
SEL-77-032

RESEARCH IN THE DIGITAL SYSTEMS LABORATORY:

AUGUST 1976 - JULY 1977

Technical Report No. 150

September 1977

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

Sponsors of research describedinthis report include the Air Force Office
of Scientific Research, the Army Research Office - Durham, the Ballistic
Missile Defense Systems Command, the Defense Supply Service (DARPA), the
Energy Research and Development Administration, the Joint Services Elec-
tronics Program, the National Aeronautics and Space Administration, the
National Institutes of Health Division of Research Resources,theNational
Science Foundation, the Office of Naval Research, and University of Cali-
fornia Lawrence Livermore Laboratory. Specific grants and contracts are
cited in each research section.

RESEARCH IN THE DIGITAL SYSTEMS LABORATORY:

AUGUST 1976 - JULY 1977

Technical Report No. 150

Digital Systems Laboratory
Stanford University

Stanford California, 94305

ABSTRACT

This report summarizes the research carried out in the Digital Systems

Laboratory at Stanford University during the period August 1976 through

July 1977.

Research investigations were concentrated in the following areas:

Computer Reliability and Testing, including detection of intermittent fail-

ures, testing for sequential circuits, self-checking linear feedback shift

registers, simulation analysis of high-reliability systems, effects of

failures on gracefully degradable systems, performance-related reliability

measures, verifiably reliable computer systems, fault diagnosis in digital

systems, and software reliability; Critical Fault-Pattern Determination;

Computer Architecture, including trace facility, memory interleaving, and

monitors for signal activity; Organization of Computer Systems, including

an emulation research laboratory, emulators, and memory performance; Fea-

sibility of Real-Time Emulation, including directly executable languages;

Distributed Data Processing for Ballistic Missile Defense; Description

Languages and Design for General-Purpose Computer Architectures, including

evaluation of existing hardware description languages, development of a

i

structural description language, applications of the structural design

language, bounds for maximal parallelism, and parallel information pro-

cessing in biological systems; Computer Networks, including broadcast

protocols in packet-switched computer networks and the optimal placement

of dynamic-recovery checkpoints in recoverable computer systems; Design

and Verification of Reliable Software including specifications and proofs

for abstract data types in concurrent programs, specification and verifi-

cation of monitors, and operating system design; Design Automation, includ-

ing a language for describing the structure of digital systems, the SPRINT

printed-circuit design system, computer-aided layout of large-scale inte-

grated circuits, and an interactive system for design capture; Database,

including studies in distributed processing and problem solving, a database

matinenance system, and the implementation of database in medicine; and

Digital Incremental Computers.

ii

TABLE OF CONTENTS

page no.

A. COMPUTER RELIABILITY AND TESTING 1
1. Optimal Strategy for Detection of Intermittent Failures . 1
2. Random Compact Testing for Sequential Circuits. 1
3. Self-Checking Linear Feedback Shift Registers 3
4. Simulation Analysis of High-Reliability Systems 3
5. Effects of Failures on Gracefully Degradable Systems. . . 4
6. Performance-Related Reliability Measures. l . . 5
7. Verifiably Reliable Computer Systems. 6
8. Fault Diagnosis in Digital Systems. 7
9. Software Reliability. 8

B. CRITICAL FAULT-PATTERN DETERMINATION 8

C. COMPUTER ARCHITECTURE. 10
1. Trace Facility. 10
2. Memory Interleaving 11
3. Monitors for Signal Activity. 12

D. ORGANIZATION OF COMPUTER SYSTEMS 13
1. Emulation Research Laboratory 13
2. Emulators . 14
3. Memory Performance. 15

E. FEASIBILITY OF REAL-TIME EMULATION 16
1. Directly Executable Languages 16

F. DISTRIBUTED DATA PROCESSING FOR BALLISTIC MISSILE DEFENSE. . . 17
1. Distributed Computer Systems. 17

G. DESCRIPTION LANGUAGES AND DESIGN FOR GENERAL-PURPOSE
CCMPUTER ARCHITECTURE 18

1. Evaluation of Existing Hardware Description Languages . . 18
2. Development of a Structural Description Language. 18
3. Applications of the Structural Design Language. 19
4. Bounds for Maximal Parallelism. 19
5. Parallel Information Processing in Biological Systems . . 20

iii

paqe no.

H. COMPUTER NETWORKS .
1. Broadcase Protocols in Packet-Switched Computer

N e t w o r k s .
2. The Optimal Placement of Dynamic-Recovery Checkpoints

in Recoverable Computer Systems.

I. DESIGN AND VERIFICATION OF RELIABLE SOFT'rlARE
1. Specifications and Proofs for Abstract Data Types in

Concurrent Programs.
2. Specification and Verification of Monitors.
3. Operating System Design

J . DESIGN AUTOMATION .
1. A Language for Describing the Structure of Digital

Systems .
2. The SPRINT Printed-Circuit Design System
3. Computer-Aided Layout of Large-Scale Integrated

C i r c u i t s .
4. Interactive System for Design Capture

K. DATABASE .
1. Studies in Distributed Processing and Problem Solving . .
2. Database Maintenance System
3. Implementation of Database in Medicine

APPENDIX .
Ph.D. Dissertations .
Journal Articles, Books, Book Chapters.
Conference Proceedings.
Technical Reports .
Technical Notes .
Papers Accepted for Publication

21

21

22

22

23
23
24

25

25
25

26
26

26
27
30
30

31
31
31
33
35
38
40

Papers Accepted for Presentation. 40

iv

DIGITAL SYSTEMS LABORATORY RESEARCH

AUGUST 1976 - JULY 1977

A. COMPUTER RELIABILITY AND TESTING

E. J. McCluskey

NSF Grants MCS76-05327 and MCS76-053270A01
Contract AFOSR 77-3325

1. Optimal Strategy for Detection of Intermittent Failures
(J. Savir)

Intermittent failures are physical failures that appear and

disappear apparently at random. In integrated circuits, overspreading

or loose particles of eutectic solder can make temporary faulty contacts

on the silicon die. Another common type of intermittent failure is pro-

duced by weak bonding between the leads and circuit. Stresses break open

the bonding, but a temporary contact can be reestablished by vibrations

or similar effects.

Such failures in digital systems are especially difficult to
detect because the periods during which they occur are unknown. A de-

tailed analysis of the problem led to an optimal strategy to test com-

binational circuits for possible intermittent failures. The best test

is designed to minimize the conditional probability that an intermittent

failure escapes detection. A relatively simple procedure that deter-

mines the optimal strategy produces the set of input vectors for detec-

tion plus the relative frequencies with which these input vectors must

be applied. Optimal testing is far more efficient than the more intui-

tive approach which consists of repeating n times the test for the

permanent faults.

2. Random Compact Testing for Sequential Circuits (J. Ia.d

With the increasing complexity of digital circuitry, the test-

ing problem has become correspondingly more difficult and time-consuming.

The methods that produce test sets by quickly analyzing the effects of

1

every possible failure on the circuit become prohibitively expensive.

For large printed circuit boards with several hundred ICs, such methods

may require a great deal of computer time to produce test sets that

cover dj3proximately 90 percent of all single failures. One method to

overcome this complexity, known as random compact testing, uses random

inputs as test vectors. The testing sequence is based on a long se-

quence of random input vectors; however, instead of keeping the complete

output sequence (which may be several million characters), the output

stream is compacted. Counting the number of logic l's in the output

sequence or the number of transitions are examples of types of compac-

tion. The result, called the signature, is then used to detect the

presence or absence of failures; the rationale is that faulty circuits

will yield a different signature than fault-free circuits.

It has been demonstrated that compact testing detects most

failures in combinational circuits. The goal of this research was to

investigate its efficiency in detecting failures in sequential circuits
which are far more difficult to test. The initial state, synchronizing

sequences, and propagation of internal failures to the outputs were

problems to be considered. The initial-state problem can be overcome

simply because a long sequence of random inputs is sufficient for ini-

tialization. Most failures inside the memory elements can be detected

by compact testing, and, most failures in the combinational logic that

synthesizes the memory excitations and the outputs will change the cir-

cuit signature. The ability to detect small variations in signatures

is directly dependent on the length of the test sequence. A longer se-

quence produces better detection.

As a result, compaction is believed to be an efficient and
simple method for testing sequential circuits. The current emphasis of

this work is oriented toward the determination of the best compaction

scheme. Transition counting, l's counting, and compaction by means of

a linear feedback shift register are being considered. It is hoped that

such a study will provide a general and simple approach to achieving

good fault detection (over 90 percent coverage) without the need for

complex circuit analysis.

