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ABSTRACT

This paper presents the formal definition of TOMAL (Task-Oriented Micro-

processor Applications Language), a programming language intended for real-time

systems running on small processors. The formal definition addresses all

aspects of the language. Because some modes of semantic definition seem

particularly well-suited to certain aspects of a language, and not as suitable

for others, the formal definition employs several, complementary modes of

definition.

The primary definition is axiomatic in the notation of Hoare; it is

employed to define most of the transformations of data and control states

affected by statements of the language. Simple, denotational (but not

lattice-theoretic) semantics complement the axiomatic semantics to define

type-related features, such as the binding of names to types, data type

coercions, and the evaluation of expressions. Together, the axiomatic and

denotational semantics define all the features of the sequential language.



An operational definition, not included in this paper, is used to

define real-time execution, and to extend the axiomatic definition to account

for all aspects of concurrent execution. Semantic constraints, sufficient

to guarantee conformity of a program with the axiomatic definition, can be

checked by analysis of a TOMAL program at compilation.

Index Terms: formal definition, programming language semantics, axiomatic. -
definition, denotational semantics, concurrent programming
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1. Introduction

TOMAL is a real-time programming language designed for small processors

operating in stand-alone configurations without the benefit of a standard

operating system [Hennessy 75, 771. In this section we will briefly and

informally define the various elements of the language.

It is a language in which to compose programs to meet real-time response

constraints imposed by an external environment. A TOMAL program is built in

modules, with each module constructed as a set of procedures and concurrently

executable components called tasks. The body of a procedure or a task is

formed by the sequential composition of statements,

TOMAL is a strongly typed language, whose type structure is similar to,

but somewhat less rich than,that of Pascal. There are three standard scalar

. - types, boolean, integer, and char; and a real arithmetic types: Set and

array types are defined, and a one-dimensional array of characters is

special treatment as a predeclared type string, with it own operators

are no file or record types, and no pointer types. The extent of any

type can be determined from its declaration.

given

There

TOMAL

The control structures of the language consist of standard constructs,

such as: if..then..else, while, case, a compound statement, an integer forp--p-

statement with directional and step clauses, and a procedure return statement.

A repeat statement creates an iteration with no specified termination condition.

The break statement, appearing in several programming languages as exit

[Wulf 711, is used to exit from any statement block. The statement break L

exists from the block labelled by L, which may be nested arbitrarily deeply.

The for all statement iterates the execution of a statement block, while- -

quantifying an iteration control variable over a finite set [Hoare 72a].
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Three types of procedures are provided by TOMAL: proper procedures,

function procedures, and assignable procedures. In order to maintain a

static environment, procedures cannot be recursive. Procedure parameters

are always passed by value except for strings and arrays which are passed

by reference for efficiency. Since aliasing of variables is prohibited,

parameters passed by reference have the same effect as if passed by value-

result.

A function procedure returns a value of a scalar or arithmetic type

and is not allowed to modify global variables or parameters of array or

string types. Thus a function call can be embedded in an expression without

producing any side effect. A proper procedure has no return values, may

produce side effects, and is invoked by a call statement.

The assignable procedure has been introduced in conjunction with the

operation of simultaneous, multiple-value assignment in order to reduce the

need for side effects or var parameters of procedures. It yields a list of

one or more return values having simple (i.e., not array or string) types.

An assignable procedure is invoked by an occurrence of its name and a list

of actual parameters, just as is a function. However, a call to an assign-

able procedure can only appear on the right hand side of an assignment

statement.

Multiple-value assignment binds a list of values from the right hand

side to the list of variables on the left hand side. The assignment is

simultaneous and correspondence is by order of occurrence. If two variables

on the left hand side are the same (i.e., have the same L-value), but the

corresponding right-side values differ, the assignment is undefined. When

the right hand side is an assignable procedure, the value list is that

resulting from the procedure invocation.
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The use of value parameters and simultaneous multiple assignment to

replace the customary practice (with programs written in Pascal, PL/l, etc.)

of using var parameters to secure value-result updating of variable parameters

prevents the aliasing of scalar variables within the body of a procedure. The

exception to this rule that was made for array and string variables requires

compile-time checking to detect and warn of possiblitities for aliasing. How-

ever, since the language was designed in an attempt to provide a tool for real-

time programming and replace the use of assembler language as a programming

medium, some concessions to efficiency must be made.

The concurrent features of TOMAL are embedded in its multi-tasking

capabilities. Every TOMAL program consists of globally declared semaphores,

a number of modules, and an initial activity request. Each module contains

declarations of variables and procedures local to that module, and a set of

tasks. Each task consists of locally declared variables and procedures, and

a statement block. The names of all tasks and of explicitly exported procedures

are considered global to all modules.

A task is the basic unit of program activity; it may be currently active,

suspended, requested for activation, or dormant. Tasks are requested for

activation by means of the request statement; they become active when they are

scheduled. When the task completes execution of its statement block it termin-

ates and becomes dormant. Initial value parameters can be passed to a task in

a request statement. At most one activation of a task and one request for a

task can be simultaneously outstanding. Multiple requests have no effect on

the task state, but merely update the parameters.

Synchronization mechanisms are provided so that access to shared resources

may be regulated. Binary-valued semaphores are used within a synchronization



statement of the form with S1 ,...., Sn do A, where A is a single or compound

statement. The effect of executing the first part of the statement is to

suspend execution until all of the semaphores S1 ,....,Sn are free, and then to

lock the n semaphores and continue execution. This construct is the equivalent

of the P-multiple operation on binary semaphores [Vantilborgh 721; either all

are successfully locked, or none are and the task attempting the lock becomes

suspended at that point.

The semaphores in TOMAL are binary-valued, and are used to control access

to shared data and procedures, and also to allow restriction of the otherwise

imp1 icitlyconcurrent execution of a group of tasks. When a semaphore protects

a group of tasks, each request for a task in the group is required to be pre-

ceded by a semaphore lock (P-operation). A task-protecting semaphore is unlocked

by implicit action whenever one of the protected tasks terminates its execution.

Thus the members of a protected group of tasks are guaranteed to execute
. -

mutually exclusively in time.

Semaphores may also be used to create critical sections, thus regulating

access to other shared resources. If a with statement contains one or more

semaphores not associated with tasks, then the compound statement headed by

the with statement becomes a critical section for those semaphores. The

semaphores protecting a critical section are implicitly freed upon termination

of the critical section. Critical sections protected by a common semaphore

execute in a mutually exclusive manner.

The features of TOMAL that are directed toward real-time applications are

the ability to declare fixed priorities for task scheduling, the ability to

specify minimum response times for the delivery of service requested by

external processes, and the ability to declare external device characteristics,

allowing the compiler to generate I/O routines. The specification of task



priorities imposes constraints on the possible sequences of task activation

that may be scheduled. The I/O and response time specifications introduce

notions of time dependence, requiring the definition of a metric for time in

an implementation. These are powerful, integral features of the language

and deserve careful definition.

2. An Approach to the Formal Definition of TOMAL I

The primary reason for giving a formal definition of a programming

language is to supply concise and unambiguousmeaning, independent of an actual

or proposed implementation. Historically, most programming languages have

been loosely or inadequately defined, with the result that early implementations

have often served as the language definition, or that the language has existed

with a number of different interpretations. Other important reasons have been

cited in [Hoare 731; among these are: to give to the programmer a clear,
. -

unambiguous meaning for each language construct, and to provide a logical

bzsis for verification of programs written in the language.

