

ref erence. Therefore, if the LRU policy is to be optinal, we nust have
t hat

M (1) € M (1+1) for 1€i<N, i.e., that

N-i+l N-i

i1 md)

whi ch reduces to \
p(1) 2 m(1)/(N=-1) = [L/(N-1)]. 2 p(d)

j=i+l
i.e., each stack distance probability nust be at least as large as the
average of the probabilities of the greater stack distances. Coffnan
and Denning have stated that a sufficient condition for the LRU policy
to be optimal for all buffer sizes is that p(i) > p(itl) for 1<i<N
[COFF73]. W& have found a necessary and sufficient condition for
optimality. That their condition inplies ours is clear, for if p(i)>
p(i+l) for 1<i<N, then

N

p(1) 2 [1/(N-1)1. 3~ p(j) = m(i)/(N-i)
j=i+1
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On the other hand, the converse is not always true. This is best
denonstrated by an exanpl e. Let N =5 and let the stack distance
probabilities be (0.6, 0.1, 0.2, 0.05  0.05). The expected forward
recurrence times for each stack position are (5, 10, 10, 20, 20). The
LRU policy is optimal in this case despite the fact that the stack

di stance probabilities are not nonotonically non-increasing

6 Applications of the LRUSM

The preceeding Theorens have described sone of the properties of the
LRUSM We shall now denonstrate a few applications of the LRUSM in
anal yzing menory nanagement strategies. In particular, we shall analyze
the performance of a set associative LRU policy and an optinmal denmand
pre-paging algorithm In addition, we shall consider a menory shared by
a nunber of concurrently active progranms and managed by the global LRU
policy. W shall suggest a procedure for calculating the manner in

which the nenory is allocated anpbngst the active prograns.

6.1 The Set Associative Buffer

The set associative buffer is alnost invariably used at the cache
level to effect a conpromse between the performance of the cache and
the conplexity of managing it [KAPL73]. Each block (page) in the main
menory is mapped into a quotient class based on the |lower order bits of
t he bl ock address. In a set associative buffer of degree of
associativity = a, each quotient class is associated with a unique set

of a block franes in the buffer. Any block froma particular quotient
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class my only be placed in one of the frames in the corresponding set.
The decision as to which of the a franes is to be chosen is based on the
LRU policy. W have, therefore, a fully associative buffer of a blocks
per quotient class. Wen a=1 we have what is terned the direct mapping
buffer, and when a is the nunber of franes in the buffer, we have the
fully associative buffer. Qur analysis is based upon the follow ng
assunptions:
1. The standard LRUSM assunptions hol d.
2. The address of the block in position i in the LRU stack is
i ndependent of the address of the block in position j for all i,j
and i#j.
3. The block in position i of the LRU stack is equally likely to
belong to any of the a quotient classes, for all i.
Let the set associative buffer have g quotient classes (colums) and a
degree of associativity of a (i.e. arows). |/qis the probability
that the block in position i of the LRU stack is in any particular one

of the g quotient classes.

Def i ne mS(q,a) to be the niss rate in the set associative buffer
descri bed above. Also, define p;(q,a) to be the probability that the
referenced block is found at position a in the LRU stack corresponding
to sone quotient class. Then

a
mg(q,a) = 1 - Zl P (d53)
j=
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Now, p.(q,3) is the probability that exactly j-1 of the blocks, which
are above the referenced block in the fully associative LRU stack, fall
into the same quotient class as the referenced block. Civen that the
referenced block is in position i of the fully associative LRU stack,
the probability of there being j-1 such blocks is given by
C(i-1,j-1). (1/q)3~ L. (1-1/q)*3, where C(i-1,j-1) is the binonal
coefficient (i-1)!/[(j-1)!(i-j)!]. Therefore, the probability of
referencing a block and finding it at position j in the quotient class
LRU stack is given by

N
ps(a,3) = 2 p(i) ci-1,3-1)(1/q)3"1 (1-1/¢)13 and
i=1

a N . .
m(q,a)= 1 = > 2 p(i)C(i-1,j-1)(1/q)I 7 (1-1/¢) %3
j=1 i=1

a

N . . .
=1 -Z.l'. p(i) > c(i-1,3-1)(1/q)3 7 (1-1/q)*~3
i = j=1

1 - 2 p(i) By(i)
i=l

a . .
where B (i) = 2 C(i-1,j-1)(1/q)37! (1-1/q)1~3
j=1

and is a function of i, which is equal to 1 for isa and then
monot oni cal |y decreases. The rate at which B, (i) decreases for ira is
greater for larger values of a, assuming that the product aq is kept
constant, i.e. the total capacity of the buffer is kept constant
(Fig.6). Thus, the hit rate to a set associative buffer with a high

degree of associativity gives heavier weighting to the p(i)'s for snall
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i and lower weighting to the p(i)'s for large i than does a set
associ ative buffer of identical capacity but with a smaller degree of

associativity. Letting c=aq, the extreme cases are:

the Direct Mpping Buffer
N i-
m (c,1) =1 - 2 p(1) (1-1/c)'"
i=1
and the Fully Associative Buffer
[
mg(l,e) = 1 = 2 p(1)
i=1
When the p(i) is monotonically decreasing, the miss ratio is mnimnmzed
by weighting as heavily as possible the p(i)'s for small i. The fully
associative buffer does just this. However, the fully associative
buffer places no weight at all for i>c. Thus, if p(i) is of the form
shown in Fig.7, the direct mapping buffer would perform better. In
fact, just such an anomalous result was obtained when studying the trace
tape 050. Subsequent measurenent and examination of p(i) for the tape

reveal ed a bell shaped function as in Fig.7.

