DDL-P COMMAND LANGUAGE MANUAL

by
W.E. Cory
J.R. Duley

W.M. vanCleemput

Technical Report No. 164

March 1979

This work was supported by the Joint Services Electronics Program
under Contract N-000 14-85-C-0601.

DDL-P COMMAND LANGUAGE MANUAL

W.E. Cory, J.R. Duley, W.M. vanCleemput

Technical Report No. 164

March 1979

Computer Systems Laboratory
Stanford University
Stanford, California 94305

ABSTRACT

This report describes the command language for the
simulator, associated with DDL (Digital Design Language).

INDEX TERMS: Design automation, computer-aided design,
hardware description languages, DDL, digital
design language.

- ii -

TABLE OF CONTENTS

Chapt er page
L INTRODUCTION .1
2. BOOLEAN EXPRESSIONS 3
3. COMVAND SENTENCES b

Commands 7
DI SPLAY and PRI NT 7
SET 8
CLEAR e e e e 9
RUNy
STEP12
STOP 13
Halt by <ESGAPED>, 13
Exxr15
Condi tional Coomand 15
Sentence .. 16

4. SIMLATION-TIME ERRORS 19
Error in Conmand Sentence Syntax 20
Error During Conmand Execution 2
Error During Simulation-Tinme lnput 21
Error During Sinulation 22

5. SAMPLE SIMULATION 23

Appendi x page
A ERROR MESSAGES3

B. DDL- P COMVAND SENTENCE BNF

Ref er ences

- iv -

34

38

Chapter 1
| NTRODUCTI ON

This report is one of two manuals describing a conpi-

ler and sinmulator for DDL-P, a subset of DDL (Digital Design

Language) . DDL is a language for describing the behavior of
digital systens at the Bool ean equati on, regi ster transfer,
and algorithmc |evels. It uses a finite state machi ne no-

tation and it nay be used to describe systens over a wde

range of |evels.

DDL was originally formulated by Duley at the Univer-
sity of Wsconsin in 1967 [5, 6, 31. A translator and sinu-
l|ator for a subset of DDL were inplenented in FORTRAN {1, 7,
4, 8, 9, 101. In 1972-73, J. Duley, B. dark, and J. Welsch
i mpl emented an interactive sinulation system for a subset of
DDL (with nodified syntax) on the HP 2100 system in HP-Al gol
at Hewl ett-Packard Laboratories. The DDL-P |anguage, conpi -
ler, and sinulator are based on this HP inplenmentation. In
order to enhance portability the system was rewitten in
PASCAL on the DEC 20 system under the TOPS-20 Qperating Sys-

temat Stanford University. Smal | changes were nmade to the

syntax, mainly to enhance the readability. The system wil |

still accept the input format of the original HP-A gol ver-

si on.

This report describes the usage of the DDL-P sinul ator
as it was inplenented at Stanford. The command | anguage is

described in detail and several exanpl es are given to clar-

ify the constructs. The appendices give a list of error
messages as wel | as a formal BNF definition of the command
| anguage. A conpanion report describes the DDL-P |anguage

and the DDL-P conpiler system{2}.

Chapter 2
BOOLEAN EXPRESSI ONS

boolean-exp ::= mnterm { + mnterm }**x |
mnterm ::= product { [+] product }¥*¥* l
product ::= conplenment { * conplenent }*xx

conplenent ::= {-} relation

relation ::= arithmetic-exp

arithnmetic-exp ¢
arithmetic-exp

| =) arithnetic-exp
| # arithmetic-exp
| arithmetic-exp < arithnetic-exp
| arithmetic-exp > arithnetic-exp
| arithnetic-exp >

| arithnmetic-exp <

| | AT identifier

|

|

|

|

|

I

|

|

|

|

|

= arithmetic-exp |
= arithmetic-exp |
|

|

arithmetic-exp { (=)} term I
\

|

|

\

|

|

|

|

| arithnetic-exp (+) term
| arithmetic-exp (=) term

= const ant

| reference

| TI ME

| ¢ bool ean-exp)

In the command | anguage, Bool ean expressions nmay appear
in SET, DISPLAY, PRINT, and conditional commands. The syn-

tax for coments, constants, identifiers, and facility re-

ferences in the command |anguage is identical to that in

DDL- P descri ptions. This syntax is shown in Appendix B for
ref erence.
The syntax for Bool ean expressions in the comand | an-

guage is simlar to the syntax for Bool ean expressions in a

DDL- P descri ption. The following operators and constructs

are NOT available in the conmand | anguage:

NPUT function

Condi ti onal expression constructs

CASE x DO a DO b . . ENDCASE
IF x THEN a ELSE b ENDIF
¢x¢ a; b; .

CON

+ RED * RED [+] RED (+) RED

EXT TAI L HEAD

The remaining operators are available as shown in the
BNF above. In addition, two new constructs are permtted:
1. TIME

is a string of length 16 bits with value equal to
the nunber of units of time the DDL-P system has
been simnul at ed. TIME is initially zero and is in-
cremented at the end of each state in the lowest
level finite state machine. Recal | that the size
of this increnent may be specified in the DDL-P

description by the TIME acti on.

2. AT st at e- nane

is a string of length one bit with value 181 if the
state given by "state-name" is the current state,

and val ue 1B0 ot herw se.