3. Self-Checking Linear Feedback Shift Registers (D. J. Lu)

In the application of cyclic redundancy codes, linear feedback

shift registers (LFSRS) perform data encoding and error detection and

correction functions. In testing digital systems, LFSRs are used to

compact long data streams into short easily compared digital signatures;

they also have applications as counters and pseudo-random sequence gen-

erators.

Because LFSRs are responsible for the integrity of data or

test results, the proper operation of these circuits is very important.

Analysis of the behavior of faulty LFSRs revealed that they are not

self-checking. For certain stuck-at faults, the typical LFSR was ob-

served to be neither fault-secure nor self-testing. Even for the ap-
plication of cyclic redundancy code checkers, it became evident that

the basic LFSR provides inadequate distinction between code data errors

and circuit faults.

The implementation of totally self-checking LFSRs by duplica-

tion was investigated. The fault-secure property was verified, and the

self-testing capabilities were evaluated on a quantitative scale. To

reduce hardware and time-delay requirements in the comparison logic,the

possibilities of reducing the number of comparison points were examined.

It was discovered that, given a reasonable single-fault assumption, the

comparison logic could be eliminated and that the totally self-checking

LFSR can be implemented in two IS1 chips.

4. Simulation Analysis of High-Reliability Systems
(P. A. Thompson)

In previous work, a simulation technique was developed to eval-

uate the reliability of redundant digital systems. The behavior of the
system in the presence of faults was configured into a simulation model

into which randomly occurring faults could be injected. The evaluation
process for one system required the simulation of many missions, with

one mission determined to be all the events from time = 0 until the time

at which the system fails. By obtaining the time-to-failure for many

missions, an estimate of system reliability as a function of time could

be computed. Unfortunately, this method is prohibitively expensive if

3

reliability is too close to 1.0 during the time interval being consid-

ered. For example, the values of reliability were so high in the dual

computer system that approximately 10' missions would be required to
obtain reasonably accurate results.

A method of estimation was developed, which greatly reduces

the number of missions needed to achieve the desired accuracy in the

reliability function. By taking advantage of several statistically

stationary properties (such as the constant failure rates and system

response to faults), it was possible to consider one simulated long (in

time) mission as the probabilistic equivalent of many shorter missions.

An unbiased estimator of the reliability function has been obtained for

this method. An upper bound on the variance has been derived so that

the minimum number of missions required for the desired level of accu-

racy can be computed.

This method of estimation was applied in the analysis of a

dual computer system with a lo-hour reliability of approximately 1 to
-710 . It reduced the total number of required missions and the cost of

simulation by a factor of 2 X 103.

5. Effects of Failures on Gracefully Degradable Systems (J.Iosq)

Gracefully degradable systems are multiprocessors that can

continue to operate even after failure occurrences. When a failure is
detected, the remaining fault-free subsystem takes the necessary recovery

steps to stop the propagation of errors and proceeds to reconfigure the

remaining system so that the faulty part can be isolated and normal com-

putation can resume. The economic interest of gracefully degradable

systems is self-evident--continuous service to the system users.

Many architectures have achieved graceful degradation, and

widely diverse systems have been designed. A very general model was
developed to evaluate the effects of failures on system performance.

The model considers hardware, software, detection-recovery capabilities,

and the type of applications for which these systems are used. Failures

are classified according to their effects. Safe failures are immedi-

ately detected before the errors propagate; unsafe failures may produce

errors for some time before they are detected. Consequently, recovery

4

from unsafe failures is far more difficult and, depending on the criti-

cality of the application, it may be necessary to recheck every action

taken by the system before the detection occurred.

The model partitions gracefully degradable systems into re-

sources. Each resource, whether hardware or software, performs a given

type of service. Resources are formed by functionally equivalent ele-

ments; processors for the processing resource is an example. For the

system to be operational, each resource must provide a minimal level of

service, and failures in the elements will decrease that level. Unsafe

failures incapacitate the resource during the time required for detec-

tion and recovery. Total system performance depends directly on the

state of the resources.

Using this model, it was possible to evaluate the sensitivity

of system performance to failures. The merits of hardware- vs software-

implemented fault-detection mechanisms were also compared. Many of the
trade-offs and optimization problems have been documented. The impor-
tance of the software unreliability factor in the overall performance

equation has led to a refocusing of our work toward modeling software-

induced failures.

6. Performance-Related Reliability Measures (D. Beaudry)

Reliability measures for distributed or multiprocessor comput-

ing systems should consider total system performance. Traditional reli-

ability calculations are applicable when redundancy is used to achieve

fault tolerance. These measures, however, do not address the problems
of diminished performance caused by the failure-induced degradation of

system resources. Several measures have been developed that take into

account the system's capacity to execute its computing tasks. t These
measures, obtained by means of a Markov model of the system, can be ap-

plied to compare and evaluate computer-system architectures with differ-

ent reliability and performance characteristics.

tM. D. Beaudry, "Performance-Related Reliability Measures for Computing
Systems," Tech. Note No. 101, Digital Systems Laboratory, Stanford Uni-
versity, Stanford, Calif., 1977.

5

7. Verifiably Reliable Computer Systems (P. A. Thompson)

When designing computer systems for critical applications, it

is necessary to be able to determine accurately the overall reliability

of the system. Knowledge of reliability and mission times makes it eas-

ier to select the best design alternative among a large number of candi-

dates. It is also often necessary to demonstrate with a given level of

confidence that a complex redundant system meets the reliability crite-

ria specified in the development contract. Unfortunately, the lack of

accurate failure-rate data for components makes it impossible to obtain

precise estimates of their reliability in most systems that use redun-
dancy to enhance reliability. As a result, it would be useful to know

for which redundant structures a precise determination can still be ob-

tained without accurate data relating to failure and repair rates. Given

a particular redundant system, how it should be partitioned (into modules

or components) must also be determined so that knowing the function of

each section guarantees, in theory, a possible estimation of overall

system reliability.

The initial approach to this problem has assumed a digital

system containing a fixed number of identically designed redundant mod-

ules. System behavior in the presence of any possible fault is known,

as is the reliability function for each of the modules. It is further

assumed that the failure/repair probability distributions associated

with each type of fault that may occur within a module are not precisely

known. It is desirable to identify the necessary and sufficient system

characteristics so that the reliability of the whole system can be ex-

actly determined under these constraints.

In systems with no more than two identical modules, it has

been proved that, generally, it is impossible to exactly determine the

overall reliability function. The study of systems with three or more

identical modules is not yet complete, but intuitive arguments are based

on the extension of this result to any number of modules. It is not

known how additional assumptions, such as assuming constant (in time)

failure rates, will affect this result.

Although it may never be possible to obtain the exact relia-

bility function for a system, perhaps some redundant configurations will

6

produce better estimations than others. Future work will investigate

the theoretical limits on the precision of such estimations, based on

incomplete failure/repair data.

8. Fault Diagnosis in Digital Systems (M. L. Blount)

The problem of fault diagnosis in multiunit digital systems,

particularly multiprocessor computers, has been investigated. Two mod-

els of system-level diagnosis in digital systems have appeared in the

literature --the Preparata and the Kime models. In both, some idealistic

assumptions were made concerning tests and the testing process.

A new general model for system-level diagnosis, called the

probabilistic model, has been proposed in which the outcomes of tests

are considered to be random rather than fully deterministic events. Com-

pared to the Preparata and Kime models, the probabilistic model has the

following advantages.

0

0

The restriction
removed.

that all tests must be complete tests is

Intraunit tests can be developed.

0 It is possible to determine the extent to which faults in
the testing units affect the test results and the effects
of transient faults on the diagnostic procedure.

0 The diagnosability measure is more general.

In addition, a diagnosis strategy has been derived to optimize this mea-

sure.

The probabilistic model is being used in a study of diagnostic

strategies employed in high-availability multiprocessors. The goal is to

compare the various strategies in terms of their effectiveness.

Research is also directed toward an efficient implementation

of a diagnostic facility for high-availability multiprocessors. A dis-

tributed microcomputer-based design has been proposed. The facility also

appears to be capable of handling the error-detection monitoring, retry,

and reconfiguration required in a high-availability system.

7

9. Software Reliability (D. Beaudry)

Because software failures are a significant source of system

failures in complex computing systems, they must be included in models

developed to evaluate system reliability and performance characteristics.

A statistical analysis of failure data obtained from the Stanford Linear

Accelerator Center multiprocessor system revealed that software and hard-

ware failures have different characteristics and cannot be modeled in the
tsame way. If variations in the demand for system resources (especially

the operating system) are taken into account, however, a tractable model

for software-induced system failures can be defined. This type of anal-

ysis can be used to evaluate the effects of changes in hardware or soft-

ware system resources.