TIJO factors influence the form of the definition: the desire to support

program verification, and the requirement that the entire language must be

defined. In order to meet these requirements, we have employed multiple modes

of semantic specification. This method of supplying complementary semantics

was suggested and used by Hoare and Lauer LHoare 741 and later by [Donahue 751

to define a subset of Pascal.

Axiomatic semantics [Hoare 691 are used for the primary definition of

program statements. This mode of detinition offers several major advantages,

including: conciseness, comprehensibility, and applicability in program

verification. There are three major deficiencies of the axiomatic method for

defining TOMAL. First, it is unable to easily express the semantics of



expression evaluation, especially the type dependency and type correctness of

expressions. Secondly, axiomatic semantics are extremely awkward to use in

defining the bindings of names to types within a scope. This is because it

lculus in which no dis-is based on an underlying, uninterpreted functional ca

tinction is made between a name and its value.

A recent paper presented an axiomatization of declarations, scope concepts,

and the relationship of exit or escape statements [Fokkinga 771. The approach

utilized was the introduction of an environment component which is carried

along within the proof. Although our approach treats declarations and scope

rules with a different semantics, it allows the use of axiomatic semantics

without the need to consider environment, nor does it introduce a new name

producer into the axiomatic definition.

Lastly, the real-time features of priority and time-dependency introduce

complexities for which the axiomatic method is not well suited. These complex-

ities fall into two cateqories, The real-time aspects of the language allow

specification of response time criteria and scheduling priorities. Because

these two features determine the order of execution by a metric not

expressible in the axiomatic definition (i.e., time), properties of statement

scheduling are not axiomatizable.

Therefore, the semantics of TOMAL which are not specifically dependent

on expression evaluation, scope and name-type binding, or scheduling are

defined by the axiomatic definition; the other features are defined by

complementary schemes of semantics.

In order to alleviate the shortcomings of the axiomatic method with

respect to sequential language features, we introduce two forms of simple,

denotational semantics. The two aspects of expression evaluation, namely

data type coercions and operator evaluation, are defined by a set of simple
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functions. These functions express the semantics in terms of well-understood

operations over standard domains. The scope and name-type binding rules are

defined by another set of functions and rules for their composition. These

express the semantics of name-type b

Together, the functional and axiomat

independent features of TOMAL.4
The scheduling-independent sema

nding in a simple lambda-calculus.

c semantics define all the scheduling-

tics of TOMAL are self-consistent, but

manifestly incomplete because they describe the transformations of data

induced by all conceivable execution sequences of a program, including many

that cannot occur. In order to account for the constraints imposed by priority

and response-time scheduling, we have chosen to employ an operational mode

of semantics. This choice is dictated by the natural definition of task

scheduling (which is itself operational) and the ease with which a time metric

can be introduced. Within the operational definition it has been possible to

introduce the notion of execution time for a statement, as well as the concept

of scheduling by a time-dependent priority scheduler. Thus the operational

definition utilized defines a number of language features which have previously

been left informal. The operational definition utilizes VDL (Vienna

Definition Language) [Lucas 711. As is the nature of an operational semantics,

this definition has the form of an abstract implementation of the language.

However, the definition is intended to constrain the implementer as little as

possible and yet unambiguously define the language. The VDL model, its

necessity, and its relationship to the axiomatic definition (i.e., consistency)

are not presented in this paper but appear in [Hennessy 771.

The axiomatic definition relies on certain assumptions concerning sequen-

tiality of access to shared objects. These assumptions may sometimes be

violated during the execution of unstructured, concurrent programs. Syntactic
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restrictions sufficient to ensure the validity of these assumptions could

have been imposed by the language design, but the designers chose not to do

so. Such syntatic restrictions must also necessarily prohibit many programs

that would satisfy the required access conditions during their actual execution.

Therefore, in order to use the axiomatic definition, we give a set of computa-

tion-dependent constraints to which concurrent computations must adhere. If

the constraints are not adhered to in a particular program, its semantics are

defined by the VDL definitions but not necessarily by the axiomatic definition.

A set of compile-time testable conditions, sufficient to ensure that the

constraints hold, is checked by the program analysis module of the TOMAL

language processor. These conditions are not unreasonable, but ensure that

certain constructs are used as they are intended in an environment where

concurrency is supported. The constraints are discussed in detail and the

consistency of the operational and axiomatic semantics, under the constraints,

has been proven in [Hennessy 771.

3. The Axiomatic Definition of Statement Constraints

In this section we give an axiomatic definition of a standard interpre-

tation of the TOMAL language, guaranteed to apply when certain constraints on

concurrent execution are obeyed [Hennessy 771. The axiomatic definition is

presented in three parts:

1) the definition of sequential statements:

2) synchronization operators and constructs that describe

concurrently executable statements;

3) the data types.

The form of a verification formula was developed by Kieburtz and

Cherniavsky [Kieburtz 761, and is an extension of [Nassi 741. A verification



formula describing the effect of executing a statement S is written;

P W <Q,Q'>

where P,Q,Q' are assertions. The interpretation given to the formula is:

if the precondition P holds prior to the execution of S, then

one of the two postconditions, either Q or Q', must hold foJ]owing

the execution of S. hf case S terminates with normal, sequential

flow of controls then Q is the postcondition. However, if s ter-

minates by executing a nonsequential control operator, such as

break or return, then Q' is the postcondition accompanying the

control transfer.

Although the double consequent form of the axiom adds some additional

complexity, it enables us to accurately define a number of language aspects,

such as the return statement, the break statement and the case statement, in
. - a totally formal approach. Thus although the language includes rich control

structures, they can be neatly defined. In order to eliminate some complexity,

we have omitted the second consequent, whenever it is obviously false, such

as in an assignment statement, or where the second consequent in the hypothesis

is identical to the second consequent in the conclusion.

Rules of inference have the form (due to Hoare [Hoare 691):

V
w

where V is a hypothesis consisting of one or more verification formulae or

assertions, and W is the conclusion consisting of either a verification

formula, or a theorem expressed in the verification logic. The meaning of an

inference rule is that whenever the hypothesis can be proved, the conclusion

is said to be proved by inference. The axioms for sequential constructs and

data type (but not those for operators or coercions) are based on those given
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by Hoare and Mirth for the language Pascal [Hoare 731. The axioms for repeat,

break, compound statement, and case are based on [Kieburtz 76).

The following abbreviations are utilized:

1) A is a statement;

2) A* is a sequence of zero or more statements;

3) D stands for d,,""'d,;

4) D= f(C) stands for d, = f,(Cl),....,d, = fn(Cn);

5) If w is a variable or constant,thenTw is the type of w.

Sequential Statements

1) Empty statement

The empty statement has only a sequential termination condition, which

reflects the fact that the statement alters no variables.

p w P

2)‘ Break statement, break L;

The break statement has no sequential termination condition. The non-

sequential postcondition records the target of the break and reflects the

fact that no program variables are altered. The label variable, 1 , is a

distinguished variable of the verification logic, used to record the target

of a nonsequential execution. Thus in the statement break L, & will get

the value L, the target of the nonsequential execution.

P (break L;) <false, PM = L>

3) Compound statement, begin A* end L;

The rule of inference for the compound statement accounts for three

distinct ways in which control can pass from the statement list A* during

its execution.

a) if A* terminates sequentially, then so does the compound statement

10



b) if A* terminates nonsequentially, with a break target different

from L, then the compound statement also terminates nonsequentially.

d if A* terminates nonsequentially, and its break target is L,

then the compound statement containing A* and labelled by L

terminates sequentially.

