AN | NTRCDUCTI ON TO THE DDL-P LANGUAGE

WE. Cory, J.R Duley, W.M. vanCleemput

Techni cal Report No. 163

March 1979

Conput er Systens Laboratory
Stanford University
Stanford, California 94305

ABSTRACT

This report describes the Pascal -based inplementation of
DDL (Digital Design Language) and its sinmulator

INDEX TERMS: Design autonmation, conputer-aided design,
hardware description |anguages, DDL, digita
desi gn | anguage.

- ii -

TABLE OF CONTENTS

Chapt er

1.

2.

I NTRODUCTI ON .
CHARACTER SET, |DENTIFIERS, AND CONSTANTS

Char acter Set

Identifiers

Constants

Comment s e
DDL-P Description Format

DDL- P DESCRI PTI ON STRUCTURE
REG STER AND MEMORY DECLARATI ONS

Regi ster Decl arations .o
State Sequencing Registers

Menory Decl arations

Menory Size Linmitations

BOOLEAN EXPRESSI ONS AND OPERATORS

Operands in Bool ean Expressions

Identifier Ref er ences

Ter mi nal Ref er ences

I NPUT Function .o

Condi ti onal Expressions S

O her Bool ean Expression Operands
Operat or Precedence e
Operators e

Arithmetic Operators

Rel ati onal Operators

Substring Operators

Concat enati on

One's Conpl enent

- iii -

page

o © o w

11

13

13
15
16
16

18

18
19
22
23
24
25
26
27
28
29
30
30
31

10.

11.

Binary Logical Operators

Reduction Operators S

Warning on Use of Subtraction
TERM NAL DECLARATI ONS .

Ternminals with Unspecified Functions

Ternminals with Specified Functions and |Inputs.

Ternminals with Unspecified Inputs
OPERATI ON SECTI ON .

Operation Actions e
I medi ate and Delayed Stores
I Mmediate Store
Del ayed Store
Set-Term nal Action
I NPUT Action
QUTPUT Action .
Operation Reference
Condi tional Action
Label s and GCotos
TIME Specification
Operation Definitions

CONTROL SECTI ON .

The Finite State WMchine
The State Actions e e e
Determination of Facility Values
Deternmination of Next State
Explicit Next State
Inplicit Next State
Default Next State
Exanple
O her State Action
Timing Considerations

Timng of Imediate and Delayed Stores

Timng of Operations and States
Interpretively Linked Machines

EXAMPLES.
HOW TO RUN DDL-P .

SAVPLE COWPI LER QUTPUT .

31
32
32

34

35
36
36

39

40
40
43
43
44
45
46
46
47
48
49
50

53

53
55
55
56
56
57
58
58
60
61
61
65
67

74

80

82

Appendi x

page
A ERROR MESSAGES . 85
B. DDL- PBNF 90

Ref er ences 96

Chapter 1

| NTRODUCTI ON

This report is one of two manuals describing a conpi-

ler and sinulator for DDL-P, a subset of DDL (Digital Design

Language) . DDL is a language for describing the behavior of
digital systens at the Boolean equation, regi ster transfer,
and algorithnmic |evels. It uses a finite state mmchine no-
tation and it may be used to describe systens over a wide

range of |evels.

DDL was originally fornulated by Duley at the Univer-
sity of Wsconsin in 1967 [5, 6, 31. A translator and sinu-
lator for a subset of DDL were inplenmented in FORTRAN 11, 7,
4, 8, 9, 101. In 1971-73, J. Duley, B. dark, and J. Welsch
implerented an interactive sinulation system for a subset of
DDL (with nodified syntax) on the HP 2100 system in HP-Al gol
at Hew ett-Packard Laboratories. The DDL-P |anguage, conpi-
ler, and sinulator are based on this HP inplenentation. In
order to enhance portability the system was rewitten in
PASCAL on the DEC- 20 system under the TOPS-20 Operating Sys-

tem at Stanford University. Smal | changes were nmde to the

syntax, mainly to enhance the readability. The system wll
still accept the input format of the original HP-A gol ver-

si on.

This report describes the DDL-P subset of the |anguage

as it was inplenented at St anf ord. Sever al exanmples are
given together wth instructions for wusing the conpiler on
the LOTS DEC-20 system at Stanford. The appendices contain

a list of the error nmessages and a formal BNF definition of
the |anguage accepted by the conpiler. A conpani on nanual
describes the use of the simulator and its command |anguage

[a21.

Chapter 2

CHARACTER SET, | DENTIFIERS, AND CONSTANTS

2.1 CHARACTER SET

i
I]
| letter = AIBICIDIEIFIGIHITIJIKILIMI |
| NIoIPIQIRISITIUIVIWIXIYIZI |
| alblcldlelfliglhliljlkilimli |
| nlolplglirislitiulviwulxlylz |
| |
| digit = 0111213141516171819 |
|

DDL-P uses a subset of the 7-bit ASClI| character set,

including the letters A-Za-z and the digits O09. Upper and

|ower case letters are considered to be equivalent; in the
listing generated by DDL-P, all letters are printed in upper
case. The follow ng non-al phanuneric characters are also

used ("SSR" stands for "state sequencing register"):

Cctal Char. Use

042 " Comment delimter

043 # NOT EQUAL relational operator or SSR nmarker

044 $ (Optional) end of file nmarker

050 (Expression, paranmeter list, or SSR value
delimter

051) Expression, paraneter list, or SSR value
delimter

052 * AND operat or

053 u OR operator

054 , Li st separator

055 - NOT | ogical operator

056 Decl aration and conditional term nator
or indicator for left-justification in
constants

057 / State termnator

072 Label delimter or value range indicator

073 ; Separator in conditionals

074 < LESS THAN relational operator

075 = I mredi ate transfer action

076 > GREATER THAN rel ational operator

100) Set -t er m nal action, octal constant i ndicator

133 l Di nmension or subscript delinmter

135] Di nension or subscript delimter

136 ¢ Case-selecting expression delinter

137 _ Del ayed transfer action

In addition to the above synbols, DDL-P uses the fol-

lowing multiple-character special synbols:

Synmbol Use
[+] EXCLUSI VE-OR | ogical operator
(+) Arithnmetic addition operator
(=) Arithnmetic subtraction or negation operator
>= GREATER- THAN- OR- EQUAL rel ati onal oper at or
<= LESS- THAN- OR- EQUAL rel ational operator
(=) EQUALS rel ational operator
-> Goto oOr set-next-state action
=> Set-next-state action (save state for RETURN)
<= Del ayed transfer action
CASE Condi tional operator
DO Condi tional separator
ENDCASE Conditional term nator
I F Condi tional operator
THEN Condi tional separator
ELSE Condi tional separator
ENDIF Conditional term nator
END Decl aration termn nator
CON Concat enati on operator
RED Reduction operator
EXT Replication operator
HEAD Head substring operator
TAI L Tail substring operator
TI NE Time specification action
| NPUT | nput action

OUTPUT Qut put action

LEVEL Return to higher Ilevel state mnachine
RETURN Set-next-state action (by RETURN)
REG STER Regi ster declaration header

VEMORY Menory declaration header

TERM NAL Ter m nal decl arati on header
OPERATI ON Qperation section header
CONTROL State nmachine declaration header

All printing characters not nmentioned above are illegal

characters and should appear only in conmrents.

Note that on input, the conpiler maps the characters
wiw, n{n. nwfw., miw, w_w. and DEL (ASCI|I code 177 octal) into
rare [T, "N oM"Im, m"¢v and "_", respectively. For this

reason, avoid the use of w> 6 nwin_ afc,

© 2.2 | DENTI FI ERS
I 1
| |
| letter-or-digit ::= letter | digit |
\ |
| identifier ::= letter { Il letter-or-digit }*%x
|

Identifiers in DDL-P are made up of letters and digits.

Upper and lower case letters are equivalent.

Exanpl es

RegisterName

rEgIsTeRnAnE (equivalent to RegisterName)
|dentif iersCanBeVeryLong
m n2

Note that in the last exanmple, "2" would be interpreted

as a subscript if "min" were previously declared. This is

di scussed in Section 5.1.1.

Identifiers nmust start with a letter and may be of any
length up to 132 characters. The al phabetic special synbols

listed in Section 2.1 are keywords and may not be wused as

identifiers.

Unl ess otherwise noted in this nmanual, al | identifiers
*declared in DDL-P are gl obal; that is, an identifier nmay

only be declared once in a DDL-P description.

2.

3 CONSTANTS

hex-digit : .= digit 1A 1B Ic¢c I DIEIF

octal -digit 01 1121314151617

I
o
-
.
o

quartal_digit

1
\
\
\
\
|
|
_ |
bit =0 11 |
|
decimal -constant : := digit { I | digit [|***
\
constant ::= deciml-constant
| deci nmal - const ant nm B { I . } Il bit |
{ I bit }x*x** \
| decimal-constant I @ {1l .}
I I gquartal_digit |
{ Il quartal_digit }*¥x]
| decimal-constant | I 8 { I | .}
Il octal -digit |
{ Il octal-digit [*** |
| deci mal -constant Il D Il deci mal -const ant |
| deci mal - const ant nm H { 1 . 1} |
- Il hex-digit I
{ I hex-digit [|*** |
|
Every constant in DDL-P has two attributes, its value
and its length in bits. CGenerally the length of a constant
is given explicitly. The general format for a constant
| ows:

Length (in decimal) of constant in bits,
followed by base designator B pase 2

Q base 4
@ base 8
D base 10

H base 1& ,

optionally followed by '.' denoting left-justification,
followed by value (before left-justification)

in appropriate base.

The length of a constant must be in the range

0 < length <= 256.

If a constant is left-justified, then it is truncated
on the right or padded on the right with zeroes to nake it
the proper length. Decimal constants may not be left-justi-

fied.

Not e that leading zeroes in the left-nost digit of a

left-justified constant ARE NOT truncated; hence left-justi-
fication does not inply that the nost significant bit is set

to one.

If a constant is not left-justified, then it is trun-

cated on the left or extended on the left with zeroes to

nmake it the proper Iength.

Exanpl es
Const ant Bi nary representation
6D22 010110
1B1 !
8B101 00000101
8B. 101 10100000

- 8 -

2B101 01

2B.101 10
1682321 0000000010111001
1181367 01011110111
6H3C 111100
10H.74 0111010000

A deci nal constant may be witten without the length

specification and base designator 'D°', in which case a de-

fault length of 16 is assuned. The value specified nust

then be in the range 0 <= value <= 65535.

Exanpl es
Const ant Bi nary representation
! 0000000000000001
10 0000000000001010
100 0000000001100100
4095 0000111111111111

2.4 COMVENTS

A conmment (any text not containing a '™') s contained

on one line and enclosed in double quotes '"':

" This is a valid coment .

The second double quote may be onmtted, in which case

the entire line following the first *'"* is treated as a com

ment :

" This is also a valid coment

Comments are ignored by DDL-P and may be inserted
freely for documentation anywhere blanks are pernmitted (see

next section>.

2.5 DDL- P _DESCRI PTI ON FORNMAT

A DDL-P description is free-format. Bl anks may be in-
serted at wll to inprove readability, except that bl anks
nmust not be enbedded in constants, identifiers, or the nmul-
tiple-character special synbols listed in Section 2.1. Com

nments may also appear anywhere blanks are allowed.

DDL- P expands the non-printing character HT (tab, ASCI
code o011 octal) to bl anks; tabs may appear anywhere bl anks

are permtted, Al other non-printing characters (except

DEL, noted in Section 2.1) are ignored.

Al l l[ines should be no longer than 132 characters
(AFTER tabs are expanded). DDL-P truncates |onger |ines.

The end of a line may occur anywhere blanks are all owed.