B. CRITICAL FAULT-PATTERN DETERMINATION

E. J. McCluskey

NASA Grant NSG 1410

A study has been undertaken to develop methods for determining all

the fault patterns that can cause a highly reliable computer system to

fail. For critical applications (such as airplane automatic flight con-

trol or landing), computer systems have been made highly reliable through

the use of such redundancy techniques as triple modular redundancy. These

highly redundant systems will recover from most failures, and only a few

failures or a combination of failures (called fault patterns) will result

in a system crash. Reliability-evaluation techniques based on a statis-

tical evaluation of these critical fault patterns do not produce accurate

results. The population of critical fault-patterns is generallytoosmall

or too poorly behaved to enable meaningful statistical approaches.

tM. D. Beaudry, "A Statistical Analysis of Service Interruptions in the
SLAC Multiprocessor," Tech. Rept. No. 141, in preparation.

8

Complete enumeration of the critical fault patterns produces much

more useful information for improving and validating highly reliable

systems. Three approaches are being investigated--penetration, simula-

tion, and analytical methods.

The penetration method takes advantage of the superior human abil-

ity to pinpoint potential problems. By analogy with code-breaking tech-

niques, a careful examination of such a highly reliable (and critical)

computer can lead to very significant savings in time after the system

is simulated or modeled. Many error-prone areas (such as specification

completeness or timing problems) are extremely difficult to manage by

simulation.
Simulation can determine the effects of failures on system behavior.

A general simulator intended for reliability analysis has been developed

at the Center for Reliable Computing, based on simulating the effects of

each possible fault pattern to determine the critical ones. Because of

the large amount of computing time required for such a global simulation,

it is highly desirable to use it in interaction with the penetration ap-

proach. Because the simulator does not require that all parts of the

system be described with the same level of detail, the most critical

parts of the system can be defined in greater detail.

Investigation of an analytical approach is under way. By accurate
modeling, it should be possible to identify the possible states of the
system following a failure. The system will be represented by a graph
where the nodes are the states and the edges correspond to failures. The

critical fault patterns will correspond to a sequence of edges (failure

occurrences)'that take the system from a fault-free state to a failed

state. Such an approach overcomes the need to enumerate all possible

fault patterns. The single failures that cause system crashes are the

paths of length 1 between the fault-free and the failed state, the crit-

ical double failures are the paths of length 2, and so on.

Because of the different but complementary advantages (and draw-

backs) of these three approaches, the best solution may involve an in-
teraction between the analytical and simulation approaches. Human in-
telligence will close the loop.

9

c . COMPUTER ARCHITECTURE

E. J. McCluskey and S. S. Owicki

Contract N00014-67-A-0112-0601

1. Trace Facility (D. J. Rossetti)

The STRAP/370 instruction tracing facility is producing data
for various studies in the areas of performance, architecture, and oper-

ating systems. A paper entitled, "The Design and Implementation of an
Operating System Tracer," has been submitted for publication in the Com-

munications of the Association for Computing Machinery. It describes
the unique aspects of the tracer, provides examples of its use, and rec-
ommends further applications of the data and technique.

Cur approach is being extended into the microprocessor area;

most of the desirable features of the original technique will be re-

tained. Computer architectures will be evaluated from the standpoint

of development and programming ease as opposed to processing speed be-

cause software development has become a major cost in microprocessor

use. The principal tool is a detailed-level instruction tracer having

the following characteristics.

0 It is independent of the program being measured to the
extent that one microprocessor can be used to measure
another.

0 The instruction stream is sampled in bursts at a rate
determined by the user.

l Minimal perturbation is introduced into the measured
system because the trace is collected with hardware
assistance and not by interpretation.

l Actual systems and programs can be measured, including
input/output and interrupts. The trace is not gathered
in an artificial environment, such as a simulator.

The tracer is an extension and adaptation of the work of a

graduate student. It has been used to obtain instruction frequency data

for application programs in our microprocessor laboratory. Current plans

are to collect extensive trace data for studies in architecture

10

evaluation and to gain understanding of microprocessor program and in-

put/output behavior.

2. Memory Interleaving (F. W. Terman)

Models of interleaved memory systems have been investigated

by means of a trace-driven simulation. The basic model extends the one

developed by Burnett and Coffman+ to the architecture of the IBM 360/

370 with its variable-length instructions and operands. This basic sim-
ulation model also includes multibyte transfers per memory access and

facilitates the study of the effects of channel interference, data-re-

quest reordering, and data queue emptying.

Memory requests for the simulation are obtained from two sets

of instruction-by-instruction trace records. The first set, produced

by the program TRACE/360, traces the problem state component of typical

programs running on the IBM 360/370. The second set, produced by the

program STRAP/370, traces samples of the total activity of the CPU, in-

cluding the supervisor and problem states.

The theoretical predictions of Burnett and Coffman for the

increase in memory bandwidth as a result of interleaving are found to
fit well with the simulation results obtained for the fetching of in-

structions. The usefulness of fetching instructions in blocks is lim-

ited by the relatively high frequency of branches on the IBM 360/370.

Consequently, an active channel has relatively little effect (less than

10 percent degradation) on the fetching of instructions from an inter-

leaved memory.

For the transfer of operands to and from memory, the simula-

tion results reveal only one-half the increase in memory bandwidth pre-

dicted by Burnett and Coffman, which indicates that data references on

the IBM 360/370 are not random. The effect of an active channel is

again small because of the number of idle modules in a typical memory

cycle. A larger degradation (10 to 20 percent) occurs if the data

tG. J. Burnett and E. G. Coffman, Jr., "A Study of Interleaved Memory
Systems," Proc. AFIPS Spring Joint Computer Conf., 36, AFIPS Press,
Montvale, N.J., 1970, pp. 467-474.

11

requests are forced to "catch up" with the instruction requests before

a successful branch is executed. This is a reasonable restriction be-

cause the branch address cannot be calculated with certainty until the

values of the general-purpose registers are known. On the other hand,

a significant improvement (15 to 30 percent) in the memory bandwidth

can be obtained by allowing the data requests to be filled out of order.

These effects are being investigated in detail and compared to the pre-

dictions of other theoretical models.

This analysis is being extended to include the effects of in-
terference between multiple CPds. The effects of the interdependencies

between instructions and operands and between the operands themselves

will also be examined.

3. Monitors for Signal Activity (R. C. Ogus)

Probabilistic models have been developedt to describe logic
circuits where a probability can be assigned to a signal line that in-

dicates that the signal is a logic "1" given the probability of the in-
puts of the circuit is a "1." Algorithms have been developed to derive
the signal-probability expressions as functions of input signal proba-

bilities. Signal probability is of value in computing the probability

of detecting faulty behavior in circuits and in the calculation of the

signal reliability of a circuit (the probability that the circuit output

is correct). In addition, a scheme to select efficient test sets from
random inputs has been described * wherein the effect on a circuit output

of exercising any input variable must be measured. In this way, the in-
puts can be weighted according to their importance. This requires mea-
suring both the input and output signal probabilities. This scheme can
also be applied in error-latency studies and in system testing.

tK. P. Parker and E. J. McCluskey, "Analysis of Logic Circuits with
Faults Using Input Signal Probabilities," IEEE Trans. on Computers,
C-24, 5, May 1975, pp. 573-578.

*H. D. Schnurmann, E. Lindbloom, and R. G. Carpenter, "The Weighted
Random Test Pattern Generator," IEEE Trans. on Computers, C-24, 7,
Jul 1975, pp. 695-700.

12

Because, in many cases, circuits are too large for analytical
analysis, it is desirable to develop a hardware monitor unit that can

actually measure signal activity and display the signal probability.

Two monitor designs have been proposed. The first is a simple stand-

alone single probe that can directly measure and display the probabil-

ity of a "1" on a signal line. The second is a more complex processor

that can insert a number of probes into a circuit and measure the sig-

nal probabilities of the lines and also process the information to re-

late to a particular application.

A prototype of the first monitor has been constructed and is

being exercised. The second design would be implemented on an IBM Sys-

tem/7 computer. These tools should be useful augmentations to the other
monitors described above and should prove valuable in such applications

as test generation and actual circuit testing.