P #*I <Q, R>
P (begin Ax end L;) <QvR$ RAle b

4) Repeat statement, repeat A

The inference rule for repeat indicates that termination can only occur

by a nonsequential flow of control from the statement list, A. The rule also

states that an assertion P, which is invariant for the statement block is

unaffected by the repeat control structure. If the repeat structure is combined

with the break statement to create either of the familiar control structures

. yhile or repeat-until, the invariant can be used to formulate the usual axioms

for those structures.

P {repeat A1 <false, Q>

5) Cdhile statement, while B do A- -

The while rule embodies the usual rule for while statements.

PAB (A) P
P (while B do A) PMB- -

6) If statements

The inference rules for the if statements embody the usual rules, adding

only the possibility of nonsequential termination.

a) if B then Al- -

P A B {Al) Q
P {if B then Al} (PMB) v Q- -
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b) if B then Al else A2- -

P A B {Al) Q, PA B {A21 Q
P {if B then Al else A2) Q- -

7) Case statement, case x of [ki:Ai]* end;- -

The case statement is similar to that of Pascal except that subranges

may also be used to form a finite list of constants for each label. The

case statement has two inference rules. The first rule describes the effect

of executing the empty case statement. The second rule is a recursive defi-

nition of the semantics of a list of case instances. The notation [ki:Ai]*

is used to indicate zero or more occurrences of a <label: statement> pair.

The index i is a metasymbol used to distinguish between case instances. The

case instance labels, ki, are defined as subsets; for this reason a membership

test determines if the case selector is associated with a particular instance.

a) case x of end;- -. -
P {case x of end) <P, false>- -

b) case X Of [ki I Ai]* kn:- - An end L;

(A,) <Q,, Qn>, P(case x of [ki : Ai]* end L} <R,R'>- -

P{case x of [ki:- - Ai]* Kn: An end L}<RvQ, v Q,$, R’ v (Q;A~ f L)>

8) for statements

a) for all statement, for all e in Y do A- -  - -
The rule for the for all indicates that the statement list is executed

while a quantified variable ranges over the members of a designated

set, in order, and that the set is evaluated once. This rule differs

slightly from the rule for Pascal; the same approach is used in the

integer for statements.

Let Ty be the smallesttype that includes all elements of the set Y;

denote Ty by a subrange a.,b. Then TesTy must hold.

12



Define predy(e) =

The rule says the

if pred(e)cY then pred(e) else if pred(e)ea..b- -

then predy(pred(e)) else undefined

(eEY) A P[(a..predv(e))T\IY] (A) P[(a..e)nY]

P[@] {for all e in Y do A) P[Y]- -  - -

statement increases for the set of values for which P

holds on each iteration. Then the for all ensures P will hold on all- -

elements of Y, upon completion.

b) integer for..to, for x := m to n step p do A.- - -

This statement and its rule are similar to the for statement of

Pascal. The inference rule for the for..to statement illustrates that:- -

evaluation of the control expressions occurs once, the control identifier

takes on the initial value and is incremented by the step value each time,

the step value must be positive, and the control identifier can not be
. -

updated in the statement block.

Let Y = (i 1 i = m + kpjf‘l{m..n); Y is the set of values the control

identifier will be assigned:

(xEY) A P[im..x - pj~?Y] {A ) P[im..xInY]

p[@l A (P > 0) (for x := m to n step p AIP[Y]

c> integer for.. downto, for x := n downto m step p &A

The downto for statement reflects the same properties as the to

limit form. The only difference is the direction of the step, relative

to the natural order defined on the domain of values.

Let Y = (i 1 i = n k*p}n{m..n).

(xEY) AP[{x.~P + n>nY] (A 1 Pr{x..n)nY]
P[@] A(p<O){ for x := n downto m step p do A: P[Y]
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9) procedure or function body

This new rule for the statement body of a procedure or function has the

effect of binding the break target for the return statement. This results in

a neat axiomatization for the nonsequential control structure return.

Let B be a procedure or function of the form procedure B....; SB end B,

or function B....; SB end B.

p (s,$ <Q, R>

P {procedure B.. .; Sg end B;) <Q v Reniproc, false>

Likewise if B is a function.

10) return statements

The axiom for the return statement demonstrates that the statement has

two effects: to store the return expression values, and to cause a break to

the end of the procedure. Together with the procedure body rule, these two
. -

new rules parallel the rules for breakand the compound statement.

Let B be a procedure, with n return parameters, i.e.,

n = 0 if B is a proper procedure,

n = 1 if B is a function procedure,

n = number of return parameters if B is an assignable procedure.

Let z,,..., zn be the implicit return variables for B.

P'
. . .L

n {return (el...,en);)<false , P A R = endproc>e,...e,

17) procedure declaration and invocation

There are two rules of inference associated with procedures. The first

rule is associated with the declaration of a proper procedure and is called

the rule of declaration. This rule defines the effect the procedure has on

global variables and array or string parameters, by means of a pair of
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functions. The function f gives the effect on array and string parameters,

while h gives the effect on global variables. The conclusion of the rule of

declaration is a theorem about the functions f and h. This theorem may then

be instantiated with actual parameters. It need only be established once for

each procedure. The second rule, called the rule of invocation, displays the

semantics for the call statement. Since variable aliasing is prohibited this

rule states that the call statement is effectively an assignment to the array

and string parameters, and the global variables. The values which these

variables receive are given by the functions f and h defined in the rule of

declaration with arguments instantiated by the actual parameters given in the

call. Since the rule of invocation involves assignment of initial value

parameters, coercion may be necessary. C, is a function used for coercion in

assignments; C, is defined in detail in Section 4.

The rules for procedure declaration and procedure call are based on

those for Pascal [Hoare 731, but differ in three ways. First, the parameter

passing mechanisms are constrained by the language definition. Secondly, the

absence of variable aliasing is ensured by the restrictions given below.

Lastly, TOMAL procedures are not recursive.

Variable aliasing can be prohibited by the following three restrictions.

Let P be a procedure containing references to global variables G, then G,nT = $

set of actual array and string variables passed in calls to P.

1) TnG=$

2) If t, and t2 are actual array and string parameters passed in a

single call, then t, and t, are distinct

3) If P ca

Let A be a proper

procedure A

1
I L

1s Pl and P, updates gl

procedure of the form:

(wl ,...., Wn' rl'""'rj
15

obal variables G

); SA end A



Let A reference global variables g,,....,g, = G;

A has array and string parameters rl,r2,...rj = R, and other (value)

parameters w1,w2,...,wn  = W;

a) rule of declaration

P (sA) <Q , false> W does not occur free in Q.
R G

' ' 'f(W,R)h(W,P) for all values of W,R,G

b) rule of invocation

Consider the call statement for A:

call A(B,C);

where B = b,,..., bn is a sequence of actual values corresponding

to the W and C = Cl,... ,cj in a sequence of actual variables

corresponding to the R. The types of C must match the types

of R exactly.

Let D = Ca ((B,TB), TW).

C G
Rf(D,C) h(D,C) -{call A(B,C);l R

(N.B. This requires restrictions which prevent aliasing)

12) assignment statements

There are two important cases to consider. The axiom for multiple

assignment of a list of scalar or arithmetic expressions to a list of variables

is a generalization of the familiar single-assignment axiom. A second case

of assignment governs the invocation of an assignable procedure; here the

possible modification of global variables or var parameters of array and

string types must be accounted for. Special cases of the substitution rule

govern an assignment that performs partial updating of an array or string

variable, or requires coercion.

16



a) assignment of expressions to variables

p xl...xn
el...en (xl ,...,xn := el,...,en) P

The substitution PEi:::i: is not a composition of single-

expression substitutions, but a simultaneous replacement of the

variable names xl . ..xn by the corresponding expressions el...en.

