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ABSTRACT

Desi gners of MOS LSI circuits can take advantage of conpl ex
functional cells in order to achieve better performance. This
paper discusses the inplenmention of a randomlogic function on an
array of OCMOS transistors. A graph-theoretical algorithm which
mninizes the size of an array is presented. This method is
useful for the design of cells used in conventional design

automation systens.

| NDEX TERMS: CMOS functional arrays, CMOS circuit design, LSI
iayout, LSI design automation, conputer-aided design, design

aut omat i on



1. I NTRODUCTI ON

- — - -~

In integrated circuit design it is possible to inpienent a
logic function by means of a circuit consisting of one or nore
el ementary cells such as NAND or NOR gates or by neans of a single

functional cell

The basic advantages of functional cells, such as smalier
size and better performance, are well known to designers of MXS
LSI [1]. Theoretical results about network synthesis wth conplex
functional cells have been reported in [2], ([31, [4]. Sonme
comrercial products also take advantage of these properties [5].
However, nmost designers still use a limted library of cells. For
exanpl e, NAND gates are often used as the only primtive cell
This is partly due to the fact that little has been reported about
the physical inplenentation of conplex functional cells [6].
Therefore, designers do not have confidence in the performance and
nerit of nmore conplex cells. In order to overcone these problens,

a systematic enunmeration of functional cells is inevitable

The nunber of useful functional cells is enunerated in this
paper. This nunber is so large that a systematic |ayout nethod is
necessary. An array of CMOS FET's is introduced as the basic

| ayout and a graph- theoretical algorithm which mnimzes the size



of the array is presented. This type of array is also useful as a
basic cell for conventional design autonation systens [7], (8]
because it has a rectangular shape with the same height as the
other cells. Several exanples show the significant nerit of

functional cells in reducing the space required



2. CMOS FUNCTI ONAL CELLS

An inplementation of the exclusive-or funtion XY + XY is
shown in Figure I where the designer was required to use NAND
gates throughout. An alternative inplenmentation of the same

function is shown in Figure 2 [1], where the designer took

advantage of the functional cell which realizes the function XY +

7. This approach results in better performance and smaller size

than the design of Figure 1
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a) logic diagram b) circuit

An alternative inplenentation of the exclusive-or function.
c) layout



3. ENUMERATI ON

In this paper, we will limt ourselves to AND-OR networks
realized in CMOS by neans of series/parallel connections of
transistors. Furthernore, we will require that the topology of

the p-MOS and n-MOS sides of the circuit are each other's dual .

The nunber of functional cells which has series/parallel
topology is shown in Table 1, where the maxi num number of series

FET's between the power and the output is designated as the |eve

of a cell. The details of the enuneration are shown in the
Appendi x.
' Number | Number |
of \ of !
! | evel s | cells |
| i !
| 1 1 |
2 \ 6
| 3 | 80 |
| it 1 3434 !

Table 1:  Nunber of cells with
a given |evel
The delay of a cell nainly depends on the nunber of |evels
since it corresponds to the |longest path to charge the
capaci tance. Cenerally, <cells with less than 4 levels are
desirable. To use all of the cells with 3levels and some with 4
level s seems to be a reasonable conproni se, although the decision
about the usefulness of cells is beyond the scope of this paper.
In any case, systematic design is inevitable in order to treat

nore than several hundred cell types
6



4 . BASIC LAYQUT STRATEGY

The basic layout schene for an arbitrary logic function is
given in this section, starting from the corresponding AND'OR (sum

of products) specification.

