
COMPUTER SYSTEMS LABORATORYr 1
I J

STANFORO ELECTRONICS LABORATORIES
DEPARTMENT OF ELECTRICAL ENGINEERING

STANFORD UNIVERSITY - STANFORD, CA 94305 SEL-78-036

SPECIFICATION AND VERIFICATION OF

A NETWORK MAIL SYSTEM

Susan S. Owicki

Technical Report No. 159

November 1978

This work was partially supported by the Air Force
Office of Scientific Research under Contract No.
F49620-77-C-0045.

SPECIFICATION AND VERIFICATION OF A

Susan S. Owicki

SEL-78-036

NETWORK MAIL SYSTEM

Technical Report No. 159

.

November 1978

CENTER FOR RELIABLE COMPUTING
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305

.
To appear in the lecture notes of the International Summer School on
Program Construction, Munich, 1978, Springer-Verlag.

This work was partially supported by the Air Force Office of Scientific
Research under Contract No. F49620-77-C-0045.

SPECIFICATION AND VERIFICATION
OF A NETWORK I*lAIL SYSTEM

Susan S. Owicki

Technical Report No. 159

November 1978

Departments of Electrical Engineering
and Computer Science
Stanford University

Stanford, California 94305

ABSTRACT

Techniques for describing and verifying modular systems are illu-
strated using a simple network mail problem. The design is presented
in a top-down style. At each level of refinement, the specifications
of the higher level are verified from the specifications of lower
level components.

INDEX TERMS: Verification, Concurrency, Proof of correctness,-
Specifications, Networks.

1. Introduction
We wish to consider the design of a mail system that will route

messages among users of a computer network. The network under consi-
deration has a ring structure (Figure l), in which nodes are connected
by one-way communication links. Mail from a user at node i to a user
at another node j must be passed around the ring from i to j. The
problem is to design a subsystem of processes and monitors, running at
each node, to handle the forwarding task and to receive and deliver
mail for local users.

Me have chosen to develop the system design in a top-down fashion.
At the highest level (level 1) are the functional specifications of
the mail system as a whole. These specifications, which are dis-
cussed in section 2, are a precise statement of the partial correct-
ness requirements of the system. The first refinement, described in
section 3, decomposes the system into node and link components that
match the network architecture. In the next refinement, described in
section 4, each node component is further refined to a set of concur-
rent processes commurlicating through buffer monitors. Each level of
refinement is presented by giving specifications for the new components
in the style of [l]. In addition, a partial correctness proof for the
system is given as it is designed. Each level is shown to be a correct
implementation of the previous level's specifications; in the last step
the code of the processes and monitors is verified.

The partial-correctness specifications of the mail system state
that any mail delivered is delivered to the appropriate user. Of
course, it is also important that messages are eventually delivered.
An informal proof that the system can be made to satisfy this require-
ment is given in section 5.

The network mail system in this paper is primarily intended to serve
as an example of modular proo-' methodology. Although the overall

system structure is realistic, many of the problems that a,rise in net-

works are ignored. Most of these difficulties, which include real-

time constraints, synchronization protocols, and error-handling, would
occur in refining the link modules introduced at level 2. They are

briefly discussed when the link modules are described in section 3.

2. Level 1 scifications: System Requirements___- -.---
The functional requirements of the network mail system are given

by the specifications in Figures 2 and 3. At this level, the only
concern is what is to be accomplished by the system, i.e. delivery of
messages to the proper destination, and not how that delivery is to

be achieved.

Figure 2 defines some global types that are used in the specifi-
cations at all levels. Most important are the formats of user identi-
fiers and messages. A userId includes both a node address and a
local identifier; each user has a unique userId. Messages are passed
through the system in the form of a record containing the names of
the sender and intended receiver, with a text that can be an arbitrary
character string.

Figure 3 gives the system's external specifications in the format
that will be used for all modules: variable declarations, initial and
invariant assertions, and procedure specifications. At level 1 there
are two auxiliary arrays, H and C, which record the history and current
state of the system. (Auxiliary variables are &ed in the specifications
and proof, but are not actually implemented). H records the history
of messages passed between modules: H [Ml , 112 , II , v -j denotes tile sequence

. -
of messages passed from tll to Cl2 that have source user u and
destination user v. At level 1, the only modules are the user pro-
cesses (identified by userld) and the network mail system itself (K:4S),
but the array H will be used with other modules at lower levels. The
array C is used to denote the current contents of each module: C[14,11sV-J

is the sequence of messages currently in t4 that have source u and dcs-
tination v. Initially, all sequences are empty. The system invariant
states that all messages sent by u addressed to v (i.e. those in
tI[NMS,v,u,v)) have either been delivered to v (i.e. are in H[NMS,v,u,v])
or are still in the system (i.e. are in C[NMS,u,v]). Ko r c 0 v e r , the
order in which messages are sent is preserved by the system.

The specifications for procedures send a n d receive indicate
that they may only be called by user processes (in procedure speci-
fications, 8 denotes the name of the module invoking the procedure).
The effect of send is to append a message to the appropriate tlistory.
(Ilere H' denotes the value of H at procedure entry, and it is assumed
that all elements of H not explicitly mentioned are not modified by
the procedure.) The effect of receive depends on whether any mail is
available for the caller. If there is, the flag valid is set to
true, and a message is returned and appended to the appropriate history.
Otherwise, valid is set to false, and the history is not modified.

2

The procedure send must also increase the sequence C[NMS,u,v]
(the '(contents" of the mail system), and receive must likewise
shorten C[NMS,u,v]. The effect on C is not part of the procedure entry/
exit conditions, because it is not visible to the module invoking the
procedures. However, it can be inferred from the entry/exit condi-
tions and the module invariant.