This reduces to the familiar rule for assignment to a single scalar

variable when the length of the substitution list is one. The

result of substituting two or more distinct values for a common

variable is undefined.

b) assignment of the result of invoking an assignable procedure

'1 'n,... := A(B,C);

The rule of declaration specifies the effect of an assignable

procedure in terms of three functions: the global variable function,

g; the array and string parameter function, f; and a function

denoted by the name of the procedure, which relates the values

in the return list to the input parameters. The conclusion of the

rule of declaration is a theorem defining properties of the three

functions; such a theorem is proven only once for each procedure.

The rule of invocation states that two substitutions of values for

variables are composed. First, new values are substituted for the

array and string parameters and for global variables updated by the

procedure invocation; next, new values are substituted for the

scalar variables that appear explicitly on the left side of the

assignment operator. This new rule differs from previous rules for

procedures in that it makes provision for returning any number of

values. Consider an assignable procedure A, declared as:

17



procedure A (wl,~..,Wm,rl,...,rl)  returns (t,,...,t,);  SA; end

A has array and string parameters r, ,...,r.. = R; and A has other
J

formal parameters w, 3. l l 3wm = W.

Let A reference global variables g, Y-*.3 'k = G, and SA have implicit

return variables zl,...,zn = Z.

a> rule of declaration
1

p $1 Q
where no variab
and no variable

e of Z occurs free in P,
of W occurs free in Q.

R G Z
P'Qf(W,,) g(M) A(M) for all W,R,G,

b) rule of invocation

Consider an invocation of the form A(B,C).

B corresponds to the W, and C to the R. The types of C and R must

match exactly.

Let D = C, UB,TB),TW). -

XC G Y
[[Rylf(D,,),(D,c)l A(D,C) {X~S**-YX~ := A(B,C); 1 R

Where Y denotes a list of dummy variable names that do not occur in

R, B or C; and C A G = (I.

The assignment rules given in a) and b) utilize normal substitution and

do not account for either subscripted references on the left hand side of an

assignment or for possible coercions. These two possibilities are accounted

for by an extension to the rules for substitution. These rules, given in

Appendix 1, specify the necessary coercions and the effect of assignment to

subscripted variables.

Rules Governing Concurrent Execution

A restricted form of a binary semaphore is used to synchronize concurrent
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activities. Semaphores are specified by declarations of the form

semaphore S protects (vl,...,vn);

Sl protects tasks (a,,...,a,)

In the first case S is a semaphore which protects the variables (or procedures)

'1 'n',. . . The axiomatic definition imposes certain restrictions on access to

protected variables and procedures. In the second form of declarat on Sl

protects the tasks a,,...,a,; protection of tasks as resources differs from

protection of shared variables and procedures.

Semaphores protecting variables and procedures are used in a critical

section, of the form:

with Sl,...,Sn do

A

This statement is called a critical section for Si,...,S., where Si,...,S.
J 3

are semaphores protecting variables or procedures. (Note that if all of

sl s-=*3 Sn protect tasks this is not a critical section.) The language requires

that all updates to variables (or calls to procedures) protected by S must

occur within the statement body of a critical section for S. (The formal

definition of update appears in Appendix 2.)

The critical section structure (i.e., where Sl,...,Sn protect variables

or procedures) is easily understood by the following semaphore implementation

P(s”“+;

A

(remembering that semaphores are binary-va 1 ued).

Tasks differ from sequential resources; a task, once invoked, may not

be reinvoked until the execution of its first invocation has been completed.

A request for a task, on the other hand, may be performed (by another task)
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at any time. If requests for a task t are issued from more than one point

in a program, one can ensure that a request is never overwritten by embedding

each request for t in a with statement that locks a semaphore protecting it.

Recall that a semaphore protecting a task is unlocked at the termination of

that task's execution, rather than at the end of a with statement; thus when.
execution is suspended at a task-protecting semaphore, it awaits completion

of the nrotected task.

In general a with statement may mix semaphores of Loti] types. The

resulting structure is a combination, where all critical section semaphores

are freed at the end of the compound statement. Task protecting semaphores

are freed at task terminations.

The rules enforced by the language syntax are not sufficiently strong

to ensure that the proof rules are applicable. Instead, a set of dynamic

constraints must be satisfied. These constraints, as well as a set of static,

syntatic conditions sufficient to ensure them,are discussed in section 6.

In the Floyd-Hoare logic, the fundamental rule relating the effect of

a statement to its environment is the rule of sequential composition. When

the execution of a statement is not controlled by simple sequencing, but

involves repetition or nondeterministic scheduling, the inference rules invoke

the notion of an invariant assertion. An invariant assertion describes the

program states in which control passes to or from a segment in all execution

sequences.

If I is an assertion, I is said to be invariant for A if

I(A)1 is provable.

Let Is be an assertion associated with semaphore S, and containing only those

variables protected by S. Is is an invariant for S if, hypothesizing that Is
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is true each time S is locked, it is provable that Is is true each time S is

unlocked.

A variable v is said to be safe at a statement A, if any of the following

hold.

1. v is local to task or procedure M, and A belongs to M.

2. v is updated only in M, and A belongs to M.

3. v is protected by semaphore S, and A belongs to the critical

section or task protected by S.

The rules for concurrency are largely based on [Hoare 711 and the

extension by [Owicki 751. Our rules extend the previous results by using the

concept of task as a resource, and defining the meaning of variable initializa-

tion. It is not the aim of this definition to be complete for scheduling

aspects. The effect of scheduling by priority (and response time) is defined

by a nonaxiomatic definition appearing elsewhere [Hennessy 77).

1) Tasks, requests and task invariants.

a) Request statement, request t (e, 9. l l 9 en)
Pr(t) is an assertion over the parameters of t, called the domain

assertion,associated with t. Pr(t) must be proven as a precondition

of each request of task t. If P is an assertion over variables

safe at the request statement, then

Wt>
alv...,an

e, ?. . . ,en
APIrequest t(e,,...,e,)) P

where a,,..., an are the formal parameters of the task.

The axiom of request indicates that the request statement assigns

a sequence of values given as expressions to the formal parameters in

the task. Any variables which are not safe at the request may be

accessed by the newly requested task, thus destroying their values;
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hence only variables which are safe remain invariant. Also the axiom

ensures that Pr(t) will be true prior to the execution of a request for

t; this requirement is used to strengthen the invariant.

b) Task Invariant

VtETS(pr(t)  A InvS {At) InvS)

where At is the statement body of task t, and TS is the set of tasks

protected by S.

The invariant must also satisfy an initialization constraint

(given in a following section).

c) Task Initiation

The following axiom describes what assertion is known to be true

when a task body begins execution. The assertion includes the condition

established by all request statements for the task. If the task is

protected by a semaphore, the condition that the invariant for that
. -

semaphore is true also becomes a part of the assertion.

i) true (T: task (a,
3. l l 3 a n) 1  P r (T)

ii) true {T: task (a,..., an) protected by S} Pr(T) A InsS

I 2) Initial Condition of the Invariant

In this section, verification formulae,which ensure that an invariant is

initially true, are specified. These formulae are dependent on the initializa-

tion of global variables, since this specifies the initial system state for

all the shared resources.

The declarations of global variables may also initialize values, and

are treated as statements, according to the following cases:

1) P (var x : T1 declaration without initialization

2) P {var x : T initial (c)j P A x = c simple variable initialization
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3) P {var x : array (a..b) of T initial (Ca9",Cb))

P A x(a) = Ca A... A x(b) = Cb array initialization I

where the initial values are required to be type-coercible to the declared

types. Then if D is the sequence of all global variable declarations, and

predicate P satisfies

true (D} P

we require that the invariant for any semaphore S must satisfy

P 3 InvS

3) Invariants for Critical Sections

In this section the requirements for the critical section invariant are

given; the construction is similar to that for tasks.

