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Chapter 1

INTRODUCTION

This report is one of two manuals describing a compi-

ler and simulator for DDL-P, a subset of DDL (Digital Design

Language). DDL is a language for describing the behavior o.f

digital systems at the Boolean equation, register transfer,

and algorithmic levels. It uses a finite state machine no-

tation and it may be used to describe systems over a wide

range of levels.

DDL was originally formulated by Duley at the Univer-. -
sity of Wisconsin in 1967 t5, 6, 31. A translator and simu-

lator for a subset of DDL were implemented in FORTRAN 11, 7,

4, 8, 9, 101. In 1971-73, J. Duley, B. Clark, and J. Welsch

implemented an interactive simulation system for a subset of

DDL (with modified syntax) on the HP 2100 system in HP-Algol

at Hewlett-Packard Laboratories. The DDL-P language, compi-

ler, and simulator are based on this HP implementation. In

order to enhance portability the system was rewritten in

PASCAL on the DEC-20 system under the TOPS-20 Operating Sys-

tem at Stanford University. Small changes were made to the
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syntax, mainly to enhance the readability. The system will

still accept the input format of the original HP-Algol ver-

sion.

This report describes the DDL-P subset of the language

as it was implemented at Stanford. Several examples are

given together with instructions for using the compiler on

the LOTS DEC-20 system at Stanford. The appendices contain

a list of the error messages and a formal BNF definition of

the language accepted by the compiler. A companion manual

describes the use of the simulator and its command language

121.
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Chapter 2

CHARACTER SET, IDENTIFIERS, AND CONSTANTS

2.1 CHARACTER SET

;
I letter ::= AlBlClDlEiFlGlHlIlJlKlLlMl
I NlOlPlQlRlSlTlUlVlwlXlYlZl
I alblcldlelflglhliljlklllml
I nlolplqlrlsltlulvlwlxlylz
I
I digit ::= 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9
I

DDL-P uses a subset of the 7-bit ASCII character set,. -
including the letters A-Z,a-z and the digits O-9. Upper and

lower case letters are considered to be equivalent; in the

listing generated by DDL-P, all letters are printed in upper

case. The following non-alphanumeric characters are also

used ("SSR" stands for "state sequencing register"):

Octal Char. Use

042 w Comment delimiter
043 # NOT EQUAL relational operator or SSR marker
044 $ (Optional) end of file marker
050 ( Expression, parameter list, or SSR value

delimiter
051 1 Expression, parameter list, or SSR value

delimiter
052 * AND operator
053 + OR operator

3-



054
055
056

057
072
073
074
075
076
100
133
135
136
137

/

List separator
NOT logical operator
Declaration and conditional terminator
or indicator for left-justification in
constants
State terminator
Label delimiter or value range indicator
Separator in conditionals
LESS THAN relational operator
Immediate transfer action
GREATER THAN relational operator
Set-terminal action, octal constant indicator
Dimension or subscript delimiter
Dimension or subscript delimiter
Case-selecting expression delimiter
Delayed transfer action

In addition to the above symbols, DDL-P uses the fol-

lowing multiple-character special symbols:

Symbol Use

[+I EXCLUSIVE-OR logical operator
(+I Arithmetic addition operator

- (--I Arithmetic subtraction or negation operator
>= GREATER-THAN-OR-EQUAL relational operator
<= LESS-THAN-OR-EQUAL relational operator
(=I EQUALS relational operator
-> Goto or set-next-state action
=> Set-next-state action (save state for RETURN)
<- Delayed transfer action
CASE Conditional operator
DO Conditional separator
ENDCASE Conditional terminator
IF Conditional operator
THEN Conditional separator
ELSE Conditional separator
ENDIF Conditional terminator
END Declaration terminator
CON Concatenation operator
RED Reduction operator
EXT Replication operator
HEAD Head substring operator
TAIL Tail substring operator
TINE Time specification action
INPUT Input action
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OUTPUT Output action
LEVEL Return to higher level state machine
RETURN Set-next-state action (by RETURN)
REGISTER Register declaration header
MEMORY Memory declaration header
TERMINAL Terminal declaration header
OPERATION Operation section header
CONTROL State machine declaration header

All printing characters not mentioned above are illegal

characters and should appear only in comments.

Note that on input, the compiler maps the characters

it \ tt it
P

{ it , it 1 it , it } 0 , tt ~ it , and DEL (ASCII code 177 octal) into

0 a 0 , it [ tt , it \ 1’ , it ] it ) 0 # it , and "/, respectively. For this

reason, avoid the use of w'w, Tt{w, etc.

- 2.2 IDENTIFIERS

r I
I I
I letter-or-digit ::= letter I digit I
I I
I identifier ::= letter 1 II letter-or-digit I*** I
I I

Identifiers in DDL-P are made up of letters and digits.

Upper and lower case letters are equivalent.
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Examples

RegisterName
rEgIsTeRnAmE (equivalent to RegisterName)
Identif iersCanBeVeryLong
mln2

Note that in the last example, "2" would be interpreted

as a subscript if **m1n** were previously declared. This is

discussed in Section 5.1.1.

Identifiers must start with a letter and may be of any

length up to 132 characters. The alphabetic special symbols

listed in Section 2.1 are keywords and may not be used as

identifiers.

Unless otherwise noted in this manual, all identifiers

*declared in DDL-P are global; that is, an identifier may

only be declared once in a DDL-P description.

-6-



2 . 3 CONSTANTS

I
I

I
I

I hex-digit : := digit I A I B I C I D I E I F I
I I
I octal-digit : := 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 I
I I
I quartal-digit ::= 0 I 1 I 2 I 3 I
I I
I bit : := 0 I 1 I
I I
I decimal-constant : := digit 1 I I digit I*** I
I I
I constant ::= decimal-constant I
I I decimal-constant II B 1 II . I II bit I
I { II bit Is** I
I I decimal-constant I I  Q 1 I I  .  1 I
I I I  quartal-digit I
I 1 I I  quartal-digit 3*** I
I I decimal-constant I I 8 1 I I . 3 I
I I I  octal-digit I
I 1 II octal-digit I*** I
I I  decimal-constant I I  D I I  decimal-constant I
I I decimal-constant II H C II . I I

. I- l l  hex-digit I
I 1 II hex-digit I*** I
I I

Every constant in DDL-P has two attributes, its value

and its length in bits. Generally the length of a constant

is given explicitly. The general format for a constant fol-

lows:

- 7 -



Length (in decimal) of constant in bits,
followed by base designator B base 2

Q base 4
a base 8
D base 10
H base 16

optionally followed by *.* denoting left-jkstification,
followed by value (before left-justification)

in appropriate base.

The length of a constant must be in the range

0 < length <= 256.

If a constant is left-justified, then it is truncated

on the right or padded on the right with zeroes to make it

the proper length. Decimal constants may not be left-justi-

fied.

Note that leading zeroes in the left-most digit of a. -
left-justified constant ARE NOT truncated; hence left-justi-

fication does not imply that the most significant bit is set

to one.

If a constant is not left-justified, then it is trun-

cated on the left or extended on the left with zeroes to

make it the proper length.

Examples

Constant Binary representation

6D22 010110
lB1 1
8BlOl 00000101
8B. 101 10100000
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2BlOl 01
2B.101 10
1682321 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1
1181367 0 1 0 1 1 1 1 0 1 1 1
6H3C 111100
lOH.74 0 1 1 1 0 1 0 0 0 0

A decimal constant may be written without the length

specification and base designator 'D', in which case a de-

fault length of 16 is assumed. The value specified must

then be in the range 0 <= value <= 65535.

Examples

Constant Binary representation

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
100 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0
4095 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

. -

2.4 COMMENTS

A comment (any text not containing a iwi) is contained

on one line and enclosed in double quotes iwi:

it This is a valid comment . n

The second double quote may be omitted, in which case

the entire line following the first ioi is treated as a com-

ment:

it This is also a valid comment .

- 9 -



Comments are ignored by DDL-P and may be inserted

freely for documentation anywhere blanks are permitted (see

next section>.

2.5 DDL-P DESCRIPTION FORMAT

A DDL-P description is free-format. Blanks may be in-

serted at will to improve readability, except that blanks

must not be embedded in constants, identifiers, or the mul-

tiple-character special symbols listed in Section 2.1. Com-

ments may also appear anywhere blanks are allowed.

DDL-P expands the non-printing character HT (tab, ASCII

code 011 octal) to blanks; tabs may appear anywhere blanks. -
are permitted, All other non-printing characters (except

DEL, noted in Section 2.1) are ignored.

All lines should be no longer than 132 characters

(AFTER tabs are expanded). DDL-P truncates longer lines.

The end of a line may occur anywhere blanks are allowed.

- 10 -



Chapter 3

DDL-P DESCRIPTION STRUCTURE

i i
I ddl-description ::= declaration {operation-decl} I
I control-decl I$3 I
I I
I declaration ::= register-decl {memory-decl1 I
I {terminal-decl) I
I I memory-decl {terminal-decl1 I
I I terminal-decl I
I I

A DDL-P description in general contains the following

sections in the order given:
. -
Chapter

4 REGISTER declarations \
4 MEMORY declarations 1 at least one of these
6 TERMINAL declarations / must be present
7 OPERATION section - optional
8 CONTROL section

The REGISTER and MEMORY sections contain declarations

of synchronous and asynchronous storage elements, respec-

tively. The terminal section contains declarations of com-

binational networks. The OPERATION section defines data

transfers which may occur, along with optional timing infor-
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mation. The CONTROL section contains the finite state ma-

chine, which controls the use of the physical facilities

previously defined. The dollar sign at the end of the des-

cription is optional.

Each of these sections is presented in turn in the fol-

lowing chapters, with a discussion of Boolean expressions in

chapter 5.
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Chapter 4

REGISTER AND MEMORY DECLARATIONS

DDL-P allows the declaration of synchronous and asynch-

ronous storage elements in REGISTER and MEMORY declarations,

respectively.

4.1 REGISTER DECLARATIONS

I
I register-decl ::= REGISTER register-spec
I { F register-spec I*** .

- I-
I register-spec ::= (#1 identifier

1 [ {constant:} constant] 1
I identifier [ {constant:]  constant F

{constant:} constant I

In DDL-PF registers are storage elements which may be

written either synchronously or asynchronously. The timing

of synchronous vs. asynchronous stores is covered in chap-

ters 7 and 8.
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All registers are declared in a list following the key-

word ‘REGISTER’ and terminated by period ‘.‘. A register

may be a Single flip-flop? or it may be a one- or two-dimen-

sional array of flip-flops.

Example

REGISTER v?c~N,z,R~0:7?l5:0],

In the above example? VF CF NF and 2 are each declared

to be unsubscripted single-bit registers. Register R is a

two-dimensional array of bits logically organized as eight

16-bit words. The bits in each word are labeled

15F14,13,...,1,0. Bit 15 is the most significant bit (MSB).

The 16-bit words of R are labeled 0 through 7.