These specifications illustrate a difference in notation between
this paper and [l]. Rather than declaring some variables to be
private to a particular module, we will use the idea of safe variables
in a more informal style. A variable is safe for a module if it can
only be modified by that module. The specifications and proof of a
module must involve only variables that are safe for that module. Of
the N!lS variables, those that are safe for Ml are H[Ml ,M~,u,v) ,
H[M2,Ml,u,v] , and C[Ml ,u,v] (for any f42,u,v). The values of these
variables cdn only be changed by an action of Ml , although the form
of that action depends on the relationship between M 1 and M2. For
example, the value of H [Ml , !I2 , II , v] could be modified by Ml calling
M2.send, or by M2 calling Ml.receive. Likewise, the sequence
C[Ml,u,v] could be extended by M2 calling Ml .send or Ml calling

- - M2.receive; and it could be shortened by Ml calling M2.send
or M2 calling Pll.receive .

In all cases, module specifications must use variables safely,I-
as described in [l]. This means that free variables in the specifi-
cations of module 11 must obey the following rules:

1) The initial and invariant assertions may refer to any safe
variable of M, e.g. C[M,u,v], H[M,M' ,u,v] and H[M' ,M,u,v]
(for any W,u,v).

2) Procedure entry and exit assertions may refer to variables
that are safe for the calling module, i.e. H[El,#,u,v],
H[#,M,u,v] and C[#,u,v] *(for any u,v).

Note that the specifications in Figure 2 obey these rules. Later

refinements will use H and C in much the same way.

The functional requirements in this section are unrealistic in
one major aspect: they do not require any action to be taken if mail
is sent to an invalid userId . A reasonable requirement would be
to return an error message to a user who sent a message with an in-
valid address.

A specification along these lines might have the invariant

H[u,NMS,u,v] = H[NMS,v,u,v] 0 C[NMS,u,v] for valid v,
H[u,NMS,u,v] = HE[N!lS,u,u,v] 0 CE[NMS,u,v) @ C[NMS,u,v] for inva-

lid v, where HE records the history of error messages between modules,
and CE denotes the error messages contained in a module. The second
clause of the invariant states that, for each erroneous message
sent, either an error message has been received, or an error message
is on its way, or the original message is still in the system.
Such a specification could be implemented by having the error message
initiated at v.node and returned to u using the normal message
delivery system. However, we will not pursue this extension of the
original specifications.

3. Level 2 Specifications: Network Architecture__ - - - - - - -
3.1 Specifications

The first decomposition of the mail system fits the program to
the network architecture. At each node i there is a sybsystem

WI , and the communication line leaving node i is represented by a

module L[i] . The specifications for these two component types are

given in Figures 5 and 6.
First, consider the link specifications in Figure 5. The specifi-

cations are expressed in terms of the global variable H[W-[i 1 ,u ,v]
and H[L[i),M,u,v]. As discussed in Section 2, these elements of the
array of histories H are safe to use in the specifications of
L[i] because they can only be modified as a result of actions of
L[i) . The declaration of variables and the initial assertion are
omitted here because no new variables are needed in the specifications.

The invariant for link WI states that all messages sent into

the link from S[i] have been sent out to S[iOl] . (IJe will use

i81 and iQ1 as abbreviations for (i+l) mod (Ntl) and (i-l)

mod (N+l) .) There is no buffer capacity in the link, so send and
receive operations must be synchronized. The entry and exit assertions
for link procedures indicate that the history sequences in H are

updated appropriately, much as in the send and receive procedures of
the MMS system in Figure 3. In addition, L[i].send(m) removes

message m from the contents of the calling module (C[#,u,v]), and
L[i].receivc(m) adds m to the contents of the calling module.
It way not necessary to modify C[#,u,v] in the NMS procedures send

and receive because the "contents" of user processes are irrelevant to

the mail system.

c

No further refinements of the link module are given in this paper;
but in a real system, the link itself might be a complex subsystem.
The link hides the details of communication devices from the rest of the
system. This could involve splitting and re-assembling messages to
fit a fixed-length format, synchronizing read and write operations,
and recovering from transmission errors. Regardless of the complexity
of the link implementations, however, the subsystem running at each node
may regard the link send and receive operations as no more complex
than appending and removing values in a buffer.

Figure 6 gives the specifications of the sybsystem S[i] that
runs at node i. Messages arrive at WI from local users and from the
input link L[iOl] . Those addressed to local users are delivered
directly; the others are sent to the output link L[i]. The invariant
for S[i] states that input messages (those in H[from(u),S[i],u,v])
have either been sent to the appropriate destination (i.e. are in
H[S[i],to(v),u,v]) or are still in the sybsystem (i.e. in-

C[S[il,u,vl >. The form of the invariant is quite similar to the
invariant for the entire system (Figure 3); the difference is that
S[i] interacts with both user processes and the links L[iQl] and L[i].
The procedures S[i].send and S[i].receive directly implement the
corresponding level 1 procedures, with each user calling the procedures
provided at his node. This is indicated by the procedures' entry
assertions.

3.2 Verification- -

tiaving given specifications for levels 1 and 2 of the mail system,
we should show that they are consistent; i.e., that the link and node
modules are a valid implementation of the mail system requirements.
Consistency of specifications at two levels is verified by defining the
variables and procedures of the higher level in terms of the lower,
and then proving that the lower level specifications imply the higher.
These requirements are stated in the following definition:

Definition 1: Suppose module V is to be implemented by modules W,,
W2). . .Wk. Let the variables of V be i, the variables of W,,...,Wk
be w and the relationship between them be 3 = f(w). Then W],...,Wk

correctly implement V if the following consistency conditions are
satisfied.

