
DDL-P COMMAND LANGUAGE MANUAL

W.E. Cory
J.R. Duley
W.M. vancleemput

. -

Technical Report No. 164

March 1979

This work was supported by the Joint Services Electronics Program
under Contract N-000 14-85-C-060 1.

DDL-P CQMMAND LANGUAGE MANUAL

V.E. CorY 2 J.R. Duley, KM. vancleemput

Technical Report No. 164

March 1979

Computer Systems Laboratory
Stanford University

Stanford, California 94305

ABSTRACT

This report describes the command language for the
simulator, associated with DDL (Digital Design Language).

INDEX TERMS: Design automation, computer-aided design,
hardware description languages, DDL, digital
design language.

- -j-j -

TABLE OF CONTENTS

Chapter page

1. INTRODUCTION . 1

2. BOOLEAN EXPRESSIONS 3

3. COMMAND SENTENCES 6

Commands . 7
DISPLAY and PRINT 7
DUMP . 8
SET . 8
CLEAR . 9
RUN . 9
STEP . 1 2
STOP
Halt by ;ESCAPE>..................................

13
13

EXIT . 1 5
Conditional Command 15
Sentence . 16

4. SIMULATION-TIME ERRORS 19

Error in Command Sentence Syntax 20
Error During Command Execution 21
Error During Simulation-Time Input 21
Error During Simulation 22

5. SAMPLE SIMULATION 23

Appendix page

A. ERROR MESSAGES 31

- iii -

B. DDL-P COMMAND SENTENCE BNF 34

References . 38

- iv -

Chapter 1

INTRODUCTION

This report is one of two manuals describing a compi-

ler and simulator for DDL-P, a subset of DDL (Digital Design

Language). DDL is a language for describing the behavior of

digital systems at the Boolean equation, register transfer,

and algorithmic levels. It uses a finite state machine no-

tation and it may be used to describe systems over a wide

range of levels.

DDL was originally formulated by Duley at the Univer-

sity of Wisconsin in 1967 15, 6, 31. A translator and simu-

lator for a subset of DDL were implemented in FORTRAN il, 7,

4, 8, 9, 101. In 1971-73, J. Duley, B. Clark, and J. Welsch

implemented an interactive simulation system for a subset of

DDL (with modified syntax) on the HP 2100 system in HP-Algol

at Hewlett-Packard Laboratories. The DDL-P language, compi-

ler, and simulator are based on this HP implementation. In

order to enhance portability the system was rewritten in

PASCAL on the DEC-20 system under the TOPS-20 Operating Sys-

tem at Stanford University. Small changes were made to the

-l-

syntax, mainly to enhance the readability. The system will

still accept the input format of the original HP-Algol ver-

sion.

This report describes the usage of the DDL-P simulator

as it was implemented at Stanford. The command language is

described in detail and several examples are given to clar-

ify the constructs. The appendices give a list of error

messages as well as a formal BNF definition of the command

language. A companion report describes the DDL-P language

and the DDL-P compiler system [2I.

- 2-

i
I
I
I
I
I
I
I
I
I
I
I
I
I
I

* I-
I
I
I
I
I
I
I
I
I
I
I

Chapter 2

BOOLEAN EXPRESSIONS

boolean-exp ::= minterm C + minterm 3***

minterm ::= product 1 [+I product I***

product ::= complement 1 * complement 3***

complement ::= {-} relation

relation ::= arithmetic-exp
I arithmetic-exp (=> arithmetic-exp
I arithmetic-exp # arithmetic-exp
I arithmetic-exp < arithmetic-exp
I arithmetic-exp > arithmetic-exp
I arithmetic-exp >= arithmetic-exp
I arithmetic-exp <= arithmetic-exp
I AT identifier

arithmetic-exp ::= 1 C-1 1 term
I arithmetic-exp (+I term
I arithmetic-exp C-1 term

term ::= constant
I reference
I TIME
I C boolean-exp 1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

In the command language, Boolean expressions may appear

in SET, DISPLAY, PRINT, and conditional commands. The syn-

tax for comments, constants, identifiers, and facility re-

- 3-

ferences in the command language is identical to that in

DDL-P descriptions. This syntax is shown in Appendix B for

reference.

The syntax for Boolean expressions in the command lan-

guage is similar to the syntax for Boolean expressions in a

DDL-P description. The following operators and constructs

are NOT available in the command language:

INPUT function
Conditional expression constructs

CASE x DO a DO b . . ENDCASE
IF x THEN a ELSE b ENDIF
txC a; b; . . .

CON
+ RED * RED [+I RED (+I RED
EXT TAIL HEAD

The remaining operators are available as shown in the

BNF above. In addition, two new constructs are permitted:

1. TIME

is a string of length 16 bits with value equal to

the number of units of time the DDL-P system has

been simulated. TIME is initially zero and is in-

cremented at the end of each state in the 1owes.t

level finite state machine. Recall that the size

of this increment may be specified in the DDL-P

description by the TIME action.

- 4 -

2. AT state-name

is a string of length one bit with value 1Bl if the

state given by "state-name" is the current state,

and value 1BO otherwise.