The declarations of X and Y in the example illustrate

two points:

1. The subscript range need not begin or end with 0

or 1.

2. The subscript range may be either ascending (5:lO)

or descending (200: 100). Note that in register XF

the MSB of each word is bit 5, while in register

YF the MSB is bit 200.

- 14 -



4.1.1 State Sesuencins Resisters

A state sequencing register may be used to encode the

states of the finite state machine defined in the CONTROL

section. A state sequencing register is declared by immedi-

ately preceding the identifier by '#' in the REGISTER decla-

rations. It may not have two dimensions.

Example. -

REGISTER AFBF%SSR[~:O]FC.

Up to seven state sequencing registers may be declared. The

use of state sequencing registers is discussed in chapter 8.

The first number and colon *:* may be omitted from a

subscript r a n g e ? in which case a bound of one is assumed.

Example

"same as 'ARRAY[l:l0?1:201'"
REGISTER ARRAY1 10,201.

- 15 -



4.2 MEMORY DECLARATIONS

I
I

I
I

I memory-decl ::= MEMORY memory-spec I
I 1 F memory-spec I*%* . I
I I
I memory-spec ::= identifier C[ (constant:} constant I} I
I I identifier t {constant:} constant F I
I {constant:} constant I I
I I

Memories in DDL-P are storage elements which may be

written asynchronously only. All memories are declared in a

list following the keyword 'MEMORY' and terminated by period

t t. .

The syntax of the list is identical to that for the re-

‘gister list? with the following exception: State sequencing

registers may not be declared as memories; hence, the symbol

*#' must not appear in the MEMORY declarations.

Example

MEMORY PM[O:1023F15:0],  C[D:511,7:0]F
XF YF H20481.

4.3 MEMORY SIZE LIMITATIONS

The current implementation of DDL-P will support rather

complex s i m u l a t i o n s ? but only with modest memory sizes. The

- 16 -



designer should restrict the total register? m e m o r y ? and

terminal space declared to? say?  50000 bits. (Terminals are

discussed in Chapter 6.1
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Chapter 5

BOOLEAN EXPRESSIONS AND OPERATORS

In DDL-PF a Boolean expression is a string of one or

more bits formed by zero or more operations o n  r e g i s t e r s ?

m e m o r i e s ? t e r m i n a l s ? and/or constants. (Terminals are dis-

cussed in the next chapter.)

First? the syntax for specifying the operands is pre-

sented. Then the operators will be discussed.

. 5-. 1 OPERANDS IN BOOLEAN EXPRESSIONS

i
I term ::= reference
I I INpUT(constant,identifier_ref
I IFidentifier-ref)***)
I I CASE boolean-exp DO boolean-exp
I DO boolean-exp
I 1 DO boolean-exp I*** ENDCASE
I I Cboolean-expt  boolean-exp ; boolean-exp
I 1; boolean-exp}*** .
I I IF boolean-exp THEN boolean-exp
I ELSE boolean-exp ENDIF
I I constant
I I ( boolean-exp 1
I
I reference ::= identifier-ref I terminal-ref
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- 18 -



An operand to which an operator is applied in a Boolean

expression may be an identifier reference? a terminal refer-

e n c e ? an INPUT function? a conditional e x p r e s s i o n ?  a Boolean

expression enclosed in parentheses, or a constant.

5.1.1 Identifier References

I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I

field ::= boolean-exp : boolean-exp

identifier-ref ::= identifier
I identifier I I decimal-constant
I identifier 1 boolean-exp 1
I identifier II decimal-constant

1 boolean-exp 1
I identifier 1 boolean-exp I C boolean-exp 1
I identifier [ boolean-exp F boolean-exp 1
I identifier 1 field 1
I identifier I I decimal-constant I field 1
I identifier I boolean-exp 1 1 field 1
I identifier C boolean-exp F field 1

i
I
I
I
I
I
I
I
I
I
I
i
I
I

1

An identifier reference is a reference to one or more

contiguous bits in a facility? where a ‘facility’ is a re-

gister? m e m o r y ? or terminal. The bits referenced may be

specified by subscripts (Boolean expressions enclosed in

brackets) following the facility identifier. The allowed

kinds of subscripting operations are illustrated by example

- 19 -



below. The examples assume the following declaration:

MEMORY ZERO, ONEI 16~1 IF TWOI 16?0:31 I.

Examples of valid references:

ZERO

Reference to the bit named 'ZERO'. This is the
only allowable type of reference to ZERO; ZERO may
not be subscripted.

ONE171

Reference to the bit labeled 7 in the facility
ONE. Note that 7 is in the allowed range 16:l;
ONE1201 would be an invalid reference? by con-
trast.

ONEflO:6]

Reference to the string of five bits ONE[lO]
through ONE[G] inclusive. The order of the ex-
presssions in the field (increasing or decreasing)
must be the same as in the declaration; e.g.?. - ONE[6:10] is an invalid reference.

ONE

Reference to the entire facility ONE; equivalent
to ONE[16: 11.

TW0[8,17 1

Reference to the bit labeled 17 in the word la-
beled 8 in the facility TWO.

TWO[Sl[ 171

Equivalent to TWO[8,17].

Reference to the string of eight bits TW0[4P161
through T~O[4,23] inclusive.
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TW0[41[ 16:231

Equivalent to TWo[4,16:23].

TW0[151

Reference to the entire word labeled 15 in facil-
ity TWO; equivalent to TWO[ 15?0:31 1.

The above examples show all valid kinds of subscripting

operations. In p a r t i c u l a r ? note that in a Boolean expres-

s i o n ? the identifer for a two-dimensional facility must be

followed by at least one subscript, and this first subscript

must not be a field.

In the above e x a m p l e s ? all subscripts were constants.

In general F however F a subscript may be any valid Boolean

. expression.

When the first subscript following an identifier is a

c o n s t a n t ? then in some cases the subscript, expressed in de-

cimal F may be concatenated to the identifier without being

enclosed in brackets. F o r  e x a m p l e ? ‘ID[n1’ may be written

as ‘IDn’, where ‘n’ denotes a decimal constant. This f ea.-

ture is designed to reduce the need for brackets in compli-

cated Boolean expressions. Its use is subject to two res-

trictions:

- 21 -



1. The identifier name *ID* must not end with a deci-

mal digit. Hence, 'EX3[21' cannot be written as

'EX32'.

2. The identifier 'IDn' must not have been declared.

That is? 'EXAMPLE5' does NOT mean 'EXAMPLE[51' if

'EXAMPLE5' is itself a declared identifier.

Examples (assuming restrictions satisfied)

Reference Equivalent to

ONE8 ONE181
TWO11131 1 TW0[11,311
TWOlG[A:B] TWO[ 16rA:Bl

DDL-P may apply subscript concatenation in unexpected

places. F o r  e x a m p l e ? an identifier *L3* cannot be declared. -
if the identifier 'L' was previously declared. A good rule

is to not declare identifiers of the form *IDn* ('n*=decimal

c o n s t a n t ? 'ID' ends in letter) if 'ID' will also be dec-

lared.

5 . 1 . 2 Terminal References

i ~~ --I
I

I terminal-ref ::= identifier ( boolean-exp I
I {F boolean-exp}s** ) I
I I

- 22 -



Most facility references are of the forms described in

the above section. The exception is the special case of a

terminal reference with an actual-parameter list. The ac-

tual parameters supplied in such a terminal reference are

inputs to the combinational network represented by the ter-

minal. These parameters may be arbitrary Boolean expres-

sions. (Recall that an unsubscripted two-dimensional facil-

ity name is NOT a valid Boolean expression? however.>

Examples

SUM(X[ll:l6Ir  16D2)
PRODucT(7,X)

Note that a terminal reference with a parameter list may not

be subscripted. Terminals are discussed in Chapter 6.

5 . 1 . 3 INPUT Function

The INPUT function is an action discussed in Chapter 7.

Ill Short, it allows for the setting of facilities by the

user from the teletype at simulation-time. When an INPUT

action appears as a function in a Boolean e x p r e s s i o n ? then

the function receives as its value the last number entered

by the user.
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F o r  e x a m p l e ? if the user inputs the value 16D2 for IN-

CREMENT in the expression R(+)INPUT(lFINCREMENT)F then the

expression is equivalent to RW12.

5 . 1 . 4 Conditional Expressions

In a conditional expression? a selector expression ap-

pears along with at least two alternative expressions. Ac-

cording to the value of the Selector expression? one of the

alternative expressions is evaluated and used as the value

of the conditional expression. A conditional expression

CASE select DO expr 1
DO expr 2

. . .
DO expr n-l
DO expr n ENDCASE

is evaluated by

if select=1 then expression value = expr 1
else if select=2 then expression value = expr 2
else . . .
else if select=n-1 then expression value = expr n-l
else expression value = expr n.

Note that expression n above is chosen for select=0 and

for select>=n. Conditional expressions may be nested.

Two other forms of the conditional expression are al-

lowed. The above conditional expression may alternately be

written

- 24 -



t select C expr 1 ;
expr 2 ;
. . .

expr n-l ;
expr n .

(with period terminating the expression). This notation has

the advantage of being compact. A conditional expression

with just two cases may be written

IF select THEN expr 1
ELSE expr 2 ENDIF .

5 . 1 . 5 Other Boolean Expression Operands

An arbitrarily complex Boolean expression enclosed in

parentheses may itself be an operand in another Boolean ex-

pression. The enclosing parentheses may be omitted, in. a
which case the order in which operators are applied is det-

ermined by operator precedence.

Constants may also appear as operands in Boolean ex-

pressions.
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5.2 OPERATOR PRECEDENCE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

. I
I
I
I
I
I
I
I
I
I

boolean-exp ::= minterm { + minterm I***

minterm ::= product C I+1 product 3***

product ::= complement 1 * complement I***

complement ::= I-1 reduction { CON reduction I***

reduction ::= adjustment
I + RED adjustment
I * RED adjustment
I [+I RED adjustment
I (+I RED adjustment

adjustment ::= relation
1 adjustment EXT arithmetic-exp
I adjustment TAIL arithmetic-exp
I adjustment HEAD arithmetic-exp

relation ::= arithmetic-exp
I arithmetic-exp (=I arithmetic-exp
I arithmetic-exp # arithmetic-exp
I arithmetic-exp < arithmetic-exp
I arithmetic-exp > arithmetic-exp
i arithmetic-exp >= arithmetic-exp
I arithmetic-exp <= arithmetic-exp

arithmetic-exp ::= { (-1 } term
I arithmetic-exp (+I term
I arithmetic-exp (-1 term

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

The syntax of Boolean expressions defines a precedence

of operators. Operators with higher precedence are applied

before operators with lower precedence unless a different

order is specified with parentheses. Operators of the same

precedence in an expression are applied left to right; e.g.,
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A EXT B TAIL C HEAD D

is equivalent to

((A EXT B) TAIL C) HEAD D .

The operators are listed below in order of precedence,

highest to lowest. All operators on the same line have the

same precedence. The reduction (RED) operators and '-* are

unary operators. The 'C-1' operator may be either unary or

binary. The remaining operators are binary.

