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I NTERPRETI VE  MACHI NES

J. K Iliffe

International Conputers Linmted

These lectures survey attenpts to apply conputers directly to
high |evel |anguages using mcroprogramred interpreters. The
notivation for such work is to achieve |anguage inplenentations
that are nore effective in sone neasure of translation, execution
or response to the user than would ot herwi se be obtained. The
inplied conparison is with the established technique of conpiling
into a fixed general -purpose nmachine code prior to execution. It
is argued that while substantial benefits can be expected from
mcroprogranmming it does not represent the best approach to design
when the contributing factors are analysed in a general system
context, that is to say when w de perfornmance range, multiple
source |anguage, and stringent security requirenments have to be
satisfied. An alternative is suggested, using a conbination of
interpretation and a primtive instruction set and providing
security at the mcroprogram |evel

The early lectures review the history and terminology of mcro-
programmabl e machi nes. Know edge of conventional practice is
assumed. Readers already experienced in mcroprogranm ng shoul d
skip rapidly to Lecture 3.

1 M CRO NSTRUCTI ON DESI GN

If we abandon the conventional nachine code (at |east tenporar-
ily) as a nmeans of defining the conputer's function set it is
necessary to fall back on the next |evel of description, i.e. the
mcrocode. A very extensive literature has grown up around that
subject in recent years, but | think it is true to say that no
commonly accepted theory or principles have emerged: that is the
consequence of rapid changes in the process of nanufacturing
| ogi cal devices which force a continual revision of the econonmcs
of design. In the introductory lectures we shall study the
evol ution of mcroprogrammed machi nes, but one can do little nore
than present a collection of techniques. For detailed study of
application to machine | anguage interpretation the student is
referred to Husson (1970), where an extensive bibliography to



1968 will be found, and to Boul aye (1971), for a shorter survey of
t echni ques. In the following notes | can do no nore than provide
an outline of design principles and introduce term nology.

The branch of technology that enables a raw microprocessor to
interpret a given order code is terned 'mcrosystem design'. If
one machine is to interpret one order code it is a very localised
affair. If several machines must imtate two or three order codes
the need for standard procedures and docunentation arises: in the
mej or application areas this is treated very nuch as an extension
of the logic design. Tucker (1967) and Husson have witten infor-
matively on that aspect of microsystems. However, high |eve
| anguages are not nearly as well defined as machi ne codes, they
are generally nore conplex, subject to greater variation, and out-
side the control of any one laboratory.. A survey by Rosin high-
lights some of the difficulties involved, Rosin (1969). W shall
return to that subject in the last lecture, showing how it affects
machine design. For the time being, let us recall how a mcro-
programed machi ne handl es the interpretation of a single 'target
instruction set' or 'machine code'

The first application of microprogramming as a fornal technique
is generally attributed to the designers of EDSAcC-2 at Canbri dge
University, WIlkes (1958). It is a systematic way of controlling
the flow of signals through the data paths of a processing unit,
each path, or in some cases each function of the processor, being
determined by a bit in a mcroinstruction. If we regard the state
of the processor as defined by the assenbly of registers and con-
trol flip-flops, then a microinstruction determnes a sinple tran-
sition from one state to another. The attraction of the technique
is that transformations of any conplexity can be conposed by apply-
ing a sequence of mcroinstructions: the limtations inposed by ad
hoc control logic, which are apparent in the areas of nachine
definition and construction, are greatly reduced. At a time when
relatively conplex target instructions are thought to be the key
to greater machine efficiency, the introduction of microinstruc-
tions obviously has great attraction.

The source of microinstructions is a store, which will be
called the control menory in the present context. A single bit
in the mcroinstruction can control the transmission of an entire
field fromone register along several parallel paths in one
processor 'cycle'; another bit, or group of bits, will select a
destination register and field. It is fairly easy to evolve a
requirenent for fifty or nore bits in the mcroinstruction to
control the possible data paths in the processor

The second requirement of the microinstruction is to determ ne
its successor. Application of a sequencing rule deternmines the
string of actions carried out by the processor which, whenproperly
defined, will interpret a target instruction. One of the sinplest



ways of sequencing is to place the next mcroinstruction address
in the one currently being obeyed. To achieve conditional branch-
ing effects it is necessary to use the state of the processing
logic in the calculation of at |least part of the next address.

The el enents of the machine can be visualised as in Figure 1.

The machine operates in three steps; i.e.

1. Access control menory using the mcroinstruction address.

2. Use the mcroinstruction to control the state transition
of the processor logic

3.Use microinstruction digits and the result of step 2 to
determine the next microinstruction address.
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Figure 1: M croprogram Control



The devel opment of mi croprogranmmbl e nachi nes from the above
principle of design |leads to great elaboration of detail, the
mei N considerations being (a) optimsing the use of contro
nmenory, (b) achieving balanced timng of control nenory and
processor logic, and (c) organising the registers and data paths
of the processor to suit the class of target nachines of interest.
| shall discuss each aspect of design, giving exanples from sone
of the earlier microprogramed machines

1.1 Mnimsing the Cost of Control Menory

Expl oitation of mcroprogramm ng was not w despread until
suitabl e techniques for loading and nmanufacturing control nenory
had been devel oped. Such techniques are di scussed by Husson
(Chapter 5), where it can be seen that the predom nant forms of
canstruction allowed microinstructions to be read but not witten
under program control. That is clearly sufficient for a well
defined and fixed instruction set. The later devel opnent of
sem conductor control nenories with wite capability has been
the main stimulus to further research in mcroprogram application
Wth all menories, however, the main design requirement is to
deliver the information required at the right time and in as few
bits as possible

Consi derations of space lead to various forms of mcroinstruc-
tion coding. The formin which a single mcroinstruction bit
controls a unique processor gate (or data path) is ternmed direct
control. If we can find sets of nutually exclusive control
signals, such that not nmore than one is activated in a given
cycle, it is poss%@}e to encode them a field of Khbits will
activate one of 2 control lines, or none at all. That is
obviously the case when one of, say, 8 registers can be gated to
one input of an adder. The same technique is used in nachine
code design. It is illustrated bel ow by the structure of the
| BM360/30 microinstruction and by nost of the 'first generation'
m crocodes, all of which nay be said to use encoded control, the
i ndi vidual fields controlling mcroorders.

Three other comon fornms of coding deserve nention. In bit-
steering the particular control |ines activated by a m croorder

(or bit) are determ ned by another field of the mcroinstruction
The second field directs the first to one or another set of con-

trol lines; it is appropriate when the processor |ogic can be
partitioned into sections that do not require activation on every
cycle (and can to some degree proceed in parallel). It has been

used in conbination with other techniques, for exanple in the RCA
Spectra 70/45, Honeywel | 4200 and | BM 360/25. Carried to the
extreme, the mcroinstruction ends up as a function group and a
nunber of operand fields, which would be difficult to distinguish
at first sight from a conventional machine code



The second techni que derives fromthe observation that over
many sequences of microinstructions the values of certain control
lines will remain constant, therefore they can be set in advance
and taken as an inplicit extension of the mcroinstruction. That
technique will be referred to as preset control. It applies, for
exanple, if particular carry or shift paths are fixed in advance,
or if one of several possible register sets is being used.

Finally, it is easy to see that all 2100 versions of a 100-bit
direct control microinstruction will not be used, and instead of
attenpting to encode individual fields it would be possible to
listall the distinct microinstructions in a particular application
and sel ect those required by indexing a store containing the list.
For exanmple, in a particular application there may be |ess than
1024 distinct mcroinstructions. In that case a 2000 word nicro-
program can be conpressed into 20 000 bits, a saving of 90% All
that is required is that the fully encoded m croinstruction index
anot her store 100 bits w de containing the 1024 fully decoded
instructions (the second store is called the nanostore). The net
saving in storage space is thus 40%

It is more like that sone of the fields of the microinstruc-
tion will be fully used, leaving a residual field to be handl ed
in the above way. The Nanodata QW1 nachine, Rosin et al (1972),
provides an illustration. The 16 bit microinstruction is |oaded
into one of the nmicroregisters, a six bit field is then used to
select a 342-bit nanoinstruction. The latter can use the remain-
ing ten mcroinstruction bits as operand selectors, so it is
appropriate to regard themas a form of preset nanocontrol
(Figure 2). At this point the designer faces the same set of
choi ces at nanomachine | evel as we have already discussed in
connection with nicromachines. He could use direct control: in
fact, Qw1 does not, but obeys a far nore el aborate sequence of
nanoorders. The reader is referred to the literature for details.
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Figure 2: Nanoprogram Control



1.2 Timng and Control Considerations

It will be shown later that interpreting one of the commn
target instructions takes approximtely 20 microorders and two
main menroy cycles. If a premiumis placed on nenory utilisation
it follows that the effective microorder rate nust be ten tines
that of main nmenory: to achieve that the early nmachines use a
hori zontal or nulti-order nicroinstruction that activates between
five and ten processor piths in parallel. The mcroinstruction
rate is synchronised to = ot §-the nmenory cycle time so that a
1.5 usec core nenory mou%d be“associated with a 750nsec or 500nsec
mcroinstruction rate. Horizontal coding achieves speed at the
expense of generality and ease of programming: in the next
lecture we shall introduce a nore 'relaxed form of code in which
each mcroinstruction contains only one or two microorders, which
is naturally called vertical control

The el ementary steps of the nmachine execution cycle have
already been indicated. |f no overlap is attenpted then the
maj or conponents--control memory and processor--are alternately
idle while the other conpletes its task (renenber that read-only
menories, and even writable semi conductor nenories, may require
very little time to recover for the next cycle). In order to
achi eve higher performance it is necessary to use faster and
therefore more expensive components, or to overlap the elenmentary
steps. The options are superficially the sane as in nmachi ne code
design. The main differences derive fromthe fact that micro-
prograns have been for the nost part fixed, conparatively small
and have nade extensive use of multiway branch or switch instruc-
tions: the alternative of using a sequence of tests to decode
a target instruction would sinply be too slow.