Chapter 3

DDL- P DESCRI PTI ON STRUCTURE

ddl_description ::= declaration {operation_decl}
control -decl {$}

\

| declaration ::= register-decl {memory_decl}

| {terminal_decl}
| | menory-decl {terminal_decl}

| | term nal -decl

|

A DDL-P description in general contains the follow ng

sections in the order given:

Chapt er
4 REGI STER declarations \
4 MEMORY decl arations) at least one of these
6 TERM NAL decl arations 7 must be present
7 OPERATI ON section - optional
8 CONTRCOL section

The REG STER and MEMORY sections contain declarations

of synchronous and asynchronous storage elenents, respec-
tively. The termnal section contains declarations of com
bi nati onal net wor ks. The OPERATION section defines data

transfers which may occur, along with optional timng infor-

mation. The CONTROL section contains the finite state na-

chi ne, which controls the use of the physical facilities

previously defined. The dollar sign at the end of the des-

cription is optional.

Each of these sections is presented in turn in the fol-

lowing chapters, with a discussion of Boolean expressions in

chapter 5.

Chapter 4

REG STER AND MEMORY DECLARATI ONS

DDL-P allows the declaration of synchronous and asynch-
ronous storage elenments in REG STER and MEMORY decl arations,

respectively.

4.1 REG STER DECLARATI ONS

| register_decl ::= REG STER register-spec
| { . register-spec }#*x%
register-spec ::= {#} identifier
{ I {constant:} constant] }

| identifier [{constant:} constant |,
{constant:} constant]

In DDL-P, registers are storage elenents which may be
witten either synchronously or asynchronously. The timnng
of synchronous vs. asynchronous stores is covered in chap-

ters 7 and 8.

All registers are declared in a list following the key-
word ‘REGQ STER and ternminated by period '.'. A register
may be a Single flip-flop? or it may be a one- or two-dinen-
sional array of flip-flops.

Exanmpl e
REG STER Vv,C,N,Z,RI[0:7,15:01,
X[10:1,5:101,Y{200:1001.

In the above «ww. VF CF NF and 2z are each declared
to be unsubscripted single-bit registers. Register R is a
two-di mensional array of bits logically organized as eight
16-bit words. The bits in each word are |abeled
15, 14,13,...,1,0. Bit 15 is the nobst significant bit (MSB).

The 16-bit words of R are labeled O through 7.

The declarations of X and Y in the exanple illustrate

two points:

1. The subscript range need not begin or end with O

or 1.

2. The subscript range may be either ascending (5:10)
or descending (200: 100). Note that in register XF
the MSB of each word is bit 5, while in register

Y, the M5B is bit 200.

The first nunber and colon *:* may be onitted froma
subscript ..o in which case a bound of one is assuned.
Exampl e

"same as 'ARRAY[1:10,1:20]'"
REG STER ARRAY[10,201.

4.1.1 State Sesuencins Resisters

A state sequencing register nmay be used to encode the
states of the finite state nmachine defined in the CONTROL
section. A state sequencing register is declared by imedi-
ately preceding the identifier by '#*' in the REG STER decla-
rations. It may not have two dinensions.

Exampl e
REG STER &,B,%#SSR[3:01,C.
Up to seven state sequencing registers my be declared. The

use of state sequencing registers is discussed in chapter 8.

- 15 -

4.2 MEMORY DECLARATI ONS

menory-decl ::= MEMORY nenory-spec
{ - menory-spec }*xx

I
|
|
|
| menory-spec identifier {I (constant:} constant 1} |
| | identifier [{constant:} constant - |
| {constant:} constant] |
\ |

Menories in DDL-P are storage elenments which may be
witten asynchronously only. All menories are declared in a

list following the keyword 'MEMORY' and terminated by period

A 1]
. .

The syntax of the list is identical to that for the re-
"gister list? with the following exception: State sequencing
registers may not be declared as menories; hence, the synbol
'*#* nust not appear in the MEMORY declarations.
Exampl e

MEMORY PpM[O0:1023,15:0], C[0:511,7:0],
X, Y, s{20u48].

4.3 MEMORY SIZE _LI M TATI ONS

The current inplenentation of DDL-P wll support rather

compleX:imuiacions- but only with nopbdest nenory sizes. The

designer should restrict the total register? memory- and
term nal space declared to, say, 50000 bits. (Ternminals are

di scussed in Chapter 6.)

Chapter 5

BOOLEAN EXPRESSI ONS AND COPERATORS

In DDL-P, a Boolean expression is a string of one or

nore bits forned by zero or nore operations ..

register s ?
memaor i es? termina .. and/or constants. (Terminals are dis-

cussed in the next chapter.)

First, the syntax for specifying the operands is pre-

sent ed. Then the operators wll be discussed.

.51 OPERANDS 1IN _BOOLEAN EXPRESS| ONS

| |
| term ::= reference |
| | INPUT(constant,identifier_ref |
| {,identifier_ref}*¥¥) |
! | CASE bool ean-exp DO bool ean-exp |
\ DO bool ean- exp |
| { DO bool ean-exp }*%%* ENDCASE |
| | ¢boolean_exp¢ boolean-exp ; bool ean-exp |
\ {; boolean_expl}**% |
I I'F bool ean-exp THEN bool ean-exp |

|

|

| ELSE bool ean-exp ENDIF
| | const ant

\ | ¢ bool ean-exp)
|

|

|

reference ::= identifier-ref | term nal-ref

An operand to which an operator is applied in a Bool ean
expression may be an identifier reference? a terninal refer-
eeeee an INPUT function? a conditional ..esi00. @ Bool ean

expression enclosed in parentheses, or a constant.

identifier [boolean-exp 11 field 1

|
|
A | identifier
|
| identifier [boolean-exp - field 1

5.1.1 Identifier Ref er ences
i .
| |
| field ::= boolean-exp : bool ean-exp |
\ |
| identifier-ref ::= ‘identifier |
	identifier 11 decimal-constant
	identifier [boolean-exp 1
	identifier Il deciml-constant
[boolean-exp 1	
	identifier [boolean-exp
identifier [boolean-exp - boolean-exp I	
identifier [field 1	
I decimal-constant [field 1 i	
I

An identifier reference is a reference to one or nore
contiguous bits in a facility? where a ‘facility’ is a re-
gister? ..mo..y- Or termnal. The Dbits referenced may be
specified by subscripts (Boolean expressions enclosed in
brackets) followng the facility identifier. The al | owed

kinds of subscripting operations are illustrated by exanple

bel ow.

The exanples assune the follow ng declaration:

MEMORY ZERO, ONE[t6:1], TWO[16,0:31].

Exanpl es of wvalid references:
ZERO
Reference to the bit naned 'ZERO. This is the

only allowable type of reference to ZERO ZERO nmay
not be subscripted.

ONE[7]
Reference to the bit labeled 7 in the facility
ONE. Not e that 7 is in the allowed range 16:1;
ONE[20] would be an invalid reference? by con-
trast.
ONE[10:6]

Reference to the string of five bits ONE[10]
through ONE[6] inclusive. The order of the ex-
presssions in the field (increasing or decreasing)
must be the sane as in the declaration; e.g.,
ONE[6:10] is an invalid reference.

ONE
Reference to the entire facility ONE equi val ent
to ONE[16: 1].
TWO[8,17]1

Reference to the bit |abeled 17 in the word I|a-
beled 8 in the facility TWO

TWOI8]I 171
Equi valent to TWol[8,171.
TWOL Y4, 16:23]

Reference to the string of eight bits Twolu4,16]
through Twol4,23] inclusive.

TWOl4][16:23]
Equi valent to TWOl4,16:23].
TWO[15]

Reference to the entire word | abeled 15 in facil-
ity TWO, equivalent to TWO[15,0:31].

The above exanples show all valid kinds of subscripting

oper ations. In, o« cviar» note that in a Boolean expres-
sion> the identifer for a two-dinensional facility nust be
followed by at |east one subscript, and this first subscript

nust not be a field.

In the above campes all subscripts were constants.
In general - however , a subscript may be any valid Bool ean

expressi on.

Wien the first subscript following an identifier s a
constant> then in some cases the subscript, expressed in de-
cimal -+ may be concatenated to the identifier wthout being
enclosed in brackets. For cxamoier 'IDIn]' may be witten
as 'IDn', where 'n' denotes a decimal constant. This f ea-
ture is designed to reduce the need for brackets in conpli-
cated Bool ean expressions. Its use is subject to tw res-

trictions:

1. The identifier nanme *ID*' nust not end with a deci-

mal digit. Hence, 'EX3[2]' cannot be witten as

'EX32°'.

2. The identifier *'IDn' nust not have been decl ared.
That 1is, 'EXAMPLES' does NOT nean 'EXAMPLE[5]' if

'EXAMPLES!' is itself a declared identifier.

Exanpl es (assuming restrictions satisfied)

Ref er ence Equi valent to
ONES8 ONE[8]
TWO11[311 TWOl 11,311
TWO16[A:B] TWO[16,A:B]
DDL-P may apply subscript concatenation in unexpected
pl aces. For «..msoie- an identifier *'L3' cannot be declared

if the identifier 'L* was previously declared. A good rule

is to not declare identifiers of the form 'IDn' ('n'=decimal

"ID ends in letter) if '"ID wll al so be dec-

| ar ed.

5.1.2 Ter m nal Ref er ences

term nal -ref

identifier (bool ean-exp
{, boolean_expl}***¥)

Most facility references are of the fornms described in

the above section. The exception is the special case of a
termnal reference with an actual-paranmeter |ist. The ac-
tual parameters supplied in such a termnal reference are

inputs to the conbinational network represented by the ter-
ni nal . These paraneters may be arbitrary Boolean expres-
si ons. (Recall that an wunsubscripted two-dinensional facil-
ity name is NOT a valid Boolean «pessionn however. >

Exanpl es

SUM(X[11:16], 16D2)
PRODUCT(7,X)

Note that a termnal reference with a paranmeter |ist nmay not
be subscri pted. Terninals are discussed in Chapter 6.
5.1.3 I NPUT _Function

The INPUT function is an action discussed in Chapter 7.

In short, it allows for the setting of facilities by the
user from the teletype at sinulation-tine. When an | NPUT
action appears as a function in a Boolean «xpressions then
the function receives as . value the last nunber entered

by the user.

For exampie» i f the user inputs the value 16p2 for IN

CREMENT in the expression R(+)INPUT(1,INCREMENT), then the

expression is equivalent to R(+)2.

5.1.4 Condi ti onal Expr essi ons

In a conditional expression? a selector expression ap-

pears along with at l|east two alternative expressions. AC-

cording to the value of the selector .oesor gne of the

alternative expressions is eval uated and used as the val ue

of the conditional expression. A conditional expression
CASE select DO expr 1
DO expr 2
DO' e'xp'r n- |

DO expr n ENDCASE

is evaluated by

if select=1 then expression value = expr 1
else if select=2 then expression value = expr 2
el se Co
else if select=n-1 then expression value = expr n-I
el se expression value = expr n.

Note that expression n above is chosen for select=0 and

for select>=n. Conditional expressions may be nested.

Two other forns of the conditional expression gre al-
| owed. The above conditional expression may alternately be

written

¢ select ¢ expr 1 ;

expr 2 ;

e>'<pr' n-1 ;

expr n
(with period termnating the expression). This notation has
the advantage of being conpact. A conditional expr essi on

wWth just two cases nmay hbe witten

I F select THEN expr 1
ELSE expr 2 ENDIF

5.1.5 O her Bool ean Expression Operands

An arbitrarily conplex Boolean expression enclosed in
parentheses may itself be an operand in another Boolean ex-

pressi on. The enclosing parentheses npmy be omtted, in

which case the order in which operators are applied is det-

ermined by operator precedence.

Constants may also appear as operands in Bool ean ex-

pr essi ons.