(+I C-1
(=I ff < > <= >=
EXT TAIL HEAD
+ RED * RED [+I RED (+I RED
CON

*
[+I
+

5.3 OPERATORS

The operators are discussed in order of decreasing

precedence, except for the reduction operators, which are

discussed last. Recall that a Boolean expression has two

attributes, its length in bits and its value. Hence, for

each operator, the length of the result, as well as its va-

lue, must be defined. A warning on the detection of nega-

tive results from subtraction appears at the end of this

section.
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In the examples below, the operators are used with con-

stant operands. However, operands can be quite general, as

discussed above in OPERANDS IN BOOLEAN EXPRESSIONS.

5.3.1 Arithmetic Operators

The arithmetic addition operator is tt(+)tt. The two

operands in an addition are considered to be non-negative

binary numbers generating a non-negative sum. If one ope-

rand is shorter than the other, the shorter operand is ex-

tended on the left with zeroes before the addition. The

length of the result is the length of the longer operand

plus one, where the extra bit on the left is the carry out.

. - Examples

lB1 (+I 4B1011 = 5B01100
4Bllll (+I 4Bllll = 5B11110
1Bl (+I 1BO = 2BOl

The arithmetic subtraction operator is “(-)“. As with

addition, the two operands in a subtraction are considered

to be non-negative binary numbers, the operands need not b.e

the same length, and the length of the result is the length

of the longer operand plus one. However, the result of a

subtraction is a tuo’s complement signed binary number, with

a one in the carry out denoting a negative result.
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The H(-)” operator may also be used for unary tuo’s

complement negation, in which case the result length is the

same as that of the operand.

Examples

1Bl C-1 4BlOll = 5BlOllO
4Bllll C-1 4Bllll = 5B00000
lB1 C-1 1BO = 2BOl
1BO C-1 3BllO = 4BlOlO
C-1 3BllO = 3BOlO
C-1 3BOOl = JBlll

5.3.2 Relational Operators

In relational operations, the two operands are consid-

ered to be non-negative binary numbers. The result of the

operations is 1Bl if the indicated relation is true and 1BO. -
otherwise. The two operands need not be the same length.

The relations denoted by the operators are as follow:

(=I equal to
# not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Examples

2BlO > 16Dl = 1Bl
lOD1 # 1Bl = 1BO
8D2 (=I 8D3 = 1BO
1Bl >= 2?S3 = 1BO
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5.3.3 Substrins Operators

The operators "EXT", "TAIL", and "HEAD" access parts of

the first operand or replicate the first operand as indi-

cated by the count given as the second operand. The opera-

tion "ARG EXT n*' concatenates ARG tJith itself n-l times.

The operations "ARG HEAD nw and "ARG TAIL nw yield the most

significant (leftmost) n bits of ARG and the least signifi-

cant n bits of ARG, respectively. A run-time error occurs

if the length of an EXT operation result exceeds 256 bits,

or if the number of bits specified in a HEAD or TAIL opera-

tion is greater than the length of the first operand.

Examples

. -
3BlOl EXT 3 = 9B101101101
8B11010110 HEAD 4 = 4B1101
8811010110 TAIL 2 = 2B10

5.3.4 Concatenation

The "CON" operator concatenates its two operands. The

left operand becomes the most significant (leftmost) portion

of the result. A run-time error occurs if the result is

longer than 256 bits.

Examples

4BllOl CON 6Bl = 10B1101000001
4Bl CON 6B.l = 10B0001100000

- 30 -



5.3.5 One’s ComplemenL

The one’s complement operator “-” complements each bit

of the operand. The length of the result is the same as

that of the operand.

Examples

- 1Bl = 1BO
- 6B110101 = 6B001010
- 10221473 = 10B0011000100

5.3.6 Binary Logical O p e r a t o r s

A binary logical operator performs the indicated bit-

wise logical function on its two operands. If the two ope-

rands are of differing lengths, then a run-time warning is. a

issued and the shorter operand is extended with zeroes be-

fore the operation. The length of the result is the same as

that of the longer operand.

The functions denoted by the operators are as follow:

* Logical AND (highest precedence)
[+I Exclusive OR
+ Inclusive OR (lowest precedence)

Examples

5BlOllO * 5BOOlOl = 5B00100
5BlOllO [+I 5BOOlOl = 5BlOOll
5BlOllO + 5BOOlOl = 5B10111
5BlOllO * 7Blllllll = 7BOOlOllO with warning
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5.3.7 Reduction Operators

Using the bits of its single operand as arguments, a

reduction operator performs the indicated operation n-l

times, where n is the length of the operand. For example,

[+I RED ARG[l:LC]

is equivalent to

ARGl [+I ARG2 [+I ARG3 [+I ARG4 ,

where ARG is singly dimensioned. The result is a single

bit, except in the case of addition, where the result has

length 16.

Examples

+ RED 5BOOOlO = 1Bl
* RED 5Blllll = 1Bl

[+I RED 5BOOlOl = 1BO
(+I RED 5BlllOl = 16B0000000000000100

5.3.8 Warnins on Use of Subtraction

As noted earlier, the result of a subtraction is a

two's complement signed binary number. However, the other

arithmetic and relational operators always consider their

operands to be unsigned non-negative numbers. Hence the ex-

pression

A C-1 B < 0
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does not perform the desired function of detecting a nega-

tive result. In fact, the expression always evaluates as

lB0, since no unsigned number is less than zero. A simple

expression performing the desired function in this case is

A C-1 B HEAD 1 ,

or even simpler,

A<B .

In general, care is required when using arithmetic or

relational operators with negative numbers.
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Chapter 6

TERMINAL DECLARATIONS

I
I

1
I

I terminal-decl ::= TERMINAL terminal-spec I
I 1 , terminal-spec I*** . I
I I
I terminal-spec ::= identifier I
I 1 I {constant:} constant 1 1 I
I I identifier 1 {constant:} constant , I
I (constant:} constant I I
I I  identifier I
I C (identifier C,identifier)*** 1 1 I
I 1 [{constant:} constant] 1 I
I = boolean-exp I
I I

Terminal identifiers are names for the outputs of com-

binational networks, called 'terminals' in DDL-P. All ter-

minals are declared in a list following the keyword

'TERMINAL' and terminated by period '.'.

It is convenient to consider a combinational network in

three parts:

1. OUTPUTS
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2. INPUTS - Constants, registers, memories, and other

terminals

3. FUNCTION - Logical function (combinational circui-

try) mapping inputs to the outputs

When a terminal is declared, the function mapping the inputs

to the outputs may or may not be given. If the function is

given, then the inputs themselves may be completely speci-

fied, or some inputs may be left unspecified; the unspeci-

fied inputs will be given later via a parameter list.

In general, terminals may be one-dimensional. Some

terminals may also be two-dimensional. The syntax for spe-

cifying terminal dimensions is identical to that for giving
. a
the dimensions of registers or memories.

6.1 TERMINALS WITH UNSPECIFIED FUNCTIONS

In the simplest case, terminals are declared without

giving the associated functions. Such terminals may be

singly or doubly subscripted.

Example

TERMINAL A,B,C, "one bit each"
D[ 101, "equivalent to D[l: 10 1”
T[5:161,S[7:0,15:41.
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The values or functions to be associated with these

terminals may be specified in the OPERATION or CONTROL sec-

tion. This will be discussed in chapters 7 and 8.

6.2 TERMINALS WITH SPECIFIED FUNCTIONS AND INPUTS

The function associated with a terminal may be speci-

fied with a Boolean expression in the declaration. Termi-

nals so defined may be singly-subscripted.

Example

TERMINAL SUMXY[l:161= X(+)Y TAIL 16,
YL17= SCORE<17,
NEXTQ= CASE J CON K DO 1BO

DO 1Bl
DO -Q
DO Q ENDCASE ,. a ONE[l:81= 8B00000001.

Any terminals referenced in Boolean expressions in TERMINAL

declarations must be declared prior to their appearance in

the Boolean expressions.

6.3 TERMINALS WITH UNSPECIFIED INPUTS

When a terminal function is specified in the terminal

declaration, some or all of the inputs may not be identi-

fied. These inputs are represented by formal parameters in
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the declaration, where the formal parameters appear in a

list following the terminal identifier. Whenever such a

terminal is referenced, the unspecified inputs must then be

supplied in an actual-parameter list. A terminal with a

formal parameter list may be singly subscripted.

Example

TERMINAL SUMCX,Y)[1:121 = (lODO CON X(+)Y) TAIL 12.

In this example, inputs X and Y are unspecified. A

valid reference to SUM might then be

SUMCIR[2l:321,R[IR[l7:2Oll~  ,

where IR and R are registers. The formal parameters are as-

sumed to be Boolean expressions, but no assumption is made

regarding the lengths of the parameters.. -

Parameter passing is by value. The following restric-

tions apply:

1. Formal parameters may not be subscripted. A sub-

scripting operation may be simulated with HEAD and

TAIL, although this is less efficient than normal

subscripting.

2. A formal parameter may not appear in the INPUT

function.
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Formal parameter names are declared locally to the terminal

definition; the names may be re-declared outside the termi-

nal definition.
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Chapter 7

OPERATION SECTION

As used in this chapter, the term "operation" refers to

a named sequence of actions, where actions may specify data

transfers, sequencing or timing information, or other (pre-

viously defined) operations to be invoked. These named se-

quences of actions are defined in the operations section.

The several possible actions are presented first, fol-

lowed by a discussion of operation definitions.
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7.1 OPERATION ACTIONS

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
action ::= identifier-ref {CON identifier-ref) I

<- boolean-exp
identifier-ref {CON identifier-ref}

= boolean-exp
identifier-ref ij)
INPUT ( constant , identifier-ref

1 P identifier-ref I*** 1
OUTPUT ( constant , reference

1 P reference I*** 1
identifier 1 ( boolean-exp

1 , boolean-exp I*** 1 1
CASE boolean-exp

DO action 1 , action I***
{ DO action { , action I*** I*** ENDCASE

+boolean_exp4
action C , action I***

1 ; action 1 , action Is** I*%* .
IF boolean-exp

THEN action { , action I***
{ ELSE action 1 , action I*** 1 ENDIF

TIME boolean-exp
-> identifier
identifier : action

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7.1.1 Immediate and Delayed Stores

The store actions ((=** and tr<-*T indicate that the Boo-

lean expression on the right hand side is to be evaluated

immediately and its value assigned to or stored in the fa-

cility given on the left hand side. Two facility references

may be concatenated on the left hand side, in which case the
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right hand facility in the concatenation receives the

rightmost bits in the Boolean expression, and the left hand

facility gets the bits to the left. For example,

At1:31 CON B[1:51 = 8B10101100

is equivalent to

A[ 1:31 = 3BlOl , B[1:51 = 5BOllOO .