Examples of Boolean Expressions in the Command Language

16D17
(A*B>(=)'7 + X>Y + PROD(X,2)>25
MEM[IR[9:Ol~+>R~IR[l2:lO~~~
-AT P
M[MARl(=)HALT + AT ERR + TIME>100

- 5 -

Chapter 3

COMMAND SENTENCES

I
I I

I
I sentence ::= run-comd 1 AND other-command I*** . I
I I other-command 1 AND other-command I*** . I
I I EXIT . I
I I
I other-command ::= I
I u-command I
I I IF boolean-exp THEN u-command {, u-command}*** I
I I
I u-command ::= DISPLAY { (reference {,reference}*** 1 1 I
I I PRINT 1 (reference C,reference)*** 1 1 I
I I DUMP I
I I SET identifier-ref = boolean-exp I
I I CLEAR I
I I STEP I

* I- I STOP I
! I

After a DDL-P description has been compiled with no fa-

tal errors and the designer has selected the number base for

use in output, then the simulator indicates its readiness to

accept commands by typing '*>" at the teletype. The designer

may then use command sentences to examine or modify facility

contents and simulate the DDL-P system.

- 6-

The individual commands are discussed first, followed

by a description of the constructs for combining several

commands into a single command sentence.

3.1 COMMANDS

3.1.1 DISPLAY and PRINT

The DISPLAY command types the current values of the

named facilities on the teletype, along with the current to-

tal state (location) and time. Any valid register, memory,

or terminal reference may appear in the DISPLAY list. This

list may be omitted altogether, in which case the current

total state and time are typed.

. - Examples

>DISPLAY(LEFT,RIGHT).
*TIME=1110 STATE=P: LEFT=0000000000000010

RIGHT=00000000000001Ol
>DISPLAY(SCORE[2:41, CARD[LEFT:RIGHTl, SUM(2,2)).
~TIME=lllO STATE=P: SCORE~10:100~=110

CARD[lO: lOl]=lOOl SUM=0000000000000~00
>DISPLAY.
*TIME=1110 STATE=P:
>

The PRINT command is identical to the DISPLAY command,

except that the output goes to the listing file on disk.

-7-

3.1.2 DUMP

The DUMP command prints in the listing file the current

values of all registers, memories, and terminals which

weren't assigned functions in the TERMINAL declaration. A

DUMP is equivalent to a PRINT with all these facilities in

the output list.

The designer may use the SET command to set the values

of registers, memories, and terminals which weren't assigned

functions in the TERMINAL declaration. The SET command

works like the "=** immediate store action in an OPERATION;. -
when SET is executed in a command sentence, the facility re-

ferenced on the left side is set immediately to the current

value of the Boolean expression on the right side.

Examples

SET CARDBUF=5DG
SET SCORE[l:21 = At3:41 + SCOREtl:21

If the facility written is a register for which a de-

layed store has not been finished, then the simulator will

issue a SIMULTANEOUS STORE warning and cancel the delayed

store.

-8-

3 . 1 . 4 CLEAR

The CLEAR command resets all registers, memories, and

terminals to zero. This action occurs immediately and un-- -

conditionally whenever CLEAR appears anywhere in a command

sentence, even if the CLEAR is in a conditional command.

HENCE, WHEN USED, THIS COMMAND SHOULD APPEAR BY ITSELF IN

THE COMMAND SENTENCE, even though this restriction is not

enforced by the simulator.

All unfinished delayed stores will be canceled when a

CLEAR is executed.

3 . 1 . 5 RUN. -

I
I

I
I

I run-comd ::= RUN { FROM identifier {:identifier}*** 1 I
I C TO identifier {:identifier}*** 1 I
I I

The RUN command initiates simulation of the DDL-P sys-

tem. The designer may specify the initial and/or final lo-

cations of the simulation in the command. A location is a

list of states separated by colons *':'*, where the list con-

tains zero or one state from each finite state machine in

- 9 -

the DDL-P description. State sequencing registers will be

initialized automatically before the simulation begins.

The RUN command has four forms, as follow:

1. RUN FROM location

The simulation starts in the indicated location.

If some finite state machine has no state listed

in the location given, then the initial state for

that machine will be the first state in the cor-

responding CONTROL declaration. The simulation

will begin in the top level machine.

. -

2. RUN

Simulation starts in the current state, proceeding

from the point where simulation was last sus-

pended. If there was no previous simulation, then

the initial location is the first state of each

finite state machine.

The exception is that if this command follows a

RUN FROM command which did not execute because of

an error in the command sentence, then the initial

location will be the location given in the previ-

ous RUN FROM.

- 10 -

3. RUN TO location

Simulation begins in the current state as above

(the exception noted above also applies here), and

proceeds until the system is in the indicated lo-

cation. The state actions for this last location

will be executed before the simulation ends.

If the initial state is the same as the final

state, then no simulation will take place.

4. RUN FROM location1 to location2

Simulation begins in location1 and proceeds until

the system is in location2.