5

i. (A ‘i’invariant)= V.Invariant-fW
i V

ii. For each procedure p in W,..., IJk that implements a procedure
cl in V

a. q.entryfiw& p.entry

b. f(G)p.exit3q.exitv

(In the mail system, all variables in the specifications are
initialized as empty sequences, so we have omitted the initial and
requires clauses, described in [l],from module specifications. InI_ -
the general case, these clauses would also have to be considered in
proving that a lower level implementation is correct.)

Theorem 1: The level 2 specifications of modules SW a n d L[i],
for i = 0,. .,N (Figures 5 and 6) correctly implement the level 1 system
requirements (Figure 3).

Proof: The correspondance between the names of variables and procedures
of the two levels is given in Figure 7. The history of messages sent
between a user u and the mail system NtlS is implemented by the. -
history of messages between u and S[u.node]. The sequence of messages
in Nf4S from user u to user v is implemented at level 2 by the
concatenation of the contents of sybsystems at v.node , v.nodeQl,
. . .) u.node. This reflects the fact that a message sent from u and
not yet delivered to \I must be at one of the nodes on the path from
U to v. Finally, the send and receive procedures of level 1 are
implemented at each node in level 2.

Verifying the consistency criteria for procedure entry and exit
conditions is straightforward; after the substitution of variable names,
the level 1 assertions are equivalent to the level 2 assertions.

Verifying the consistency of the invariants requires us to prove
(*> (A (S[i].invariant A L[i].invariant)D

i Vu,v (H[u,S[u.node],u,v] = H[S[v.node],v,u,v] @
C[v.node,u,v) @ . . . 0 C[u.node,u,v])

Let i = u.node, j = v.node, and consider two cases for i and

j . I f i = j , (*) follows from
S[i].invariantz (H[u,S[i],u,v] = H[S[i],v,u,v] @ C[S[i],u,v])

For i f j, assume the left-hand-side of the implication (*). From

S[i].invariant we have

6

H[u,S[i],u,v] = H[S[i],L[i],u,v] @ C[S[i],u,v].
Applying L[i].invariant gives

H[u,S[i],u,v] = H[L[i],S[iW],u,v] @ C[S[i],u,v].
We can repeatedly apply S[k].invariant and L[k).invariant for
K = i@l, . . .,jQl to derive

Hb,S~il,u,vl = HCLCjQl I ,S[jl ,u,v] @ C[S[jQl],u,v] O...O C[S[i],u,v]
Finally, from S[j].invariant we can derive

H[u,S[i],u,v] = H[v,S[j],u,v] @ C[S[j],u,v] @...@ C[S[i),u,v]
This completes the proof of (*) and of Theorem 1.

4. Level 3 Specifications: The Node Subsystems

4.1 Specifications

The last refinement to be presented is the decomposit ion of the

.

node subsystems into processes and monitors. Figure 8 illustrates the

. - components at each node and the flow of messages among them. There
are three concurrent processes at each node, corresponding to three
asynchronous activities. They are the reader process R and writer
process W, which manage link communications, and J. switch process
SW , which routes messages to a local destination or to the output
link. The processes are connected by three buffers, Swbuf , Ubuf ,
and W b u f , implemented'by monitors.

Specifications for level 3 components are given in Figures 9 - 14.
First, consider the reader process R (Figure 9). Its invariant states
that messages received from link L[iQl) are passed to the switch
buffer Swbuf[i] . There arc no procedure specifications for a process.
The specifications for the other processes (Figures 10 and 11) are
similar. Process Sw[iJ takes mess'ages from Swbuf[i] , sending those
addressed to local users to Ubuf[i] and others to IJbuf[iJ . Finally,
process WI takes messages from I*!buf[i] and sends them to the next
node via L[i] .

Specifications of the three buffers are given in Figures 12 - 14.
Swbuf[i] (Figure 12) and !*/buf[i] (Figure 13) are bounded buffers of

7

the type described in [l]. SwbuF has two "send" procedures: s en d n cw ,

called by user processes to initiate mail delivery, and send , called

by the reader process to deposit messages from the input link. For
both buffers, the invariant has the usual clause relating histories of
messages in and out of the module, and a clause reflecting the bound
on the buffer's size. In addition, the variable C[Swbuf[i],u,v)
contains the subsequence of messages in Swbuf[i].buf that are addressed
from u t o v . (C[Wbuf[i],u,v] and Wbuf[i].buf have the same
relationship.) The last clause states that the buffer only contains
messages between users u and v i f i t i s o n t h e p a t h f r o m u t o
v . For Swbuf[i] , this means that i is in the sequence u.node,

u.node@l, v.node , abbreviated
i in [u.nodc,v.node].

For Wbuf[i], i must be in u.node, u.node@l , v.node01,

abbreviated
i in [u.node,v.node).

These 1 imits on the buffer contents are enforced by the entry condition
of send and reflected in the exit condition of receive .

The last buffer, lJbuF[i] , is treated as an array of unbounded

bbfiers, one for each local user. Presumably, these buffers are imple-

mented using backing store which can be considered unbounded. In other

respects, the specifications resemble those already considered.

4.2 Verifying Level 3 Cbnsistency

Our next task is to verify that the level 3 specifications correctly
implement the level 2 specifications o-f a node subsystem.

Theorem 2: The level 3 modules specified in Figures 9 - 14 are a correct
implementation of the subsystem S[i] described in Figure 6.