The length in bits of the facility reference(s) on the

left hand side should be the same as the length of the Boo-

1 ean expression on the right hand side. If these two

lengths differ, then a run-time warning is issued. If the

Boolean expression is too long, then high order (leftmost)

bits will be truncated as necessary. If the Boolean expres-

sion is too short, then high order bits of the destination. a
facility will be LEFT UNCHANGED.

The evaluation of the Boolean expression on the right

occurs exactly once (each time the store action is encoun-

tered); any subsequent changes to operands in the right side

do not cause a re-evaluation and assignment. Consider, for

example, the following sequence where A, B, and R are sin-

gle-bit flip-flops and T is a terminal:

[ R = lB1,
T = R,
A = T,
R = lB0,
B=T1
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The assignment of lB0 to R in the fourth line does not cause

a re-evaluation of T. The value assigned to B is the same

as that assigned to A, namely 1Bl. Even though terminals

were described in Chapter 6

networks, their use (as above)

as representing combinational

may suggest the existence of

additional sequential circuitry, if indeed the DDL-P des-

cription corresponds closely to the hardware design.

The above example should be contrasted with the follow-

ing, in which A, B, R, and T are as before, but the function

associated with T is defined in the TERMINAL section:

MEMORY A, B, R.
TERMINAL T = R.
OPERATION EXAMPLE =

1 R = lB1,
A = T,. - R = lB0,
B = T  I.

In this case, T is re-evaluated each time it is referenced

in the operation. Hence, A is set to lB1, but B is set to

1BO.

This illustrates an important difference between the

specification of a terminal function in the TERMINAL section

and the assignment of a function to a terminal as an action

in an operation. Another important difference is that an

assignment to a terminal made in an operation is not

ent. This will

perman-

be discussed further in the next chapter.
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7.1.1.1 Immediate Store

In an immediate store, denoted by “=‘, the value of the

right hand side is assigned IMMEDIATELY to the facility on

the left hand side. This facility may be any facility (re-

gister, memory, or terminal) EXCEPT a state sequencing re-

gister or a terminal for which a function was already as-

signed in the TERMINAL section.

Examples

T[7:41 = 4D9,
MEM[R[IR[6:8111 = R[IRt9:1111

7.1.1.2 Delayed Store

. a In a delayed store, denoted by “<-“, the right hand

side is evaluated immediately, but the resulting value is

not assigned to the facility until the end of the current

“state”. Subsequent references to the left hand facility

made before the end of the current state will access  the

old, not the new, value of the facility.

This timing will be discussed further in the next chap-

ter; for now it will suffice to understand that the sequence

of actions

AC-B, B<-A
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will effect a swap of facilities A and B. By contrast, the

sequence

A=B, B = A

will not effect a swap9 but is equivalent to **A=B** alone.

The destination in a delayed store must be a register.

Examples

R[NUMl <- MBR,
ACC <- ALUCACC, R[Il, 2)

7 . 1 . 2 Set-Terminal Action

DDL-P provides a shorthand notation for an immediate

store where the left hand side is a terminal of length one

'bit and the right hand side is 1Bl. The action

T = lB1

may be written as

Tii) .

The advantage of this notation, aside from its brevity, is

that it may also appear in the CONTROL section (Chapter 81,

whereas the store actions **=** and **<-** may not.
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7 . 1 . 3 INPUT Action

The INPUT action allows the user to enter facility va-

lues from the teletype at simulation time. The first item

in the list enclosed in parentheses is a device number,

which is ignored for the INPUT action in the current imple-

mentation of DDL-P. The identifier references following the

device number indicate the facilities to be input. Any

valid identifier reference may appear, and the input values

are stored in the facilities immediately.

Examples

INPUT(l,ACC),
INPUT(l,R[ 1 I,T[L:R])

The values entered by the user should have the same. a
lengths in bits as the corresponding facilities being set.

If the lengths do not agree, then the actions taken are the

same as those for a store in which the lengths do not agree

(Section 7.1.1).

The user will be prompted for new values each time the

INPUT action is encountered, even if new values were previ-

ously supplied during the current operation. Each value in-

put will be shown in the listing file.
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7.1.4 OUTPUT Action

The OUTPUT action immediately lists the values of the

indicated facilities either at the teletype (if device num-

ber is zero or one) or in the listing file (if device number

is greater than one). The device number is the first item

in the OUTPUT list; the remaining references indicate the

facilities to be displayed. Any valid facility reference

may appear in this list.

Examples

OUTPUT(1, NUM, R[NUM]L "To teletype"
OUTPUT(2, MAR, MEMIMARI, MBR) "To listing w

7 . 1 . 5 Operation Reference. a

An action may be the name of a previously defined oper-

ation, in which case the sequence of actions appearing in

that definition is executed. If the operation was defined

with formal parameters (Section 7.21, then a corresponding

list of actual parameters (arbitrary Boolean expressions)

must be supplied enclosed in parentheses following the oper-

ation name.

An operation may invoke itself (recursion), but forward

references are not allowed.
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Examples

INITIALIZE,
GETREGCNUM, MEMIADDR])

7 . 1 . 6 Conditional Action

The interpretation of conditional actions is similar to

that of conditional expressions. A selector expression ap-

pears along with one or more lists of actions. According to

the value of the selector expression, one of the lists will

be executed. The action

CASE selector DO list of actions 1
DO list of actions 2

. . .
DO list of actions n-l
DO list of actions n ENDCASE

is executed as

if selector=1 then list of actions 1
else if selector=2 then list of actions 2
else . .
else if selector=n-1  then list of actions n-l
else list of actions n .

The alternative forms for the conditional syntax presented

in Section 5.1.4 may also be used.

A special case occurs when only one list is specified.

In this case, the list is executed only if the selector has

value one; otherwise, the entire action is skipped. A con-

ditional action with just one list may be written
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IF selector THEN list of actions ENDIF

Conditional actions may be nested.

Examples

IF I>8 THEN ACC<-16DO
ELSE R[I]<-16DO ENDIF ,

IF OVFL THEN PC <- EMA ENDIF
CASE NA DO K=B

DO IF FF THEN X=B ELSE Y=-B ENDIF ENDCASE

The last example may also be written using the alternate

form in the following way:

+ NA + K=B i F FF C X=B ; Y=-B . .

7 . 1 . 7 Labels and Gotos

Any action may be preceded by one or more labels (iden-. a
tifiers), each followed by a colon. The course of execution

may then be altered with a goto *'->**. A goto must point to

a label in the same operation definition. Forward referenc-

ing of labels is permitted.

Labels and gotos are useful for specifying loops within

operations.
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Example

"Initialize M[l:lOO,l5:01 to all ones"

ADDR = 8D1,
L: M[ADDRl = lGHFFFF,

ADDR = ADDR(+)l TAIL 8,
IF ADDR <= 100 THEN ->L ENDIF

7 . 1 . 8 S p e c i f i c a t i o nTIME

The designer may specify that a certain action or oper-

ation requires T units of time, where T is an arbitrary Boo-

lean expression, and a "unit of time" is a convenient unit

selected by the designer. This timing is specified by the

action. -
TIME T .

The default length of time assumed is one. All actions in

an operation are considered as occurring in parallel, so the

total length of time required for an operation will be

maximum C times required for each action

executed in the operation 1 .

A TIME of zero should not be given; such an action will be

ignored.
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7.2 OPERATION DEFINITIONS

I 1
I I
I operation-decl ::= OPERATION operation-def 1 .
I 1, operation-def}*** . I
I I
I operation-def ::= identifier I
I ( (identifier {,identifier}*** 1 1 I
I = 1 action C, action}*** 1 I
I I

The OPERATION section consists of a list of operation

definitions. The list is preceded by "OPERATION" and fol-

lowed by period. A simple operation definition gives the

operation name followed by a list of actions enclosed in

brackets. The actions in an operation must form a "compati-

ble set of actions." This term is defined in Chapter 8; ba-1 -
sically, it denotes a group of actions in which illegal sim-

ultaneous stores to a register do not occur.

The operation name may optionally be followed by a for-

mal parameter list enclosed in parentheses. When such an

operation is referenced later, a corresponding list of ac-

tual parameters must be supplied. Parameter passing is by

value. The following restrictions apply to actual and for-

mal parameters:
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1. Actual parameters must be valid Boolean expres-

sions. In particular, an unsubscripted two-dimen-

sional facility name may not be an actual parame-

ter.

2. Formal parameters may not be subscripted. A sub-

scripting operation may be simulated with HEAD and

TAIL, although this is less efficient than normal

subscripting.

3. No assignment of a value may be made to a formal

parameter.

4. Formal parameters may not appear in INPUT or OUT-

PUT lists.

Formal parameter names are declared locally'to the operation

definition; the names may be re-declared outside the opera-

tion definition.

Example

OPERATION
READCADDR) = [MBR=MIADDRI,

M[ADDRl=8DO,
TIME 41,

"ALU is assumed to be a terminal"
ARITHCFCT) = [AcC+ALU(FCT)I,
CLEAR(N) = [ IF N>7 THEN ACC<-8D0

ELSE REG[NI<-8D0  ENDIF 1,
TTYINP = [INPuT(~,ACC)I,
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INIT = [ N=8DO,
L: REG[NI=8DO,

N=N(+)l TAIL 8,
IF N<=7 THEN ->L ENDIF ,
ACC=8DOl,

DOFET = [ADDR=PC, PC<-PC(+)1 TAIL 16,
READCADDR)].
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Chapter 8

CONTROL SECTION

In the preceding chapters, we have seen how to define

the facilities in a system (REGISTER, MEMORY, and TERMINAL

declarations) and how to specify actions which may occur

within the system (OPERATION section). Using this base, we

must now specify the overall behavior of the system. In

DDL-P this is done by describing the system as a finite

state machine in the CONTROL sections.

. -

8.1 THE FINITE STATE MACHINE

i i
I level-decl ::= CONTROL state-def 1 state-def I*** I
I I
I state-def ::= {identifier 1 (constant) 1 :} I
I C state-action 1, state-action}*** 1 / I
I I

In general, a DDL-P description may have more than one

CONTROL section. These sections are called "interpretively

linked machines? For now, however, consider the case where

there is just one CONTROL section, or level.
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A finite state machine consists of one or more states.

A state is an abstract expression of the condition of the

machine, where the condition may be as simple as the con-

tents of a register, or may be far more complex. The finite

state machine is in one state at any given time, and has

rules for determining the outputs and the next state, given

the current state and the inputs.

Hence, the CONTROL section is a list of state defini-

tions, where each state has up to three parts:

1. Optional label (identifier> naming the state.

2. Optional constant, enclosed in parentheses, denot-

ing the value which should be in the state se-. -
quencing register when the system is in this

state. The same value may not be assigned to two

different states.

3. Optional state actions for determining the next

state and the values of facilities when the system

is in this state.