D. ORGANIZATION OF COMPUTER SYSTEMS

M. J. Flynn

ERDA Contract EY76-S-03-0326 PA39

This project is directed toward general studies of the organization

of computing machines, including parallel processors that attempt to
manage a large number of data, logical resources, and/or tasks simulta-

neously. Detailed investigations of computer systems include

0 computer-system resource use and specification by general
models and simulation

0 comparative study and evaluation of system-design archi-
tectures and concepts, including parallel and micropro-
grammed processors

1. Emulation Research Laboratory (C. J. Neuhauser)
em

The primary mission of the Stanford Emulation Laboratory is to

study the processor instruction execution as it is represented by both

physical and conceptual processors. A facility has been developed that
may replace (or emulate) the instruction-processing activity of an

13

arbitrary machine. At the center of this facility is an interpretively

programmed host processor. When properly programmed, it will exactly

emulate the instruction fetching, decoding, and execution of a selected

target machine (conceptual or physical). The software-oriented process

of organizing the host-processor resources for a particular target-ma-

chine emulation is referred to as "microprogrammed interpretation."

The Emulation Laboratory is divided into two cooperating but

independent subsystems--the emulation and experiment-control systems.

The emulation system contains a special-purpose "host" (or interpretive)

processor, control storage, main storage, and a common bus. To emulate

a particular target machine, a microprogram interpretation of this ma-

chine is constructed and loaded into the control store of the host pro-

cessor. During emulation, the control store and physical resources of

the host processor serve as the data storage and manipulation resources

of the target machine. The main memory system is similarly configured

to represent the main memory system of the target machine. The experi-
ment-control system consists of low-speed user-oriented I/O devices

clustered around a general-purpose processor.

The two laboratory systems are coupled via the common bus and
are organized so that the experiment-control system has direct access to

the data storage of the host processor. This provides a convenient meth-
od of direct observation and control of the emulation experiment.

Host-machine microprograms are written in one of two especially

developed languages. .

2. Emulators (C. J. Neuhauser)

Several emulators have been written to interpret the codes of

traditional machines. An emulator capable of processing the complete

IBM 360 basic instruction set has been written. For typical instruction

sequences, approximately 100,000 target-machine instructions are executed

per second, which indicates that the emulator is operating at 70 percent

of an actual IBM 360 Model 50. Comparable execution rates may be ex-

pected for similar second- and third-generation physical processors.

Studies are under way to extend the 360 emulator so that detailed re-

source-usage statistics can be obtained during the emulation process.

14

We have written emulators for the PDP-11, CDC-6400/6600, RC-

4000, and Intel-8080. These systems interpret target codes at 50 to

100,000 target-machine instructions per second. The lower performance

is the result of machines with data paths in excess of 32 bits or that

use complex register interpretation. We are continuing to expand the

number of architectures we interpret and to obtain usage statistics

from each of these machines.

3. Memory Performance (B. R. Rau)

The performance of the memory system is central to the per-

formance of the entire computer system and, of the factors that affect

memory performance , program behavior is , perhaps, the most important.

The performance of the memory system is best measured by two figures of

merit --access time and bandwidth. Accordingly, our work has concen-
trated on studying the effect of program behavior onthesetwo measures.

The most cost-effective way of reducing access time is to
structure the memory hierarchically with a number of levels, each one

faster and smaller than the one below it. Two aspects of program be-
havior that most directly impact the effectiveness of a memory hierarchy

are temporal and spatial locality. The least-recently-used stack model

(LRUSM) is a good model of temporal locality, but its analysis has been
neglected; however, we have developed some properties and applications
for it. Spatial locality is modeled by the spatial locality function

based on the LRUSM and is observed to be invariant with the level in

the hierarchy at which it is measured. This property is utilized in
developing a procedure for analyzing multilevel memory hierarchy. The

string of operand requests possesses sequentiality in a generalized

sense, and this can be exploited to enhance performance at the very

highest level of the hierarchy.

The cost-effective approach for increasing the bandwidth is

to interleave the memory in a low-order manner. The LRUSM is an ade-
quate model of program behavior in this context and can be used to ana-

lyze the bandwidth obtained with a highly overlapped uniprocessor. The

bandwidth in a multiprocessor system is also being studied under fairly

general assumptions concerning program behavior.

15

The fundamental issue of how program behavior should be mod-

eled and analyzed is being examined in some detail. It is argued that

the most successful approach is to permit a judicious choice of approx-

imations and to balance the errors incurred in developing the model and

in analyzing it subsequently.

E. FEASIBILITY OF REAL-TIME EMULATION

M. J. Flynn

Contract DAAG29-76-G-0001

The emphasis of this study is focused on the feasibility of ad-
vanced and more powerful host processors capable of processing 1 to 5

MIPS of target machine instruction.

Directly Executable Languages (L. W. Hoevel)

A DEL is an intermediate language tailored to a specific combina-

tion of source language, host machine, and user community. User-written

source programs are generally evaluated by translating them into an

equivalent DEL "surrogate" and then submitting them for execution, in

place of the original source version, as often as a user desired. The

DEL thus occupies the same place in a computing system as a traditional

machine language; however, because it is specifically designed to cou-

ple well with the given constraints, the resulting system should be far

more efficient.

We have been studying the potential space-time advantage of DEL-

based systems for high-level source language/microprogrammable host-

machine constraint combinations. In particular, we have developed an

intermediate text for a basic FORTRAN/EMMY system that results in an

average reduction factor of 7.5 in both space and time. This language,

called DELtran, t has the following interesting properties.

tTechnical Notes 108 and 130, Digital Systems Laboratory, Stanford Elec-
tronics Laboratories, Stanford University, Stanford, Calif.

16

0 It is "invertible"; the original source text can be deduced
from its DELtran surrogate and static symbol table--at least
up to the level of redundant blanks and parentheses.

l No memory accessing "overhead" instructions need be inserted
into the DELtran instruction stream (approximately three
such "overhead" instructions are present in 370 instruction
streams for each functional instruction).

l The result of any intermediate computations is pushed onto
an internal LIFO evaluation stack; however, only intermedi-
ate values are pushed onto this stack, never the values of
atomic variables.

F. DISTRIBUTED DATA PROCESSING FOR BALLISTIC MISSILE DEFENSE

M. J. Flynn

Contract DASG60-77-G-0073

The emphasis of this study is focused on the feasibility of advanced

computer architecture by use of distributed computing elements.

Distributed Computer Systems (P. s. Yu)

Few areas of current and future architecture research and develop-

ment hold as much potential promise for BMD applications as distributed

data processing. The possibilities in terms of performance, systems in-

tegrity, and extensibility, if realized, may significantly impact overall

BMD system-implementation philosophy.m
To support ongoing BMD research in DDP, the objectives of the pro-

posed research are

l development of analytical tools to evaluate the performance
of distributed networks of computers

l development of analytical tools to evaluate the performance
of nodal architectures (methods for evaluating and determin-
ing the performance of various configurations of processor
architectures located at a geographically common site)

0 investigation of novel approaches to distributed nodal com-
puter architectures

17

The emphasis of this research is twofold: (1) to derive mathematical

models to determine the performance of existing distributed data-proces-

sing approaches at both the network and nodal levels and (2) to initiate

an investigation of novel approaches to the structure of such DDP archi-

tectures.

G. DESCRIPTION LANGUAGES AND DESIGN FOR GENERAL-PURPOSE COMPUTER
ARCHITECTURES

M. J. Flynn, W. M. vancleemput

Contract N00014-75-C-0601

The purpose of this study is to develop description languages to

describe computer architectures and to develop a basis for understanding

the limits of the design of such architectures (to establish the fastest

speed of execution of a program).

1. Evaluation of Existing Hardware Description Languages
(D. Hanson, W. vancleemput)

To evaluate the feasibility of describing computer architec-

tures by means of a hardware description language, several of these lan-

guages were analyzed. Three were selected for further study, based on

the availability of a working compiler and simulator and on the suita-

bility of the language for the multilevel description of digital systems.

Compilers for the CDL (Chu, University of Maryland) and the CASSANDRE

(Mermet, University of Grenoble, France) languages were implemented, and

these languages were compared in terms of their descriptive power. A

compiler for the DDL language (Dietmeyer, University of Wisconsin) was

obtained and is being adapted for use on the IBM 370.

2. Development of a Structural Description Language
(W. vancleemput)

Most of the currently existing hardware description languages

emphasize a behavioral description and neglect the structural aspects of

a design. A behavioral description is often more than sufficient to de-

scribe an existing architecture. To aid in the design process, however,

18

it is necessary to obtain all available information (structure and

intended behavior). The SDL language was developed to identify the

structural properties of the system, and a compiler for the language

is operational. A special characteristic of SDL is that it is hier-

archical.