A cell is an array of CMOS transistors as shown in Figure 3.
It consists of a row of p-MXS transistors and a row of n-MOS
transistors corresponding to the p-MOS and n-MXS sides of the
circuit, respectively. Because of the requirenent that the p-MOS
and n-MOS sides are each other's dual, the number of transistors
is the sane in both rows. W will further assume that the
transistors are aiigned vertically. AND/OR gates in the logic

diagram correspond to the series/parallel connections in the

circuit diagram It is quite clear that for every AND OR
specification of a boolean  function, one can obtain a
series-paraliel inplenentation in CMOXS technology, in which the
p-MXS side and n-MOS sides are each others dual. The nunber of

series/parallel transistors for every AND/CR elenment is equal to
the nunber of inputs to that element. The dual topology of the

p- MsS side and of the n-MOS side are as shown in Figure 3(c).

A nore general topology other than series/parallel can be

used in a MOXS circuit as in the case of a relay network. The
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t opol ogy of the p-MXS side and the n-MOS side need not to be dua
in the strict sense. However, the series-parailel connection and

the duality are assumed here in order to sinplify the problem



5. CPTIMAL LAYQUT
e [ --

A graph theoretical algorithmfor mnimzing the size of a

functional array is developed in this section

5iPrelim nary Considerations

............ [ mmm e o

Physi cal | y adj acent gates can be connected by a diffusion

area. The al um ni um connections between nei ghbors, as in Figure
3(d), are replaced by diffusion areas as shown in Figure 4(a), but
the size of the array was not changed. Even in a nore
sophisticated |ayout arrangement, the alignnment between p-MXS side
and n-MOS side is required. Figure 4(b)is a more optimal size

| ayout for the circuit of Figure 3(b).

However the best result is obtained fromthe alternative
circuit of Figure 5(b) which is logically equivalent with the

circuit in Figure 3(b).

Finally, the layout of the functional cell can be optim zed
as shown in Figure 5(d) and the size of this array is al nbst one

hal f that of the basic layout shown in Figure 3(d).

10
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In general, the area of a functional cell is calculated as

follows: area = width * height
where:  height = constant

width = basic grid size # (nunber of inputs + number of

separations + 1)

A separation is required when there is no connection between
physically adjacent transistors as illustrated in Figure 4(b).
Since both the cell height and the basic grid size are a function
of the technol ogy enpl oyed, an optimal |ayout is obtained by

mnimzing the nunber of separations

13



5.2 Gaph-Theoretical Algorithm

Definition: An elementary series-parallel graph  G(V,E,v,w)
consists of a single edge e joining vertices v and w.  Hence,
its vertex set V={ v,w}and its edge set E = {(v,w)}. The

vertices v and w are the termnation points of G

Definition: The series  conposition G(V,E,v,w) oOf t wo
series-paral |l el graphs G'(v',E',v',w')and G"(V",E",v" ,w")isS

a new graph constructed fromgG' and G" as fol | ows:

1) V=v'0 v U{ut - {w,v"} where u is a new vertex
created to replace vertices w' and v" which are merged

t oget her.

2) E= E' UE" where every occurrence of w and v" is

repl aced by u.

3)v = v' and w = w" are the termnation points of the new

graph
Definition: The  parallel conposition  G(V,E,v,w) oOf t wo

series-parallel graphs G'(v',E',vt,w')and G"(V",E",v",w")i s

a new graph constructed fromgG* and G" as fol | ows:

14



1) V= VARIR'ANT {v,w}-{v',w"Wwhere v and w are new

vertices created to replace v',v" and w',w" respectively.
2) E = E' UE", where ever occurrence of v' and v" is
repl aced by v and every occurrence of w' and w" is

replaced by w.

5) The new termnation points are v = v' = yv" and w = w'

w'.

Definition: An elenmentary  series-parallel graph is a
series-parallel graph
A graph obtained by successive series and parallel
conpositions on a set of elenentary series-parallel graphs is

a series-parallel graph.

The graph model of a circuit is defined as foliows. A p-side
graph and a n-side graph are nodels of the p-MOS side and the
n-M0S side of a circuit, respectively. The p-MXS side graph is

defined as follows:

- every gate/drain potential is represented by a vertex.

- every transistor is represented by an edge, connecting the

15



vertices representing the source and drain.