5.2 OPERATOR PRECEDENCE

bool ean-exp ::= minterm { + mnterm }*%%

it

mnterm product { [+] product }*x*x

| arithmetic-exp (+) term
| arithnetic-exp (=) term

| |
l |
I \
| |
I |
| product = conplement { * conplenment }*x*x |
| |
| conplement ::= {-} reduction { CON reduction }¥x% |
| |
| reduction = adj ust nent |
\ | + RED adjustnent |
	# RED adjustnent
	I+]1 RED adjust ment
	(+) RED adjustnent
adj ust ment = relation	
	adjustment EXT arithnmetic-exp
	adjustnment TAIL arithmetic-exp \
\	adjustment HEAD arithnetic-exp
relation ::= arithmetic-exp	
	arithmetic-exp (=) arithmetic-exp
arithmetic-exp # arithmetic-exp	
	arithmetic-exp < arithmetic-exp
	arithmetic-exp > arithmetic-exp
	arithnmetic-exp >= arithnetic-exp
	arithmetic-exp <= arithmetic-exp
arithnetic-exp ::= { (=) } term	
I	

The syntax of Boolean expressions defines a precedence
of operators. perators with higher precedence are applied
before operators with |ower precedence unless a different
order is specified with parentheses. perators of the sane
precedence in an expression are applied left to right; e.g.,

- 26 -

A EXT B TAIL C HEAD D
is equivalent to

((A EXT B) TAIL ¢) HEAD D

The operators are listed below in order of precedence,
hi ghest to | owest. All operators on the sane |line have the
sane precedence. The reduction (RED) operators and '-' are
unary operators. The *(-)' operator may be either wunary or
bi nary. The renmmining operators are binary.

(+) (=)

(=) # < > <= >=

EXT TAI L HEAD

+ RED * RED [+] RED (+) RED

CON

*

[+]
+

5.3 OPERATORS

The operators are discussed in order of decr easi ng
precedence, except for the reduction operators, which are
di scussed | ast. Recal | that a Boolean expression has two
attributes, its length in bits and its value. Hence, for
each operator, the length of the result, as well as its va-
| ue, nmust be defined. A warning on the detection of nega-
tive results from subtraction appears at the end of this
section.

- 27 -

In the exanples below, the operators are used with con-

stant operands. However, operands can be quite general, as

di scussed above in OPERANDS 1IN BOOLEAN EXPRESSI ONS.

5.3.1 Arithnetic Operators

The arithnetic addition operator is "(+)", The two

operands in an addition are considered to be non-negative

bi nary nunbers generating a non-negative sum If one ope-
rand is shorter than the other, the shorter operand is ex-
tended on the left with zeroes before the addition. The
| ength of the result is the length of the |onger operand

plus one, where the extra bit on the left is the carry out.

Exanpl es
1B1 (+) 4B1011 = 5B01100
4B1111 (+) 4B1111 = 5B11110
1B1 (+) 1BO = 2BO01
The arithmetic subtraction operator is "(-)", As with
addi tion, the two operands in a subtraction are considered
to be non-negative binary nunbers, the operands need not bhe
the sane | ength, and the length of the result is the length
of the Ilonger operand plus one. However , the result of a

subtraction is a two's conplenment signed binary nunber, wth

a one in the carry out denoting a negative result.

29 -

The "(-)" operator may also be used for unary two's
conpl ement negati on, in which case the result length is the
same as that of the operand.

Exanpl es

1B1 (=) 4B1011 = 5B10110

4B1111 (=) 4B1111 = 5B0000O

iB1 (=) 1BO = 2BO1

1B0 (-) 3B110 = 4B1010

(-) 3B110 = 3BO10D

(-) 3BOO1 = 3B111
5.3.2 Rel ati onal Qperators

In relational operations, the two operands are consid-
ered to be non-negative binary nunbers. The result of the
operations is 1B1 if the indicated relation is true and 1BO
ot herw se. The two operands need not be the sane |ength.

The relations denoted by the operators are as follow

(=) equal to

not equal to

< | ess than

> greater than

<= less than or equal to

>= greater than or equal to
Exanpl es

2B10 > 16D1 = 1B1

10D1 # 1B1 = 1BO

8D2 (=) 8D3 = 1BO

1B1 >= 283 = 1BO

5.3.3 Substrins perators

The operators "EXT", "TAIL"™, and "HEAD" access parts of
the first operand or replicate the first operand as indi-
cated by the count given as the second operand. The opera-
tion "ARG EXT n" concatenates ARG with itself n-1 tines.
The operations "ARG HEAD n" and "ARG TAIL n" yield the nost
signi ficant (leftnost) n bits of ARG and the least signifi-
cant n bits of ARG respectively. A run-tine error occurs
if the length of an EXT operation result exceeds 256 bits,
or if the nunber of bits specified in a HEAD or TAIL opera-
tion is greater than the length of the first operand.

Exanpl es

3B10t EXT 3 9B101101101

88311010110 HEAD 4 = 4B1101
8811010110 TAIL 2 = 2B10
5.3.4 Concat enati on
The "CON' operator concatenates its two operands. The

left operand becones the nost significant (leftnost) portion
of the result. A run-time error occurs if the result is
| onger than 256 bits.

Exanpl es

4B1101 CON 6B1
481 CON 6B.1

10B1101000001
1080001100000

30 -

5.3.5 One’'s Complement

The one’s conplenent operator "-" conplenents each bit
np nmp

of the operand. The length of the result is the sane as
that of the operand.
Exanpl es

- 1B1 = 1BO

- 6B110101 = 6B001010

- 1021473 = 10B0O0C11000100
5.3.6 Binary Logical onerators

A binary logical operator performs the indicated bit-

wise logical function on its two operands. If the two ope-
rands are of differing |engths, then a run-time warning is

issued and the shorter operand is extended wth zeroes be-

fore the operation. The length of the result is the sane as

that of the |onger operand.

The functions denoted by the operators are as follow

* Logical AND (highest precedence)

[+] Excl usive OR

u Inclusive OR (lowest precedence)
Exanpl es

5B10110 ¥ G5BO0101 = 5B00100

5B10110 [+] 5B00101 = BB10011

5B10110 + 5BO0101 = BB10111

5B10110 * 7B1111111 7B0010110 with warning

5.3.7 Reduction Operators

Using the bits of its single operand as argunents, a
reduction operator perforns the indicated operation n-|I
times, where n is the length of the operand. For exanpl e,

[+] RED ARGI[1:4]
is equivalent to

ARG1 [+] ARG2 [+] AR [+] ARA :

where ARG is singly dinensioned. The result is a single
bit, except in the case of addi tion, where the result has
| ength 16.

Exanpl es

+ RED 5B00010
¥ RED 5B11111
[+] RED 5B00101
(+) RED 5B11101

1B1
1B1
1BO
16B00006000000000100

5.3.8 Warning on Use of Subtraction

As noted earlier, the result of a subtraction is a
two's conplenent signed binary nunber. However , the ot her
arithmetic and relational operators always consider their
operands to be wunsigned non-negative nunbers. Hence the ex-
pression

A(-yB<O

does not perform the desired function of detecting a nega-
tive result. In fact, the expression always evaluates as
1B0, since no unsigned nunber is less than zero. A sinple
expression performng the desired function in this case is

A (-) B HEAD 1 ,

or even sinpler,

A < B

In general, care is required when wusing arithnmetic or

rel ational operators wth negative nunbers.

Chapter 6

TERM NAL DECLARATI ONS

| term nal - decl TERM NAL term nal - spec

{ , termnal-spec }¥*x

]
|
|
|
|
identifier |
{ [{constant:} constant 1 } |
|
|
|
I
|

terni nal - spec

| identifier [{constant:} constant |,
(constant:} constant]

{ (identifier {,identifier}#*¥x) 1}
{ [{constant:} constant] 1}

\

|

|

\

\

\

| | identifier
\

|

| = bool ean-exp |
|

Terminal identifiers are names for the outputs of com
bi nati onal networks, called 'termnals' in DDL-P. Al ter-
mnals are declared in a list following the keyword

"TERM NAL' and terminated by period *.'.

It is convenient to consider a conbinational network in

three parts:

1. QUTPUTS

2. I NPUTS - Constants, registers, nenories, and other

term nal s

3. FUNCTION - Logical function (conbinational circui-

try) mapping inputs to the outputs

Wen a termnal is declared, the function mapping the inputs

to the outputs nmay or nmay not be given. If the function is
gi ven, then the inputs thenmselves nmay be conpletely speci-
fied, or sone inputs may be left unspecified; the unspeci -
fied inputs will be given later via a parameter |ist.

In general, termnals may be one-dinensional. Sonme
termnals may also be two-dinensional. The syntax for spe-

cifying terminal dinmensions is identical to that for giving

the dinmensions of registers or nenories.

6.1 TERM NALS W TH _UNSPECI FI ED FUNCTI ONS

In the sinplest case, termnals are declared wthout
giving the associated functions. Such ternminals my be

singly or doubly subscripted.

Exampl e
TERM NAL A, B, C, "one bit each"
D[101, "equivalent to D[1: 101"

T{5:161,8[7:0,15:417.

The values or functions to be associated with t hese

terminals may be specified in the OPERATION or CONTROL sec-

tion. This will be discussed in chapters 7 and 8.

6.2 TERM NALS WTH SPECIFIED FUNCTIONS AND | NPUTS

The function associated wth a terninal my be speci-
fied with a Boolean expression in the declaration. Term -

nals so defined nay be singly-subscripted.

Exampl e

TERM NAL SUMXY[1:161= X(+)Y TAIL 16,
YL17= SCORE<17,
NEXTQ= CASE J CON K DO 1BO
DO 1B
DO -Q
DO Q ENDCASE ,
ONE[1:81= 8B00000001.

Any termnals referenced in Boolean expressions in TERM NAL

declarations nmust be declared prior to their appearance in

the Bool ean expressions.

6.3 TERM NALS WTH _UNSPECI FI ED | NPUTS

VWhen a termnal function is specified in the term nal
decl arati on, some or all of the inputs may not be identi-
fied. These inputs are represented by fornmal paranmeters in

- 36 -

the declaration, where the fornal paraneters appear in a

list following the termnal identifier. Whenever such a
terminal is referenced, the unspecified inputs nust then be
supplied in an actual-paraneter list. A term nal with a
formal paranmeter list may be singly subscripted.
Exampl e

TERM NAL sSUM(X,y)[1:12] = (10D0 CON X(+)Y) TAIL 12

In this exanple, inputs X and Y are unspecified. A
valid reference to SUM night then be

SUMCIR[21:32],R[IR[17:2011]) ;

where IR and R are registers. The formal paraneters are as-
suned to be Boolean expressions, but no assunption is nade
regarding the lengths of the paraneters.

Parameter passing is by value. The following restric-
tions apply:

1 Formal paranmeters nay not be subscripted. A sub-

scripting operation may be sinmulated with HEAD and

TAI L, although this is less efficient than

subscri pting.

2. A fornal paraneter nmay not appear in the

functi on.

nor nal

I NPUT

Formal paraneter nanes are declared locally to the termnal
definition; the nanes may be re-declared outside the termi-

nal definition.

Chapter 7

OPERATI ON SECTI ON

As used in this chapter, the term "operation" refers to

a named sequence of actions, where actions mmy specify data
transfers, sequencing or timng information, or other (pre-
viously defined) operations to be invoked. These naned se-

guences of actions are defined in the operations section.

The several possible actions are presented first, fol -

lowed by a discussion of operation definitions.