Exanpl es of Bool ean Expressions in the Conmand Language

16D17
(A¥B)(=)7 + X>Y + PROD(X,23)>25

MEMIIR[9:01C¢+)RIIR[12:101]1]
-AT P

MIMAR](=)HALT + AT ERR + TIME>100

Chapter 3
COVVAND SENTENCES

'

| |

| sentence = run_comd { AND ot her-command }#%x% |

| | ot her-command { AND ot her-command }*%% . |

| FEXIT . |

| |

ot her-comand :: = |
u- conmand |

| I F bool ean-exp THEN u-command {, u_command}¥*% |

|
DI SPLAY { (reference {,referencel#*%%) 1 |
NT { (reference {,referencel}**%) } |
VP I
[
|
|
|
|

me 3

S identifier-ref = bool ean-exp
CLEAR

| STEP

| STOP

After a DDL-P description has been conmpiled with no fa-
tal errors and the designer has selected the nunber base for
use in output, then the sinmulator indicates its readiness to
accept commands by typing ">" at the tel etype. The desi gner
may then use command sentences to examine or nodify facility

contents and sinmulate the DDL-P system

The individual commands are discussed first, fol | owed

by a description of the constructs for conbining several

commands into a single command sentence.

3.1 COVIVANDS
3.1.1 DI SPLAY and PRI NT

The DI SPLAY command types the current values of the

named facilities on the teletype, along with the current to-

tal state (location) and tine. Any valid register, nenory,
or termnal reference nmay appear in the DI SPLAY |ist. Thi s
list may be onitted altogether, in which case the current

total state and tinme are typed
Exanpl es

>DISPLAY(LEFT,RIGHT).

*TI ME=1110 STATE=P: LEFT=0000000000000010
RIGHT=0000000000000C101

>DISPLAY(SCORE[2:4}, CARDILEFT:RIGHT], SUM(2,2)).

¥TIME=1110 STATE=P: SCORE[10:1001=110
CARD[10:101]=1001 SUM=0000000000000100
>DISPLAY.

*TI ME=1110 STATE=P:
>

The PRI NT command is identical to the DI SPLAY conmand,

except that the output goes to the listing file on disk.

3.1.2 DUVP

The DUMP conmand prints in the listing file the current
values of all registers, nmenori es, and termnals which
weren't assigned functions in the TERMNAL declaration. A
DUWP is equivalent to a PRINT with all these facilities in

the output Iist.

The designer may use the SET conmand to set the val ues
of registers, nmenories, and termnals which weren't assigned
functions in the TERM NAL decl arati on. The SET command

works like the »=r imediate store action in an OPERATI O\
when SET is executed in a conmand sentence, the facility re-
ferenced on the left side is set inmediately to the current
val ue of the Bool ean expression on the right side.

Exanpl es
SET CARDBUF=5D6
SET SCORE[1:2] = A[3:4] + SCORE[1:2]

If the facility witten is a register for which a de-
| ayed store has not been finished, then the simulator wll
issue a SIMILTANEQUS STORE warning and cancel t he del ayed

store.

3.1.4 CLEAR

The CLEAR command resets all registers, nmenori es, and

termnals to zero. This action occurs imediately and un-

conditionally whenever CLEAR appears anywhere in a conmmand
sent ence, even if the CLEAR is in a conditional comrmand.
HENCE, VWHEN USED, TH'S COMVAND SHOULD APPEAR BY | TSELF I N
THE COVVAND SENTENCE, even though this restriction s not

enforced by the sinmulator.

Al unfinished del ayed stores will be canceled when a

CLEAR is executed.

run_comd (= RUN { FROM identifier {:identifier}#**x }
{ TO identifier {:identifier}*%x% }

The RUN command initiates simulation of the DDL-P sys-

tem The designer may specify the initial and/or final |o-
cations of the simulation in the command. A location is a
list of states separated by colons ":*, where the list con-

tains zero or one state from each finite state nachine in

t he DDL-P description. State sequencing registers wll be

initialized automatically before the sinulation begins.
The RUN command has four fornms, as follow

1. RUN FROM | ocati on
The simulation starts in the indicated |ocation
If sone finite state machine has no state listed

in the |l ocation given, then the initial state for

that machine w |l be the first state in the cor-
respondi ng CONTROL decl arati on. The simulation
will begin in the top |evel machine.

2. RWN

Simulation starts in the current state, proceeding
from the point where simulation was |ast sus-
pended. If there was no previous simulation, then
the initial location is the first state of each

finite state machi ne.

The exception is that if this command follows a
RUN FROM conmand which did not execute because of
an error in the comrand sentence, then the initial
location will be the location given in the previ-

ous RUN FROM

- 10 -

3. RUN TO | ocation
Simul ation begins in the current state as above
(the exception noted above al so applies here), and
proceeds until the systemis in the indicated |o-
cation. The state actions for this last |ocation

will be executed before the simulation ends.

| f the initial state is the sanme as the final

state, then no sinulation will take place.

4. RUN FROM | ocationl to |ocation2
Simul ation begins in locationl and proceeds until

the systemis in location2.