The n-side graph can be defined in a simlar way. An exanple

of such a graph is shown in Figure 5.

Because of the restriction on the CMOS circuits under
consi derati on, both the n-side and p-side graphs are

series-parallel graphs.

Edges correspond to transistors in both graphs and they are
connected in a series/parallel nmanner according to the
series/parallel connections of transistors in the circuit. The
names of input signals are used to |abel those edges. The p-side
graph and the n-side graph are dual by the assunption of section 3

and each corresponding pair of edges has a common | abel

The follow ng property of the graph nodel is of interest for

the optimal |ayout of CMOS circuits

If two edges x and y are adjacent in the graph nodel, then
it is possible to place the corresponding gates in a physically
adj acent position of an array and hence, connect them by a
diffusion area. In order to minimze the nunber of separation
areas, it is necessary to find a set of mninumsize paths which

correspond to chains of transistors in the array. As indicated in

16



section 54 such a set will result in a mninal area |ayout

If there exists an Euler path in the graph nodel, then all
gates can be chained by diffusion areas. 1f there is no Euler
path then the graph can be deconposed into several subgraphs which
have Euler paths. In the latter case, each Euler path corresponds
to a chain of transistors that is separated from another such

chain by a separation area.

In order to reduce the size of an array it is necessary to
find a pair of paths on the dual graph moelsw th the sane
sequence of |abels, because p-type and n-type gates correspondi ng
to the same input signal have the same horizontal position in the
CMXS array. For exanple, the path <1,3,2,4,5>0f the n-side graph
in Figure 3(c)produces a chain of gates on the n-M0S side as
shown in Figure 4(b). There is, however, no corresponding Euler
path in the p-side graph. Therefore, the gates on the p-MXS side

are separated between gate 2 and gate 4 as shown in Figure 4(b).

On the other hand, path <2,3,1,4,5>i s an Euler path in both
the p-side and the n-side graph of Figure 5(c). Therefore, all
gates can be chained together by diffusion areas w thout any

separation areas as shown in Figure 5(d).

17



The general algorithmis shown bel ow

1) enunerate all possible decompositions of the graph nmodel to

find the m nimum nunber of Euler paths that cover the

gr aph.

2) chain the gates by nmeans of a diffusion area according to

the order of the edges in each Euler path

35) if nore than 2 Eulerpaths are necessary to cover the graph
nodel, then provide a separation area between each pair of

chai ns.

18



6. REDUCT10N OF THE PROBLEM

In order to find the mnimm nunber of Euler paths, it is
possi ble to take advantage of the reduction nmethod which is
illustrated in Figure 6: an odd nunber of series or paralle

edges can be reduced to a single edge,

Definition: The reduced graph is obtained by replacing an odd
number of series (parallel) edges by a single edge, until no

further reduction is possible,

Theorem 1. If there is an Euler path in the reduced graph, then

there exists an Euler path in the original graph

(Proof) It is possible to reconstruct an Euler path in the
original graph by replacing each edge of the Euler path in
the reduced graph by a sequence of the original odd nunber of

edges.
Sometimes this reduction makes the problem trivial. For

exanple, the graph nodel of Figure 8is reduced to a single edge

and the existence of an Euler path in the graph nmodel is obvious

19



Figure 6:

Reduction of odd nunber of edges.
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Theorem2 : If the number of inputs to every AND/OR elenent is
odd, then
1)the corresponding graph nodel has a single Euler path.
2) there exists a graph nodel such that the sequence of
edges on an Euler path corresponds to the vertical order
of inputs on a planar representation of the logic

di agram

(Proof) (1)The CMOS inpl enentation of an AND/ OR el ement has a
nunber of series/parallel transistors that is equai to the
nunber of inputs to that element (see section 4). Since the
nunmber of edges in series or in parallel is always odd, the
graph nodel can be reduced to a single edge which is an Euler
path itself. So there exists an Euler path on the origina

graph according to theorem !