7.1 OPERATI ON __ ACTI ONS

action ::= identifier-ref {CON identifier-ref)
<- bool ean-exp
| identifier-ref {CON identifier-ref}
= bool ean-exp
| identifier-ref @

| INPUT (constant , identifier-ref
{ , identifier-ref }**x%x)
| QUTPUT (constant , reference

{ , reference }*¥x)
| identifier { (boolean-exp

{ , boolean-exp }*%x¥%) }
DO action { , action }%*¥%
{ DO action { , action }%%% }%%% ENDCASE
| ¢boolean_expt
action { , action }%%x
{ ; action { , action }%*¥% }¥x%
I IF bool ean-exp
THEN action { , action }¥¥x

|
|
|
|
|
|
|
|
|
|
| { ELSE action { , action }¥%¥ } ENDIF
I | TIME bool ean-exp
e | -> identifier
|
|

|
|
|
|
|
|
|
|
|
|
|
|
] CASE Dbool ean- exp |
|
|
|
|
|
|
|
!
|
|
| identifier : action |
|

7.1.1 | Mmedi ate and Delayed Stores

The store actions "=" and "<-" indicate that the Boo-

| ean expression on the right hand side is to be evaluated

i mediately and its value assigned to or stored in the fa-
cility given on the left hand side. Two facility references
may be concatenated on the left hand side, in which case the

- 40 -

ri ght hand facility in the concatenation receives the

rightnost bits in the Boolean expression, and the left hand
facility gets the bits to the left. For exanpl e,
Al1:3]1 CON B[1:5] = 8B10101100

is equivalent to

A[1:3] = 3B101 , B{1:5} = 5B01100

The length in bits of the facility reference(s) on the
left hand side should be the same as the length of the Boo-
1l ean expression on the right hand side. If these two
lengths differ, then a run-tinme warning is issued. If the
Bool ean expression is too |ong, then high order (I|eftnost)
bits will be truncated as necessary. If the Boolean expres-

sion is too short, then high order bits of the destination

facility wll be LEFT UNCHANGED.

The eval uation of the Boolean expression on the right
occurs exactly once (each tine the store action is encoun-
tered); any subsequent changes to operands in the right side
do not cause a re-evaluation and assignnent. Consi der, for
exanple, the following sequence where A B, and R are sin-

gle-bit flip-flops and T is a terminal:

[R = 1B1,
T =R
A =T,
R = 1BO,
B =T 1]

- 41 -

The assignnment of 1B0 to R in the fourth line does not cause

a re-evaluation of T. The value assigned to B is the sane
as that assigned to A, nanely 1B1. Even though termnals
were described in Chapter 6 as representing combinational

networks, their use (as above) may suggest the existence of
addi ti onal sequenti al circuitry, if indeed the DDL-P des-

cription corresponds closely to the hardware design.

The above exanple should be contrasted with the follow
ing, in which A B, R, and T are as before, but the function
associated with T is defined in the TERMNAL section:

MEMORY A, B, R

TERMNAL T = R
OPERATI ON EXAMPLE =

[R = 1B1,
A=T,
R = 1BO,
B=T 1.
In this case, T is re-evaluated each tinme it is referenced
in the operation. Hence, A is set to 1B1, but B is set to
1BO.
This illustrates an inportant difference between the

specification of a termnal function in the TERM NAL section
and the assignnent of a function to a terminal as an action
in an operation. Another inportant difference is that an
assignment to a termnal nade in an operation is not perman-

ent. This will be discussed further in the next chapter.

- 42 -

7.1.1.1 | Mmedi ate Store

In an immediate store, denoted by "=", the value of the
right hand side is assigned |MED ATELY to the facility on
the left hand side. This facility may be any facility (re-
gister, nenory, or terninal) EXCEPT a state sequencing re-
gister or a termnal for which a function was already as-
signed in the TERM NAL section.

Exanpl es

T[7:4} = 4Dpo9,
MEMIRIIR[6:811) = RI[IR[I9:11]]

7.1.1.2 Del ayed Store

In a delayed store, denoted by "<-%, the right hand

side is evaluated immediately, but the resulting value is
not assigned to the facility until the end of the current
“state”. Subsequent references to the left hand facility
made before the end of the current state wll access the

old, not the new, value of the facility.

This timing will be discussed further in the next chap-

ter; for now it wll suffice to understand that the sequence

of actions

A <- B, B <- A

- 43 -

will effect a swap of facilities A and B.

By contrast, the
sequence

will not effect a swap, but is equivalent to "A=B" alone.

The destination in a delayed store nust be a register.

Exanpl es

RINUM] <- MBR

ACC <- ALUCACC, RIIJ, 2)

7.1.2 Set - Ter nm_nal Action

DDL-P provides a shorthand notation for an immediate
store where the |eft hand side is a ternminal of length one
“bit and the right hand side is 1B1.

The action
T = 1B1

my be witten as
T @

The advantage of this notation, aside from its brevity, is
that it may also appear in the CONTROL section (Chapter 8),
whereas the store actions "="

and "<-" nay not.

7.1.3 | NPUT Action

The I NPUT action allows the wuser to enter facility va-
lues fromthe teletype at sinulation tine. The first item
in the list enclosed in parentheses is a device nunber
which is ignored for the INPUT action in the current inple-
ment ati on of DDL-P. The identifier references follow ng the
device nunber indicate the facilities to be input. Any
valid identifier reference nmay appear, and the input val ues
are stored in the facilities inmediately.

Exanpl es
INPUT(1,ACC),
INPUTC1,RI1],TIL:R])

The values entered by the user should have the sane
lengths in bits as the corresponding facilities being set
If the lengths do not agree, then the actions taken are the
sane as those for a store in which the Iengths do not agree

(Section 7.1.1).

The user will be pronpted for new values each tine the
I NPUT action is encountered, even if new val ues were previ-
ously supplied during the current operation. Each val ue in-
put will be shown in the listing file.

- 45 -

7.1.4 QUTPUT Acti on

The QUTPUT action imediately lists the values of the
indicated facilities either at the teletype (if device num
ber is zero or one) or in the listing file (if device nunber
is greater than one). The device nunber is the first item
in the OUTPUT list; the remaining references indicate the
facilities to be displayed. Any valid facility reference

may appear in this |ist.

Exanpl es
OUTPUT(1, NUM RINUMI]), "To tel etype”
OUTPUT(2, MAR, MEMIMAR], MBR) "To listing *

7.1.5 Qperation Reference

An action may be the nane of a previously defined oper-
ation, in which case the sequence of actions appearing in
that definition is executed. If the operation was defined
with formal paraneters (Section 7.21, then a correspondi ng
list of actual paranmeters (arbitrary Bool ean expressions)
nmust be supplied enclosed in parentheses follow ng the oper-

ati on nane.

An operation may invoke itself (recursion), but forward

references are not all owed.

Exanpl es

I NI TI ALI ZE,
GETREG(NUM, MEM[ADDRI])

7.1.6 Condi ti onal Action

The interpretation of conditional actions is simlar to

that of conditional expressions. A sel ector expression ap-

pears along with one or nore lists of actions. According to

the value of the selector expression, one of the lists will

be execut ed. The action

CASE selector DO |list of actions 1
DO list of actions 2

DO |i t'of' 'actions n- |
DO list of actions n ENDCASE

is executed as

if selector=1 then list of actions 1

else if selector=2 then list of actions 2
el se

else if selector=n-1then list of actions n-
else list of actions n .

The alternative forms for the conditional syntax presented

in Section 5.1.4 may al so be used.

A special case occurs when only one list is specified.

In this case, the list is executed only if the selector has

value one; otherwise, the entire action is skipped. A con-

ditional action with just one list may be witten

IF selector THEN |list of actions ENDIF

Condi tional actions may be nested.
Exanpl es
IF 1>8 THEN ACC<-16D0
ELSE RII]<-16D0 ENDIF
|F OVFL THEN PC <- EMA ENDIF
CASE NA DO k=8B
DO |F FF THEN X=B ELSE Y=-B ENDIF ENDCASE
The last exanple may also be witten using the alternate
formin the foll ow ng way:

¢ NA ¢ K=B ; ¢ FF ¢ X=B ; Y=-B .

7.1.7 Label s and Got os

Any action nmay be preceded by one or nore |labels (iden-
tifiers), each followed by a col on. The course of execution
may then be altered with a goto "->", A goto nmust point to
a label in the sanme operation definition. Forward referenc-

ing of labels is permtted.

Label s and gotos are useful for specifying |oops within

operati ons.

Exanpl e

"Initialize MI1:100,15:0] to all ones"

ADDR = 8p1,
L: M[ADDR] = 16HFFFF,
ADDR = ADDR(+)1 TAIL 8,
I F ADDR <= 100 THEN ->L ENDIF

7.1.8 FSldvEci fi cati on

The designer may specify that a certain action or oper-
ation requires T units of time, where T is an arbitrary Boo-

| ean expression, and a "unit of time" is a convenient unit

sel ected by the designer. This tinming is specified by the
action

TIME T
The default length of time assumed s one. Al actions in

an operation are considered as occurring in parallel, so the
total length of time required for an operation wll be
maxi mum { tines required for each action
executed in the operation }
A TIME of zero should not be given; such an action will be

i gnor ed.

- 49 -

7.2 COPERATI ON_DEFI NI TI ONS

1
\
operation-decl ::= OPERATI ON operation-def I
{, operation_def}*%% |
\ |
| operation-def ::= identifier |
| { (identifier {,identifier}¥**%) } |
| = [action {, action}*** 1 |
\ |

The OPERATION section consists of a list of operation
definitions. The list is preceded by "OPERATION' and fol -
| owed by peri od. A sinple operation definition gives the
operation nane followed by a list of actions enclosed in
bracket s. The actions in an operation nust forma "conpati -

ble set of actions.” This termis defined in Chapter 8; ba-
sically, it denotes a group of actions in which illegal sim

ul taneous stores to a register do not occur.

The operation nanme nmay optionally be followed by a for-
mal paraneter list enclosed in parentheses. When such an
operation is referenced later, a corresponding list of ac-
tual paraneters nust be suppli ed. Paranet er passing is by
val ue. The following restrictions apply to actual and for-

mal paraneters:

- 50 -

1. Actual paraneters nust be valid Boolean expres-
si ons. In particular, an unsubscripted two-dinen-
sional facility nane nay not be an actual parane-

ter.

2. Formal paraneters nay not be subscri pted. A sub-
scripting operation may be sinmulated with HEAD and
TAI L, although this is less efficient than norma

subscri pting.

3. No assignment of a value nmay be nade to a fornal

par anmet er

4. Fornmal paraneters nmay not appear in |INPUT or OUT-

PUT I|ists.

Formal paraneter nanes are declared locally to the operation
definition; the nanmes nmay be re-declared outside the opera-

tion definition.

Exanpl e
OPERATI ON
READ(ADDR) = [MBR=MIADDRI],
MIADDR]=8DO,
TIME 41,

"ALU is assuned to be a term nal"
ARITH(FCT) = [ACCK-ALU(FCT)],

CLEAR(N) = [IF N>7 THEN acc<-8D0
ELSE REGI[NI<-8DO0 ENDIF 1,
TTYINP = [INPUTC(1,ACC)],

INIT = [N=8DO,
L: REGINI=8DO,
N=N(+)1 TAIL 8,
| F N<=7 THEN ->L ENDIF
ACcCc=8D01,
DOFET = [ADDR=PC, PC<-PC(+)1 TAIL 16,
READCADDR)].

- 52 —

Chapter 8
CONTROL SECTI ON

In the preceding chapters, we have seen how to define
the facilities in a system (REA STER, MEMORY, and TERM NAL
decl ar ati ons) and how to specify actions which nmay occur
within the system (OPERATI ON section). Usi ng this base, we
must now specify the overall behavior of the system In
DDL-P this is done by describing the system as a finite

state machine in the CONTROL sections.

8.1 THE FINITE STATE MACH NE

| level-decl ::= CONTROL state-def { state-def }%xx
\
| state-def ::= {identifier { (constant) 1} :}

\ { state-action {, state-action}*** } / |
\ |

. 1
| I
|
|
|

In general, a DDL-P description may have nore than one
CONTROL secti on. These sections are called "interpretively
linked machines? For now, however, consider the case where

there is just one CONTROL section, or |evel.

A finite state machine consists of one or nobre states.
A state is an abstract expression of the condition of the
machine, where the condition may be as sinple as the con-
tents of a register, or may be far nore conpl ex. The finite
state machine is in one state at any given tine, and has
rules for determining the outputs and the next state, gi ven

the current state and the inputs.

Hence, the CONTROL section is a list of state defini-

tions, where each state has up to three parts:
1. Optional label (identifier> namng the state.