During a sinmulation, the command sentence initiating
the simulation will be rescanned and executed at the end of
each state in the lowest level finite state machine. Hence,

commands for conditionally halting simulation or for set-
ting, displaying, or printing facility values during the si-
mulation may be included in the command sentence with the
RUN command. Wien the sinmulation is finished, the simulator
will type ">" at the teletype, indicating its readiness to

accept a new command sent ence.

Exanpl es
RUN
RUN FROM P1:21
RUN TO JK
RUN FROM A TO JK
After a run-tinme error, the initial location in a RUN
command nust be given explicitly by "FROM |ocation**. The

simulator variable TIME is reset to zero when a "RUN FROM ."

command is i ssued.

When issuing a "RUN FROM' command, t he designer should
be careful to ensure that the systemis properly initial-
I zed. In particular, beware that previously schedul ed de-
| ayed stores may be carried out before the sinulation is

restarted (these may be cancel ed by CLEAR or SET).

The STEP command effects sinulation of the systemfor
one state. If the system contains several finite state na-
chi nes, then one state in the |owest |evel machine is sinu-
| at ed; states from higher |evel machines may be sinulated
first, depending on the starting point of the sinulation
and/or the presence of LEVEL actions in previously simulated

st at es.

The STEP command nmay appear in a sentence with a RUN
conmand, in which case the RUN command determ nes the start-

ing location of the sinulation. Qt herwi se, sinul ation

starts fromthe current | ocation.

3.1.7 STOP

The STOP command halts the simulation in progress.
This command typically appears in a conditional conmand
(Section 3.21, so that the sinulation will end when the com

mand sentence is rescanned and sone condition is satisfied.

A STOP only ends the simulation; it does not prevent
execution of t he renmmi nder of the command sentence. The
STOP, when executed, overrides a RUN or STEP conmmand in the

same command sent ence.

3 . 1 Hal8 by <ESCAPE>

During a sinulation, the designer may press the
<ESCAPE> key to cause the simulator to halt and accept a new
command sentence. Note that the <ESCAPE> is not a command
one includes in a comand sentence,; rat her, it is a way of

interrupting a sinmulation, forcing a halt.

- 13 -

After an <ESCAPE>, the simulator may halt in any of

three ways:

1. Normally, the simulator will halt at the end of
the current state in the lowest level finite state
machi ne. The halt wll occur just after the |ast
command sentence has been rescanned in the nornal

vay.

2. In case of arun-tinme error, the sinmulator will
halt immediately after issuing a run-time warning

or error nessage if the designer has pressed

<ESCAPE>.

3. If the sinulator has executed nore than 1000 goto
actions in operations in the current state, t hen
it wll issue a warning that the DDL-P systemis
"probably in infinite |oop." After this point,
the sinulator halts imediately when <ESCAPE> is
pressed, rather than waiting until the end of the

st at e.

3.1.9 I T

The EXIT command causes an exit fromthe sinmulator, re-
turning control to the TOPS-20 Executi ve. When used, EXIT
nmust be the only conmand in the command sentence. Not e t hat

STOP and EXIT are entirely different commands.

3.2 CONDI T1 ONAL _ COMMAND

The conditional command allows the designer to make the
execution of a command |ist dependent on sone condition.
The form of the command is

| F Bool ean-exp THEN conmand, conmand,. ..
Each time the conditional comand is scanned, t he commands

inthe list wll be executed only if the value of the Boo-

| ean expression is 1; otherwise the command list wll be
ski pped.

Any conbi nation of DI SPLAY, PRI NT, DUMP, SET, STEP, or
STOP commands nmy appear in the conditional command |ist.
Condi ti onal comands may not be nested.
Exanpl es

I F AT END + AT ERR THEN DUMP, STCP
I F TI ME>=20 THEN PRINT(SCORE)

.15

3.3 SENTENCE

A command sentence is a list of commands separated by
"AND". Al'l sentences are termnated by period *".", includ-
ing those with just one command. Any conbination of com

mands nmay appear in a sentence, subject to the follow ng

restrictions:

1. A sentence may include at nobst one RUN command,
which (if present) must be the first command in

t he sentence.

2. Wen used, EXIT nust be the only conmand in the

sent ence.

3. When used, CLEAR should be the only command in the

sent ence.

Command sentences nmay take up nore than one line on the

tel etype; the simulator will pronpt for additional |ines by
typing "=" until the designer termnates the sentence with
period ™.", If the designer enters end-of-file (CTRL-2Z)

fromthe teletype, the sinulator wll type a nessage and

exit to the TOPS-20 Executi ve.

Exanpl es

RUN AND STEP AND DUMP.

RUN FROM A AND PRINT(SCORE,CARDBUF,FF).

RUN AND | F AT JK THEN STOP, DUMP AND DI SPLAY.
SET cARDBUF=5D1 AND SET FF=1B1.

STEP.
CLEAR
EXIT "return to TOPS-20".
In the third exanple above, note that STOP and

DUVP are dependent on the condition AT JK, while

DI SPLAY i s unconditional.

If a command sentence contains syntax errors, an error
nessage will be typed and the entire sentence nust be reen-
tered. The sinulator executes an error-free sentence inmed-
iately; if the sentence contains a RUN comrand, then the
sentence wll be executed again after each |owest-|evel

state, as discussed in Section 3.1.5.