A control menory address is frequently conposed from several
fields whose values are determned at different points in the
machine cycle. The high order fields are normally known first,
so the construction of an address reflects a gradual narrow ng
down of the alternatives until the exact microinstruction can
be fetched

In the | BM 360/Model 30, for exanple, a block address is
found as part of the preset control, not normally affected by
the current mcroinstruction; a functional branch is a field
inserted directly fromthe mcroinstruction, and a switch is the
| oworder two-bit field of the control menory address, conputed
from the processor state. Thus, the successor to any instruction
is within the current block of 256 (see diagram) and may be
dependent on the outcone of one or two conditions or register
val ues.




preset from processorl ogic

mi croinstruction
| BM 360/30 M CRO NSTRUCTI ON | BLOCK | FUNCTI ONAL SW TCH
ADDRESS BRANCH

We can now see nore clearly when the overlap of processor and
control menory cycles can be achieved. |If the control address is
determned by the processor state at the end of the current mcro-
instruction then although access might be initiated on the basis
of bl ock/functional branch fields the final decision has to be
del ayed until the state of the processor logic is known (the
exanpl e given above falls into that category).

If the control address is deternmined by the processor state at
the end of the previous instruction, then the control nenory can
be accessed while obeying the current instruction, e.g.

TI ME
Previous pinst: ----_ OBEY / STATUS)
Current uinst: l'ACCESS / OBEY / STATUS
Next pinst: ACCESS [/ OBEY------

The timng considerations just described are shared with very
much nmore sophisticated processors: they result fromany attenpt
to overlap one instruction with others and it is easy to see that
the nore 'changes in direction' in the flow of control the |ess
effective are the overlap arrangenents. It is true to say that
mcroprogramis nore afflicted by conditional and conputed
branches than nachi ne | anguage program for which reason designers
are reluctant to throw away the contents of the nicropipeline and
may ask the coder to deal with various 'run-on' conditions. \hat
this means in practice is that one or two instructions in witten
sequence after a branch may be obeyed, e.g. in decoding a hypo-
thetical target instruction the mcrosequence is witten:

m s Extract function field

1

m, Branch to address + function

m, : I ncrement target instruction counter
Here, although the branch m, is taken, the follow ng mcroinstruc-
tion is still obeyed. It is in avoiding or dealing with such

coding peculiarities and in taking account of critical menmory or
[-Otimng constraints that microprogramming differs from conven-
tional coding, or has done so in the past. Luckily, increasing



har dwar e power has renoved many of the characteristics of mcro-
program from nodern nachines, perhaps the only positive way in
whi ch a mcroprocessor can be distinguished froma 'mni' is in
its dedication to the task of nodelling processors rather than
users' probl ens.

1.3 H ghway and Register O ganization

The basic requirements for imtating a given target instruc-
tion set are:

(a) arithnetic primtives for conposing the arithmetic,
| ogi cal and addressing functions of the target machine;

(b) nmenory mapping and resolution conpatible with the store
structure of the target machine;

(¢) imtation of the internal control states, registers and
regi ster access requirements of the target machine;

and (d) peripheral interfaces that reflect the formats, status
and timng expected by the target nachine.

Wthin this field the degree of dedication varies with the
performance/ cost objective. Different design teans have gone
about the sane task in quite different ways: Husson (p414) makes
the point that although the IBM 360 and RCA Spectra 70 achieve the
sanme architecture the latter is a nuch nore 'specific' design
than the |BM nodel s.

In this subsection | shall illustrate features of m cropro-
cessor design referring to the | BM 360/Model 30 which was one of
the earliest nodels of the IBM 360 range and, as it happens, the
subj ect of an early experinment in |anguage oriented design that
| shall refer to later. Further details will be found in Boul aye
(1971) and Weber (1967).

Figure 3 shows the data paths in the central processor of the
| BM 360/Model 30. There are twelve registers, each of one byte.
Apart fromthe main nmenory address and data buffers (MN and R) no
specific allocation of content is nmade by hardware. The data
paths are uniformy 8 bits. The mcroinstruction is 60 bits
long, encoded into the follow ng nicroorder groups:

(i) Store access: Fields CM CN CU

(i) Data flow. 4-bit literal field CK

(iii) ALU control: CA, CF, CB, CG Cv, CO, CC
(iv) Sequenci ng: CH C

(v) St at us: cs
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For exanple, under group (i)

CM (3 bits) indicates: No action
Read from address 1J, W, or LT to R
Regener ate
Wite fromR

CU (2 bits) selects main or local (register) storage
Under group (iii):

CA (4 bits) selects one of 10 inputs to the ALU through the
A register

CB (2 bits) selects one of R L, Dor the literal CKCK
CC (3 bits) selects the actual ALU function

CF (3 bits) nodulates the A-input to ALU, i.e. high digit,
low digit, none, low or cross-over

CG (2 bits) nodul ates the B-input to the ALU
CV (2 bits) selects true, conplenent or six-correct formof B

CZ (4 bits) gives the destination, one of ten registers.

Thus in one mcroinstruction, which takes 750nsec, an 8-bit
arithmetic or logical operation is carried out, half a main store
cycle is controlled, and the next mcroinstruction is selected.

In the next cycle the nain store operation nust be conpleted
whil e other operations are carried out

If we consider the loop of instructions which interprets the
target machine code it clearly consists of first fetching the
instruction, then looking at the function/format digits and pre-
paring each operand by conputing an address and accessing the store
when necessary, and then branching to the 'semantic' m crosequence
that interprets the target function. The instruction will nornally
term nate by servicing interrupts before proceding to the next in
sequence. Elenentary |IBM 360 instructions take between 15 and 30
Usecs in execution, i.e. 20-40 mcroinstructions: the |arge number
reflects the fact that any address or arithnmetic cal cul ation
i nvol ving operands of more than 8 bits has to be carried out
serially by byte.

In order to achieve higher performance the mcroregisters
and internal data paths must be nore closely matched to those of
the target nachine, and supplenmentary functional units introduced
to mininise the 'msmatch' between the mcroprocessor and the
target system architecture

10



2. GENERALI ZED HOST MACH NES

W have seen sonme of the ways in which specific features are
built into m croprogrammabl e machine to help in nodelling particu-
lar order codes. However, our nain objective is to consider sys-
tems at a level removed from machine code, where the target
instruction sets can to sone extent be chosen to suit the available
hardware: in the last lecture we can attenpt to answer the question
of whether the need for specific adaptation will still arise

I shall now discuss design generalisations that have been
favored in recent years as the result of rapid reduction in the
cost of storage and l|ogical devices. In the latter context
"regularity’ of hardware is at least as inportant as circuit or
gate count, which is greatly to the benefit of the m croprogrammer.
| shall refer to the class of processors under discussion as host,
machines in order to suggest their role and to avoid undue enphasis
on '"microprogram or 'mcroprocessor' technology. In practice
the principal use of host machines has been in the form of instruc-
set enulators (e.g. IBM 360 imtating the IBM 1401). The design
obj ective of producing a 'universal enulator' becane feasible with
the introduction of writable control nenories. It is clear from
the outset that machines capable of imtating any instruction set
at conpetitive speed could not be produced at conpetitive cost,
neverthel ess such a machine is invaluable as a vehicle forresearch
into conputer architectures. The ICL Research Enulator El, Iliffe
May (1972), the Standard Computer Corporation M.P-900, Rakocsi
(1972), the Stanford University EMW, Neuhauser (1975), and the
Nanodata Corporation Qw1, Rosin, et al (1972), provi de exanpl es
of generalised facilities, while in the comercial field the
Borroughs Corporation B-1700 is particularly interesting fromthe
point of view of nenory allocation

Al the machines in this category use vertical instruction
codi ng which allows much greater flexibility in function sequenc-
ing than the ol der horizontal designs, and at the same tine a
simpler and nore fanmiliar form of program input. The reader nay
conpare the exanple of mcroprogrammng given in Wber (1967) with
the program style of any of the machines nmentioned above, which
bears conparison with a conventional assenbly program listing
except for the primtive nature of the arithnetic, the absence
of address nodification, and the elaborate field selection and
branching functions.