Proof: We must show that the requirements of definition 1 are met.
The correspondance between variable and procedure names from the two
levels is given in Figure 15. It is easy to see that the procedure

specifications are consistent, since the entry and exit conditions are

identical for both levels. To show that the invariants are consistent,

we must show that the conjunction of invariants for level 3 modules
implies the subsystem invariant for S[i]. The reasoning involves

separate consideration of four cases for u and v:

8

a. u.node = v.node = i

b. u.node = i A v.node # i
c. u.node # i A v.node = i
d. u.node # i A v.node # i

Since the four cases are treated in much the same way, we give only
the proof of case a.

For u.nodc = v.node = i, the level 2 invariant becomes, after
variable substitution,

(") H[u,Swbuf[i],u,v] = H[Ubuf[i],v,u,v] 0 C[Ubuf[i],u,v]
@ C[Sw[i],u,v] @ C[Swbuf[i],u,v]

Now Swbuf[i].invariant implies
H[u,Swbuf[i],u,v] = H[SwbuF[i],Sw[i],u,v] @ C[Swbuf[i],u,v]

Applying Sw[i].invariant to expand the first term on the right-hand-
side gives

H[u,Swbuf[i],u,v] = H[Sw[i],Ubuf[i],u,v] 0 C[Sw[i],u,v]
@ C[Swbuf[i],u,v]

Finally, applying Ubuf[i].invsriant to expand the first term on the
right-hand-side gives (*).

The other three cases can be proved in the same way, for example,
in case d above, the level 2 invariant, after variable substitution,

is ,

H[L[iOl], R[i],u,v] = H[W[i],L[i],u,v] 0 C[W[i],u,v]
@ C[Wbuf[i],u,v] 0 C[Sw[i],u,v]
@ C[SwbuF[i],u,v] @ C[R[i],u,v].

This is implied by the invariants of R[il) Swbuf[i] , SwCil s
Nbuf[i] , and N[i] .

4.3 Verifying the Level 3 Implementation

Figures 16 - 21 contain proof outlines for the code implementing

the processes and monitors of level 3. The process proofs make use

of two predicates, eni?ty and contents , defined below.

empty(f1: module) z Vu,v: userId (C[M,u,v] = <>)
contents(M: module; m:message)

E vu,v: userId (C[M,u,v] = if (u=m.source) and (v=m.dest)- -
then cm>

. else <> 1
9

These predicates describe the two possible states of these processes,
which can contain at most one message.

For the most part, the verification of the processes and monitors
is straightforward, although tedious, and is not presented here. One
interesting point is that the entry conditions of Swbuf[i].send(m)
requires i in (m.sourcc.node,m.dest.node]. In order to show that
this entry condition is met for the procedure call in WI , we need
to knowthat the message obtained from L[iOl] was in the correct range.
The original link specifications did not guarantee this; however, in
this system the link is used in such a way that it must be true. This
can be expressed by deriving specialized specifications for L[i] based '
on its use in the mail system. In this new specification, given in
Figure 22, a stronger entry condition on L[i].send justified a stronger
invariant and exit condition for L[i].receive . A formal derivation
of the specialized specifications From the original ones can be obtained
using techniques described in [l].

. -

At this point we have developed a partial implementation of the
mail system (without the link modules) and verified that the implemen-
tation meets the system's functional requirements. As a ,final step,
let us consider strengthening the system requirements to imply that
messages are eventually delivered.

,

5. Guaranteed Message Delivery

The mail system specifications given in Figure 2 require only par-
tial correctness; they imply that if a message is received at all, it
is received by the correct user. In this section we consiser two

further requirements: that deadlock of the system is impossible, and

that all messages are eventually delivered. (The second condition

implies the first.) A set of sufficient conditions for preventing
deadlock are defined and verified, and implementation methods that meet

the criteria are outlined. The proofs are quite informal.

10

. -

First let us consider the requirement that deadlock (a state in
which all processes are blocked) cannot occur in the message system.
Theorem 3 below states that deadlock is impossible if the number of
undelivered messages in the system is kept smaller than its total buffer
capacity. There are a number of ways of implementing the mail system
to ensure that this condition is always satisfied. One approach is to
delay initial processing of a message until it is certain that the
network as a whole has enough buffer space to handle one more message.
Several strategies have been proposed for determining, from inspection
of local data at the node, when a new message can safely be allowed to
enter the system (see, for example [2]). Another approach is to provide
enough buffer space to hold as much mail as users can generate. In
some systems, there are constraints on user behavior that keep this
number small. In general, however, the number of outstanding messages
may be quite large, requiring that buffers be implemented on backing
store. A third approach - discarding messages when the buffer capacity
is exceeded - is acceptable in some applications, but it is not consis-
tent with our specifications.

The following theorem shows that deadlock
any strategy that prevents the number of undel
filling all buffers to capacity.

Theorem 3. Suppose the, network mail system is

i
can be avoided using
vered messages from

implemented in such a
way that the number of undelivered messages (those in C[NMS,u,v] ,
but not in any C[Ubuf[i],u,v]) is less than ;(SwbuF[i],bufsize +
Wbuf[i].bufsize). Then whenever there is undelfvered mail in the sys-
tem, at least one process is not blocked.