Note that during a sinulation, the sinulator is cont-
rolled only by the last conmand sentence entered. The se-
quence

>IF AT P + AT S + AT J + AT T THEN STCOP
>RUN FROM L AND DI SPLAY.

will not have the desired effect of stopping when the sinu-
| ation reaches state P, S, J, or T, because the simulator is
controlled only by the second sentence. I nstead, the desig-
ner could type

>RUN FROM L TO P AND DI SPLAY
= ANDIF AT S + AT g + AT T THEN STCP

Two sanple simulations are shown in Chapter 5.

Chapter 4
S| MULATI ON- TI ME ERRORS

As the designer carries out the sinulation, errors may

occur in four distinct areas:
1. A command sentence nay have a syntax error

2. An error condition may arise during execution of a

command sent ence.

3. A nunber entered during simulation of an INPUT ac-

tion may have a syntax error

4. An error condition may arise during simulation of

the DDL-P system

Wen an error occurs, the sinulator types an error nessage
at the teletype. The error nessage will also appear in the
listing file unless the problemwas a syntax error in a com
mand sentence. In nost cases, if the error severity is FA-
TAL or ABOCRT, the simulator will suspend activity inmmedi-

ately and pronpt for a new conmand sentence with ">,

Errors have one other inportant effect on sinmulator ac-
tivity. Recall that the sinulator nust save del ayed-store
values in tenporary buffers until the store is carried out.
The simulator nust also renenber which terminals are to be
cleared at the end of astate. The disposition of this in-
formation in case of error depends on the type of error and

the error severity.

Error nessages issued by the sinulator are listed in
Appendi x A. The four types of errors are now discussed in
nore detail.

4.1 ERROR I N COMVAND SENTENCE SYNTAX

Syntax errors of severity FATAL or ABORT cause the en-
tire sentence (except for any CLEAR) to be ignored; the en-
tire sentence nust be reentered. Del ayed-store val ues wl |
never be lost as aresult of such errors; however, all ter-
mnals wll be cleared and delayed stores conpleted if an

invalid sentence contains a RUN FROM command.

Syntax errors of severity WARNING do not term nate com

mand processi ng.

4.2 ERROR DURI NG COVVAND EXECUTI ON

Errors nmay arise in the evaluation of Bool ean Expres-
sions in DI SPLAY, PRINT, SET, or conditional commands. I'n
such cases, the simulator will stop immediately after issu-
ing an error message if the severity is FATAL or ABORT or if

t he desi gner has pressed <ESCAPE>.

When the sinulator stops after such an error, all de-
| ayed stores to registers are cancel ed. If the error sever-
ity is ABORT, then all termnals are cleared before the si-
mul ator will accept a new command; otherwise, all termnals
will be cleared just before sinmulation is resunmed (follow ng

a RUN command) .

4.3 ERROR DURI NG SI MULATI ON-TI ME | NPUT

If a nunber entered during an INPUT action has a syntax
error of severity WARNI NG or FATAL, then the sinmulator wll
type an error nessage and ask the designer to reenter the

nunber . Such errors wll not otherwise halt or interrupt

si mul ation

If an error of severity ABORT appears, then the sinula-
tor will halt simulation, cancel all del ayed stores, cl ear
all terminals, and pronpt for a new comuand sentence.

- 21 -

4.4 ERROR DURI NG SI MJLATI ON

Wien an error occurs during sinmulation, t he simul at or
will print an error nmessage followed by a value for SIMADDR,
an internal |ocation counter. The designer may then | ook at
the program listing generated by the DDL-P conpiler to det-
ermne the exact location of the error; the listing includes

val ues of SIMADDR at the left hand margin.

The simulator will stop inmediately after a simulation-
time error if the severity is FATAL or ABORT or if the de-
signer has pressed <ESCAPE>. After such a stop, all delayed
stores are cancel ed. If the error severity is ABORT, t hen
all termnals are cleared before the simulator will accept a
* new conmand. G herwise, all terminals will be cleared just

before simulation is resunmed (following a RUN conmand).

- 22 -

Chapter 5
SAMPLE SI MULATI ON

Sanpl e simulation sessions are now presented for two

exanples from An Introduction to the DDL-P Lansuase [2].

The exanples are reprinted here for reference.

In the first exanple, the designer displays all the re-
gisters in each state, eventually halting the sinulation by
<ESCAPE>. After single-stepping twice from state b, the de-
signer then restarts the sinulation, displaying results only

at the end.

- 23 -

"BLACKJACK MACH | NE. "
REG STER SCORE[5], CARDBUFI[5], FF
TERMNAL HT, BROKE, STAND

VALUE[1:5] = INPUTC(1,VALUE),

YCRD = INPUT(1,YCRD),

YL17 = SCORE<17, YL22 = SCORE<?22,

NACE = CARDBUF#1.
OPERATI ON

TPT = [CARDBUF <- 5D10],

TMI = [CARDBUF <- 5p221,

TVC = [CARDBUF <- VALUE],

IHIT = [HIT=1B1],

| STD = [STAND=1B1], IBRK = [BROKE=1B1],

CLS = [SCORE <- 5D0],

ADD=[SCORE <-(SCORE(+)CARDBUF)TAIL 51,

KFF = [FF<-1p0}, JFF = [FF <- 1Dt 1 .
CONTRCL

A CLS, KFF, ->B/

B: IHIT, TVC
IF YCRD THEN ->c ELSE ->B ENDIF/
c: IF YCRD THEN ->c¢ ELSE ->D ENDIF/
D: ADD, | F NACE+FF THEN ->F
ELSE ->E ENDIF/