In noving to vertical coding it is normally the case that the
mai n menory system has a much higher data rate than the host needs,
even With the fastest control store. The extra capacity is used
in direct nmenory access by |-0O devices, in dual processor con-
figurations, and in nany instances by using the main nmenory as a
source of mcroinstruction. The last option is particularly
attractive because it affords an escape fromthe rigid linmtation

11



on microprogramthat is inposed by a separate control store. On
the other hand it does inpose a control structure which is
difficult to rationalise: perhaps the sinplest viewis to |ook
upon the interpreter as providing system standards, operating sys-
tem interfaces, protection, etc, which are not normally present

at the microcontrol [evel

The foll owi ng subsections correspond to the nmain design areas
noted in the last lecture, with illustrations drawn fromthe
machi nes mentioned above. Further exanples can be found in |ess
readily accessible specifications for many machines currently on
t he market.

2.1 Ceneralised Arithnetic and Data Paths

One of the obvious ways in which MSI or LSI conponents affect
the arithmetic systemis in allowing register lengths to be
standardi sed at a reasonably high value, rather than making use
of specialised lengths seen in earlier machines. The effects are
to speed up the machine and to save control nenory, because
operations previously performed by a | oop of mcroinstructions
can now be carried out in one

The host is still specialised with regard to arithnetic width
and shift paths. Two nethods have been enployed for variable
precision arithnetic up to a prescribed field size

(i) using a third input to the ALU,  which is in fact a mask all ow
ing carries to propagate. The SCC MPL-900 allows the micro-
instruction to select one of 32 possible nasks which can be
used to propagate carry to the 'nornal' sign position. A
mask may al so be used to pernit operations on unpacked fields
such as 6-bit characters stored in byte positions. One of the
difficulties of working with unpacked data, however, is that
it may eventually have to be aligned to an external interface
such as the store address bus.

(ii)allow the effective ALUwidth to be variable, i.e. taking
sign, carry and zero-test signals fromany position of the
ALU.  This nmethod is used in the El enulator and the B-1700,
where the sign is part of preset control. |f there are nore
than one arithnetic widths in use concurrently it is desirable
to have nore than one preset sign position, selected by mcro-
instruction,

Variation in ALU wi dth has an obvious counterpart in shift
functions. To reproduce exactly the shift patterns of a word of
arbitrary length it is necessary to preset the point at which end
connections are made, which is more difficult to engineer than
sign adjustment because a stream of bits is being handled. The
El enul ator does allow shift lengths fromone to 64 bits, but the

12



logic is expensive and nost designers have settled for single or
double length shifts and rotations. For high |evel |anguage
interpretation that is probably sufficient

A final area where both the ALU and shifter are affected is in
the type of arithmetic carried out. The predom nant types are
binary integer, decimal, and floating point. Generalised
facilities for the last are usually conplex and of limted val ue
in either the commercial or research context. Decimal facilities
can be built into the ALU in varying degrees, fromfully signed
operations down to facilities for detecting carries at the deci mal
digit positions. The choice rests entirely on the final cost/
performance required. Although an inportant area of design it can
be 'factored out' in conparative studies of |anguage-oriented and
fixed instructions set nmachines, for which reason | shall not
extend the discussion at this point. It is inportant to renenber
that if a host has good arithmetic facilities then any lapse in
handling the control or data access side of a |anguage will be
conspi cuous, and conversely.

If the path fromnmenory is not selective enough (and it usually
is not) facilities are required for extracting fields from micro-
registers for input to the ALU.  Such facilities are expensive and
may be confined to limted field selection or to particular
registers (e.g. in the shift unit). Thus, the B-1700 provides ful
extraction on one 24-bit register and 6-bit subfield addressing on
most others. The El emulator can extract any byte fromthe 15
m croregi sters for conparison or control purposes. The MP-900
can conveniently use the third ALU input to select fields within
registers. Apart fromthe obvious hardware cost of selecting any
field in any register, space will be taken to identify the field
in mcroinstructions. |t does not appear that high |evellanguages
demand conplete generality, and limtations could be accepted
simply on the grounds of coding efficiency.

2.2 Menory Mapping and Address Transl ation

The unstructured nature of machine codes, allow nginstructions
to be used as data, and vice-versa, requires a strict correspond-
ence to be nmintained between the target machine and its represen-
tation in the host. (There are exceptions: in mapping the |BM
1401 onto the IBM 360 it is nore convenient for the latter to use
EBCDI C character codes, converting to and from BCD in those
instructions sensitive to BCD formats). In nost instances the
target machine word is 'rounded up' when necessary to fit the
host, not attenpting to nake use of every bit in store. However,
the B-1700 goes to the length of resolving nmenory addresses to the
bit level and allowing any string of up to 24 bits to be read or
witten, starting (or finishing) at a given position. In that
case 100% nenory utilisation can always be achieved

13



The menory word or part-word is made avail able for anal ysis
in the microregisters. It is an advantage to be able to select

from two or three potential-data registers in order to avoid
extra 'nmove' nmicroinstructions. At this point there is also the
opportunity to map the data into a nore easily nmanaged form  The
'crosspoints' of the El emulator and '|anguage boards' of the
MLP-900 both allow the choice by program of alternative hardwi red
data paths to and from nenory. They may be used, for exanmple, to
prepare an instruction for decoding, to align 6-bit characters

to 8-bit byte boundaries, or to handle parity conventions on a
"foreign' data bus. The diagram shows the cross point paths used
by El to read ICL 1900 instructions, which enable function
register and nodifier fields to be accessed without shifting the

Lx<f Feff fFiagm aaaa aaaa aaady
STORE DATA REGISTER D106 5432 1010 .... 7654 3219
: ] PARITY / ' “
{ \ / !
\ SIzb ’//55522%%§? e , i i
\ [ S \ J/ dve 3
VU7 Fffr FEEf Oxxx 0000 Ofmm Ofmm aaaa aaaa a

MICROREGI STER 32106543 210 610 010

target instruction microregister. The effect of the crosspointis
to save 5 or 6 steps in the typical interpretive |oop of 25-30

m croi nstructions. It can be seen as conplenenting the interna
data selection functions: in a machine with powerful field

sel ection orders crosspoints woul d be I ess inportant.

Apart from data, addresses have to be matched to the conven-
tions of the host. For exanple, if the target machine uses
deci mal addressing and the host uses binary then conversion nust
take place before accessing the store. Simlarly, if the target
machi ne operates in virtual program space then virtual to rea
translation is called for. |f page and segnent table accesses
are inplicit in each menory reference the address conversion coul d
easily exceed the conbined steps of instruction decode and instruc-
tion execution. The alternative of using hardware assistance--
allowing the host to work in virtual space--is expensive and stil
leads to delay in nenory access. Fortunately, in the environnent
of high level language execution it is possible to work in a
virtual address space but avoid nost of the overhead of address
transl ation

2.3 Representing the Target Machine State

The primary data of an interpretive programare the registers,
the program counter, the instruction register, control flags,

14



channel status and control words of the target machine. A
general i sed host woul d expect to have room for the |argest target
machine state of interest, but even so it is unlikely to require
nore than a few hundred bytes of storage for that purpose, which
often justifies a file of fast registers, the scratchpad (or

local menory in IBM, in addition to the mcroregisters thenselves.

It is a common requirenent to access the scratchpad using an
index value. For exanple, a target machine 'register-register’
instruction contains two indices. Mcroinstructions do not admit
the type of address calculation found in.nmachine instructionssets,
therefore it is necessary to carry out sonme prelimnary scratch-
pad address calculation. That happens often enough--at |east
once in nmopst target instructions--to justify building in predic-
tive i ndexi ng hardware, which works in the followi ng way. Certain
mcroregister fields are designated (by preset parameters) as
scratchpad indices. Wen any of those field val ues changes a
scratchpad access is initiated (relative to a preset base), so
that the corresponding scratchpad el ement is available for read-
ing or witing in the next microinstruction (conpare the main
store address registers of the CDC 6600). The crosspoints for
the El enulator are designed to place the target instruction

PRESET INDEX DESCRIPTOR

2 2 3 1 8
L. | 1
L7 e e ks ! N
MICROREGISTER ™ .-~ -7 - | S

) ) l BASE ADDRESS
BYTE" .~ BYTE/ IN SCRATCHPAD
HGE- WORD
RAIIGE ACCESS

register and nodifier digits in the position of predictiveindices,
allowing the register and nodifier values to be used without delay

The primary data of a high |evel |anguage machine are the
internediate results, control flags, and the control, stack and
envi ronnental pointers that allow access to contextually rel evant
data. For the nobst wi dely used | anguages the 'state' can be
mapped into a register file quite easily; noreover, its access
patterns correspond closely to those of conventional target
machi nes, hence the scratchpad organi sation of a 'universal
enulator' is equally applicable to the major programm ng | anguages.
Whether there are alternative organisations suited to a w der
class of languages is a question we shall consider later: it mght
be argued that a language is 'major' because it happens to fit
onto conventional hardware, and that when that constraint is
renoved nore attention can be given to problemoriented |anguages.
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2.4 Generalised Control _of Peripherals

At this point we nust draw a broad distinction between
emulution of the non-privileged users' instruction set and that
of the operating system. The latter would include instructions
for channel sel ection, requesting device status and sending

commands as well as receiving and sendi ng dat a. It may also
i ncl ude special addressing nodes for channel control words, page
and segnent table control, interrupt register and timer access

handkeys, displays, fault indicators and so on. Full-scale

emul ation, to the extent of running the target machine's periph-
erals, engineering test prograns, channel conmmands and operating
systems i nvol ves at least twice the design effort of the non-
priviicged instruction set alone and will alnost certainly involve
physi cal . adaptation of the peripheral interfaces.