Let Y = {critical sections protected by S}.

Then InvS must satisfy the initialization condition given above and also:

Wyd (b(y) A InvS (Ayl InvS)

where Ay is the body of critical section y.

Per(y) is called the environment assertion for the critical section y,

and is over variables safe at y. It will appear in the synchronization axiom

as a precondition.

4) Synchronization Axioms

Let B be the statement: with S,,...J, do

A

a) Axiom for with clause

Let Per(B) be over variables safe at B; if B is a critical section

then Per(B) must be the same assertion as was used to specify the
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invariant constraint.
n

Per(b) (with S,,...,S, do) A InvS A Per(b)
i:=l i

The axiom states that after a with statement is executed any pre-

conditions about variables which were safe are retained. Other variables

were subject to update during their possible suspension to await the

synchronization condition. Additionally, the invariants associated

with each of the semaphores are true.

Let Q be an assertion over:

{variables safe at B) U {variables protected by Sl,...,Sn)

- {variables protected by semaphores in S"}.

n
A InvS

i=l i
APcr(B) (AS) Q <Q3 false>

Per(B) (with S,,...,S, do AB)<Q, false>

. - The rule for the do with construct demonstrates the fact that at- -

the end of a critical region the semaphores protecting that critical

section are freed; therefore the variables protected by those semaphores

are no longer safe. The postcondition only includes variables which

are not protected by semaphores associated with the critical section.

Note that a break statement is not allowed to exit a with statement.
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4. Axioms for Data Types

If x is a constant or variable then TX denotes the type of x.

Scalar Types

Scalar types are either predefined (in the case of integer, boolean,

and char) or defined by enumeration:

type T = (cl,...,cp).

1) Cl,..., cp are all the distinct members of T.

2) (O<i<n) ZJ(ci+l = SUCC(Ci))

3) (O<i<n) ~(Ci = pred(ci+l))

4) 1(x < x)

5) (x < Y) A (Y < 4 x(x < z)

a 6) (x # cn) 1(x < succ(x))
. -

4 7) (x # c,) 3 (x > pred (4)

8) (x < Y> g (Y > 4

9) (x > y) g 1(x < y)

10) (x > Y> f- (Y 5 x)

11) (x # Y> = 1(x = y)

Subranges can be used to define subtypes based on a scalar type. If

m,n are constants of type To, then

type T = m..n is equivalent to the following scalar type:

type T = (m,succ(m),. . . ,pred(n)  ,n)
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Predefined Scalar Types

1) integer

This type represents a subset of the integers; i stands for a

member of type integer.

i) type integer = minint..maxint

ii) (i < maxint) I(succ(i) = i +l)

iii) (i > minint) >(pred(i) = i - 1)

2) Boolean

i) type boolean 2 (false, true)

3) char

The character type consists of a set of values, Tc, subject

to the following restrictions:

i) 'A', 'B',...,'Z', IO',..., '9' are all members of Tc.. -
ii) 'A' < 'B' <..s 'Z' and

'0' < '1' <...< '9'

iii) ITcl = Charsetsize (a positive integer constant)

iv) minchar, maxchar cTc

v) (xcTc) ~(minchar  ,< x ,< maxchar)

Real Arithmetic Type

The real type represents a subset, R,, of the real numbers with the

following axioms, which specify the constraints on R,, and the ordering on

R Let x, y, z be type real.
0 ’

1) X&R0

2) minreal E R, and maxreal E R,

3) minreal I< x 2 maxreal
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4) -I (x < x)

5) (x < Y) A (Y < z) 3(x < d

6) (x ) y) ' b' < x)

7) (x >, y) s 1(x < y)

8) (x >, y) g (y 6 x)

9) P # Y) =1(x = Y)

Set types

A set type represents powersets of a scalar base type. The following

axioms describe the members of a set type, and two methods for forming a set.

Let x,y belong to type T.

members of T.

Assume type T = set of W, where W is a scalar type.- -

1) The subsets of W are all the distinct

2) (Xo,Xl,...,Xm] T o(ol u ix,> u...ucx,

3) o( fiy 1 p(x)1 =” ix 1 (XEY) A p(x>l

where x is a bound identifier, y is a constant set expression and p is a

recursive predicate.

Array types

An array is a structured homogeneous type. The axioms specify the

members of an array type and the rules for indexing arrays.

An array, T, is specified by: type T = array (W) of S; where W is any

scalar type, and S may be any type. T will be logically represented by a

binary mapping (i.e., a set of ordered pairs) with cardinality n. Let R be

the set of all values of type S and let rcR; then define the following

functions for any array type T:

inxT: W x R -t W and inxT(<y,r>)  = y.

evaIT: w X R -+ R and evalT(<y,r>) = r.
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1) Let t

I f  t’

+Y 94

be a subset of W x S

has cardinality n and t' is a binary mapping [i.e.,

))], then t' belongs to T.

2) These are all the members of T.

3) Let t be a variable of type T and YEW, and noting that inxT

is uniquely invertible; then an indexed array reference has a

value defined by:

t(y) = evalT(inx$y)).

String types

The axioms define the string type as an array: of characters, and

then define the special substring operator.

1) type string(n) = array(l..n) of char.- -
. - 2) For any variable, t, of type string(n) and i,j&{l..n),

t(i,j) denotes the substring of t, defined to be:

t(i J) = Iyl(yd A (i ,< inx(y) ,< i+j-1)).

5. Denotational Semantics for Data Type Coercions and Operator Evaluation

Coercions on Data Tvues

This section describes the coercions which are permitted between the

various data types of the language. First, some notation and the definition

of the function used for coercion are supplied, then the various types of

coercions are given. The rules for type coercions and operators are new and

differ substantially from previous specifications.

0) Notation

The coercion function, C, is a domain map of the type:

C: ((value, type), type) + (value, type)
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The form C(vl ,tl) ,t2) = (v t ) is used to define the coercion function.23 2

The type of v2 is assumed to be t2. For economy of notation only the

value which results from the function will be written. The meaning of

c( (v, '$1 J,) = v2 is that the value v1 of type tl is coercable to

type 3' giving the value v2.

A second coercion function Ca, used for assignment is defined as an

extension of C. Only the extension not specified by C is explicitly

given.

C and Ca are partial functions; when they are undefined on parti-

cular values, this means that the coercion of those values is illegal

in the language.

Let T,T',Tl,T2 be types and v,v1,v2 be values, then

T -s T' <=> Vx[x&T lxcTO]

1) Definition of the coercion function

i) Let v19v2cT; if C(($,T),T') and C((v2.T),T') are both defined

then (v1<v2) = (c((v, J) J') < C((v2,T)  J')).

This rule specifies that coercions preserve the order of values

within types.

ii) If T,T' are any types, then: T,<T' -,, C((v,T),T') = v.

This rule specifies that if v is a member of a type T and

all members of type T are members of type T', then v can be

coerced to type T' without a change in value. This rule is clear,

since any value of v must be a member of T'.
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2) Coercion between a char value and a string(l).
i) C((v+har),string(l)) = vl.

ii) C((~~,string(l)),char)  = vl.

3 > Coercions with the real domain, R, and the integer domain, &are used

to define the operators in the next section.
if minint < v < maxint then v

ii) The coercion rule for a value in the domain R to the type real states

that the resultant value must belong to the set R, (which is the

set of values of type real), and that the value should be the

closest value to v in the set, unless the value of v is outside

the bounds of Ro.