During a simulation, the command sentence initiating. -
the simulation will be rescanned and executed at the end of

each state in the lowest level finite state machine. Hence,

commands for conditionally halting simulation or for set-

ting, displaying, or printing facility values during the si-

mulation may be included in the command sentence with the

RUN command. When the simulation is finished, the simulator

will type **>" at the teletype, indicating its readiness to

accept a new command sentence.

- 11 -

Examples

RUN
RUN FROM Pl:Zl
RUN TO JK
RUN FROM A TO JK

After a run-time error, the initial location in a RUN

command must be given explicitly by "FROM location**. The

simulator variable TIME is reset to zero when a "RUN FROM.."

command is issued.

When issuing a "RUN FROM" command, the designer should

be careful to ensure that the system is properly initial-

ized. In particular, beware that previously scheduled de-

layed stores may be carried out before the simulation is

restarted (these may be canceled by CLEAR or SET).

3 . 1 . 6 STEP

The STEP command effects simulation of the system for

one state. If the system contains several finite state ma-

chines, then one state in the lowest level machine is simu-

lated; states from higher level machines may be simulated

first, depending on the starting point of the simulation

and/or the presence of LEVEL actions in previously simulated

states.

- 12 -

The STEP command may appear in a sentence with a RUN

command, in which case the RUN command determines the start-

ing location of the simulation. Otherwise, simulation

starts from the current location.

3.1.7 STOP

The STOP command halts the simulation in progress.

This command typically appears in a conditional command

(Section 3.21, so that the simulation will end when the com-

mand sentence is rescanned and some condition is satisfied.

A STOP only ends the simulation; it does not prevent

execution of the remainder of the command sentence. The. -
STOP, when executed, overrides a RUN or STEP command in the

same command sentence.

3 . 1 . 8Halt & <ESCAPE>

During a simulation, the designer may press the

<ESCAPE> key to cause the simulator to halt and accept a new

command sentence. Note that the <ESCAPE> is not a command

one includes in a command sentence; rather, it is a way of

interrupting a simulation, forcing a halt.

- 13 -

After an <ESCAPE>, the simulator may halt in any of

three ways:

1. Normally, the simulator will halt at the end of

the current state in the lowest level finite state

machine. The halt will occur just after the last

command sentence has been rescanned in the normal

way.

2. In case of a run-time error, the simulator Eaill

halt immediately after issuing a run-time warning

or error message if the designer has pressed

<ESCAPE>.

3. If the simulator has executed more than 1000 goto. -
actions in operations in the current state, then

it will issue a warning that the DDL-P system is

"probably in infinite loop." After this point,

the simulator halts immediately when <ESCAPE> is

pressed, rather than waiting until the end of the

state.

- 14 -

3 . 1 . 9 EXIT

The EXIT command causes an exit from the simulator, re-

turning control to the TOPS-20 Executive. When used, EXIT

must be the only command in the command sentence. Note that

STOP and EXIT are entirely different commands.

3.2 CONDITIONAL COMMAND

The conditional command allows the designer to make the

execution of a command list dependent on some condition.

The form of the command is

IF Boolean-exp THEN command, command,...

Each time the conditional command is scanned, the commands
. -
in the list will be executed only if the value of the Boo-

lean expression is 1; otherwise the command list will be

skipped.

Any combination of DISPLAY, PRINT, DUMP, SET, STEP, or

STOP commands may appear in the conditional command list.

Conditional commands may not be nested.

Examples

IF AT END + AT ERR THEN DUMP,STOP
IF TIME>=20 THEN PRINT(SCORE1

- 1s -

3.3 SENTENCE

A command sentence is a list of commands separated by

" AN D " . All sentences are terminated by period **.**, includ-

ing those with just one command. Any combination of com-

mands may appear in a sentence, subject to the following

restrictions:

1. A sentence may include at most one RUN command,

which (if present) must be the first command in

the sentence.

2. When used, EXIT must be the only command in the

sentence.

. - 3. When used, CLEAR should be the only command in the

sentence.

Command sentences may take up more than one line on the

teletype; the simulator will prompt for additional lines by

typing "=" until the designer terminates the sentence with

period 7". If the designer enters end-of-file (CTRL-Z)

from the teletype, the simulator will type a message and

exit to the TOPS-20 Executive.

- 16 -

Examples

RUN AND STEP AND DUMP.
RUN FROM A AND PRINT(SCORE,CARDBUF,FF).
RUN AND IF AT JK THEN STOP,DUMP AND DISPLAY.
SET CARDBUF=5Dl AND SET FF=lBl.
STEP.
CLEAR.
EXIT "return to TOPS-20".

In the third example above, note that STOP and
DUMP are dependent on the condition AT JK, while
DISPLAY is unconditional.