Proof: A process can only be blocked at monitor entry (because another
process is holding the monitor) or at a monitor wait operation. The

first condition can only arise when a process is executing in the moni-
tor, so in this case at least one process is not blocked. So if all

processes are blocked, they must all be blocked at wait operations.
In the mail system, there are four places where this can occur:

1. At M.send, when length(?l.buf) = M.bufsize, for M = Swbuf[i]
or Wbuf[i].

2. A t M.receive, when length(M.buf) = 0, for I4 = Swbu
Wbuf[i].

11

f[i] or

3. A t L[i].send, when no process is executing L[i].rcccive.
4. A t L[i].receive, when no process is cxt?cuting L[i].send

The processes in the mail system form a cycle, as illustrated in
figure 23. Here the processes are labelled p,, p,, P3N-l '
and the monitors (excluding Ubuf) are labelled bo, bl,..., b3N-l'
Each pi consumes messages from b.
If deadlock occurs, each process p:

and produces messages for bial
is blocked at a send to Bill

or a receive from bi . Now, w h e t h e r b i is a buffer or a link,

it is not possible to have both piQl blocked at bi.st?nd and pi
blocked at bi.receive . Since the processes from a cycle, this implies
that either all processes are blocked at receive or all are blocked

at send . If all are at send , then all buffers are full, and this
violates the hypothesis of the theorem. So if deadlock occurs, all

processes are blocked at receive . But this can only happen when all

buffers are empty, and there are no undelivered mt7sqnc1~s. This completes

the proof.

Even if deadlock is impossible, message delivery may not be guaran-. -
teed. For example, if deadlock is avoided by a mechanism that delays

message acceptance, then some messages may be passed over repeatedly
while the system delivers other mzssages. To preclude this possibility,

the scheduling of processes and monitors must be done fairly.

Definition: A system ilas fair process scheduling_ if each process makes~-
progress at a non-zero rate unless it is blocked.

Fair scheduling for processes is natural jf each process executes

on its own processor. If the processes are multiprogrammed on a single

processor, it is up to the multiprogramming system to ensure fair sche-
duling.

Definition: A buffer implementation is fair if its send operations- - -
are guaranteed to terminate unless the buffer remains full forever,

and its receive operations are guaranteed to terminate unless the

buffer remains empty forever.

T,o say that a buffer monitor is fair is to imply that a process

attempting to send or receive will not be passed over indefinitely
in favor of other processes. If processes are competing to send elements

12

to a buffer, one of them may be delayed for a time, but as long as the
buffer does not remain full, each process will eventually complete its
send. In the network system, fair scheduling of send operations is
necessary for Swbuf[i] , which takes input from R[i] and from local
users. Fair scheduling of receive operations is needed in Ubuf[i] ,
where user processes may compete to receive messages.

Fair buffer implementations are not difficult if the underlying
implementation of monitors is fair (e.g. if monitor entry and removal
from condition queues is done on a first-in-first-out basis). In this
case, the buffer implementations in Figures 19 - 21 are fair. If the
underlying implementation is unfair, or if the buffer scheduling policy
deliberately delays some processes, e.g. in order to prevent deadlock,
then accomplishing a fair buffer implementation may be more difficult.

Theorem 4. Suppose that the network mail system satisfies the condi-
tions of Theorem 3, and that buffers and process scheduling are imple-
mented fairly. Then if user u calls the procedure send(v,t) , the. -

. message <u,v,t> will eventually reach Ubuf[v.node].

Proof: Suppose not, i.e. suppose some message <u,v,t> remains unde-
livered. It cannot cycle in the message system, since the invariant
for Wbuf[v.node] guarantees that it cannot leave node v.node via
the link. Thus it must' remain forever in some buffer bi or process

Pi l
This can only happen if pi is permanently blocked at biOl.send

By fairness, this can only happen if biOl remains full forever, which,
in turn, can only occur if pi@l remains blocked forever at bie2.send

Repeating this argument for Pi@2""' piQl ' we can show that all
processes are blocked. Since there is undelivered mail in the system,
this is impossible, by Theorem 3. Thus all messages must eventually

be delivered.

Ne have proved that, with fair buffers and fair process scheduling,
each message is eventually delivered to the appropriate Ubuf[i] .
A final requirement is that a message for user v in Ubuf[v.node]
will reach v if v calls Ubuf.receive a sufficient number of times.
This is easily verified, provided that Ubuf[v.node] is implemented
fairly.

13

Combining the results of this section with those of sections
2 - 4 gives a proof of total correctness: each message is eventually
delivered to the correct destination, so long as the fairness and dead-
lock-avoidance conditions are satisfied.

6. Summar y
The purpose of this paper has been to illustrate the use of modular

proofs .for systems programs. Although the mail system presented here
does not deal with many of the difficult problems of network communica-
tion, its overall structure is realistic. Other mail systems with
modular architectures are defined in [2], 131, and [4].

The modules in this system have a common pattern, which we might
call the message-passing pattern. This same sort of module appears
often in other types of concurrent systems. Another common pattern,
the dynamically allocated resource, is described in [$I. It is my hope
that we will be able to discover a small set of patterns that account
for most module structures in concurrent programs, and identify convenient
ways of specifying the verifying modules which fit the patterns.. -
If this is possible, the task of verifying large systems should be
considerably simplified.

Acknowledgements: I am grateful to both Edsger Dijkstra and Leslie
Lamport, whose complaints and suggestions about an earlier version
of this paper led to the current form of specifications for message-
passing modules.

References
'[l] Owicki S Specifications and Proofs for Abstract Data Types in

Concu;rerZ Programs, Lecture Notes of the.International Summer School7 -_
on Program Construction, Munich,

--.---_
- - 1978, Springer-Verln.o->FpTr
Also Stanford Computer Systems Laboratory Technical Report No. 133.

[2] Brinch Hansen, P., Network, a Multiprocessor Program. IEEE Trans
on Software Engineering, v.4, no.3 (May, 1978) 194-199.

[3] Ambler, A., et al., A Language for Specification and Implementa-
tion of Verifiable Programs. Proc.- - of an ACM Conference on Language- -
Design for Reliable Software, SIGPLAN Notices v. 12, n.3(-also-.-
tierating Systems Review v.