C((v,R)real) = 1

\

if vcRo then v
else if minreal < v< maxreal then
v' f (V'dzO) A ~xERo[(v-v')2  ~(v-x)2]

. -
4) The extended coercion function Ca - used for assignment to scalar types.

Let T E {logical,char,integerI;

Let T' be any scalar type, such that all members of T' belong to T, then

Operators on Data Types

0) Notation

Functions are used to define the various operators in TOMAL. Let T

be the set of all types, V the set of all values, and Op the set of all oper-

ators, partitioned into two subsets Op2 and Opl for the binary and unary

operators respectively. The evaluation functions, Rl and R2, are defined:

Rl : opl x (L-0 + OL-0.

R2: Op2 x (V,T) x (v,T) -+ (V,T).

30



The application of R2 is given by R2(0p,,(v1,t1),(v2,t2)~  = (v3,t3)*

It has the meaning that the result of applying Op2, which is a binary operator,

to the operands v1 and v2, of types tl and t2, respectively, is the value v3

of type t3. For unary operators the function Rl, which takes as operands a

unary operator and a single value-type pair, is used. The function Rl also

results in a value-type pair.

The operator evaluation function R applies to a small set of (value,type)

pairs. The extension to all pairs of arguments to which an operator may be

applied is obtained by using the coercion functions. The result of an operator

on a set of pairs is obtained by first coercing the pairs, using the fewest

possible coercions, to a set of operand pairs for which the operator evaluation

function applies, and then applying the evaluation function to the coerced. -
pairs. If the pairs cannot be coerced to a set of pairs for which the operator

evaluation function is defined, then the operator is not defined for the pairs.

We make use of the following functions:

max(ml,...,mn) = mi aLj(i,<j<n):mi>,mj))

sin(r71,...~~n)  = pi - +$(1&n) 3 (Ki<lYj)).

The operators *,t, - are defined as the binary operators over the domains

R and 2. The operator - is also negation, when it applies to a single operand,

in both domains. / is division in 77, div is integer division in Z (i.e., dis-

card the remainder), and mod is defined in 2 by:

x nod y = z s.t. (z + (y*(x div y)) = x).

and, or, not are defined by the operators of and, or, not, in the following- - -

table.
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A B A and B A or B not A

false false false

false true false

true false false

true true true

set complementation is defined as:

(1 v,set of {a..b})= (x 1 XE- -

false true

true true

true false

true true

a..b} ~~(xEv)}

1) Arithmetic Operators

The following rules define the arithmetic operators, Note that com-

putation is always done in either the domain 2 or 77. The result is then

coerced to the resultant type, which depends on the types on the operands,

as well as the operator. This approach

from-an overflow or an underflow, since

easily accommodates problems arising

the result of the coercion to be

Vl OP, v,>,X) where X is R or Z is

assume that all

applied will be undefined. Note that (
I L L

used to specify a binary computation in these domains. We

computations used in R and Z are defined.

Olf

Let Oe~C+,-,*I,l Oi&{div,mod), Obc(Oe U Oi); OdE(0, U {/I) and let

+,-} (i.e., unary + and -).

i) R(O,,(v,,integer), (+integer))= c((v1 Ob v2, Z),integer)
Id 1 L

i i )  R(od,(vl ,real), (v2,real)) = c((vl~- od v2, &real)

iii) R(Ou,(vl,integer)) = (Ou vl,integer

iv) R(Ou,(vl,real)) = (Ou vl,real)

2) boolean Operators

Let OLc{a,ld,or}.- -
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i) R(OL,(vl,boolean),  (v2,boolean))  = (vl OL v2 boolean)

ii) R(not,(vl,boolean))  = (~v~,boolean)

3) Set Operators

The set operators define the resultant type based on the scalar types

of the operands. Let cl..cn be a scalar type.

a) R(&,(vl,set Of {CieeCjI),(V2,Set  Of {Ci..Cj~}))  =- - -w

(VI n V2, set Of {maX(Ci,CiM)..min(Cj,CjH)~)- -

b) R(+,(vl,set of Ici.*cjI),(vz,Set  Of {Ci,..C.~)}) =- - - - 3
(vl u V2, set Of min(Ci,Ci,)..maX(Cj,Cj,)})- -

c) R(-,(vl ,set Of CCi*.cj)),(V2,Set  Of-v - - {Ci-•*c jO})) =

(vlll(lv2),set Of {Ci..Cj})- -

4) String Operator - concatenation

a) R(!! ,(vl,string(m)),(v2,string(n))  = ((<i,ti+si<m+n  A ( fi i<rn

then <i,ti>Evl else <j,tj>EVz, where j = i+l-n)},string(m+n))

5) Comparison Operators

Let 0$0, <, >, = , >=, <=), and let a..b be a subrange of any

predefined scalar type. Let Tl,T2 be scalar types.

a) R(ir~,(v~,T~), (v,, set of T2)) = (vlcv2, boolean)

b) iet t be any scalar type, real, or any set type.

R(Oc,(vl 3 tMpt)) = (v10cv2,boolean).

C) R(=,(vl,string(m)),(v2,string(n)))  = (m=n A Wi(

(4 ,Vi’EV1))  3 (4,vj>cv2)),boolean).
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d) R( %(vl,string(m)),(v2,string(n)))  = (1R

(V2,string(n))), boolean).

e) R(>,(~~,string(m)),(v~,string(n)))  =

(5 +string(m)),

(fl n=Ov (vl(l,l) > v2, (1,l)) then true else [if m>O A6vl(l,l) =-

v2(1,1) then R(>, Vl(2Ym-l)9string(m-l)),  (v2(2,n-l),  string(m-1)));

else false, boolean).

This is a recursive rule which compares the first two characters

(obtained by the substring operator) and if they are equal reduces the

length of the strings by one and recompares. Eventually, either one

string has a larger character, or one string is shorter and its charac-

ters exhausted, and the result of comparison is determined.

f) R(>=,(vl,string(m)),(v2,string(n)))  = (R(>,(~~,string(m)),  (v,, string(n)),
. -

boolean) v R(=, (vl,string(m)), (v,,string(n))), boolean).

g) R(<,(vl,string(m)),(v2,string(n)))  = (lR(>=,(vl,string(m)),

(v2,string(n))),boolean).

h) R(<=,(vl,string(m)),(v2,string(n)))  = (yR(>,(vlstring(m)),

(v,,string(n))), boolean).

6) Denotational Semantics for Scope Rules and Name-Type Bindings

This section defines a set of rules for binding names to types. The

rules demonstrate a different approach to name-type binding from previous

work. These rules specify scope definition and give semantics to declara-

tions of names and types.

The binding of program identifiers and constants to type is represented

by an order of pair: (name, type), where name is an identifier or constant.
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Type can be any valid data type or either one of the distinguished constants

proc (indicating a procedure) or tsk (indicating a task).

These rules bind names to declared types. Because the language definition

does not include the concept of nested blocks, only procedures and tasks form

new scopes. The procedure and task proof rules can not introduce a conflict

in variable names. The axioms require global and local variable names to

be distinguished within a scope. This ability is provided by the scope rules.

A function F, called the binding function, maps a program (or program

segment), P, into a new program segment. The effect of F on P is to bind a

set of names in P to pairs of the form [name, type]. The result of applying

the binding function of a program to that program is a new program different

in that every name is bound to a type. Thus all names are replaced by a pair

I: name, type]. The new program displays the semantic characteristics of the

declarations and scope contained in the original program.

F is formed by a composition of functions.