3. Applications of the Structural Design Language (T. Bennett,
J. Hupp, K. Stevens, W. vancleemput)

One of the obvious applications of a structural design lan-

guage is to serve as the input medium for a physical design system.

Such a system may consist of several subsystems for performing such

tasks as printed-circuit layout, integrated-circuit layout, gate-level
logic simulation, circuit-level simulation, fault test generation, and

automated logic diagram generation. A printed-circuit layout system
is being implemented, and a prototype system will soon be operational.

An integrated-circuit layout system is in the design phase. Interfaces

between the SDL language and several logic-level and circuit level sim-

ulators are in the planning stage.

4. Bounds for Maximal Parallelism (R. Lee, M. Flynn)

This is a study of the performance limits of a single program

executing on a large number of identical processors operating in par-
allel in an MIMD (multiple instruction-multiple data) organization. With
the rapidly decreasing cost of IS1 microprocessors, it is now economi-

cally feasible to consider a whole army of processors within the computer

architecture to speed up a computation, even at the reduced efficiency
of each component processor. The processor is no longer the hallowed

CPU or the most valuable resource to be utilized with the greatest ef-

ficiency. Some "acceptable" level of efficiency should be obtained;
however, we must determine the type of speedup that can be expected by

increasing the number of processors even if the problems of control and

communication are ignored.

We first defined a general model computation on a p-parallel
processor and distinguished between the logical parallelism (p* pro-

cesses) inherent in a computation and the physical parallelism (p

19

processes) available in the computer organization. We then identified

such performance measures as execution time, speedup, efficiency, and

space-time product from which we can evaluate the performance improve-

ments (if any) of p-parallel processor systems over uniprocessor sys-

tems. We observe that performance generally depends on both computer

architecture and computation.

We derived the necessary and sufficient conditions for the
maximum attainable speedup of a p-parallel processor over a uniproces-

sor as

Sp < min
(
A?- p*In p 'In p*>

Despite the many views concerning the potential speedup of parallel

processor systems, this bound has never before been established. In

addition, with sufficient processors (P 2 P*), the conditions under

which the maximum attainable speedup of a computation is p*/ln p*,

maximum efficiency is l/In p*, minimum execution time is T1 Anp*/

P*, and the minimum space-time product is T1 *In p* (where T1 is
the execution time of the computation on a uniprocessor). The empir-

ical speedups obtained for a large number of different types of compu-

tations revealed that 80 percent of all programs examined satisfied

these conditions and had maximum speedups of less than p*/ln p*.

5. Parallel Information Processing in Biological Systems
(S. Wakefield, M. Flynn)

The interconnections and types of synapses between units of

a particular neural subsystem (the stomatogastric ganglion of the lob-

ster) have been extensively determined by biologists, as have the ste-

reotyped motor patterns it produces. The exact mechanisms and sequence
and duration bounds of impulse bursts that must underly the production

of the coordinated muscle-activation patterns, however, are unknown.

Such a mechanism would be analogous to the switching network responsi-

ble for the traversal of states in a digital sequential circuit. Be-

cause of this analogy, this and other similar simple biological infor-

mation-processing subsystems are being investigated. In addition, the

20

speed, power requirements, size, and information capacity of individual

neurons are being compared to those of electronic information-processing

components.

H. COMPUTER NETWORKS

V. Cerf

Grant MDA903-76-C-0093, ARPA Order No. 2494

1. Broadcast Protocols in Packet-Switched Computer Networks
(Y. K. Dalal)

This study investigates the design and analysis of broadcast-

routing algorithms for store-and-forward packet-switched computer net-

works. Broadcast routing is defined here as multidestination routing

in which a packet is delivered to all destinations rather than to some

subset.

We have examined five alternatives to transmitting separately

addressed packets from the source to the destinations. The algorithms
are compared qualitatively in terms of memory requirements, ease of im-

plementation, adaptiveness to changing network conditions, and reliabil-

ity; they are also compared quantitatively in terms of the number of

packet copies generated to perform broadcast and the delays to propagate

the packet to all destinations. Lower bounds on the performance measures

are determined by examining regular graphs.

Protocols that provide reliable communication using broadcast
routing (such as broadcast protocols) are analogous to interprocess com-

munication protocols except that communication is b.etween one and many

processes. The design of broadcast protocols is faced with problems

similar to those in the design of interprocess communication protocols--

addressing, sequencing, duplicate detection, and guarantee of delivery.
This area presents many subjects for future research.

We have demonstrated how the catalog of a distributed file

system could be structured simply if the system could make use of effi-

cient reliable broadcast protocols. The properties of such protocols at

the host level are based on their applications and on the reliability of

21

the routing algorithms. We have examined the trade-offs between global

and subgroup broadcast routing. One conclusion is that communication

subnets should support both capabilities in the form of multidestination

addressing and reverse-path forwarding, respectively.

An outcome of this investigation is the formulation of two

distributed (parallel) algorithms for constructing minimal spanning

trees. We believe that these algorithms are the first of their kind.

They can be used

Radio Network.

in broadcast routing and in such networks as the Packet

2. The Optimal Placement of Dynamic-Recovery Checkpoints in
Recoverable Computer Systems (W. A. Warren-Angelucci)

Reliability is a major factor in any computer system because,

no matter how carefully designed and constructed, these systems will

fail. The rapid and systematic restoration of service after an error

or malfunction is a significant design and operational goal. This study
has developed a recovery method that guarantees that the computer sys-

tem, its associated data bases, and communication transactions will be

restored to an operational and consistent state within a given time and

cost bound after the occurrence of a failure.

We have considered the optimization of a specific software

strategy--rollback and recovery--within the framework of a graph model
of program flow that encompasses communication interfaces and data-base

transactions. Algorithms have been formulated that optimize the place-

ment of dynamic-recovery checkpoints, and a run-time technique has been

developed to determine the optimal placement of these checkpoints. A

method has also been presented for statically precomputing a set of op-

timal decision parameters for the associated program model.

I. DESIGN AND VERIFICATION OF RELIABLE SOFTWARE

S. S. Owicki

Contract F49620-77-C-0045

22

1. Specifications and Proofs for Abstract Data Types in
Concurrent Programs (S. S. Owicki)

Shared abstract data types, such as queues and buffers, are

useful tools for building well-structured concurrent programs. This

study has developed a method for specifying shared types to simplify

concurrent-program verification. The specifications describe the oper-

ations of the shared type in terms of their effect on variables of the

process invoking the operation. This makes it possible to verify the

processes independently, thereby reducing the complexity of the proof.

The key to defining such specifications is the concept of a private

variable--a variable that is part of a shared object but belongs to

just one process. Shared types can be implemented through an extended
form of monitors, and proof rules will verify that a monitor correctly

implements its specifications. Concurrent programs can be verified us-

ing the specifications of their shared types.

2. Specification and Verification of Monitors (S. S. Owicki)

A monitor is a programming language construction that defines

a logically related group of shared data items and a set of operations

on those items. The operations are the only means by which programs may

access the shared data, and the monitor includes synchronization to en-

sure that processes do not interfere with each other as they perform

operations. This limited access simplifies the verification task.

A monitor is specified by listing the shared data items and

their initial values , plus the effects of each operation. Verifi-
cation of programs that use the monitor is simplified by describing the

operations in terms of variables that are private to the program invok-

ing the operation. The relationship between the private and shared va-

riables is expressed by an invariant relation which is true for the ini-

tial monitor values and is preserved by each operation.

There are two steps in verifying systems that use monitors.

The first is proving that the monitor satisfied its specifications (that

the operations preserve the invariant and have the required effect on

private variables). The second is verifying the processes that call the

monitor by using the specifications of the monitor operations. In some

23

instances, the correct behavior of one process depends on the actions

of another; here, it is convenient to use a process invariant--an in-

variant relation on the private process variables. These tools appear

to be powerful enough for most applications of concurrent programming

with monitors. Further work is required to develop methods for treat-

ing dynamically allocated resources that do not fit the monitor pattern.

3. Operating System Design (A. Spector)

We have focused on the design of a paging interactive time-

sharing system suitable for such computers as a PDP-11/'1O. Although we

do not expect to include very complex I/O or protection mechanisms in

our design, we are attempting to achieve a realistically usable system.

The system will be a hierarchy consisting of two levels--the

kernel and the supervisor. The kernel is the more primitive and is the

run-time support system that implements the basic operations of the

high-level programming language used by the supervisor. More specifi-

cally, it contains the independent procedures of the machine-dependent

operating system so as to provide concurrent processes and monitors. It

also translates certain privileged hardware operations to language-level

primitives. For example, because supervisor processes use monitors to

communicate, the kernel must maintain the queues necessary to support

critical sections and wait and signal primitives. An unusual feature

is that the kernel maintains detailed per-process state information that

can be used by such supervisor routines as scheduling and accounting.