-~

Notez, v.2,
11, n.2, and Software Engineering

n.Z)(197f)-1-10.
14

I

[4] Andrews, G., Modula and the OesiTn of a Message Switching-Commu-
nications S.ystem. Tl??\m, Cornell Universi‘%j-,-Cop~fer-'---
Science Dept. (1978)

[!I] Owicki, S., Verifying Parallel Programs with Resource Allocation.
Proc. International Conference on Hath. Studies of Informc~tion
Processing, Kyoto, Japan (1978)-I

---.-P--e

15

Node N

'Figure 1.

Node 1

2

Ring Network Architecture

16

type nodeId = O..N;
local Id = sequence of char;
userId = record

node: nodeId;
uId: local Id

*;

cstring = sequence of char;
message = record

source, dest: userId;
text: cstring

end;

messageSequence = sequence of message

FIGURE 2. GLOBAL TYPES

17

module NMS- -

var H : array [module, module, userId, userld] of messagesequence;
c : array [module, userId, userId] of messageSequence;

initial: H = C = <>

invariant: vu,v: userId (H[u,NIlS,u,v] = H[NMS,v,u,v] @ C[NMS,u,v])

procedures:

send (u: userId; t: cstring)
entry: #: userId
exit: H[#,NMS,#,u] = H'[#,NMS,#,u] @ <#,u,t>

receive (var valid: Boolean; var u: userId; var t: cstring)
entry: #: userId
exit: (valid A H[NMS,#,u,X] = H'[NMS,#,u,#] 8 <u,#,t>) v

(Qvalid A H[NblS,#,u,#] = H'[NMS,#,u,#])

Figure 3. Network Mail System (NMS) Requirements (Level 1)

18

*Mail from users
at node 0

Hail to users
at node 0

. /

L[NI

. -

ScNl

r

Figure 4. Level 2 Modules and Qessage Flow

19

module L[i]

invariant: Uu,v: userId (H[S[i],L[i],u,v] = H[L[i],S[iBl,u,v])

procedures

send: (m: message)
entry: # = Sri]
exit: let u = m.source,

V = m.dest,
i n (H[#,L[i],u,v] = H'[#,L[i],u,v] 0 <IV- I\

C[#,u,v] = tail(C'[#,u,v]) 1

receive (var m: message)
entry: # = S[i@l]
exit: let u = m.source,

V = Kdest,
in (H[L[i],#,u,v] = H'[L[i],#,u,v] @ cm> ,A

C[#,u,v] = C'[#,u,v] @ cm>)

Figure 5. Specifications of link module L[i]

20

module Sri]

invariant: Uu,v: userid-__I
(let from(u) = if u.node=i then u- - e l s e L[iQl]

to(u) = if u.node=i then u- - else L[i]- -
in H[from(u),zi],u,v] = H[S[i],to(v),u,v] @ C[S[i],u,v])

procedures:

send (u: userId; t: cstring)
entry: #: userId A #.node=i
exit: H[#,S[i],#,u] = H'[#,S[i],#,u] @ <H,u,t>

. -
receive (var valid: Boolean; var u: userId; var t: cstring)

entry: #: userId A #.node=i~-
exit:(valid A H[S[i],#,u,#] = H'[S[i],#,u,#] @ <u,#,t>)

v(svalid A H[S[i],#,u,#] = tl'[S[i],#,u,#])

Figure 6. Specifications of Node Subsystem S[i]

21

In all cases u and v range over userId's

Level 1
Variables

Level 2

H[u,NMS,u,v]
tI[NMS,v,u,v]
C[NMS,u,v]

H[u,S[u.node],u,v]
H[S[v.node],v,u,v]
C[S[v.nodc],u,v] 0 C[S[v.nodeQl,u,v]

@ . . . @ C[S[u.node],u,v]

Procedures

N!G.send(u,t) S[#.node].send(u,t)
NMS.receive(u,t) S[X.node].receive(u,t)

Figure 7. Level 2 Implementation of Level

22

1 Variables and Procedures

Process

L[iQl]

0R[il local users

\ J-1

local users

I Monitor

Figure 8. Level 3 Implementations of S[i]

23

process R[i]

invariant: uu,v: userId
(H[LFOl],R[i],u,v] = H (R[i],Swbuf[il,u,d @ C[R[i],u,vl)

Figure 9. Specifications of the Reader Process R[i]

process Sw[i]

invariant: uu,v: userId
(let to(v) = if v.node=i then v else Ubuf in- -
H[Swbuf[i],Sw[i],u,v] = H[Sw[i],to[v],u,v] @ C[Sw[i],u,v])

. -

Figure 10. Specifications of the Switch Process Sw[i]

process W[i]

invariant: Uu,v: userId
(H[Nb~f[i],N[i],u,v] = H[W[i],L[i],u,v] 0 C[W[i],u,v])

Figure 11. Specifications of the Nriter Process WI

24

monitor Swbuf[i]

const bufsize

var buf: messagesequence

initial: buf = <>

invariant: Vu,v: userId- - - -
(let from(u) = if u.node=i then u else R[i], i n- - __- - -
H[from(u),Swbuf[i],u,v] = H[Swbuf[i],Swri],u,v] @ C[Swbuf[i],u,v]
A length(buf) L_ bufsize
A C[Swbuf[i],u,v] = <buf : source=u A dest=v>
A Vm: message (m i?buf 3 i jn [m.source.node,m.dest.node]))

procedures

sendnew(u: userId; t: cstring)
. - entry_: $: userId A #.norie=i

exit: (H[#,Swbuf[i],u,v] = H'[#,Swbuf[i],u,v] 0 <i'f,u,t>)

send(m: message)
entry: #=R[i] Ai in (m.source.node,m.dest.node]
exit: let u= fl.source A v = m.dest, in