If a command sentence contains syntax errors, an error

message will be typed and the entire sentence must be reen-

tered. The simulator executes an error-free sentence immed-

iately; if the sentence contains a RUN command, then the

sentence will be executed again after each lowest-level

state, as discussed in Section 3.1.5.. -

Note that during a simulation, the simulator is cont-

rolled only by the last command sentence entered. The se-

quence

>IF AT P + AT S + AT J + AT T THEN STOP.
>RUN FROM L AND DISPLAY.

will not have the desired effect of stopping when the simu-

lation reaches state P, S, J, or T, because the simulator is

controlled only by the second sentence. Instead, the desig-

ner could type

>RUN FROM L TO P AND DISPLAY
= AND IF AT S + AT 3 + AT T THEN STOP.

- 17 -

Two sample simulations are shown in Chapter 5.

- 18 -

occur in four distinct areas:

1.

2.

3.

. -

4.

A command sentence may have a syntax error.

An error condition may arise during execution of a

command sentence.

A number entered during simulation of an INPUT ac-

tion may have a syntax error.

An error condition may arise during simulation of

the DDL-P system,

Chapter 4

SIMULATION-TIME ERRORS

As the designer carries out the simulation, errors may

When an error occurs, the simulator types an error message

at the teletype. The error message will also appear in the

listing file unless the problem was a syntax error in a com-

mand sentence. In most cases, if the error severity is FA-

TAL or ABORT, the simulator will suspend activity immedi-

ately and prompt for a new command sentence with **>**.

- 19 -

4.1 ERROR IN COMMAND SENTENCE SYNTAX

. -
Syntax errors of severity FATAL or ABORT cause the en-

tire sentence (except for any CLEAR) to be ignored; the en-

tire sentence must be reentered. Delayed-store values will

never be lost as a result of such errors; however, all ter-

minals will be cleared and delayed stores completed if an

invalid sentence contains a RUN FROM command.

Syntax errors of severity WARNING do not terminate com-

mand processing.

Errors have one other important effect on simulator ac-

tivity. Recall that the simulator must save delayed-store

values in temporary buffers until the store is carried out.

The simulator must also remember which terminals are to be

cleared at the end of a state. The disposition of this in-

formation in case of error depends on the type of error and

the error severity.

Error messages issued by the simulator are listed in

Appendix A. The four types of errors are now discussed in

more detail.

- 20 -

4 . 2 ERROR DURING COMMAND EXECUTION

Errors may arise in the evaluation of Boolean Expres-

sions in DISPLAY, PRINT, SET, or conditional commands. In

such cases, the simulator will stop immediately after issu-

ing an error message if the severity is FATAL or ABORT or if

the designer has pressed <ESCAPE>.

When the simulator stops after such an error, all de-

layed stores to registers are canceled. If the error sever-

ity is ABORT, then all terminals are cleared before the si-

mulator will accept a new command; otherwise, all terminals

will be cleared just before simulation is resumed (following

a RUN command).

4.3 ERROR DURING SIMULATION-TIME INPUT

If a number entered during an INPUT action has a syntax

error of severity WARNING or FATAL, then the simulator will

type an error message and ask the designer to reenter the

number. Such errors will not otherwise halt or interrupt

simulation.

If an error of severity ABORT appearsI then the simula-

tor will halt simulation, cancel all delayed stores, clear

all terminals, and prompt for a new command sentence.

21 -

4.4 ERROR DURING SIMULATION

When an error occurs during simulation, the simulator

will print an error message followed by a value for SIMADDR,

an internal location counter. The designer may then look at

the program listing generated by the DDL-P compiler to det-

ermine the exact location of the error; the listing includes

values of SIMADDR at the left hand margin.

The simulator will stop immediately after a simulation-

time error if the severity is FATAL or ABORT or if the de-

signer has pressed <ESCAPE>. After such a stop, all delayed

stores are canceled. If the error severity is ABORT, then

all terminals are cleared before the simulator will accept a

* new command. Otherwise, all terminals will be cleared just

before simulation is resumed (following a RUN command).

- 22 -

Chapter 5

SAMPLE SIMULATION

Sample simulation sessions are now presented for two

examples from An Introduction to the DDL-P Lansuase 121.

The examples are reprinted here for reference.

In the first example, the designer displays all the re-

gisters in each state, eventually halting the simulation by

<ESCAPE>. After single-stepping twice from state D, the de-

signer then restarts the simulation, displaying results only

at the end.. -

- 23 -

" B L A C K J A C K M A C H I N E . "
REGISTER SCORE[51, CARDBUFt51, FF.
TERMINAL HIT, BROKE, STAND,

VALUE[l:51 = INPUT(l,VALUE),
YCRD = INPUT(l,YCRD),
YL17 = SCORE(17, YL22 = SCORE<22,
NACE = CARDBUF#l.