(2) it is possible to construct the graph as fol | ows

(see the exanple in Figure 7(c)):
(a) Start with an edge corresponding to the circuit’s output.

(b) Select an edge corresponding to the output of a gate and

replace it by the series-parallel graph for that gate

21
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(¢) Reorgani ze the sequence of new edges on the Euler path
being constructed such that it corresponds to the
vertical order of the inputs on the planar representation
of the logic diagram Such a rearrangement of edges in
the Euler path is always possible when the nunber of
inputs to an AND/OR el ement and hence the nunber of edges

in series or in parallel is odd

23



7. HEURISTIC ALGORI THV

- —— - . . o - — -

Since the graph-theoretical algorithm of section 5 is
exhaustive in nature, a heuristic algorithm which takes advantage
of theorem 2 1S  proposed. Addi ti onal inputs called
"pseudo"inputs are introduced and the original problemis nodified
so that every gate in a logic diagram has an odd nunber of inputs.
It is guaranteed by tneorem 2 that there exists an Euler path for
this rmodified probl em This  Euler path contains edges
corresponding to the original inputs and also edges correspondi ng
to the new "pseudo"inputs which are possible separation areas.
The topology of the circuit should be selected such that the

nunber of separation areas is mnimzed.

The heuristic algorithm consists of the follow ng steps:

1) To every gate wth an even nunber of inputs a “pseudo”

I nput is added.

2) Add this new input to the gate in such a way that the
planar representation of the |l ogic diagram shows a
m ni mal interlace of "pseudo" and real inputs. 1t should
be noted that a "pseudo" input at the top or at the
bottom of the |logic diagram desnot contribute to the
separation areas, as illustrated in Figure 7(b) and

Figure 7(c). 24



3) Construct the graph nmodel such that the sequence of edges
corresponds to thevertical order of inputs on the planar

| ogi ¢ di agram

4) Chain together the gates by neans of diffusion areas, as
indicated by the sequence of edges on the Euler path.

“Pseudo " edges indicate separation areas

5) The final circuit topology can be derived by deleting
"pseudo" edges in parallel with other edges and by

contracting "pseudo" edges in series with other edges

The mnimzation of the separation areas can be performed on
a logic diagram which nicely shows the structure of the series/

parallel graph.

Figure 8shows the application of this heuristic algorithmto
the problemof Figure 3. The same result as in Figure 5 is found
easily. In general, new additional inputs correspond to
separation areas, but in this case they do not actually separate

the chain of gates because they are on both ends.

25



Figure 8:

(a)

(b)

(c)

Application of the heuristic algorithm
a) new inputs pt1 and p2 are added.
b) optimal sequence of inputs without the interlace

of pl or p2.
c)circuit with the dua

26

path {p1,2,3,1,4,5,p1}



This heuristic algorithm does not necessarily give the
optimal Iayout. However, if the resulting sequence has no

separation areas, it is the real optiml solution

Figure 9 is a four-bit carry |ook-ahead circuit from
Hewlett-Packard's processor MC2 {5]. The circuit has no Euler
path. But the alternative circuit in Figure 10(c)has an Eul er
path on the dual graphs. This optimal solution is found easily by
the heuristic algorithmas shown in Figure 10. Figure 11shows
that the space for the functional cell is less than one third of

the conventional gate realization

27
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A systenmatio survey of MOS functional cells and the
enumeration of random logic functions nmade it clear that there are
thousands of useful cells. A systematic method to inplenent a
function on an array of CMOS transistors has been shown and a
graph-theoretical algorithm which mnimzes the size of thearray
has been presented An exanple showed that the functional cell
approach can reduce the space of a conventional NAND gate
realization  considerably. In general, a significant space

reduction can be expected.