Although the nucleus is small and can be considered a single

entity, the supervisor performs many complex functions and is best

thought of as a hierarchy. For example, the long-term process scheduler

is a primitive operation of the supervisor and underlies the operation

of the whole system. Our design requires this process to run synchro-

nously and to communicate periodically to the kernel a set of processes

that can be executed in some ensuing interval. The memory-allocation

process (also one of the basic operations) contains the logic to allo-

cate physical memory to processes and to support shared and nonshared

pages. Scheduling and memory-allocation decisions can be made, based

on state information recorded by the kernel and on data contained in

24

certain supervisor monitors. Higher levels of the supervisor hierarchy

include sections to support I/O and user program calls.

The principal emphasis of our work has been directed toward

the design of the most primitive portions of the system. We believe

that the accurate assignment of meanings to language primitives and the

proper definition of the boundary between the kernel and supervisor will

have great influence on the outcome of our project. As a result, we are

proceeding with great caution in the hope of preparing a sound base on
which to build a carefully structured and verified system.

J. DESIGN AUTOMATION

W. M. vancleemput

1. A Language for Describing the Structure of Digital Systems
(W. M. vancleemput)

A large number of languages have been developed for the de-

scription of digital systems; however, most of these describe only the

behavior of a system, not its physical structure. The purpose of this
research is to develop a powerful language for describing the physical

structure of a digital system. Such a language can be used as the in-

put to many design automation tools such as logic simulators, fault

simulation, printed-circuit layout systems, automated logic diagram

generators. A compiler has been developed to test the usefulness and

feasibility of this language.

2. The SPRINT Printed-Circuit Design System (W. M. vancleemput,
K. Stevens, T. Bennett, J. Hupp, N. Yamada)

The objective of this system is to develop an interactive com-

puter-assisted design of printed-circuit boards. The SPRINT allows for
the manual placement of critical components and for automatic placement

of other components such as 14- and 16-pin dual in-line packages. The

interconnection routing module manually routes critical connections and

automatically routes noncritical connections. The system is limited to

two signal layers; however, expansion to multilayer boards is planned.

25

The input to the SPRINT is the SDL (structural description

language). In the future, the SDL description will also be used as the

input to a logic simulator, a fault test generation/simulation system,

and an automatic logic diagram generation.

The current system is implemented in MORTRAN and FORTRAN IV

on the IBM 370 at SLAC and makes use of a Tektronix 4013 terminal, and

the SDL compiler is implemented in a SNOBOL dialect called SPITBOL. The

output of the system is a CalComp plot in which the artwork must be gen-

erated manually.

3. Computer-Aided Layout of Large-Scale Integrated Circuits
(W. M. vancleemput, E. Slutz)

Although several systems exist for the automated layout of IS1

circuitry, none of them obtains one that is comparable to a manually de-

signed layout. The objective of this project is to design and implement
a system based on algorithmic approaches wherein certain decisions be-

come the responsibility of the human designer. It is expected that this

system will reduce design time considerably, without the penalty of ex-

cessive silicon real estate, and will be able to make use of the hier-

archical nature of a system.

4. Interactive System for Design Capture (W. M. vancleemput)

In the current design system, all input is in the form of the

SDL (structural design language); however, designers often prefer to use

schematic diagrams. A system is being developed that will take as its

input a schematic drawing from an interactive graphics terminal and will

output an SDL description ready for further processing by the design-

automation programs.

K. DATABASE

G. Wiederhold

Contract DAIICl5-73-C-0435

26

I. Studies in Distributed Processing and Problem Solving
(G. Wiederhold, K. Knutsen, H. Garcia-Molina, E. Gilbert,
R. G. Smith)

a. Technical Goals

The objective of this research is the development of an

understanding and a methodology for the analysis of alternatives in dis-

tributed processing and problem solving. One of the primary reasons for

interest in this area is its potential to break through the speed-limi-

tation barrier found in uniprocessing systems. If such a breakthrough

can be achieved, the viability of the methods being developed by other
projects using the SUMEX-AIM resource will be enhanced.

The rapid growth of microprocessor and communications

technology has resulted in an increased number of proposed implementa-

tions of networks employing multiple processors. The computations to

which these distributed systems are to be applied include heuristic de-

cision-making problems, mathematical modeling, data reduction, searching

through large databases, and general-purpose multiaccess computing.

There is, however, a lack of an adequate global understanding of the

computational trade-offs implied by network architectures.

To complement the experimental results of other investi-

gators and to broaden their applicability to the system-design decision-
making process, we are developing a general framework of computation for

the study of processor interaction. This framework consists of rules to

obtain parameters from programs that specify the computations, rules to

parameterize descriptions of networks of processors, and procedures to

calculate expected system performance from these parameter sets. The

procedures may be based on relationships between descriptive and outcome

variables developed through the use of simulation of network models at a

suitably high level of abstraction. The framework is to be sufficiently

powerful so that, when it is validated, the methods will be able to as-

sist in the a priori assessment of the potential performance of new sys-

tem alternatives or of systems with improved components.

A number of large computational applications are being

analyzed so as to assess their potential for decomposition into modules

for distributed processing. The current candidate applications are

27

0 programs based on heuristic methods in decision making

0 programs using multifaceted databases to retrieve and
abstract information

l programs that acquire data from multiple (possibly dis-
similar) sensors and attempt to reduce these data to
simpler hypotheses

l programs that solve large numerical problems

The first two applications have been investigated through simulations,

and the results are being analyzed.

Simulation is not the end-product of this study but is a

means to develop and assess the validity of our model of the interaction

of computations and processor-network architecture. Where possible,
mathematical results will be used to verify the validity of model simu-

lations. Parameters used to describe the computations include

0 computational kernel size--cycle and memory demand of a
computational unit between interprocessor reference re-
quirements

0 computation definition message size--amount of data re-
quired to transmit sufficient information to initiate a
computational kernel

l database size--amount of data or program text required
to sustain a computational kernel and its availability
and residence in the network

The behavior of the system can be varied through the ad-

justment of other parameters that may be set to reflect the architecture

of specific hardware systems or may be varied to obtain optimal perfor-

mance. In addition to obvious parameters (as the number and power of

the processors), we expect the following factors to be significant in

developing an understanding of the spectrum of multiprocessor architec-

tures.

0 Interconnection density--as the density decreases, mes-
sage delay and congestion will increase. This parameter
will provide a high-level abstraction of multiprocessor
connectivity schemes. Geographical distribution will
increase message delay and transmission cost.

28

0 Computational locality--a high degree of locality (of
database or procedural information in the network) will
enhance the probability that relevant knowledge exists
in closely linked nodes, thus counteracting the effects
of a low interconnection density.

0 Database viscosity--a database, including the programs
required to carry out the computations at a node, may
be more or less fixed to one specific node. This, there-
fore, encourages the use of certain nodes for specific
functions. Many current multiprocessor networks are
completely rigid, and an optimal initial program and
database of dynamic-resource allocation are required
to cope with changing loads and to enhance reliability.
For this reason, this parameter must be included.

0 Redundancy--to assess the cost and benefits in terms of
responsiveness and reliability, the redundancy of the
database and computations will be made a parameter. To
utilize the redundancy well, the computational resources
(programs or data) that affect system performance must
be identifiable.

0 Error rate--to test the effectiveness of reliability
strategies, node failures will be simulated based on
probability distributions.

An important aspect of this model is that we intend to maintain the ab-

stractions at a sufficiently high level to allow analytical and intui-

tive verification of model behavior when applied to well-understood

computations. Computations have been mapped into specific parallel
machines, but these results are not easily transferred into new archi-

tectures. The multiprocessor systems now being built may have charac-

teristics with unpredicted effects on system behavior. We expect to be

able to use the model to determine potential bottlenecks, which then

will define areas where additional design attention has a high payoff.

b. bong-Term Objectives

We do not intend to build hardware based on the abstract

model. We would like to verify our results using existing multiprocessor

systems and, assuming that our model (with appropriate parameters de-

scribing load and architecture) matches the given system, we hope to be

able to advise on system utilization and development. A local resource

29

may be the Stanford I processor now being built under ERDA sponsorship. t

If we determine that a certain architecture appears to be promising, we

would like to encourage and participate in its implementation.

c . Significance

A broad model adequate for the prediction of approximate

system performance when distributed techniques are applied to large com-
putational applications will simplify decision making and reduce the

time and work spent on approaches that are not likely to provide signif-

icant benefits. System development can be better directed toward spe-

cific applications.