2. Optional constant, enclosed in parentheses, denot-
ing the value which should be in the state se-
quencing register when the system is in this
state. The sane value may not be assigned to two

different states.

3. Optional state actions for determning the next
state and the values of facilities when the system

is in this state.

The state actions are separated by commas. Each state de-

finition is termnated by "/».

- 54 -

8.2 THE STATE ACTI ONS

|

state-action ::= |

identifier { (boolean-exp {,boolean_expl**x) } |

| identifier-ref a |
| => identifier

| => identifier

| RETURN |

| CASE bool ean-exp |

DO state-action {, state-action}***

{ DO state-action {, state_action}**% }¥%x% |

ENDCASE |

| ¢boolean_expé¢ State-action {,state_action}**% |

{; state-action |

|

|

|

|

|

|

|

{, state-action}*** }¥xx
| | | F bool ean-exp
| THEN state-action {, state-action}***
| { ELSE state-action {, state-action}*** }
| ENDIF
| | LEVEL
\

8.2.1 Determ nation of Facility Val ues

Two state actions exist for nodifying facility contents
or functions. One action nanes an operation, defined in the
OPERATI ON section, to be executed. The syntax and semantics
of this action are identical to those for the operation re-
ference discussed in Section 7.1.5. The nunber of actual
parameters in the reference nust match the nunber of fornmal

paraneters in the definition.

The second action is the set-termnal action, which was

di scussed in Section 7.1.2. Its syntax is

identifier-ref a ;
it denotes that the named one-bit terninal is to be set im
nmedi ately to 1B1.

Exanpl es
"Qperation references™
READ(ADDR[1:161), ARITH(4B1011),

CLEARCH), TTYI NP

"Set termnals to 11"
Ta, BITS[100,12] @, BUSI8] @

8.2.2 Determination of Next State

The next state may be specified explicitly, inplicitly,
or by default. Only one next state may be given explicitly
or inplicitly, wth the exception that two next states may
be specified if exactly one of them was given with a su-

broutine call m=>",

8.2.2.1 Explicit Next State

The next state may be set explicitly by any of three
actions. The action

-> STATE

specifies that the name of the next state is "STATE". A
subroutine capability is also provided; the action
=> STATE
will cause the next state to be "sTaTe", and the system wil|l
remenber where this call was nade. When the third action
RETURN
is encountered, then the next state will be the return
state; the return state is the one which would have been the
next state if the original "=> STATE' had been m ssing. Su-

broutine calls may be nested.

These actions wll be illustrated by exanple in Sec-
tion 8.2. 2 4.
8.2.2.2 Inplicit Next State

The next state s specified inplicitly when the state
sequencing register for this CONTROL declaration is witten
by a delayed store "<-". This may occur in an operation in-
voked by a state action, Such a store is equivalent to a

gotO "->" to the correspondi ng state.

- 57 =

8.2.2.3 Def ault Next State

If the next state is not specified explicitly or inpli-
citly, then by default the next state is the state follow ng

the current state in the CONTRCOL decl arati on. Note t hat no

default exists for the last state in a CONTROL decl arati on;
in the last state, a next state nmust be specified inplicitly

or by goto "->" or "RETURN'.

8.2.2.4 Exanpl e

The following exanple illustrates the next-state ac-

tions:

REG STER #ssRri2:01.
OPERATI ON SETSSR(N) = [SSR<-N TAIL 31].
CONTRCL P(1): ->8/

Q(2): =>T/

R(3): ->p, =>ur

S(4): SETSSR(2), =>V/

T(5): 7
U(6): SETSSR(0)/
\" . =>X/

W(0): RETURN
X(7): RETURN, =>ur.

State sequence for this exanple:

System starts in first state, P.

**xxxSTATE=P, SSR=3D1, RETURN STATE STACK | S EMPTY.

Next state is S by goto "->".
¥X¥XX¥XSTATE=S, SSR=3D4, RETURN STATE STACK IS EMPTY.
- 58 -~

[f m=>y" were m ssing, then "SeTssr(2)" would inply

next state is a. State Q goes on return state stack, and
next state is V. State V has no SSR val ue specified, so SSR
is left equal to the value set in state s. If state V did

have an SSR val ue given, then it would override the val ue
supplied in state S.

**x*x* STATE=V, SSR=3D2, RETURN STATE STACK = a.

A nested call. If "=>x" were missing, then next state
woul d be W by default.
*¥%¥X¥STATE=X, SSR=3D7, RETURN STATE STACK = q,W.

[f m=>W" were m ssing, then next state would be w by
RETURN. State W is popped off the stack by RETURN, but then

pushed back on the stack by "=>u".

¥%X%*¥XSTATE=W, SSR=3D0, RETURN STATE STACK = Q,W.

Next state is W by RETURN
¥¥%XX¥STATE=W, SSR=3D0, RETURN STATE STACK = Q

Next state is @ by RETURN

FrxxXSTATE=Q sSsR=3D2, RETURN STATE STACK IS EMPTY.

[f m=>T" were m ssing, then next state would be R by
defaul t.
**x*xx* STATE=T, ssrR=3D5, RETURN STATE STACK = R
Next state is U by default.
*xxx*STATE=U, ssR=3D6, RETURN STATE STACK = R
"SETSSR(0)™ inplies next state is W.
X¥%X%X¥STATE=W, SSR=3D0, RETURN STATE STACK = R

Next state is R by RETURN

*HFA*STATE=R, SSR=3D3, RETURN STATE STACK IS EMPTY.

[f ™=>y" were missing, then next state would be P by
gotQ "->m,
¥*¥%XX¥¥STATE=U, SSR=3D6, RETURN STATE STACK = P.

"SETSSR(O0)" inplies next state is W.
*%XXXXSTATE=W, SSR=3D0, RETURN STATE STACK = P.

Next state is P by RETURN. This conpletes the cycle.

**xxxSTATE=P, SSR=3D1, RETURN STATE STACK | S EMPTY.

8.2.3 G her State Actions

The conditional state action |ooks and behaves |ike the
condi tional action discussed in Section 7.1.6. According to
the value of a selector expression, one of several lists of
actions is executed. The action

CASE selector DO Ilist of state actions 1
DO list of state actions 2

DO |ist of st'at.e actions n-|

DO list of state actions n
ENDCASE

is executed as

- 60 -

if selector=1 then list of state actions 1
else if selector=2 then list of state actions 2
el se Do
else if selector=n-1 then list of state actions n-I
else list of state actions n

In the special case where only one list of actions is
specified, the list is executed only if the selector has va-
| ue one; ot herw se, the entire state action is skipped.
Condi tional state actions may be nested.

Exanpl e
| F SCORE<17
THEN ->B
ELSE | F SCORE<22 THEN ->JK

ELSE |F FF THEN ->D ENDIF,
KFF, TMI

ENDIF
ENDIF
The | ast state action is LEVEL. This is nentioned here

for conpleteness only. LEVEL will be discussed in Sec-

tion 8.4.

8.3 TI M NG CONS|I DERATI ONS

8.3.1 Timng of Imediate and Del ayed Stores

As the simulation of a state s carried out, store or
i nput actions may be encountered. The timng for such ac-

tions is as foll ows:

If a store action ("=", "<-", or "a") s encoun-
tered, the right hand side is evaluated imedi -
ately. This evaluation occurs just once, as dis-
cussed in Section 7.1.1. I[f an INPUT action is
encount er ed, the input value is requested imedi-

ately.

In the case of an inmediate store ("=" or "a") or
I NPUT acti on, the new value is stored in or as-
signed to the specified facility immediately. In
the case of a delayed store to a register ("<-m),
the new value is not stored imediately, but is

saved in a tenporary buffer.

At the end of the state, the simulator checks to

see if it should halt the simulation or do any
1/0. This occurs BEFORE the new register val ues
specified in delayed stores are stored. Hence,

any register values accessed or output by the si-

mul ator at this tinme are still old val ues.

When the sinulation continues, the new val ues
given in delayed stores are stored in the regis-
ters. At the same tinme, any terminals which were

set are cleared to zero. Hence, any assignnment to

- 62 -

a termnal is tenporary and lasts (at nost) unti |

the end of the current state.

5. After the registers have been updated and the ter-
mnals cleared, the simulator begins sinulation of

the next state.

This timng is illustrated by the following exanple

with waveforns:

Exanpl e
REG STER A B, R, S.
VEMORY M
TERM NAL T.
OPERATI ON
SWAP = [A<-B, B<-Aal,
AIMM(X) = [A=X], BIMM(X) = [B=X],
RIMM(X) = [R=X]1,
SIMUX) = [S=X1, SDEL(X) = [S<-X1I,
MIMM(X) = [M=X],
TIMM(X) = [T=X].
CONTRCL

INIT: AIMMC1BO), BIMM(CIB1), RIMM(1BO),
SIMM(C1BO), MIMM(CIB1), TIMM(1BO), ->P/

P : SWAP, RIMM(C1B1), SDEL(1B1),
MIMM(S), Tii), ->Qs
Q © MIMM(1B1), ->Q-/.

- 63 -

WAVEFORMS

STATE INIT STATE P STATE Q

Note that the value assigned to Min state Pis
1B0, the "old" value of S, even though the del ayed
store to S has already been encountered. The va-
lue assigned to Sis stored at the beginning of
state q. Al so, termnal T is cleared before the
start of state Q Finally, note how the swapping
of values of A and B occurs.

During the simulation, once a delayed store to a regis-

ter is specified, any further stores to the sane bits during

the sane state will cause a “SIMILTANEQUS STORE" war ni ng
nmessage to Dbe issued and the previously specified del ayed
store cancel ed. Such an error indicates an illegal attenpt
to sinultaneously store nultiple values into the sane regis-
ter. A set of actions in which such errors do not occur is

called a “conpatible set of actions.”

8.3.2 Timing of Operations and States

Al the operations in a state are considered as occur-
ring in parallel. Furthernore, all the actions in an opera-
tion occur in parallel. Hence, the tine required for a
state is just the tine required for the |ongest action in-
* voked by the state. This tinme is one by default and nmay be
i ncreased by the TIME action. Note that the tinmes required
for the actions in a state may vary wi dely, but ALL the ac-
tions will be conpleted before the system noves to the next
state, even if this in sone sense inplies that a |arge por-

tion of the systemis "idle"™ nuch of the tine.

The designer nmay specify that the actions in a state
occur sequentially, rather than in parallel, by splitting
the state into a sequence of states. This idea is illus-

trated in the exanpl e bel ow.

- 65 -

Exanpl e
REQ STER Al 101, B[101, OVERFLOW
MEMORY MEM[1024, 101.
OPERATION ADD = [OVERFLOW CON A <- A(+)BI,
STORE = [MEMIA] <- A TIME 21.
In the above specification, one unit of tinme is inplied

for operation ADD while two units of tine are specified for

STORE. If the +two operations are executed in parallel in
one state,

ADD, STORE/ ,
then the tine required for the operations is two units. The

designer may alternately specify that ADD and STORE are exe-

cuted sequentially by breaking the state into a sequence of

two states, as in

ADD) STORH
This sequence will take three units of tine.
Note that the choice of parallel vs. sequenti al execu-
tion will have a marked effect on system operation. In the
exanpl e above, suppose that A and B originally contained

1005 and 10D10, respectively. Then in the first case, oper-
ation STORE accesses the old value of A and stores 10D5 in
MEM[5]1, while in the second case, STORE accesses the new va-

lue of A and stores 10D15 in MEMI[15].

The technique of splitting states can be used in the
description of a system with a nulti-phase clock. Each
clock cycle may be specified as a sequence of states, wher e

each state represents one phase, as suggested bel ow

CONTRCL

" PHASE 1 PHASE 2 . PHASE | "
STATE1: ACTS11/ ACTS12/ . . . 7 ACTSI11/
STATE2: ACTS21/ ACTS22/ . . . /7 ACTS?21/
STATEN. ACTSN1/ ACTSN2/ . . . / ACTSNI/.