The state actions are separated by commas. Each state de-

finition is terminated by **/**.
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8.2 THE STATE ACTIONS

I
I state-action ::=
I
I I
I I
I I
I I
I I
I
I
I
I I

I I
I
I
I
I I
I

identifier C (boolean-exp {,boolean-expJ***)  3
identifier-ref 3
-> identifier
=> identifier
RETURN
CASE boolean-exp

DO state-action {, state-action}***
{ DO state-action 1, state-action)*** 1x**

ENDCASE
tboolean_expB  state-action &state-action}***

{; state-action
1, state-action}*** I*** .

IF boolean-exp
THEN state-action 1, state-action}***

1 ELSE state-action 1, state-action}*** 1
ENDIF

LEVEL

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8.2.1 Determination & Facility Values

Two state actions exist for modifying facility contents

or functions. One action names an operation, defined in the

OPERATION section, to be executed. The syntax and semantics

of this action are identical to those for the operation re-

ference discussed in Section 7.1.5. The number of actual

parameters in the reference must match the number of formal

parameters in the definition.
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The second action is the set-terminal action, which was

discussed in Section 7.1.2. Its syntax is

identifier-ref ;i ;

it denotes that the named one-bit terminal is to be set im-

mediately to 1Bl.

Examples

"Operation referencesn
READ(ADDR[l:lG]),  ARITH(4BlOll),
CLEAR(4), TTYINP,

"Set terminals to 1Bl"
TZI, BITS[100,121  a), BUS[81 5J

8.2.2 Determination of Next State

The next state may be specified explicitly, implicitly,. -
or by default. Only one next state may be given explicitly

or implicitly, with the exception that two next states may

be specified if exactly one of them was given with a su-

broutine call '*=>?

8.2.2.1 Explicit Next State

The next state may be set explicitly by any of three

actions. The action

-> STATE
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specifies that the name of the next state is "STATE". A

subroutine capability is also provided; the action

=> STATE

will cause the next state to be '*STATE", and the system will

remember where this call was made. When the third action

RETURN

is encountered, then the next state will be the return

state; the return state is the one which would have been the

next state if the original "=> STATE" had been missing. Su-

broutine calls may be nested.

These actions will be illustrated by example in Sec-

tion 8.2.2.4.

8.2.2.2 Implicit Next State

The next state is specified implicitly when the state

sequencing register for this CONTROL declaration is written

by a delayed store “<-‘*. This may occur in an operation in-

voked by a state action, Such a store is equivalent to a

got0 “->” to the corresponding state.
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8.2.2.3 Default Next State

If the next state is not specified explicitly or impli-

citly, then by default the next state is the state following

the current state in the CONTROL declaration. Note that no

default exists for the last state in a CONTROL declaration;

in the last state, a next state must be specified implicitly

or by goto n->" or "RETURN".

8.2.2.4 Example

The following example illustrates the next-state ac-

tions:

REGISTER #SSR[2:01.. - OPERATION SETSSR(N) = [SSR<-N TAIL 31.
CONTROL P(1): ->S/

Q(2): =>T/
R(3): ->P, =>U/
S(4): SETSSR(21, =>V/
T(5): /
U(6): SETSSR(O)/
v : =>x/
W(O): RETURN/
X(71: RETURN, =>W/.

State sequence for this example:

System starts in first state, P.

*****STATE=P, SSR=3Dl, RETURN STATE STACK IS EMPTY.

Next state is S by goto **->“.

*****STATE=S, SSR=3D4, RETURN STATE STACK IS EMPTY.
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If "=>V" were missing, then "SETSSR(2)" would imply
next state is Q. State Q goes on return state stack, and
next state is V. State V has no SSR value specified, so SSR
is left equal to the value set in state S. If state V did
have an SSR value given, then it would override the value
supplied in state S.

*****STATE=V, SSR=3D2, RETURN STATE STACK = Q.

A nested call. If "=>X" were missing, then next state
would be W by default.

*s***STATE=X, SSR=3D7, RETURN STATE STACK = Q,W.

If w=>Ww were missing, then next state would be W by
RETURN. State W is popped off the stack by RETURN, but then
pushed back on the stack by "=>W".

*****STATE=W, SSR=3DO, RETURN STATE STACK = Q,W.

Next state is W by RETURN.

*****STATE=W, SSR=3DO, RETURN STATE STACK = Q.
. -

Next state is Q by RETURN.

*****STATE=Q, SSR=3D2, RETURN STATE STACK IS EMPTY.

If "=>T" were missing, then next state would be R by
default.

*****STATE=T, SSR=3D5, RETURN STATE STACK = R.

Next state is U by default.

*****STATE=U, SSR=3D6, RETURN STATE STACK = R.

"SETSSR(0)" implies next state is W.

*****STATE=W, SSR=3DO, RETURN STATE STACK = R.
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Next state is R by RETURN.

*****STATE=R, SSR=3D3, RETURN STATE STACK IS EMPTY.

If "=>U" were missing, then next state would be P by
got0 "-".

*****STATE=U, SSR=3D6, RETURN STATE STACK = P.

"SETSSR(O)" implies next state is W.

*"***STATE=W, SSR=3DO, RETURN STATE STACK = P.

Next state is P by RETURN. This completes the cycle.

*****STATE=P, SSR=3Dl, RETURN STATE STACK IS EMPTY.

8.2.3 Other State Actions

The conditional state action looks and behaves like the

conditional action discussed in Section 7.1.6. According to

the value of a selector expression, one of several lists of

actions is executed. The action

CASE selector DO list of state actions 1
DO list of state actions 2

DO list of state actions n-l
DO list of state actions n
ENDCASE

is executed as
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if selector=1 then list of state actions 1
else if selector=2 then list of state actions 2
else . . .
else if selector=n-1 then list of state actions n-l
else list of state actions n .

In the special case where only one list of actions is

specified, the list is executed only if the selector has va-

lue one; otherwise, the entire state action is skipped.

Conditional state actions may be nested.

Example

IF SCORE<17
THEN ->B
ELSE IF SCORE<22 THEN ->JK

ELSE IF FF THEN ->D ENDIF,
KFF, TMT

ENDIF
ENDIF

1 - The last state action is LEVEL. This is mentioned here

for completeness only. LEVEL will be discussed in Sec-

tion 8.4.

8.3 TIMING CONSIDERATIONS

8.3.1 Timinq -of Immediate and Delayed Stores

As the simulation of a state is carried out, store or

input actions may be encountered. The timing for such ac-

tions is as follows:

- 61 -



1. If a store action o)=w, "<-,,, or ll;i,w) is encoun-

tered, the right hand side is evaluated immedi-

ately. This evaluation occurs just once9 as dis-

cussed in Section 7.1.1. If an INPUT action is

encountered, the input value is requested immedi-

ately.

2. In the case of an immediate store Cw=" or "?i)") or

INPUT action, the new value is stored in or as-

signed to the specified facility immediately. In

the case of a delayed store to a register ("<-"1,

the new value is not stored immediately, but is

saved in a temporary buffer.

. - 3. At the end of the state, the simulator checks to

see if it should halt the simulation or do any

I/O. This occurs BEFORE the new register values

specified in delayed stores are stored. Hence,

any register values accessed or output by the si-

mulator at this time are still old values.

4. When the simulation continues, the new values

given in delayed stores are stored in the regis-

ters. At the same time, any terminals which were

set are cleared to zero. Hence, any assignment to
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a terminal is temporary and lasts (at most) until

the end of the current state.

5. After the registers have been updated and the ter-

minals cleared, the simulator begins simulation of

the next state.

This timing is illustrated by the following example

with waveforms:

Example

REGISTER A,B,R,S.
MEMORY M.
TERMINAL T.
OPERATION

SWAP = [AC-B, B+AI,
AIMM(X) = tA=X], BIMM(X) = tB=Xl,
RIMMCX) = [R=XI,
SIMM(X) = [S=Xl, SDEL(X) = [SC-Xl,
MIMMCX) = [M=Xl,
TIMMtX) = [T=Xl.

CONTROL
INIT: AIMMClBO), BIMM(lB11, RIMM(lBO),

SIMMCIBO), MIMM(lBl), TIMM(lBO)t ->P/
P : SWAP, RIMM(lBl), SDELClBl),

MIMMCS), T ii), ->Q/
Q : MIMMClBl), ->Q/.
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W A V E F O R M S

1 .
A .

0 .. *
. .
. .

1 .
B .

0 I.

. .
1 . .

R . .
0 A. .

1
S .

0 1.
. .

1 . .
M . .

0 . .
. .

1 . 1
T .

0 1 i. .

STATE INIT STATE P STATE Q

Note that the value assigned to M in state P is
lB0, the "old" value of S, even though the delayed
store to S has already been encountered. The va-
lue assigned to S is stored at the beginning of
state Q. Also, terminal T is cleared before the
start of state Q. Finally, note how the swapping
of values of A and B occurs.

During the simulation, once a delayed store to a regis-

ter is specified, any further stores to the same bits during
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the same state will cause a “SIMULTANEOUS STORE” warning

message to be issued and the previously specified delayed

store canceled. Such an error indicates an illegal attempt

to simultaneously store multiple values into the same regis-

ter. A set of actions in which such errors do not occur is

called a “compatible set of actions.”

8.3.2 Timins of Operations and States

All the operations in a state are considered as occur-

ring in parallel. Furthermore, all the actions in an opera-

tion occur in parallel. Hence, the time required for a

state is just the time required for the longest action in-

* v-oked by the state. This time is one by default and may be

increased by the TIME action. Note that the times required

for the actions in a state may vary widely, but ALL the ac-

tions will be completed before the system moves to the next

state, even if this in some sense implies that a large por-

tion of the system is “id1e” much of the time.

The designer may specify that the actions in a state

occur sequentially, rather than in parallel, by splitting

the state into a sequence of states. This idea is illus-

trated in the example below.
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Example

REGISTER A[ 101, B[ 101, OVERFLOW.
MEMORY MEM[ 1024,101.
OPERATION ADD = [OVERFLOW CON A <- A(+)BI,

STORE = [MEM[A] + A, TIME 21.

In the above specification, one unit of time is implied

for operation ADD while two units of time are specified for

STORE. If the two operations are executed in parallel in

one state,

ADD, STORE/ ,

then the time required for the operations is two units. The

designer may alternately specify that ADD and STORE are exe-

cuted sequentially by breaking the state into a sequence of

two states, as in
. - ADD/ STORE/ .

This sequence will take three units of time.

Note that the choice of parallel vs. sequential execu-

tion will have a marked effect on system operation. In the

example above, suppose that A and B originally contained

lOD5 and lOD10, respectively. Then in the first case, oper-

ation STORE accesses the old value of A and stores lOD5 in

MEMi51, while in the second case, STORE accesses the new va-

lue of A and stores lOD15 in MEM[151.
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The technique of splitting states can be used in the

description of a system with a multi-phase clock. Each

clock cycle may be specified as a sequence of states, where

each state represents one phase, as suggested below:

CONTROL
it PHASE 1 PHASE 2 . . . PHASE I"

STATEI: ACTS111 ACTS12/ . . . / ACTS111
STATE2: ACTS211 ACTS22/ . . . / ACTS21/

. . .
STATEN: ACTSNl/ ACTSN21 . . . / ACTSNIl.