In the present context, recognising that nbst |anguages are
non-specific with regard to the nmeans of peripheral control, the
preferred approach is to match the 1-O statenents to the host
system using machi ne | anguage and microcode procedures.

2.5 The Effect of Large Scale Integration

The level of conplexity achievable inbipolar LSI devices has
reached the point of presenting conplete slices (2 or 4 bits) of
control or arithmetic circuitry in a single package. However,
such circuits are only realised in favourable commercial/technical
situations, i.e. wide applicability and high functional content
in relation to edge connection. Some of the machine features
di scussed above would fail on both counts. On the other hand,
have indicated that |anguage execution nmakes |ess stringent
demands then universal enulation, hence the 'generality' ained at
by device manufacturers nay well provide effective support for
the target instruction sets of interest in the context of high
| evel |anguages.

How much does generality cost in ternms of performance? That
is inpossible to say without detail ed analysis of a range of
target machines. An indication can be given by conparing the
vertical encoding of the ICL register-store 'ORX instruction on

the El enulator with the horizontal formfor the 1904E. In terns
of mcroorders, the El obeys 30 conpared with 14 for the special-~

ised host. The difference is by sequence control (13:6), function
decode (5:2) and operand access (10:5). However, the nost start-
ling figure in each case is the ratio of support activity to 'use-
ful' function: about 15:1. Qur main concern in designing

| anguage-oriented target machi nes nmust be to reduce that ratio.
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3. I NTERPRETATI ON OF HI GH LEVEL LANGUAGES

The existence of readily mcroprogranmed host machi nes
naturally gives rise to speculation about the likely return from
bypassing the normal instruction set. To do so succeefully involves
the solution of a range of problens concerning definition, security,
expansion, maintainability and so on, whose solution is taken for
granted in conventional systems. Before |ooking at the broader
problems it would be reassuring to have some neasure of the poten-
tial advantage of microcoding, which is the subject of thislecture

It is easy to find performance inprovenents in the region of
10:1 or nmore for a particular algorithm expressed in mi crocode
conpared withnachine code. In evaluating such figures it nust be
remenbered that they derive fromthree contributing sources:

(i) the inherent speed of microcode which is the result of the
simplicity of the instructions and the use of high speed control
Store; (ii) occasional advantages of the microfunctions over the
target machine functions, especially in bit manipulation and con-
trol sequencing; and (iii) advantages gai ned from bypassing the
architectural framework of the target nachine, especially its
protection mechanisns.

It woul d be neaningless to draw conclusions fromisol ated
algorithns. The mininmum basis of conparison is taken to be the
conbi nation of hardware and software supporting one of the mgjor
programming |anguages, which provides the syntax and semantics
for a broad class of problems. The main paraneters of perfornmance
are taken to be:

(i) compile and load tinme

(i) execution time

(iii) size of the support system
(iv) obj ect program size

(v) diagnostic aids in (i) and (ii)

The two techniques used for performance conparison are bench-
mark testing, in which space and tine neasures are obtained for a
representative sanple of source prograns, and factoring, in which
performance is inferred from independent nmeasures on artificially
chosen statements. Fromthe design point of view the second is
much nore useful, though except in the case of Algol 60 there do
not appear to be any wi dely published sets of reference statenents.
Needl ess to say, the object of design is to optinise perfornmance
at a given system cost over a prescribed set of |anguages.

The weights attached to the neasured paranmeters will vary from

one class of use to another and no attempt will be made to deter-
mne them here. The aimis to show how variations in processor
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funct ion--specifically those brought about by nicroprogramm ng--
affect the paraneters (i) - (iv). At the same time the qualita-
tive effect of diacnostic aids will be assessed. Ttwi Il be seen
that the time measures depend partly on performance of a second

| anguage which will be referred to as the systeminplenmentation
language (SIL), so whether the machine is good at conpiling
Fortran, say, depends on what it has to do to produce executable
code, and how well it does it: as far as possible the second fac-
tor will be isolated by neasuring the overall performance of run
tinme support nodul es. Wichapplies also to execution of the func-
tions of the |language by stored microprogramor hardware because
that does not usually vary from one | anguage i nplenmentation to
another and it can be measured in basic arithmetic speeds. It
woul d be relevent, however, if one inplenmentation chose to use a
decimal radix, while unother implementation of the sane | anguage
on the same machine used binary. Most of the |anguage inplenen-
tations reported in the literature have been rendered usel ess from
t he design point of view by not keeping the executive algorithmns
constant: in other words, if a performance gain P is generated

it is inpossible to tell how much of P derived fromthe interpre-
tive technique and how rmuch frominproved arithmetic or run-tine
support.

The follow ng subsections make a broad distinction between
procedure coding, illustrated 'by sone of the scientific |anguages
and data access, which is examned in the context provided by
Cobol .

3.1 Agol, Euler and Expression Evaluation

Factored measurenments of Algol performance are reported by
Wchman (1973). In Table 1 | have abstracted sone figures for
machi nes with roughly conparable arithnetic tines. It is well
known that the Burroughts B-6700 uses a target instruction set
tailored to the representation of Algol: its effect can be seen
in the times for procedure entry. One would also expect it to be
effective in array assignement, but in this particular case the
conpi l ers spot the indices [1,1] etc and generate optimi sed code
for the conventional machines. The advantage of the language-
oriented code is to sinplify the conpiler rather than speed up
execution

The inmportance of individual statement tines depends on the
wei ghts attached to themin thefinal performance neasure. In
general, arithnetic and array access operations have the highest
wei ghts, procedure entry is an order of magnitude |ess inportant,
and array declarations an order of magnitude less than that. It
nmust be renenbered that experimentally observed times reflect a
conpl ex conbination of hardware, software and support system
Implicit in many decisions is the designers' assessnent of
different language features, and his budget reflects an assessment
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of the inmportance of the |anguage as a whol e.

TABLE 1: SOVE ALGOL STATEMENT EXECUTI ON TI MES
St at emrent Execution tine in mcroseconds
B- 6700 | BM 370/165 Univac 1108
x := 1.0 5.5 1.4 1.5
X =1 2.7 1.9 1.5
X = Y 3.9 1.4 1.5
X 1=y +z 5.5 1.4 3.4
X =¥ *2z 11.3 1.4 4.0
el{1]:=1 5.3 1.6 2.7
e2[1,1]:=1 7.7 1.7 5.8
e3[1,1,1]:=1 11.3 1.7 9.0
begin array a[1:500];end 408. 242. 918.
pl(x) 28.6 60. 7 127.
p2(x,y) 30.5 83.6 137
[Note: The times for the |1 BM 370 probably err on the | ow side
because of the effect of the cache]

In conparing object code size, Wchnan gives the follow ng
figures normalised with respect to Atlas

Burroughs B-5500 0.16
Univac 1108 0.31
CDC- 6600 0. 56

The advantage of the Algol-oriented intermediate formin conpari-
son with sone of the best conventional systens is evident. To
under stand how such results are obtai ned we nmust exam ne some
target machine states and the functions applied to them

The advantage of |anguage-oriented internmediate code is that,
provided an 'expression-evaluation' nmechanismis built in to the
interpreter, the details of register transfers that are usually
found in machine code can be omtted. The conpiler is sinplified,
the code is nore conmpact. It is not inherently faster, because
the data access is indirect, but in nany instances that is nore
than conpensated by savings in other parts of mcroprogram The
stack mechanismis the best known neans of expression eval uation
the reader is no doubt famliar with the reverse polish form of
code used in Burroughts B6700 and ot her mechines and the various
stack and environmental (display) pointers associated with it.
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However, the apparent sinplicity of the Burroughts representa-
tion leads to sonme conplexity in the machine functions thensel ves.
The value call operator (VALC) has to be able to detect and
interpret all the operand types that can legitimately be presented
in the course of conputation, including indirect references
t hrough the stack and procedural definitions arising in paraneter
lists. I'n nost applications the questions answered by exami ning
tags could be answered in advance by the conpiler: as a genera
rul e unnecessary tests at execution tine should be avoi ded except
as deliberate backup for the conpiler, the support systemor data
security.

In contrast, dynamic tag testing is essential to |anguages
such as Euler and APL because the type of a variable is not pre-
dictable at conpile time. Let us examine the Euler representation
in greater detail and see how one of the target nachine syllables
fits onto the architecture of the | BM 360/Model 30 described in
the first lecture (for greater detail, see Wber (1967)).