The CMOS functional array is also useful as a basic cell for
a conventional design automation system Inplementing functional
arrays into a MOS LSI design automation systemwiil be considered
after  further  studies of logic synthesis and performance

vai i dati on.
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APPENDI X

Enuneration of C-MOS Functional Cells.

- - - _ " - = A = S S . - - - e "

A restriction to series/parallel connection and the duality
between  p-MOS side and n-MOS side are assumed. Logi cal l'y
equivalent circuits, for exanple, circuits in Figure 3(b) and in
Figure 5(b) are counted only once.

Definitions:

T(m,n) is a set of cells which have m levels on the p-M3S

side and n levels on the n-M3S side.

S(m,n) i s a subset of T(m,n) such that the p-M3S side of a

cell ¢ of S(m,n) is a series connection of 2 conponents.

P(m,n) i s the conpl enent of S(m,n) With respect to T(m,n).

L(k) = {titis in T(m,n) and Max(m,n) = k}, that is, L(k) is

a set of cells which have k |evels.
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Theorem 1.  {S(m,n)} = | P(n,m); for (m,n) not equal to (1,1).

(Proof) Assune (m,n) not equal to (1,1).For any circuit cin
P(m,n), the dual circuit of ¢ is in S(n,m). For any circuit d
in S(n,m), the dual circuit of dis in P(m,n). So there is

one to one mappi ng between P(m,n) and S(n,m).

Lemma 1:
k-1
ILOOT = 20 {IS(L,01 + 1S D1 + 18tk ]
i=1
Definition: - C -. . . -G is acell such that the p-MXS part

of the cell is a series connection of p-M0S parts in cells

0C, . . . and G.
Hence, P(m1,n1) - P(m2,n2) -~ . . . - P(mi,ni) =
{Cl =2 -...  «ciiCiisinP(m,nl), Cis inP(m2,n2),

ci isinpP(mi,ni)}.

Theorem 2:  P(m1,n1) - P(m2,n2) = . . . - P(mi,ni) i S a subset of
S(m,n), where m=nl + n2 +. . . + m, and n = Max(n1, n2,
, ni).
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(Proof j  The longest path on the p-MXS sideism +n2 . . . +m by
definition. The |ongest path on the n-MOS side is Max(nt,
n2, .... ni) because it is equal to the maxi mal cutset on the

p- MOS si de.

L(k) can be deconposed using theorem 2 and enunerated using

theorem 1 and |lemm 1as fol |l ows:

L(1)is the union of the following tw sets:
S(1,1) = g |
P(1,1) = {inverter}.

so JL(1)} = 1.

L(2) is the union of the follow ng sets:
S(1,2) = o,
S(2,1) = { P(1,1) = P(1,1) },
S(2,2) = { P(1,1) = P(1,2),
P(1,2) - P(1,2) },
and their dual forms.

So L(2)} = 6.

L(3)is the union of the follow ng sets:
5(1,3) = o
S(3,1)

{ P(1,1) - P(1,1) = P(1,1) }

S(2,3) = { P(1,1) - P(1,3),
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P(1,2) - P(1,3),
P(1,3) - P(1,3) }
$(3,2)={P(1,1) - P(1,1) - P(1,2),
P(1,1) - P(1,2) - P(1,2),
P(1,2) - P(1,2) - P(1,2),
P(1,1) - P(2,2),
P(1,2) - P(2,2) }
S(3,3) = { P(1,1) - P(1,1) - P(1,3),
P(1,1) - P(1,2)- P(1,3),
P(1,2) - P(1,2) - P(1,3),
P(1,1) - P(1,3) - P(1,3),
P(1,2) - P(1,3) - P(1,3),
P(1,3) - P(1,3) - P(1,3),
P(1,1) - P(2,3),
P(1,2) - P(2,3),
P(1,3) - P(2,2),
P(1,3) - P(2,3) }
and their dual forns

so {L(3)) = 80.

By a sinmilar enuneration one can derive that

IL(4)I = 3434.
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