Al'ternately, a designer may describe a systemwth a multi-
phase clock as two interpretively |inked machines (next sec-
tion); a state in the higher |evel machine would correspond
to one clock cycle, while a state in the |ower |evel nachine
woul d correspond to one phase. This illustrates the freedom

the designer has in choosing the |evel of detail and the

significance of a "state" in a DDL-P description.

8.4 | NTERPRETI VELY LI NKED MACHI NES

| |
| control-decl ::= |level-decl { |evel-decl }x%%% . |

In general, a DDL-P description may have several (up to

seven) CONTROL sections. Each CONTROL section defines a

- 67 -

conplete finite state machine. The several machi nes have a
hierarchical relationship; the first nmachine defined is at

the highest or top level, level 1. The succeedi ng machi nes

are at level 2, level 3, etc.

The higher level nmachines are typically control nma-
chines which set terminals serving as control li nes. The
lower level machines test these terminals and "interpret"
t hem executing the indicated functions. Hence, the ma-

chines are said to be "interpretively I|inked nachines?

During the sinulation, control nust pass from state na-
chine to state machine in some orderly fashion. The LEVEL

action aids in this process. When the state action

LEVEL
is encountered in a machine, then control will pass to the
next higher level nachine at the end of the current state,
AFTER the new val ues of registers changed at this |evel have
been stored, AFTER termnals set at this |evel have been
cl eared, and BEFORE sinmulation of the next state at this

| evel begins. A LEVEL in the top level machine is ignored.

Conversely, control will pass unconditionally to the
next |ower |evel machine, if such a level exists, at the end

of the current state, AFTER all actions in the current state

- 68 -

have been executed, BEFORE the new values of registers
changed at this |level have been stored, and BEFORE term nal s

set at this | evel have been cl eared.

Sinul ation always begins in the level 1 machine. By
defaul t, the very first state to be executed at each |eve
will be the first state 1in the corresponding |evel declara-

tion, al though the designer may specify different starting

states on each level at sinmulation tine. The sinulation of
the finite state machine at |evel i (call it machine(i))
will then proceed as follows:

1. If a higher level nachine exists (if i>1), then

machine(i-1) passes control to nmachine(i) at the

end of a level i-lI state.

2. The simulator executes the actions for the next
state in machine(i) (where the next state was pre-
viously determ ned). It conpletes imediate
stores while saving del ayed-store values as dis-
cussed in Section 8.3.1. The sinul ator also det-

ermnes the next state for machine(i).

3. At the end of this state (but BEFORE register va-

lues are stored), machine(i) passes control to na-

chine(i+1). |If there is no such nmachine, then the
sinmul ator checks to see if it should halt or do
any 1-/0. (These actions are requested by the de-

signer at sinulation tineg; see DDL-P Command Lan-

quage Manual.) Note that register values accessed

by lower |level nmachines will not refl ect changes
by delayed stores at level-i in the previous

state, the new values not yet having been stored.

4, \When control is returned to machine(i) fromma-
chine(i+1) or fromsinulator 1/0 activity, t hen
machi ne(i) stores the new register values given in
the previous level-i state, also clearing term -

nals that were set in that state.

5. If a LEVEL conmand was not encountered in the pre-
vious level-i state, then machine(i) proceeds with
the execution of the next level-i state. Q her -
W se, machi ne(i) passes control to machine(i-1).
In the latter case, machine(i) renenbers what the
next |evel-i state wll be when control is re-

turned from machine(i—-1).

The systemis considered as being in one state in each

machi ne at any given timne. The "total state" of the system

- 70 -

is then a list of states, with one state from each machine.
An exanple of a three-level control declaration is given be-
low, followed by a description of the sinulation of state A
The simulation begins at level 1 in “total state” aA:cC:E.

CONTROL A: COPA, ->Brs

B. OPB, ->A/
CONTROL C. OPC, ->pr

D. OPD, ->c, LEVEL/
CONTROL E: OPE, ->Fr

F. OPF, LEVEL, ->E-/.

Execution of State A

9

AL STATE

Start at level 1 in total state A/ACE
Execute OPA, next nmachine(l) state will be B.
Drop to level 2.

Execute OPC, next machine(2) state will be D
Drop to level 3.

- E:

=

=

=

=

-E. Execute OPE, next machine(3) state will be F.
. E Check for_ simul ator 1,0 or halt.

E: Store registers, clear termnals from OPE
F Execute OPF, next machine(3) state will be E
F Check for_ simul ator 1,0 or halt.

F: Store registers, clear termnals from CPF.
E: Rise to |level 2.

E Store registers, clear termnals from OPC.
E
E
E
E
F
F
F
E

Execute OPD, next machine(2) state will be C
Drop to level 3.

Execute OPE, next machine(3) state will be F.
Check for simulator 1,0 or halt.

Store registers, clear termnals from OPE.
Execute OPF, next machine(3) state will be E
Check for simulator 1,0 or halt.

Store registers, clear ternmnals from OPF.
Rise to |level 2.

Zr22EE>r 22X Z2EPEPRrrrrx X x>
ivjvivivivivilvie @) OOOOOQO 00 000

Store registers, clear termnals from OPD
Rise to level 1.

>
No
|'|'|"

- 71 -

A CE Store registers, clear termnals from OPA,
conpleting sinulation of state A Si mul ati on of

state B will proceed in simlar fashion.
State Sesuencins Reqgisters. Each finite state machine
may have its own state sequencing register (s.S.R.). The

first SSS.R declared is associated with the highest |evel

machi ne, the second S.S.R declared is associated with the

| evel -2 nmachine, etc.

Restrictions. The following restrictions apply in the

specification of multiple-level control declarations:

I. A finite state machine should not nodify the state
sequencing register for a |ower |evel machi ne.
For exanple, the machine at |level 2 should not mo-

dify the SSS.R for level 3.

2. Al state gotos "->"and subroutine calls n=>»
must point to states within the sanme finite state
machi ne. It is not possible, for exanple, to use
one group of states as a subroutine in two differ-
ent finite state nachines. The following is not
permtted:

CONTRCL A1 ->cs "<-- ERROR"

B ->A
CONTROL C ->Brs. "<-- ERRCR'

- 72 -

The LEVEL action should not appear in a state
which is in a subroutine or which contains a su-
broutine call "=>". If this rule is violated, un-

predi ctable simulator errors nay occur.

Chapter 9
EXAMPLES

Five conplete DDL-P descriptions are now presented with

brief discussions.

The first nachine plays Blackjack by dealer's rules,
accepting cards until its score exceeds 16, and counting the
first Ace as eleven unless that causes itsS score to exceed
21. The nmachine shows its status in termnals HT, STAND,
and BROKE. Card values are entered through termnal VALUE

and YCRD is a "card ready" strobe.

Exanmple 1

" BLACKJACK MACH | NE. "
REG STER SCOREI[S5], CARDBUFI[5], FF.
TERM NAL HT, BROKE, STAND,

VALUE[1:5] = INPUT(1,VALUE),

YCRD = INPUT(1,YCRD),
YL17 = SCORE<17, YL22 = SCORE<22,
NACE = CARDBUF#1.
OPERATI ON
TPT = [CARDBUF <- 5D101],
TMI = [CARDBUF <- 5D22]1,
TVC = [CARDBUF <- VALUE|,

IHIT = [HIT=1B1],
| STD = [STAND=1B1], IBRK = [BROKE=1B1],
CLS = [SCORE <- 5DO0],
ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL 51,
KFF = [FF<-1Dp0]}, JFF = [FF <- 1D1 1
CONTRCL
A CLS, KFF, ->Br
B: IHIT, TVC
IF YCRD THEN ->¢ ELSE ->B ENDIF/

c: IF YCRD THEN ->¢ ELSE ->D ENDIF/
D: ADD, | F NACE+FF THEN - 3F
ELSE ->E ENDIF/

E JFF, TPT, ->pr
F: IF YL17 THEN ->B ELSE ->G ENDIF~/
G IF YL22 THEN ->K ELSE ->H ENDIF/
H. KFF, TMI

IF FF THEN ->p ELSE ->J ENDIF/
J: | BRK,

IF YCRD THEN ->A ELSE ->J ENDIF/
K: | STD,

IF YCRD THEN ->A ELSE ->K ENDIF/.$

The second machine is identical to the first except
that states F, G H J, and K have been conbined into two
st at es, F and JK Thi s exanpl e shows nested conditiona
state actions, and also suggests the flexibility possible in

describing a system asa finite state nachine.

- 75 -

Exanple 2

" BLACKJACK MACHI NE. "
REG STER SCORE[5], CARDBUFI[5], FF.
TERM NAL HT, BROKE, STAND

VALUE[1:5] = INPUT(1,VALUE),

YCRD = INPUT(1,YCRD),

YL17 = SCORE<17, YL22 = SCOREK22,
NACE = CARDBUF#1.
OPERATI ON
TPT = [CARDBUF <- 5D101},
TMI = [CARDBUF <- 5D22],
TVC = [CARDBUF <~ VALUE|,
IHIT = [HIT=1B1 |,
| STD = [STAND=1B1], IBRK = [BROKE=1B1],
CLS = [SCORE <- 5DO0],

ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL 51,
KFF = [FF<-1D0], JFF = [FF <- 1D1 |

CONTRCL
A CLS, KFF, ->Brs
B: IHIT, TVC, |F YCRD THEN ->c ELSE ->B ENDIF/
c: IF YCRD THEN ->c¢ ELSE ->D ENDIF~/
D: ADD, |F NACE+FF THEN ->Fr ELSE ->E ENDIF/
E: JFF, TPT, ->p~s
F: IF YL17 THEN ->B

ELSE | F YL22 THEN ->Jk
ELSE | F FF THEN ->D ENDIF,
KFF, TMI
ENDIF ENDIF/
JKi I'F YL22 THEN | STD ELSE | BRK ENDIF,
I F YCRD THEN ->A ELSE ->JK ENDIF/.$

The third machine is functionally equivalent to the
first two, but its state is encoded in a state sequencing
register Q consisting of three J-K flip-flops. The char ac-
teristic functions and input equations for register Q are

given in operation NS. The next state in this machine is

then inplied by the results of operation NS

Note the heavy use of subscript concatenation (e.g.

"Q1") in operation NS.

Exanmple 3

" BLACKJACK MACH | NE. "
REA STER SCORE[5], CARDBUFI[S5], FF, # al3:11].
TERM NAL HT, BRCKE, STAND, TMP
JI3:11, KI[3:1],
VALUE[1:5] = INPUT(1,VALUE),
YCRD = INPUT(1,YCRD),
YL17 = SCORE<17, YL22 = SCOREK22,
NACE = CARDBUF#1.
OPERATI ON
NS = [TMP = YCRD,
J1= —Q3*¥(FF+NACE)+-Q2%¥-Q3,
K1= Q2¥-Q3%-TMP + -Q2%Q3 + Q3¥-YL17*YL22,
Qi<- CASE J1 CON k1 DO 1pg DO 1D1
DO -@1 DO Q1 ENDCASE,
J2= Q1¥Q3*¥FF + Q1*¥-Q3*TMP,
K2= Q1¥Q3,
Q2<- CASE J2 CON K2 DO 1po DO 1p1
DO -q2 DO (2 ENDCASE,
J3= -Q1¥Q2,
K3= 33 + -Q*TMP + Q2*YL17 + Q1¥-Q2%FF,
Q3<- CASE J3 CON K3 DO 1pg DO 1D1
DO -@3 DO (B ENDCASEI,

TPT = [CARDBUF <- 5D10],

TMI = [CARDBUF <- 5D22],

TVC = [CARDBUF <= VALUH,

IHIT = [HIT=1B1],

I STD = [STAND=1B1], IBRK = [BROKE=1B1],

CLS = [SCORE <- 5p0],

ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL 51,

KFF = [FF<-1D0}, JFF = [FF <- 1D1 1 .
CONTRCL

A(0): CLS, KFF, Ns/

B(1): IHIT, TVC, NS/

Cc(3): NS~/

D(2): ADD, NS/
E(6): TPT, JFF, NS~/
FG(7): NS/

H(5): TMI, KFF, Ns/
JK(4): |F YL22 THEN | STD ELSE | BRK ENDIF, NS/.$

- 77 -

The fourth exanple has two finite state nachines. The
top | evel machine sinply sets terminals which are inter-
preted by the | ower |evel machine. On receipt of a signa
START, the system conputes the sum of the 256 words of NMEM

Note the destructive-read/restore sequence sinulated by the

| ower | evel nmchine.