The representation of a variable is a [tag,value] pair, the
tags having the follow ng significance

0 Nul | 5 Reference (m/l oc)

1 I nt eger 6 Procedure (m 1ink)

2 Real 7 List (length, loc)

3 Bool ean 8 (Unassi gned)

4 Label (nmp, pa) 9 Bl ock mark (in stack)

The run-time environnent consists of three storage areas: Program
whi ch is indexed by pa (program address) and |ink(returnaddress);
Variable, indexed by loc (location), where all defined data is to
be found, and the Stack, which consists sinmply of block marks
giving static and dynami c chain |links, references to paraneters
in the Variable space, and internediate results. Operators exist
to test the tag of a variable, e.g

isn A Is A an integer?

returns the boolean value true or false. Standard operators such
as + - * / nod max abs can be applied to nuneric val ues, yielding
nuneric results, and failing if illegal tags are encountered

Alist is an ordered set of values, each of which is either an
el enentary type or a list. Lists can be created dynamically, and
operators exist for enquiring the length, detaching the tail,
selecting an element and concatenating two lists. The existence
of reference variables causes the variable space to be maintained
by scanning pointers and recovering space which is no |onger
referenced, updating pointers when conpacting the active store
ar eas.
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The Eul er program area consists of sequences of operator
syl lables (bytes), each followed by the appropriate nunber of
bytes giving literal values or indices. The programis represent-
ed in reverse Polish form e.g. the statement
'if v¢nort = 0 then d else e
woul d be represented by the followi ng string of 27 bytes:

T I
@ | bn disp valc]| | @ bnl disp | [valc

L
(load @v) ) (load @n) (n)
T T
LE or|{ pa(d)] |@ |bn disp valc] | 1it 0] O 0
1 i 2
t est true? Y:d N:(load @t) (t) | oad zero
EQ{ | or] pa(d)] jthen ' pa(e)

1
t est true? Y:d N got0 e

Note that the @ operator forms a reference on the stack, which
vale converts to the corresponding value. The translation is
thus a sinple reordering of the input string, replacing variables
by [block nunber, displacement] pairs. The latter are converted
into [mark nunber, loc] pairs on loading to the stack. In the
programthe | ogical connectives give a destination to which con-
trol passes if the top of stack elenent has the required val ue.
Figure 4 gives the mcrocode for the and, or and then operators.
A Bool ean variable has the binary form '0011000y', i.e. tag 3
and value y = 1 for true. The microregisters |J are used as
program counter, WV points to the top of stack. For sinplicity,
the address increnenting mcroorders, which are really byte-
serial, have been witten as 'IJ + 1' etc

The sanpl e m crosequence checks the tag of the operand and
interprets the |ogical connective in 8 mcroinstructions, 4 main
nmenory cycles, or 6 usec (7.5 if false). The corresponding |BM
360 target instructions would take the form

CL1 Q( STACK), LOGT

BE ORTRUE

CLI Q( STACK), LOGF

BNE TYPERROR

SH STACK, ='4"'
The interpretation of that sequence takes 32 psec if '"true', 90
psec if 'false'. It occupies 24 bytes of program as opposed to

3. That puts microprograminterpretation in its nmost favorable
light: dynamic type assignment, minimal arithnetic content and
naive conpiling techniques. It is easy to see that even with
dynamic type -assignment it is often possible for the conpiler to
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BRANCH ON RgRy

!

(00) (01) (10) (L1)
MN <= UV READ MAIN
BRANCH ON G,G, /* FETCI TOP OF STACK */
(00) C (10) (11)
R« R *+ #DO WRITE MAIN
HZ, LZ SET $,5-
BRANCH ON G4Gg - 1
(00) (01) (16) (11)
MN «— 1J RCAD MAIN
[Je—1J + 1 /* DESTINATION ¥/

—-

BRANCH ON GgSq

(G5) .

(0=, TRUE):

Figure 4:

(01) (10)
I« R WRITE MAIN

(11)

TYPE TEST S, /* GO TO ERROR IT FALSE */

MM e— TJ READ MAIN
/* DESTINATION */

J<«R WRITE MAIN

GO TO CYCLE

Microcode for Euler Logical Connectives
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predict the result of an operation as far as type is concerned
and to onmit further checks, as in:

if x=v ....
whi ch rmust give a Boolean on top of the stack
The advantage in space which results fromthe syllabic form of

target instruction is a conbination of two effects: the localisa-
tion of the operator/operand space inplied by the source |anguage,

and the use of working registers inplied by the stack. [t would
be possible to conpress an operand' address' to 3 or 4 bits, for
exanpl e, provided changes of 'context', in which the full neaning

of the operand is expanded, can be effected w thout excessive
overhead. Unfortunately, very little is known about the conse-
quences of one choice or another; it is not even clear that pro-
cedure boundaries should play a part in defining context. The use
of a stack mechansim may not be optimal: we can see that some
run-time naintenance activity is involved of which a compiler could
avoid, and it is known that the majority of expressions found in
practice are of very sinple forms which do not require the ful
generality of stack evaluation. Hoevel and Flynn (1977) suggest
an alternative primtive formof instruction which recognises many
i mportant special cases. Space gains of up to 5:1 for Fortran
conpared with I BM System 370 optinising conpiler are reported

3.2 Cobol Interpretation

The nmajor parts of a Cobol program are the Data and Procedure
Divisions. The program operates on files of records and uses
internal records for workspace. Each possible record format is
declared in the Data Division: the same physical record may be
mapped according to many different declarations, so there is no
question of concealing representations or placing descriptive tags
-as parts of the record. The elementary itens of data have a wide
variety of representations with a dozen or so basic data types.

The elementary items are naned, and may be collected into named
groups, which in turn nmay be grouped, up to the level of the
record nane itself. Wth the aid of PICTURE descriptions editing
characters can be inserted in a field for output (and conversely
for input) with the result that the 'type' code associated with a
data item can be of alnost any length

Wthin a record individual itens or groups of items nay be
repeat ed. The nunber of actual occurrences may vary, depending
on a field in a fixed position in the same record. Repeated itens
are selected by following the repeated group or field nane in the
Procedure Division by one or nmore subscripts, or by using an
implied Index value. The coefficients of the associated storage
mappi ng function can be determnm ned by the conpiler
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The Procedure Division is conmposed of a nunber of Segnents,
whose significance derives fromthe days of programmed overl ays.
A Segment conprises a nunber of labelled paragraphs, each contain-
ing one or nore sentences. A sentence consists of one or nore
Cobol statements.

Individual statenents have a fairly sinple syntax, a verb
followed by data namesand Segnent or paragraph names, e.g.

ADD P TO Q GIVING DAY- TOTAL ROUNDED

where P, Q and DAY TOTAL are dat» nanes. The definition of Cobol
implies strict observation of decimal rounding and truncation and
is subject to the types of operands and the size of internediate
results (18 digits). The conpiler is required to indicate if
operands are inconpatible. or if intermediate results are out or
range.  Some indication of verb frequencies is given by the
following measures froma benchmark test:

VERB DYNAMIC STATIC
USAGE USAGE
MOVE 30% 33%
TF 30% 18%
COTO 117 19%
ADD 10% 6%
PERFORM 7 8%
VWRI TE 4% 3%
READ 3% 2%
Gt hers 5% 11%

Thus for execution purposes seven verbs account for 95% of execut ed
statenents, while the sane seven account for al nbst 90% of stored
statements. The target code can be chosen purely as a conpromn se
between conpiler and mcrocode, w thout concern for reconstructing
the source string (which affects APL coding for exanple). The
final form depends on what are regarded as reasonable limits for
field sizes in one Cobol source nmodule. In the target instruction
listed in Table 2 the nmaxima are taken to be:

Vari ables: 4096 ; Indices: 256 ; Files: 256 ; Data areas: 64
Procedure variables: 256.

In the design used here, which is based on a Cobol interpreter
witten for the ICL E1 enul ator, each Cobol statement is represeni-
ed by a sequence of 16-bit target i nstructions.
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CABLE 2: A COBOL TARGET | NSTRUCTI ON LANGUAGE

12
Format #1 f n |
f=0: Source operand at DQI[ n]
£=1: Destination at DQT[n]
f=2: (perand at DQT[n]
f=3: Operand n
f=6: Branch within code area, offset n
4 4 8
format {2 f |v o

f=7: n-byte literal operand, type v

£=8: Scal e operand, partial result,..., by n

£f=9: Arithnetic; scale first operand by n

v[ADD, SUBTRACT, SUBTRACT-G VI NG, MULTI PLY

DI VIDE, D VIDE-REMAINDER, ..., etc]

f=10: Branch DEPENDI NG via Procedure variablen

f=11: Branchn, depending on condition v

f=13: v[MOVE, COWARE, SET INDEX, DEBUG STOP
and call RUNTIME support]

RUNTIME:  ACCEPT TI ME, DATE, DAY, DI SPLAY,
OPEN, CLOSE, READ, WRITE, REWRI TE, START, DELETE
CANCEL, CALL, EXIT, etc.

Cobol control structure is the source of some conplexity be-
cause of the use of procedure variables and debuggi ng opti ons.
Apart from the normal branching determined by GOT0 statenents it
is possible to specify that a particular paragraph or sequence of
par agr aphs shoul d be PERFORMed one or nore times, or until a
condition is satisfied (possibly varying some elements on each
repetition). A sinple conpiler cannot tell in advance which
paragraphs will be the subject of PERFORM so it will insert a
possi bl e branch to a 'procedure variable' at the end of each
paragraph: if PERFORM does not apply, the branch 'drops through'
to the next paragraph in sequence. Further conplication derives
fromthe ALTER verb, which can be used to change the destination
of a GOTO. Rather than change the stored object code the branch
is again directed through the procedure variable table.