2. Database Maintenance System (D. Borel, G. Wiederhold)

A system (DBlMTNS) has been developed that uses an external
specification of a database to control database-integrity auditing. In

addition, DBMTNS will advise maintenance personnel concerning bypassing

or repair of integrity failures.

3. Implementation of Database in Medicine (G. Wiederhold,
G. Purdy et al.)

A session of the 1977 National Computer Conference was orga-
nized to bring together personnel who follow two competing database ap-

proaches used in medicine (MUMPS and CODASGL). A descriptive technique

was used to illustrate communalities and differences. It is intended
that the conclusions reached will be published in tutorial form in the

ACM Sigbio Newsletter.

t F. Baskett, McWilliams, and C. Widdoes, "Stanford-l; Multiprocessor
Preliminary Design," Artificial Intelligence Internal Report, Stanford
University, Stanford, Calif., Ott 1976.

30

APPENDIX

Ph.D. DISSERTATIONS

Betancourt, Rodolfo - "Analysis and Synthesis of Sequential Circuits Using
Clocked Flip-Flops," Dept. of Electrical Engineering, (Prof. Edward 3.
McCluskey)

Dalal, Yogen K. - "Broadcast Protocols in Packet Switched Computer Networks,"
Dept. of Electrical Engineering, (Prof. Vinton G. Cerf)

Knauer, Scott G. - "Real-Time Adaptive Digital Video Compression," Dept.
of Electrical Engineering, (Prof. Allen M. Peterson)

Patel, Janak H. - “Improving the Throughput of Pipelines with Delays and
Buffers," Dept. of Electrical Engineering, (Prof. Edward S. Davidson)

Rafii, Abbas - "Empirical and Analytical Studies of Program Reference
Behavior," Dept. of Electrical

Stritter, Edward P. - "File Migrati
Forest Baskett)

En9 ineering, (Prof. Forest Baskett)

on, ” Dept. of Computer Science, (Prof.

Thomas, A. Thampy - "Scheduling of Multiconfigurable Pipelines," Dept. of
Electrical Engineering, (Prof. Edward S. Davidson)

JOURNAL ARTICLES, BOOKS, BOOK CHAPTERS

Flynn, M. J. and R. Kosaraju, "Processes and Their Interactions,” Special
Issue of Kybepnhthe, vol. 5, 1976, pp. 159463.

Flynn, M. J., "Non-Specific Computers," INFOTECH Future Systems, vol. II,
. 1977, pp. 154-168.

31

JOURNAL ARTICLES, BOOKS, BOOK CHAPTERS (continued)

McCluskey, E. J., "Logic Design," Encyclopedia of Computer Science (Ralston
and Meek, Eds.), Petrocelli/Charter, New York, pp. 809-813, 1976.

McCluskey, E. J., "A Survey of Research at the Center for Reliable Computing,
Stanford University," J. Design Automation and Fault-Tolerant Computing,
vol. 1, no. 1, pp. 85-90, Oct. 1976.

Parker, K. P., "Adaptive Random Test Generation,: J. Design Automation and
and Fault-Tolerant Computing, vol. 1, no. 1, pp. 62-83, Oct. 1976.

Peterson, J. L., Computation Sequence Sets," J. Computer and System Sciences,
vol. 13, no. 1, pp. l-24, Aug. 1976.

vancleemput, W. M., Computer-Aided Design of Digital Systems: A Bibliography,
vol. 2: 1975-76 Update, Computer Science Press, Woodland Hills,
California, Oct. 1976.

vancleemput, W. M., "Mathematical Models for the Circuit Layout Problem,"
IEEE Trans. Circuits and Systems, vol. CAS-23, no. 12, pp. 759-767,
Dec. 1976.

vancleemput, W. M., "Hypergraph Models for the Circuit Layout Problem,"
Applied Mathematical Modelling, vol. 1, no. 3, pp. 160-161, Dec. 1976.

Wakerly, J. F., "Checked Binary Addition with Checksum Codes," 3. Design
Automation and Fault-Tolerant Computing, vol. 1, no. 1, Oct. 1976.

Wakerly, J. F. and E. J. McCluskey, "Microcomputers in the Computer Engineer-
ing Curriculum," Computer, vol. 10, no. 1, pp. 32-38, Jan. 1977.

Wakerly, J. F., "Microprocessor Input/Output Architecture," Computer,
vol. 10, no. 2, pp. 26-33, Feb. 1977.

Wakerly, J. F., "Documentation Standards Clarify Design," Computer Design,
vol. 16, no. 2, pp. 75-85, Feb. 1977.

32

JOURNAL ARTICLES, BOOKS, BOOK CHAPTERS (continued)

Wiederhold, G., "Applications of Computers in Medicine," Encyclopedia of
Computer Science (Ralston and Meek, Eds.), Petrocelli/Charter, New York,
1976, pp. 611-612, 873-879.

Wiederhold, G., Database Design, McGraw-Hill, New York, (Computer Science
Series), May 1977.

CONFERENCE PROCEEDINGS

Beaudry, M. D., "Performance Related Reliability Measures for Computing
Systems," Proc. Seventh Int. Conf. on Fault-Tolerant Computing,
Los Angeles, California, June 28-30, 1977, pp. 16-21.

Blount, M. L., "Probabilistic Treatment of Diagnosis in Digital Systems,"
Proc. Seventh Int. Conf. on Fault-Tolerant Computing, Los Angeles,
California, June 28-30, 1977, pp. 72-77.

Dalal, Y., "A Distributed Algorithm for Constructing Minimal Spanning Trees
in Computer Communication Networks," Proc. Fifth Texas Conf. on Comput-
ing Systems, Austin, Texas, October 18-19, 1976.

Flynn, M. J., "Some Remarks on High Speed Computers," Dig. of Papers,
14th IEEE Computer Society Int. Conf., San Francisco, California,
(COMPCON Spring 77) Feb. 28-March 3, 1977, pp. 18-20.

Flynn, M. J., "Computer Organization and Architecture," Lecture Notes on
Advanced Operating Systems, Springer-Verlag, Munich, Germany (in press),
Advanced Course in Operating Systems, Munich, Germany, July28-Aug. 5,1977.

Flynn, M. J., "The Interpretive Interface: Resources and Program Representa-
tion in Computer Organization," Proc. Symp. on High Speed Computers and
Algorithm Organization, University of Illinois, Champaign, Illinois,
April 13-15, 1977, pp. 41-69.

33

CONFERENCE PROCEEDINGS (continued)

Karp, R. A. and D. C. Luckham, "Verification of Fairness in an Implementa-
tion of Monitors," Proc. Second Int. Conf. on Software Engineering,
San Francisco, California, Oct. 13-15, 1976, pp. 40-46.

Kolupaev, S., "Cascade Structure in Self-Checking Networks," Proc. Seventh
Int. Conf. on Fault-Tolerant Computing, Los Angeles, California,
June 28-30, 1977, pp. 150-154.

Lee, R., "Performance Bounds in Parallel Processor Organizations," Proc.
Symp. on High Speed Computers and Algorithm Organization, University
of Illinois, Champaign, Illinois, April 13-15, 1977, pp. 453-455.

Losq, J., "The Effects of Failures on Gracefully Degradable Systems,"
Proc. Seventh Int. Conf. on Fault-Tolerant Computing, Los Angeles,
California, June 28-30, 1977, pp. 29-34.

Losq, J., "Efficiency of Compace Testing for Sequential Circuits," Proc.
Seventh Int. Conf. on Fault-Tolerant Computing, Los Angeles, California,
June 28-30, 1977, pp. 168-174.

McCluskey, E. 3. and R. C. Ogus, "Comparative Architecture of High Avail-
ability Computer Systems," Dig. of Papers, 14th IEEE Computer Society
Int. Conf., San Francisco, California (COMPCON Spring 77), Feb. 28-
March 3, 1977, pp. 288-293.

Phillips, J. V. and T. H. Bredt, "Design and Verification of Real-Time
Systems," Proc. Second Int. Conf. on Software Engineering,
San Francisco, California, Oct. 13-15, 1976.

Rodnick, J. and G. Wiederhold, "A Review of Ambulatory Medical Record Sys-
tems in the United States: Charting Services that are of Benefit to
the Physicians," MEDINFO-77 Proceedings (Shires and Wulfs, Eds.),
North Holland Pub. Co., 1977, pp. 957-961.