Alternately, a designer may describe a system with a multi-

phase clock as two interpretively linked machines (next sec-

tion); a state in the higher level machine would correspond

to one clock cycle, while a state in the lower level machine

would correspond to one phase. This illustrates the freedom

the designer has in choosing the level of detail and the. -
significance of a "state" in a DDL-P description.

8.4 INTERPRETIVELY LINKED MACHINES

I control-decl ::= level-decl C level-decl I*** . I
I I

In general, a DDL-P description may have several (up to

seven) CONTROL sections. Each CONTROL section defines a
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complete finite state machine. The several machines have a

hierarchical relationship; the first machine defined is at

the highest or top level, level 1. The succeeding machines

are at level 2, level 3, etc.

The higher level machines are typically control ma-

chines which set terminals serving as control lines. The

lower level machines test these terminals and "interpret"

them, executing the indicated functions. Hence, the ma-

chines are said to be "interpretively linked machines?

During the simulation, control must pass from state ma-

chine to state machine in some orderly fashion. The LEVEL

action aids in this process. When the state action
. - LEVEL

is encountered in a machine, then control will pass to the

next higher level machine at the end of the current state,

AFTER the new values of registers changed at this level have

been stored, AFTER terminals set at this level have been

cleared, and BEFORE simulation of the next state at this

level begins. A LEVEL in the top level machine is ignored.

Conversely, control will pass unconditionally to the

next lower level machine, if such a level exists, at the end

of the current state, AFTER all actions in the current state
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have been executed, BEFORE the new values of registers

changed at this level have been stored, and BEFORE terminals

set at this level have been cleared.

Simulation always begins in the level 1 machine. BY

default, the very first state to be executed at each level

will be the first state in the corresponding level declara-

tion, although the designer may specify different starting

states on each level at simulation time. The simulation of

the finite state machine at level i (call it machine(i))

will then proceed as follows:

1. If a higher level machine exists (if i>lL then

machineci-1) passes control to machine(i) at the

. - end of a level i-l state.

2. The simulator executes the actions for the next

state in machine(i) (where the next state was pre-

viously determined). It completes immediate

stores while saving delayed-store values as dis-

cussed in Section 8.3.1. The simulator also det-

ermines the next state for machine(i).

3. At the end of this state (but BEFORE register va-

lues are stored), machine(i) passes control to ma-
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chine(i+l>. If there is no such machine, then the

simulator checks to see if it should halt or do

any I/O. (These actions are requested by the de-

signer at simulation time; see DDL-P Command Lan-

quaqe Manual.) Note that register values accessed

by lower level machines will not reflect changes

by delayed stores at level-i in the previous

state, the new values not yet having been stored.

4. When control is returned to machine(i) from ma-

chine(i+l) or from simulator I/O activity, then

machine(i) stores the new register values given in

the previous level-i state, also clearing termi-

nals that were set in that state.

5. If a LEVEL command was not encountered in the pre-

vious level-i state, then machine(i) proceeds with

the execution of the next level-i state. Other-

wise, machine(i) passes control to machineti-1).

In the latter case, machine(i) remembers what the

next level-i state will be when control is re-

turned from machineti-1).

The system is considered as being in one state in each

machine at any given time. The "total state" of the system
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is then a list of states, with one state from each machine.

An example of a three-level control declaration is given be-

lOW, followed by a description of the simulation of state A.

The simulation begins at level 1 in “total state” A:C:E,

CONTROL A: OPA, ->B/
B: OPB, ->A/

CONTROL C: OPC, ->D/
D: OPD, ->C, LEVEL/

CONTROL E: OPE, ->F/
F: OPF, LEVEL, ->E/.

Execution of State A

TOTAL STATE
A:C:E: Start at level 1 in total state A:C:E.
A:C:E: Execute OPA, next machine(l) state will be B.
A:C:E: Drop to level 2.

A:C:E: Execute OPC, next machine(2) state will be D.
A:C:E: Drop to level 3.

A:C:E: Execute OPE, next machine(3) state will be F.
* A-:C:E: Check for simulator I/O or halt.
A:C:E: Store registers, clear terminals from OPE.
A:C:F: Execute OPF, next machine(3) state will be E.
A:C:F: Check for simulator I/O or halt.
A:C:F: Store registers, clear terminals from OPF.
A:C:E: Rise to level 2.

A:C:E: Store registers, clear terminals from OPC.
A:D:E: Execute OPD, next machine(2) state will be C.
A:D:E: Drop to level 3.

A:D:E: Execute OPE, next machine(3) state will be F.
A:D:E: Check for simulator I/O or halt.
A:D:E: Store registers, clear terminals from OPE.
A:D:F: Execute OPF, next machine(3) state will be E.
A:D:F: Check for simulator I/O or halt.
A:D:F: Store registers, clear terminals from OPF.
A:D:E: Rise to level 2.

A:D:E: Store registers, clear terminals from OPD.
A:C:E: Rise to level 1.
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A:C:E: Store registers, clear terminals from OPA,
completing simulation of state A. Simulation of
state B will proceed in similar fashion.

State Sesuencins Reqisters. Each finite state machine

may have its own state sequencing register (S.S.R.1. The

first S.S.R. declared is associated with the highest level

machine, the second S.S.R. declared is associated with the

level-2 machine, etc.

Restrictions. The following restrictions apply in the

specification of multiple-level control declarations:

1 . A finite state machine should not modify the state

sequencing register for a lower level machine.

For example, the machine at level 2 should not mo-. -
dify the S.S.R. for level 3.

2. All state gotos **->** a n d subroutine calls i' -- > "

must point to states within the same finite state

machine. It is not possible, for example, to use

one group of states as a subroutine in two differ-

ent finite state machines. The following is not

permitted:

CONTROL A: ->C/ "(,- ERROR"
B: ->A/

CONTROL C: ->B/. "<-- ERROR"
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3. The LEVEL action should not appear in a state

which is in a subroutine or which contains a su-

broutine call "=>". If this rule is violated, un-

predictable simulator errors may occur.

. -
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Chapter 9

EXAMPLES

Five complete DDL-P descriptions are now presented with

brief discussions.

The first machine plays Blackjack by dealer's rules,

accepting cards until its score exceeds 16, and counting the

first Ace as eleven unless that causes its score to exceed

21. The machine shows its status in terminals HIT, STAND,

and BROKE. Card values are entered through terminal VALUE,

and YCRD is a "card ready" strobe.. -
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Example 1

ii B L A C K J A C K M A C H  I  N E . "
REGISTER SCORE151, CARDBUF[51, FF.
TERMINAL HIT, BROKE, STAND,

VALUE[1:51 = INPUT(l,VALUE),
YCRD = INPUT(l,YCRD),
YL17 = SCORE(17, YL22 = SCORE<22,
NACE = CARDBUF#l.

OPERATION
TPT = ~CARDBUF <- 5~101,
TMT = [CARDBUF <- 5~223,
TVC = [CARDBUF + VALUE],
IHIT = [HIT=~B~],
ISTD = [sTAND=~B~I, IBRK = [BRoKE=~BII,
CLS = [SCORE + 5~01,
ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL  51,
KFF = [FF<-lDO1,  JFF = [FF <- 1~1 1 .

CONTROL
A:
B:

c:
D:

E:. - F:
G:
H:

J:

K:

CLS, KFF, ->B/
IHIT, TVC,
IF YCRD THEN ->C ELSE ->B ENDIF/
IF YCRD THEN ->C ELSE ->D ENDIF/
ADD, IF NACE+FF THEN -3F

ELSE ->E ENDIF/
JFF, TPT, ->D/
IF YL17 THEN ->B ELSE ->G ENDIF/
IF YL22 THEN ->K ELSE ->H ENDIF/
KFF, TMT,
IF FF THEN ->D ELSE ->J ENDIFI
IBRK,
IF YCRD THEN ->A ELSE ->J ENDIF/
ISTD,
IF YCRD THEN ->A ELSE ->K ENDIF/.$

The second machine is identical to the first except

that states F, G, H, J, and K have been combined into two

states, F and JK. This example shows nested conditional

state actions, and also suggests the flexibility possible in

describing a system as a finite state machine.
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Example 2

ii B L A C K J A C K M A C H I N E . "
REGISTER SCORE[51, CARDBUF[5], FF.
TERMINAL HIT, BROKE, STAND,

VALUE[l:51 = INPUT(l,VALUE),
YCRD = INPUT(l,YCRD),
YL17 = SCORE(17, YL22 = SCORE<22,
NACE = CARDBUF#l.

OPERATION
TPT = [CARDBUF <- 5~101,
TMT = ~C~WWJF + 5D221,
TVC = [CARDBUF <- VALUE],
IHIT = [HIT=~B~ I,
ISTD = [sTAND=~B~I, IBRK = [BROKE=~B~I,
CLS = [SCORE + 51101,
ADD=[SCORE +(SCORE(+)CARDBUF)TAIL  51,
KFF = [FF<-IDO], JFF = [FF <- lD1 1 .

CONTROL
A: CLS, KFF, ->B/
B: IHIT, TVC, IF YCRD THEN ->C ELSE ->B ENDIF/
c: IF YCRD THEN ->C ELSE ->D ENDIF/
D: ADD, IF NACE+FF THEN ->F ELSE ->E ENDIF/
E: JFF, TPT, ->D/
F: IF YL17 THEN ->B

ELSE IF YL22 THEN ->JK
ELSE IF FF THEN ->D ENDIF,

KFF, TMT
ENDIF ENDIF/

JK: IF YL22 THEN ISTD ELSE IBRK ENDIF,
IF YCRD THEN ->A ELSE ->JK ENDIF/.$

The third machine is functionally equivalent to the

first two, but its state is encoded in a state sequencing

register Q consisting of three J-K flip-flops. The charac-

teristic functions and input equations for register Q are

given in operation NS. The next state in this machine is

then implied by the results of operation NS.
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Note the heavy use of subscript concatenation (e.g.,

nQl”) in operation NS.

Example 3

0 B L A C K J A C K M A C H  I  N E . "
REGISTER SCORE[51, CARDBUFi51, FF, # Q[3:11.
TERMINAL HIT, BROKE, STAND, TMP,

J[3:11, K[3:11,
VALUE[l:51 = INPUT(l,VALUE),
YCRD = INPUT(l,YCRD),
YL17 = SCORE<17, YL22 = SCORE<22,
NACE = CARDBUF#l.