E JFF, TPT, ->Ds
F: IF YL17 THEN ->B ELSE ->G ENDIF/
G I F YL22 THEN ->Kk ELSE ->H ENDIF/
H: KFF, TMI,

|F FF THEN ->p ELSE ->J ENDIF/
J: | BRK,

IF YCRD THEN ->a ELSE ->J ENDIF/
K: | STD,

|F YCRD THEN ->A ELSE ->K ENDIF/.$

R R RN R R R AR R R R AR AR R R AR R R R AR AR R AR AR RXRARH

d<sources.ddl>ddl

[NPUT = bl ack. j ak
OUTPUT = black.lst
DDLI NI = ddl.inil4, 1550]

TO CONTINUE, HI T THE RETURN KEY *
END OF TRANSLATI ON, 0 FATAL ERROR(S).

DDL SI MULATI ON MONI TOR. VERSI ON 16 NOVEMBER 1978

PLEASE ENTER RADI X (FOR USE IN ALL QUTPUT)
(BASE 2, 4, 8, 10, OR 16): 10

- 24 -

>runand display(score,cardbuf, f f).

*TIME=0 STATE=A
FF=0
*TIME=0 STATE=A:
FF=0
*T| ME=1 STATE=B

VALUE:=5d12

*TIME=1 STATE=B:

YCRD: =| bO

*TIME=1 STATE=B:
FF=0

*T| ME=2 STATE=B

VALUE:=5d1

*T| ME=2 STATE=B

YCRD:=1b1

*T| ME=2 STATE=B
FF=0

*T] ME=3 STATE=C

YCRD:=1b1

*T] ME=3 STATE=C
FF=0

*T|I ME=4 STATE=C

YCRD: =| bO

*T| ME=4 STATE=C
FF=0

*TI ME=5 STATE=D:

: FF=0

*T| ME=6 STATE=E
FF=0

*TI ME=7 STATE=D:
FF=1

*T| ME=8 STATE=F:
FF=1

*T| ME=9 STATE=B

VALUE:=5d5

*T| ME=9 STATE=B

YCRD: =| bO

*T| ME=9 STATE=B
FF=1

*TI ME=10 STATE=B:

VALUE:=5d5
¥*TIME=10 STATE=B:
YCRD:=1b1
*T| ME=10 STATE=B:
FF=1
¥TIME=11 STATE=C
YCRD:=1b1
¥*TIME=11 STATE=C

SCORE=0

SCORE=0

SCORE=0

SCORE=0

SCORE=0

SCORE=0

SCORE=0

SCORE=1

SCORE=1
SCORE=11

SCORE=11

SCORE=11

SCORE=11

CARDBUF=0
CARDBUF=0

CARDBUF=0

CARDBUF=12

CARDBUF=I

CARDBUF=1

CARDBUF=1

CARDBUF=|

CARDBUF=10

CARDBUF=10

CARDBUF=10

CARDBUF=5

CARDBUF=5

FF=1
*TI ME=12 STATE=C:
YCRD: =| bO
*TI ME=12 STATE=C:
FF=1

*TI ME=13 STATE=D:

FF=1

*TI ME=14 STATE=F:
FF=1

*TI ME=15 STATE=B:

VALUE:=5d10

*TI ME=15 STATE=B:

YCRD:=1b1

*TI ME=15 STATE=B:
FF=1

*TI ME=16 STATE=C:

YCRD: =| bO

*TI ME=16 STATE=C:
FF=1

*TI ME=17 STATE=D:

FF=1

*TI ME=18 STATE=F:
FF=1

*TI ME=19 STATE=G
FF=1

*TI ME=20 STATE=H:
Ce FF=1

*TI ME=21 STATE=D:

FF=0

*TI ME=22 STATE=F:
FF=0

*TI ME=23 STATE=B:

VALUE:=5d6

*TI ME=23 STATE=B:

YCRD:=1b1

*TI ME=23 STATE=B:
FF=0

*TI ME=24 STATE=C:

YCRD: =| bO

*TI ME=24 STATE=C:
FF=0

*TI ME=25 STATE=D:

FF=0

*TI ME=26 STATE=F:

FF=0

*TI NE=27 STATE=G
FF=0

*T| NE=28 STATE=H:

SCORE=11
SCORE=11

SCORE=16

SCORE=16

SCORE=16
SCORE=16
SCORE=26
SCORE=26
SCORE=26
SCORE=26
SCORE=16

SCORE=16

SCORE=16
SCORE=16
SCORE=22
SCORE=22
SCORE=22
- 26 -

CARDBUF=5
CARDBUF=5

CARDBUF=5

CARDBUF=5

CARDBUF=10
CARDBUF=10
CARDBUF=10
CARDBUF=I O
CARDBUF=10
CARDBUF=22

CARDBUF=22

CARDBUF=22

CARDBUF=6
CARDBUF=6
CARDBUF=6
CARDBUF=6

CARDBUF=6

FF=0

*TI ME=29 STATE=J:

YCRD: =| bO

*TI ME=29 STATE=J: SCORE=22 CARDBUF=22
FF=0

STOP BY <ESCAPE>

*TI ME=29 STATE=J:

>display(stand,

= br oke>.