The conplication arising from debugging is that any attenpt
to access a named data item paragraph, file or index may be
required to enter a debug procedure. In nost conpilers that means
that the code generated for handling debugged el ements is differ-
ent from (and sl ower than) normal code, even when executing wth
DEBUG OFF. In interpretive systens the same target code is
generated in all cases and the branch is taken in the interpreter
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in the Data Division all nanes are mapped unanbi guously into
indices in the lists of data qualifiers (DQrl), file and index
table. Procedure variables are indexed in the Procedure Division
Information built up during the conpilation phase can be carried
over into execution w thout change in many cases. Figure 5 shows
the modular structure of Cobol as far as it affects the interpre-
ter. The DQT contains a 64-bit descriptor for each variable,
giving:

the index of the base pointer for the record currently
containing the variable

offset and limt of the variable within the record area
whet her the debug option applies

operand type and scaling information

it subscripted, the index of mapping parameters in the
subscript infornmation table

if edited, the index of editing parameters in the edit
information table

At runtime the data qualifier elenent pQT{n] is interpreted to
give the address pointer to a sequence of bytes (or bits) within
the area defined by the base. About 20 microsteps are required to
extract the data attributes and place themin microregisters,

foll owed by whatever is needed to extract the data itself and
present it for the next operation. Hence the managenent of the
DQT represents a significant part of the interpretive overhead.

I n neasuring Cobol performance the time and space requirenents
of a set of test statements were nmeasured, and final figures of
merit obtained by weighting the results according to dynamic or
static usage. For space, a gain of 1:3 resulted in conparison
with the ICL 1900 programrequirenents. |t appeared possible to
inprove on that by adding to the function set. For tine, an over-
all inmprovenment of 1:2.5 was observed in conparison with the
conventional conpiler on the ICL 1900. That figure is disappoint-
ing. It is accounted for in part by the arithmetic conplexity of
Cobol.  Neverthel ess the average Cobol statenment appears to need
about 200 microsteps (as opposed to 500), and in several instances
the conventional conpiler generates code that runs faster than the
interpreter, for nuch the sane reason as we saw earlier in |ooking
at Algol inplenentations. However, another factor proves to be
significant: the time spent in the interface between the |anguage
interpreter and the supporting SIL.
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4. | NTERPRETI VE SYSTEM DESI GN

I mproving on the range-defined instruction sets of fifteen
years ago without neeting conparabl e system objectives is not
particularly difficult. To present a realistic alternative it
nmust be shown how progranm ng standards can be nmintained through
a very wide power range; it nust be 'possible to develop and nain-
tain new | anguages and subsystens taking full advantage of the
architecture w thout endangering system security; storage and con-
trol structures nust be created to suit nodern applications rather
than those of the early 1960's. As far as | know, no 'mcrosystend
has been devel oped with the required properties. Even so, it is
not sufficient to show that variable mcrocode achieves better
results than fixed instruction sets: we also need to be con-
vinced that it is the best way of using nodern technology. In
this lecture | shall draw together sone of the results observed in
| anguage-ori ented machi ne design and suggest two alternative
system frameworks in which the demonstrated advantages could be
retained

4.1. The Effect on Language Paraneters

As | have already indicated, many of the neasures of |anguage
performance are affected strongly by the choice of supporting
system which we suppose to be reflected in the semantics of the
System | npl ementati on Language (SIL). For exanple, suppose the
SIL is in fact a copy of the Executive package of a conventiona
machi ne range, and that a Cobol application package is obeyed
(a) using the fixed instruction set and (b) using a Cobol target
code such as discussed in the last lecture. Then the observable
effect on storage requirenents would be as follows (using typica
figures for the ICL 1900)

(a) (b)
Fi xed Instr. Fi xed+Cobo
Fi xed instr. ucode 16 Kbyte 16 Kbyte
Cobol target ycode 0 9 Kbyte
Executive (kernel) functions: i6 Kbyte 16 Kbyte
System functions (spooling,
command | anguage, etc) 20 Kbyte 20 Kbyte
Cobol run-time support: 25 Kbyte 25 Kbyte
Cobol application -~ data (say) 9 Kbyte 9 Kbyte
- code (say) 9 Kbyte 3 Kbyte
Tot al 95 Kbyte 98 Kbyte

In other words, the reward for a great deal of effort and invest-
ment in control menory is negligible as far as storage is concerned.
O course, one can present the picture in other ways and use the
speed gain to advantage if there is sufficient |-O capacity, but
the point renains that unless the support systemgains simlar
advantages fromthe interpretive techniques the inprovenent in

| anguage performance will be seriously diluted. Let us assune,
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therefore, that the SIL itself benefits fromthe use of micro-
program. The effect nay be seen as space reduction and a gain in
speed; more probably it will be seen as inprovenent in function
and flexibility. In reviewing the paraneters listed earlier

sone of the requirements of the SIT., will be noted.

(i) Conpile and Load Tine.

Substantial (say a factor of 5)gains in speed can be nade in
the portions of a conpiler concerned with | exical and syntax
analysis, and to a | esser extent in code generation, by mcrocode
interpretation of syntax tables. \Where in-line coding has been
used in the past the speed gain is smaller but significant saving
in space is achieved by table-driven techniques. Conpile tinme is
indirectly affected by the choice of object code under (ii).

Load tine is normally determned by the supporting system
If allprograms have to be mapped into a (virtual or real) Iinear
store the time and space overheads in starting a job step may be
significant (conparable with the conmpiler itself in many conven-
tional systems). Moreover, the operating inconvenience is
significant and may result in such anomalies as separate 'batch’
and 'l oad-and-go' |anguage systems. There is no reason, however,
why the SIL functions should not allow program execution with
explicit structure. For exanple, the operating environment shown
in Figure 5 can be maintained with no appreciable execution over-
head on the part of the SIL. In that case, the load tine is
negligi bl e.

(i) Execution Tine

Excluding arithmetic and 1-O execution tine is governed by
the time of access to variables and the change of control environ-
ments, i.e. the subsets of the program space inmediately available
from particular points in the program It is the 'localisation’
of the environnent which allows short addresses to be used and
produces the greatest contribution to code conpaction. The dia-
gram shows the conponents of a generalised access chain. Data
el enents are assumed to be created in blocks (activation records
or file areas) which are not necessarily contiguous in store, but
selectable by an index n. Data identifiers in the source text
are mapped into indices m, which are used to refer to a table of
attributes (cf the DQT in Cobol) which give record pointer, off-
set, size, type, and possibly other information derived by the
conpiler and required during execution. In general, several sets
of attributes may refer to the same record, and one set of
attributes can refer to several record areas (through dynamc
adjustment of the control environnent).
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Languages differ in the amount of attribute information
carried into the execution phase, the nethod of changing the con-
trol environment, the time at which attributes are assigned, and
hence in the ways of distributing components of the access chain
in storage. In Fortran, for exanple, attributes and record
poi nters can be absorbed into the object code; in APL the object
code and attributes are dynamically assigned; in Algol the (g,n)
pair and size can be absorbed into the object code while the type
is sometinmes attached to the data in the formof a tag. \Were
explicit maintenance of attribute and environnent is demanded by
t he | anguage there can be significant gains fromusing m crocode.
The ratio of addressing and control instructions to arithmetic in
the output of a conventional conpiler is in the region of 4:1, so
assuming a 5:1 speed increase from microcoding the former an over-
all speed gain of 5:1.8 or 2.8:1 is indicated. (One would expect
nore for the highly structured or 'dynamic' |anguages. Further
speed gains can be expected where specialised arithmetic functions
are called for, e.g. array, conplex, controlled precision or
character string nanipulation. A minimmoverall gain of 3:1in
speed of a 'production' conpiler to range standards woul d be a
realistic objective for the |anguages in common use.

A | anguage all owing free assignment of pointers (reference
vari abl es) entails potentially serious support overheads in the
assignment and recovery of space, not necessarily elimnated by
the provision of a large virtual store. Even if the SIL recognises
pointers it seems preferable for the |anguage subsystemto under-
take its own space managenent to take advantage of known |oca
characteristics. The l|anguage 'pointer' is evaluated in terns of
the underlying programstructure at the time of use: that opera-
tion occurs frequently and benefits from processor adaptation to
the extent that once an eval uation has been carried out the result
can be used repeatedly on successive itens of data. It is then
required of the SIL to allow |anguage interpreters to work with
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'absolute' as well as virtual addresses. 1In the next subsection
we shall see what that inplies. (The alternative of having both
the SIL and the |anguage microcode work in a virtual space support-
ed by hardware can be disregarded because of the delay in access-
ing menory and the poor store utilization that results.)

Space managenent functions are principally concerned with
searching for and updating pointers and physically moving bl ocks
of data. They are tine consunming and in nmany |anguages their use
is discouraged by artificial neans, so the gain from maki ng them
nore efficient would be seen in programflexibility (in the user
| anguage and the SIL) rather than in execution tine.

(iii) Size of Support System

The SIL code benefits in two ways: in many situations, e.g.
in conpiling to |language-oriented code, it has to do less; and
it does it nore efficiently than other high |evel system program
mng |anguages, or nore elegantly than a macroassenbler. Size
reductions in the region of 5:1 have been achieved for conpilers.
Each | anguage microcode represents a space overhead of at least
10 Kbytes, plus a simlar anount for the resident SIL.