34

CONFERENCE PROCEEDINGS (continued)

Savir, J., "Optimal Random Testing of Single Intermittent Failures in
Combinational Circuits," Proc. Seventh Int. Conf. on Fault-Tolerant
Computing, Los Angeles, California, June 28-30, 1977, pp. 180-185.

Saxena, A. R. and T. H. Bredt, "Verification of a Monitor Specification,"
Proc. Second Int. Conf. on Software Engineering, San Francisco,
California, Oct. 13-15, 1976.

Shedletsky, J. J., "Random Testing: Practicality vs. Verified Effectiveness,"
Proc. Seventh Int. Conf. on Fault-Tolerant Computing, Los Angeles,
California, June 28-30, 1977, 168-174.

vancleemput, W. M., "A Hierarchical Language for the Structural Description
of Digital Systems," Proc. 14th Design Automation Conf.,New Orleans,- -
Louisiana, June 20-22, 1977, pp. 379-385.

vancleemput, W. M., "A Digital Automation Course for Logic Designers,"
Proc. Int. Conf. on Computer Aided Design Education, Middlesbrough,
Teesside, England, July 13-15, 1977.

Widdoes, L. C., "Architectural Considerations for General Purpose Multi-
processors," Dig. of Papers, 13th IEEE Computer Society Int. Conf.,
Washington, D.C. (COMPCON Fall 76), Sept. 8-10, 1976, pp. 251-254.

TECHNICAL REPORTS

Cornouter Reliability

Thompson, P. A., "A Simulator for the Evaluation of Digital System Relia-
bility," Tech. Rpt. no. 119, August 1976.

Usas, A., "Error Management in Digital Computer Input/Output Systems,”
. Tech. Rpt. no. 122, May 1976.

35

TECHNICAL REPORTS (continued)

Computer Architecture

Hoevel, L., "Structure of DEL's: A New Theory of Interpretive System Sup-
port," Tech. Rpt. no. 130, March 1977.

Iliffe, J. K., "Interpretive Machines," Tech. Rpt. no. 149, June 1977.

Lee, R., "Performance Brounds for Parallel Processors," Tech. Rpt. no. 125,
November 1976.

Rau, B. R., "The Exact Analysis of Models of Program Reference Strings,"
Tech. Rpt. no. 124, December 1976.

Rau, B. R., "Sequential Prefetch Strategies for Instructions and Data,"
Tech. Rpt. no. 131, January 1977.

Rau, B. R., "Program Behavior and the Performance of Interleaved Memories,"
Tech. Rpt. no. 138, May 1977.

Rau, B. R., "Properties and Application of the Least-Recently-Used Model of
Program Behavior," Tech. Rpt. no. 139, June 1977.

Yu, P. s., "On Accuracy Improvement and Applicability Conditions of Dif-
fusion Approximation with Applications to Modelling of Computer
Systems," Tech. Rpt. no. 129, January 1977.

Yu, P. s., "Passage Time Distributions for a Class of Queueing Networks:
Closed, Open, or Mixed, with Different Classes of Customers with
Applications to Computer System Modeling," Tech. Rpt. no. 135,
March 1977.

Yu, P. s., "Performance Analysis of Computer Communication Network Via
. Random Access Channels," Tech. Rpt. no. 137, April 1977.

36

TECHNICAL REPORTS (continued)

Design Automation

vancleemput, W. M., "A Structural Design Language for Computer Aided Design
of Digital Systems," Tech. Rpt. no. 136, April 1977.

vancleemput, W. M., T. C. Bennett, J. A. Hupp, and K. R. Stevens, “SPRINT -
An Interactive System for Printed Circuit Board Design User's Guide,"
Tech. Rpt. no. 143, June 1977.

Computer Networks

Dalal, Y., "Broadcast Protocols in Packet Switched Networks," Tech. Rpt.
no. 128, April 1977.

Garcia-Molina, H. and G. Wiederhold, "Application of the Contract Net Proto-
col to Distributed Databases," Heuristic Programming Project Report1_ --e-e
HPP-77-21, Stanford University, April 1977.

Warren-Angelucci, W., "The Optimal Placement of Dynamic Recovery Checkpoints
in Recoverable Computer Systems," Tech. Rpt. no. 126, December 1976.--

Parallel Computer Systems

Owicki, S. S., "Specifications and Proofs for Abstract Data Types in Con-
current Programs," Tech. Rpt. no. 133, March 1977.-

37

TECHNICAL NOTES

Computer Reliability

Beaudry, M. D., "Performance Related Reliability Measures for Computing
Systems," Tech. Note no. 101, December 1976.

Losq, J., "Effects of Failures on Performance of Gracefully Degradable
Systems," Tech. Note no. 103, December 1976.

Losq, J., "Efficiency of Compact Testing for Sequential Circuits," Tech.
Note no. 104, December 1976.

McCluskey, E. J., “A Survey of Research at the Center for Reliable Computing,"
Tech. Note no. 96, October 1976.

Savir, J., "Optimal Random Testing of Single Intermittent Failures in Com-
binational Circuits," Tech. Note no. 105, November 1976.

Thompson, P. A., "A Simulator for the Evaluation of Reliability," Tech. Note
no. 106, December 1976.

Verdillon, A., "Symmetry, Automorphism, and Test," Tech. Note no. 87,
June 1976.

Flynn, M. J., "Studies in the Organization of Computer Systems - 1976
Progress Summary," Tech. Note no. 100, November 1976.

Hoevel, L. and W. A. Wa llach, "Emulation Oriented Software First Develop-
ment," Tech. Note no. 95, August 1976.

Hoevel, L., "DELtran Principles of Operation: A Directly Executed Language
for FORTRAN- II,” Tech. Note no. 108, March 1977.

I l i f f e , 3. K . , "Computing in Store," Tech. Note no. 117, June 1977.

38

Computer Architecture

TECHNICAL NOTES (continued)

Computer Architecture (continued)

Neuhauser, C., "An EMMY Based PDP-11/20 Emulation," Tech. Note no. 110,
March 1977.

Neuhauser, C., "DEBUG User's Guide (Version E)," Tech. Note no. 113,
March 1977.

Neuhauser, C., "EMMY System Processor - Principles of Operation," Tech.
Note no. 114, May 1977.

Roush, E. T., "An EMMY Based Emulation of the CDC 6000 Series CPU," Tech.
Note no. 120, July 1977.

Shih, M., "EMMY/UNIBUS Interface Design Specification," Tech. Note no. 109,
January 1977.

Design Automation

Rau, B. R., "An Experiment in Wire Routing," Tech. Note no. 98, November
1976.

vancleemput, W. M., "Topological Circuit Layout," Tech. Note no. 99,
October 1976.

vancleemput, W. M., "On the Planarity of Hypergraphs," Tech. Note no. 115,
June 1977.

vancleemput, W. M., "An Algorithm for Testing the Planarity of Partially
Oriented Graphs," Tech. Note no. 116, June 1977.

Computer Networks

Crane, R., "Bell 303 Modem Replacement, Tech. Note no. 91, August 1976.

39

PAPERS ACCEPTED FOR PUBLICATION

McCluskey, E. J., K. P. Parker, and J. J. Shedletsky, "Boolean Network
Probabilities and Network Design," IEEE Trans. on Computers, to
appear Spring 1978.

Parker, K. P. and E. J. McCluskey, "Sequential Circuit Output Probabilities
from Regular Expressions," IEEE Trans. on Computers, to appear
Spring 1978.

Wakerly, J. F., Error-Detecting Codes, Self-Checking Circuits, and Appli-
cations, to be published by American Elsevier, in preparation.

Wiederhold, G. and I. Kuhn, "Effective Services of Automated Ambulatory
Medical Record Systems," Int. J. on Policy Analysis and Information
Systems, to appear January 1978.

Wiederhold, G. and R. El-Masri, "A Structured Model for Database Systems,"
to be published in DATABASES: Improving Usability and Responsiveness,
Academic Press, New York, 1978.

PAPERS ACCEPTED FOR PRESENTATION

Owicki, S. S., "Verifying Concurrent Programs with Shared Data Classes,"
Working Conference on Formal Description of Programming Concepts,
New Brunswick, Canada, August l-5, 1977.

vancleemput, W. M., "An Algorithm for Testing the Planarity of Partially ,
Oriented Graphs," Midwest Symposium on Circuits and Systems, Lubbock,
Texas, August 15-19, 1977.

Yu, P. and M. J. Flynn, "Performance Analysis of Distributed Computer
Systems," Sixth Texas Conference on Computing Systems, Austin, Texas,
November 14-14, 1977.

40