(H[#,,Swbuf[i],u,v] = H'[#,Swbuf[i],u,v] 0 cm> A
A C[#,11,v] = tail(C'[#,u,v])

receive(var m: message)
#=Sw[i]entry:
exit: let u = m.source A v = m.dest, in

(H[Swbuf[i],#,u,v] = H'[Swbuf[i],#,u,v] @ cm> A

A C[#,u,v] = C'[#,u,v] @ cm>
A i in [u.node,v.node])

Figure 12. Specifications of the Buffer Monitor Swbuf[i]

25

monitor Wbuf[i]- -

const bufsize- -

var buf: messagesequence

initial: buf = <>

invariant: Yu,v: userId_
(H[Sw[i],Wbuf[i],u,v] = H[Wbuf[i],W[i],u,v] @ C[Wbuf[i],u,v]

A length(buf) I.bufsize
A C[Wbuf[i],u,v] = <buf : source=u A dest=v>
A Vm: message (m in buf=i in [m.source.node,m.dest.node]))

procedures

send(m: message)
entry: # = Sw[i] A i in [m.source.node, m.dest.node)

. - exit: let u = m.source A v = m.dest, in
(H[i,!*lbuf[i],u,v] = H'[#,Wbuf[i],u,v] @ cm>
A C[#,u,v] = tailk'[#,u,v]))

receive(var m: message)~-
entry: # = W [i 1,
exit: let u = m.source A v = m.des-t, in

(H[Wbuf[i],#,u,v] = H'[Wbuf[i],#,u,v] 8 cm>
A C[#,u,v] = C'[#,u,v] @ cm>
A i in [u.node,v.node))

Figure 13. Specifications of the Buffer Monitor Wbuf[i]

. .

26

. -

monitor Ubuf[i]

var buf: array_ [localId] of messagesequence;

initial: buf = <>

invariant: uu,v: userId

(H[Skl[i],Ubuf[i],u,v] = H[Ubuf[i],v,u,v] 0 C[Ubuf[i],u,v]
A (v.node=iZX[Ubuf[i],u,v] = <buf[v.localId] : source = IO)

procedures

send(m: message)
entry: #=Sw[i] A m.dest.node=i
exit: l e t u= m.source A v - m.dest, in

(H[#,Ubuf[i],u,v] = H'[#,Ubuf[i],u,v] @ cm>
A C[#,u,v] = tail(C'[#,u,v]))

receive(var valid: Boolean; var u: userld; var t: cstring)- -
entry: #:userId A #.node=i
exit: let u = m.source A v = ni.dest, in
(valid A H[Ubuf[i],#,u,#] = H'[Ubuf[i],f:,u,#]@ <u,#,t>
v(svalid A H[Ubuf[i],#,u,#] = H'[Ubuf[i],#,u,#])

Figure 14. Specifications of the Buffer Monitor Ubuf[i]

27

In all cases u and v range over userId's

Level 2 Level 3

Variables

Hb.OCil,u,vl
H[L[iQl[,S[i],u,v]

H[S~il,v,u,vl
H[S[ilJ-[ib-wl
CCWl,u,vl

H[u,Swbuf[i],u,v]
tl[L[iQl],R[i],u,v]
H[Ubuf[i],v,u,v]
H[W[i],L[i],u,v]
Y(v) @ C[Sw[i],u,v] 0 C[Swbuf[i],u,v) 0 X(u)

Where

x(u) = if u.node=i
then <>
else C[Rci],u,v]

y(v) = if v.node=i
then C[Ubuf[i],u,v]- -
else C[Wbuf[i],u,v]

0 C[W[i],u,v]

Procedures

S[i].send(u,t) Swbuf[i].sendnew(u,t)

S[i].receive(val,u,t) Ubuf[i].receive(val,u,t)

Figure 15. Level 3 Implementation of Level 2 Variables and Procedures

28

process R[i]

var m: message;

begin
{invariant I\ empty(R[i)) }
while true do begin

(invariant * empty(Rb.1) 1
L[iOl].receive(m) ;
{invariant A i in (m.source.node,m.dest.node) A- -

contents(R[i],m) 1
Swbuf[i].send(m);
{invariant A empty(R[i]) 1

end
end

Figure 16. Proof Outline for the Reader Process R[i]

process Sw[i]

var m: message

beg_i_n_
{invariant A empty(Sw[il) 1
while true do begin- -
(invariant A empty(Sw[i]) 1
Swbuf[i].receive(m);
I-invariant A i in [m.source,m.dest] A- -
contents(Sw[iJ, m))

if m.dest.node = v
then Ubuf.send(m).--
else Wbuf.scnd(m)-..-

{invariant A empty(Sw[i]))
e I1 d_-__

end
Figure 17. Proof Outline for the Switch Process Sw[i]

29

process W[i]

var m: message;

begin
{invariant A empty(W[i]))
while true do begin

{invariant A empty(W[i]) 1
wbuf[i].receive(m);
(invariant A i in [n.source.node,m.dest.node] h

contents(W[i],m) 1
L[i].send(m);
{invariant. - A empty(W[il) 1

end
end

Figure 18. Proof Outline for the Writer Process W[i]

30

monitor Swbuf[i]
const bufsize =...
var buf: messagesequence;

nonempty, nonfull: condition;
procedure sendnew(u: userId; t: cstring);

begin
{invariant A sendnewentryl
if length (buf) = bufsize then nonfull.wait;
{invariant A sendnew.entry A length(buf) < bcfsize }
buf := buf 0 <#,u,t>;
H[#,Swbuf[i],#,u] : = H[#,Swbuf[i],#,u] @ <#,u,ti
C[Swbuf[i],#,u] : = C[Swbuf[i],#,u] 0 <#,u,t>
{invariant A sendnew.exit A length(buf) > 0 1
nonempty.signal;
{invariant A sendnew.exit)

end

. - orocedure send(m: message);I---
var u,v: userId;
begin

{invariant A send.entry }
if length(buf) = bufsize then nonfull.wait;
(invariant A i in (m.source.node,m.dest.node]