*TI ME=29 STATE=J: STAND=0 BROKE= 1

>set cardbuf=5d1 and set ff=1b1.

>run fromd and step.

¥TIME=0 STATE=D:

>step.

*TI ME=1 STATE=F:

>run froma and if at j+at kK then display(stand,broke),stop.

*TIME=1 STATE=B:

VALUE:=547

*TIME=1 STATE=B:

YCRD:=1bt

*TI ME=2 STATE=C.

YCRD: =| bO

*T| ME=5 STATE=B:

VALUE:=5d4

*T| ME=5 STATE=B:

YCRD:=1b1

- *TI ME=6 STATE=C:

YCRD: =| bO

*TI ME=9 STATE=B:

VALUE:=5d1

*TI ME=9 STATE=B:

YCRD:=1b1

¥TIME=10 STATE=C

YCRD: =| bO

*TI ME=19 STATE=B:

VALUE:=5d8

*TI ME=19 STATE=B:

YCRD:=1b1

*TI ME=20 STATE=C:

YCRD: =I bO

*TI ME=24 STATE=K:

YCRD: =| bO

*TI ME=24 STATE=K: STAND= 1 BROKE=0

*TI ME=24 STATE=K:

>display(cardbuf,score).

*TI ME=24 STATE=K: CARDBUF=8 SCORE=20

>exit.

EXIT
a

**

In the second exanple, the designer runs the nenory
summat i on nmachi ne. The accumulating sumis displayed only
when a non-zero word has been added. Note that base 16 is

used for output.

m EXAMPLE OF | NTERPRETI VELY LI NKED MACH NE »
REG STER Al[16], B[161, ADDRIS8].
MVEMORY MEM[0:255, 161.
TERM NAL YCLR, YINC, YADD, YREAD,
NDONE ADDR # 255,
START I NPUT (1, START).
OPERATI ON CLEAR = [aA <- 16D0, ADDR <- 8DO],
INC = [ADDR <- ADDR(+)8D1 TAIL 81,
ADD = [A <- a(+)B TAIL 161,
READ = [B <- MEMI[ADDRI,
MEM[ADDR] = 16DO01],
RESTORE = [MEMI[ADDR] = BI].

CONTRCL
P1: | F START THEN YCLR a, YREAD a, ->p2
ELSE ->P1 ENDIF/
P2: YADD a,
IF NDONE THEN YINC a, YREAD &, ->P2
ELSE ->P1 ENDIF/
CONTRCL
Q1: |IF YINC THEN | NC ENDIF,
F YCLR THEN CLEAR ENDIF,
F YADD THEN ADD ENDIF,
F YREAD THEN ->q2
ELSE ->q1, LEVEL ENDIF/
@: READ, ->q3/
@B: RESTORE, LEVEL, ->qi1r.%

**

- 28 -

a<sources.ddl>ddl

I NPUT = sum mem
QUTPUT = sum.lst
DDLI NI = ddl.inil#%, 1550

TO CONTINUE, HI T THE RETURN KEY *
END OF TRANSLATI ON, 0 FATAL ERROR(S).
DDL SI MULATI ON MONI TOR. VERS|I ON 16 NOVEMBER 1978

PLEASE ENTER RADI X (FOR USE I N ALL QUTPUT)

(BASE 2, 4, 8, 10, OR 16): 16

>set mem[10]=10 and set meml[20]=20.

>set mem[30]=30 and set mem[40]=4o0.

>set mem[50]1=50 and set mem[60]=60.

>set mem[70]=70 and set mem[80]=80.

>set mem[90]=90 and set mem[99]=99.

>set addr=8d0.

>run and if at g2 * b#0 then display (addr,b,a)

= and if at pl * tinme>100 then display (a),stop.
¥TIME=0 STATE=P1:Q1:

START:=1b0

*TI ME=1 STATE=P1:Q1:

START: =I bl

*TI ME=23 STATE=P2:Q2: ADDR=0B B=000A

Cot A=0002

*TI ME=41 STATE=P2:Q2: ADDR=15 B=0014
A=001E

¥TIME=5F STATE=P2:Q2: ADDR=1F B=001E
A=003C

¥TIME=7D STATE=P2:Q2: ADDR=29 B=0028
A=0064

¥TIME=9B STATE=P2:Q2: ADDR=33 B=0032
A=0096

¥TIME=B9 STATE=P2:Q2: ADDR=3D B=003C
A=00D2

¥TIME=D7 STATE=P2:Q2: ADDR=47 B=00u6
A=0118

¥TIME=F5 STATE=P2:Q2: ADDR=51 B=0050
A=0168

*TI ME=113 STATE=P2:Q2: ADDR=5B B=0054
A=01C2

¥TIME=12E STATE=P2:Q2: ADDR=614 B=0063
A=0225

*TI ME=302 STATE=P1:Q1:

START:=1b0

*TI ME=302 STATE=P1:Q1: A=0225

- 29 -

*TI ME=302 STATE=PI : Q :

>exit.