Exanple 4

* EXAMPLE OF | NTERPRETI VELY LI NKED MACH NE *
REG STER At 161, B[161, ADDRIS8].
MEMORY MEM[0:255, 161.
TERM NAL YCLR, YINC, YADD, YREAD

NDONE = ADDR $ 255,

START I NPUT (1, START).
OPERATI ON CLEAR [A <- 16p0, ADDR <- 8DO],
INC = [ADDR <- ADDR(+)8D1 TAIL 81,
ADD = [A <- aA(+)B TAIL 161,
READ = [B <- MEMIADDRI,

MEM[ADDR] = 16DO0},

RESTORE = [MEMI[ADDR] = BI.

CONTRCL
P1: |F START THEN YCLR @, YREAD a, ->P2
ELSE ->P1 ENDIF~/
P2: YADD a,
| F NDONE THEN YINC ii), YREAD @, ->P2

ELSE ->P1 ENDIF/
CONTRCL
al: |F YINC THEN | NC ENDIF,
IF YCLR THEN CLEAR ENDIF,
| F YADD THEN ADD ENDIF,
| F YREAD THEN ->q2
ELSE ->a1, LEVEL ENDIF/
READ, ->aQ3/

RESTORE, LEVEL, ->aqi1/.$

B

- 78 -

The |last exanple shows terminals and operations wth

paraneters. The concatenation in termnals SUM and AND en-
sures that the results are at | east 16 bits |ong, even for
short operands. Note that the actual paraneters may be of
varying |engths, and the fornal parameters of EXM nmay be

used as the actual paraneters of SUM and AND.

Exanple 5

MEMORY RI[1:161.
TERM NAL s1[1:21=INPUT(1,S81),
S2[1:2]=INPUTC(1,S2),
L1[1:12]=INPUTC1,L1),
L2[1:12]=INPUTC(1,L2),
SUMCA1,A2)[1:16]1=C16D0 CON (A1(+)A2)) TAIL 16,
AND(A1,B2)[1:161=C16D0 CON (a1 ¥ B2)) TAIL 16
OPERATI ON EXM(X,Y)=I
R=SUM(X,Y), OUTPUT(1,R),
R=AND(X,Y), OUTPUT(1,R)]1.
CONTROL Q:EXM(S1,S2),EXM(L1,L2),->Q/.$

- 79 -

Chapter 10
HOW TO RUN DDL- P

The procedure for using DDL-P should be roughly

same on any TOPS-20 installation;

differ.

t ypi cal .

The procedure described below for Stanford LOTS

Prepare the DDL-P description. The file contain-
ing the description may have any valid file name
with the follow ng restrictions:

i) The file name (excluding extension) must
have no nore than six characters.

ii) The extension nust have no nore than three
char act ers.

Type the RUN conmand for DDL-P. At Stanford LOTS,
the command is
a<sources.ddl>ddl

DDL-P will pronpt for INPUT and OUTPUT file nanes.
It a directory specification is to be supplied
with a file name, then it nust be in the formof a
PPN in brackets following the file name, e.g.,
DESC.DDL[4,524]
The INPUT file is the DDL-P description. A list-
ing is witten to the OQUTPUT file; also, any sinu-
lation-tine disk output goes to the sane file.

DDL-P will now ask for a third file nane
"DDLINI = ', At Stanford LOTS, respond with the
file nane

DDL.INI[4,1550]

- 80 -

t he

only the file nanes should

is

After pronpting for the above file nanes, DDL- P
will type
TO CONTINUE, H T THE RETURN KEY #

and wait for a line of input. Just press <RETURN>
to get started.

If there are no fatal errors, DDL-P will request
the radix to be used for all output. Choose base
2, 4, 8, 10, or 16.

The ">" pronpt will be printed indicating readi-
ness to accept sinulation conmands. Use of the
DDL-P Sinulator is described in DDL-P Command Lan-
quage Manual [21.

- 81 -

Chapter 11
SAMPLE COWPI LER OQUTPUT

The listings generated by the DDL-P conpiler for two
exanpl es from Chapter 9 are shown on the next two pages
SIMADDR is an internal |ocation counter; t he val ues of s§I-
MADDR included in the listing are useful for pinpointing the

pl aces where simulation errors occur.

- 82 -

S| MADDR

0 00100 " BLACKJ ACK MACHI1 NE. "
00200 REG STER SCORE[51], CARDBUFIS5]), FF.
00300 TERM NAL HT, BROKE, STAND,
00400 VALUE[1:5] = INPUT(1,VALUE),

9 00500 YCRD = INPUT(1,YCRD),

18 00600 YL17 = SCORE<17, YL22 = SCORE<22, ,

30 00700 NACE = CARDBUF#1.

37 00800 OPERATI ON

00900 TPT = [CARDBUF <- 5D10],

41 01000 TMI = [CARDBUF <~ 5D22],

45 01100 TVC = [CARDBUF <- VALUEI,

50 01200 IHIT = [HIT=1B1],

54 01300 | STD = [STAND=1B1], IBRK = [BROKE=1B1],
62 01400 CLS = [SCORE <- 5D01],

66 01500 ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL 51,
76 01600 KFF = [FF<-1D0], JFF = [FF <- 1D1 |
84 01700 CONTROL

86 01800 A CLS, KFF, =->Brs

96 01900 B: IHIT, TVC,
100 02000 IF YCRD THEN ->¢ ELSE ->B ENDIF/

120 02100 IF YCRD THEN ->c ELSE ->D ENDIF/
140 02200 ADD, |F NACE+FF THEN ->F
151 02300 ELSE ->E ENDIF/

o

165 02400 E: JFF, TPT, ->bpr
175 02500 F: IF YL17 THEN ->B ELSE ->G ENDIF/
195 02600 G IF YL22 THEN ->K ELSE ->H ENDIF/
215 02700 H: KFF, TM,
219 02800 IF FF THEN ->p ELSE ->J ENDIF/
239 02900 J: | BRK,
241 03000 IF YCRD THEN ->A ELSE ->J ENDIF/
261 03100 K: | STD,
263 03200 IF YCRD THEN ->A ELSE ->K ENDIF/.$
END OF TRANSLATI ON, 0 FATAL ERROR(S).
MEMORY USE:
ZSY: 31 QUT OF 1001 SYMBOL TABLE ENTRIES
ZST: 26 QUT OF 5000 STRING PO NTERS
ZI: 413 OQUT OF 22001 WORDS
ZC: 91 OQUT OF 4650 CHARACTERS
ZB: 107 QUT OF 71229 BITS

S| MADDR

0 00100 " EXAMPLE OF | NTERPRETIVELY LINKED NMACHI NE *
00200 REG STER aAl161], B[161], ADDRIS].
00300 MEMORY MEM[0:255, 161.
00400 TERM NAL YCLR, VYINC, YADD, YREAD,

00500 NDONE = ADDR # 255,
6 00600 START = |INPUT (1, START).
16 00700 OPERATION CLEAR = [A <- 16D0, ADDR <- 8DO],
23 00800 INC = [ADDR <- ADDR(+)8D1 TAIL 81,
32 00900 ADD = [A <- a(+)B TAIL 161,
42 01000 READ = [B <- MEMIADDRI],
48 01100 MEMI[ADDR] = 16DO01,
54 01200 RESTORE = [MEM[ADDR] = BI.

61 01300 CONTROL
63 01400 P1: |IF START THEN YCLR a, YREAD a, ->p2

75 01500 ELSE ->P1 ENDIF/

89 01600 P2: YADD a,

92 01700 IF NDONE THEN YINC @, YREAD @, ->p2
104 01800 ELSE ->P1 ENDIF/

118 01900 CONTROL

121 02000 Q1: |F YINC THEN I NC ENDIF,

132 02100 IF YCLR THEN CLEAR ENDIF,

143 02200 | F YADD THEN ADD ENDIF,

154 02300 I F YREAD THEN ->q2

160 02400 ELSE ->Q1, LEVEL ENDIF/
175 02500 Q2: READ, ->a3/

183 02600 03: RESTORE, LEVEL, ->q1/.%
END orF TRANSLATI ON, 0 FATAL ERROR(S).

MEMORY USE:

ZSY: 20 QUT OF 1001 SYMBOL TABLE ENTRI ES
ZST: 277 QUT OF 5000 STRI NG PO NTERS

Z1: 322 QUT OF 22001 WORDS

ZC: 68 QUT OF 4650 CHARACTERS

ZB: 4238 QUT CF "71229 BI TS

Appendi x A
ERROR MESSAGES

The error messages issued by the DDL-P conpiler are
l'isted bel ow, along with their severity codes. When the
conpiler detects errors in the DDL-P description, DDL- P

lists the appropriate error nmessage both at the teletype and

in the listing file.

DDL-P will halt conpilation imediately if an error of
severity ABORT appears. Such an error occurs when DDL-P
“runs out of nenory. If FATAL errors are detected, the com
pilation will proceed to conpletion, but sinulation will not
be al | owed. If the nost severe errors are WARN NGS, t hen
simulation wll be allowed.

A brief discussion of a few of the errors follows the

l'ist.

fatal Syntax error

war ni ng Il egal character

war ni ng Input line longer than 132 characters

fatal Constant too |arge

fatal Il egal nunber length spec. (zero or >256)
f at al Deci mal nunber may not be left-justified

f at al Illegal char. or digit of wong radix in no.
fat al Digit is of inproper radix

- 85 -~

war ni ng
fat al
fat al
fat al
fatal
fat al
fat al
war ni ng
fatal
fatal
fat al
fatal
fatal
fatal
fatal
fat al
fatal
fatal
fatal
fatal
fatal
fat al
fatal
fat al
fatal
fat al
- fatal
fatal
fat al
fatal
fatal
fatal
war ni ng
war ni ng
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fat al
fatal
fatal
fatal
fatal
fat al

"END" not expected here
"THEN" not expected here
"ELSE" not expected here
"ENDIF" not expected here

DO* not expected here
“ENDCASE” not expected here
“;m not expected here
u 11 not expected here
Undecl ared identifier
Mul tiply-defined identifier
Too many di mensions (just 2 allowed)
This identifier may not be subscripted
Two- di mensi onal array requires subscript
This identifier may only have 1 subscript
Field can’t be used to denote range of words
Subscripting nested too deeply (>10 | evels)

I mproper field or access to non-existent bits
Too many dinmensions ¢>2) or invalid field
Formal paraneter subscripted
Predef ined term nal subscripted
More than 63 argunents
M ssing argunent i st
Wong nunber of argunents
This identifier may not have argunents
This identifier not allowed in expression
Qperation identifier not allowed in expr.
Qut put operation not allowed in expression
Need >1 case in conditional expression
Constants required in field in declaration
State sequencing register too big
State sequencing reg. can’t have 2 di mensions
Predefined term nal may not have 2 dinensions
Del ayed store will be changed to i mediate
I mediate store will be changed to del ayed
More than two-part concatenation
Formal paranmeter may not appear in 1s/0 |ist
Qperation identifier not allowed in 1/0 |ist
Predefined termnal not allowed in input I|ist
| mproper | abel (wong type)

Il egal use of |abel defined in other section
Undefined state |abel referenced
Undefi ned statenment |abel referenced
Assignnment to identifier of wong type
Operand nust be termnal (and not predefined)
No SSR specified for this I.L.M |eve
Value too big to fit into SSR
Same SSR val ue assigned to different states
Mre than 7 I.L.M |evels are not allowed

war ni ng "LEVEL" in top level I.L.M ignored

f at al Identifier nmust be an operation

f at al Identifier nmust be a state

fatal Too many conditional cases (try nesting)

f at al Conditionals nested too deeply (>10 | evels)
f at al Unexpect ed end of i nput

f at al Unexpected end of file or program

abort Internal error: parse stack overfl ow

abort Internal error: synbol table overfl ow
abort Internal error: menory overfl ow

The term "predefined termnal" refers to a termnal for

whi ch a function was specified in the TERM NAL decl arati ons
(Sections 6.2-6.3). An **argunent** is the sane as an "act ual

paraneter.**

The abbreviation "1.L.M." stands for "interpretively
I i nked machi ne," Section 8.4, while "ssr" stands for "state

sequenci ng register."