OPERATION
TPT = [cARDBUF <- 5~101,
TMT = [CARDBUF <- 5~221,
TVC = [CARDBUF + VALUE],
IHIT = [HIT=~B~~,
ISTD = [STAND=~BII, IBRK = [BRoKE=~B~I,
CLS = [SCORE c- 5~01,
ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL 51,
KFF = [FF+lDO1, JFF = [FF <- 1Dl 1 9

CONTROL
A:
B:

c:
D:

E:
F:
G:

. - H:

J:

K:

CLS, KFF, ->B/
IHIT, TVC,
IF YCRD THEN ->C ELSE ->B ENDIF/
IF YCRD THEN ->C ELSE ->D ENDIF/
ADD, IF NACE+FF THEN ->F

ELSE ->E ENDIF/
JFF, TPT, ->D/
IF YL17 THEN ->B ELSE ->G ENDIF/
IF YL22 THEN ->K ELSE ->H ENDIF/
KFF, TMT,
IF FF THEN ->D ELSE ->J ENDIF/
IBRK,
IF YCRD THEN ->A ELSE ->J ENDIF/
ISTD,
IF YCRD THEN ->A ELSE ->K ENDIF/.$

B<sources.ddl>ddl
INPUT = black.jak
OUTPUT = black.lst
DDLINI = ddl.iniI4,15501

TO CONTINUE, HIT THE RETURN KEY *

END OF TRANSLATION, 0 FATAL ERROR(S).

DDL SIMULATION MONITOR. VERSION 16 NOVEMBER 1978

PLEASE ENTER RADIX (FOR USE IN ALL OUTPUT)
(BASE 2, 4, 8, 10, OR 16): 10

- 24 -

>run and display(score,cardbuf, f f I.
*TIME=0 STATE=A: SCORE=0

FF=O
*TIME=0 STATE=A: SCORE=0

FF=O
*TIME=1 STATE=B:
VALUE:=Sdl2
*TIME=1 STATE=B:
YCRD:=lbO
*TIME=1 STATE=B: SCORE=0

FF=O
*TIME=2 STATE=B:
VALUE:=Sdl
*TIME=2 STATE=B:
YCRD:=lbl
*TIME=2 STATE=B: SCORE=0

FF=O
*TIME=3 STATE=C:
YCRD:=lbl
*TIME=3 STATE=C: SCORE=0

FF=O
*TIME=4 STATE=C:
YCRD:=lbO
*TIME=4 STATE=C:

FF=O
*TIME=5 STATE=D:. - FF=O
*TIME=6 STATE=E:

FF=O
*TIME=7 STATE=D:

FF=l
*TIME=8 STATE=F:

FF=l
*TIME=9 STATE=B:
VALUE:=SdS
*TIME=9 STATE=B:
YCRD:=lbO
*TIME=9 STATE=B:

FF= 1
*TIME=10 STATE=B:
VALUE:=SdS
*TIME=10 STATE=B:
YCRD:=lbl
*TIME=10 STATE=B:

FF=l
*TIME=11 STATE=C:
YCRD:=lbl
*TIME=11 STATE=C:

CARDBUF=O

CARDBUF=O

CARDBUF=O

CARDBUF=12

CARDBUF=l

SCORE=0 CARDBUF=l

SCORE=0 CARDBUF=l

SCORE=1 CARDBUF=l

SCORE=1 CARDBUF=lO

SCORE=11 CARDBUF=lO

SCORE=11 CARDBUF=lO

SCORE=11 CARDBUF=S

SCORE=11 CARDBUF=S

- 25 -

FF=l
*TIME=12 STATE=C:
YCRD:=lbO
*TIME=12 STATE=C:

FF=l
*TIME=13 STATE=D:

FF=l
*TIME=14 STATE=F:

FF=l
*TIME=15 STATE=B:
VALUE:=SdlO
*TIME=15 STATE=B:
YCRD:=lbl
*TIME=15 STATE=B:

FF=l
*TIME=16 STATE=C:
YCRD:=lbO
*TIME=16 STATE=C:

FF=l
*TIME=17 STATE=D:

FF=l
*TIME=18 STATE=F:

FF=l
*TIME=19 STATE=G:

FF=l
*TIME=20 STATE=H:. - FF=l
*TIME=21 STATE=D:

FF=O
*TIME=22 STATE=F:

FF=O
*TIME=23 STATE=B:
VALUE:=SdG
*TIME=23 STATE=B:
YCRD:=lbl
*TIME=23 STATE=B:

FF=O
*TIME=24 STATE=C:
YCRD:=lbO
*TIME=24 STATE=C:

FF=O
*TIME=25 STATE=D:

FF=O
*TIME=26 STATE=F:

FF=O
*TIME=27 STATE=G:

FF=O
*TIME=28 STATE=H:

SCORE=11

SCORE=11

SCORE=16

SCORE=16

SCORE=16

SCORE=16

SCORE=26

SCORE=26

SCORE=26

SCORE=26

SCORE=16

SCORE=16

SCORE=16

SCORE=16

SCORE=22

SCORE=22

SCORE=22

- 26 -

CARDBUF=S

CARDBUF=S

CARDBUF=S

CARDBUF=S

CARDBUF=lO

CARDBUF=lO

CARDBUF=lO

CARDBUF=lO

CARDBUF=lO

CARDBUF=22

CARDBUF=22

CARDBUF=22

CARDBUF=6

CARDBUF=6

CARDBUF=6

CARDBUF=6

CARDBUF=6

FF=O
*TIME=29 STATE=J:
YCRD:=lbO
*TIME=29 STATE=J: SCORE=22 CARDBUF=22

FF=O
STOP BY <ESCAPE>
*TIME=29 STATE=J:
>display(stand,
= broke>.
*TIME=29 STATE=J: STAND=0 BROKE= 1
>set cardbuf=Sdl and set ff=lbl.
>run from d and step.
*TIME=0 STATE=D:
>step.
*TIME=1 STATE=F:
>run from a and if at j+at k then display(stand,broke>,stop.
*TIME=1 STATE=B:
VALUE:=Sd7
*TIME=1 STATE=B:
YCRD:=lbl
*TIME=2 STATE=C:
YCRD:=lbO
*TIME=5 STATE=B:
VALUE:=Sd4
*TIME=5 STATE=B:
YCRD:=lbl