EXIT
@

- 30 -

Appendi x A
ERROR MESSAGES

The error rmessages issued by the DDL-P simulator are
listed below, along with their severity codes. Wen an er-
ror condition arises, the sinulator lists the appropriate
nmessage at the tel etype and, in some cases, 1in the listing
file. The significance of the error severity codes is ex-

pl ai ned in Chapter 4.

The characters in the first three colums of each |ine
* below indicate when the error on that |ine may occur. A "c¢®
in colum one denotes that the error may occur as the sinu-
lator is exam ning a comand sentence. An "I" in colum two
denotes that the error may occur when the user types an in-
put constant during sinulation. An "s"™ in colum three in-
dicates that the error may occur while a command is being

executed or during simulation.

The term "predefined termnal" refers to a termnal for
which a function was specified in the TERM NAL decl arati ons.

An "argument" is the sanme as an “"actual paraneter,"” and

"SSR" stands for "state sequencing register.” The string

"<1p>" Wl | be replaced by the appropriate facility name

when an error nessage is printed.

The error
STRING TOO BI G FOR DECI MAL DI SPLAY
refers to the fact that DDL-P cannot print a decinmal nunber
| onger than 99 digits. The error nessage
SYNTAX ERRCR
flags many kinds of errors in comand sentences. In case of
such an error, t he designer should refer to the DDL-P Com

mand Sentence BNF to determ ne the proper syntax.

c.. fatal Syntax error
CI war ni ng Il egal character

Cl. warning Input line longer than 132 characters
ci. fatal Constant too |arge
1. fatal Binary string nust start with decimal digit
1. fatal Il'legal character in binary string
cr. fatal II'legal nunber length spec. (zero or >256)
cI fatal Deci mal nunber nmay not be left-justified
cI fatal Illegal char. or digit of wong radix in no.
ci. fatal Digit is of inproper radix
c.. fatal Undecl ared identifier
C.. fatal This identifier may not be subscripted
C.. fatal Two- di mensi onal array requires subscript
C.. fatal This identifier may only have 1 subscript
C.. fatal Field can't be used to denote range of words
C.. fatal Subscripting nested too deeply (>10 |evels)
C.. fatal I mproper field or access to non-existent bits
C.. fatal Too many dinmensions (>2) or invalid field
C.. fatal Predef ined termnal subscripted
C.. fatal M ssing argunent |i st
C.. fatal Wong nunber of arguments
C.. fatal This identifier may not have argunents
C.. fatal This identifier not allowed in expression
C.. fatal Qperation identifier not allowed in expr

- 32 -

OO0 00

DL OmOLOnmomnonononomononononomonguonoumuomwom-

CI.

CIS

fatal
fatal
fatal
fatal
fat al
fatal
fatal
fatal
war ni
fat al
fatal
fatal
fatal
fatal
war ni
war ni
war ni
war ni
fatal
f at al
fatal
fatal
fatal
war ni
abort
abort
fatal
fatal
fatal
fat al
abort

ng

ng
ng
ng

ng

Assignment to identifier of wong type
Identifier nmust be a state

“RUN FROM . " required after error

"EXIT* nmust appear in conmand by itself
Operand too long (>256 bits)

String or CON or EXT result is too |ong
Head or tail length too |ong

String or field range is too big (>256 bits)
String too big for decinal display

Ref erence to non-existent word of <ID>
Store into non-existent word of <ID>

Ref erence to non-existent bit of <ID>
Store into non-existent bit of <ID>

I mproper field or non-existent bits of <ID>
I nconpatible lengths for store into <ID>
Inconpatible Iengths for operation

Si mul taneous stores into a flip-flop of <ID>
Illegal store into |Iower |evel SSR

Two next states specified

Two "=>" states specified

No state corresponds to this SSR val ue
No next-state indicated

No place to return

***Probably in infinite |oop

Internal error: II'legal instruction
Internal error: stack overfl ow
Unexpect ed end of i nput

Unexpected end of file

Unexpected end of conmand

Internal error: parse stack overflow
Internal error: nmenory overfl ow

- 33 -

Appendi x B
DDL- P COMVAND SENTENCE BNF

The conpl ete Backus-Naur Form for DDL-P sinmulator com
mand sentences is listed bel ow Non-termnals are witten
in |ower-case letters and underscore; "ddl_description™ iS a
non-termnal, e.g. Al'l other synbols are termnals except
for the follow ng special synbols ("meta-symbols"):

R REPLACEMENT SYMBOL - Left-hand side may be
repl aced by right-hand side.

{1 OPTI ONAL STRING SYMBCL - String of synbols

encl osed in braces is optional.

{ }x*x REPETI TION SYMBOL - String of synbols encl osed
may appear zero or nore tinmes in succession.

I CONCATENATI ON SYMBOL - Synbol on left nust be
concatenated with synbol on right (i.e., with no
i ntervening bl anks or end-of-1ine).

I OR SYMBOL - This separates several right-hand

si des of productions.