OPERATION
Ns = [TMP = YCRD,

Jl= -Q3*(FF+NACE)+-Q2*-Q3,
Kl= Q2*-Q3*-TMP + -Q2*Q3 + Q3*-YL17*YL22,
Ql<- CASE Jl CON Kl DO 1DO DO 1Dl

DO -81 DO Ql ENDCASE,
J2= Ql*Q3*FF + Ql*-Q3*TMP,
K2= Ql*Q3,
Q2<- CASE 52 CON K2 DO 1DO DO lD1

DO -Q2 DO Q2 ENDCASE,
J3= -Ql*Q2,
K3= 33 + -Ql*TMP + Q2*YL17 + Ql*-Q2*FF,
Q3<- CASE 53 CON K3 DO 1DO DO 1Dl

DO -Q3 DO Q3 ENDCASE],
TPT = ~CARDBUF + 5~101,
TMT = [CARDBUF + 513223,
TVC = [CARDBUF + VALUE],
IHIT = [HIT=~B~],
ISTD = [sTAND=~B~I, IBRK = [BRoKE=~BII,
CLS = ls~0RE <- 5~01,
ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL  51,
KFF = [FF<-lDO1, JFF = [FF <- 1~1 1 p

CONTROL
A(O): CLS, KFF, NS/
B(1): IHIT, TVC, NS/
C(3): NS/
D(2): ADD, NS/
E(6): TPT, JFF, NS/
FG(7): NS/
H(5): TMT, KFF, NS/
JK(4): IF YL22 THEN ISTD ELSE IBRK ENDIF, NS/.$
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The fourth example has two finite state machines. The

top level machine simply sets terminals which are inter-

preted by the lower level machine. On receipt of a signal

START, the system computes the sum of the 256 words of MEM.

Note the destructive-read/restore sequence simulated by the

lower level machine.

Example 4

W EXAMPLE OF INTERPRETIVELY LINKED MACHINE W
REGISTER At 161, B[161, ADDR[81.
MEMORY MEM[O:255, 161.
TERMINAL YCLR, YINC, YADD, YREAD,

NDONE = ADDR # 255,
START = INPUT (1, START).

OPERATION CLEAR = [A <- 16D0, ADDR <- 8D01,
INC = [ADDR + ADDR(+)8Dl TAIL 81,
ADD = [A <- A(+)B TAIL 161,
READ = tB <- MEMtADDR1,

MEMiADDR1 = 16D01,. - RESTORE = [MEM[ADDR] = Bl.
CONTROL

Pl: IF START THEN YCLR ZiI, YREAD B, ->P2
ELSE ->Pl ENDIF/

P2: YADD ii],
IF NDONE THEN YINC ii), YREAD a, ->P2

ELSE ->Pl ENDIF/
CONTROL

Ql: IF YINC THEN INC ENDIF,
IF YCLR THEN CLEAR ENDIF,
IF YADD THEN ADD ENDIF,
IF YREAD THEN ->Q2

ELSE ->Ql, LEVEL ENDIF/
Q2: READ, ->Q3/
Q3: RESTORE, LEVEL, ->Ql/.$
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The last example shows terminals and operations with

parameters. The concatenation in terminals SUM and AND en-

sures that the results are at least 16 bits long, even for

short operands. Note that the actual parameters may be of

varying lengths, and the formal parameters of EXM may be

used as the actual parameters of SUM and AND.

Example 5

MEMORY Rt1:161.
TERMINAL Sl[1:21=INPUT(l,Sl),

S2[1:21=INPUT(l,S2),
Llt1:121=INPUT(l,Ll),
L2[1:121=INPUT(l,L2),
SUM(Al,A2)[1:161=(16DO  CON (Al(+)A2)) TAIL 16,
AND(Al,B2)[1:161=(16DO  CON (Al * B2)) TAIL 16.

OPERATION EXM(X,Y)=[
R=SUM(X,Y), OUTPUT(l,R),
R=AND(X,Y), OUTPUT(l,R) 1.

CONTROL Q:EXM(Sl,S2),EXM(Ll,L2),->Q/.$
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Chapter 10

HOW TO RUN DDL-P

The procedure for using DDL-P should be roughly the

same on any TOPS-20 installation; only the file names sho'lld

differ. The procedure described below for Stanford LOTS is

typical.

1. Prepare the DDL-P description. The file contain-
ing the description may have any valid file name
with the following restrictions:

i) The file name (excluding extension) must
have no more than six characters.

ii> The extension must have no more than three
characters.

2. Type the RUN command for DDL-P. At Stanford LOTS,
the command is

?9<sources.ddl>ddl  .

3. DDL-P will prompt for INPUT and OUTPUT file names.
If a directory specification is to be supplied
with a file name, then it must be in the form of a
PPN in brackets following the file name, e.g.,

DESC.DDL[4,524]
The INPUT file is the DDL-P description. A list-
ing is written to the OUTPUT file; also, any simu-
lation-time disk output goes to the same file.

4. DDL-P will now ask for a third file name,
"DDLINI = ". At Stanford LOTS, respond with the
file name

DDL,INI[4,1550] .
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5. After prompting for the above file names, DDL-P
will type

TO CONTINUE, HIT THE RETURN KEY *
and wait for a line of input. Just press <RETURN>
to get started.

6. If there are no fatal errors, DDL-P will request
the radix to be used for all output. Choose base
2, 4, 8, 10, or 16.

7. The **>** prompt will be printed indicating readi-
ness to accept simulation commands. Use of the
DDL-P Simulator is described in DDL-P Command Lan-
quaqe Manual [2].
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Chapter 11

SAMPLE COMPILER OUTPUT

The listings generated by the DDL-P compiler for two

examples from Chapter 9 are shown on the next two pages.

SIMADDR is an internal location counter; the values of SI-

MADDR included in the listing are useful for pinpointing the

places where simulation errors occur.
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SIMADDR

0

9
18
30
37

41
45
50
54
62
66
76
8 4
86
96

100
120
140
151
165

. - 175
195
215
219
239
241
261
263

00100 " B L A C K J A C K M A C H 1  N E . "
00200 REGISTER SCORE[!il, CARDBUFt51, FF.
00300 TERMINAL HIT, BROKE, STAND,
00400 VALUE[l:5] = INPUT(l,VALUE),
00500 YCRD = INPUT(l,YCRD),
00600 YL17 = SCOREc17, YL22 = SCORE<22, ,
00700 NACE = CARDBUF#l.
00800 OPERATION
00900 TPT = [CARDBUF <- 5~101,
01000 TMT = [CARDBUF <- 5~221,
01100 TVC = [cARDBUF <- VALUE],
01200 IHIT = [H1~=1Bil,
01300 ISTD = [STAND=~BII, IBRK = [BROKE=~B~I,
01400 CLS = [SCORE <- 5~01,
01500 ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL  51,
01600 KFF = [FF<-~DOI,  JFF = IFF <- 1~1 I .
01700 CONTROL
01800
01900
02000
02100
02200
02300
02400
02500
02600
02700
02800
02900
03000
03100
03200

A: CLS, KFF, ->B/
B: IHIT, TVC,

c:
D:

E:
F:
G:
H:

J:

K:

END OF TRANSLATION,

MEMORY USE:
ZSY: 31 OUT OF
ZST: 26 OUT OF
ZI: 413 OUT OF
zc: 91 OUT OF
ZB: 107 OUT OF

IF YCRD THEN ->C ELSE ->B ENDIF/
IF YCRD THEN ->C ELSE ->D ENDIF/
ADD, IF NACE+FF THEN ->F

ELSE ->E ENDIF/
JFF, TPT, ->D/
IF YL17 THEN ->B ELSE ->G ENDIF/
IF YL22 THEN ->K ELSE ->H ENDIF/
KFF, TMT,
IF FF THEN ->D ELSE ->J ENDIF/
IBRK,
IF YCRD THEN ->A ELSE ->J ENDIF/
ISTD,
IF YCRD THEN ->A ELSE ->K ENDIF/.$

0 FATAL ERROR(S).

1001 SYMBOL TABLE ENTRIES
5000 STRING POINTERS

22001 WORDS
4650 CHARACTERS

71229 BITS
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SIMADDR

0

6
16
23
32
42
48
54
61
63
7 5
89
92

104
118
121
132
143
154
160

. - 175
183

00100 " EXAMPLE OF INTERPRETIVELY LINKED MACHINE w
00200 REGISTER A[161, B[161, ADDRL81.
00300 MEMORY MEM[O:255, 161.
00400 TERMINAL YCLR, YINC, YADD, YREAD,
00500 NDONE = ADDR # 255,
00600 START = INPUT (1, START).
00700 OPERATION CLEAR = [A <- 16D0, ADDR <- 8D01,
00800 INC = [ADDR <- ADDR(+)8Dl TAIL 81,
00900 ADD = [A <- A(+)B TAIL 161,
01000 READ = [B <- MEMiADDR1,
01100 MEM[ADDR1 = 16D01,
01200 RESTORE = [MEMIADDRI = B1.
01300 CONTROL
01400 Pl: IF START THEN YCLR a, YREAD 8, ->P2
01500 ELSE ->Pl ENDIF/
01600 P2: YADD a,
01700 IF NDONE THEN YINC 'jl, YREAD 3, ->P2
01800 ELSE ->Pl ENDIF/
01900 CONTROL
02000 Ql: IF YINC THEN INC ENDIF,
02100 IF YCLR THEN CLEAR ENDIF,
02200 IF YADD THEN ADD ENDIF,
02300 IF YREAD THEN ->Q2
02400 ELSE ->Ql, LEVEL ENDIF/
02500 82: READ, ->Q3/
02600 Q3: RESTORE, LEVEL, ->Ql/.$

END OF TRANSLATION, 0 FATAL ERROR(S).

MEMORY USE:
ZSY: 20 OUT OF 1001 SYMBOL TABLE ENTRIES
ZST: 277 OUT OF 5000 STRING POINTERS
ZI: 322 OUT OF 22001 WORDS
zc: 68 OUT OF 4650 CHARACTERS
ZB: 4238 OUT OF '71229 BITS
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Appendix A

ERROR MESSAGES

The error messages issued by the DDL-P compiler are

listed below, along with their severity codes. When the

compiler detects errors in the DDL-P description, DDL-P

lists the appropriate error message both at the teletype and

in the listing file.

DDL-P will halt compilation immediately if an error of

severity ABORT appears. Such an error occurs when DDL-P

* runs out of memory. If FATAL errors are detected, the com-

pilation will proceed to completion, but simulation will not

be allowed. If the most severe errors are WARNINGS, then

simulation will be allowed.