A #=R[i] A iength(buf)<bufsize }
buf : = buf C' <#,u,t>;
u : = m-source; v := m.dest;
H[#,Swbuf[ij,u,v] := H[;;,Swbuf[i],u,v] @ cm>;

C[#,u,v] := tail(C[H,u,v]);
C[Swbuf[i],u,v] := C[Snbuf[i],u,v] 0 cm>;
{invariant A send.exit A length(buf) > 0)
nonempty.signal
{ i n v a r i a n t A send.exit)

end- -

Figure 13. Proof Outline for the Buffer Monitor Swbuf[i]
(Cont. on next page)

31

procedure receive(var m: message);- -
var u,v: userId;
begin

{invariant A receive.entry)
if length(buf) = 0 then noncmpty.wait;- -
{invariant A #= Swbuf[i] A length(buf) > 0)
m := head(buf); buf: = tail(buf);
u : = m.source; v := m.dest;
H[Swbuf[i],#,u,v] := H[Swbuf[i],#,u,v] @ cm>;

cLf,u,vl := C[#,u,v] @ cm>;
C[Swbuf[i],u,v] := tail(C[Swbuf[i],u,v]);
{invariant h receive.exit A length(buf) < bufsize I
nonfull.signal;
{invariant A receive.exit)

end-- I
begin

buf : = <>
end;

Figure 19. Proof Outline for the Guffer Monitor Swbuf[i]

32

monitor Wbuf[i]
const bufsizc = . .
var buf: messagesequence;

nonempty, nonfull: condition;
procedure send(m: message);

var u,v: userId;
begin

{invariant A send.entry)
if length(buf) = bufsize then nonfull.wait;- -
{ i n v a r i a n t A #=Sw[i] A i in [m.sourcc.node,m.dest.node)

A length(buf) < bufsize 1
buf := buf 0 cm>;
U := m.source; V := m.dest;
H[#,Wbuf[i],u,v]:= H[#,Wbuf[i],u,v] @ cm>
C[#,u,v] : = tail(C(#,u,v])
C[Wbuf[i],u,v] : = C[Wbuf[i],u,v] @ cm>
{invariant A send.exit A length(buf) > 0 }
nonempty.signal;

. - C-invariant A send.exit)
end;

procedure receive(var m: message)- -
var u,v: userId;- -
begin ,

(invariant A receive.entry }
if length(buf) = 0 then nonempty.wait;
{invariant A #-*J[i] A lcngth(buf) > 0)
m := headcbuf); buf := tail(buf);
U := m.source; v := m.dest;
H[Kbuf[i],#,u,v] := H[wbuf[i),#,u,v]
C[#,u,v] := c,[#,U,V] @ cm>
C[Wbuf[i],u,v] := tail(Cbuf[i],u,v]);
{ i n v a r i a n t A reccive.exit A l e n g t h
nonfull.signal
{ i n v a r i a n t A reccive.exit)

end
beyin

buf := <>
end

@ cm>;

(buf) > bufs ize)

Figure 20. Proof Outline for the Buffer Monitor Wbuf[i]

33

monitor Ubuf[i]
var buf: array [localid] of messagesequence;
procedure send(m: message);

var u, v: userId;
begin

{invariant f~ send.entry }
U := m.source; v := m.dest;
buf[v.localId] : = buf[v.localId] Q Km>;
H[#,Ubuf[i],u,v] := H[#,Ubuf[i],u,v] @ cm>;
w,u,v1 := tail(C[#,u,vl);
C[Ubuf[i],u,v] := C[Ubuf[i],u,v] @ cm>;
{invariant A send.exit }

end;
procedure receive (var valid: Boolean; var u: userId; var t: cstring)

var m: message;
begin

(invariant A receive.entry)
if length(buf[#.localId]) = 0
then valid := false
else begin ,- -

m := head(buf[f.localId]);
buf[#.localId] := tail(buf[#.localId]);
U := m.sourck; t := m. text;
valid := true;
H[Ubuf[i],#,u,#] := H[ubuf[i],#,u,#] @ cm>;
C[Ubuf[i],u,#] := tail(C[Ubuf[i],u,#])

end- -
(invariant A receive.exit)

end;
begin

buf := <>
end

Figure 21. Proof Outline for Buffer Monitor Ubuf[i]

34

module L[i]
invariant: Vu,v: user-Id (H[S[i],L[i],u,v] - H[L[i], S[i0l,u,v]

A ((i not in [u.node,v.node)L53)H[S[i],L[i],u,v] -c>))- -

procedures
send(m:message)

#entry: = Sri] A i in- [m.source.node,m.dest.node)
exit: let u = m.source,

= m.dest,
in ;H[#,L[i],u,v] = H'[#,L[i],u,v] 0 Km> h

C[#,u,v] = tail(C'[#,u,v])

receive(var m: message)
entry: # = S[iSl]
exit: let u = m.source- -

v = m.dest
in (i in [u.node,v.node) A

H[L[i],#,u,v] = H'[L[i],#,u,v] 0 cm> I!

C[#,v,v] = C'[#,u,v] @ cm>)

Figure 22. Adapted Specifications of L[i] (for Level 3 Verification)

35

CJ 3 a 3 0 3 d
.

t-+ 0 -s v,

. I I . I