* *TIME=6 STATE=C:
YCRD:=lbO
*TIME=9 STATE=B:
VALUE:=Sdl
*TIME=9 STATE=B:
YCRD:=lbl
*TIME=10 STATE=C:
YCRD:=lbO
*TIME=19 STATE=B:
VALUE:=Sd8
*TIME=19 STATE=B:
YCRD:=lbl
*TIME=20 STATE=C:
YCRD:=lbO
*TIME=24 STATE=K:
YCRD:=lbO
*TIME=24 STATE=K: STAND= 1
*TIME=24 STATE=K:
>displaytcardbuf,score),
*TIME=24 STATE=K: CARDBUF=8

BROKE=0

SCORE=20

- 27 -

>exit.

EXIT
a

In the second example, the designer runs the memory

summation machine. The accumulating sum is displayed only

when a non-zero word has been added. Note that base 16 is

used for output.

w EXAMPLE OF INTERPRETIVELY LINKED MACHINE)t
REGISTER A[161, Bt 161, ADDR[81.
MEMORY MEM[O:255, 161.
TERMINAL YCLR, YINC, YADD, YREAD,

NDONE = ADDR # 255,
START = INPUT (1, START).

OPERATION CLEAR = [A <- 16D0, ADDR <- 8D01,
INC = [ADDR <- ADDR(+)$Dl TAIL 81,
ADD = [A <- A(+)B TAIL 161,

. - READ = [B <- MEMIADDRI,
MEMfADDRl = 16D01,

RESTORE = [MEM~ADDRI = Bl.
CONTROL

Pl: IF START THEN YCLR a, YREAD a, ->P2
ELSE ->Pl ENDIF/

P2: YADD a,
IF NDONE THEN YINC 'a), YREAD a, ->P2

ELSE ->Pl ENDIF/
CONTROL

Ql: IF YINC THEN INC ENDIF,
IF YCLR THEN CLEAR ENDIF,
IF YADD THEN ADD ENDIF,
IF YREAD THEN ->Q2

ELSE ->Ql, LEVEL ENDIF/
Q2: READ, ->Q3/
Q3: RESTORE, LEVEL, ->Ql/.$

- 28 -

a<sources.ddl>ddl
INPUT = sum.mem
OUTPUT = sum.lst
DDLINI = ddl.init4,15501

TO CONTINUE, HIT THE RETURN KEY *

END OF TRANSLATION, 0 FATAL ERROR(S).

DDL SIMULATION MONITOR. VERSION 16 NOVEMBER 1978

PLEASE ENTER RADIX (FOR USE IN ALL OUTPUT)
(BASE 2, 4, 8, 10, OR 16): 16
>set mem~lOl=10 and set mem[201=20.
>set mem[301=30 and set mem[401=40.
>set memt501=50 and set mem[601=60.
>set memI701=70 and set mem[801=80.
>set mem[901=90 and set memi991=99.
>set addr=8dO.
>run and if at q2 * b#O then display (addr,b,a)
= and if at pl * time>100 then display CaLstop.
*TIME=0 STATE=Pl:Ql:
START:=lbO
*TIME=1 STATE=Pl:Ql:
START:=lbl
*TIME=23 STATE=P2:Q2:. - A=OOOA
*TIME=41 STATE=P2:Q2:

A=OOlE
*TIME=5F STATE=P2:Q2:

A=003C
*TIME=7D STATE=P2:Q2:

A=0064
*TIME=9B STATE=P2:Q2:

A=0096
*TIME=B9 STATE=P2:Q2:

A=OOD2
*TIME=D7 STATE=P2:Q2:

A=0118
*TIME=F5 STATE=P2:Q2:

A=0168
*TIME=113 STATE=P2:Q2:

A=OlC2
*TIME=12E STATE=P2:Q2:

A=0225
*TIME=302 STATE=Pl:Ql:
START:=lbO
*TIME=302 STATE=Pl:Ql:

ADDR=OB B=OOOA

ADDR=15 B=0014

ADDR=lF B=OOlE

ADDR=29 B=0028

ADDR=33 B=0032

ADDR=3D B=003C

ADDR=47 B=0046

ADDR=51 B=0050

ADDR=5B B=005A

ADDR=64 B=0063

A=0225

- 29 -

*TIME=302 STATE=Pl:Ql:
>exit.