6.2 Optimal Demand Pre-Paging

The principle of optimality, for a fixed nenory allocation policy,
states that the pages, for which references are nost imminent, should be
mai ntained in the buffer. If limted to demand paging policies, the
optimal policy is MN, which, on the occurrence of a fault, replaces the

page in the buffer with the least inmminent reference. If we permt
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pre-paging, then the optimal policy, assumng we have n page franes
available, is to always maintain in the buffer the n pages with the nost
i mmnent references. Such a policy would cause no page faults at all
even for n=l. But such a policy is clearly inpractical even if we had
conplete future know edge. A nore feasible pre-paging policy is one
which effects page transfers only on the occurrence of a page fault.
Such a policy is termed denmand pre-pagi ng [TRIV74]. The optinmal demand
pre-paging policy, DPMN  would, on the occurrence of a fault, update
the contents of the buffer so as to contain the n pages with the nost
immnent references. This policy, like MN, is unrealizable, but serves

as a standard of reference.

The analysis of this algorithmis sinplified by the use of the Mst
I mmi nent Reference Stack Mdel (MRSM. In the MRSM the pages are
ordered by imminence of reference. The page at the top of the MIR stack
is the one which will be referenced next. After a page is referenced,
it is inserted in position i of the MR stack with probability p(i) and
all the pages which were in positions 2 through i are noved up one
position. p(i) is the probability that the page will next he referenced
after i distinct pages (those above it in the MR stack) have been
referenced. So, the p(i) of the MRSM and the p(i) of the LRUSM are
i denti cal . Fig.8 shows the Markov chain corresponding to the path of a

page through the MR stack.

Returning to the DPMN policy, let us assune that a page fault has

just occurred. Consequently, the top n pages in the MIR stack are all
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in the buffer. The next fault occurs on the first occasion that a page
in positions n+l through Nis referenced. Such a page must necessarily
be in position n+l since this is the page which will be referenced
before any of the other pages which are not in the buffer. W wsh to
determ ne the nean tine for a page to travel from position n+l to

position 1 in the MIR stack.

From Fig.8 we see that the nmean tinme spent in position i before
moving on to position i-l is given by I/mi-1) for l<igN. Therefore,
the mean tine between faults is

n
2_ 1/m(4)
i=1

The mean fault rate is then given by

1/ i 1/m(1)
i=1
It is possible to obtain an upper bound on the page traffic too.
Wth the DPM N policy, a page is replaced if, on the occurrence of a
fault, it is at a position in the MR stack |ower than position n. This
event takes place if, after a reference, it is inserted at a position
lower than n and it does not rise into the top n positions before the
next fault. |f we neglect the second condition, we over estimate the
probability of a page being replaced and, accordingly, overestinate the

traffic.
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Once again, let us assume that a fault has just occurred and that the
top n pages are present in the buffer. Let us also assume that the page
in position ntl is tagged. Wiile the tagged page stays in position n+l,
all referenced pages are, necessarily, being inserted into positions 1
t hrough n. The tagged page rises one position only when the referenced
page is inserted in the position currently occupied by the tagged page
or in a position lower than that. Conversely, a page can be inserted
into positions n+l and lower (and be replaced) only when the tagged page

rises one position.

If the tagged page rises frompositioni to i-I, (l<i<n+l), then the
referenced page must have been inserted in one of the positions i
through N Conditional on this, the probability that it was inserted

below n is

[p (n+1)+p (n+2 )+ o o +p (N) 1/ [p (L) +p (1+1)+e o e tp () 1= m(n)/ (i - 1).

So, the average number of pages replaced when the tagged page rises from
position i to i-I is mn)/mi-1). The average number of pages replaced
per fault using DPMIN i s bounded above by

n

n
2_ n(n)/m(i) = m(n) 3 1/n(i)
i i =l
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The traffic is given by the nmean nunber of pages replaced per fault
multiplied by the fault rate, and is bounded above by

n n
m(n)[Z l/m(i)J [I/Zl/m(i)] = m(n)
i=1 i

i=1

which is the traffic generated by the LRU policy.

W see then that DPMN can reduce the fault rate considerably

compared to LRU without increasing the traffic.

6.3 Sharing of Menory using the dobal LRU policy

Lastly, we consider a buffer shared by a nunber of concurrently
active processes. Such a situation might arise in a nultiprocessor
system where all the processors share a common cache or main menmory, or
in a multiple instruction stream processor with shared resources
[FLYN68]. In any event it is assumed that the next request will be from
process i with probability ry. A multiprogramr ng system cannot be
included in this framework since only one process is active at any tine.
The menory managenent policy is assumed to be Gobal LRU. W shall use
the Stack Wirking Set to determine the manner in which the capacity of
the shared buffer is allocated to the individual processes, i.e., if d
is the capacity of the shared buffer and we have g concurrent processes,
we shall calculate {d;}, where di is the nmean nunber of pages of process

i present in the buffer and (dl+d2+...+dq) = d.
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At tinme t, the SWs for process i has a size of D, (t). The total

space occupied by all the SWS’s at tine t is given by

9
D(t) = > Dy(t)
i=1

Let to be the value of t such that D(t0)=d. Then di=Di(t0). to is

easily obtained either graphically or by inverting D(t).
7 Concl usion

We have derived a nunmber of properties of the LRUSM  Most of these
are exact results. It is worth our while to list the approxi mations
that we have used and to classify them In developing and using the
Stack Wrking Set, we have nade the conceptual approximation that it and
Denning's Working Set can be treated identically. W also used a
mat hematical approxinmation in allowing ourselves to treat discrete
functions as continuous ones by interpol ation. W used anot her
conceptual approximation when we relaced the random variables for the
repl acenent and residency times by constants equal to the neans. Thi s

approxi mation turned out to be poor for large page sizes.
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