- 34 -

The simulator pronpts for the first line of a comuand

sentence by typing ">" at the beginning of a line. A sen-
tence may take up several l'i nes; the simulator pronpts for
additional lines with "=, In a sentence, a coment is any

string of synbols except double-quote (") enclosed in dou-
bl e-quotes and contained on one line, e.g.,
“THS IS A COWWENT"

A comment nmay appear anywhere a blank is permtted.

letter = AIBICIDIEIFIGIHIIIJIKILIMI
NIOIPIQIRISITIUIVIWIXIYIZI
albleclidlelflglhlitjilkllim]
nlolplglrisitiulviulxlylz
digit = o0l112131l4l516171819
hex-di gi t = digit TA 1B 1 CIDIEIF
octal -digit =011 121314151617
quartal_digit ::= 0 | 1 121 3
bi t =0 o1
decimal -constant : : = digit { I digit }*x=x
constant ::= deci nmal - const ant
| decimal -constant 11 B { || } 11 bit
{ 11 bit }x*x
| decimal-constant 1 @ { I . }
Il guartal_digit
{ Il quartal_digit }¥*¥%x
| decimal -constant 11 @ { Il . }
Il octal-digit
{ 1 octal-digit }*xx
| decimal-constant {1 DI | deciml-constant
| decimal-constant 1 H { |l . }
Il hex-digit

{ I hex-digit }x*xx

letter-or-digit ::= letter |digit

identifier : := letter { Il letter-or-digit }*xx
field ::= bool ean-exp bool ean- exp
identif ier-ref ::= identifier

| identifier 1l decinal-constant

| identifier [boolean-exp |

| identifier Il decimal-constant

[bool ean-exp |
identifier [boolean-exp 11[bool ean-exp |

|
| identifier [boolean-exp , boolean-exp 1
| identifier [field 1
| identifier |1 decimal-constant [field 1
| identifier [boolean-exp | [field 1
| identifier [boolean-exp , field 1
termnal-ref ::= identifier (bool ean-exp
{, boolean_expl}**¥)
reference : : = identif ier-ref | termnal-ref
bool ean-exp :: = mnterm { + mnterm }**x
mnterm: := product { [+] product }*%%
pr oduct = conplenent { * conplenent }*xx
complement ::= {-} relation
rel ation = arithnetic-exp
| arithnmetic-exp (=) arithmetic-exp
| arithnetic-exp # arithnetic-exp
| arithmetic-exp < arithmetic-exp
| arithmetic-exp > arithmetic-exp
| arithmetic-exp >= arithnmetic-exp
| arithnetic-exp <= arithnetic-exp
| AT identifier
arithnmetic-exp ::= { (=) } term
| arithnmetic-exp (+) term
| arithmetic-exp (=) term
term ::= constant
I reference
| TIME
I

(bool ean-exp)

- 36 -

sent ence = run-cond { AND ot her-command } ##%x
| other-command { AND ot her-command }*¥%
F EXIT .
run-comd ::= RUN { FROM identifier {:identifier}*%% }

{ TO identifier {:identifier}**% }

ot her-conmmand :: =
u- conmand
I | F bool ean-exp THEN u-command {, u-command}***

u-command ::= DI SPLAY { (reference {,referencel}***%) }
| PRI NT { (reference {,referencel*x%*) }
I DUWP
| SET identifier-ref = bool ean-exp
| CLEAR
| STEP
| STOP

- 37 -

REFERENCES

Arndt, RL. and D etneyer, D.L. "DDLSIM--A Digital
Desi gn Language Simulator," Proc. National
El ectronics Conf., Vol. 26, pp. 116-118, Decenber
1970.

Cory, WE., Duley, J.R., and vanCleemput, WM An
Introduction to the DDL-P Lansuase. Palo Alto:
Stanford University, Conputer Systens Laboratory,
March 1979, 97 pp.

D etneyer, D.L. and Duley, J.R "Regi ster Transfer
Languages and Their Translation"” in Disital System
Desi sn Aut omati on: Lanquages, Sinulation and Data
Base. Wodland H I ls, CA. : Conput er Sci ence Press,
Inc., 1975, pp. 117-218.

Di et reyer, D.L. Translation of DD Descriptions of
Digital Systenms, ECE-77-13. Madi son: U of
Wsconsin, Dept. of Electrical and Conputer
Engi neering, Septenber 1977, 46 pp.

Dul ey, J.R DDL--A Disital System Desisn Lansuase.
Madi son: U. of Wsconsin, Ph.D. Thesis, 1967.

Duley, J.R and Dietneyer, D.L. "p Digital System
Desi gn Language (ppL)," |.EEE Trans. comp. Vol. c-17
(Sept enber 13%68), pp. 850-861.

Duley, J.R and Dietneyer, D.L. "Transl ation of a DDL
Digital System Specification to Bool ean Equations,”
TEEEa n s . comp. Vvol. c-18 (April 19691, pp.
305-313.

N, Disital Desisn Lansuase Transl ator--DDLTRN
Madi son: U of Wsconsin, Dept. of Electrical and
Conput er Engi neering, 13 pp.

— 35 -~

9. N, Disital Desisn Lansuase Simulator--DDLSIM Madi son:
U of Wsconsin, Dept. of Electrical and Conputer
Engi neering, 36 pp.

10. Socares, L.E R An Inplenmentation of Disital Desiqgn
Lansuase. Madi son: U. of Wsconsin, Dept. of
El ectrical and Conputer Engineering, MS. thesis,
1970.

- 39 -