EXIT
a

- 30 -

Appendix A

ERROR MESSAGES

The error messages issued by the DDL-P simulator are

listed below, along with their severity codes. When an er-

ror condition arises, the simulator lists the appropriate

message at the teletype and, in some cases* in the listing

file. The significance of the error severity codes is ex-

plained in Chapter 4.

The characters in the first three columns of each line

* helow indicate when the error on that line may occur. A "C'*

in column one denotes that the error may occur as the simu-

lator is examining a command sentence. An "1" in column two

denotes that the error may occur

put constant during simulation.

dicates that the error may occur

executed or during simulation.

when the user types an in-

An '*S** in column three in-

while a command is being

The term "predefined terminal" refers to a terminal for

which a function was specified in the TERMINAL declarations.

An "argument" is the same as an "actual parameter," and

- 31 -

” S S R ” stands for “state sequencing register.” The string

<1D> will be replaced by the appropriate facility name

when an error message is printed.

The error

STRING TOO BIG FOR DECIMAL DISPLAY

refers to the fact that DDL-P cannot print a decimal number

longer than 99 digits. The error message

SYNTAX ERROR

flags many kinds of errors in command sentences. In case of

such an error, the designer should refer to the DDL-P Com-

mand Sentence BNF to determine the proper syntax.

C . .
cr.

* CI.
CI.
. I.
. I.
CI.
CI.
CI.
CI.
C . .
C . .
C . .
C . .
C . .
C . .
C . .
C . .
C . .
C . .
C . .
C . .
C . .
C . .

fatal
warning
warning
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal
fatal

Syntax error
Illegal character
Input line longer than 132 characters
Constant too large
Binary string must start with decimal digit
Illegal character in binary string
Illegal number length spec. (zero or >256)
Decimal number may not be left-justified
Illegal char. or digit of wrong radix in no.
Digit is of improper radix
Undeclared identifier
This identifier may not be subscripted
Two-dimensional array requires subscript
This identifier may only have 1 subscript
Field can’t be used to denote range of words
Subscripting nested too deeply (>lO levels)
Improper field or access to non-existent bits
Too many dimensions (>2) or invalid field
Predef ined terminal subscripted
Missing argument list
Wrong number of arguments
This identifier may not have arguments
This identifier not allowed in expression
Operation identifier not allowed in expr.

- 32 -

C . . fatal
C . . fatal
C . . fatal
C . . fatal
. . S fatal
. . S fatal
. . S fatal
. . S fatal
. . S warning
. . S fatal
. . S fatal
. . S fatal
. . S fatal
. . S fatal
. . S warning
. . S warning
. . S warning
. . S warning
. . S fatal
. . S fatal
. . S fatal
. . S fatal
. . S fatal
. . S warning
. . S abort
. . S abort

* cr.. fatal
CI. fatal
C . . fatal
C . . fatal
CIS abort

Assignment to identifier of wrong type
Identifier must be a state
“RUN FROM. . ” required after error
” E X I T ” must appear in command by itself
Operand too long 0256 bits)
String or CON or EXT result is too long
Head or tail length too long
String or field range is too big 0256 bits)
String too big for decimal display
Reference to non-existent word of <ID>
Store into non-existent word of <ID>
Reference to non-existent bit of <ID>
Store into non-existent bit of <ID>
Improper field or non-existent bits of <ID>
Incompatible lengths for store into <ID>
Incompatible lengths for operation
Simultaneous stores into a flip-flop of <ID>
Illegal store into lower level SSR
Two next states specified
Two "=>" states specified
No state corresponds to this SSR value
No next-state indicated
No place to return
***Probably in infinite loop
Internal error: Illegal instruction
Internal error: stack overflow
Unexpected end of input
Unexpected end of file
Unexpected end of command
Internal error: parse stack overflow
Internal error: memory overflow

- 33 -

Appendix B

DDL-P COMMAND SENTENCE BNF

enclosed in braces is optional.

1 I*** REPETITION SYMBOL - String of symbols enclosed

may appear zero or more times in succession.

I I CONCATENATION SYMBOL - Symbol on left must be

concatenated with symbol on right (i.e., with no

intervening blanks or end-of-line).

I OR SYMBOL - This separates several right-hand

sides of productions.

The complete Backus-Naur Form for DDL-P simulator com-

mand sentences is listed below. Non-terminals are written

in lower-case letters and underscore; "dd1~description" is a

non-terminal, e.g. All other symbols are terminals except

for the following special symbols ("meta-symbols**):

: : = REPLACEMENT SYMBOL - Left-hand side may be

replaced by right-hand side.

1 1 OPTIONAL STRING SYMBOL - String of symbols. -

- 34 -

The simulator prompts for the first line of a command

sentence by typing “>** at the beginning of a line. A sen-

tence may take up several lines; the simulator prompts for

additional lines with **=**. In a sentence, a comment is any

string of symbols except double-quote (“1 enclosed in dou-

ble-quotes and contained on one line, e.g+

“THIS IS A COMMENT” .