F = fl * f2 *...* fn,

where each fl is a mapping on a P, which affectsone name in P , mapping it

to a single name-type pair. In what follows a lambda-calculus will be used to

describe the effect of F on a program segment. Finally, rules for constructing

F will be given.

Rules for Applying Variable Bindings

Let P be any program segment whose binding function is F. This function

binds names in P to associated types. Suppose the effect of F is specified

by the set of bondings:
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Then F applied to P is given by:

F (P) : Xxn.Jxn P[(sl,tl),...,(xn,tn)l

It is important that F operates only on names free in P since F is the effect

of the declarations of xl,...,xn on P. After applying all binding functions

(including those for constants and quantified sets, given in a following

section), any name left unbound to a type (i.e., free in a bound program) is

considered undeclared and therefore in error. The terms local and global are

defined, for use elsewhere, with respect to name bindings. If P is a state-

ment block whose binding function is F, then a name x is called global within

P if x is free in F(P); x is local to P if x is free in P and bound in F(P).

Rules for Constructing Binding Functions

The binding functions are constructed around program segments which might

contain declarations. A program component is any one of the following:

1) a procedure - that is, a segment with the syntax:. -

procedure <identifier>.. .; <declarations><statement>..*<statement>  end

or

function <identifier>...; <declarations><statement>...<statement>  end

2) a task - that is, it has syntax:

<identifier>:task.. *; <declarations><statement>...<statement>  end

In the following section the construction for the binding function, F, is

given. Pl and P2 are assumed to be instances of program components.

1) Composition Rule

Let P be any sequence of program components Pl;P2. Let the binding

functions for Pl and P2 be Fl and F2,respectively. Then:

F(p) = Fl* F2 (p1;p2)

This rule states that the variable bindings to be applied to two

program segments are a composition of the two respective bindings.
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2) Rules for Constructing a Binding

Let P be a nonempty suffix of a program component, Pl. Let F be the

binding function for P. Then the following rules apply.

a) F(end) = $ - there is no binding for an end.

b) F(<statement> P) E <statement> F(P) - a statement does not

affect the binding.

c) F(var x1 ,...,x,:T; P) z

hxl... Ax, F(var x1 9**-9 ⌧n: T; p > ☯(⌧l ☺), . l . (⌧,☺)l

A declaration binds all the names declared to the declared type.

The binding is applied to the entire program component.

d) F(type Tl,...,Tn = T; P) f XT,."XT, F(type TlTn = T;P)>".9

C(TIJ),...,(Tn,T)I

e) If procedure A(al,...,an);P  - is an instance of a Pl, then:

F(procedure A(al,...,an); P) : XA(procedure A(al,...,an); P)[A,proc)].

The procedure heading loses all bindings of local variables

and includes only the procedure name. The type checking of

parameters is done by the axioms for procedure invocation

f) If function A(al,...,an) returns(T); P - is an instance o

then:

F(function A(Al,...,an) returns (T); P) =

XA(function A(al,..., an) returns (T); P) [AJ)].

g) If A:task...; P - is an instance of a Pl, then:

F(A:task...,P) 2 XA(A:task...; P) [A,tsk].

h) The module rule: If P is a sequence of program segments

.

f a Pl,

with

binding function F, and F .z k->(xk,tk)  for k=l,...,n; then

F(module M exports(xi,...,xj)  P) 5 Xxi,...,xj (module M exports

( Xi,.", 'j) '1 [(xi,ti),e*'3 (xj,tj)], where 1 <i,j<n. This
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rule states that only explicitly exported names appear outside

a module.

Constants and Quantified Sets

Rather than binding constants to type we shall rely on the axioms for

data types. This has the clear advantage of simplicity, since the data type

axioms already specify the types for constants. From the data type axioms

we conclude that every constant is a member of one or more types. The type

of smallest cardinality which contains the constant can always be used for

the type of the constant. We assume that the types of constants are pre-

etermined and bound so that the binding function does not affect the names

of constants. An additional binding function is required for quantified sets

since they introduce a bound identifier. A quantified set has the form:

{<identifier> in <set expression> 1 <expression>}

Let f be the binding function for the quantified set. Let the <identifier>

be x; let the type of <set expression> be t. Then f has the form:

f: x -f (x,t).

And f is applied as:

Xx {x in <set expression> 1 <expression>} [(x,t)].

7. Constraints on the Use of Concurrency

In this section we concern ourselves with the constraints which we

must place on concurrent execution to ensure the proof rules. The three

subsections are concerned with the actual constraints, their necessity,

and methods of ensuring the constraints by syntax.

The sufficiency of the constrains has been demonstrated [Hennessy 771

by proving the consistency of the axiomatic semantics and the interpretative

definition under the restrictions on execution sequences which the constraints

impose.
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Before proceeding we require the concept of a live variable.. Basically

a variable is live at a program statement if some executing task is currently

using the variable. (For a more detailed definition, see Appendix 2.)

Constraints to Ensure the Applicability

of the Axiomatic Definition

Constraint 1 - If a variable is live for a task T at statement A, then no

other task may update the variable while T is executing at statement A.

Constraint 2 - If Q is a global procedure in a program P, then no two tasks

can execute within the body of Q simultaneously. That is, there can be

no pair of tasks sharing a procedure concurrently.

Constraint 3 - Let T E {Tl,...,Tm), where Tl,...,Tm are all protected by a

common semaphore, S, then:

a) Whenever a task protected by S is requested, S must be locked.

b) No task protected by S is ever requested while any task protected

by S is active.

c) For every statement of the form:

with...S....do A

Either a single request statement is executed within A, for a task

protected by S, or no request for a task protected by S ever occurs.

The Informal Necessity of the Constraints

Constraint 1 - Suppose variables could be updated when they were live;

clearly the rule of composition would not hold.

Constraint 2 - If two tasks execute the same procedure concurrently, an up-

date of a live variable occurs if the procedure does any assignment.

This constraint is needed because the definition of TOMAL does not

require the code of a procedure body to be reentrant.
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Constraint 3 - Consider Constraint 3a and suppose S is free at the beg

of the following:

request T;

with S do A- -

inning

then the execution of A could begin with T still in execution, and InvS

would not necessarily be true. This would violate the axiom for with

statement.

Consider Constraint 3b and the following program segment (with T,T'

protected by S):

with S do begin- -

request (T),

(T’)reguest

end
. -

with S do A- -

The segment could begin execution of A with either T or T'still executing

(since either one could free S); as in the case for 3a, InvS would not

be ensured.

Consider Constraint 3c and the following two tasks executed con-

currently, with Task T protected by S:

T,:task;

with S do beginP -

s, ;

if p then request T;- -

S2;

end
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T,;end

T2:task:

request T;

end T2;

There are two cases: suppose p = false, then if task T2 executed

its request after the with statement in T,, then T might execute,

violating Invs.

If p = true and the request statement in T2 was executed while T,

was executing S,, the variables in InvS could be updated unknown

to T, 3 creating a possible violation of the axioms. Therefore,

the request statement in task T, must execute before any request

for a task bound to S.

Static, Syntactic Conditions that Ensure

the Constraints

The above constraints are checkable by flow analysis within the TOMAL

language processor. However, to assist the programmer in program construction

and provide syntactic constraints we give static constraints which are easily

checkable.

Constraint 2 is ensured if every call to a shared procedure appears

within a critical region protected by a common semaphore.

Constraint 3 is ensured if every request to task t, where t is protected

by S, occurs in the following contexti
with . ..S & begin

A
t ;request
. . .
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Furthermore, if task t is initially requested, then S is locked initially,

and only one task protected by S is initially requested.