(iv) oject Program Size

Tailoring the object code to fit the source | anguage shows the
cl earest gains over conventional systenms because of the elimna-
tion of unnecessary function, register and address bits. An
overal |l reduction in procedure size of 4:1 for |arge prograns,
including attribute tables, would be a realistic aim No signi-
ficant gains in data mapping over a conventional systemw th word
and character addressing can be expected. Gains in space can be
seen as gains in nain nenory and channel capacity and to a snaller
extent in file space

(v) Diagnositc Aids.

As any APL user discovers, interpretive methods can give
exceptional ly good diagnostic information, sufficient to overcone
eccentricities of the language itself. Unfortunately, diagnostic
quality is one that cannot be neasured and is often overlooked in
favour of marginal inprovenents in the others.

4.2 Mcrosystem Probl ens

The use of mcroprogrambrings its own problens, and raises
the question of whether the inplied conparison with machines of
the nmd-60'"s was the correct one to use. In the system context,
the obstacles to using interpretive mcroprogramare as foll ows.
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(A) Kange Definition

The microprogram appropriate to a high performance nachine is
quite different fromthat of a slower microprocessor. There
is also an absolute speed limtation: a machine executing
target instructions at 10 MPS is obeying mcroorders at |east
10 tines as fast, which is beyond the power of vertically
encoded (i.e. easily programmed) host machines

(B) Security

M croprogram derives part of its speed advantage by ignoring
the security checks inherent in fixed instruction sets. For
a small anount of microprogram under control of the manufac-
turer that is tolerable. The |anguage performance figures
obtained in practice give the interpreter responsibility for
resources normally regarded as protected, i.e. absolute
addresses, in which case the security of the systemis in the
hands of |anguage inplenentors.

(O Flexibility

M croprogram is a static form of code. It cannot easily be
moved in store. Fast control nenories and scratchpads are
necessarily small, so the problens of sharing resources
between interpreters and scheduling their use have to be
sol ved.

O the above, (B) alone is sufficient to prevent w despread
use of microprogram in commercial systenms. Four types of response
can be recognised:

1. Enbed the Mcroprogramin a Conventional System

W have already noted that the space and time advantages are
diluted in the context of a conventional system nevertheless,
those that renmain are obtained with mnimminvestnent in redesign
The 1 BM APL Assist Feature running under DOS/ VS, 0S/VSl and 0S/VS2
has been nmade avail able on the System 370 Movdels 135, 138, 145 and
148 (Hassitt and Lyon (1976)). It consists of an additional 20
Kbytes of mcroprogram resident in main store, which interprets
APL statements. It carries out virtual --real address translation
according to the rules of the host system but returns control to
the host to service interrupts and page faults. Hence, system
integrity depends upon correct use of addresses in the APL micro-
code.

2. Extend Security Boundaries to the M croprogram Level

The in-line checks that can be used w thout inpairing perfor-
mance are restricted to key conparison, |ockout on fixed sized
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blocks of store, etc. The El enulator provides wite protection
on 16-word frames of scratchpad, 64-word franes of control nenory,
164 kword Frames of main nermory and all 1-O rmultiplex positions.
The nmain drawback to such schenes is their inaccuracy and the
difficulty encountered in handling dynamnically changing or noving
programs, Which occur quite frequently in nodern systens.

3. Control Address Formation in M crocode

An alternative, which can be seen as a generalisation of the
first approach, is to validate addresses when they are forned,
then to restrict their use so that further checks are unnecessary.
The SIL is responsible for form ng addresses (from segnent capa-
bilities); the language nmicrocode can nodify themw thin given
limits and access the store directly. Addresses are distinguished
by tags so that the SIL can find and update them when necessary,

i ndependent of the source language. This nethod is used in the
Variabl e Conputer System(Iliffe and May (1974)) on the El enul ator
whi ch nmakes provision for tag nanipulation. For conplete security,
however, specialised hardware support is necessary.

4. Separate the Language Processors Physically

A special case of the second approach, which is attractive
because technology is available in the formof [owcost mcro-
programabl e machines. The separation is conceptual ly physical
inthe formof nultiple processor-nenory pairs, but it could be
achi eved by time-slicing.

From the general design viewpoint either of the last two
approaches can be used to provide a viable systemnodel. Each
intends to cover a wi de range of performance by using multiple
conput ers. From 3 it can be seen that because access to program
space is controlled the SIL and user prograns can coexist in the
mai n menory and control store (if it exists), and that prograns
can be distributed over the available menory space. This
"distributed programi nodel is well suited to the class of
applications with dynam cally changi ng program requirenments, or
whi ch can be expressed in terns of cooperating parallel processes.

From 4 a nore specialised 'dedicated | anguage' nodel isderived.
Each program together with its interpreter, has unrestricted use
of the local nenory space of a processor-nenory pair during
execution, but it is rolled in and out by the schedul er whichforns
part of the SIL. The STL microcode and system procedures can be
protected by holding themin read-only menory. Access to shared
data or to overlays nust be through some form of secondary store
manager, which checks the rights of the user against declared
accessibility of the data, a relatively slow operation. The
di sadvant ages of the dedicated-1anguage nodel are the sensitivity
of programs to physical store sizes, the amount of unproductive
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traffic between central (i.e. secondary) nenory and | anguage
processors, the poor utilization of processor and nmenory resources
(if it is argued that processors and menory are give-away itens,
why bother with microprogram at all?). Nevertheless, such a
systemis in many ways the easiest to understand, it is |east
affected by failure of one of the processor-nmenory pairs, and it
lends itself to the 'personal conputer' node of working in the
same way that private cars lend thenselves to private transport,
however inefficient.

Each nmodel presupposes the use of a systeminpl ementation
 anguage (SIL) whose aimis to provide a set of functions that
can be used in all I|anguage applications to reduce devel opnent
effort and code duplication at both micro- and target machine
| evel s. In so doing it sets standards that can also be used in
the variable part. There is no doubt that certain operations such
as input-output and frequently used arithmetic procedures are
properly part of the SIL. How far one can go depends on the type
of system if the integrity of system data cannot be guaranteed
(which is the case for dedicated-1anguage nodel s) the amount of
support the SIL can give is linmted. On the other hand, commit-
ment of the SIL to support facilities that are rarely used conpli-
cates the system and wastes resources. The interesting design
area is thus the 'fringe' of functions just inside or just outside
the SIL, which | can best illustrate by reference to the Variable
Conput er System devel oped on the El research emulator and | ater
transferred to another host machine

4.3 An Exanple of a SIL: The Variable Conputer System

VCS is inplenented at two levels of control: mcroprogram and
the systemtarget |anguage (VCSL) in which all conpilers and sys-
temutilities are witten. The VCS procedures can be called
either at mcrocode or at machine code level. It follows that if
a mcroprogranmmed procedure is called from nachine |evel, or vice-
versa, some code nust be obeyed to adapt fromone level to the
ot her. It is undesirable to inmpose restrictions at this point
because one cannot al ways predict whether a procedure will be
conmitted to mcroprogram the descrimination nust be dynam c or
imedi ately before task initiation, at worst. For that reason
the list of procedure activations associated with any process con-
tains both mcro and machine level linkage information. Again,
it is undesirable to inmpose limts on the depth of procedure call
therefore linkage information is stacked in main nmenory, the host
machine |ink stack having very limted use

Procedure activations formpart of the process state vector
(PSv), which also contains VCS registers, environment pointer,
current program pointer and various flag bits that are mapped into
the host registers. As calculation proceeds it is possible that
other host registers will be used, but it is required that all
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state information will be contained in the PSV at points where
change of procedure or process nmay occur, In that way the VCS
can effect process mancecment W thout explicit know edge of the
language state, arid with a fair degree of independence of the
host machine. Similarly, by recognising tagged addresses the VCS
gaa carry out store munagement withoutexplicit declaration ufe
the mapping used i n current processes.

Procedure entry and exit is controlled through a dynami c chain
of marked 1. inks. The purpose of the marks is to distinguish task
initiation, systemcall and user procedure calls, allow ng various
level s of restart to be enployed and providing excell ent diagnostics
at boch control Jevels.

The ianterpretat ionto be placed on a program segnent is
indicated by a control type assigned to a particular conpiler
Control type zero is used for pure data: any attempc to obey it

will fail. Control type 1 is for systemuse, type 2 for VCSL
target code, and type val ues for |anguage extensions, e.g. to
Cobol, APL, etc, are assigned 3,4, . . . on a global basis. The

control type is exami ned on procedure call and return (in the case
of wachine | evel code), branching to the appropriate interpreter.

It can bee seen that the PSV's are key control structures that
must be protected if systemsecurity is to be ensured. The nost
efficient and flexible basis for prctection i s a capability scheme
such as that of the Basic Language Machine. Many of the vcs
functions are concerned with creating and mani pul ati ng abstract
systemobjects in a consistent Way, the PSV's being the representa-
tion of the abstract idea of a 'process'. In particular, we find
functions for:

(i) setting up operating environments (bases) and defining
the resources found in them

(ii) creating, starting and stopping processes;
(iii) entering and |eaving procedures;
and (iv) controlling access to resources

Here a 'resource' is a storage segnent, PSV, |-0O device, or a set
of resources. The recursive nature of this definition allows each
base to be constructed as a tree. Cearly, the integrity of any
obj ect depends in the end on naintaining the integrity of its
represencation, i.e. the store, and of the procedures tat ae
applied to it, 1i.e. the activation records contained in the PSV'g.