A comment may appear anywhere a blank is permitted.

letter : := AlBlClDlElFl~lHl~lJl~lLl~l
NlOlPlQlRlSlTlUlVl~l~l~l~l
alblcldlelf lglhliljlklllml
nlolplqlrlsltlulvlwlxlylz

digit ::= 0l1l2l3141516171819

hex-digit : := digit I A I B I C I D I E I F

. octal-digit : :=01112/314151617

quartal-digit ::= 0 I 1 I 2 I 3

bit : := 01 1

decimal-constant : : = digit 1 II digit }***

constant ::= decimal-constant
I decimal-constant I I

I decimal-constant II
I I

1 II
I decimal-constant I I

I I
1 II

I decimal-constant II
I decimal-constant I I

I I
1 II

B 1 ll . 1 I I bit
C I I bit I***

Q{ 11 .I
quartal-digit
quartal-digit I***
31 II .1
octal-digit
octal-digit I***
D I I decimal-constant
H(ll.1
hex-digit
hex-digit I***

- 35 -

letter-or-digit ::= letter I digit

identifier : := letter C II letter-or-digit I***

field : : = boolean-exp boolean-exp

identif ier-ref : : = identifier
I identifier II decimal-constant
I identifier 1 boolean-exp I
I identifier II decimal-constant

[boolean-exp I
I identifier 1 boolean-exp 1 [boolean-exp I
I identifier [boolean-exp , boolean-exp 1
I identifier [field I
I identifier I I decimal-constant 1 field 1
I identifier [boolean-exp I [field 1
I identifier I boolean-exp , field 1

terminal-ref ::= identifier (boolean-exp
1, boolean-expJ*** 1

reference : : = identif ier-ref terminal-ref

boolean-exp : : = minterm 1 + minterm I***

minterm : := product 1 I+1 product I***

product ::= complement { 4+ complement I***

complement : := t-1 relation

relation ::= arithmetic-exp
I arithmetic-exp (=1 arithmetic-exp
I arithmetic-exp # arithmetic-exp
I arithmetic-exp < arithmetic-exp
I arithmetic-exp > arithmetic-exp
I arithmetic-exp >= arithmetic-exp
I arithmetic-exp <= arithmetic-exp
I AT identifier

arithmetic-exp ::= { C-1 1 term
1 arithmetic-exp (+I term
I arithmetic-exp C-1 term

term ::= constant
I reference
I TIME
I (boolean-exp 1

- 36 -

sentence : := run-comd 1 AND other-command I*** .
I other-command { AND other-command I*** .
I EXIT .

run-comd ::= RUN { FROM identifier {:identifier)*** 1
1 TO identifier {:identifier}*** 1

other-command ::=
u-command

I IF boolean-exp THEN u-command 1, u-command}***

u-command ::= DISPLAY 1 (reference {,reference}*** 1 1
I PRINT 1 (reference Itreference}*** 1 1
I DUMP
I SET identifier-ref = boolean-exp
I CLEAR
i STEP
1 STOP

- 37 -

REFERENCES

1.

2.

3.

4.
. -

5.

6.

7.

8.

Arndt, R.L. and Dietmeyer, D.L. "DDLSIM--A Digital
Design Language Simulator," Proc. National
Electronics Conf., Vol. 26, pp. 116-118, December
1970.

Cory, W.E., Duley, J.R., and vancleemput, W.M. An
Introduction to the DDL-P Lansuase. Palo Alto:
Stanford University, Computer Systems Laboratory,
March 1979, 97 pp.

Dietmeyer, D.L. and Duley, J.R. "Register Transfer
Languages and Their Translation" in Disital System
Desisn Automation: Lanquaqes, Simulation and Data
Base. Woodland Hills, CA.: Computer Science Press,
Inc., 1975, pp. 117-218.

Dietmeyer, D.L. Translation of DDL Descriptions o
Digital Systems, ECE-77-13. Madison: U. of
Wisconsin, Dept. of Electrical and Computer
Engineering, September 1977, 46 pp.

Duley, J.R. DDL --A Disital System Desisn Lansuase.
Madison: U. of Wisconsin, Ph.D. Thesis, 1967.

Duley, J.R. and Dietmeyer, D.L. **A Digital System
Design Language (DDL)," IEEE Trans. Camp. Vol. c-17
(September 19681, pp. 850-861.

Duley, J.R. and Dietmeyer, D.L. "Translation of a DDL
Digital System Specification to Boolean Equations,"
T r a n s .IEEE Camp. Vol. C-18 (April 19691, pp.
305-313.

Nr Disital Desisn Lansuase Translator--DDLTRN.
Madison: U. of Wisconsin, Dept. of Electrical and
Computer Engineering, 13 pp.

- 3s -

9. N, Disital Desisn Lansuase Simulator--DDLSIM. Madison:
U. of Wisconsin, Dept. of Electrical and Computer
Engineering, 36 pp.

10. Soares, L.E.R. An Implementation fi Disital Desiqn
Lansuase. Madison: U. of Wisconsin, Dept. of
Electrical and Computer Engineering, M.S. thesis,
1970.

- 39 -