Constraint 1 is ensured if every variable v is safe wherever it is

updated, and v is either safe wherever referenced or else v is protected by

a semaphore S and is referenced only in a segment of the form A above.

8. Concluding Remarks-

In this paper we have presented the sequential and concurrent semantics

for TOMAL. The major contribution of this work is to demonstrate the appli-

cation of semantic methods to supply a formal definition, which is primarily

axiomatic, for an entire, significant programming language. There are

several steps and results upon which the entire definition rests.

The rules for the sequential features utilize the double consequent

verification formula to concisely define statements such as: case, break,- -

and return. Although it has not been proven, we believe that the proof rules

for the three types of TOMAL procedures are consistent and complete. Although

the procedures are nonrecursive and prohibit aliasing by their definition, we

do not impose other restrictions, unlike previous axiomatizations [Hoare 73,

Donahue 751.

The proof rules for concurrent execution are based on the work of [Hoare

72b, 74, Owicki 751; let us summarize the new contributions. The synchro-

nization primitive supplied in semaphores is different; the proof rules must

must account for this. The concept of a domain assertion is introduced and

used for a synchronization proof rule similar to that given by Owicki (critical

sections) and in the rules for tasks, where they differ from previous work

and are more closely related to monitors. Most importantly, we specify a set

of constraints which permit the proof rules to be used, without being overly
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restrictive. A primary example of this difference is relaxation of the strict

requirement of mutual exclusive access to variables which has appeared in

previous proof rule systems.

Although it was not our aim to design a language according to its proof

rules, the rules for concurrent features proved to be a useful input into the

design of the synchronization mechanisms. When we encountered difficulty in

selecting appropriate synchronization mechanisms, the concurrency proof rules

assisted in selecting the necessary features. The proof rules showed that

overly powerful synchronization primitives were both hard to define and

possessed no great advantage.

The complementary denotational semantics explicitly associates types

with variables and constants, and provides rules for type-correctness both

in expressions and in assignment. It is also worthwhile to note that the

denotational semantics may be used within the framework of the axiomatic

semantics, particularly in the verification of programs containing features

outside the domain of the axiomatics. The denotational and axiomatic seman-

tics together accomplish the goal of supplying a definition for all con-

current and sequential features.

An operational semantics extends the axiomatic definition to account

for time features. Primarily, the operational definition provides semantics

for task scheduling, accounting for both priority and time dependencies. It

also completes the language definition whenever the constraints fail to hold

for a program.

Two major questions arise: how does one decide when certain segments

of a programming language should be defined by different methods, and how

can a suitable definition method be chosen? The best answers that we can

supply to these questions come from our experience in attempting to provide
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a formal definition for TOMAL.

Since verification, comprehensibility, and compactness were among our

primary goals we strove to utilize the axiomatic method wherever possible.

The first obstacles to such an approach were the break and return statements.. .

Because these statements occupy an integral part of the

choose to utilize the extended (i.e., double consequent)

axiomatic semantics.

1 anguage design, we

form for the

The definition of the concurrent and real-time language features en-

countered two major difficulties. First, the notion of time dependencies

and priority scheduling did not adapt well to the axiomatic method. Several

possible schemes for defining these features were investigated. An inter-

pretative method of semantic specification was chosen because it appeared

best suited for defining the notions of time-dependent scheduling which are

a vital part of this real-time language.
. -

The second difficulty arose because we did not wish to restrict concurrent

execution sequences with a structure such as monitors. This was based on

the view that such a decision may be dangerous in a real-time environment (a

similar view is advocated in Modula). However, we felt a need to extend the

axiomatic definition to cover as much of the concurrent language aspects as

possible. Hence, we devised a set of compile-time testable conditions which

allow a language processor to determine if the axiomatic definition can be

utilized. We also constructed a set of more restrictive, syntactic tests for

the applicability of the axiomatic definition. These tests can be checked

in an ordinary compiler. When a program does not abide by these restrictions,

the interpretative definition supplies semantics. As pointed out by Donahue

[Donahue 751 the consistency of these two complementary definitions is vita1,

and provides an additional argument for the correctness of the definitions.
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Our major goal of providing semantics for all aspects of the language

caused a great deal of concern in regard to the definition of coercion and

operator application. The lack of suitable definitions for these areas of

a programming language is burdensome to the language user and clearly

unnecessary. We found that we could define these features, including concepts

such as overflow, in a meaningful manner, which is as simple as the informal

definition normally given. Our approach allows the utilization of this

method with the axiomatic definition to form a basis for program verification.

The last segment of the language to be defined is that of scope rules and

variable definitions. Some efforts to define these concepts have been

attempted [Cook 75, Fokkinga 771, utilizing the concept of unique names and

environments.

We had several goals in this segment of the definition: define scope

for names, define the binding of names to types, and supply the definition

in such a way that it can be separately applied from the axiomatic semantics.

The last goal reflects the fact that verifying a program would be easier if

one could apply scope and binding rules once, as a single separate step.

These aims led us to the present definition which we believe is intelligible,

and easy to employ.

Thus our effort to define TOMAL

increasing the coverage of the forma

proceeded in a series of steps, each one

definition. Naturally, there is a

danger in this approach; the separate definitions may not be compatible

in fact, they may be inconsistent. The consistency of the overlapping

segments of the definitions (concurrent execution) has been proven [Hennessy

771. The question of compatibility is one of aesthetics; we feel that this

definition provides a good framework for both verification and implementation.
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One significant benefit of formal definition is its assistance in the

language design. As each language component is defined it forces the

designers to think about that feature and come to agreement on its meaning

(in some cases the agreed upon meaning and the definition are different).

Similarly the designers must choose between implementation independent

features and those which are left undefined, for the implementation. Although,

the formal definition requires considerable effort, the process is an in-

valuable component of the larger process of designing a new language and

should not be overlooked.
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APPENDIX 1

Substitution in Assignment Axioms

In order to define possible coercions executed in an assignment state-

ment and the meaning of assignment to a subscripted variable, an extended

definition is supplied for substitution. This form of substitution is

utilized in all assignment axioms. The definition relies on data type axioms

and coercion rules.

The definition of the substitution PG is defined by the form of the

strings involved.

1. If x is not an indexed array or a string, then

Pt means  PcX((~,Ty),Tx)
a

2. If x is an indexed array expression of the form A(i), and A has

component type To, then

pA(i) A
Y meanS 'A-{<i,val(To)>) ~JI<i,Ca((y,Ty)~To)>}

3. If x is a string or substring and y is coercible to type char, then

'; meanS 'kl,val(char)>) ir {<l,Ca((y,Ty),char)>)

4. If TX is string(m) and Ty is string(n), then

Pz means Px(x-{<i,val(char)> 1 1 4 i < min(m,n))u

{<j,yj> 1 1 ,< j -5 min(m,n)), string(m))

5. If x is a substring of the form A(m,n), TA is string(p), and Ty

is string(r), then
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pi means "lx -14, val (char) 1 m 6 i .i: min (m + min(n,r), P)}

U {< j, yj > 1 l,< j 4 min (n,r,p-m)}, string (p))



APPENDIX 2

Definition of Update and Variable Liveness

.
A variable v is updated in a statement A, if:

1) A is an assignment statement and x would be substituted for when

applying the axiom of assignment to A.

or

2) A is a call statement and x is an array or string parameter and

the formal parameter corresponding to x is updated by any state-

ment in the called procedure.

or

3) A is a for statement and x is the control identifier.

A variable v is live at statement A for task t, if:
. -

1) task t executed a statement A' prior to A, which referenced v,

and

2) task t has not executed a request or do with statement between- -

A' and A.
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