A brief discussion of a few of the errors follows the

list.

fatal
warning
warning
fatal
fatal
fatal
fatal
fatal

Syntax error
Illegal character
Input line longer than 132 characters
Constant too large
Illegal number length spec. (zero or >256)
Decimal number may not be left-justified
Illegal char. or digit of wrong radix in no.
Digit is of improper radix
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warning
fatal
fatal
fatal
f a t a l
fatal
fatal
warning
f a t a l
f a t a l
fatal
f a t a l
fatal
f a t a l
fatal
fatal
fatal
f a t a l
f a t a l
fatal
fatal
fatal
f a t a l
fatal
f a t a l
fatal

* fatal
fatal
fatal
fatal
fatal
fatal
warning
warning
fatal
fatal
fatal
f a t a l
fatal
fatal
fatal
f a t a l
fatal
fatal
fatal
fatal
fatal
fatal

” E N D ” not expected here
” T H E N ” not expected here
” E L S E ” not expected here
“ENDIF” not expected here
‘1 D 0 11 not expected here
‘ENDCASE” not expected here
11 >*” not expected here
11 11. not expected here
Undeclared identifier
Multiply-defined identifier
Too many dimensions (just 2 allowed)
This identifier may not be subscripted
Two-dimensional array requires subscript
This identifier may only have 1 subscript
Field can’t be used to denote range of words
Subscripting nested too deeply (>lO levels)
Improper field or access to non-existent bits
Too many dimensions 02) or invalid field
Formal parameter subscripted
Predef ined terminal subscripted
More than 63 arguments
Missing argument list
Wrong number of arguments
This identifier may not have arguments
This identifier not allowed in expression
Operation identifier not allowed in expr.
Output operation not allowed in expression
Need >l case in conditional expression
Constants required in field in declaration
State sequencing register too big’
State sequencing reg. can’t have 2 dimensions
Predefined terminal may not have 2 dimensions
Delayed store will be changed to immediate
Immediate store will be changed to delayed
More than two-part concatenation
Formal parameter may not appear in I/O list
Operation identifier not allowed in I/O list
Predefined terminal not allowed in input list
Improper label (wrong type)
Illegal use of label defined in other section
Undefined state label referenced
Undefined statement label referenced
Assignment to identifier of wrong type
Operand must be terminal (and not predefined)
No SSR specified for this I.L.M. level
Value too big to fit into SSR
Same SSR value assigned to different states
More than 7 I.L.M. levels are not allowed
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warning
fatal
fatal
fatal
fatal
fatal
fatal
abort
abort
abort

"LEVEL" in top level I.L.M. ignored
Identifier must be an operation
Identifier must be a state
Too many conditional cases (try nesting)
Conditionals nested too deeply (>lO levels)
Unexpected end of input
Unexpected end of file or program
Internal error: parse stack overflow
Internal error: symbol table overflow
Internal error: memory overflow

The term "predefined terminal" refers to a terminal for

which a function was specified in the TERMINAL declarations

(Sections 6.2-6.3). An **argument** is the same as an "actual

parameter.**

The abbreviation **1.L.M.** stands for "interpretively

linked machine," Section 8.4, while "SSR" stands for "state

sequencing register.". -

The message

SYNTAX ERROR

flags many kinds of errors in DDL-P descriptions. In case

of such errors, the designer should refer to the DDL-P BNF

to determine the proper syntax.

DDL-P allocates table space of 2**n words for a state

sequencing register of width n bits. The message

STATE SEQUENCING REGISTER TOO BIG
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will appear only if the register is wider than 35 bits.

However, a MEMORY OVERFLOW problem is likely for state se-

quencing registers wider than, say, 10 to 12 bits.

The error message

MORE THAN TWO-PART CONCATENATION

refers only to concatenation in the left hand side of an im-

mediate or delayed store (**=** or n<-nl. In general, an ar-

bitrary number of operands may be concatenated in Boolean

expressions. (However, the width of the result must not ex-

ceed 256 bits.1

If the error

TOO MANY CONDITIONAL CASES (TRY NESTING)

* occurs (it won't unless the number of conditional cases is

well into the hundreds), then it may be corrected by nest-

ing, as illustrated below. The two examples are equivalent,

but the one on the right uses nesting.
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"NO NESTING"

CASE C[1:41

DO R( 1)
DO R( 2)
DO R( 3)
DO R( 4)

DO R( 5)
DO R( 6)
DO R( 7)
DO R( 8)

DO R( 9)
DO R(l0)
DO R(11)
DO R(12)

DO R(13)
DO R(14)
DO R(15)
DO R( 0). -

ENDCASE

"NESTING"

CASE C[1:21
DO CASE C13:41

DO R( 5)
DO R( 6)
DO R( 7)
DO R( 4)

ENDCASE
DO CASE C[3:41

DO R( 9)
DO R(10)
DO R(ll)
DO R( 81

ENDCASE
DO CASE C[3:41

DO R(13)
DO R(14)
DO R(15)
DO R(l2)

ENDCASE
DO CASE C[3:41

DO R( 1)
DO R( 2)
DO R( 3)
DO R( 0)

ENDCASE
ENDCASE
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Appendix B

DDL-P BNF

enclosed in braces is optional.

1 3*** REPETITION SYMBOL - String of symbols enclosed

may appear zero or more times in succession.

I I CONCATENATION SYMBOL - Symbol on left must be

concatenated with symbol on right (i.e., with no

intervening blanks or end-of-line).

I OR SYMBOL - This separates several right-hand

sides of productions.

The complete Backus-Naur Form for DDL-P is listed be-

low. Non-terminals are written in lower-case letters and

underscore; nddl-descriptionTT  is a non-terminal, e.g. All

other symbols are terminals except for the following special

symbols ("meta-symbols"):

: :=

1 I. -

REPLACEMENT SYMBOL - Left-hand side may be

replaced by right-hand side.

OPTIONAL STRING SYMBOL - String of symbols
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In a DDL description, a comment is any string of sym-

bols except double-quote ("1 enclosed in double-quotes and

contained on one line, e.g., "THIS IS A COMMENT". A comment

may appear anywhere a blank is permitted.

The REGISTER, MEMORY, TERMINAL, OPERATION, and CONTROL

declaration sections may be terminated by **END** instead of

period '*.**. The underscore **~** may be used as the delayed

store action in place of **<-**.

letter ::= AlBlClDlElFlGlHlIlJlKlLlMl
NlOlPlQlRlSlTlUlVlWXlYlZl
alblcldlelflglhliljlklllml
nlolplqlrlsltlulvlwlxlyiz

digit ::= 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9

hex-digit : := digit I A I B I C I D I E I F. -
octal-digit : : =0l1l213141516/7

quartal-digit ::= 0 I 1 I 2 I 3

bit : := 0 I 1

decimal-constant ::= digit C II digit I***

constant ::= decimal-constant
I decimal-constant II B { II . 1 II bit

1 II bit I***
I decimal-constant II Q 1 II . 1

I I  quartal-digit
1 I I  quartal-digit I***

I decimal-constant II 8 C II . I
II octal-digit

1 II octal-digit I***
I  decimal-constant I I  D II decimal-constant
I decimal-constant II H { II . 1

I I  hex-digit
{ II hex-digit I***
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letter-or-digit ::= letter I digit

identifier : : = letter { II letter-or-digit I***

field ::= boolean-exp : boolean-exp

identifier-ref ::= identifier
I identifier II decimal-constant
I identifier 1 boolean-exp I
I identifier II decimal-constant

1 boolean-exp I
I identifier C boolean-exp 1 1 boolean-exp I
I identifier 1 boolean-exp , boolean-exp 1
I identifier [ field I
I identifier II decimal-constant [ field 1
I identifier 1 boolean-exp 1 1 field 1
I identifier 1 boolean-exp , field 1

terminal-ref ::= identifier ( boolean-exp
1, boolean-exp)*** 1

reference ::= identifier-ref I terminal-ref

boolean-exp ::= minterm 1 + minterm I***

minterm ::= product C [+I product I***

product ::= complement 1 * complement I***

complement ::= (-1 reduction 1 CON reduction I***

reduction ::= adjustment
I + RED adjustment
I * RED adjustment
I t+ 1 RED adjustment
I (+I RED adjustment

adjustment ::= relation
I adjustment EXT arithmetic-exp
I adjustment TAIL arithmetic-exp
I adjustment HEAD arithmetic-exp
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relation ::= arithmetic-exp
I arithmetic-exp (=I arithmetic-exp
I arithmetic-exp # arithmetic-exp
I arithmetic-exp < arithmetic-exp
I arithmetic-exp > arithmetic-exp
I arithmetic-exp >= arithmetic-exp
I arithmetic-exp <= arithmetic-exp

arithmetic-exp ::= i (-1 1 term
I arithmetic-exp (+I term
I arithmetic-exp (-1 term

term ::= reference
I INPUT(constant,identifier_ref

C,identifier-refj***)
I CASE boolean-exp DO boolean-exp

DO boolean-exp
1 DO boolean-exp I*** ENDCASE

I Gboolean-expt  boolean-exp ; boolean-exp
1; boolean-exp}*** .

I IF boolean-exp THEN boolean-exp
ELSE boolean-exp ENDIF

I constant
I ( boolean-exp 1

ddl-description ::= declaration {operation-decl}. - control-decl ($1

declaration ::= register-decl {memory_decl1
{terminal_decl3

I memory-decl (terminal-decl1
I terminal-decl

register-decl ::= REGISTER register-spec
1 P register-spec I*** .

register-spec ::= {#} identifier
C 1 {constant:) constant 1 1

I identifier 1 {constant:1 constant ,
{constant:} constant I

memory-decl ::= MEMORY memory-spec
1 1 memory-spec I*** .

memory-spec ::= identifier 11 {constant:} constant I1
I identifier 1 {constant:} constant ,

{constant:} constant 1
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terminal-decl ::= TERMINAL terminal-spec
1 , terminal-spec 3*** .

terminal-spec ::= identifier
1 [ {constant:} constant 1 I

I identifier 1 {constant:} constant ,
{constant:} constant 1

I identifier
I (identifier {,identifierj*** 1 1
C t{constant:) constant] I

= boolean-exp

operation-decl ::= OPERATION operation-def
C, operation-def}*** .

operation-def ::= identifier
1 (identifier C,identifierJ*** > 1
= [ action 1, action}*** I

action : : =

I

I
I

. - I

I

I

I

I

I
I
I

identifier-ref {CON identifier-ref1
<- boolean-exp

identifier-ref {CON identifier-ref1
= boolean-exp

identifier-ref 51
INPUT ( constant , identifier-ref

1 9 identifier-ref I*** 1
OUTPUT ( constant , reference

1 8 reference 1*Jc* 1
identifier 1 ( boolean-exp

1 , boolean-exp I*** 1 1
CASE boolean-exp

DO action 1 , action I***
{ DO action { , action I*** I*** ENDCASE

@boolean-expC
action 1 , action I***

1 ; action C , action I*** I*** .
IF boolean-exp

THEN action { , action I***
{ ELSE action { , action I*** 1 ENDIF

TIME boolean-exp
-> identifier
identifier : action

control-decl ::= level-decl 1 level-decl I*** .

level-decl ::= CONTROL state-def { state-def I***
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state-def : := {identifier 1 (constant) 1 :)
C state-action 1, state-action}*** 3 /

state-action ::=
identifier 1 (boolean-exp {,boolean-exp}***)  1

I identif ier-ref Zil
I -> identifier
I => identifier
I RETURN
I CASE boolean-exp

DO state-action {, state-action}***
1 DO state-action 1, state-action)*** 3***

ENDCASE
I Cboolean-expt  state-action (,state-action}***

1; state-action
1, state-action}*** I*** .

I IF boolean-exp
THEN state-action {, state-action}***

1 ELSE state-action (, state-action}%** 1
ENDIF

1 LEVEL
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