The nessage
SYNTAX ERROR
flags many kinds of errors in DDL-P descriptions. In case

of such errors, t he designer should refer to the DDL-P BNF

to determ ne the proper syntax.

DDL-P allocates table space of 2%%n words for a state
sequencing register of width n bits. The nessage

STATE SEQUENCI NG REG STER TOO BI G

- 87 -

will appear only if the register is wider than 35 bhits.
However, a MEMORY OVERFLOW problem s likely for state se-

guencing registers wder than, say, 10 to 12 bits.

The error nessage
MORE THAN TWO PART CONCATENATI ON
refers only to concatenation in the left hand side of an im
medi ate or delayed store ("= or "<-m), In general, an ar-
bitrary nunber of operands may be concatenated in Bool ean

expressi ons. (However, the width of the result nust not ex-

ceed 256 bits.1

If the error

TOO MANY CONDI TI ONAL CASES (TRY NESTI NG
~occurs (it won't unless the nunber of conditional cases is
well into the hundreds), then it nmay be corrected by nest-

ing, as illustrated below. The two exanples are equivalent,

but the one on the right uses nesting.

- 88 -

“NO NESTI NG'

CASE cl1:4]

3

R(
DO R(
DO Rr(
DO Rr¢
R(
R(

DO

DO

DO Rr(
DO Rr¢
DO
DO
DO

ENDCASE

1)
2)
3)
4)

" NESTI NG'

CASE cl1:2]
DO CASE cli3:4]
DO RrR(5)
DO R(C 6)
DO RC 7)
DO R(&)
ENDCASE
DO CASE cl3:4]
DO rR(C 9)
DO rRC10)
DO rRC11)
DO RrRC 8)
ENDCASE
DO CASE cl3:u]
DO rC13)
DO rRC14)
DO rRC15)
DO r(12)
ENDCASE
DO CASE ci3:u4]
DO rC 1)
DO rR({ 2)
DO RrRC 3)
DO r(C 0)
ENDCASE
ENDCASE

- 89 -

Appendi x B

DDL- P BNF
The conpl ete Backus-Naur Formfor DDL-P is |isted be-
| ow. Non-termnals are witten in lower-case |etters and
under scor e; "ddl_description"® IS a non-termnal, e.qg. Al l

other synbols are terminals except for the follow ng specia

synbol s ("meta-symbols"):

L REPLACEMENT SYMBOL - Left-hand side nay be
repl aced by right-hand side.

{1 OPTI ONAL STRING SYMBOL - String of synbols
encl osed in braces is optional.

{ Y*xx REPETI TION SYMBOL - String of synbols encl osed
may appear zero or nore tinmes in succession.

I CONCATENATI ON SYMBOL - Synbol on left nust be
concatenated with synbol on right (i.e., with no
i ntervening bl anks or end-of-1line).

| OR SYMBOL - This separates several right-hand

si des of productions.

- 90 -

In a DDL description, a comment is any string of sym
bol s except doubl e-quote (") encl osed in doubl e-quotes and
contained on one line, e.g., "TH SIS A COMENT". A conmment

nmay appear anywhere a blank is permtted.

The REGQ STER, MEMORY, TERM NAL, OPERATI QON, and CONTRCOL
decl aration sections may be terminated by "END"™ instead of

period ".". The underscore "_" may be used as the del ayed

store action in place of "<-»,

|etter = AIBICIDIEIFIGIHIIIJIRILIMI
NIOIPIQIRISITIUIVIWIXIYIZI
alblclidlelfliglhliljlklliml
nlolplglrislitiulviulxlylz
digit = 0111213141516171819
hex-di gi t = digit 1A 1B 1C 1D IE IF
octal -digit =0 bt 21314151617
quartal_digit ::= 0 1 1 1|2 }| 3
bi t =0
decimal -constant ::= digit { n digit }x*x
constant ::= deci nmal - const ant
| decimal-constant 1 B { 11 . } 1 bit
{0 bit Jxxx
| decimal-constant 1 Q { un . 1}
I I gquartal_digit
{ 1l quartal_digit }**x
| deci mal - const ant ns { n .}

Inoctal -digit
{ Il octal-digit }xxx

| deci mal -constant 11 D 11 deci mal - const ant
| deci nal - const ant [= R S (A
Il hex-digit

{ 1 hex-digit }*x=x

- 9 -

letter-or-digit ::=

identifier

field ::=

identifier-ref ::=

term nal -ref

ref erence

bool ean- exp

bool ean- exp

mnterm ::

product

conpl enent

reducti on

adj ust nent

o= letter {

o= {-} reduction { CON reduction

letter 1 digit

Il letter-or-digit }**x

bool ean- exp

identifier

identifier Il decinal-constant
identifier [boolean-exp |
identifier Il decimal-constant

[bool ean-exp
identifier [boolean-exp 11 bool ean-exp
identifier [boolean-exp , boolean-exp 1
identifier [field |
identifier Il decimal-constant [field 1
identifier [boolean-exp 11 field 1
identifier [boolean-exp , field 1
1= identifier (¢ bool ean-exp

{, boolean_expl}¥¥%)

identifier-ref | termnal-ref

o= mnterm { + nminterm }Ex*

pr oduct } %%

{ [+] product

} **%

conpl erent { * conpl enent

}RE%

: : = adj ust nent

| + RED adj ust nent
| * RED adj ust nent
T+ 1 RED adj ust nent
| (+) RED adj ustnent

c:=relation
| adj ustment EXT arithmetic-exp
| adj ustment TAIL arithnetic-exp
| adj ustment HEAD arithnetic-exp

- 92 -

]
I

relation ::= arithmetic-exp

arithnetic-exp (=) arithmetic-exp
arithnmetic-exp # arithmetic-exp
arithmetic-exp < arithnetic-exp
arithmetic-exp > arithmetic-exp
arithnetic-exp arithnetic-exp
arithnetic-exp arithnetic-exp

>
<

= { (=) } term
| arithmetic-exp (+) term
| arithmetic-exp (=) term

arithmetic-exp

term ::= reference
| INPUT(constant,identifier_ref
{,identifier_ref}**%)
| CASE bool ean-exp DO bool ean- exp
DO bool ean- exp
{ DO bool ean-exp }*** ENDCASE
| ¢boolean_exp¢ bool ean-exp ; bool ean-exp

{; boolean_exp} *¥¥%

| | F bool ean-exp THEN bool ean- exp

ELSE bool ean-exp ENDIF
| const ant
| ¢ bool ean-exp)

ddl_description ::= declaration {operation_decl}
- control -decl {$}

declaration ::= register-decl {memory_decl}
{terminal_decl]}
. menory-decl {terminal_decl}
| term nal -decl

regi ster-decl ::= REQ STER register-spec
{ , register-spec }#*xx .

regi ster-spec ::= {#} identifier
{ | {constant:) constant 1}
| identifier [{constant:1 constant |,
{constant:} constant |

i

nmenor y- decl MEMORY nenory-spec

{ , Menory-spec }xxx

menory- spec identifier {[{constant:} constant
| identifier [{constant:} constant

{constant:} constant

- 903 -

1}
1

t erni nal - decl TERM NAL terninal -spec

{ , termnal-spec }**x

identifier

{ [{constant:} constant 1 }
| identifier [{constant:} constant
{constant:} <constant 1

terni nal - spec

| identifier
{ (identifier {,identifier}*%x) }
{ [{constant:} constant] }
= bool ean-exp

oper at i on- decl .. = OPERATION operation-def
{, operation_def}*%%

operation-def ::= identifier
{ (identifier {,identifier}***) }
= [action {, action}***]

action .= identifier-ref {CON identifier_ref}
<- bool ean-exp
identifier-ref {CON identifier_ref}

= bool ean- exp
| identifier-ref @

| INPUT (constant , identifier-ref
{ , identifier-ref 3}*%%)
| QUTPUT (constant , reference

{ ,» reference }*%*%)
| identifier { (bool ean-exp

{ , boolean-exp }*%¥x%) }
| CASE bool ean-exp
DO action { , action }¥**x
{ DO action { , action }#¥% }%*%% ENDCASE
| ¢boolean_expt
action { , action }%*¥*%
{ ; action { , action }¥¥x |**x*
| I F bool ean-exp
THEN action { , action }¥¥x
{ ELSE action { , action }¥%¥% } ENDIF

| TIME bool ean-exp
| => identifier

| identifier : action
control -decl = level-decl { level-decl }*xx
| evel - decl ::= CONTROL state-def { state-def }**x

state-def ::= {identifier { (constant) } :}

{ state-action {, state-action}*** } v~

state-action ::=

identifier { (boolean-exp {,boolean_exp}***) }
identif ier_ref @
-> identifier
=> identifier
RETURN
CASE bool ean-exp
DO state-action {, state-action}***
{ DO state-action {, state_action}*%% }*¥x
ENDCASE
¢hoolean_exp¢ state-action {,state_action}**%
{; state-action
{, state-action}*** }%%%
| F bool ean-exp
THEN state-action {, state-action}***
{ ELSE state-action {, state_action}®%% }
ENDIF
LEVEL

REFERENCES

Arndt, RL. and Dietneyer, D.L. "DDLSIM--A Digital
Design Language Sinulator,”" Proc. National
Electronics Conf ., Vol. 26, pp. 116-118, Decenber
1970.

Cory, WE., Duley, J.R, and vanCleemput, WM DDL- P
Command _Lanquage Manual . Palo Alto: Stanford
Uni versity, Conputer Systens Laboratory, March 1979,
39 pp.

Dietnmeyer, D. L. and Duley, J.R "Regi ster Transfer
Languages and Their Translation® in Disital System
Design Automation:. _Lanquages, Sinulation and Data

Base. Wodland Hills, CA: Conputer Science Press,
Inc., 1975, pp. 117-218.

Di et neyer, D.L. Translation of DDL Descriptions of
Digital Systenms, ECE-77-13. Madi son: U. of
Wsconsin, Dept. of Electrical and Conputer
Engi neering, Septenber 1977, 46 pp.

Duley, J.R DDL—-—-A Disital System Desisn Lanquage.
Madi son: U. of Wsconsin, Ph.D. Thesis, 1967.

Duley, J.R and D etneyer, D.L. "A Digital System
Desi gn Language (DDL),"™ |EEE Trans. cComp. Vol. c-17
(Septenber 1968), pp. 850-861.

Duley, J.R and Dietneyer, D. L. "Translation of a DDL
Digital System Specification to Boolean Equations,"

|EEE Trans. cComp. Vol. C 18 (April 19693, pp.
305-313.

N, Daqital Design Language Transl ator--DDLTRN.

Madi son: U of Wsconsin, Dept. of Electrical and
Computer Engi neering, 13 pp.

-96 -

9. N, Disital Desisn lanquage Simulator--DDISIM Madison:
U of Wsconsin, Dept. of Electrical and Conputer
Engi neering, 36 pp.

10. Socares, L.ER An _Inplenentation of DPigital Desisn
Lanquage. Madi son: U. of Wsconsin, Dept. of
Electrical and Conputer Engineering, MS. thesis,
1970.