Program structure is dynamc. A new base is able to sharc the
inforwation available to its ' parent' at the tine of its crear ion,
with the effect that a hierarchy of bases is set up with the
‘systeml at the apex. The base structure is important in building
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Resources are defined by various types of capability, found
in capability segments at the branch points of the programtree.
The nost tine-critical VCS functions are those concerned wth
form ng addresses from segnment capabilities (codewords), and with
using them to access menory. For system reasons a codeword refers
indirectly to store via a global segnent table (GST). The corres-
pondi ng address retains the GST index in order to check the
accessibility and position of the segment, which happens each tinme
an address is loaded into a register (fromthe PSV). The access
code is used to control shared (read-only) access by severa
processes or unique (update) access by individuals. Al such
control and conversion together with the recycling of GST indices
and nmenory is exercised by VCS mcroprogram which provides a
good exanpl e of the application of mcrocode to system probl ens.

The 'read', 'wite' and 'modify' instructions which should
strictly speaking be found on the VCS function list are too
critical to handle by mcrosubroutine call. Users are therefore

allowed to issue themdirectly for binary data and trusted to
observe the linmt and protection codes

CODEVORD [type] [ GST i ndex]

GsT[g] [access control] [fbl] Fbl: [1imit]

ADDRESS [tag] [type] [GST index][1limit][ b1]

absolute or relativised
byte | ocation

In the course of design numerous candidates for positions in
the VCS function list have to be considered. A fundanental pro-
blemin extending the systemis to achieve valuable effect with-
out degrading overall performance. Sonetimes a mcrocode branch
is obtained 'for free', while at other times a new facility en-
tails extra tests in a critical path. The available control store
in a range of host machines has also to be considered. Options
considered in that light are

(1) selection of set elenents by key rather than index
val ue;

(ii) provision of paging facilities;

(iii) static chaining in the procedure activation |ist;

(iv) introduction of a third segnment type consisting of a
set of tagged el enents;
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(v) use of senmphore variables for interprocess communication

There are many possible variations of the addressing rule such
as (i) and (ii) but each entails a |oss of space or time that
skilled programmers will try to circunvent. The best progranmm ng
envi ronnent appears to be a set of dynamically constructed,
variabl e sized segnents: they naeke optinal use of store and
their access overheads are well understood. It is left to sub-
system designers to map progranms efficiently onto the tree struc-
ture, so that the store managenent inplicit in a | anguage such as
APL is carried out in part by the [anguage subsystem (which is
aware of the details of APL usage) and in part by VCS functions
whi ch provide the containers for the APL workspaces.

VCS procedures are not intended to represent high level con-
trol structures directly, though they happen to be adequate for
VCSL and sinple |anguages such as Fortran. Recognition of static
| evel s involves extra work in procedure managenment and a variety
of actions dealing with special cases that could not be built in-
to a fixed system so it is intended that such structures be
mapped by the | anguage mcrocode into sinulated control stacks.

It seened probable that napping a display structure such as those
found in Algol-derived | anguages would benefit fromthe ability to
mani pul ate sets of addresses, but the practical inplenentations
studi ed so far have used indirect nmapping techniques, i.e. a new
form of 'pointer' peculiar to the language is invented and mapped
dynamically onto the VCS structures (cf the Data Qualifiers in
Cobol).  The advantage of such techniques is that they can take
account of |anguage paranmeters in the design of pointers, but we
noted earlier that 20 or nore mcrosteps nay be taken to recon-
struct the absolute VCS address

Finally, various fornms of semapore signalling were consid-
ered, but only a mnimal '"busy' flag was inplemented in the PSV
The argument against greater elaboration is that the access
mechani sm of the G obal Segnent Tabl e already provides direct con-
trol over shared resources, associating the control variable wth
the resource itself, so there is little point in providing nore
obscure functions to the same end. The release of a segnment for
rescheduling at the end of a critical section is not automatic:
to force it at procedure exit, for exanple, would again inply
intolerable overheads, so an explicit VCS Rel ease function is
required

The Variable Conmputer System provides support for language-
oriented mcroprograms in easily portable form an investnent of
about 8 Kbytes of microcode transfers the VCS functions, VCSL
support codes, conpilers, utilities, etc to a new host machine
It provides the type of support which is needed if the advantages
of mcrocode are to be fully realised for each | anguage, and
al though the function list could be inproved in the |ight of
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experience | think it is a sound nethod of exploiting the current
generation of general purpose enulators, acknow edging that system
security rests on the correct design of |anguage interpreters.

4.4 Future Devel opnents

Careful choice of words has left'the nost critical question
unanswered: |eaving aside short-term expedients, is a general pur-
pose host machine with two |levels of writable control the best
starting point for processor design? | think not, for three
reasons.

Firstly, the argunments that have been used are based on nea-
sures of high level |anguage inplenentation, whereas a substantial
part of information processing still lies outside that well-
defined area. Several systens of nediocre performance and limted
applicability have resulted fromthe assunption that a high |evel
| anguage or set of languages would cover the field. On the other
hand without the formality of high level constructs it is diffi-
cult to see how to nmake use of writable control nenory.

But even accepting the limtations of high Ievel |anguages it

can still be argued that the interpretive approach is not optinal
in many instances and that the system problens outlined earlier
have still not been solved. It has to be shown that there is a

better approach to |anguage inplenentation with the range and
flexibility of conventional systenms. W begin by drawing a

di stinction between the inherent coding advantages of m cropro-
grammed interpretation and the benefits which result from using
fast storage or ducking behind the range architecture.

Microprogrammed i nterpreters have inproved on fixed, conplex
target instruction sets to the extent that much of the redundant
information in the instruction streamhas been elininated. The
figures given earlier show a reduction from500 to 200 microsteps
for the average Cobol statenent, or a reduction from15:1 to 6:1
inthe ratio of support steps to useful arithmetic and | ogic.

That suggests there is still roomfor inprovenent, which mght be
found in a hybrid formof control in which in-line and interpre-
tive methods can be mixed. After all, an interpreter is sinply a

nmeans of calling a subroutine fromthe target instruction stream
its weakness is that the interpretive overhead is paid on every
syl l abl e. In other words, if we think in terns of an 8-bit
function syllable, 128 codes m ght be assigned to hard-wired
functions, the other 128 to procedure entries in a variable
‘control environment'

The starting point | suggest is that each | anguage shoul d be
anal ysed fromthe point of view of minimsing the product of micro-
steps and space in the representation of programs, covering both
instruction and descriptor decoding. I expect, though I do not
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know of a fully tested exanple, that the best code a conpiler can
produce will be a mxture of mcrosteps and nonosyl |l abic procedure
calls. In other words, the separation into 'interpreter' and
"target' code is no longer relevent

The probl em of presenting the control streamto the processor
at high speed cannot be solved by conmitting the entire interpreter
to control nenory because it is now diffused through the program
space. As it happens, it was not at all clear howto do that in
a flexible manner for a general purpose multilanguage system The
conversion of 'mcrosteps’ to 'nanoseconds’ can best be treated in
t he broader context of speeding up nenory access rates: |ook ahead,
use cache buffers, or in the last resort pay nore, but do not
attenpt to deal specifically with the restrictions of control
memory or scratchpad. It will be noted in passing that for the
mul ticonputer architectures envisaged the path from menory to
processor is shorter than that of a centralised system wi th shared
store highways, therefore the benefit of high speed control nenory
woul d be |ess marked

Returning to system problems, we are left with (A) range cover

which it was (and 'still is) hoped to achieve using nmultiple conpu-
ters, and (B) security. The dedicated-|anguage systemis not
affected by the use of hybrid control: no assunptions are nade

about program security. The distributed-program system does
depend on control | ed address formation, which was achieved in the
Vari abl e Conputer System by a policy of trusting the |anguage
subsystens. Wth hybrid control it becones inperative to have
har dwar e-enforced protection. It is also the case that many of
the key VCS functions at present inplemented by mcrosubroutine
calls could be inplemented by in-line code

The above discussion has been based on vaguely defined "micro-
steps' conparable with the vertical mcroinstructions of present-
day machines. The reader may feel concerned at reverting to a
processor style not far renoved fromthat of twenty years ago. Is
there a danger of inventing nore and nore conpl ex mcrosteps and
repeating the evolutionary cycle that led to the | BM Systen 360
and other 'range' architectures? The return in space that can be
expected from nore conplex instructions depends on finding
frequently repeated diagrans or n-grans that can be suitably
packaged. They are nore likely to occur in arithnetic, were
"hardened" floating point and deci nal operation can be expected,
then in control sequences. |t would not be surprising to see the
host arithmetic functions develop in the direction of current
machi ne codes (with type interpretation placed on descriptor or
tag gields), but the many nodes of data access appear to benefit

very little from conplex addressing rules
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